激光相位测距仪设计

合集下载

用于相位法激光测距的电路系统设计

用于相位法激光测距的电路系统设计

用于相位法激光测距的电路系统设计激光测距是一种常用的非接触式测量技术,可以精确测量目标物体与测距仪的距离。

相位法激光测距是其中一种常见的方法,通过测量激光光波的相位差来计算距离。

下面将介绍一个基于相位法激光测距原理的电路系统设计。

1. 激光发射电路:设计一个激光二极管的驱动电路,可以通过电流控制二极管的发射光强。

使用一个恒流源以确保驱动电流的稳定性。

此外,还需要添加一个调节电路,可以根据需要调整激光发射的光功率。

2. 光电检测电路:将光电二极管作为光电检测元件接在测距仪上,用于接收激光反射光信号。

光电二极管产生的电流与光的强度成正比。

使用一个高增益的放大器将光电二极管产生的微弱电流信号放大。

3. 相位差测量电路:使用一个相位差测量电路来测量激光光波发射和接收之间的相位差。

该电路可以采用锁相放大器或频率调制技术。

在锁相放大器中,将激光发射的信号作为参考信号,将光电二极管接收到的信号作为待测信号输入。

锁相放大器可以精确测量相位差,并输出一个稳定的直流电压信号。

4. 距离计算电路:将锁相放大器输出的直流电压信号输入到距离计算电路中,根据相位差和激光波长的关系,计算出目标物体与测距仪之间的距离。

该电路可以通过编程芯片或者专门的测距芯片来实现距离计算。

以上是一个基于相位法激光测距原理的电路系统设计。

通过精心选择和设计各个电路模块,可以实现高精度和稳定的激光测距功能。

需要注意的是,在实际设计中还需考虑电路的抗干扰能力、功率稳定性和其他实际应用需要的因素。

在激光测距中,相位法是一种常用的方法,能够提供高精度和高稳定性的测距结果。

相位法激光测距的原理是通过测量激光发射和接收之间的光波相位差来计算目标物体与测距仪之间的距离。

在设计电路系统时,需要考虑到激光发射电路、光电检测电路、相位差测量电路和距离计算电路等各个环节。

首先,激光发射电路是相位法激光测距系统中的重要组成部分。

它负责驱动激光二极管发射具有稳定光强的激光光束。

《相位法激光测距仪设计》

《相位法激光测距仪设计》

《相位法激光测距仪设计》摘要:I.引言- 激光测距仪背景和应用- 相位法激光测距仪的优势II.相位法激光测距仪原理- 相位法基本原理- 激光测距仪系统构成III.相位法激光测距仪设计- 系统硬件设计- 激光发射器- 激光接收器- 数字鉴相器- 系统软件设计- 相位差计算- 距离计算IV.相位法激光测距仪应用- 军事领域- 民用领域V.结论- 相位法激光测距仪的优势- 发展前景正文:激光测距仪是一种利用激光技术测量物体距离的仪器,广泛应用于军事、民用等领域。

相位法激光测距仪作为其中一种类型,具有高精度、高效率等优势,成为近年来研究的热点。

相位法激光测距仪基于相位法原理,通过检测发射光和反射光之间的相位差来检测距离。

其系统构成主要包括激光发射器、激光接收器、数字鉴相器等部分。

其中,激光发射器负责发射激光束,激光接收器负责接收反射光,而数字鉴相器则负责计算相位差。

在设计相位法激光测距仪时,需要考虑系统硬件和软件的设计。

在硬件方面,激光发射器和接收器需要具有较高的稳定性和精度,以保证测量结果的准确性。

此外,数字鉴相器的设计也非常重要,其性能直接影响到相位差计算的准确性。

在软件方面,相位差计算和距离计算的算法需要优化,以提高计算速度和精度。

相位法激光测距仪在军事和民用领域具有广泛的应用前景。

在军事领域,相位法激光测距仪可以应用于侦查、定位、导航等方面,提高作战效率和精度。

在民用领域,相位法激光测距仪可以应用于土地测量、建筑测量、无人机导航等领域,为生产生活提供便捷。

总之,相位法激光测距仪具有显著的优势,其设计和应用值得进一步研究和探讨。

三维激光扫描仪中测距的方法与特点

三维激光扫描仪中测距的方法与特点

三维激光扫描仪中测距的方法与特点《三维激光扫描仪中测距的方法与特点》激光扫描技术是一种高精度的三维测量方法,主要用于建筑设计、制造业和文化遗产保护等领域。

测距是其中最基本的功能之一。

本文将介绍三维激光扫描仪中常用的测距方法和其特点。

一、相位测距法相位测距法是三维激光扫描仪中应用较为广泛的一种测距方法。

该方法基于激光光束的干涉原理,通过测量光束在发射和接收之间传播的距离差来获取目标物体的距离信息。

在扫描仪的计算系统中,利用光电二极管或其他传感器记录下光束经过的相位差,进而计算出目标物体的距离。

相位测距法具有较高的精度和测量范围,适用于大多数测距场景。

二、时间差测距法时间差测距法是另一种常用的测距方法。

该方法利用激光光束从发射到接收所需的时间来计算目标物体的距离。

通过激光脉冲的发射和接收时间的记录,结合光在空气中的传播速度,可以精确计算出测量目标与激光扫描仪之间的距离。

相较于相位测距法,时间差测距法的优势在于简单、快速,适用于运动目标的测量。

三、特点与应用三维激光扫描仪中测距的方法具有以下特点:1. 高精度:三维激光扫描仪能够实现毫米级的测量精度,具备非常高的测量精度,能够准确地捕捉目标物体的细节信息。

2. 高效率:激光扫描仪可以实现快速的数据采集,每秒钟可达到百万级的测量点,节省了大量的测量时间和人力成本。

3. 安全性:三维激光扫描仪在进行测量时通常使用红光激光束,与人眼视觉系统无害,无需担心安全问题。

四、总结三维激光扫描仪中的测距方法多样而灵活,可根据不同的测量需求选择合适的方法。

相位测距法和时间差测距法是两种常用的测距方法,各自具有优势和适用场景。

无论是高精度的建筑测量还是制造业中的质量控制,三维激光扫描仪都能够提供准确、快速且安全的测距解决方案。

激光测距实验报告(精)

激光测距实验报告(精)

一、激光测距简介:激光测距仪无论在军事应用方面,还是在科学技术、生产建设方面,都起着重要作用。

由于激光波长单一,测量精度高,且激光测距仪结构小巧,安装调整方便,故激光测距仪是目前高精度测距最理想的仪器。

激光器与普通光源有显著的区别,它利用受激发射原理和激光腔的滤波效应,使所发光束具有一系列新的特点:①激光有小的光束发散角,即所谓的方向性好或准直性好。

②激光的单色性好,或者说相干性好,普通灯源或太阳光都是非相干光。

③激光的输出功率虽然有限度,但光束细,所以功率密度很高,一般的激光亮度远比太阳表面的亮度大。

若激光是连续发射的,测程可达40公里左右,并可昼夜进行作业。

若激光是脉冲发射的,一般绝对精度较低,但用于远距离测量,可以达到很好的相对精度。

世界上第一台激光器,是由美国休斯飞机公司的科学家梅曼于1960年,首先研制成功的。

美国军方很快就在此基础上开展了对军用激光装置的研究。

1961年,第一台军用激光测距仪通过了美国军方论证试验,对此后激光测距仪很快就进入了实用联合体。

激光测距仪重量轻、体积小、操作简单速度快而准确,其误差仅为其它光学测距仪的五分之一到数百分之一,因而被广泛用于地形测量,战场测量,坦克,飞机,舰艇和火炮对目标的测距,测量云层、飞机、导弹以及人造卫星的高度等。

它是提高坦克、飞机、舰艇和火炮精度的重要技术装备。

由于激光测距仪价格不断下调,工业上也逐渐开始使用激光测距仪。

国内外出现了一批新型的具有测距快、体积小、性能可靠等优点的微型测距仪,可以广泛应用于工业测控、矿山、港口等领域。

激光测距仪-分类:一维激光测距仪用于距离测量、定位;二维激光测距仪(Scanning Laser Range finder)用于轮廓测量,定位、区域监控等领域;三维激光测距仪(3D Laser Range finder)用于三维轮廓测量,三维空间定位等领域。

激光测距-方法激光测距仪一般采用两种方式来测量距离:脉冲法和相位法。

相位测距

相位测距

基本原理相位式激光测距是通过测量连续的调制光波往返距离产生的相位延迟,间接的测定光在空气中往返于待测目标间的飞行时间,从而求出被测距离。

由激光调制发射系统、反射器、光电探测接收系统、频率综合部分(本振信号产生)、相位测量、以及显示部分组成。

由于测距的调制信号频率比较高,如果直接测量相位信息,则对测相芯片的分辨率要求比较高,而且误差比较大。

因此通常测距仪都采用了混频测相的方式对,高频信号与本振信号进行差频然后得到中低频信号,进行相位比较,后续通过AD转换和单片机把相位差信息转换成我们所需要的距离信息并且显示出来。

频率选择根据测距仪的设计需要,比如:测量精度、量程、计算简便,选择合适的测尺频率。

测尺频率可由下式确定:相位测量技术相位式激光测距仪中测距光波被接收以后通过测量相位差来计算光波飞行时间,因此相位测量是测距仪中关系到测距精度的一个关键部分。

主要的数字相位测量方法有以下几种:自动数字测相、欠采样同步检测法、向量内积法。

由于相位式激光测仪的测距要求精度比较高,测距光波的调制频率比较高,因此直接进行相位测量,则对器件的要求比较高,现在一般都釆用混频的方式与数字检相搭配使用,这样可以先把高频信号差频成中频或低频信号,然后再进行相位比较。

激光测距仪的总体设计1)采用波长为650mn的半导体激光器做光源,雪崩二极管做光电探测器;2)选用单一的直接测尺方式,测尺频率为lOMHz ,本地振荡信号频率为9.995MHz;3)用AD8002A做光电探测器前置放大电路和带通滤波器;4)用于测相的混频输出信号为5KHz,理论测尺长度为15米。

测相精度在毫米量级;5)使用AD8302做测相芯片,模数转换芯片将模拟信号转换成数字信号,传送给单片机控制系统,并且通过LCD显示出距离;6)采用窄带干涉滤光片来抑制带外噪声。

激光调制:利用有源晶体振荡器来产生lOMHz的高频振荡信号接入调制电路V端,测距回波接收部分光电器件:APD硅光电二极管在体积、响应速度、可靠性上相比其他元件都有非常好的特性,特别是硅材料制成的雪崩光电二极管(Avalanche Photo Diode,简称APD)。

激光测距 相位

激光测距 相位

激光测距相位激光测距相位法是一种常用的测量距离的技术方法,它利用激光器发射激光脉冲,通过测量激光的相位差来确定目标物体与测量仪器之间的距离。

该方法具有测量精度高、测量范围广、测量速度快等优点,被广泛应用于工业、建筑、医疗和科学等领域。

相位法是一种利用激光的光波特性进行测距的方法。

它的基本原理是利用激光脉冲的相位差来计算目标物体与测量仪器之间的距离。

激光脉冲发射时首先经过一个光调制器,光调制器可以控制激光的频率和相位,然后被目标物体反射回来,最后由一个接收器接收。

接收器接收到的激光脉冲经过信号处理后,测量出激光脉冲的相位差,进而计算出目标物体的距离。

在测量中,激光脉冲发射后,经过一段时间后,激光脉冲被目标物体反射回接收器。

激光脉冲的相位差就是指发射时刻和接收时刻的相位差。

可以通过测量激光脉冲的到达时间差或测量激光脉冲的相位差来计算出目标物体与测量仪器之间的距离。

在计算激光脉冲的相位差时需要考虑到激光的传播速度。

激光在真空中的传播速度为光速,而在大气中的传播速度则受到大气折射率的影响。

因此,在测量中需要将激光传播的时间与激光的相位差进行转化,从而得到准确的距离值。

激光测距相位法具有许多优点。

首先,它具有测量精度高的特点。

由于激光的相位差可以精确地测量,在近距离的测量中,可以达到亚毫米级别的测量精度。

其次,激光测距相位法的测量范围广。

激光的传播速度非常快,而且激光脉冲的相位差可以进行很大的可调范围,因此可以实现从几毫米到几百米甚至几千米的距离测量。

此外,激光测距相位法还具有测量速度快的特点。

激光脉冲的传播速度很快,在实际应用中可以实现实时测距,适用于需要快速测量的场合。

激光测距相位法被广泛应用于许多领域。

在工业领域,激光测距相位法可以用于测量物体的尺寸、位置和形状,为生产加工提供重要的参数。

例如,在汽车制造中,可以利用激光测距相位法测量车身外形的尺寸,以确保其符合设计要求。

在建筑领域,激光测距相位法可以用于测量建筑物的高度、宽度和倾斜度等参数,为建筑设计和施工提供参考。

相位式激光测距原理

相位式激光测距原理

相位式激光测距原理
相位式激光测距原理是一种利用光学原理测量物体距离的方法。

其基
本原理是将激光束发送到目标物体,经过反射后接收回来,然后根据
光的相位差计算出物体到激光测距仪的距离。

下面将会逐一讲解相位
式激光测距原理的详细内容。

1. 激光的发射
相位式激光测距仪通过激光器发射一束定向、单色、激光光束,将激
光传输到目标体上。

2. 激光的接收
激光的接收有两种方法,其中一种可以使用普通的接收型光电二极管
来完成,另一种则需要使用相位测量的方法。

3. 相位差的测量
通过对激光发射时和接收时的相位差进行测量,得到目标到发射点的
距离,这个距离与光的波长有关。

4. 数据的处理
将测得的距离进行处理后,即可得到精确的目标距离数据,同时在数
据处理的过程当中,还可以实现自动跟踪,提高了装置的实用性。

总之,相位式激光测距原理是一种非常先进和高精度的测距方法,其
原理也比较复杂,需要参考一定的物理学知识,而在工业、航空航天、军事等领域都有广泛的应用。

相位式激光测距仪激光接收部分设计

相位式激光测距仪激光接收部分设计

相位式激光测距仪激光接收部分设计激光测距仪是一种测量目标物体距离的工具,其原理是利用激光束在空气中传播的特性,通过测量激光束的往返时间来计算出目标物体与测距仪的距离。

激光接收部分是激光测距仪的核心组成部分之一,其设计的好坏直接影响到测量结果的准确性和稳定性。

在设计激光接收部分时,需要考虑以下几个关键因素:1.激光接收器的选择:激光接收器是接收激光信号的关键部件,其性能直接影响到激光测距仪的灵敏度和测距范围。

常见的激光接收器有光电二极管(PD)和光电效应晶体管(APD)。

PD具有较高的响应速度和较低的噪声,适用于近距离测距场景;APD具有较高的增益和较低的噪声,适用于远距离测距场景。

2.光学系统的设计:光学系统包括透镜、滤波器等光学元件,其作用是将入射的激光束聚焦到激光接收器上。

在设计光学系统时需要考虑激光束的聚焦效果、散斑噪声等因素,以提高测距仪的测量精度和信噪比。

3.信号放大和滤波电路的设计:激光接收器输出的信号很弱,需要经过放大和滤波才能得到可信的测距信号。

放大电路可以采用运算放大器等电路实现,滤波电路可以采用RC滤波器或数字滤波器等实现。

通过合理设计放大和滤波电路,可以提高信号的噪声抑制和动态范围。

4.时间测量电路的设计:激光测距仪是通过测量激光束的往返时间来计算距离的,因此需要设计一个高精度的时间测量电路。

常用的时间测量电路有计数器、时钟等,可以通过采样和比较测量激光脉冲信号的上升沿和下降沿来计算出往返时间。

在设计激光接收部分时,还需考虑以下一些技术细节:5.温度补偿:激光测距仪的测量精度受到温度的影响,尤其是光学元件和电子元件的温度变化。

因此,需要设计温度补偿电路,通过测量环境温度并补偿光学和电子元件的参考值,提高测量精度。

6.光路对齐:激光测距仪的激光发射和接收部分需要在一条直线上对准,才能确保测量结果的准确性。

因此,需要设计一个精密的光路对齐机构,确保激光束的传输方向稳定。

7.防干扰设计:激光测距仪易受到外界光源干扰,导致测量结果偏差。

相位式激光测距仪原理

相位式激光测距仪原理

相位式激光测距仪原理激光测距是光波测距中的一种测距方式,如果光以速度c在空气中传播在A、B两点间往返一次所需时间为t,则A、B两点间距离D可用下列表示。

D=ct/2 式中:D——测站点A、B两点间距离;c——光在大气中传播的速度;t——光往返A、B一次所需的时间。

由上式可知,要测量A、B距离实际上是要测量光传播的时间t,根据测量时间方法的不同,激光测距仪通常可分为脉冲式和相位式两种测量形式。

相位式激光测距仪相位式激光测距仪是用无线电波段的频率,对激光束进行幅度调制并测定调制光往返测线一次所产生的相位延迟,再根据调制光的波长,换算此相位延迟所代表的距离。

即用间接方法测定出光经往返测线所需的时间,如下图所示。

图为相位式激光测距仪测距原理图相位式激光测距仪一般应用在精密测距中。

由于其精度高,一般为毫米级,为了有效的反射信号,并使测定的目标限制在与仪器精度相称的某一特定点上,对这种测距仪都配置了被称为合作目标的反射镜。

若调制光角频率为ω,在待测量距离D上往返一次产生的相位延迟为φ,则对应时间t 可表示为:t=φ/ω 将此关系代入上式距离D可表示为:D=1/2 ct=1/2 c·φ/ω=c/(4πf) (Nπ+Δφ)=c/4f (N+ΔN)=U(N+)式中:φ——信号往返测线一次产生的总的相位延迟。

ω——调制信号的角频率,ω=2πf。

U——单位长度,数值等于1/4调制波长N——测线所包含调制半波长个数。

Δφ——信号往返测线一次产生相位延迟不足π部分。

ΔN——测线所包含调制波不足半波长的小数部分。

ΔN=φ/ω在给定调制和标准大气条件下,频率c/(4πf)是一个常数,此时距离的测量变成了测线所包含半波长个数的测量和不足半波长的小数部分的测量即测N或φ,由于近代精密机械加工技术和无线电测相技术的发展,已使φ的测量达到很高的精度。

为了测得不足π的相角φ,可以通过不同的方法来进行测量,通常应用最多的是延迟测相和数字测相,目前短程激光测距仪均采用数字测相原理来求得φ。

激光相位测距原理

激光相位测距原理

激光相位测距原理
激光相位测距是一种高精度测量距离的技术,其原理是利用受测
物体反射的激光光束与光源发出的激光光束之间的相位差来计算距离。

激光相位测距系统由激光发生器、光学系统、光电探测器和数据
处理器组成,其中最关键的部分是光学系统。

激光光束从发光器发出后,经由激光器发生器准直后送入距离测
量区域。

受测物体反射的激光光束再次经过激光器发生器,进入光电
探测器后,将信号转化为电信号。

根据物理学原理,光在传播过程中会发生折射和反射等现象,从
而导致光程差发生变化,引起光的相位差。

由于激光的相位差与反射
光路的长度成正比,因此通过测量激光两次入射和反射的光程差得到
的相位差,就可以计算出受测物体的距离。

在激光相位测距技术中,主要应用了光干涉原理、反射原理以及
光电探测技术。

其中,光干涉原理强调了光的相位差,反射原理强调
了光的反射和折射,光电探测技术则是将光信号转化为数字信号进行
计算和处理。

激光相位测距技术具有高精度、高灵敏性、高速度的特点,常用
于地质勘探、测量建筑物高度、制造业检测、制造高精度仪器等领域。

基于51单片机的手持式激光+测距仪设计与实现-毕业论文

基于51单片机的手持式激光+测距仪设计与实现-毕业论文

---文档均为word文档,下载后可直接编辑使用亦可打印---1.1 课题的背景和意义 (2)1.2 国内外现况 (3)1.3 本课题主要研究内容 (4)1.最小的单芯片系统的硬件设计; (4)2.液晶屏的硬件设计; (4)3.警告声光报警电路; (4)4.硬件功能测试程序。

(4)1.4 开发环境介绍 (4)1) 开发环境 (4)2) 运行环境 (5)第二章硬件介绍 (6)2.1 STC89C52概述 (6)图2-1 51单片机管脚图 (6)1 主电源引脚 (7)2 时钟源 (7)3 控制,选通或复用 (7)4 多功能I/O端口 (7)2.2 keilC51的开发环境 (8)2.2 Nokia/诺基亚5110 LCD (9)图2-2 Nokia5110显示屏 (10)2.3 GP2Y0A02YK0F红外激光测距模块 (10)1、距离测量范围: 20 to 150 cm (10)2. 信号输出类型:电压模拟信号 (10)3. 包装尺寸:29.5×13×21.6 mm (10)4. 功耗:标称值33 mA (10)5. 供电电压:4.5 to 5.5 V (10)6.精度和采集的AD位数以及转化计算公式相关,10AD一般能达到0.1CM (10)图2-3 测距原理 (12)图2-4传感器数值曲线图 (12)第三章硬件系统介绍 (13)3.1 红外激光测距的实现构想 (13)3.2 结构框图 (13)图3-1 结构框图 (13)3.3系统硬件结构电路图 (14)图3-2 整体电路图 (14)3.3.1 ISP电路 (14)图3-3 下载与擦除电路 (15)3.3.2 稳压电路 (15)图3-4 稳压电路 (15)3.3.3 显示模块Nokia5110lcd (15)图3-5 5110显示电路 (16)3.3.4 键盘 (16)图3-6 按键 (17)3.3.5红外激光测距模块 (17)图3-7 测距模块 (17)3.3.6复位电路 (17)图3-8 复位电路 (18)3.3.7 时钟电路 (18)图3-9 时钟电路 (19)3.3.8蜂鸣器电路 (19)图3-10 蜂鸣器电路 (19)3.4测距原理与测距方法的选择 (20)3 3.1相位激光测距 (20)3.4.2脉冲法激光测距 (20)3.4.3 激光三角法测距 (21)3.4.4激光的选择 (22)1. 采用红外激光的发光二级管,结构很简单,体积小,成本较低 (23)2. 对红外的调制很简单,能够实现编码发射 (23)3. 红外线不会通过阻碍物 (23)4. 具有低耗能,反应快的特点 (24)5. 具有极强的在干扰环境下工作的能力 (24)6. 不会对环境造成污染,基本上对于人畜无害 (24)第四章软件系统设计 (25)4.1 系统软件流程图 (25)图4-1 软件流程图 (25)4.2 部分代码 (26)LCD部分 (26)c -= 32; (27)x <<= 3; (27)y <<= 1; (27)第五章实物制作与调试说明 (31)5.1 材料的选择 (31)5.2 电路板PCB的设计 (31)5.3 印刷电路板的制作 (32)5.4 单片机测试 (32)5.5 电路调试 (32)5.6 红外激光测距的调试 (33)第六章总结 (33)第一章绪论1.1 课题的背景和意义这个项目的需求是不用进行接触测量,开发出运行快速,准确度高,而且具有能够忍受强干扰,体积小,重量轻的激光测距仪。

课程设计脉冲激光测距仪

课程设计脉冲激光测距仪

外设接口设计
设计必要的外设接口,如按键、显示屏、通信接口等,以便于用户操作和数据显示。
软件编程
编写控制程序,实现测距仪的初始化、参数设置、数据采集、数据处理和结果显示等功能。
微控制器选择
根据测距需求和预算,选择合适的微控制器,如STM32、Arduino等。
04
CHAPTER
脉冲激光测距仪软件设计
脉冲接收
控制与显示系统
发射光学系统
将激光脉冲聚焦并导向目标,包括准直透镜和发射镜等。
光电探测器
将接收到的光信号转换为电信号,通常采用雪崩光电二极管或PIN光电二极管等。
信号处理电路
对电信号进行放大、滤波和数字化处理,以便后续的距离计算和显示。
产生短促、高强度的激光脉冲,通常采用半导体激光器或固体激光器。
实现基本测距功能
要求学生所设计的脉冲激光测距仪应达到一定的性能指标,如测量范围、测量精度、分辨率等。
性能指标要求
要求学生完成实验报告,包括设计原理、制作过程、实验结果分析和结论等,并进行答辩,展示设计成果和实验效果。
完成实验报告和答辩
02
CHAPTER
脉冲激光测距仪基本原理
通过测量激光脉冲从发射到接收的时间差来计算距离。
激光器
接收光学系统
接收反射回来的激光脉冲,并将其聚焦到光电探测器上,包括接收镜和聚焦透镜等。
控制测距仪的工作状态,显示测量结果,通常采用微处理器和液晶显示屏等实现。
03
CHAPTER
脉冲激光测距仪硬件设计
根据测距需求和预算,选择合适的激光器,如固体激光器、半导体激光器等。
激光器选择
设计合适的驱动电路,以提供稳定的电流和电压,确保激光器正常工作。

相位法激光测距系统中数字鉴相器的设计

相位法激光测距系统中数字鉴相器的设计

相位法激光测距系统中数字鉴相器的设计*林其斌 1 陈向东2(1、安徽省滁州学院电子信息工程系(239012) 2、西南交通大学电信科学与技术学院(610031))摘 要: 介绍一种由复杂可编程逻辑器件(CPLD)实现的相位法激光测距用数字鉴相器的设计方案,给出原理图及部分模块的仿真结果。

由于CPLD 具有高速度和高带宽等优点,因此,本方案较之单片机方案,具有更高的鉴相精度。

关键词: 激光测距 数字鉴相 CPLD中图分类号:P225.2 文献标识码:AA Design of the Digital Phase Detector used for Phase Laser Range FinderLIN QI-bin 1 CHEN XIANG-dong 2(1.Dept. of Electronics Information Engineering, Chuzhou University, Chu zhou ,Anhui 2390122. Shool of Information Science and Technology, Southwest Jiaotong University 610031)abstract: A design of digital phase detector used for phase laser range finder is introduced .The schematic diagram and the simulating effect are given. It has higher detecting accuracy than MCU system because of the high speed and wide frequency-band of CPLD.Keywords: laser range digital phase detecting CPLD一、引言相位法激光测距是利用发射的调制光和被目标反射的接收光之间光强的相位差包含的距离信息来实现对被测目标距离的测量。

激光相位测距原理

激光相位测距原理

激光相位测距原理
激光相位测距是一种利用激光波束测量物体距离的技术。

其原理基于光的干涉现象,通过测量光波在物体表面反射后的相位变化来确定距离大小。

在激光相位测距系统中,激光器发射一束脉冲激光,该激光束照射到目标物体上并被反射回来。

接收器接收到反射光波后,光电二极管将光信号转换为电信号。

由于光波在往返过程中会受到干涉效应的影响,导致接收到的光信号具有不同的相位。

通过测量光信号的相位差,即可计算出光波的传播距离。

为了实现相位测量,激光相位测距系统通常采用两种方法:串行分析和并行分析。

串行分析方法中,激光脉冲经过光电二极管后,信号会被通过逐点扫描的方式进行采样。

然后,所有采样点的相位将被计算出来,并通过插值算法实现子波测量。

而在并行分析方法中,激光脉冲会经过一个多通道的光电二极管阵列,每个光电二极管将接收到的信号进行采样和处理。

通过对比不同通道之间的相位差异,可以实现更快速的相位测量。

总的来说,激光相位测距利用激光波束的干涉现象来测量物体的距离。

通过准确测量光信号的相位差,可以实现高精度的测距,并在许多领域中得到广泛应用。

基于TDC-GP21的激光测距设计

基于TDC-GP21的激光测距设计
1.3 课题研究的目的及意义
随着科学技术的快速发展,激光将在测距仪中的应用越来越广。但就目前技术水平来说,人们可以具体利用的测距技术还十分有限,因此,这是一个正在蓬勃发展而又有无限前景的技术及产业领域。展望未来,激光波测距仪作为一种新型的非常重要有用的工具在各方面都将有很大的发展空间,它将朝着更加高定位高精度的方向发展,以满足日益发展的社会需求,无庸置疑,未来的激光波测距仪将与自动化智能化接轨,与其他的测距仪集成和融合,形成多测距仪。随着测距仪的技术进步,测距仪将从具有单纯判断功能发展到具有学习功能,最终发展到具有创造力。在新的世纪里,面貌一新的测距仪将发挥更大的作用。
若要距离分辨率 ≤30cm,则要求 ≤2×10-9s,即要求时标脉冲的频率最低为500MHz。距离测量的精度主要取决于发射激光脉冲的上升沿、接收通道的带宽、探测器的信噪比、时间间隔测量的分辨率等因素有关。
TOF(飞行时间)测距系统构成相对简单,因而获得了普遍的应用。军用的作用距离大于1km的测距机基本上全都是基于TOF的。当前,采用精密的时间间隔测量方法,脉冲飞行时间激光测距的单次测量精度可以达到厘米量级。为获得更高精度,可以采取多次测量平均的方法,但是这需要更长的测量时间,从而限制了它的应用范围。自触发脉冲飞行时间激光测距法,其原理利用激光接收单元的输出信号自行控制激光发射单元,进而触发激光脉冲向测距目标发射,即激光接收单元接收到激光脉冲之后,去触发激光发射单元产生下一个激光脉冲。激光脉冲的发射和接收是循环相关的。经过多个脉冲后,接收的这一周期信号经过周期测量再除以接收的周期数,从单个周期得到距离。实际上是对测量结果进行多次平均,从而提高精度。分析其原理可知,这种方法仅对静止目标有效,而且为了获得由距离而产生的测距周期信号,激光器会长时间的处于发射状态,就效率而言是相对较低的,同时,这也限制了触发脉冲飞行时间激光测距法只能在低功率激光器件上运用,从而其应用仅限于室内的短距离测量。

激光相位法测距课件

激光相位法测距课件
详细描述
在信号处理过程中,放大器噪声和ADC量化误差是主要的误差源。放大器噪声是由于电子热运动产生的随机波动,而ADC量化误差是由于有限位数对模拟信号的近似表示造成的。此外,时钟源的误差也会影响信号处理的精度,因为时钟源决定了信号处理的采样率和时间基准。
05
CHAPTER
提高激光相位法测距精度的措施
定期清洁光学元件,确保光路畅通无阻,减少光的散射和反射。
保持光路的清洁
保持光路环境的恒温,避免温度变化对光学元件的影响,确保光路的稳定性。
温度控制
采取有效的减震措施,降低外界振动对光路稳定性的干扰。
振动隔离
根据测距范围和精度要求,选择适当的调制频率,以提高信号的信噪比和抗干扰能力。
调制频率选择
根据调制频率和系统带宽,选择合适的采样频率,确保能够准确捕获信号相位信
感谢您的观看。
远距离测量
由于激光的相干性和干涉效应,激光相位法测距具有较强的抗干扰能力,能够在复杂的环境中进行测量。
抗干扰能力强
激光相位法测距需要稳定的测量环境,以避免外界因素对干涉信号的影响。
需要稳定环境
激光相位法测距在航天领域中广泛应用于卫星轨道测量、地球观测和天文观测等。
航天测量
激光相位法测距在军事领域中用于远程武器定位、导弹精确制导和战场侦察等。
04
CHAPTER
激光相位法测距的误差分析
光路调整误差是由于发射和接收光路的不对准或光学元件的误差所引起的。
总结词
在激光相位法测距中,发射和接收光路必须精确对准,以确保测量结果的准确性。任何光路的不对准都会导致测量误差,因为接收器可能无法正确接收发射器发出的激光信号。此外,光学元件的误差也会影响光路的调整,如透镜和反射镜的制造误差。

激光测距系统的设计

激光测距系统的设计

编号: 20150107017本科毕业论文(设计)激光测距系统的设计Design of laser ranging system姓名张亚星学院信息工程学院专业测控技术与仪器班级2011级测控1班学号**********指导教师郝允慧讲师2015 年 6 月 2 日激光测距系统的设计【摘要】激光测距是对激光技术、计算机技术等多门技术的综合运用,因此集多种技术的优点于一身,比光学测距技术更精密。

随着激光技术的日益成熟,激光测距的精度越来越高,应用得到不断推广,逐步扩展到国民生活的各个方面,在军事上也得到广泛的应用。

本文介绍了激光测距的三种方法,重点阐述了相位式激光测距的原理,着重介绍了相位式激光测距系统的电路组成,包括回波接收电路、数据采集及显示电路、激光发射电路等。

在此测距系统中采用了自动数字测相的方法,从而有效的提高了测相的精度。

每个系统都会或多或少产生误差,为了减小系统误差,对系统误差进行分析,并提出最佳解决方案,再次检测系统误差最终被控制在允许范围内。

【关键词】激光测距相位测量自动数字测相Design of laser ranging system[Abstract]The laser ranging is a technology for precision measurement, it is developing along with the development of the laser technology, which is extensively used in the military field and the civil field because of the good accuracy. Laser has a strong directional, high brightness, good monochromaticity, suitable as a light source of photoelectric distance measurement The laser ranging is comprehensive application of various technologies, for example the optics, laser technology, precise machinery, electronics, calculate technology and photoelectron etc. Along with the development of laser technology, digital and electronic technology, and integrated circuit, the laser ranging is developing to digitalize, automation and small-sized portable direction.This paper introduced a few methods of laser ranging. For example, phase laser range finding, the laser triangle measure pulse laser measures, etc. This design introduced the theory of phase laser range finding and expatiated the circuit forms of phase type laser range finding system. The system included the emitting circuit of the laser, receiving circuit, data acquisition circuit and shows electric circuit etc. This range finding system has adopted a method of the auto numeral phase-detection, and then improves the precision for measurement.Finally, the system generated is theoretically analyzed, and specific solutions are introduced. The deficiencies of the system are analyzed and the work to be carried out after that is given.[Keywords]laser range phase measurement the auto numeral phase-detection目录引言 (1)第1章绪论 (2)1.1 课题背景 (2)1.2 激光测距技术的优点 (2)1.3 激光测距技术的发展 (2)1.4 本课题研究的主要内容 (4)第2章激光测距的原理 (5)2.1 激光测距原理的介绍 (5)2.2 激光测距方法综述 (5)第3章相位式激光测距系统的设计 (8)3.1 设计方案的拟定 (8)3.2 基本公式及频率选择 (9)3.3 发射系统设计 (10)3.4 接收系统设计 (14)第4章数据处理与误差分析 (24)4.1 数据采集与显示电路设计 (24)4.2 程序实现 (29)4.3 误差分析 (30)结论 (33)参考文献 (34)致谢 (34)附录Ⅰ:英文原文 (37)附录Ⅱ:译文 (44)附录Ⅲ:电路图 (49)引言光波早在人类以前就已经存在,自从有了人类以后,光波最早不被发现,直到人类技术逐步先进,光波才被利用。

单脉冲激光测距系统设计

单脉冲激光测距系统设计

基于单脉冲激光的测距研究摘要该设计采用单脉冲激光进行距离的测量。

在光电检测系统中,采用了可以控制的激光光源作为信号的发射装置,配以光电倍增管(PMT)作为接收装置和信号处理电路,通过获取激光发射到激光反射回接收装置的时间来计算出所测目标的距离。

该测距系统通过发送单个脉冲的激光进行测量,具有速度快、精度高的特点,通过电子门的精确控制计数器的开始和停止,极大减小了系统的误差。

关键词:单脉冲激光;光电检测 ;光电倍增管(PMT)Research about range finder based on single pulse laserAbstractThis design USES single pulse laser to distance measurement. In photoelectric detection system, using the can control laser sources as a signal transmitting devices, match with photoelectric acceptance device(PMT)and signal processing circuit, through to get laser pulse laser reflected back to receiving devices of time to calculate the distance of the target. The measurement system by sending a single pulse laser measurement, high speed, high precision, the characteristics of electronic door through the precise control counter the start and stop, greatly reducing the error of the system.Keywords: single pulse laser; Photoelectric detection;PMT目录一、引言光学测距在气象研究、大地测量和科学研究,军事,宇航探测等众多领域中有着广泛的应用,激光技术用于测距,具有速度快,精度高,不受地形限制的优点。

《相位法激光测距仪设计》

《相位法激光测距仪设计》

《相位法激光测距仪设计》摘要:一、引言二、相位法激光测距仪的原理与结构1.相位法测距原理2.激光测距仪的结构组成三、相位法激光测距仪的设计方法1.欠采样技术与同步检测原理2.晶体滤波器和直接数字频率合成计四、实验结果与分析1.系统整体结构和性能改进2.数字化与自动化程度的提高五、结论正文:一、引言激光测距仪是一种非接触式的测量仪器,它利用激光束测量目标物体与测量仪器之间的距离。

根据测距方法的不同,激光测距仪可分为相位法激光测距仪和脉冲法激光测距仪。

相位法激光测距仪通过检测发射光和反射光之间的相位差来测量距离,具有较高的测量精度和较远的测量范围。

因此,本文将重点介绍相位法激光测距仪的设计方法。

二、相位法激光测距仪的原理与结构1.相位法测距原理相位法激光测距仪的原理是利用激光器发出一束激光,经过调制后射向目标物体,然后通过接收器接收目标物体反射回的激光束。

由于激光在传播过程中会发生相位变化,因此通过检测发射光和反射光之间的相位差,可以计算出目标物体与测量仪器之间的距离。

2.激光测距仪的结构组成激光测距仪主要由激光器、调制器、发射器、接收器、相位检测器和数据处理器等组成。

激光器负责发射激光束,调制器负责对激光束进行调制,发射器负责将激光束射向目标物体,接收器负责接收目标物体反射回的激光束,相位检测器负责检测发射光和反射光之间的相位差,数据处理器负责对测量结果进行处理。

三、相位法激光测距仪的设计方法1.欠采样技术与同步检测原理为了降低数据处理的复杂程度,可以采用欠采样技术与同步检测原理改进测相方法。

欠采样技术是指在采样频率较低的情况下,通过增加采样时间来提高采样精度。

同步检测原理是指通过同步检测发射光和反射光的相位差,来消除环境因素对测量结果的影响。

2.晶体滤波器和直接数字频率合成计为了改进测距仪的滤波与调制手段,可以采用晶体滤波器和直接数字频率合成计(DDS)。

晶体滤波器具有较高的滤波性能和较低的功耗,可以有效地抑制干扰信号。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课程设计报告(2014—2015年度第一学期)题目:激光相位测距仪设计院系:物理与电子信息工程学院姓名:学号:专业:光信息科学与技术指导老师:2015年01月03日目录1.设计目的与任务 (3)2.相位式激光测距仪的实现原理 (5)3.激光测距仪的原理方案 (6)3.1 直接测尺频率 (6)3.2 间接测尺频率 (7)4.测距精度的分析 (9)4.1 误差分析 (9)4.2精度分析 (11)5.总结 (12)6.参考文献 (13)1.设计目的与任务课程设计是学生理论联系实际的重要实践教学环节,是对学生进行的一次专业训练。

通过课程设计使学生获得以下几方面能力,为毕业设计打下基础。

1、进一步巩固和加深学生所学的专业理论知识,培养学生设计、计算、绘图、计算机应用、文献查阅、报告撰写等基本技能;2、培养学生独立分析和解决工程实际问题的能力;3、培养学生的团队协作精神、创新意识、严肃认真的治学态度和严谨求实的工作作风。

光电子技术基础课程设计是在学生已经完成光电子技术基础课程教学之后所进行的综合性设计过程。

其意义在于进一步巩固、加强课程的教学效果,并将这些知识真正应用于实际的设计过程中。

根据设计内容要求,完成方案论证,完成一类光电仪探测器特性实验测试开发;或利用光电探测器设计测试装置针对一物理量进行测量;或利用光电系统进行信息的传输;或能根据工程条件设计一光电技术的具体应用。

写出完整的设计报告,设计报告(论文)字数要求不少于3000字,文字通顺,书写工整。

2.相位式激光测距仪的实现原理相位测量一般采用差频测相技术。

差频测相的原理如图2.1所示设主控振荡器的信号为cos()d s s e A t ωϕ=+ 2-1经过调制器发射后经2L 距离返回光电接收器,接收到的信号为cos()ms s s e A t ωϕ∆ϕ=++ 2-2 ϕ∆表示相位变化。

设基准振动器信号为cos()l l l e C t ωϕ=+ 2-3把l e 送到混频器分别与d e 和ms e 混频,在混频器的输出端得到差频参考信号r e 和测距信号m e ,他们可分别表示为cos[()()]r s l s l e D t ωωϕϕ=-+- 2-4cos[()()]m s l s l e E t ωωϕϕ∆ϕ=-+-+ 2-5 用相位检测电路测出这两个混频信号相位差'ϕϕ∆=∆。

可见,差频后得到的两个低频信号的相位差'ϕ∆直接测量高频调制信号的相位差ϕ∆是一样的。

通常选取测相的低频频率为几千赫兹到几十千赫兹。

差频后得到的低频信号进行相位比较,可采用平衡测相法,也可采用自动数字测相法。

平衡测相法结构简单,性能可靠,价格低,但准确度较低,通常会有15'~20'或更大的测相不确定度。

此外,平衡测相法还有机械磨损。

测量速度低,并难以实现信息处理等缺点。

自动数字测相法测相速度高,测相过程自动化,便于实现信息处理,测相不确定度高,可达2'~4'3.激光测距仪的原理方案3.1 直接测尺频率由侧尺量度Ls 可得光尺的调制频率为/2fs c Ls = 3-1这种方法所选的测尺频率fs 直接和测尺长度Ls 相对应,即测尺长度直接由测尺频率决定,所以这种方式成为直接测尺 频率方式。

若果测距仪测程为100km ,要求精确到0.01m 相位测量系统的测量不确定度为0.1%,则需要三八光尺,即110Ls =5m ,210Ls =3m ,310Ls =m ,相应的光调制频率分别为1 1.5,2150,310.kHz kHz MHz fs fs fs ===。

显然,要求相位测量系统在这么宽的频带内都保证0.1%的测量不确定度很难做到。

所以直接测尺频率一般应用于短程测量如GaAs 半导体激光短程相位测距仪。

3.2 间接测尺频率在实际测量中由于测程要求较大,大都采用间接测尺频率方式。

若用两个频率1fs 和2fs 调制的光分别测量同意距离L,可得111()m m L Ls +∆= 3-2 222()m m L Ls +∆= 3-3将式2-2两边乘以2Ls ,式2-3两边乘以1Ls 后做相见运算,可得:112212(12)()Ls Ls Ls Ls m m m m L Ls m m --+∆-∆==+∆ 3-4 式中1211122122Ls Ls c c Ls Ls fs fs fsLs ==--=1212,m m m fs fs fs -==-1212,2m m m ϕπϕϕϕ=∆∆-∆∆=∆=∆-∆ 式2-4中,Ls 是一个新的测尺量度,fs 是与Ls 对应的新的测尺量度。

这样,用1fs 和2fs 分别测量某一距离时所得相位尾数1ϕ∆和2ϕ∆之差,与用1fs 和2fs 的差频频率12fs fs fs =-测量该距离时的相位尾数ϕ∆相等。

这是间接测尺频率法测距的基本原理,即通过1fs 和2fs 频率的相位尾数并取其差值来间接测定相位的差频频率的相位尾数。

通常把1fs 和2fs 称为间接测尺频率,而把差频频率称为相当测尺频率。

表3.1列出了间接测尺频率,相当测尺频率,相对应的测尺长度鸡测距不确定度:表3.1间接测尺频率,相当测尺频率及测尺长度由表可知,这种测距方式的各间接测距频率非常接近,最高的和最低之差仅为1.5MHz ,5个间接测尺频率都集中在较窄的频率范围内,故间接测尺频率又称为集中测尺频率。

这样,不仅可使放大器和调制器能够获得相接近的增益和相位稳定性,而且各对应的 石英晶体也可统一。

4.测距精度的分析4.1 误差分析测距仪的误差有以下两大类:第一类是与距离远近有关的误差,如0,,c n f m m m 及不变的误差如K m ,称为系统误差,它们是构成了仪器精度指标中的比例误差。

另一类是与距离远近无关,而且随即变化的误差,如,,g R m m m ϕ称为偶然误差,即仪器精度指标中的固定误差部分。

而周期误差虽属于系统误差,但却是一种特殊的误差。

以下讨论几种主要的误差:4.1.1主控晶体振荡器的频率误差f m测距仪中的主振频率误差,主要指精测频率误差而言,因为它决定了仪器的测距精度。

此项误差包括两方面,即频率的校准误差和频率的飘移误差,前者取决于频率的准确度,后者则取决于频率的稳定度。

当用高精度的频率计作频率校准时,频率的校准误差可忽略不计。

产生频率漂移的原因有:震荡线路原件性能的变化,晶体老化或质量欠佳,有恒温装置的仪器,预热时间不够,恒温范围过大,无恒温装置的仪器,由于温度变化引起频率漂移,电源电压不足或不稳。

可通过采用加恒温措施或晶体温度补偿以及电子线路设计上的锁频或锁相等办法来减弱频率漂移的影响4.1.2测相误差m ϕ测相误差包括:移相器或数字相位计的原理误差,瞄准误差,幅相误差以及有信噪比决定的误差。

以上误差是测距仪的瞄准误差,也是目前测距仪误差的主要来源,为了减小瞄准误差,一方面要提高调制器或发光管的制造工艺,一提高它的空间相位均匀性。

也可在短程测距仪GaAs发光管前加混相措施一提高发射的光束的相位均匀性。

m4.1.3周期误差z自动数字测距仪的周期误差这类误差主要来源于仪器内部固定信号的串扰。

若果发射信号形成固定不变的串扰信号,使得相位计测得的相位差附加上了串扰信号的附加相位移。

即相位计实际测量的是测距信号与串扰信号之合成信号的相位移,这就引起了差距误差。

减小此类误差的措施主要有:在设计。

制造时,采用合理的电子开关,发射和接受系统等的电子线路要单独设立电源:加强屏蔽,防止信号通过地线或空间发生耦合串扰。

移相-鉴相法测相测井愿意的周期误差这一类一起出了固定串扰信号能产生周期误差外,由感移相器的非线性RC 网络失调以及输入信号的频率偏离移相器的固有频率等原因均可引起周期误差。

解决此类误差的措施有:使输入移相器的信号频率与移相器的固有频率相符(可通过校正晶体振荡器的振荡频率)之后校正RC网络,使得ω=。

1R c4.2精度分析4.2.1精度分析由于相位测量是影响其精度的主要原因,故而本文只讨论由相位测量引起的测量误差的精度分析。

由第一主频1f 测量时,其测距精度公式为111()2D L ϕπ∆=∆∆ 4-1由第一辅频测量时,(因210.9f f =,有21910L L =),其测距精度公式222211()2()2(19)D L L L ϕπϕπ∆=∆∆=∆∆+ 4-2显然,由同一相位测量仪测量时,测距精度2D ∆相当于原来的基础上提高了9倍,而此时测距范围为10L1扩大了10倍。

同理,若再用第二辅频3f 测量时,(因310.99f f =,有3199100L L =),精度公式为 333311()2()2(19)D L L L ϕπϕπ∆=∆∆=∆∆+ 4-3精度在原来基础上提高了99倍,测距范围为100L 1,扩大了100倍。

依此类推,依据主频和辅频的不同比例关系可以得到添加不同辅频时的精度公式。

4.2.2测距精度的提高如某台仪器有两把测尺,精尺长 10 m ,粗尺长1000 m ,现各测得距离值为:精测(用 10 m 测尺) 5.524 m粗测(用 1 000 m 测尺) 866.6 m显示距离 865.524 m显示距离值是取粗测的百米、十米位与精测的米位及小数位组合而成。

但是由于仪器本身存在各种误差,以及外界条件的影响,使得各测尺的测量值总带有误差,会造成距离衔接上的错误。

a) 米位数值很大,而粗测米位又是偏大的正误差精测(用10 m测尺)9.958 m粗测(用1000 m测尺)270.0 m显示距离279.958 mb) 米位数值很小,而粗测米位又是偏小的负误差精测(用10 m测尺)0.058 m粗测(用1000 m测尺)269.9 m显示距离260.058 m为了防止粗差,可以用“置中运算法”和“比较试探法”来有效地处理测尺衔接的问题。

5.总结这个实验很有用,特别是对于我们电子类专业的学生,现在激光技术在工业、医疗、商业、科研、信息和军事等研究中应用的非常广泛。

这是一次我们接触这方面的实验,在实验中我们将大学期间学习过的专业知识、matlab和word学以致用,同时此次实验也为我们提供了一个写论文的机会。

我认为作为一名工科生,matlab和单片机是我们大学生活中的一个玩伴,通过这门课程的学习,我们已熟悉地掌握matlab的基本操作,同时对激光测距有了基本的认识,更重要的是我们通过相互帮助,相互学习完成了这个实验,实验同时提高了我们的仿真能力。

见到不少实验仪器,对实验的过程有了更全面的体会,注意到每一个实验都有各自的严谨性和特殊的方法。

6.参考文献主要参考资料:[1] 郭培源, 付扬. 光电检测技术与应用(第二版)[M].:北京航空航天大学出版社, 2011.[2] 张加良.相位法激光测距仪的研究[D].:西安电子科技大学,2006[3] 刘卫国.matlab程序设计教程(第二版)[M].:中国水利水电出版社,2010。

相关文档
最新文档