时钟程序单片机
单片机时钟程序设计代码
单片机时钟程序设计代码好的,由于你没有给出具体的单片机型号,下面是一个基于 51 单片机的时钟程序设计示例:```c#include <reg52.h>#include <stdio.h>#include <stdlib.h>#include <unistd.h>#include <string.h>// 定义变量char str[20];int i=0;int j=0;int k=0;int time=0;int flag=0;int h=0,m=0,s=0;void delay(int xms){int i,j;for(i=xms;i>0;i--)for(j=110;j>0;j--);}void time0() interrupt 1{TH0=(65536-50000)/256;TL0=(65536-50000)%256;time++;if(time==20){time=0;s++;if(s==60){s=0;m++;if(m==60){m=0;h++;}}}// 将时间数据转换为字符串sprintf(str," %02d:%02d:%02d",h,m,s);// 输出时间字符串for(i=0;i<16;i++){P0=str[i];delay(1000);}}void main(){// 初始化定时器 0 为 16 位定时器模式,计数初值为 50000 TMOD=0x01;TH0=(65536-50000)/256;TL0=(65536-50000)%256;EA=1;ET0=1;TR0=1;while(1);}```该程序利用 51 单片机的定时器 0 来产生定时中断,每 20 次中断为 1 秒,通过对秒、分、时的累计来实现时钟功能。
在中断服务函数中,将当前时间转换为字符串,并通过循环输出到 P0 口。
51单片机数码管时钟程序
本人初学51,编写简单时钟程序。
仅供参考学习#include<reg52.h>#define uint unsigned int#define uchar unsigned charUchar code table_d[16] = {0xbf,0x86,0xdb,0xcf,0xe6,0xed,0xfd,0x87,0xff,0xef,0xf7,0xfc,0xb9,0xde,0xf9,0xf1 };uchar code table[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0xef};void delay(uint);unsigned long i,num,t=1;void main(){TMOD=0X01;TH0=(65536-10000)/256;TL0=(65536-10000)%256;EA=1;ET0=1;TR0=1;while(1){num=i/20;//i为秒位if(i==1728000)//一天大概是这个秒吧,,,应该是,呵呵。
就是世间到24时就归零。
i=0;//也可用下面这个部分来代替上面的。
/*if(i==20){ i=0;num++;if(num==5184000)num=0;}*///num=9;P2=7;//P2口为数码管控制端,我的是38译码器控制,就直接对其赋值来控制时,分,秒的显示;P0=table[i%100%10];delay(t);P2=6;P0=table[i%100/10];delay(t);P0=table_d[(num%60)%10];P2=5;delay(t);P0=table[(num%60)/10];P2=4;delay(t);P0=table_d[((num/60)%60)%10];P2=3;delay(t);P0=table[((num/60)%60)/10];P2=2;delay(t);P0=table_d[(num/3600)%10] ;P2=1;delay(t);P0=table[(num/3600)/10];P2=0;delay(t);}}void inttimer() interrupt 1{TH0=(65536-10000)/256;TL0=(65536-10000)%256;i++;}void delay(uint xms){uint i,j;for(i=xms;i>0;i--)for(j=110;j>0;j--);}程序可能有点小问题,对初学者是个很好的启发。
51单片机时钟代码(带秒表闹钟功能).
}
}
}
if(s6==0)
{
delay(5);
if(s6==0)
{
while(!s6);
di();
if(s4num==1)
{
miao--;
if(miao<0)
miao=59;
write_alarm(10,miao);
write_com(0x80+0x00+13);
ep=0;
}
voidwrite_data(uchardat) //写入字符显示数据到LCD
{
while(lcd_bz()); //等待LCD空闲
rs=1;
rw=0;
ep=0;
P0=dat;
_nop_();
_nop_();
_nop_();
_nop_();
ep=1;
_nop_();
_nop_();
_nop_();
}
if(s1num==3)
{
hour++;
if(hour==24)
hour=0;
write_time(4,hour);
write_com(0x80+0x40+7);delay(5);
}
}
}
if(s3==0)
{
delay(5);
if(s3==0)
{
while(!s3);
di();
if(s1num==1)
批注本地保存成功开通会员云端永久保存去开通
#include <reg51.h>
#include <intrins.h>
数字时钟_89C52_单片机C语言程序
uchar MON[]={0,31,28,31,30,31,30,31,31,30,31,30,31};
uchar A;
uchar BIN=0; /* 【BIN】作为倒计时开始的标志 */
TH0 = (65536 - 10000) / 256; /*给定计时器高位赋予 初值=15536/256*/
TL0 = (65536 - 10000) % 256; /*给定计时器低位赋予 初值=15536%256 */
ET0 = 1; /*打开定时器外部终断0允许 ET1是中断器1的开关*/
P2 = C[4];
Delay(1);
P0 = Code[Msec%10]; /*第五位的数字显示【分】的【个】位 */
P2 = C[5];
Delay(1);
Delay(1);
P0 = 0x40; /*第六位符号【-】的显示 */
P2 = C[6];
Delay(1);
P2 = C[2];
Delay(1);
if(x/50==0)
P0 = 0x40; /*第三位符号【-】的显示 */
else
P0 = 0x00;
P2 = C[3];
Delay(1);
P0 = Code[min/10]; /*第四位的数字的显示【分】的【十】位 */
uchar month=7;
uchar month2;
uchar day=19;
uchar set1 = 1; /* set1=1 是调节 时分秒 set1=2时时调节 年月日 set=3时事调节闹钟 */
基于C51单片机的数字时钟课程设计(C语言带闹钟)
单片机技术课程设计数字电子钟学院:班级:姓名:学号:教师:摘要电子钟在生活中应用非常广泛,而一种简单方便的数字电子钟则更能受到人们的欢迎。
所以设计一个简易数字电子钟很有必要。
本电子钟采用AT89C52单片机为核心,使用12MHz 晶振与单片机AT89C52 相连接,通过软件编程的方法实现以24小时为一个周期,同时8位7段LED数码管(两个四位一体数码管)显示小时、分钟和秒的要求,并在计时过程中具有定时功能,当时间到达提前定好的时间进行蜂鸣报时。
该电子钟设有四个按键KEY1、KEY2、KEY3、KEY4和KEY5键,进行相应的操作就可实现校时、定时、复位功能。
具有时间显示、整点报时、校正等功能。
走时准确、显示直观、运行稳定等优点。
具有极高的推广应用价值。
关键词:电子钟 AT89C52 硬件设计软件设计目录NO TABLE OF CONTENTS ENTRIES FOUND.一、数字电子钟设计任务、功能要求说明及方案介绍1.1 设计课题设计任务设计一个具有特定功能的电子钟。
具有时间显示,并有时间设定,时间调整功能。
1.2 设计课题的功能要求说明设计一个具有特定功能的电子钟。
该电子钟上电或按键复位后能自动显示系统提示符“d.1004-22”,进入时钟准备状态;第一次按电子钟启动/调整键,电子钟从12时59分0秒开始运行,进入时钟运行状态;按电子钟S5键,则电子钟进入时钟调整状态,此时可利用各调整键调整时间,调整结束后可按S5键再次进入时钟运行状态。
1.3 设计课的设计总体方案介绍及工作原理说明本电子钟主要由单片机、键盘、显示接口电路和复位电路构成,设计课题的总体方案如图1所示:图1-1总体设计方案图本电子钟的所有的软件、参数均存放在AT89C52的Flash ROM和内部RAM 中,减少了芯片的使用数量简化了整体电路也降低了整机的工作电流。
键盘采用动态扫描方式。
利用单片机定时器及计数器产生定时效果通过编程形成数字钟效果,再利用数码管动态扫描显示单片机内部处理的数据,同时通过端口读入当前外部控制状态来改变程序的不同状态,实现不同功能。
单片机C语言_电子时钟程序
#include<AT89X52.H>#define uint unsigned int#define uchar unsigned charunsigned char key2;bit ding=1;unsigned char Getkey(void);uchar a,n=0,shi,fen,miao;void delay01s(void);uchar LED[]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90};uchar LED1[]={0x40,0x79,0x24,0x30,0x19,0x12,0x02,0x78,0x00,0x10};//有小数点的void init(); //函数声明void Delay(unsigned char z);//函数声明void display(); //函数声明//函数声明void main() //函数声明{P1=0xfe;//对P1口赋初值init(); //函数调用while(1){//函数调用key2=Getkey();switch(key2){case 1:shi++;if(shi==24){shi=0;}break;case 2:fen++;if(fen==60){fen=0;}break;case 3:if(fen!=0)fen--;if(fen==24){fen=0;}break;case 4:ding=~ding;default:break;}display(); //函数调用}}void init(){TMOD=0x01; //定时器工作方式选择和赋初值TH0=(65536-50000)/256;TL0=(65536-50000)%256;EA=1; //开总中断ET0=1; //开定时器中断TR0=1; //启动定时器}void timer0() interrupt 1 //中断服务程序{if(ding==1){TH0=(65536-50000)/256;//中断时间50msTL0=(65536-50000)%256; //定时器重新赋初值a++;if(a==10){n=~n;}if(a==20){n=~n;a=0;P1=P1<<1|P1>>7;miao++;if(miao==60){miao=0;fen++;if(fen==60){fen=0;shi++;if(shi==24){shi=0;}}}}}}void display()//显示程序{P0=LED[shi/10];P2=((P2&0x0f)|0x70); Delay(4);if(n==0){P0=LED[shi%10];}else{P0=LED1[shi%10];}P2=((P2&0x0f)|0xb0);Delay(4);P0=LED[fen/10];P2=((P2&0x0f)|0xd0);Delay(4);P0=LED[fen%10];P2=((P2&0x0f)|0xe0);Delay(4);}/**********获得键值子程序**********************/ unsigned char bool;//bool 是否松键的标志unsigned char Getkey(void){unsigned char temp,key=0;P2=(P2&0xff)|0x0f;if((P2&0xff)!=((P2&0xff)|0x0f)) // 有键按下{//delay01s();if(((P2&0xff)!=((P2&0xff)|0x0f)) &&(bool==0)) // 有键按下{temp=~(P2|0xf0);if(temp==1) key=1;else if(temp==2) key=2;else if(temp==4) key=3;else if(temp==8) key=4;bool=1;}}if(((P2&0xff)==((P2&0xff)|0x0f)) &&(bool==1)){bool=0;}return key; //返回1~16键值}/********延时程序******/void delay01s(void){unsigned char j,k;for(j=5;j>0;j--) //198{for(k=15;k>0;k--)//248{;}}}void Delay(unsigned char z){unsigned char i,j,k; //定义变量for(i=z;i>0;i--)for(j=25;j>0;j--)for(k=20;k>0;k--);}#include<reg52.h>//头文件#define uchar unsigned char//宏定义#define uint unsigned intsbit P31=P3^1;//位声明sbit P32=P3^2;sbit P33=P3^3;uchar code table[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f};//共阴段码表uint hou1,hou2,min1,min2,sec1,sec2,numhou,nummin,numsec,yue1,yue2,ri1,ri2,numyue,numri; uint num,m,n;void delayms(uint xms)//延时函数{uint i,j;for(i=xms;i>0;i--)for(j=110;j>0;j--);}void p31xd()//按键P31消抖{ delayms(2);while(P31!=1);delayms(2);}void p32xd()//按键P32消抖{ delayms(1);while(P32!=1);delayms(1);}void p33xd()//按键P33消抖{ delayms(1);while(P33!=1);delayms(1);}void displaysj()//显示时间{P2=0x00;P0=table[hou1];//显示时的第一位P2=0X20;delayms(1);P2=0xff;P0=table[hou2]&0x7f;//显示时的第二位与小数点P2=0X10;delayms(1);P2=0xff;P0=table[min1];//显示分的第一位P2=0X08;delayms(1);P2=0xff;P0=table[min2]&0x7f;//显示时的第二位与小数点P2=0X04;delayms(1);P2=0xff;P0=table[sec1];//显示秒的第一位P2=0X02;delayms(1);P2=0xff;P0=table[sec2];//显示秒的第二位P2=0X01;delayms(1);}void displayrq()//显示日期{ P2=0x00;P0=table[yue1];//显示月的第一位P2=0X20;delayms(1);P2=0x00;P0=table[yue2]&0x7f;//显示月的第二位P2=0X10;delayms(1);P2=0x00;P0=table[ri1];//显示日的第一位P2=0X08;delayms(1);P2=0x00;P0=table[ri2];//显示日的第二位P2=0X04;delayms(1);}void houqh()//时针切换函数{hou1=numhou/10;hou2=numhou%10;}void minqh()//分针切换函数{min1=nummin/10;min2=nummin%10;}void secqh()//秒针切换函数{sec1=numsec/10;sec2=numsec%10;}void yueqh()//月切换函数{yue1=numyue/10;yue2=numyue%10;}void riqh()//日切换函数{ri1=numri/10;ri2=numri%10;}void start()//初始化函数{num=0;TMOD=0x01;TH0=(65532-45872)/256;TL0=(65532-45872)%256;EA=1;IT0=0;//电平触发(低电平有效)EX0=1;ET0=1;TR0=1;yueqh(),riqh();//初始化日月切换}void ritiao()//日期的调节函数{ if(P32==0)//日期加一调节键{p32xd();if((numyue==1)||(numyue==3)||(numyue==5)||(numyue==7)||(numyue==8)||(numyue==10)||( numyue==12)){numri+=1;if(numri>=31)//如果是大月,日期有31号,等于符号是防止日期大于31号而乱码{numri=1;}}if((numyue==4)||(numyue==6)||(numyue==9)||(numyue==11)){numri+=1;if(numri>=30)//如果是小月,日期有30号{numri=1;}}if(numyue==2){numri+=1;if(numri>=28)//如果是小月,日期有28号{numri=1;}}riqh();//日期调节后切换一下}if(P33==0)//日期减一调节键{p33xd();if((numyue==1)||(numyue==3)||(numyue==5)||(numyue==7)||(numyue==8)||(numyue==10)||( numyue==12)){numri-=1;if(numri==0){numri=31;}}if((numyue==4)||(numyue==6)||(numyue==9)||(numyue==11)){numri-=1;if(numri==0){numri=30;}}if(numyue==2){numri-=1;if(numri==0){numri=28;}}riqh();}}void yuetiao()//月份的调节函数{if(P32==0){p32xd();numyue+=1;if(numyue==13)//月份为12时再加一马上为一月{numyue=1;}yueqh();}if(P33==0){p33xd();numyue-=1;if(numyue==0){numyue=12;}yueqh();}}void int0() interrupt 0{p31xd();while(P31!=0)//第一次按下p31时,进行秒调时{for(m=0;m<40;m++)//此for循环不显示秒,为的是使秒闪烁{P2=0x00;P0=table[hou1];P2=0X20;delayms(1);P2=0x00;P0=table[hou2]&0x7f;P2=0X10;delayms(1);P2=0x00;P0=table[min1];P2=0X08;delayms(1);P2=0x00;P0=table[min2]&0x7f;P2=0X04;delayms(1);if(P32==0)//如果按一下P32,则秒加一{p32xd();numsec+=1;if(numsec==60){numsec=0;}secqh();}if(P33==0)//如果按一下P33,则秒减一{p33xd();numsec-=1;if(numsec==-1){numsec=59;}secqh();}};for(n=0;n<40;n++)//此循环时分秒全显示,也为的是使秒闪烁{ displaysj();if(P32==0){p32xd();numsec+=1;if(numsec==60){numsec=0;}secqh();}if(P33==0){p33xd();numsec-=1;if(numsec==-1){numsec=59;}secqh();}}};p31xd();while(P31!=0)//第二次按下p31时,进行分调时{for(m=0;m<40;m++){P2=0x00;P0=table[hou1];P2=0X20;delayms(1);P2=0x00;P0=table[hou2]&0x7f;P2=0X10;delayms(1);P2=0x00;P0=table[sec1];P2=0X02;delayms(1);P2=0x00;P0=table[sec2];P2=0X01;delayms(1);if(P32==0){p32xd();nummin+=1;if(nummin==60){nummin=0;}minqh();}if(P33==0){p33xd();nummin-=1;if(nummin==-1){nummin=59;}minqh();}}for(n=0;n<40;n++){ displaysj();if(P32==0){p32xd();nummin+=1;if(nummin==60){nummin=0;}minqh();}if(P33==0){nummin-=1;if(nummin==-1){nummin=59;}minqh();}}};p31xd();while(P31!=0)//第三次按下p31时,进行时调时{for(m=0;m<40;m++){P2=0x00;P0=table[min1];P2=0X08;delayms(1);P2=0x00;P0=table[min2]&0x7f;P2=0X04;delayms(1);P2=0x00;P0=table[sec1];P2=0X02;delayms(1);P2=0x00;P0=table[sec2];P2=0X01;delayms(1);if(P32==0){p32xd();numhou+=1;if(numhou==24){numhou=0;}}if(P33==0){p33xd();numhou-=1;if(numhou==-1){numhou=23;}houqh();}}for(n=0;n<40;n++){ displaysj();if(P32==0){p32xd();numhou+=1;if(numhou==24){numhou=0;}houqh();}if(P33==0){p33xd();numhou-=1;if(numhou==-1){numhou=23;}houqh();}}}p31xd();while(P31!=0)//第四次按下p31时,进行日期调节{for(m=0;m<50;m++){ P2=0x00;P0=table[yue1];P2=0x20;delayms(1);P2=0x00;P0=table[yue2]&0x7f;P2=0x10;delayms(1);ritiao();}for(n=0;n<50;n++){ displayrq();ritiao();}}p31xd();while(P31!=0)//第五次按下p31时,进行月调节{for(m=0;m<50;m++){P2=0xff;P0=table[ri1];P2=0xf7;delayms(1);P2=0xff;P0=table[ri2];P2=0xfb;delayms(1);yuetiao();}for(n=0;n<50;n++){ displayrq();yuetiao();}}p31xd();}void yuejia(){ numri=1;numyue+=1;if(numyue==13){numyue=1;}}void timer0() interrupt 1{TH0=(65532-46100)/256;TL0=(65532-46100)%256;num++;if(num==20){num=0;TH0=(65532-46100)/256;TL0=(65532-46100)%256;numsec=numsec+1;if(numsec==60){numsec=0;nummin=nummin+1;if(nummin==60){nummin=0;numhou=numhou+1;if(numhou==24){numhou=0;numri+=1;if((numyue==1)||(numyue==3)||(numyue==5)||(numyue==7)||(numyue==8)||(numyue==10)||( numyue==12)){numri+=1;if(numri>=31){numri=1;numyue+=1;if(numyue==13){numyue=1;}}}if((numyue==4)||(numyue==6)||(numyue==9)||(numyue==11)){numri+=1;if(numri>=31){numri=1;numyue+=1;if(numyue==13){numyue=1;}}}if(numyue==2){numri+=1;if(numri>=29){numri=1;numyue+=1;if(numyue==13){numyue=1;}}}}}}}}void main(){numhou=12;//初始化时间设为12点,日期设为1月1日nummin=0;numsec=0;numyue=1;numri=1;start();while(1){if(P32==1)//默认(没有按下p32时)显示时间{houqh(),minqh(),secqh();displaysj();}if(P32==0)//当按下p32键时显示日期{yueqh(),riqh();displayrq();}}}。
52单片机时钟课程设计
52单片机时钟课程设计一、课程目标知识目标:1. 学生能理解并掌握52单片机的基本原理及其在时钟设计中的应用。
2. 学生能描述时钟电路的工作原理,包括时钟晶振、分频器等组成部分。
3. 学生能运用C语言编写程序,实现对时钟的显示、调整和时间计算功能。
技能目标:1. 学生能独立完成52单片机的时钟电路连接和程序编写。
2. 学生通过实验操作,培养动手能力和问题解决能力,能够调试并优化时钟程序。
3. 学生能够运用所学知识,结合实际需求,设计简单的时钟应用项目。
情感态度价值观目标:1. 学生通过学习单片机时钟设计,培养对电子技术和编程的兴趣,激发创新意识。
2. 学生在团队协作中,学会分享、交流和合作,提高沟通能力。
3. 学生认识到科技对社会生活的影响,增强社会责任感和时代使命感。
课程性质:本课程为实践性较强的电子技术课程,结合理论教学和实验操作,旨在培养学生的动手能力、编程能力和创新能力。
学生特点:学生已具备一定的电子技术基础知识,对编程有一定了解,但对单片机应用尚处于起步阶段。
教学要求:教师需结合学生特点,注重理论与实践相结合,关注个体差异,引导学生主动探究,培养其解决问题的能力。
通过课程学习,使学生能够将所学知识应用于实际项目中。
二、教学内容本课程教学内容主要包括以下几部分:1. 52单片机基础知识:介绍52单片机的结构、工作原理、引脚功能等,结合教材相关章节,让学生对单片机有基本的认识。
2. 时钟电路原理:讲解时钟电路的组成,包括时钟晶振、分频器等,分析时钟信号的产生、传输和作用。
3. C语言编程:复习C语言基础知识,重点讲解与52单片机编程相关的内容,如寄存器操作、I/O口编程、中断处理等。
4. 时钟程序设计:详细讲解如何利用52单片机实现时钟功能,包括时钟显示、调整和时间计算等,结合教材实例,让学生动手实践。
5. 实验操作与调试:指导学生进行时钟电路的连接、程序下载和调试,培养学生动手能力和问题解决能力。
单片机电脑时钟课程设计
单片机电脑时钟课程设计一、课程目标知识目标:1. 理解单片机的基本原理,掌握其硬件结构和功能模块;2. 学会使用单片机编程,实现电脑时钟的基本功能;3. 掌握电脑时钟的时、分、秒显示和闹钟功能的实现方法;4. 了解单片机与其他电子元件的接口技术。
技能目标:1. 能够运用C语言编写单片机程序,实现电脑时钟功能;2. 能够使用调试工具对单片机程序进行调试和排错;3. 能够独立完成单片机电脑时钟的硬件连接和程序设计;4. 能够分析和解决电脑时钟在实际应用中遇到的问题。
情感态度价值观目标:1. 培养学生对电子技术和编程的兴趣,提高学习积极性;2. 培养学生团队合作精神,学会相互交流和分享经验;3. 增强学生的创新意识,鼓励他们勇于尝试和改进;4. 培养学生严谨、细致的学习态度,提高他们分析问题和解决问题的能力。
课程性质:本课程为实践性课程,以项目为导向,结合单片机原理和编程技术,培养学生动手能力和实际应用能力。
学生特点:学生具备一定的电子基础知识,熟悉C语言编程,对单片机有一定了解,但实践能力有待提高。
教学要求:注重理论与实践相结合,强调动手实践,鼓励学生自主学习和探究,提高学生的综合能力。
将课程目标分解为具体的学习成果,以便后续的教学设计和评估。
二、教学内容1. 单片机基础理论:介绍单片机的硬件结构、工作原理、功能模块等,为学生后续编程打下基础。
- 教材章节:第一章 单片机概述、第二章 单片机硬件结构- 内容:单片机的基本概念、CPU、存储器、I/O口、定时器等。
2. C语言编程:复习C语言基础知识,讲解单片机编程方法和技巧。
- 教材章节:第三章 单片机C语言编程- 内容:数据类型、运算符、控制语句、函数、数组等。
3. 单片机时钟设计:详细讲解电脑时钟的原理和实现方法,包括时、分、秒显示和闹钟功能。
- 教材章节:第四章 单片机定时器、第五章 显示技术- 内容:定时器工作原理、显示技术、时钟程序设计。
4. 硬件连接与调试:介绍单片机与其他电子元件的接口技术,指导学生进行硬件连接和程序调试。
单片机电子时钟设计程序
单片机电子时钟设计程序
1.引用头文件和定义全局变量
首先需要引用相应的头文件,例如`reg52.h`,并定义全局变量用于
存储时间、闹钟时间以及其他相关参数。
2.初始化时钟
在主函数中,首先进行时钟的初始化。
这包括设置定时器和中断相关
的寄存器,以及初始化显示屏和按钮等外设。
3.时间更新
编写一个中断服务函数,用于根据定时器的中断来更新时间。
在该中
断服务函数中,需要将全局变量中的时间进行递增,并考虑到分钟、小时、日期和星期等的进位和换算。
4.按钮输入
设置一个子函数用于读取按钮输入,并根据按钮的状态来进行相应的
操作,比如切换时钟显示模式、设置闹钟等。
5.显示时间
编写一个子函数用于将时间信息显示在数码管上。
这需要先将时间信
息转换为数码管的显示格式,然后通过IO口输出控制数码管的显示。
6.闹钟设置
使用按钮输入的功能,可以设置闹钟时间和开关闹钟功能。
当闹钟时
间到达时,可以通过控制蜂鸣器发声或点亮LED等方式来进行提醒。
7.主函数
在主函数中,循环执行按钮输入的检测和相应操作,以及时间的更新和显示等功能。
可以通过一个状态机来控制整个程序的流程。
以上是一个简要的单片机电子时钟设计程序的概述。
实际的程序设计过程中,还需要考虑到各个模块之间的交互、错误处理、电源管理以及代码的优化等细节问题。
具体的程序实现可以根据具体需求和硬件平台的差异进行适当的修改和扩展。
用51单片机和1602液晶做的数字钟
用51单片机和1602液晶做的数字钟数字钟是人们日常生活中常见的时间显示设备,它能够精确显示当前的时间,并且兼具简约和实用性。
本文将介绍使用51单片机和1602液晶屏幕制作自己的数字钟的方法。
所需材料在开始制作之前,我们需要准备以下材料: - 51单片机开发板 - 1602液晶屏幕 - 数字时钟芯片RTC(Real-Time Clock) - 面包板和导线 - 电阻和电容 - 编程器和烧录器硬件连接首先,我们需要将51单片机、1602液晶屏幕和RTC芯片连接起来。
根据硬件接口的定义和引脚功能的规定,我们可以进行以下连接: - 将51单片机的VCC 引脚连接到1602液晶屏幕的VCC引脚,用于提供电源。
- 将51单片机的GND引脚连接到1602液晶屏幕的GND引脚,用于地线连接。
- 将51单片机的P0口连接到1602液晶屏幕的数据线D0-D7,用于数据传输。
- 将51单片机的P2口连接到1602液晶屏幕的RS引脚,用于选择数据和命令传输。
- 将51单片机的P3口连接到1602液晶屏幕的EN引脚,用于启用LCD。
此外,还需要将RTC芯片连接到51单片机上,以实现时间的准确显示。
具体的连接方式可以参考RTC芯片的规格说明书。
软件编程完成硬件连接后,我们需要进行软件编程,以便控制51单片机、1602液晶屏幕和RTC芯片的功能。
初始化首先,我们需要对51单片机和1602液晶屏幕进行初始化设置。
这包括设置引脚的功能模式、初始化1602液晶屏幕的显示模式和清空显示区域。
读取时间接下来,我们需要通过RTC芯片来读取当前的时间。
这通常包括读取RTC芯片存储的年、月、日、时、分和秒的数据。
显示时间读取时间后,我们可以将其显示在1602液晶屏幕上。
这可以通过更新特定的LCD显示区域来实现。
我们可以在指定的位置、特定的行和列上显示时间。
更新时间为了实现实时的时间显示,我们需要定期更新显示的时间。
可以使用定时器中断来定期更新时间,并根据需要刷新液晶屏幕上的显示。
单片机max7219时钟程序
/***************时钟采用定时中断方式,50MS一次******完整可用,硬件实验通过**********************/#include <reg51.H>#include "type.h"#include "max7219.h"#include "counter.h"/**************************************************************定时器0初始化***************************************************************/void Init_Timer0(void){TMOD=0x01;TH0=-(50000/256);TL0=-(50000%256);ET0=1;TR0=1;EA=1;Init_Max7219();}/***************************************************************定时器0中断函数****************************************************************/void Interrupt_Time0(void) interrupt 1{TH0=-(50000/256);TL0=-(50000%256);m++;}/**************************************************************延时函数***************************************************************/void Delay(uint16 k){uint16 data i,j;for(i=0;i<k;i++){for(j=0;j<121;j++);}}/**************************************************************按键扫描函数***************************************************************/uint8 Scan_Key(void){uint8 temp;P3=0x3f;temp=P3;if(temp!=0x3f){Delay(20);temp=P3;if(temp!=0x3f)return temp;}return 0x3f;}/****************************************************************主函数*****************************************************************/ void main(void){uint8 Key_Flag;Init_Timer0();while(1){Counter();Key_Flag=Scan_Key();switch(Key_Flag){case 0x3b:if(min++>59)min=0;Delay(300);Write_Max7219(DIG_6,min%10);Write_Max7219(DIG_5,min/10);break;case 0x37:if(hour++>23)hour=0;Delay(300);Write_Max7219(DIG_4,hour%10);Write_Max7219(DIG_3,hour/10);break;case 0x2f:if(week++>7)week=1 ;Delay(300);Write_Max7219(DIG_1,week%10);break;default: break;}}}Max7219.h:#ifndef _MAX7219_H_#define _MAX7219_H_/*********************************************************引脚位定义**********************************************************/sbit LOAD=P1^2; //MAX7219 Load-Data Input: rising edge pin 12 sbit DIN=P1^1; //MAX7219 Serial-Data Input: rising edge pin 1 sbit CLK=P1^0; //MAX7219/****************************************************MAX7219 宏定义*****************************************************/#define REG_NO_OP 0x00 // 定义空操作#define DIG_1 0x01 // 定义数码管1#define DIG_2 0x02 // 定义数码管2#define DIG_3 0x03 // 定义数码管3#define DIG_4 0x04 // 定义数码管4#define DIG_5 0x05 // 定义数码管5#define DIG_6 0x06 // 定义数码管6#define DIG_7 0x07 // 定义数码管7#define DIG_8 0x08 // 定义数码管8#define DECODE_MODE 0x09#define INTENSITY 0x0A#define SCAN_LIMIT 0x0B#define SHUT_DOWN 0x0C#define DISPLAY_TEST 0x0F/***********************************************************MAX7210函数声明************************************************************/void Write_Max7219_byte(unsigned char temp);//write max7219 a bytevoid Write_Max7219(unsigned char address,unsigned char dat);//write max7219 command and datavoid Init_Max7219(void);//Initize max7219/************************************************************MAX7219地址、数据写入函数子程序*************************************************************/void Write_Max7219_byte(unsigned char temp){uint8 i;for (i=0;i<8;i++){CLK=0;DIN=(bit)(temp&0x80);temp<<=1;CLK=1;}}/*************************************************************MAX7219地址、数据写入**************************************************************/void Write_Max7219(unsigned char address,unsigned char dat){LOAD=0;Write_Max7219_byte(address);Write_Max7219_byte(dat);LOAD=1;}/**************************************************************MAX7219初始化***************************************************************/void Init_Max7219(void){Write_Max7219(SHUT_DOWN, 0x01);Write_Max7219(DISPLAY_TEST, 0x00);Write_Max7219(DECODE_MODE, 0xff);Write_Max7219(SCAN_LIMIT, 0x07); //SCAN LIMIT 0~7 0xX0~0xX7 Write_Max7219(INTENSITY, 0x04);Write_Max7219(DIG_1,0x01);Write_Max7219(DIG_4,0x02);Write_Max7219(DIG_5,0x02);Write_Max7219(DIG_6,0x07);Write_Max7219(DIG_8,0x01);}#endif/*************************************counter.h:**************************************/#ifndef _COUNTER_H_#define _COUNTER_H_/***************************************************************计数、数码管赋值函数****************************************************************/ uint8 m,sec,min,hour,week=1;void Counter(void){if(m >= 20){m =0;sec++;Write_Max7219(DIG_8,sec%10);Write_Max7219(DIG_7,sec/10);}if(sec==60){sec=0;min++;Write_Max7219(DIG_6,min%10);Write_Max7219(DIG_5,min/10);if(min==60){min=0;hour++;Write_Max7219(DIG_4,hour%10);Write_Max7219(DIG_3,hour/10);if(hour==24){hour=0;week++;Write_Max7219(DIG_1,week%10);}}}if(week>7){week=1;}}#endiftype.h:#ifndef _TYPE_H_#define _TYPE_H_typedef unsigned char uint8; typedef unsigned int uint16; typedef unsigned long uint32; typedef char int8;typedef int int16;typedef long int32;#endif。
简单的51单片机时钟程序
简单的51单片机时钟程序,可以通过按键来设置时间,按键可以自己更改。
#include<reg52.h>#define uint unsigned int#define uchar unsigned char#define tt 46080 //设置时间间隔,对应11.0592MHZ的晶振uchar code table[]="Happy every day!";uchar code table1[]="00:00:00";uchar num,hh,mm,ss,t,s1num=0;sbit en=P3^4;sbit rs=P3^5;sbit rw=P3^6;sbit s1=P3^0;sbit s2=P3^1;sbit s3=P3^2;//按键所用的端口sbit s4=P3^3;void delay(uint z){uint x,y;for(x=z;x>0;x--)for(y=110;y>0;y--); //大约是1ms,因为单片机的时钟周期为11.0592mhz。
}void write_com(uchar com){rs=0; //指令P0=com; //写指令函数delay(1);en=1;delay(1);en=0;}void write_data(uchar dat){rs=1; //数据P0=dat; //写指令函数delay(1);en=1;delay(1);en=0;}void init(){en=0; //初始时使能为0rw=0;write_com(0x38); //显示屏模式设置为1602方案write_com(0x0c);write_com(0x06); //显示开关/光标设置write_com(0x01); //清屏write_com(0x80); //指针置零for(num=0;num<16;num++)write_data(table[num]);write_com(0xc3);for(num=0;num<8;num++)write_data(table1[num]);}void dingshi(){TMOD=0x01; //确定定时器工作模式(定时模式)TH0=(65536-tt)/256; //赋初值为tt微秒TL0=(65536-tt)%256; //不赋值时默认其值是0EA=1; //开总中断ET0=1; //开定时器0中断// IE=0x82; //总线写法TR0=1; //启动定时器0 总线TCON=0x10;}void shuanxin(uchar add,uchar date){uchar shi,ge;write_com(0xc3+add); //指针指向shi=date/10;ge=date%10;write_data(0x30+shi);write_data(0x30+ge); //指针自动后移,故不必再写指针位置}/***************借助蜂鸣器接地起作用***************/ void keyscan(){if(s1==0){delay(5);if(s1==0){s1num++;while(!s1);if(s1num==1){TR0=0; //时钟停止运行write_com(0xca); //指针指向sswrite_com(0x0f); //光标闪烁}if(s1num==2){write_com(0xc7); //指针指向mmwrite_com(0x0f);}if(s1num==3){write_com(0xc4); //指针指向hhwrite_com(0x0f);}if(s1num==4){s1num=0;TR0=1; //时钟运行write_com(0x0c); //取消闪烁}}}/***************调节时间****************/if(s1num!=0) //目的是使s1按下的前提才起作用{if(s2==0){delay(5);if(s2==0){while(!s2); //松手检测,松手后方可向下执行if(s1num==1){ss++;if(ss==60)ss=0;shuanxin(6,ss);write_com(0xca);}if(s1num==2){mm++;if(mm==60)mm=0;shuanxin(3,mm);write_com(0xc7);}{hh++;if(hh==24)hh=0;shuanxin(0,hh);write_com(0xc4);}}}}if(s1num!=0) //s1按下的前提才起作用{if(s3==0){delay(5);if(s3==0){while(!s3);if(s1num==1){ss--;ss=59;shuanxin(6,ss);write_com(0xca);}if(s1num==2){mm--;if(mm==-1)mm=59;shuanxin(3,mm);write_com(0xc7);}if(s1num==3){hh--;if(hh==-1)hh=23;shuanxin(0,hh);write_com(0xc4);}}}}if(s1num!=0) //s1按下的前提才起作用{if(s4==0){delay(5);if(s4==0){while(!s4);if(s1num==1){ss=0;shuanxin(6,ss);write_com(0xca);}if(s1num==2){mm=0;shuanxin(3,mm);write_com(0xc7);}if(s1num==3){hh=0;shuanxin(0,hh);write_com(0xc4);}}}}}void main(){init();dingshi();while(1){keyscan();if(t==20){P1=P1-1;t=0;ss++;if(ss==60){ss=0;mm++;if(mm==60){mm=0;hh++;if(hh==24){hh=0;}shuanxin(0,hh);}shuanxin(3,mm);}shuanxin(6,ss);}}}void time0() interrupt 1{TH0=(65536-tt)/256; //不赋值时默认其值是0 TL0=(65536-tt)%256;t++;}。
单片机汇编程序51电子时钟.doc
单片机汇编程序 51电子时钟电子钟设计实验报告一)实验目的:1、进一步掌握定时器的使用和编程方法。
2、进一步掌握中断处理程序的编程方法。
3、进一步掌握数码显示电路的驱动方法。
4、进一步掌握键盘电路的驱动方法。
5、进一步掌握软件数据处理的方法。
二)内容要求:1、利用CPU的定时器和数码显示电路,设计一个电子时钟。
格式如下:XX XX XX 由左向右分别为:时、分、秒。
2、电子时钟有秒表功能。
3、并能用键盘调整时钟时间。
4、电子时钟能整点报时、整点对时功能。
5、能设定电子时钟的闹铃。
三)主要元件:电阻4.7K 10个 2K 1个四位共阳数码管1个二位共阳数码管1个按钮开关4个万用板(中板)1个 9012PNP 7个排线排阵若干电线一捆蜂鸣器1个最小系统一个四)系统说明:按P1.0键,如果按下的时间小于1秒进入省电模式(数码管不显示,开T0计时器),如果按下的时间大于1秒则进入时间调整.。
在时间调整状态:再按P1.0,如果按下时间大于0.5秒转调小时状态,按下时间小于0.5秒加1分钟操作。
在小时调整状态再按P1.0键,如果按下时间大于0.5秒退出时间调整,如果按下时间小于0.5秒加1小时操作。
按P1.1键,进入闹铃调分状态,按P1.2分加1,按P1.0分减1。
若再按P1.3,则进入调整状态,按P1.2时加1,按P1.0分时。
按P1.1键,闹铃有效,显示式样变为00:00:—0;再按P1.1键,闹铃无效,显示式样变为00:00:—。
按P1.3键,调整闹钟时间结束。
按P1.2键,进入秒表计时功能,按P1.2键暂停或清零,按P1.1键退出秒表回到时钟状态。
而且本系统还有整点报时功能,以及按键伴有声音提示。
五)程序流程图:开始 TO中断初始化保护现场进入功能调用显示定时初值校正程序子程序N Y键按下, 1S到,Y N加1S处理整点到NY恢复现场,中断返回按时间鸣叫次数主程序流程图 T0中断计时程序流程图T1中断保护现场T1中断服务程序流程图秒表/闪烁,时钟调时闪烁加10MS处理闪烁处理恢复现场,中断返回六)电路图七)程序清单:中断入口程序 ;; DISPFIRST EQU 30H BELL EQU P1.4CONBS EQU 2FHOUTPX EQU P2 ;P2位选OUTPY EQU P0 ;P0段选INP0 BIT P1.0INP1 BIT P1.1INP2 BIT P1.2ORG 0000H ;程序执行开始地址LJMP START ;跳到标号START执行ORG 0003H ;外中断0中断程序入口RETI ;外中断0中断返回ORG 000BH ;定时器T0中断程序入口LJMP INTT0 ;跳至INTTO执行ORG 0013H ;外中断1中断程序入口RETI ;外中断1中断返回ORG 001BH ;定时器T1中断程序入口LJMP INTT1 ;跳至INTT1执行ORG 0023H ;串行中断程序入口地址RETI ;串行中断程序返回;QQQQ:MOV A,#10HMOV B,79HMUL ABADD A,78HMOV CONBS,ABSLOOP:LCALL DS20MSLCALL DL1SLCALL DL1SLCALL DL1SDJNZ CONBS,BSLOOPCLR 08HAJMP START;; 主程序 ;;START:MOV R0,#00H ;清70H-7AH共11个内存单元MOV R7,#80H ;CLEARDISP: MOV @R0,#00H ;INC R0 ;DJNZ R7,CLEARDISP ;MOV 20H,#00H ;清20H(标志用)MOV 7AH,#0AH ;放入"熄灭符"数据MOV TMOD,#11H ;设T0、T1为16位定时器MOV TL0,#0B0H ;50MS定时初值(T0计时用) MOV TH0,#3CH ;50MS定时初值MOV TL1,#0B0H ;50MS定时初值(T1闪烁定时用) MOV TH1,#3CH ;50MS定时初值SETB EA ;总中断开放SETB ET0 ;允许T0中断SETB TR0 ;开启T0定时器MOV R4,#14H ;1秒定时用初值(50MS×20)MOV DISPFIRST ,#70HSTART1: LCALL DISPLAY ;调用显示子程序JNB INP0,SETMM1 ;P1.0口为0时转时间调整程序JNB INP1,FUNSS ; 秒表功能,P1.1按键调时时作减1加能JNB INP2,FUNPT ;STOP,PUSE,CLRJNB P1.3,TSFUNSJMP START1 ;P1.0口为1时跳回START1SETMM1: LJMP SETMM ;转到时间调整程序SETMM FUNSS: LCALL DS20MSJB INP1,START1WAIT11: JNB INP1,WAIT11CPL 03HMOV DISPFIRST,#00H :显示秒表数据单元MOV 70H,#00HMOV 71H,#00HMOV 76H,#00HMOV 77H,#00HMOV 78H,#00HMOV 79H,#00HAJMP START1FUNPT: LCALL DS20MSJB INP2,START1WAIT22: JNB INP2,WAIT21CLR ET0CLR TR0WAIT33: JB INP2,WAIT31 LCALL DS20MSJB INP2,WAIT33WAIT66: JNB INP2,WAIT61 MOV R0,#70H ;清70H-79H共10 个内存单元MOV R7,#0AH ;CLEARP: MOV @R0,#00H ;INC R0 ;DJNZ R7,CLEARP ;WAIT44: JB INP2,WAIT41 LCALL DS20MSJB INP2,WAIT44WAIT55: JNB INP2,WAIT51 SETB ET0SETB TR0AJMP START1WAIT21: LCALL DISPLAY AJMP WAIT22WAIT31: LCALL DISPLAY AJMP WAIT33WAIT41: LCALL DISPLAYAJMP WAIT44WAIT51: LCALL DISPLAYAJMP WAIT55WAIT61: LCALL DISPLAYAJMP WAIT66 TSFUN:LCALL DS20MSWAIT113:JNB P1.3,WAIT113JB 05H,CLOSESPMOV DISPFIRST,#50HMOV 50H,#0CHMOV 51H,#0AHDSWAIT:SETB EALCALL DISPLAYJNB P1.2,DSFINCJNB P1.0,DSDECJNB P1.3,DSSFU AJMP DSWAITCLOSESP:CLR 05HCLR BELLAJMP START1 DSSFU:LCALL DS20MS JB P1.3,DSWAIT LJMP DSSFUNN DSFINC:LCALL DS20MS JB P1.2,DSWAIT DSWAIT12:LCALL DISPLAY JNB P1.2,DSWAIT12 CLR EAMOV R0,#53H LCALL ADD1MOV A,R3CLR CCJNE A,#60H,ADDHH22ADDHH22:JC DSWAITACALL CLR0AJMP DSWAITDSDEC:LCALL DS20MSLCALL DISPLAYDSWAITEE:LCALL DISPLAYJNB P1.0,DSWAITEECLR EAMOV R0,#53HLCALL SUB1LJMP DSWAIT ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; 1秒计时程序 ;; ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;T0中断服务程序INTT0: PUSH ACC ;累加器入栈保护PUSH PSW ;状态字入栈保护CLR ET0 ;关T0中断允许CLR TR0 ;关闭定时器T0JB 03H,FSSMOV A,#0B7H ;中断响应时间同步修正ADD A,TL0 ;低8位初值修正MOV TL0,A ;重装初值(低8位修正值)MOV A,#3CH ;高8位初值修正ADDC A,TH0 ;MOV TH0,A ;重装初值(高8位修正值)SETB TR0 ;开启定时器T0DJNZ R4, OUTT0 ;20次中断未到中断退出ADDSS: MOV R4,#14H ;20次中断到(1秒)重赋初值MOV R0,#71H ;指向秒计时单元(71H-72H)ACALL ADD1 ;调用加1程序(加1秒操作)MOV A,R3 ;秒数据放入A(R3为2位十进制数组合)CLR C ;清进位标志CJNE A,#60H,ADDMM ;ADDMM: JC OUTT0 ;小于60秒时中断退出ACALL CLR0 ;大于或等于60秒时对秒计时单元清0 MOV R0,#77H ;指向分计时单元(76H-77H)ACALL ADD1 ;分计时单元加1分钟MOV A,R3 ;分数据放入ACLR C ;清进位标志CJNE A,#60H,ADDHH ;ADDHH: JC OUTT0 ;小于60分时中断退出ACALL CLR0 ;大于或等于60分时分计时单元清0MOV R0,#79H ;指向小时计时单元(78H-79H)ACALL ADD1 ;小时计时单元加1小时MOV A,R3 ;时数据放入ACLR C ;清进位标志JB 03H,OUTT0 ;秒表时最大数为99CJNE A,#24H,HOUR ;HOUR: JC OUTT0 ;小于24小时中断退出ACALL CLR0 ;大于或等于24小时小时计时单元清0OUTT0: MOV 72H,76H ;中断退出时将分、时计时单元数据移MOV 73H,77H ;入对应显示单元MOV 74H,78H ;MOV 75H,79H ;LCALL BAOJPOP PSW ;恢复状态字(出栈)POP ACC ;恢复累加器SETB ET0 ;开放T0中断RETI ;中断返回 ;秒表计时程序(10MS加1),低2位为0.1、0.01秒,中间2位为秒,最高位为分。
基于μPD78F0485单片机实验板的实时时钟程序设计与实现讲解
基于μPD78F0485单片机实验板的实时时钟程序设计与实现讲解实时时钟(Real-Time Clock,简称RTC)是一种能够实时记录时间的设备。
在嵌入式系统中,RTC广泛应用于各种需要时间标记的场景,比如日历、定时任务等等。
本文将基于μPD78F0485单片机实验板,讲解实时时钟程序的设计与实现。
一、硬件连接首先,我们需要正确连接硬件。
μPD78F0485单片机实验板上有一个RTC芯片DS1302,它能够实现实时时钟功能。
将μPD78F0485与DS1302芯片通过引脚连接起来即可。
具体的连接方式可以参照单片机实验板的电路图。
二、软件设计1.寄存器配置首先,我们需要配置单片机的相关寄存器,使其能够与RTC芯片进行通信。
具体操作如下:(1)配置I/O口:将单片机的SDA引脚和SCL引脚设置为输出模式。
(2)配置RTC芯片寄存器:使用I2C总线协议与RTC芯片通信,设置RTC芯片的相关寄存器,比如设置时间、日期、闹钟等。
2.时钟读取与显示接下来,我们需要编写代码读取RTC芯片的时钟数据,并将其显示出来。
具体操作如下:(1)使用I2C总线协议读取RTC芯片的时钟寄存器,包括秒、分、时、日、月、周、年等。
(2)将读取到的时钟数据存储在相应的变量中。
(3)将时钟数据通过数码管、LCD等显示设备进行显示。
3.时钟设置除了读取时钟数据外,我们还需要能够设置RTC芯片的时钟。
具体操作如下:(1)通过按键或者其他输入方式,获取用户设定的时间、日期等数据。
(2)使用I2C总线协议将用户设定的时钟数据写入到RTC芯片的相应寄存器中。
(3)将设定的时钟数据通过数码管、LCD等显示设备进行显示。
4.定时中断为了实时更新时钟数据,我们可以使用定时中断的方式。
具体操作如下:(1)配置定时器:设置定时器的工作模式、计数值等参数。
(2)启动定时器:使定时器开始工作。
(3)在定时中断中,读取RTC芯片的时钟数据,并更新显示。
5.闹钟功能RTC芯片通常也会具备闹钟功能,我们可以通过设置RTC芯片的闹钟寄存器,实现闹钟功能。
基于单片机C语言电子时钟完整版(闹钟,整点报时)
《单片机技术》课程设计说明书数字电子钟系、部:电气与信息工程学院学生姓名:指导教师:职称专业:班级:完成时间:2013-06-07摘要电子钟在生活中应用非常广泛,而一种简单方便的数字电子钟则更能受到人们的欢迎。
所以设计一个简易数字电子钟很有必要。
本电子钟采用ATMEL公司的AT89S52单片机为核心,使用12MHz 晶振与单片机AT89S52 相连接,通过软件编程的方法实现以24小时为一个周期,同时8位7段LED数码管(两个四位一体数码管)显示小时、分钟和秒的要求,并在计时过程中具有定时功能,当时间到达提前定好的时间进行蜂鸣报时。
该电子钟设有四个按键KEY1、KEY2、KEY3、KEY4和KEU5键,进行相应的操作就可实现校时、定时、复位功能。
具有时间显示、整点报时、校正等功能。
走时准确、显示直观、运行稳定等优点。
具有极高的推广应用价值。
关键词电子钟;AT89S52;硬件设计;软件设计ABSTRACTClock is widely used in life, and a simple digital clock is more welcomed by people. So to design a simple digital electronic clock is necessary.The system use a single chip AT89S52 of ATMEL’s as its core to control The crystal oscillator clock,using of E-12MHZ is connected with the microcontroller AT89S52, through the software programming method to achieve a 24-hour cycle, and eight 7-segment LED digital tube (two four in one digital tube) displays hours, minutes and seconds requirements, and in the time course of a timing function, when the time arrived ahead of scheduled time to buzz a good timekeeping. The clock has four buttons KEY1, KEY2, KEY3,KEY4 and KEY5 key, and make the appropriate action can be achieved when the school, timing, reset. With a time display, alarm clock settings, timer function, corrective action. Accurate travel time, display and intuitive, precision, stability, and so on. With a high application value.Key words Electronic clock;;AT89S52;Hardware Design;Software Design目录1设计课题任务、功能要求说明及方案介绍 (1)1.1设计课题任务 (1)1.2功能要求说明 (1)1.3设计总体方案介绍及原理说明 (1)2设计课题硬件系统的设计 (2)2.1设计课题硬件系统各模块功能简要介绍 (2)2.2设计课题电路原理图、PCB图、元器件布局图 (2)2.3设计课题元器件清单 (5)3设计课题软件系统的设计 (6)3.1设计课题使用单片机资源的情况 (6)3.2设计课题软件系统各模块功能简要介绍 (6)3.3设计课题软件系统程序流程框图 (6)3.4设计课题软件系统程序清单 (10)4设计结论、仿真结果、误差分析、教学建议 (21)4.1设计课题的设计结论及使用说明 (21)4.2设计课题的仿真结果 (21)4.3设计课题的误差分析 (22)4.4设计体会 (22)4.5教学建议 (22)结束语 (23)参考文献 (24)致谢 (25)附录 (26)1 设计课题任务、功能要求说明及方案介绍1.1 设计课题任务设计一个具有特定功能的电子钟。
stm32单片机小时计时程序代码
stm32单片机小时计时程序代码stm32单片机小时计时程序是一种基于stm32单片机的软件程序,用于实现小时计时的功能。
在本文中,我们将详细介绍如何编写这样一个程序,以及程序的实现原理和使用方法。
我们需要了解stm32单片机的基本知识。
stm32单片机是一种高性能、低功耗的嵌入式微控制器,具有丰富的外设和强大的计算能力。
它广泛应用于各种电子设备中,包括计时器、时钟、计步器等。
在编写小时计时程序之前,我们需要先了解stm32单片机的时钟模块。
时钟模块是单片机中非常重要的一个模块,它提供了系统时钟和外设时钟,控制单片机的时序和节拍。
在小时计时程序中,我们需要使用时钟模块来计算时间的流逝。
接下来,我们开始编写小时计时程序。
首先,我们需要初始化时钟模块。
在stm32单片机中,时钟模块的初始化包括设置系统时钟源、设置时钟分频器等。
我们可以根据实际需求选择适合的时钟源和分频系数。
初始化完时钟模块后,我们需要设置计时器。
在小时计时程序中,我们可以使用定时器模块来实现计时功能。
定时器模块可以通过配置计数器的初值和计数器的溢出时间来实现定时功能。
我们可以根据实际需求选择适合的定时器模块和计数器参数。
在设置计时器后,我们需要编写中断服务函数。
中断服务函数是在计数器溢出时自动调用的函数,用于处理计时器溢出事件。
在小时计时程序中,我们可以在中断服务函数中将计数器的值加1,以实现计时功能。
编写完中断服务函数后,我们需要设置中断优先级和使能中断。
在stm32单片机中,每个中断都有一个优先级,用于确定中断的响应顺序。
我们可以根据实际需求设置中断优先级,并使能中断,以保证中断能够正常工作。
我们可以在主函数中调用计时器模块,并通过串口或LCD等外设输出计时结果。
在小时计时程序中,我们可以使用串口模块将计时结果输出到电脑上进行显示,也可以使用LCD模块将计时结果显示在液晶屏上。
stm32单片机小时计时程序是一种基于stm32单片机的软件程序,用于实现小时计时的功能。
单片机中时钟系统设计与优化方案
单片机中时钟系统设计与优化方案摘要:时钟系统是单片机中的重要组成部分,对单片机的正常工作起着至关重要的作用。
本文将介绍单片机中时钟系统的设计原理、时钟系统的分类、常用的时钟源以及时钟系统的优化方案。
一、设计原理时钟系统是单片机中用于计时和同步各个模块工作的重要部分。
单片机中的时钟系统通常采用晶振和时钟电路来提供精确的时钟信号。
晶振通过产生稳定的振荡信号来驱动时钟电路工作。
时钟电路则通过将晶振振荡信号进行二次处理,以获取最终的时钟信号。
二、时钟系统的分类根据时钟源的不同,单片机中的时钟系统可以分为外部时钟源和内部时钟源。
1. 外部时钟源外部时钟源通常采用晶振作为时钟信号的参考源。
晶振具有稳定性好、频率准确的特点,能够为单片机提供可靠的时钟信号。
根据振荡频率的不同,晶振可以分为常用的4MHz、8MHz、12MHz等。
外部时钟源的优点是精度高,但需要外部接口和占用额外的单片机引脚。
2. 内部时钟源内部时钟源通常由单片机内部的时钟电路产生,不需要外部振荡器。
内部时钟源的优点是结构简单、占用引脚少,适用于资源有限的应用。
然而,由于工艺制程的限制,内部时钟源的精度较低,频率相对不稳定。
三、常用的时钟源根据单片机的类型和应用需求的不同,常用的时钟源主要包括晶振、RC振荡器和内部高频振荡器。
1. 晶振晶振是最常用的外部时钟源,具有稳定性好、精度高的优点。
在设计时,需要根据单片机的工作频率和性能要求选择适合的晶振频率。
晶振的选择应考虑到单片机和外设的时钟要求。
2. RC振荡器RC振荡器是一种使用电阻和电容构成的振荡电路,由于结构简单成本低,被广泛用于一些低成本和低功耗的应用。
然而,由于电阻和电容制造工艺的限制,RC振荡器相对于晶振的稳定性和精度较差。
3. 内部高频振荡器内部高频振荡器是一种由单片机内部电路产生的时钟源,不需要外部元件。
内部高频振荡器具有结构简单、占用少量资源的优点,适用于一些对精确时钟要求不高的应用。
单片机c 语言编程时钟及闹钟程序
一·功能1、计时功能,数码管显示数值从00:00:00--23:59:59循环替换,且周期时间与实际时间吻合。
2、定时闹钟功能,按下“定时”键后,可以设定所需要的任意时间,定时完成后,当到达设定时间后,蜂鸣器发声。
3、调整时间功能,根据此项功能可将时钟调至正确的时间。
4、查看定时功能,当设定完成后可以查看上次定时的时间,且能在此基础上进行重新定时。
二·按键说明设定键:按一次开始设定时间,并将设定过程显示在数码管上。
若未按此键,则其他按键无效。
设定过程中,再按一次此键,定时结束,数码管显示返回时钟。
当第一次按下设定键时,显示值为00:00:00,在此基础上调节定时时间。
第一次设定完成后,以后再按设定键,显示初值则为上次定时的时间。
确定键:在定时过程中按下此键,则保留当前设定的时间为定时时间。
若定时过程未按此键,定时无效。
向上键:按下此键,使得当前设定值在现有数值上加一,当加至满位时,当前值变为零。
向下键:按下此键,使得当前设定值在现有数值上减一,当减至零时,当前值变为满位减一。
向左键:按下此键,使得设定值移向左边一位,若已经在最左边,则移至最右边。
向右键:按下此键,使得设定值移向右边一位,若已经在最右边,则移至最左边。
三·具体操作演示(一)·定时及查看定时演示1.仿真开始。
如图:2、按键如图:3、按下设定键,开始设定时间,如图:4、如图所示,当前设定时位。
按向上键,使数值加一。
5、按下向右键,设定位移至分位。
6、按下向下键,使数字减一。
7、按确定键,确定当前设定的时间。
再按设定键,退出定时,开始时钟显示。
8、设定完成后按设定键,显示前次设定值,可在此基础上重新设定,也可直接再按设定键推出。
9、当时钟运行到设定时间时,蜂鸣器发声。
(二)·调整时间演示1、计时开始。
2、按照定时的方法开始设定时间,使其显示20:10:09。
3、调整到正确时间后,按下确定键不放,同时再按一下设定键,将目前设定值送入时钟,使其开始从设定值计时。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录第一章设计背景 (1)第二章课程设计说明 (2)2.1 课程设计目的 (2)2.2 课程设计要求 (3)第三章系统方案与总体结构 (3)第四章数字时钟硬件构成 (4)4.1 数字时钟设计概图 (4)4.2 选用芯片简介 (4)4.2.1 80C51简介 (4)4.2.2 8155简介 (9)4.2.3 3-8线译码器74LS138简介 (11)4.2.4 LED数码管简介 (13)4.3 数字时钟工作原理图 (15)第五章数字时钟软件设计 (17)第六章总结 (19)第一章设计背景20世纪末,电子技术获得了飞速的发展,在其推动下,现代电子产品几乎渗透了社会的各个领域,有力地推动了社会生产力的发展和社会信息化程度的提高,同时也使现代电子产品性能进一步提高,产品更新换代的节奏也越来越快。
时间对人们来说总是那么宝贵,工作的忙碌性和繁杂性容易使人忘记当前的时间。
忘记了要做的事情,当事情不是很重要的时候,这种遗忘无伤大雅。
但是,一旦重要事情,一时的耽误可能酿成大祸。
目前,单片机正朝着高性能和多品种方向发展趋势将是进一步向着CMOS化、低功耗、小体积、大容量、高性能、低价格和外围电路内装化等几个方面发展。
下面是单片机的主要发展趋势。
单片机应用的重要意义还在于,它从根本上改变了传统的控制系统设计思想和设计方法。
从前必须由模拟电路或数字电路实现的大部分功能,现在已能用单片机通过软件方法来实现了。
这种软件代替硬件的控制技术也称为微控制技术,是传统控制技术的一次革命。
单片机模块中最常见的是数字时钟,数字时钟是一种用数字电路技术实现时、分、秒计时的装置,与机械式时钟相比具有更高的准确性和直观性,且无机械装置,具有更长的使用寿命,因此得到了广泛的使用。
数字时钟是采用数字电路实现对时、分、秒数字显示的计时装置,广泛用于个人家庭、车站、码头办公室等公共场所,成为人们日常生活中不可少的必需品,由于数字集成电路的发展和石英晶体振荡器的广泛应用,使得数字时钟的精度,远远超过老式钟表, 钟表的数字化给人们生产生活带来了极大的方便,而且大大地扩展了钟表原先的报时功能。
诸如定时自动报警、按时自动打铃、时间程序自动控制、定时广播、自动起闭路灯、定时开关烘箱、通断动力设备、甚至各种定时电气的自动启用等,所有这些,都是以钟表数字化为基础的。
因此,研究数字时钟及扩大其应用,有着非常现实的意义。
第二章课程设计说明2.1 课程设计目的课程设计是本课程教学中极为重要的实践性教学环节,它不但起着提高本课程教学质量、水平和检验学生对课程内容掌握程度的作用,而且还将起到从理论过渡到实践的桥梁作用。
因此,必须认真组织,周密布置,积极实施,以达到下述教学目的。
1.通过课程设计,使学生进一步巩固、深化和扩充在单片机原理及相关课程方面的基本知识、基本理论和基本技能,达到培养学生独立思考、分析和解决实际问题的能力。
2.通过课程设计,使学生养成严谨科学、严肃认真、一丝不苟和实事求是的工作作风,达到提高学生基本素质的目的。
3.通过课程设计,让学生独立完成利用单片机实现某一实际控制系统的基本设计工作,达到培养学生综合应用所学知识和实际查阅相关设计资料的能力的目的。
4.通过课程设计,使学生熟悉设计过程,了解设计步骤,掌握设计内容,达到培养学生设计电路、实现软件编程和编写设计说明书能力的目的,为学生今后从事相关方面的实际工作打下良好基础。
2.2 课程设计要求(1)根据设计课题的技术指标和给定条件,在教师指导下,能够独立而正确地进行方案论证和设计计算,要求概念清楚、方案合理、方法正确、步骤完整;(2)要求学生掌握单片机的设计内容、方法和步骤;(3)要求会查阅有关参考资料和手册等;(4)要求学会选择有关元件和参数;(5)要求学会绘制有关电路图和设计流程图;(6)要求学会编写设计说明书。
第三章系统方案与总体结构系统采用通用的80C51芯片,显示器为6个共阳极LED数码管,用1个74LS164芯片和一个8155I/O 扩展芯片驱动数码管(74LS164具有将串行信号变为并行信号),用3-8译码器74LS138的输出作为动态扫描时数码管的选通信号。
选用P0.0--P0.7作为显示数据值的输出,连接在8155的D0——D7输入端,8155的PB0和PB1连接到74LS164,而74LS164的并行输出连接到数码管,以保证数码管表示的时分秒同时显示。
时间以24小时为一个周期,数字时钟钟的格式为:XX XX XX,由左向右分别为:时、分、秒。
完成显示由秒加1,一直加1至59,再恢复为00;分加1,一直加1至59,再恢复00;时加1,一直加1至23,再恢复00。
第四章数字时钟硬件构成4.1 数字时钟框图设计图1 数字时钟框图4.2 选用芯片简介4.2.1 80C51简介虽然目前单片机的品种很多,但其中最具代表性的当属Intel公司的MCS-51单片机系列。
MCS-51以其典型的结构、完善的总线、SFR的集中管理模式、位操作系统和面向控制功能的丰富的指令系统,为单片机的发展奠定了良好的基础。
MCS-51系列的典型芯片是80C51(CHMOS型的8051)。
为此,众多的厂商都介入了以80C51为代表的8位单片机的发展,如Philips、Siemens(Infineon)、Dallas、ATMEL等公司,我们把这些公司生产的与80C51兼容的单片机统称为80C51系列。
特别是在近年来,80C51系列又有了许多发展,推出了一些新产品,主要是改善单片机的控制功能,如内部集成了高速I/O口、ADC、PWM、WDT等,以及低电压、微功耗、电磁兼容、串行扩展总线和控制网络总线性能等。
鉴于80C51系列在硬件方面的的广泛性、代表性和先进性以及指令系统的兼容性,可用其作为本教材的介绍对象;至于其他类型的单片机,在深入学习和掌握了80C51单片机之后再去学习已不是什么难事。
图2 80C51单片机管脚图单片机内部结构图为如图3所示:图3单片机内部结构图80C51单片机管脚说明VCC:供电电压。
GND:接地。
P0口:P0口为一个8位漏级开路双向I/O口,每脚可吸收8TTL门电流。
当P1口的管脚第一次写1时,被定义为高阻输入。
P0能够用于外部程序数据存储器,它可以被定义为数据/地址的第八位。
在FIASH编程时,P0口作为原码输入口,当FIASH进行校验时,P0输出原码,此时P0外部必须被拉高。
P1口:P1口是一个内部提供上拉电阻的8位双向I/O口,P1口缓冲器能接收输出4TTL门电流。
P1口管脚写入1后,被内部上拉为高,可用作输入,P1口被外部下拉为低电平时,将输出电流,这是由于内部上拉的缘故。
在FLASH编程和校验时,P1口作为第八位地址接收。
P2口:P2口为一个内部上拉电阻的8位双向I/O口,P2口缓冲器可接收,输出4个TTL门电流,当P2口被写“1”时,其管脚被内部上拉电阻拉高,且作为输入。
并因此作为输入时,P2口的管脚被外部拉低,将输出电流。
这是由于内部上拉的缘故。
P2口当用于外部程序存储器或16位地址外部数据存储器进行存取时,P2口输出地址的高八位。
在给出地址“1”时,它利用内部上拉优势,当对外部八位地址数据存储器进行读写时,P2口输出其特殊功能寄存器的内容。
P2口在FLASH编程和校验时接收高八位地址信号和控制信号。
P3口:P3口管脚是8个带内部上拉电阻的双向I/O口,可接收输出4个TTL 门电流。
当P3口写入“1”后,它们被内部上拉为高电平,并用作输入。
作为输入,由于外部下拉为低电平,P3口将输出电流(ILL)这是由于上拉的缘故。
P3口也可作为80C51的一些特殊功能口,如下所示:表1 管脚P3口表P0,P1,P2,P3口引脚图为如图4:图4 P0,P1,P2,P3口引角图其中我们用了P0口和P1口。
定时/计数器简介1.工作模式寄存器TMOD(89H)工作模式寄存器TMOD用于控制T0和T1的操作模式,TMOD中,低4位用于T0,高4位用于T1,如下所示:⑴门控位GATE。
GATE=0时,只要用软件使TR0或TR1置1就启动了定时器,而不管INT0或INT1的电平是高还是低。
GATE=1时,只有INT0或INT1管脚为高电平,而且由软件使TR0或TR1置1时,方能启动定时器工作。
⑵方式选择位C/T。
C/T=0时,为定时方式。
定时器对8051机器周期计数。
C/T=1时,为计数方式,计数器的输入为来自T0或T1的外部脉冲。
⑶操作模式控制位M1和M0。
M1和M0可形成4种编码,对应于定时器/计数器的4种操作模式。
如下所示:2.控制寄存器TCON(88H)定时器控制寄存器TCON除可字节寻址外,各位还可位寻址,TCON字位如下:⑴TF1是T1溢出标志位。
当T1溢出时由硬件自动使中断触发器TF1置1,并向CPU申请中断。
当CPU响应进入中断服务程序后,TF1又被硬件自动清0。
TF1也可以用软件清0。
⑵TF0是T0溢出标志位。
⑶TR1是T1运行控制位。
可用软件置1或清0来启动或关闭T1。
使TR1位置1后,定时器T1便开始计数。
⑷TR0是T0运行控制位。
⑸外部中断位。
低4位是外部中断位,他们是IE1,IT1,IE0,IT0,为外部中断INT1,INT0请求及请求方式控制位。
8051复位时,TCON的所有位被清0。
4.2.2 8155简介2.1 课程设计目的2.2 课程设计要求4.1 数字时钟框图设计4.2 选用芯片简介4.2.1 80C51简介4.2.2 8155简介8155引脚图及功能描述8155有40个引脚,采用双列直插封装,其引脚图和组成框图如下页图所示。
我们对8155的引脚分类说明如下:图5 8155管脚图地址/数据线AD0~AD7(8条):是低8位地址线和数据线的共用输入总线,常和51单片机的P0口相连,用于分时传送地址数据信息,当ALE=1时,传送的是地址。
I/O口总线(22条):PA0~PA7、PB0~PB7分别为A、B口线,用于和外设之间传递数据;PC0~PC5为C端口线,既可与外设传送数据,也可以作为A、B口的控制联络线。
a.控制寄存器格式如下D7 D6 D5 D4 D3 D2 D1 D0A口控制位,PA=1输出方式,PA=0输入方式B口控制位,PB=1输出方式,PB=0输入方式I/O 口方式PC2 PC1=00 方式111 方式201 方式310 方式4A口中断允许控制,“1”为允许,“0”为禁止B口中断允许控制,“1”为允许,“0”为禁止定时/计数方式控制TM2、TM1=00 空操作11 停止计数01 计数值减为1时停止10 启动计数器(3) 控制总线(8条):RESET:复位线,通常与单片机的复位端相连,复位后,8155的3个端口都为输入方式。