(完整版)人教版数学必修2直线与方程知识点专题讲义,推荐文档

合集下载

(人教版)高中数学必修二-知识点、考点及典型例题解析(全)

(人教版)高中数学必修二-知识点、考点及典型例题解析(全)

必修(bìxiū)二第一章空间(kōngjiān)几何体知识点:1、空间(kōngjiān)几何体的结构⑴常见的多面体有:棱柱、棱锥、棱台;常见的旋转体有:圆柱、圆锥(yuánzhuī)、圆台、球。

⑵棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些(zhèxiē)面所围成的多面体叫做棱柱。

⑶棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台。

2、长方体的对角线长;正方体的对角线长3、球的体积公式:,球的表面积公式:4、柱体,锥体,锥体截面积比:5、空间几何体的表面积与体积⑴圆柱侧面积;⑵圆锥(yuánzhuī)侧面积:典型(diǎnxíng)例题:★例1:下列命题(mìng tí)正确的是( )A.棱柱(léngzhù)的底面一定是平行四边形B.棱锥(léngzhuī)的底面一定是三角形C.棱柱被平面分成的两部分可以都是棱柱D.棱锥被平面分成的两部分不可能都是棱锥★★例2:若一个三角形,采用斜二测画法作出其直观图,其直观图面积是原三角形面积的()A 倍B 倍C 2倍D 倍★例3:已知一个几何体是由上、下两部分构成的一个组合体,其三视图如下图所示,则这个组合体的上、下两部分分别是()A.上部是一个圆锥,下部是一个圆柱B.上部是一个圆锥,下部是一个四棱柱C.上部是一个三棱锥,下部是一个四棱柱D.上部是一个三棱锥,下部是一个圆柱正视侧视俯视★★例4:一个(yīɡè)体积为的正方体的顶点(dǐngdiǎn)都在球面上,则球的表面积是A.B. C. D.二、填空题★例1:若圆锥(yuánzhuī)的表面积为平方米,且它的侧面展开图是一个半圆,则这个(zhè ge)圆锥的底面的直径为_______________.★例2:球的半径(bànjìng)扩大为原来的2倍,它的体积扩大为原来的 _________ 倍.第二章点、直线、平面之间的位置关系知识点:1、公理1:如果一条直线上两点在一个平面内,那么这条直线在此平面内。

高中数学人教版必修2知识点总结

高中数学人教版必修2知识点总结

高中数学必修2知识点一、直线与方程(1)直线的倾斜角定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。

特别地,当直线与x 轴平行或重合时,我们规定它的倾斜角为0度。

因此,倾斜角的取值范围是0°≤α<180°(2)直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。

直线的斜率常用k tan k α=当[)οο90,0∈α时,0≥k ; 当()οο180,90∈α时,0<k ; 当ο90=α时,k 不存在。

②过两点的直线的斜率公式:)(211212x x x x y y k ≠--= 注意下面四点:(1)当21x x =时,公式右边无意义,直线的斜率不存在,倾斜角为90°;(2)k 与P 1、P 2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。

(3)直线方程①点斜式:)(11x x k y y -=-直线斜率k ,且过点()11,y x注意:当直线的斜率为0°时,k=0,直线的方程是y =y 1。

当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l 上每一点的横坐标都等于x 1,所以它的方程是x =x 1。

②斜截式:b kx y +=,直线斜率为k ,直线在y 轴上的截距为b③两点式:112121y y x x y y x x --=--(1212,x x y y ≠≠)直线两点()11,y x ,()22,y x ④截矩式:1x y a b+= 其中直线l 与x 轴交于点(,0)a ,与y 轴交于点(0,)b ,即l 与x 轴、y 轴的截距分别为,a b 。

⑤一般式:0=++C By Ax (A ,B 不全为0)注意:○1各式的适用范围 ○2特殊的方程如: 平行于x 轴的直线:b y =(b 为常数); 平行于y 轴的直线:a x =(a 为常数);(5)直线系方程:即具有某一共同性质的直线(一)平行直线系平行于已知直线0000=++C y B x A (00,B A 是不全为0的常数)的直线系:000=++C y B x A (C 为常数)(二)过定点的直线系(ⅰ)斜率为k 的直线系:()00x x k y y -=-,直线过定点()00,y x ; (ⅱ)过两条直线0:1111=++C y B x A l ,0:2222=++C y B x A l 的交点的直线系方程为()()0222111=+++++C y B x A C y B x A λ(λ为参数),其中直线2l 不在直线系中。

必修2 第三章 直线与方程知识点

必修2 第三章 直线与方程知识点
新疆
王新敞
学案
知识点 12:已知平面上两点 P ( x2 x1 )2 ( y2 y1 )2 . 1 2 1 ( x1 , y1 ), P 2 ( x2 , y2 ) ,则 PP 特殊地: P( x, y) 与原点的距离为 OP x2 y 2 . 知识点 13:已知点 P( x0 , y0 ) 和直线 l : Ax By C 0 ,则点 P 到直线 l 的距离为: . A2 B 2 知识点 14:已知两条平行线直线 l1 Ax By C1 0 ,l2 : Ax By C2 0 ,则 l1 与 l2 的距离为
2
C.
D.不存在
5.圆 x2+y2+4x=0 的圆心坐标和半径分别是( ) A.(-2,0),2 B.(-2,0),4 C.(2,0),2 D.(2,0),4 6.点(1,2)关于直线 y = x 1 的对称点的坐标是 (A) (3,2) (B) (3,2) (C) (3,2) 7.点(2,1)到直线 3x 4y + 2 = 0 的距离是 (A)
A2 B 2 知识点 15:巧妙假设直线方程: (1)与 Ax By C1 0 平行的直线可以假设成: Ax By C2 0 (C1 和 C2 不相等) (2)与 Ax By C 0 垂直的直线可以假设成:Bx-Ay+m=0 d C1 C2
新疆
d
Ax0 By0 C
例 7. 过点 P(4, 2) 作直线 l 分别交 x 轴、 y 轴正半轴于 A, B 两点,当 AOB 面积最小时,求 直线 l 的方程.
例 8 点 P(x,y)在 x+y-4=0 上,则 x2+y2 最小值为多少?
巩固练习: 1.已知点 (3, m) 到直线 x 3 y 4 0 的距离等于 1,则 m (

高中数学人教版必修二自学课件第三章-直线与方程(全)讲课资料

高中数学人教版必修二自学课件第三章-直线与方程(全)讲课资料

b),求直线方程。
y.
代入点斜式方程,得l的直线方程: (0,b)
y - b =k ( x - 0)
即 y = k x (+2) b 。
O
x
直线l与y轴交点(0,b)的纵坐标b叫做直线l在y轴
上的截距。
方程(2)是由直线的斜率k与它在y轴上的截距b
确定,所以方程(2)叫做直线的斜截式方程,简
称斜截式。
答:不成立,因为分母为0.
直线的斜率公式
综上所述,我们得到经过两点P1(x1, y1), P2(x2,y2) (x1 x2)的直线的斜率公式:
和谐 ky2y1(或 ky1y2)
x2x1
x1x2
P2 P1
P1 P2
倾斜角 联姻 斜率
(形)
(数)
学以致用,举一反三
例1 、如图,已知A(3,2)、B(-4,1)、C(0,-1),求
例2.已知A(2,3),B(-4,0),P(-3,1), Q(-1,2),试判断直线BA与PQ的位置关系, 并证明你的结论。
Y
Q P
B
A X
例3 已知四边形ABCD的四个顶点 分别为A(0,0),B(2,-1), C(4,2),D(2,3),试判断四 边形ABCD的形状,并给出证明.
例4、已知A(-6,0),B(3,6), P(0,3)Q(6,6),判断直线AB 与PQ的位置关系。
两点之间最短的距离并不一定是直线!
我们可以选择有困难绕过去,有障碍 绕过去,也许这样做事情更加顺利!
思考题:若直线的斜率k满足:3k
3 3
,
则直线的倾斜角的范围是

[0,)[2,)
63
y
3
3

高二数学必修2直线与方程知识点专题----2--60

高二数学必修2直线与方程知识点专题----2--60

必修二直线与方程知识点1、直线的倾斜角与斜率 (1)直线的倾斜角① 关于倾斜角的概念要抓住三点:ⅰ.与x 轴相交; ⅱ.x 轴正向; ⅲ.直线向上方向. ② 直线与x 轴平行或重合时,规定它的倾斜角为00. ③ 倾斜角α的范围000180α≤<.④ 090,tan 0k αα︒≤<︒=≥; 90180,tan 0k αα︒<<︒=< (2)直线的斜率①直线的斜率就是直线倾斜角的正切值,而倾斜角为090的直线斜率不存在. ②经过两点),(),,(222111y x P y x P 的直线的斜率公式是211221()y y k x x x x -=≠-.③每条直线都有倾斜角,但并不是每条直线都有斜率. 2、直线方程的几种形式 名称方程的形式已知条件局限性点斜式)(11x x k y y -=-),(11y x 为直线上一定点,k为斜率不包括垂直于x 轴的直线斜截式b kx y +=k 为斜率,b 是直线在y 轴上的截距不包括垂直于x 轴的直线两点式121121x x x x y y y y --=--),(2121y y x x ≠≠其中),(),,(2211y x y x 是直线上两定点不包括垂直于x 轴和y 轴的直线截距式1=+bya x a 是直线在x 轴上的非零截距,b 是直线在y 轴上的非零截距不包括垂直于x 轴和y 轴或过原点的直线一般式=++C By Ax )不同时为其中0,(B A A ,B ,C 为系数无限制,可表示任何位置的直线3、两条直线平行与垂直的判定 (1) 两条直线平行斜截式:对于两条不重合的直线111222:,:l y k x b l y k x b =+=+,则有121212//,l l k k b b ⇔=≠注:当直线12,l l 的斜率都不存在时,12l l 与的关系为平行.一般式:已知 1111:0l A x B y C ++=, 2222:0l A x B y C ++=,则1212211221//,l l A B A B AC A C ⇔=≠注:1212211221=,l l A B A B AC A C ⇔=与重合1l 与2l 相交01221≠-⇔B A B A(2)两条直线垂直斜截式:如果两条直线12,l l 斜率存在,设为12,k k ,则12121l l k k ⊥⇔=- 一般式:已知 1111:0l A x B y C ++=, 2222:0l A x B y C ++=,则0212121=+⇔⊥B B A A l l4、线段的中点坐标公式若两点),(),,(222111y x P y x P ,且线段21,P P 的中点M 的坐标为),(y x ,则⎪⎪⎩⎪⎪⎨⎧+=+=222121y y y x x x5、 直线系方程 (1)过定点的直线系①斜率为k 且过定点),(00y x 的直线系方程为)(00x x k y y -=-*②过两条直线0:1111=++C y B x A l , 0:2222=++C y B x A l 的交点的直线系方程为0)(222111=+++++C y B x A C y B x A λ(λ为参数),其中直线l 2不在直线系中 (2)平行垂直直线系①平行于已知直线0Ax By C ++=的直线系10Ax By C ++= ②垂直于已知直线0Ax By C ++=的直线系10Bx Ay C -+= 6、两条直线的交点设两条直线的方程是0:1111=++C y B x A l , 0:2222=++C y B x A l 两条直线的交点坐标就是方程组⎩⎨⎧=++=++0222111C y B x A C y B x A 的解,若方程组有唯一解,则这两条直线相交,此解就是交点的坐标;若方程组无解,则两条直线无公共点,此时两条直线平行;反之,亦成立. 7、几种距离 (1)两点间的距离平面上的两点),(),,(222111y x P y x P 间的距离公式21221221)()(y y x x P P-+-= 特别地,原点)0,0(O 与任一点),(y x P 的距离22y x OP +=(2)点到直线的距离点),(00y x P 到直线0:=++C By Ax l 的距离2200BA C By Ax d +++=(3)两条平行线间的距离两条平行线0:11=++C By Ax l , 0:22=++C By Ax l 间的距离2212BA C C d +-=注:①求点到直线的距离时,直线方程要化为一般式;②求两条平行线间的距离时,必须将两直线方程化为系数相同的一般形式后,才能套用公式计算.8、有关对称问题 (1)中心对称①若点),(11y x M 及),(22y x N 关于),(b a P 对称,则由中点坐标公式得⎩⎨⎧-=-=1122y b y x a x②直线关于点的对称,其主要方法是:在已知直线上取两点,利用中点坐标公式求出它们关于已知点对称的两点坐标,再由两点式求出直线方程,或者求出一个对称点,再利用21//l l ,由点斜式得到所求直线方程.(2)轴对称 ①点关于直线的对称若两点),(111y x P 与),(222y x P 关于直线0:=++C By Ax l 对称,则线段21P P 的中点在对称轴l 上,而且连接21P P 的直线垂直于对称轴l 上,由方程组⎪⎪⎩⎪⎪⎨⎧-=-∙--=++++1)(0)2()2(12122121B A x x y y C y y B x x A ⎩⎨⎧==⇒22y x ? 可得到点1P 关于l 对称的点2P 的坐标),(22y x (其中21,0x x A ≠≠) ②直线关于直线的对称此类问题一般转化为点关于直线的对称来解决,有两种情况:一是已知直线与对称轴相交;二是已知直线与对称轴平行.。

新人教版数学必修二第三章 直线与方程

新人教版数学必修二第三章 直线与方程

必修2 新高考(RJA)第三章 直线与方程3.1 直线的倾斜角与斜率3.1.1 倾斜角与斜率3.1.2 两条直线平行与垂直的判定3.2 直线的方程3.2.1 直线的点斜式方程3.2.2 直线的两点式方程3.2.3 直线的一般式方程3.3 直线的交点坐标与距离公式3.3.1 两条直线的交点坐标3.3.2 两点间的距离3.3.3 点到直线的距离3.3.4 两条平行直线间的距离3.1 直线的倾斜角与斜率3.1.1 倾斜角与斜率三维目标1.知识与技能(1)正确理解直线的倾斜角和斜率的概念.(2)理解直线倾斜角的唯一性.(3)理解直线斜率的存在性.(4)斜率公式的推导过程,掌握过两点的直线的斜率公式.2.过程与方法引导帮助学生将直线的位置问题(几何问题)转化为倾斜角问题,进而转化为倾斜角的正切即斜率问题(代数问题)进行解决,使学生不断体会“数形结合”的思想方法.三维目标3.情感、态度与价值观(1)通过直线倾斜角的概念的引入学习和直线倾斜角与斜率关系的揭示,培养学生观察、探索能力,运用数学语言的表达能力,数学交流与评价的能力.(2)通过斜率概念的建立和斜率公式的推导,帮助学生进一步理解数形结合的思想,培养学生树立辩证统一的观点,培养学生形成严谨的科学态度和求简的数学精神.重点难点[重点]直线的倾斜角和斜率概念以及过两点的直线的斜率公式.[难点]两点式斜率公式的推导.教学建议1.在平面直角坐标系中,结合具体图形,让学生了解确定直线位置的几何要素可以是一个点与直线的方向或两个点,两个点可以确定直线的方向,这与“一个点和直线的方向确定一条直线”是一致的.2.教学中可通过引导学生讨论倾斜角的范围,刻画直角坐标系中直线的倾斜程度,使学生感受直线的倾斜角α的范围是0°≤α<180°.3.本小节从一个具体的一次函数与它的图像入手,引入直线的倾斜角概念,注重了由浅入深的学习规律,并体现了由特殊到一般的研究方法.引导学生认识到之所以引入直线在平面直角坐标系中的倾斜角和斜率概念,是进一步研究直线方程的需要.新课导入新课导入预习探究直线的倾斜角x轴正向直线l向上方向直线l与x轴平行或重合预习探究错[解析]不一定,也可能与x轴重合.直线的斜率 预习探究k =tanα倾斜角α的正切值倾斜角斜率没有k =0k >0k 不存在k<0预习探究k =同时交换垂直90°不存在平行或重合00°预习探究[解析] 不是.若直线没有斜率,则这条直线的倾斜角应为90°.备课素材备课素材考点类析考点类析A考点类析A直线的倾斜角问题 [基础夯实型]考点类析D考点类析考点类析斜率公式的应用 [重点探究型]考点类析考点类析考点类析备课素材备课素材图3­1­3当堂自测当堂自测当堂自测备课素材备课素材3.1.2 两条直线平行与垂直的判定3.1 直线的倾斜角与斜率三维目标1.知识与技能理解并掌握两条直线平行与垂直的条件,会运用条件判定两直线是否平行或垂直. 2.过程与方法通过探究两直线平行或垂直的条件,培养学生运用正确知识解决新问题的能力,以及数形结合能力.3.情感、态度与价值观通过对两直线平行与垂直的位置关系的研究,培养学生的成功意识,合作交流的学习方式,激发学生的学习兴趣.重点难点[重点]两条直线平行和垂直的条件.[难点]启发学生,把研究两条直线的平行或垂直问题转化为研究两条直线的斜率的关系问题.教学建议直线的平行和垂直是两条直线的重要位置关系,它们的判定又都是由相应的斜率之间的关系来确定的,并且研究讨论的手段和方法也相类似,因此,在教学时采用对比的方法,以便弄清平行与垂直之间的联系与区别.值得注意的是,当两条直线中有一条不存在斜率时,容易得到两条直线垂直的充要条件,这也需要说明.新课导入新课导入 k 1=k2两条直线平行预习探究预习探究两条直线垂直 预习探究备课素材考点类析两条直线的平行问题 [重点探究型]考点类析考点类析考点类析考点类析三点共线问题 [重点探究型]考点类析考点类析。

人教版数学必修2直线与方程知识点专题讲义全

人教版数学必修2直线与方程知识点专题讲义全

必修二直线与方程专题讲义1、直线的倾斜角与斜率 (1)直线的倾斜角① 关于倾斜角的概念要抓住三点:ⅰ.与x 轴相交; ⅱ.x 轴正向; ⅲ.直线向上方向. ② 直线与x 轴平行或重合时,规定它的倾斜角为00. ③ 倾斜角α的围000180α≤<.④ 090,tan 0k αα︒≤<︒=≥; 90180,tan 0k αα︒<<︒=< (2)直线的斜率①直线的斜率就是直线倾斜角的正切值,而倾斜角为090的直线斜率不存在. ②经过两点),(),,(222111y x P y x P 的直线的斜率公式是211221()y y k x x x x -=≠-.③每条直线都有倾斜角,但并不是每条直线都有斜率. 2、直线方程的几种形式注:过两点),(),,(222111y x P y x P 的直线是否一定可用两点式方程表示?(不一定) (1)若2121y y x x ≠=且,直线垂直于x 轴,方程为1x x =; (2)若2121y y x x =≠且,直线垂直于y 轴,方程为1y y =; (3)若2121y y x x ≠≠且,直线方程可用两点式表示) 3、两条直线平行与垂直的判定 (1) 两条直线平行斜截式:对于两条不重合的直线111222:,:l y k x b l y k x b =+=+,则有121212//,l l k k b b ⇔=≠注:当直线12,l l 的斜率都不存在时,12l l 与的关系为平行.一般式:已知 1111:0l A x B y C ++=, 2222:0l A x B y C ++=,则1212211221//,l l A B A B AC A C ⇔=≠注:1212211221=,l l A B A B AC A C ⇔=与重合1l 与2l 相交01221≠-⇔B A B A(2)两条直线垂直斜截式:如果两条直线12,l l 斜率存在,设为12,k k ,则12121l l k k ⊥⇔=-注:两条直线12,l l 垂直的充要条件是斜率之积为-1,这句话不正确;由两直线的斜率之积为-1,可以得出两直线垂直,反过来,两直线垂直,斜率之积不一定为-1.如果12,l l 中有一条直线的斜率不存在,另一条直线的斜率为0时,12l l 与互相垂直.一般式:已知 1111:0l A x B y C ++=, 2222:0l A x B y C ++=,则0212121=+⇔⊥B B A A l l4、线段的中点坐标公式若两点),(),,(222111y x P y x P ,且线段21,P P 的中点M 的坐标为),(y x ,则⎪⎪⎩⎪⎪⎨⎧+=+=222121y y y x x x5、 直线系方程 (1)过定点的直线系①斜率为k 且过定点),(00y x 的直线系方程为)(00x x k y y -=-②过两条直线0:1111=++C y B x A l , 0:2222=++C y B x A l 的交点的直线系方程为0)(222111=+++++C y B x A C y B x A λ(λ为参数),其中直线l 2不在直线系中(2)平行垂直直线系①平行于已知直线0Ax By C ++=的直线系10Ax By C ++= ②垂直于已知直线0Ax By C ++=的直线系10Bx Ay C -+= 6、两条直线的交点设两条直线的方程是0:1111=++C y B x A l , 0:2222=++C y B x A l 两条直线的交点坐标就是方程组⎩⎨⎧=++=++0222111C y B x A C y B x A 的解,若方程组有唯一解,则这两条直线相交,此解就是交点的坐标;若方程组无解,则两条直线无公共点,此时两条直线平行;反之,亦成立. 7、几种距离 (1)两点间的距离平面上的两点),(),,(222111y x P y x P 间的距离公式21221221)()(y y x x P P -+-= 特别地,原点)0,0(O 与任一点),(y x P 的距离22y x OP +=(2)点到直线的距离点),(00y x P 到直线0:=++C By Ax l 的距离2200BA C By Ax d +++=(3)两条平行线间的距离两条平行线0:11=++C By Ax l , 0:22=++C By Ax l 间的距离2212BA C C d +-=注:①求点到直线的距离时,直线方程要化为一般式;②求两条平行线间的距离时,必须将两直线方程化为系数相同的一般形式后,才能套用公式计算.8、有关对称问题 (1)中心对称①若点),(11y x M 及),(22y x N 关于),(b a P 对称,则由中点坐标公式得⎩⎨⎧-=-=1122y b y x a x②直线关于点的对称,其主要方法是:在已知直线上取两点,利用中点坐标公式求出它们关于已知点对称的两点坐标,再由两点式求出直线方程,或者求出一个对称点,再利用21//l l ,由点斜式得到所求直线方程.(2)轴对称 ①点关于直线的对称若两点),(111y x P 与),(222y x P 关于直线0:=++C By Ax l 对称,则线段21P P 的中点在对称轴l 上,而且连接21P P 的直线垂直于对称轴l 上,由方程组⎪⎪⎩⎪⎪⎨⎧-=-•--=++++1)(0)2()2(12122121B A x x y y C y y B x x A ⎩⎨⎧==⇒22y x ? 可得到点1P 关于l 对称的点2P 的坐标),(22y x (其中21,0x x A ≠≠) ②直线关于直线的对称此类问题一般转化为点关于直线的对称来解决,有两种情况:一是已知直线与对称轴相交;二是已知直线与对称轴平行.注:①曲线、直线关于一直线b x y +±=对称的解法:y 换x ,x 换y . 例:曲线0),(=y x f 关于直线2-=x y 对称曲线方程是0)2,2(=-+x y f②曲线0),(:=y x f C 关于点),(b a 的对称曲线方程是0)2,2(=--y b x a f9、直线l 上一动点P 到两个定点A 、B 的距离“最值问题”: (1)在直线l 上求一点P ,使PB PA +取得最小值,① 若点B A 、位于直线l 的同侧时,作点A (或点B )关于l 的对称点/A 或/B , ② 若点B A 、位于直线的异侧时,连接AB 交于l 点P ,则P 为所求点.可简记为“同侧对称异侧连”.即两点位于直线的同侧时,作其中一个点的对称点;两点位于直线的异侧时,直接连接两点即可.(2)在直线l 上求一点P 使PB PA -取得最大值, 方法与(1)恰好相反,即“异侧对称同侧连”① 若点B A 、位于直线l 的同侧时,连接AB 交于l 点P ,则P 为所求点. ② 若点B A 、位于直线的异侧时,作点A (或点B )关于l 的对称点/A 或/B , (3) 22PB PA +的最值:函数思想“转换成一元二次函数,找对称轴”. 10、直线过定点问题 (1)含有一个未知参数,12)1(-+-=a x a y 1)2(+-+=⇒x x a y (1)令202-=⇒=+x x ,将3)1(2=-=y x 式,得代入,从而该直线过定点)3,2(- (2)含有两个未知参数0)2()3(=-++-n y n m x n m 0)12()3(=-+-++⇒y x n y x m令⎩⎨⎧-+-=+1203y x y x ⎪⎪⎩⎪⎪⎨⎧=-=⇒7371y x ,从而该直线必过定点)73,71(-.。

人教版高中数学必修第二册直线的方程课件

人教版高中数学必修第二册直线的方程课件

注: a , b表示截距; (1) (2)截距式不能表示过原点以及与坐标轴平 行的直线。
练习2:写出下列直线的截距式方程 (1)x轴上的截距是2,y轴上的截距是3; (2)x轴上的截距是4,y轴上的截距是6;
1 1 (3)x轴上的截距是 ,y轴上的截距是 2 2
练习3: 三角形的顶点是 A(5,0), B(3,3), C (0,2), 求这个三角形三边所在直线的方程。
练习1:求过下列两点的直线的两点式方程, 再化成斜截式方程:
(1) A(2,1), B(0,3); (2) A(0,5), B(5,0); (3) A(4,5), B(0,0); (4) A(a,0), B(0, b)(其中a 0, b 0).
4.直线方程的截距式
x y 1 a b
直线方程 已知条件 的名称 点斜式 斜截式 两点式 截距式
直线方程
使用范围
y y1

x x1
3.直线的两点式方程
y y1 y 2 y1
பைடு நூலகம்

x x1 x 2 x1
注: (1)两点式不能表示倾斜角是 0 或 90 的直线; ( y y1 )(x2 x1 ) ( x x1 )( y2 y1 ) 能表 (2) 示平面内任何一条直线。
直线的方程
直线 方程 名称 已知 条件 直线方程 使用范围
点 点 P (x , y ) 能表示倾 0 0 0 y y0 k ( x x0 ) 斜角不是 斜 式 和斜率k 90 的直线 斜 截 式 斜率k和直 线在y轴上 的截距
y kx b
能表示倾 斜角不是 90 的直线
1.应用直线方程的点斜式,求经过下列两点的 直线方程

高中数学必修2第三章直线与方程总结

高中数学必修2第三章直线与方程总结

第三章 直线与方程 知识点 总结代县中学高二数学组一、概念理解:1、倾斜角:①找α:直线向上方向、x 轴正方向;②平行:α=0°;③范围:0°≤α<180° 。

2、斜率:①找k :k=tan α (α≠90°);②垂直:斜率k 不存在;③范围: 斜率 k ∈ R 。

当 α=0°时,k=0当0<α<90°时,k.>0当α=90°时,k 不存在当90°<α<180°,k<03、斜率与坐标:12122121tan x x y y x x y y k --=--==α ①构造直角三角形(数形结合);②斜率k 值于两点先后顺序无关;③注意下标的位置对应。

4、直线与直线的位置关系:判断方法一:222111:,:b x k y l b x k y l +=+=①平行:<1> 斜率都存在时:2121,b b k k ≠=;<2> 斜率都不存在时:两直线都与x 轴垂直②垂直:<1> 0211=⊥k k x l 不存在,则轴,即;<2> 斜率都存在时:121-=•k k 。

③重合: 斜率都存在时:2121,b b k k ==;④相交:斜率21k k ≠(前提是斜率都存在)判断方法二:11112222:0,:0l A x B y C l A x B y C ++=++=,①1l ∥2l ⇔ 122112211221A B A B B C B C =≠≠且或A C A C ,当(A ,B ,C 不为0时)212121C C B B A A ≠= ②1l ⊥2l ⇔12120A A B B +=③重合:A 1B 2=A 2B 1且B 1C 2=B 2C 1或A 1C 2=A 2C 1,212121C C B B A A == ④相交:A 1B 2≠A 2B 1 ,2121B B A A ≠ 二、方程与公式:1、直线的五个方程:①点斜式:)(00x x k y y -=- 将已知点k y x 与斜率),(00直接带入即可; ②斜截式:b kx y += 将已知截距k b 与斜率),0(直接带入即可; ③两点式:),(2121121121y y x x x x x x y y y y ≠≠--=--其中, 将已知两点),(),,(2211y x y x 直接带入即可; ④截距式:1=+by a x 将已知截距坐标),0(),0,(b a 直接带入即可; ⑤一般式:0=++C By Ax ,其中A 、B 不同时为0在距离公式当中会经常用到直线的“一般式方程”。

必修二-直线与方程知识点总结

必修二-直线与方程知识点总结

直线与方程总结 【知识点一:倾斜角与斜率】 (1)直线的倾斜角①关于倾斜角的概念要抓住三点:1、与x 轴相交;2、x 轴正向;3、直线向上方向。

②直线与x 轴平行或重合时,规定它的倾斜角为00 ③倾斜角α的范围000180α≤< (2)直线的斜率①直线的斜率就是直线倾斜角的正切值,而倾斜角为090的直线斜率不存在. 记作tan k α=0(90)α≠⑴当直线l 与x 轴平行或重合时, 00α=,0tan 00k ==⑵当直线l 与x 轴垂直时, 090α=,k 不存在.②经过两点1112212(,),(,)P x y P x y x x ≠()的直线的斜率公式是2121y y k x x -=-③每条直线都有倾斜角,但并不是每条直线都有斜率. (3)求斜率的一般方法:①已知直线上两点,根据斜率公式212121()y y k x x x x -=≠-求斜率;②已知直线的倾斜角α或α的某种三角函数根据tan k α=来求斜率; (4)利用斜率证明三点共线的方法:已知112233(,),(,),(,)A x y B x y C x y ,若123AB BC x x x k k ===或,则有A 、B 、C 三点共线。

【知识点二:直线平行与垂直】(1)两条直线平行:对于两条不重合的直线12,l l ,其斜率分别为12,k k ,则有2121 // k k l l =⇔ 特别地,当直线12,l l 的斜率都不存在时,12l l 与的关系为平行(2)两条直线垂直:如果两条直线12,l l 斜率存在,设为12,k k ,则有1- 2121=⋅⇔⊥k k l l 注:两条直线12,l l 垂直的充要条件是斜率之积为-1,这句话不正确;由两直线的斜率之积为-1,可以得出两直线垂直;反过来,两直线垂直,斜率之积不一定为-1。

如果12,l l 中有一条直线的斜率不存在,另一条直线的斜率为0时,12l l 与互相垂直. 【知识点三:直线的方程】(1)直线方程的几种形式问题:过两点111222(,),(,)P x y P x y 的直线是否一定可用两点式方程表示? 【不一定】 (1)若1212x x y y =≠且,直线垂直于x 轴,方程为1x x =; (2)若1212x x y y ≠=且,直线垂直于y 轴,方程为12y y =; (3)若1212x x y y ≠≠且,直线方程可用两点式表示直线的点斜式方程实际上就是我们熟知的一次函数的解析式; 利用斜截式求直线方程时,需要先判断斜率存在与否.用截距式方程表示直线时,要注意以下几点:方程的条件限制为0,0a b ≠≠,即两个截距均不能为零,因此截距式方程不能表示过原点的直线以及与坐标轴平行的直线;用截距式方程最便于作图,要注意截距是坐标而不是长度.截距与距离的区别:截距的值有正、负、零。

高中数学必修二 直线与方程必考 知识点总结

高中数学必修二 直线与方程必考 知识点总结

第三章 直线与方程(1)直线的倾斜角定义:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。

特别地,当直线与x 轴平行或重合时,我们规定它的倾斜角为0度。

因此,(2)直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。

直线的斜率常用 当直线l 与x 轴平行或重合时, α=0°, k = tan0°=0; 当直线l 与x 轴垂直时, α= 90°, k 不存在.当[) 90,0∈α时,0≥k ; 当() 180,90∈α时,0<k ; 当 90=α时,k 不存在。

过两点的直线的斜率公式:)(211212x x x x y y k ≠--= ( P1(x1,y1),P2(x2,y2),x1≠x2)注意下面四点:(1)当21x x =时,公式右边无意义,直线的斜率不存在,倾斜角为90°;(2)k 与P 1、P 2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得; (4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。

(3)直线方程注意:当直线的斜率为0°时,k=0,直线的方程是y =y 1。

当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l 上每一点的横坐标都等于x 1,所以它的方程是x =x 1。

注意:○1各式的适用范围 ○2特殊的方程如:(6)两直线平行与垂直注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否。

(7)两条直线的交点0:1111=++C y B x A l 0:2222=++C y B x A l 相交交点坐标即方程组⎩⎨⎧=++=++00222111C y B x A C y B x A 的一组解。

方程组无解21//l l ⇔ ; 方程组有无数解⇔1l 与2l 重合(8设1122(,),A x y B x y ,()是平面直角坐标系中的两个点,(9一点()00,y x P 到直线0:1=++C By Ax l 的距离(10已知两条平行线直线1l 和2l 的一般式方程为1l :01=++C By Ax ,2l :02=++C By Ax ,则1l 与2l 第四章 圆与方程1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。

必修2《直线与方程___知识点_总结》及习题

必修2《直线与方程___知识点_总结》及习题

直线与方程 知识点 总结一、概念理解:1、倾斜角:①找α:直线向上方向、x 轴正方向; ②平行:α=0°;③范围:0°≤α<180° 。

2、斜率:①找k :k=tan α (α≠90°); ②与x 轴垂直:斜率k 不存在; ③范围: 斜率 k ∈ R 。

3、斜率与坐标:12122121tan x x y y x x y y k --=--==α ①构造直角三角形(数形结合); ②斜率k 值与两点先后顺序无关; ③注意下标的位置对应。

4、直线与直线的位置关系:222111:,:b x k y l b x k y l +=+= ①相交:斜率21k k ≠(前提是斜率都存在)特例----垂直时:<1> 0211=⊥k k x l 不存在,则轴,即; <2> 斜率都存在时:121-=∙k k 。

②平行:<1> 斜率都存在时:2121,b b k k ≠=; <2> 斜率都不存在时:两直线都与x 轴垂直。

③重合: 斜率都存在时:2121,b b k k ==; 二、方程与公式: 1、直线的五个方程:①点斜式:)(00x x k y y -=- 将已知点k y x 与斜率),(00直接带入即可;②斜截式:b kx y += 将已知截距 k b 与斜率 直接带入即可; ③两点式:),(2121121121y y x x x x x x y y y y ≠≠--=--其中, 将已知两点),(),,(2211y x y x 直接带入即可;④截距式:1=+bya x 将已知截距坐标),0(),0,(b a 直接带入即可;⑤一般式:0=++C By Ax ,其中A 、B 不同时为0 在距离公式当中会经常用到直线的“一般式方程”。

2、求两条直线的交点坐标:直接将两直线方程联立,解方程组即可(可简记为“方程组思想”)。

3、距离公式:①两点间距离:22122121)()(y y x x P P -+-=推导方法:构造直角三角形“勾股定理”; ②点到直线距离:2200B A C By Ax d +++=推导方法:构造直角三角形“面积相等”;③平行直线间距离:2221BA C C d +-=推导方法:在y 轴截距),0(1C 代入②式;4、中点坐标公式:已知两点),(),,(2211y x B y x A ①AB 中点),(00y x :)2,2(2121y y x x ++ 推导方法:构造直角“相似三角形”;一.选择题1.(安徽高考) 过点(1,0)且与直线x-2y=0平行的直线方程是( ) A.x-2y-1=0 B. x-2y+1=0 C. 2x+y-2=0 D. x+2y-1=02. 过点(1,3)P -且垂直于直线032=+-y x 的直线方程为( )A. 012=-+y xB. 052=-+y xC. 052=-+y xD. 072=+-y x 3. 已知过点(2,)A m -和(,4)B m 的直线与直线012=-+y x 平行,则m 的值为( ) A. 0 B. 8- C. 2 D. 104.(安徽高考)直线过点(-1,2),且与直线2x-3y+4=0垂直,则直线的方程是( ) A . 3x+2y-1=0 B. 3x+2y+7=0 C. 2x-3y+5=0 D. 2x-3y+8=05.设直线ax+by+c=0的倾斜角为θ,且sin cos 0θθ+=则a,b 满足 ( ) A. a+b=1 B. a-b=1 C. a+b=0 D. a-b=06. 如果直线ax+2y+2=0与直线3x-y-2=0平行,则系数a= A 、 -3 B 、-6 C 、23- D 、327.点P (-1,2)到直线8x-6y+15=0的距离为( ) A 2 B 21 C 1 D 278. 直线mx-y+2m+1=0经过一定点,则该点的坐标是 A (-2,1) B (2,1) C (1,-2) D (1,2)9. (上海文,15)已知直线12:(3)(4)10,:2(3)230,l k x k y l k x y -+-+=--+=与平行,则k 得值是( ) A. 1或3 B.1或5 C.3或5 D.1或210、若图中的直线L 1、L 2、L 3的斜率分别为K 1、K 2、K 3则( )A 、K 1﹤K 2﹤K 3B 、K 2﹤K 1﹤K 3C 、K 3﹤K 2﹤K 1D 、K 1﹤K 3﹤K 211.(北京卷)“m =21”是“直线(m +2)x +3my +1=0与直线(m -2)x +(m +2)y -3=0相互垂直”的( ) (A )充分必要条件 (B )充分而不必要条件(C )必要而不充分条件 (D )既不充分也不必要条件 12、与直线2x+3y-6=0关于点(1,-1)对称的直线是( )A.3x-2y-6=0B.2x+3y+7=0C. 3x-2y-12=0D. 2x+3y+8=0 13. 若直线ax + by + c = 0在第一、二、三象限,则( )A. ab >0,bc >0B. ab >0,bc <0C. ab <0,bc >0D. ab <0,bc <0 14.(北京文)“m=21”是“直线(m+2)x+3my+1=0与直线(m -2)x+(m+2)y -3=0相互垂直”的 ( )A.充分必要条件B.充分而不必要条件C.必要而不充分条件D.既不充分也不必要条件15. 如果直线 l 经过两直线2x - 3y + 1 = 0和3x - y - 2 = 0的交点,且与直线y = x 垂直,则原点到直线 l 的距离是( )A. 2B. 1C. 2 D 、22 16. 原点关于x - 2y + 1 = 0的对称点的坐标为( )A. ⎪⎭⎫ ⎝⎛52 ,54- B. ⎪⎭⎫ ⎝⎛54 ,52- C. ⎪⎭⎫ ⎝⎛52 ,54 D. ⎪⎭⎫ ⎝⎛54 ,52- 二、填空题1. 点(1,1)P -到直线10x y -+=的距离是________________.2.已知A(-4,-6),B(-3,-1),C(5,a)三点共线,则a 的值为( )3.经过两直线11x+3y -7=0和12x+y -19=0的交点,且与A (3,-2),B (-1,6)等距离的直线的方程是 。

高一数学必修2直线与方程知识点总结

高一数学必修2直线与方程知识点总结

高一数学必修2直线与方程知识点总结(一)高一数学必修2直线与方程知识点总结一、直线与方程(1)直线的倾斜角定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。

特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。

因此,倾斜角的取值范围是0180(2)直线的斜率①定义:倾斜角不是90的直线,它的倾斜角的正切叫做这条直线的斜率。

直线的斜率常用k表示。

即。

斜率反映直线与轴的倾斜程度。

当时,; 当时,; 当时,不存在。

②过两点的直线的斜率公式:注意下面四点:(1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90(2)k与P1、P2的顺序无关;(3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得;(4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。

(3)直线方程①点斜式:直线斜率k,且过点注意:当直线的斜率为0时,k=0,直线的方程是y=y1。

当直线的斜率为90时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。

②斜截式:,直线斜率为k,直线在y轴上的截距为b③两点式:( )直线两点,④截矩式:其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为。

⑤一般式:(A,B不全为0)注意:各式的适用范围特殊的方程如:平行于x轴的直线:(b为常数); 平行于y轴的直线:(a 为常数);(5)直线系方程:即具有某一共同性质的直线(一)平行直线系平行于已知直线( 是不全为0的常数)的直线系:(C为常数)(二)垂直直线系垂直于已知直线( 是不全为0的常数)的直线系:(C为常数)(三)过定点的直线系(ⅰ)斜率为k的直线系:,直线过定点;(ⅱ)过两条直线,的交点的直线系方程为( 为参数),其中直线不在直线系中。

(6)两直线平行与垂直注意:利用斜率判断直线的平行与垂直时,要注意斜率的存在与否。

(7)两条直线的交点相交交点坐标即方程组的一组解。

方程组无解; 方程组有无数解与重合(8)两点间距离公式:设是平面直角坐标系中的两个点,则(9)点到直线距离公式:一点到直线的距离(10)两平行直线距离公式在任一直线上任取一点,再转化为点到直线的距离进行求解。

人教版数学必修2直线与方程知识点专题讲义全

人教版数学必修2直线与方程知识点专题讲义全

必修二直线与方程专题讲义1、直线的倾斜角与斜率1)直线的倾斜角对于倾斜角的观点要抓住三点:ⅰ.与x轴订交;ⅱ.x轴正向;ⅲ.直线向上方向.②直线与x轴平行或重合时,规定它的倾斜角为00.③倾斜角的围001800.④090,ktan0;90180,ktan0(2)直线的斜率①直线的斜率就是直线倾斜角的正切值,而倾斜角为900的直线斜率不存在.②经过两点P1(x1,y1),P2(x2,y2)的直线的斜率公式是k y2y1(x1x2).x2x1③每条直线都有倾斜角,但其实不是每条直线都有斜率.2、直线方程的几种形式名称方程的形式已知条件限制性(x1,y1)为直线上必定点, k 不包含垂直于x轴的点斜式y y1k(x x1)为斜率直线k为斜率,b是直线在y轴上不包含垂直于x轴的斜截式y kx b的截距直线y y1x x1y2y1x2(x1,y1),(x2,y2)是直线上两不包含垂直于x轴和x1两点式定点y轴的直线(此中x1x2,y1y2)a是直线在x轴上的非零截x轴和x y不包含垂直于距,b是直线在y轴上的非零截距式1a b y轴或过原点的直线截距AxByC0无穷制,可表示任何一般式A,B,C为系数(此中A,B不一样时为0)地点的直线注:过两点P1(x1,y1),P2(x2,y2)的直线能否必定可用两点式方程表示?(不必定)(1)若x1x2且y1y2,直线垂直于x轴,方程为x x1;(2)若x1x2且y1y2,直线垂直于y轴,方程为y y1;(3)若x1x2且y1y2,直线方程可用两点式表示)3、两条直线平行与垂直的判断(1)两条直线平行斜截式:对于两条不重合的直线l1:y k1x b1,l2:y k2x b2,则有l1//l 2k1k2,b1b2注:当直线l1,l2的斜率都不存在时,l1与l2的关系为平行.一般式:已知l1:A1xB1y C10,l2:A2x B2y C20,则l1//l2AB12AB,AC2 1 12AC21注:l1与l2重合A1B2=A2B1,AC12A2C1l1与l2订交A1B2A2B10 (2)两条直线垂直斜截式:假如两条直线l1,l2斜率存在,设为k1,k2,则l1l2k1k21注:两条直线l1,l2垂直的充要条件是斜率之积为-1,这句话不正确;由两直线的斜率之积为-1,能够得出两直线垂直,反过来,两直线垂直,斜率之积不必定为-1.假如l1,l2中有一条直线的斜率不存在,另一条直线的斜率为0时,l1与l2相互垂直.一般式:已知l1:A1xB1y C10,l2:A2x B2y C20,则l1l2A1A2B1B204、线段的中点坐标公式xx1x22若两点P1(x1,y1),P2(x2,y2),且线段P1,P2的中点M的坐标为(x,y),则y1y2y25、直线系方程(1)过定点的直线系①斜率为k且过定点(x0,y0)的直线系方程为y y0k(x x0)②过两条直线l1:A1x B1y C10,l2:A2x B2y C20的交点的直线系方程为A1xB1yC1(A2xB2yC2)0(为参数),此中直线l2不在直线系中(2)平行垂直直线系①平行于已知直线Ax By C0的直线系Ax By C10②垂直于已知直线Ax By C0的直线系Bx Ay C106、两条直线的交点设两条直线的方程是l1:A1x B1yC10,l2:A2x B2y C20两条直线的交点坐标就是方程组A1xB1yC10的解,A2x B2yC20若方程组有独一解,则这两条直线订交,此解就是交点的坐标;若方程组无解,则两条直线无公共点,此时两条直线平行;反之,亦建立.7、几种距离(1)两点间的距离平面上的两点P1(x1,y1),P2(x2,y2)间的距离公式P1P2(x2x1)2(y2y1)2特别地,原点O(0,0)与任一点P(x,y)的距离OP x2y2(2)点到直线的距离Ax 0 By 0C点P (x 0,y 0)到直线l:Ax By C 0的距离dA 2B 2(3)两条平行线间的距离两条平行线l 1:AxByC 10,l 2:AxByC 2C 2C 10间的距离dB 2A 2注:①求点到直线的距离时,直线方程要化为一般式;②求两条平行线间的距离时,一定将两直线方程化为系数同样的一般形式后,才能套用公式计算. 8、相关对称问题 (1)中心对称①若点M(x 1,y 1)及N(x 2,y 2)对于P(a,b)对称,则由中点坐标公式得x 2a x 1 y2b y 1②直线对于点的对称,其主要方法是:在已知直线上取两点,利用中点坐标公式求出它们对于已知点对称的两点坐标, 再由两点式求出直线方程, 或许求出一个对称点, 再利用l 1//l 2,由点斜式获得所求直线方程 .2)轴对称①点对于直线的对称若两点1(1,1)与2,y 2) 对于直线l:AxByC0对称,则线段12的中点在PxyP(x 2PP对称轴l 上,并且连结P 1P 2的直线垂直于对称轴 l 上,由方程组A(x1 x2)B(y1y2)C0x 222?y 2 y 1Ay 2?( 1x 2 x 1)B可获得点P 1对于l 对称的点P 2的坐标(x 2,y 2)(此中A 0,x 1x 2)②直线对于直线的对称此类问题一般转变为点对于直线的对称来解决,有两种状况:一是已知直线与对称轴订交;二是已知直线与对称轴平行.注:①曲线、直线对于向来线y x b对称的解法: y换x,x换y.例:曲线f(x,y) 0对于直线y x 2对称曲线方程是f(y 2,x 2) 0②曲线C:f(x,y) 0对于点(a,b)的对称曲线方程是f(2a x,2b y) 09、直线l上一动点P到两个定点A、B的距离“最值问题”:(1)在直线l上求一点P,使PA PB获得最小值,①若点A、B位于直线l的同侧时,作点A(或点B)对于l的对称点A/或B/,②若点A、B位于直线的异侧时,连结AB交于l点P,则P为所求点.可简记为“同侧对称异侧连” .即两点位于直线的同侧时,作此中一个点的对称点;两点位于直线的异侧时,直接连结两点即可.(2)在直线l上求一点P使PA PB获得最大值,方法与(1)恰巧相反,即“异侧对称同侧连”①若点A、B位于直线l的同侧时,连结AB交于l点P,则P为所求点.②若点A、B位于直线的异侧时,作点A(或点B)对于l的对称点A/或B/,2PAPB的最值:函数思想“变换成一元二次函数,找对称轴”.10、直线过定点问题(1)含有一个未知参数,y(a1)x2a1ya(x2)x1(1)令x20x2,将x2代入(1)式,得y3,进而该直线过定点(2,3)(2)含有两个未知参数(3m n)x (m 2n)y n 0 m(3x y) n( x 2y 1) 013x y0x13).令7,进而该直线必过定点(, x2y1377y7。

人教版高中数学必修2 第3章 直线与方程

人教版高中数学必修2 第3章 直线与方程

§3.1直线的倾斜角与斜率学习目标1.理解直线的倾斜角的定义、范围和斜率;2.掌握过两点的直线斜率的计算公式;3.能用公式和概念解决问题.学习过程一、课前准备(预习教材P90~ P91,找出疑惑之处)复习1:在直角坐标系中,只知道直线上的一点,能不能确定一条直线呢?复习2:在日常生活中,我们常说这个山坡很陡峭,有时也说坡度,这里的陡峭和坡度说的是山坡与水平面之间的一个什么关系呢?二、新课导学※学习探究新知1:当直线l与x轴相交时,取x轴作为基准,x轴正向与直线l向上方向之间所成的角α叫做直线l的倾斜角(angle of inclination).关键:①直线向上方向;②x轴的正方向;③小于平角的正角.注意:当直线与x轴平行或重合时,我们规定它的倾斜角为0度..试试:请描出下列各直线的倾斜角.反思:直线倾斜角的范围?探究任务二:在日常生活中,我们经常用“升高量与前进量的比”表示“坡度”,则坡度的公式是怎样的?新知2:一条直线的倾斜角()2παα≠的正切值叫做这条直线的斜率(slope).记为tankα=.试试:已知各直线倾斜角,则其斜率的值为⑴当0oα=时,则k;⑵当090o oα<<时,则k;⑶当90oα=时,则k;⑷当090180oα<<时,则k.新知3:已知直线上两点111222(,),(,)P x y P x y12()x x≠的直线的斜率公式:2121y ykx x-=-.探究任务三:1.已知直线上两点1212(,),(,),A a aB b b运用上述公式计算直线的斜率时,与,A B两点坐标的顺序有关吗?2.当直线平行于y轴时,或与y轴重合时,上述公式还需要适用吗?为什么?※典型例题例1 已知直线的倾斜角,求直线的斜率:⑴30οα=;⑵135οα=;⑶60οα=;⑷90οα=变式:已知直线的斜率,求其倾斜角.⑴0k=;⑵1k=;⑶3k=-;⑷k不存在.例 2 求经过两点(2,3),(4,7)A B的直线的斜率和倾斜角,并判断这条直线的倾斜角是锐角还是钝角.※ 动手试试练 1. 求经过下列两点直线的斜率,并判断其倾斜角是锐角还是钝角. ⑴(2,3),(1,4)A B -; ⑵(5,0),(4,2)A B -.练2.画出斜率为0,1,1-且经过点(1,0)的直线.练3.判断(2,12),(1,3),(4,6)A B C --三点的位置关系,并说明理由.三、总结提升※ 学习小结 1.任何一条直线都有唯一确定的倾斜角,直线斜角的范围是[0,180)︒. 2.直线斜率的求法:⑴利用倾斜角的正切来求;⑵利用直线上两点111222(,),(,)P x y P x y 的坐标来求;⑶当直线的倾斜角90οα=时,直线的斜率是不存在的※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 ※ 当堂检测(时量:5分钟 满分:10分)计分: 1. 下列叙述中不正确的是( ).A .若直线的斜率存在,则必有倾斜角与之对应B .每一条直线都惟一对应一个倾斜角C .与坐标轴垂直的直线的倾斜角为0o 或90οD .若直线的倾斜角为α,则直线的斜率为tan α 2. 经过(2,0),(5,3)A B --两点的直线的倾斜角( ).A .45οB .135οC .90οD .60ο 3. 过点P (-2,m )和Q (m ,4)的直线的斜率等于1,则m 的值为().A.1B.4C.1或3D.1或4 4. 直线经过二、三、四象限,l 的倾斜角为α,斜率为k ,则α为 角;k 的取值范围 . 5. 已知直线l 1的倾斜角为α1,则l 1关于x 轴对称的直线l 2的倾斜角2α为________. 1. 已知点(2,3),(3,2)A B --,若直线l 过点(1,1)P 且与线段AB 相交,求直线l 的斜率k 的取值范围.2. 已知直线l 过2211(2,()),(2,())A t B t t t-+-两点,求此直线的斜率和倾斜角.§ 3.2两直线平行与垂直的判定1. 熟练掌握两条直线平行与垂直的充要条件,能够根据直线的方程判断两条直线的位置关系;2.通过研究两直线平行或垂直的条件的讨论,培养学生运用已有知识解决新问题的能力以及学生的数形结合能力;3.通过对两直线平行与垂直的位置关系的研究,培养学生的成功意识,激发学生学习的兴趣. 一、课前准备:(预习教材P 95~ P 98,找出疑惑之处) 复习1:1.已知直线的倾斜角(90)οαα≠,则直线的斜率为 ;已知直线上两点1122(,),(,)A x y B x y 且12x x ≠,则直线的斜率为 .2.若直线l 过(-2,3)和(6,-5)两点,则直线l 的斜率为 ,倾斜角为 .3.斜率为2的直线经过(3,5)、(a ,7)、(-1,b )三点,则a 、b 的值分别为 . 4.已知12,l l 的斜率都不存在且12,l l 不重合,则两直线的位置关系 . 5.已知一直线经过两点(,2),(,21)A m B m m --,且直线的倾斜角为60ο,则m = .复习2:两直线平行(垂直)时它们的倾斜角之间有何关系?二、新课导学:※ 学习探究问题1:特殊情况下的两直线平行与垂直. 当两条直线中有一条直线没有斜率时: (1)当另一条直线的斜率也不存在时,两直线的倾斜角为 ,两直线位置关系是 . (2)当另一条直线的斜率为0时,一条直线的倾斜角为 ,另一条直线的倾斜角为 ,两直线的位置关系是 .问题2:斜率存在时两直线的平行与垂直.设直线1l 和2l 的斜率为1k 和2k .⑴两条直线平行的情形.如果21//l l ,那么它们的倾斜角与斜率是怎么的关系,反过来成立吗?新知1:两条直线有斜率且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,则它们平行,即12//l l ⇔1k =2k注意,上面的等价是在两直线不重合且斜率存在的前提下才成立的,缺少这个前提,结论并不存立. ⑵两条直线垂直的情形.如果12l l ⊥,那么它们的倾斜角与斜率是怎么的关系,反过来成立吗?新知2:两条直线都有斜率,如果它们互相垂直,则它们的斜率互为负倒数;反之,如果它们的斜率互为负倒数,则它们互相垂直.即12l l ⊥⇔121k k =-⇔121k k =-※ 典型例题例1 已知(2,3),(4,0),(3,1),(1,2)A B P Q ---,试判断直线BA 与PQ 的位置关系, 并证明你的结论.例2 已知(1,1),(2,2),(3,0)A B C -三点,求点D 的坐标,使直线CD AB ⊥,且//CB AD .变式:已知(5,1),(1,1),(2,3)A B C -,试判断三角形ABC 的形状.※ 动手试试练 1. 试确定m 的值,使过点(,1),(1,)A m B m -的直线与过点(1,2),(5,0)P Q -的直线 ⑴平行; ⑵垂直练 2. 已知点(3,4)A ,在坐标轴上有一点B ,若2AB k =,求B 点的坐标.三、总结提升: ※ 学习小结:1.1212//l l k k ⇔=或12,l l 的斜率都不存在且不重合. 2.12121l l k k ⊥⇔=-或10k =且2l 的斜率不存在,或20k =且1l 的斜率不存在.※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 ※ 当堂检测(时量:5分钟 满分:10分)计分: 1. 下列说法正确的是( ). A .若12l l ⊥,则121k k =-B .若直线12//l l ,则两直线的斜率相等C .若直线1l 、2l 的斜率均不存在,则12l l ⊥D .若两直线的斜率不相等,则两直线不平行 2. 过点(1,2)A 和点(3,2)B -的直线与直线1y =的位置关系是( ).A .相交 B.平行 C.重合 D.以上都不对3. 经过(,3)m 与(2,)m 的直线l 与斜率为4-的直线互助垂直,则m 值为( ).A .75-B .75C .145-D .1454. 已知三点(,2),(5,1),(4,2)A a B C a -在同一直线上,则a 的值为 . 5. 顺次连结(4,3),(2,5),(6,3),(3,0)A B C D --,所组成的图形是 .1. 若已知直线1l 上的点满足260ax y ++=,直线2l 上的点满足2(1)10(1)x a y a a +-+-=≠,试求a 为何值时,⑴12//l l ;⑵12l l ⊥.2. 已知定点(1,3),(4,2)A B -,以,A B 为直径的端点,作圆与x 轴有交点C ,求交点C 的坐标.§ 3.2.1直线的点斜式方程1.理解直线方程的点斜式、斜截式的形式特点和适用范围; 2.能正确利用直线的点斜式、斜截式公式求直线方程; 3.体会直线的斜截式方程与一次函数的关系.一、课前准备: (预习教材P 101~ P 104,找出疑惑之处) 复习1.已知直线12,l l 都有斜率,如果12//l l ,则 ;如果12l l ⊥,则 . 2.若三点(3,1),(2,),(8,11)A B k C -在同一直线上,则k 的值为 .3.已知长方形ABCD 的三个顶点的坐标分别为(0,1),(1,0),(3,2)A B C ,则第四个顶点D 的坐标 .4.直线的倾斜角与斜率有何关系?什么样的直线没有斜率?二、新课导学: ※ 学习探究问题1:在直线坐标系内确定一条直线,应知道哪些条件?新知1:已知直线l 经过点00(,)P x y ,且斜率为k ,则方程00()y y k x x -=-为直线的点斜式方程.问题2:直线的点斜式方程能否表示坐标平面上的所有直线呢?问题3:⑴x 轴所在直线的方程是 ,y 轴所在直线的方程是 .⑵经过点000(,)P x y 且平行于x 轴(即垂直于y 轴)的直线方程是 . ⑶经过点000(,)P x y 且平行于y 轴(即垂直于x 轴)的直线方程是 .问题4:已知直线l 的斜率为k ,且与y 轴的交点为(0,)b ,求直线l 的方程.新知2:直线l 与y 轴交点(0,)b 的纵坐标b 叫做直线l 在y 轴上的截距(intercept ).直线y kx b =+叫做直线的斜截式方程. 注意:截距b 就是函数图象与y 轴交点的纵坐标. 问题5:能否用斜截式表示平面内的所有直线? 斜截式与我们学过的一次函数表达式比较你会得出什么结论.※ 典型例题 例1 直线过点(1,2)-,且倾斜角为135ο,求直线l 的点斜式和斜截式方程,并画出直线l .变式:⑴直线过点(1,2)-,且平行于x 轴的直线方程 ;⑵直线过点(1,2)-,且平行于x 轴的直线方程 ;⑶直线过点(1,2)-,且过原点的直线方程 . 例2 写出下列直线的斜截式方程,并画出图形: ⑴,在y 轴上的距截是-2; ⑵ 斜角是0135,在y 轴上的距截是0变式:已知直线的方程3260x y +-=,求直线的斜率及纵截距.※ 动手试试练1. 求经过点(1,2),且与直线23y x =-平行的直线方程.练2. 求直线48y x =+与坐标轴所围成的三角形的面积.三、总结提升:※ 学习小结1.直线的方程:⑴点斜式00()y y k x x -=-;⑵斜截式y kx b =+;这两个公式都只能在斜率存在的前提※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 ※ 当堂检测(时量:5分钟 满分:10分)计分:1. 过点(4,2)-,倾斜角为135ο的直线方程是(). A20y ++-=B360y +++C.40x -=D .40x += 2. 已知直线的方程是21y x +=--,则( ). A .直线经过点(2,1)-,斜率为1- B .直线经过点(2,1)--,斜率为1 C .直线经过点(1,2)--,斜率为1- D .直线经过点(1,2)-,斜率为1-3. 直线130kx y k -+-=,当k 变化时,所有直线恒过定点( ). A .(0,0)B .(3,1)C .(1,3)D .(1,3)-- 4. 直线l 的倾斜角比直线12y 的倾斜角大45ο,且直线l 的纵截距为3,则直线的方程 . 5. 已知点(1,2),(3,1)A B ,则线段AB 的垂直平分线的方程. 1. 已知三角形的三个顶点(2,2),(3,2),(3,0)A B C -,求这个三角形的三边所在的直线方程.2. 直线l 过点(2,3)P -且与x 轴、y 轴分别交于,A B 两点,若P 恰为线段AB 的中点,求直线l 的方程.§ 3.2.2直线的两点式方程1.掌握直线方程的两点的形式特点及适用范围;2.了解直线方程截距式的形式特点及适用范围.105106,找出疑惑之处)复习1:直线过点(2,3)-,斜率是1,则直线方程为 ;直线的倾斜角为60ο,纵截距为3-,则直线方程为 . 2.与直线21y x =+垂直且过点(1,2)的直线方程为 .3.方程()331--=+x y 表示过点______,斜率是______,倾斜角是______,在y 轴上的截距是______的直线.4.已知直线l 经过两点12(1,2),(3,5)P P ,求直线l 的方程.二、新课导学:※ 学习探究新知1:已知直线上两点112222(,),(,)P x x P x y 且1212(,)x x y y ≠≠,则通过这两点的直线方程为1112122121(,)y y x x x x y y y y x x --=≠≠--,由于这个直线方程由两点确定,所以我们把它叫直线的两点式方程,简称两点式(two-point form ).问题1:哪些直线不能用两点式表示?例 已知直线过(1,0),(0,2)A B -,求直线的方程并画出图象.新知2:已知直线l 与x 轴的交点为(,0)A a ,与y 轴的交点为(0,)B b ,其中0,0a b ≠≠,则直线l 的方程1=+bya x 叫做直线的截距式方程. 注意:直线与x 轴交点(a ,0)的横坐标a 叫做直线在x 轴上的截距;直线与y 轴交点(0,b )的纵坐标b 叫做直线在y 轴上的截距.问题3:a ,b 表示截距,是不是表示直线与坐标轴的两个交点到原点的距离?问题4:到目前为止,我们所学过的直线方程的表达形式有多少种?它们之间有什么关系?※ 典型例题例1 求过下列两点的直线的两点式方程,再化为截距式方程.⑴(2,1),(0,3)A B -; ⑵(4,5),(0,0)A B --.例2 已知三角形的三个顶点(5,0),(3,3)A B --, (0,2)C ,求BC 边所在直线的方程,以及该边上中线所在直线的方程.※动手试试练1.求出下列直线的方程,并画出图形.⑴倾斜角为045,在y轴上的截距为0;⑵在x轴上的截距为-5,在y轴上的截距为6;⑶在x轴上截距是-3,与y轴平行;⑷在y轴上的截距是4,与x轴平行.三、总结提升:※学习小结1.直线方程的各种形式总结为如下表格:1122中点(,)M x y,则2121,22x x y yx y++==.※自我评价你完成本节导学案的情况为().A. 很好B. 较好C. 一般D. 较差※当堂检测(时量:5分钟满分:10分)计分:1. 直线l过点(1,1),(2,5)--两点,点(1002,)b在l 上,则b的值为().A.2003 B.2004 C.2005 D.20062. 若直线0Ax By C++=通过第二、三、四象限,则系数,,A B C需满足条件( )A. ,,A B C同号 B. 0,0AC BC<<C. 0,0C AB=< D. 0,0A BC=<3. 直线y ax b=+(0a b+=)的图象是( )4. 在x轴上的截距为2,在y轴上的截距为3-的直线方程.5. 直线21y x=-关于x轴对称的直线方程,关于y轴对称的直线方程关于原点对称的方程.1. 过点P(2,1)作直线l交,x y正半轴于AB两点,当||||PA PB⋅取到最小值时,求直线l的方程.2. 已知一直线被两直线1:460l x y++=,2l:3x 560y--=截得的线段的中点恰好是坐标原点,求该直线方程.§ 3.2.3直线的一般式方程1.明确直线方程一般式的形式特征;2.会把直线方程的一般式化为斜截式,进而求斜率和截距;3.会把直线方程的点斜式、两点式化为一般式.107109,找出疑惑之处)复习1:⑴已知直线经过原点和点(0,4),则直线的方程.⑵在x轴上截距为1-,在y轴上的截距为3的直线方程.⑶已知点(1,2),(3,1)A B,则线段AB的垂直平分线方程是.复习2:平面直角坐标系中的每一条直线都可以用一个关于,x y的二元一次方程表示吗?二、新课导学:※学习探究新知:关于,x y的二元一次方程0Ax By C++=(A,B不同时为0)叫做直线的一般式方程,简称一般式(general form).注意:直线一般式能表示平面内的任何一条直线问题1:直线方程的一般式与其他几种形式的直线方程相比,它有什么优点?问题4:在方程0Ax By C++=中,,,A B C为何值时,方程表示的直线⑴平行于x轴;⑵平行于y轴;⑶与x轴重合;⑷与y重合. ※典型例题例1 已知直线经过点(6,4)A-,斜率为12,求直线的点斜式和一般式方程.例2 把直线l的一般式方程260x y-+=化成斜截式,求出直线l的斜率以及它在x轴与y轴上的截距,并画出图形.变式:求下列直线的斜率和在y轴上的截距,并画出图形⑴350x y+-=;⑵145x y-=;⑶20x y+=;⑷7640x y-+=;⑸270y-=.※ 动手试试练 1.根据下列各条件写出直线的方程,并且化成一般式:⑴ 斜率是12-,经过点(8,2)A -;⑵ 经过点(4,2)B ,平行于x 轴;⑶ 在x 轴和y 轴上的截距分别是3,32-;⑷ 经过两点12(3,2),(5,4)P P --.练2.设A 、B 是x 轴上的两点,点P 的横坐标为2,且|P A |=|PB |,若直线P A 的方程为10x y -+=,求直线PB 的方程三、总结提升:※ 学习小结1.通过对直线方程的四种特殊形式的复习和变形,概括出直线方程的一般形式:0Ax By C ++=(A 、B 不全为0); 2.点00(,)x y 在直线0Ax By C ++=上⇔00Ax By + 0C +=学习评价※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 ※ 当堂检测(时量:5分钟 满分:10分)计分: 1 斜率为3-,在x 轴上截距为2的直线的一般式方程是( ).A .360x y ++=B .320x y -+=C .360x y +-=D .320x y --= 2. 若方程0Ax By C ++=表示一条直线,则( ). A .1A ≠ B .0B ≠C .0AB ≠D .220A B +≠ 3. 已知直线1l 和2l 的夹角的平分线为y x =,如果1l 的方程是0(0)ax by c ab ++=>,那么2l 的方程为( ).A .0bx ay c ++=B .0ax by c -+=C .0bx ay c +-=D .0bx ay c -+= 4. 直线270x y ++=在x 轴上的截距为a ,在y 轴上的截距为b ,则a b += . 5. 直线1:2(1)40l x m y +++=与直线2:3l mx y + 20-=平行,则m = .课后作业1. 菱形的两条对角线长分别等于8和6,并且分别位于x 轴和y 轴上,求菱形各边所在的直线的方程.2.光线由点(1,4)A -射出,在直线:2360l x y +-=上进行反射,已知反射光线过点62(3,)13B ,求反射光线所在直线的方程.§ 3.1两条直线的交点坐标学习目标1.掌握判断两直线相交的方法;会求两直线交点坐标;2.体会判断两直线相交中的数形结合思想.学习过程一、课前准备:(预习教材P 112~ P 114,找出疑惑之处)1.经过点(1,2)A -,且与直线210x y +-+垂直的直线 .2.点斜式、斜截式、两点式和截距式能否表示垂直于坐标轴的直线?3.平面直角系中两条直线的位置关系有几种?二、新课导学:※ 学习探究问题1:已知两直线方程1111:0l A x B y C ++=,222:l A x B y +20C +=,如何判断这两条直线的位置关系?问题2:如果两条直线相交,怎样求交点坐标?交点坐标与二元一次方程组有什关系?※ 典型例题例1 求下列两直线1:3420l x y +-=,2:22l x y ++ 0=的交点坐标.变式:判断下列各对直线的位置关系.如果相交,求出交点坐标.⑴1:0l x y -=,2:33100l x y +-=; ⑵1:30l x y -=,2:630l x y -=;⑶1:3450l x y +-=,2:68100l x y +-=.例2 求经过两直线2330x y --=和20x y ++=的交点且与直线310x y +-=平行的直线方程.变式:求经过两直线2330x y --=和20x y ++=的交点且与直线310x y +-=垂直的直线方程.例3 已知两点(2,1),(4,3)A B -,求经过两直线2310x y -+=和3210x y +-=的交点和线段AB 中点的直线l 的方程.※ 动手试试练 1. 求直线20x y --=关于直线330x y -+=对称的直线方程.练2. 已知直线1l 的方程为30Ax y C ++=,直线2l 的方程为2340x y -+=,若12,l l 的交点在y 轴上,求C 的值.三、总结提升:※ 学习小结1.两直线的交点问题.一般地,将两条直线的方程联立,得方程组11122200A xB yC A x B y C ++=⎧⎨++=⎩,若方程组有唯一解,则两直线相交;若方程组有无数组解,则两直线重合;若方程组无解,则两直线平行. 2.直线与直线的位置关系,求两直线的交点坐标,能将几何问题转化为代数问题来解决.※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 ※ 当堂检测(时量:5分钟 满分:10分)计分: 1. 两直线12:210,:220l x y l x y ++=-++=的交点坐标为( ).A .13(,)24B .13(,)24-C .13(,)24--D .13(,)24-2. 两条直线320x y n ++=和2310x y -+=的位置关系是( ).A .平行B .相交且垂直C .相交但不垂直D .与n 的值有关 3. 与直线2360x y +-=关于点(1,1)-对称的直线方程是( ).A .3220x y -+=B .2370x y ++=C .32120x y --=D .2380x y ++= 4. 光线从(2,3)M -射到x 轴上的一点(1,0)P 后被x 轴反射,则反射光线所在的直线方程 . 5. 已知点(5,8),(4,1)A B ,则点A 关于点B 的对称点C 的坐标 .1. 直线54210x y m +--=与直线230x y m +-=的交点在第四象限,求m 的取值范围.2. 已知a 为实数,两直线1l :10ax y ++=,2l :0x y a +-=相交于一点,求证交点不可能在第一象限及x 轴上.§ 3.3.2两点间的距离1.掌握直角坐标系两点间距离,用坐标法证明简单的几何问题.2.通过两点间距离公式的推导,能更充分体会数形结合的优越性.3.体会事物之间的内在联系,,能用代数方法解决几何问题.一、课前准备:(预习教材P 115~ P 116,找出疑惑之处)1.直线0mx y m +-=,无论m 取任意实数,它都过点 . 2.若直线111:1l a x b y +=与直线222:1l a x b y +=的交点为(2,1)-,则112a b -= .3.当k 为何值时,直线3y kx =+过直线2x y - 10+=与5y x =+的交点?二、新课导学:※ 学习探究 问题1:已知数轴上两点,A B ,怎么求,A B 的距离?问题2:怎么求坐标平面上,A B 两点的距离?及,A B 的中点坐标?新知:已知平面上两点111222(,),(,)P x y P x y,则12PP 特殊地:(,)Px y 与原点的距离为OP =※ 典型例题例 1 已知点(8,10),(4,4)A B -求线段AB 的长及中点坐标.变式:已知点(1,2),A B -,在x 轴上求一点,使PA PB =,并求PA 的值.例 2 证明平行四边行四条边的平方和等于两条对角线的平方和.变式:证明直角三角形斜边上的中点到三个顶点的距离相等.※动手试试练1.已知点(1,2),(3,4),(5,0)A B C,求证:ABC∆是等腰三角形.练2.已知点(4,12)A,在x轴上的点P与点A的距离等于13,求点P的坐标.三、总结提升:※学习小结1.坐标法的步骤:①建立适当的平面直角坐标系,用坐标表示有关的量;②进行有关的代数运算;③把代数运算结果“翻译”成几何关系.※自我评价你完成本节导学案的情况为().A. 很好B. 较好C. 一般D. 较差※当堂检测(时量:5分钟满分:10分)计分:1. 两点(1,3),(2,5)A B-之间的距离为().A.BC D.32. 以点(3,0),(3,2),(1,2)A B C---为顶点的三角形是()三角形.A.等腰B.等边C.直角D.以上都不是3. 直线a x+2y+8=0,4x+3y=10和2x-y=10相交于一点,则a的值().A.2-B.2C.1D.1-4.已知点(1,2),A B-,在x轴上存在一点P,使PA PB=,则PA=. 5. 光线从点M(-2,3)射到x轴上一点P(1,0)后被x轴反射,则反射光线所在的直线的方程.1. 经过直线23y x=+和320x y-+=3的交点,且垂直于第一条直线.2. 已知a为实数,两直线1l:01=++yax,2l:0=-+ayx相交于一点,求证交点不可能在第一象限及x轴上.§ 3.3点到直线的距离及两平行线距离学习目标1.理解点到直线距离公式的推导,熟练掌握点到直线的距离公式;2.会用点到直线距离公式求解两平行线距离 3.认识事物之间在一定条件下的转化.用联系的观点看问题学习过程一、课前准备:(预习教材P 117~ P 119,找出疑惑之处)复习1.已知平面上两点(0,3),(2,1)A B -,则AB 的中点坐标为 ,AB 间的长度为 .复习2.在平面直角坐标系中,如果已知某点P 的坐标为00(,)x y ,直线l 的方程是:0l Ax By C ++=,怎样用点的坐标和直线的方程直接求点P 到直线l 的距离呢?二、新课导学:※ 学习探究新知1:已知点00(,)P x y 和直线:0l Ax By C ++=,则点P 到直线l 的距离为:0022Ax By Cd A B++=+.注意:⑴点到直线的距离是直线上的点与直线外一点的连线的最短距离;⑵在运用公式时,直线的方程要先化为一般式.问题2:在平面直角坐标系中,如果已知某点P 的坐标为00(,)x y ,直线方程0:=++C By Ax l 中,如果0A =,或0B =,怎样用点的坐标和直线的方程直接求点P 到直线l 的距离呢并画出图形来.例 分别求出点(0,2),(1,0)A B -到直线341x y -- 0=的距离.问题3:求两平行线1l :2380x y +-=,2l :23x y + 10-=的距离.新知2:已知两条平行线直线1l 10Ax By C ++=,2:l 20Ax By C ++=,则1l 与2l 的距离为1222C C d A B -=+注意:应用此公式应注意如下两点:(1)把直线方程化为一般式方程;(2)使,x y 的系数相等.※ 典型例题例1 已知点(1,3),(3,1),(1,0)A B C -,求三角形ABC 的面积.例2 求两平行线1l :2380x y +-=,2l :46x y + 10-=的距离.※ 动手试试练1. 求过点(1,2)A -的直线方程.练2.求与直线:51260l x y -+=平行且到l 的距离为2的直线方程.三、总结提升:※ 学习小结1.点到直线距离公式的推导过程,点到直线的距离公式,能把求两平行线的距离转化为点到直线的距离公式※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 ※ 当堂检测(时量:5分钟 满分:10分)计分: 1. 求点(5,7)P -到直线12530x y +-=的距离( )A .1B .0C .1413D .28132. 过点(1,2)且与原点距离最大的直线方程是( ). A.250x y +-= B.240x y +-= C.370x y +-= D.350x y +-=3. 到两坐标轴距离相等的点的轨迹方程是( ). A .0x y -= B .0x y += C .0x y -= D .0x y -=4. 两条平行线3x -2y -1=0和3x -2y +1=0的距离5. 在坐标平面内,与点(1,2)A 距离为1,且与点(3,1)B 距离为2的直线共有条. 1.已知正方形的中心为(1,0)G -,一边所在直线的方程为350x y +-=,求其他三边所在的直线方程.2.,A B 两个厂距一条河分别为400m 和100m ,,A B 两厂之间距离500m ,把小河看作一条直线,今在小河边上建一座提水站,供,A B 两厂用水,要使提水站到,A B 两厂铺设的水管长度之和最短,问提水站应建在什么地方?§ 3.3.3章未复习提高1. 掌握直线的倾斜角的概念、斜率公式; 2. 掌握直线的方程的几种形式及其相互转化,以及直线方程知识的灵活运用; 3. 掌握两直线位置关系的判定,点到直线的距离公式及其公式的运用.一、课前准备:复习知识点:一.直线的倾斜角与斜率1.倾斜角的定义 , 倾斜角α的范围 , 斜率公式k = ,或 . 二.直线的方程1. 点斜式:00()y y k x x -=-2. 斜截式:y kx b =+3. 两点式:112121y y x x y y x x --=-- 4. 截距式:1x y a b+=5. 一般式:0Ax By C ++=三.两直线的位置关系1. 两直线平行 2. 两直线相交.⑴两直线垂直,⑵两直线相交 3. 两直线重合 四.距离 1. 两点之间的距离公式 , 2. 点线之间的距离公式 , 3. 两平行直线之间的距离公式 .二、新课导学: ※ 典例分析例1 如图菱形ABCD 的60O BAD ∠=,求菱形各边和两条对角线所在直线的倾斜角和斜率.例2 已知在第一象限的ABC ∆中,(1,1),(5,1)A B ,60,45O O A B ∠=∠=.求⑴AB 边的方程;⑵AC 和BC 所在直线的方程.例3 求经过直线3260x y ++=和2570x y +-=的交点,且在两坐标轴上的截距相等的直线方程.例4 已知两直线1:40l ax by -+=,2:(1)l a x y -+0b +=,求分别满足下列条件的,a b 的值.⑴直线1l 过点(3,1)--,并且直线1l 与直线2l 垂直;⑵直线1l 与直线2l 平行,并且坐标原点到12,l l 的距离相等.例5 过点(4,2)P 作直线l 分别交x 轴、y 轴正半轴于,A B 两点,当AOB ∆面积最小时,求直线l 的方程.※ 动手试试练1. 设直线l 的方程为(2)3m x y m ++=,根据下列条件分别求m 的值.⑴l 在x 轴上的截距为2-; ⑵斜率为1-.练2.已知直线l 经过点(2,2)-且与两坐标轴围成单位面积的三角形,求该直线的方程.三、总结提升: ※ 学习小结1.理解直线的倾斜角和斜率的要领,掌握过两点的斜率公式;掌握由一点和斜率写出直线方程的方法,掌握直线方程的点斜式、两点式、一般 式,并能根据条件熟练地求出直线方程.2.掌握两条直线平行和垂直的条件,点到直线的距离公式;能够根据直线方程判断两直线的位置关※ 自我评价 你完成本节导学案的情况为( ). A. 很好 B. 较好 C. 一般 D. 较差 ※ 当堂检测(时量:5分钟 满分:10分)计分:1. 点(3,9)关于直线3100x y +-=对称的点的坐标是( ).A .(1,3)-- B.(17,9)- C .(1,3)- D .(17,9)-2.方程(1)210()a x y a a R --++=∈所表示的直线( ).A .恒过定点(2,3)-B .恒过定点(2,3)C .恒过点(2,3)-和(2,3)D .都是平行直线 3.已知点(3,)m到直线40x-=的距离等于1,则m =().AB .C . D4.已知(3,)P a 在过(2,1)M -和(3,4)N -的直线上,则a = .5. 将直线2)y x =-绕点(2,0)按顺时针方向旋转30o ,所得的直线方程是. 1.已知直线12:220,:1l x ay a l ax y +--=+-a - 0=.⑴若12//l l ,试求a 的值;⑵若12l l ⊥,试求a 的值2.两平行直线12,l l 分别过点1(1,0)P 和(0,5)P , ⑴若1l 与2l 的距离为5,求两直线的方程; ⑵设1l 与2l 之间的距离是d ,求d 的取值范围.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(x1 , y1 ), (x2 , y2 ) 是直线上两 不包括垂直于 x 轴和
定点
y 轴的直线
1
截距式
x y 1 ab
a 是直线在 x 轴上的非零截 距, b 是直线在 y 轴上的非
零截距
不包括垂直于 x 轴和 y 轴或过原点的直线
一般式
Ax By C 0 (其中A, B不同时为0)
A , B , C 为系数
(2)点到直线的距离
3
点 P (x0 , y0 ) 到直线l : Ax By C 0 的距离 d Ax0 By0 C A2 B2
(3)两条平行线间的距离
两条平行线l1 : Ax By C1 0 , l2 : Ax By C2 0 间的距离 d C2 C1 A2 B2
注:①求点到直线的距离时,直线方程要化为一般式; ②求两条平行线间的距离时,必须将两直线方程化为系数相同的一般形式后,才能
4、线段的中点坐标公式
若两点 P1 (x1 , y1 ), P2 (x2 , y2 ) ,且线段 P1 , P2 的中点 M 的坐标为(x, y) ,则
x x1 x2
y 2y y 1 2
2
5、 直线系方程
(1)过定点的直线系
①斜率为 k 且过定点(x0 , y0 ) 的直线系方程为 y y0 k (x x0 )
名称
方程的形式
已知条件
局限性
点斜式
y y1 k (x x1)
(x1, y1) 为直线上一定点, k 为斜率
不包括垂直于 x 轴的 直线
斜截式
y kx b
k 为斜率, b 是直线在 y 轴 不包括垂直于 x 轴的
上的截距
直线
两点式
y y1 x x1 y2 y1 x2 x1
(其中x1 x2 , y1 y2 )
套用公式计算.
8、有关对称问题
(1)中心对称
x 2a x1
①若点
M (x1 , y1 )

N (x2 , y2 )
关于
P(a, b)
对称,则由中点坐标公式得
y
2b1 y
②直线关于点的对称,其主要方法是:在已知直线上取两点,利用中点坐标公式求出
它们关于已知点对称的两点坐标,再由两点式求出直线方程,或者求出一个对称点,再利
②垂直于已知直线 Ax By C 0 的直线系 Bx Ay C1 0
6、两条直线的交点
设两条直线的方程是l1 : A1x B1y C1 0 , l2 : A2 x B2 y C2 0 两条直线的交点
A1x B1 y C1 0
坐标就
2
0 的解,
若方程组有唯一解,则这两条直线相交,此解就是交点的坐标;
②过两条直线l1 : A1x B1y C1 0 , l2 : A2x B2 y C2 0 的交点的直线系方程为
A1x B1y C1 (A2x B2 y C2 ) 0 ( 为参数),其中直线 l2 不在直线系中
(2)平行垂直直线系
①平行于已知直线 Ax By C 0 的直线系 Ax By C1 0
无限制,可表示任何 位置的直线
注:过两点 P1 (x1 , y1 ), P2 (x2 , y2 ) 的直线是否一定可用两点式方程表示?(不一定)
1 若 x1 x2且y1 y2 ,直线垂直于 x 轴,方程为 x x1;
2 若 x1 x2且y1 y2 ,直线垂直于 y 轴,方程为 y y1 ;
必修二直线与方程专题讲义
1、直线的倾斜角与斜率
(1)直线的倾斜角
1 关于倾斜角的概念要抓住三点:
ⅰ.与 x 轴相交;
ⅱ.x 轴正向;
ⅲ.直线向上方向.
2 直线与 x 轴平行或重合时,规定它的倾斜角为00 .
3 倾斜角 的范围00 1800 .
4 0 90,k tan 0;
(2)直线的斜率
3 若 x1 x2且y1 y2 ,直线方程可用两点式表示)
3、两条直线平行与垂直的判定
1
两条直线平行
斜截式:对于两条不重合的直线l1 : y k1 x b1 , l2 : y k2 x b2 ,则有
l1 / /l2 k1 k2 , b1 b2 注:当直线l1 , l2 的斜率都不存在时, l1与l2 的关系为平行. 一般式:已知 l1 : A1x B1y C1 0 , l2 : A2 x B2 y C2 0 ,则
若方程组无解,则两条直线无公共点,此时两条直线平行;反之,亦成立.
7、几种距离
(1)两点间的距离
平面上的两点 P (x , y ), P (x , y ) 间的距离公式 PP
11 1 2 2 2
12
(x
2
x
)2
1
(
y
2
y
)2 1
特别地,原点O(0,0) 与任一点 P(x, y) 的距离 OP x2 y2
l1 / /l2 A1B2 A2 B1 , A1C2 A2C1
注: l1与l2 合 A1B2 =A2B1, A1C2 A2C1
l1 与l2 相交 A1B2 A2 B1 0
2 两条直线垂直
斜截式:如果两条直线l1 , l2 斜率存在,设为 k1 , k2 ,则l1 l2 k1 k2 1 注:两条直线l1, l2 垂直的充要条件是斜率之积为-1,这句话不正确;由两直线的斜率
之积为-1,可以得出两直线垂直,反过来,两直线垂直,斜率之积不一定为-1.如果l1, l2中 有一条直线的斜率不存在,另一条直线的斜率为 0 时, l1与l2 互相垂直.
2
一般式:已知 l1 : A1x B1y C1 0 , l2 : A2 x B2 y C2 0 ,则
l1 l2 A1 A2 B1B2 0
90 180,k tan 0
①直线的斜率就是直线倾斜角的正切值,而倾斜角为900 的直线斜率不存在.
②经过两点 P (x , y ), P (x , y ) 的直线的斜率公式是 k y2 y1(x x ) .
11 1 2 2 2
2
x2 x 1 1
③每条直线都有倾斜角,但并不是每条直线都有斜率. 2、直线方程的几种形式
用l1 // l2 ,由点斜式得到所求直线方程.
(2)轴对称 ①点关于直线的对称
若两点 P1(x1, y1) 与 P2(x2 , y2 ) 关于直线l : Ax By C 0 对称,则线段 P1P2的中点
相关文档
最新文档