第二十章《数据的分析》单元测试题B卷(含答案)---

合集下载

人教版八年级下册《第二十章数据的分析》单元测试题含答案

 人教版八年级下册《第二十章数据的分析》单元测试题含答案

人教版八年级下册《第二十章数据的分析》单元测试题含答案一、选择题(每小题4分,共32分)1.某班在阳光体育活动中,测试了五位学生的“一分钟跳绳”成绩,得到五个各不相同的数据.在统计时,出现了一处错误:将最低成绩写得更低了,则计算结果不受影响的是( B )(A)平均数(B)中位数(C)方差 (D)极差2.一家鞋店在一段时间内销售了某种女鞋30双,各种尺码鞋的销售量如下表所示,你认为商家更应该关注鞋子尺码的( C ) 尺码22 22.5 23 23.5 24 24.5 25/cm销售量4 6 6 10 2 1 1/双(A)平均数(B)中位数(C)众数 (D)方差3.在光明中学组织的全校师生迎“五四”诗词大赛中,来自不同年级的25名参赛同学的得分情况如图所示.这些成绩的中位数和众数分别是( A )(A)96分,98分(B)97分,98分(C)98分,96分(D)97分,96分4.八(1)班一次数学测试的平均成绩为80分,男生平均成绩为82分,女生平均成绩为77分,则该班男生、女生人数之比为( D ) (A)1∶2 (B)2∶1(C)2∶3 (D)3∶25.某班七个兴趣小组人数分别为4,4,5,5,x,6,7,已知这组数据的平均数是5,则这组数据的众数和中位数分别是( A )(A)4,5 (B)4,4(C)5,4 (D)5,56.为适应新中考英语听力、口语机考,九年级甲、乙两位同学使用某手机软件进行英语听说练习并记录了40次的练习成绩.甲、乙两位同学的练习成绩统计结果如图所示.下列说法正确的是( A )(A)甲同学的练习成绩的中位数是38分(B)乙同学的练习成绩的众数是15分(C)甲同学的练习成绩比乙同学的练习成绩更稳定(D)甲同学的练习总成绩比乙同学的练习总成绩低7.某单位若干名职工参加普法知识竞赛,将成绩制成如图所示的扇形统计图和条形统计图,根据图中提供的信息,这些职工成绩的中位数和平均数分别是( D )(A)94分,96分 (B)96分,96分(C)94分,96.4分(D)96分,96.4分8.在一次男子马拉松长跑比赛中,随机抽取了10名选手,记录他们的成绩(所用的时间)如下:选手 1 2 3 4 5 6 7 8 9 10 时间129 136 140 145 146 148 154 158 165 175 (min)由此所得的以下推断不正确的是( C )(A)这组样本数据的平均数超过130(B)这组样本数据的中位数是147(C)在这次比赛中,估计成绩为130 min的选手的成绩会比平均成绩差(D)在这次比赛中,估计成绩为142 min的选手,会比一半以上的选手成绩要好二、填空题(每小题4分,共24分)9. 小刘和小李参加射击训练,各射击10次的平均成绩相同,如果他们射击成绩的方差分别是=0.6,=1.4,那么两人中射击成绩比较稳定的是小刘.10.春节期间,重庆某著名旅游景点成为热门景点,大量游客慕名前往,市旅游局统计了春节期间5天的游客数量,绘制了如图所示的折线统计图,则这五天游客数量的中位数为23.4万人.11.一组数据2.2,3.3,4.4,11.1,a.其中整数a是这组数据中的中位数,则这组数据的平均数是 5 .12.某学校为七年级600名新生定做校服,校服型号有小号、中号、大号、特大号四种,随机抽取了100名学生调查他们的身高,得到身高(单位:cm)频数分布表如下:型号身高(x/ cm) 人数(频数)小号145≤x<155 22中号155≤x<165 45估计全校七年级学生身高的平均数是161.6 cm.13.已知点(x1,y1),(x2,y2),(x3,y3)都在函数y=3x-7的图象上,若数据x1,x2,x3的方差为3,则另一组数据y1,y2,y3的方差为27 .14.为了比较两箱樱桃的个头大小,分别在两箱樱桃中随机抽出若干颗樱桃,统计其质量(单位:g)如下表:表1:甲箱樱桃抽检结果表2:乙箱樱桃的抽检结果从樱桃的大小及匀称角度看,更好的一箱是甲箱.三、解答题(共44分)15.(6分)成都公交508路总站设在一居民小区附近,为了了解高峰时段从总站乘车出行的人数,随机抽查了10个班次的乘车人数,结果如下:20 23 26 25 29 28 30 25 21 23(1)计算这10个班次乘车人数的平均数;(2)如果在高峰时段从总站共发车60个班次,根据上面的计算结果,估计在高峰时段从总站乘该路车出行的乘客共有多少人?解:(1)平均数是×(20+23+26+25+29+28+30+25+21+23)=25(人),所以这10个班次乘车人数的平均数是25人.(2)60×25=1 500(人),所以估计在高峰时段从总站乘该路车出行的乘客共有1 500人. 16.(6分)八(2)班组织了一次经典朗读比赛,甲、乙两队各10人的比赛成绩(10分制)如下表:甲7 8 9 7 10 10 9 10 10 10 乙10 8 7 9 8 10 10 9 10 9(1)甲队成绩的中位数是分,乙队成绩的众数是分;(2)计算乙队的平均成绩和方差.解:(1)把甲队的成绩从小到大排列为7,7,8,9,9,10,10,10,10,10,最中间两个数的平均数是(9+10)÷2=9.5(分),则中位数是9.5分;乙队成绩中10出现了4次,出现的次数最多,则乙队成绩的众数是10分.(2)乙队的平均成绩是×(10×4+8×2+7+9×3)=9(分),则方差是×[4×(10-9)2+2×(8-9)2+(7-9)2+3×(9-9)2]=1.17.(2019达州)(8分)随机抽取某小吃店一周的营业额(单位:元)如下表:星期一星期二星期三星期四星期五星期六星期日合计540 680 640 640 780 1 110 1 070 5 460 (1)分析数据,填空:这组数据的平均数是元,中位数是元,众数是元;(2)估计一个月的营业额(按30天计算):①星期一到星期五营业额相差不大,用这5天的平均数估算合适么? 答: (填“合适”或“不合适”).②选择一个你认为最合适的数据估算这个小吃店一个月的营业额. 解:(1)这组数据的平均数为=780(元),按照从小到大排列为540,640,640,680,780,1 070,1 110,中位数为最中间的数680元,众数为出现次数最多的数640元.(2)①因为在星期一至星期日的营业额中星期六,日的营业额明显高于其他五天的营业额,所以去掉星期六、日的营业额对平均数的影响较大,故用该店本星期星期一到星期五的日平均营业额估计当月的营业总额不合适;②用该店本星期一到星期日的日均营业额估计当月营业额,所以当月的营业额为30×780=23 400(元).18.(8分)如图,是交警在一个路口统计的某个时段来往车辆的车速(单位:km/h)(1)计算这些车的平均速度;(2)车速的众数是多少?(3)车速的中位数是多少?(4)若该路口限速65 km/h,即车速超过65 km/h为超速.据统计,该路口每天来往车辆约500辆,请估计每天会有多少辆车超速?解:(1)这些车的平均速度为=58.6(km/h).(2)60 km/h出现最多,所以车速的众数是60 km/h.(3)共有25个数据,最中间的数是第13个数据60 km/h,所以车速的中位数是60 km/h.(4)估计每天超速的车辆为×500=40(辆).19.(8分)某校在八年级抽取了50名女学生进行“一分钟仰卧起坐”测试,测试的情况绘制成表格如下表:个数16 22 25 28 29 30 35 37 40 42 45 46 人数 2 1 7 18 1 9 5 2 1 1 1 2 (1)通过计算算出这50名女学生进行“一分钟仰卧起坐”的平均数是,请写出这50名女学生进行“一分钟仰卧起坐”的众数和中位数,它们分别是、;(2)学校根据测试数据规定八年级女学生“一分钟仰卧起坐”的合格标准为28个,已知该校八年级有女生250名,试估计该校八年级女生“一分钟仰卧起坐”的合格人数是多少?解:(1)这50名女学生进行“一分钟仰卧起坐”的平均数是×(16×2+ 22+25×7+28×18+29+30×9+35×5+37×2+40+42+45+46×2)=30,众数为28,中位数为=28.(2)250×=200(人),所以估计该校八年级女生“一分钟仰卧起坐”的合格人数是200人.20.(8分)某市今年体育中考于5月18日开始,考试前,九(2)班的王茜和夏洁两位同学进行了8次 50 m短跑训练测试,她们的成绩分别如下表:(单位:秒)第1 次第2次第3次第4次第5次第6次第7次第8次王茜8.4 8.7 8.0 8.4 8.2 8.3 8.1 8.3 夏洁8.7 8.3 8.6 7.9 8.0 8.4 8.2 8.3(1)王茜和夏洁这8次训练的平均成绩分别是多少?(2)按规定,女同学50 m短跑达到8.3秒就可得到该项目满分15分,如果按她们目前的水平参加考试,你认为王茜和夏洁在该项目上谁得15分的可能性更大些?请说明理由.解:(1)王茜的平均成绩为=×(8.4+8.7+8.0+8.4+8.2+8.3+8.1+8.3)=8.3(秒),夏洁的平均成绩为=×(8.7+8.3+8.6+7.9+8.0+8.4+8.2+8.3)=8.3(秒).(2)王茜得15分的可能性更大些,王茜成绩的方差为=×[(8.4-8.3)2+(8.7-8.3)2+(8.0-8.3)2+ (8.4-8.3)2+(8.2-8.3)2+(8.3-8.3)2+(8.1-8.3)2+(8.3-8.3)2]=0.04, 夏洁成绩的方差为=×[(8.7-8.3)2+(8.3-8.3)2+(8.6-8.3)2+(7.9- 8.3)2+(8.0-8.3)2+(8.4-8.3)2+(8.2-8.3)2+(8.3-8.3)2]=0.065,因为她们的平均数相同,王茜成绩的方差小于夏洁成绩的方差,所以王茜的成绩比较稳定,所以王茜得15分的可能性更大些.附加题(共20分)21.(10分)为了比较市场上甲、乙两种电子钟每日走时误差的情况,从这两种电子钟中,各随机抽取10台进行测试,两种电子钟走时误差的数据如下表(单位:秒):编号一二三四五六七八九十类型甲种1 -3 -4 42 -2 2 -1 -1 2电子钟乙种 4 -3 -1 2 -2 1 -2 2 -2 1电子钟(1)计算甲、乙两种电子钟走时误差的平均数;(2)计算甲、乙两种电子钟走时误差的方差;(3)根据经验,走时稳定性较好的电子钟质量更优.若两种类型的电子钟价格相同,请问你买哪种电子钟,为什么?解:(1)=×[1+(-3)+(-4)+4+2+(-2)+2+(-1)+(-1)+2]=0.=×[4+(-3)+(-1)+2+(-2)+1+(-2)+2+(-2)+1]=0.(2)=×[(1-0)2+(-3-0)2+(-4-0)2+(4-0)2+(2-0)2+(-2-0)2+(2-0)2+ (-1-0)2+(-1-0)2+(2-0)2]=6.=×[(4-0)2+(-3-0)2+(-1-0)2+(2-0)2+(-2-0)2+(1-0)2+(-2-0)2+(2 -0)2+(-2-0)2+(1-0)2]=4.8.(3)买乙种电子钟.因为由(2)知<,说明乙种电子钟走时稳定性好,故质量更优. 22.(10分)某中学七、八年级各选派10名选手参加学校举办的知识竞赛,计分采用10分制,选手得分均为整数,成绩达到6分或6分以上为合格,达到9分或10分为优秀.这次竞赛后,七、八年级两支代表队选手成绩分布的条形统计图和成绩统计分析表如下,其中七年级代表队得6分、10分的选手人数分别为a,b.队别平均分中位数方差合格率优秀率七年级 6.7 m 3.41 90% n八年级7.1 7.5 1.69 80% 10%(1)请依据图表中的数据,求a,b的值;(2)直接写出表中的m,n的值;(3)有人说七年级代表队的合格率、优秀率均高于八年级代表队,所以七年级代表队成绩比八年级代表队好,但也有人说八年级代表队成绩比七年级代表队好.请你给出两条支持八年级代表队成绩好的理由. 解:(1)根据题意,得解得a=5,b=1.(2)七年级代表队成绩为3,6,6,6,6,6,7,8,9,10,中位数为6,即m=6; 优秀率为==20%,即n=20%.(3)因为八年级代表队成绩的平均分高于七年级代表队,方差小于七年级代表队,成绩比较稳定,所以八年级代表队比七年级代表队成绩好(答案不唯一).。

2020-2021学年人教版八年级数学下册 第二十章 《数据的分析》 单元测试卷(含答案)

2020-2021学年人教版八年级数学下册   第二十章 《数据的分析》 单元测试卷(含答案)

2020-2021学年人教版八年级数学下册第二十章《数据的分析》单元测试卷姓名:_________ 班级:___________学号:__________一、单选题1.一组数据为x,2,4,10,14,8.若这组数据的众数为10,则这组数据的中位数为()A. 7B. 8C. 9D. 102.在共有15人参加的“我爱祖国”演讲比赛中,参赛选手要想知道自己是否能进人前8名,只需要了解自己的成绩以及全部成绩的()A. 平均数B. 众数C. 中位数D. 方差3.小明妈妈经营一家皮鞋专卖店,为了提高效益,小明帮妈妈对上个月各种型号的皮鞋销售数量进行了一次统计分析,决定在这个月的进货中多进某种型号皮鞋,此时小明应重点参考()A. 众数B. 平均数C. 加权平均数D. 中位数4.某人统计九年级一个班35人的身高时,算出平均数与中位数都是158厘米,但后来发现其中一位同学的身高记录不符合题意,将160厘米写成了166厘米,经重新计算后,正确的中位数是a厘米,那么中位数a应()A. 大于158B. 小于158C. 等于158D. 无法判断5.甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数都约为8.8环,方差分别为S 甲2= 0.63环2,S 乙2= 0.51环2,S 丙2 = 0.48环2,S 丁2= 0.42环2,则四人中成绩最稳定的是( )A. 甲B. 乙C. 丙D. 丁6.将一组数据中的每一个数据都加上3,那么所得的新数据组与原数据组相比,没有改变大小的统计量是()A. 平均数B. 中位数C. 众数D. 方差7.在“中国汉字听写大赛”选拔赛中,甲乙两位同学的平均分都是85分,甲成绩的方差是16,乙成绩的方差是5,下列说法正确的是()A. 甲的成绩比乙的成绩稳定B. 乙的成绩比甲稳定C. 甲乙两人的成绩一样稳定D. 无法确定8.某篮球队5名场上队员的身高(单位:cm)分别是183、187、190、200、195,现用-名身高为210cm的队员换下场上身高为195cm的队员,与换人前相比,场上队员身高的( )A. 平均数变大,方差变小B. 平均数变小,方差变大C. 平均数变大,方差变大D. 平均数变小,方差变小9.为了调查某校学生课后参加体育锻炼的时间,学校体育组随机抽样调查了若干名学生的每天锻炼时间,统计如表:下列说法错误的是()A. 众数是60分钟B. 平均数是52.5分钟C. 样本容量是10D. 中位数是50分钟10.学习组织“超强大脑”答题赛,参赛的12名选手得分情况如表所示,那么这12名选手得分的中位数和众数分别是()A. 80和90B. 90和95C. 86.5和90D. 90和90二、填空题1.一组数据4,4,8,x,5,5的平均数是5,则该组数据的众数为________.2.若一组数据1,3,a,2,5的平均数是3,则a=________。

人教新版八年级下册数学《第20章 数据的分析》单元测试卷和答案详解(PDF可打印)

人教新版八年级下册数学《第20章 数据的分析》单元测试卷和答案详解(PDF可打印)

人教新版八年级下册《第20章数据的分析》单元测试卷(1)一、选择题:(每题3分,共18分,请将答案填写在表格中)1.(3分)数据2,3,5,5,4的众数是()A.2B.3C.4D.52.(3分)两名同学进行了10次三级蛙跳测试,经计算,他们的平均成绩相同,若要比较这两名同学的成绩哪一位更稳定,通常还需要比较他们成绩的()A.众数B.中位数C.方差D.以上都不对3.(3分)某校五个绿化小组一天植树的棵树如下:10、10、12、x、8.已知这组数据的众数与平均数相同,那么这组数据的平均数是()A.12B.10C.8D.94.(3分)从鱼塘捕获同时放养的草鱼240条,从中任选8条称得每条鱼的质量分别为:1.5,1.6,1.4,1.3,1.5,1.2,1.7,1.8(单位:千克),那么可估计这240条鱼的总质量大约为()A.300千克B.360千克C.36千克D.30千克5.(3分)若样本x1+1,x2+1,…,x n+1的平均数为10,方差为2,则对于样本x1+2,x2+2,…,x n+2,下列结论正确的是()A.平均数为10,方差为2B.平均数为11,方差为3C.平均数为11,方差为2D.平均数为12,方差为46.(3分)甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字的个数统计结果如下表:班级参加人数中位数方差平均数甲55149 1.91135乙55151 1.10135某同学分析上表后得出如下结论:①甲、乙两班学生成绩平均水平相等;②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字≥150个为优秀);③甲班成绩的波动比乙班大.上述结论正确的是()A.①②③B.①②C.①③D.②③二、填空题(每小题3分,共18分)7.(3分)若x,y,z的平均数是6,则5x+3、5y﹣2、5z+5的平均数是.8.(3分)一组数据1,3,2,5,2,a的众数是a,这组数据的中位数是.9.(3分)已知样本方差S2=,则这个样本的容量是,样本的平均数是.10.(3分)某校体育期末考核“立定跳远”、“800米”、“仰卧起坐”三项,并按3:5:2的比重算出期末成绩.已知小林这三项的考试成绩分别为80分、90分、100分,则小林的体育期末成绩为分.11.(3分)一名射击运动员连续打靶8次,命中的环数如图所示,这组数据的中位数是环,众数是环.12.(3分)已知一组数据的平均数是3,方差是2,把这组数据扩大2倍,那么新数据的平均数是,方差是.三、计算题:(共28分)13.(8分)学期末,某班评选一名优秀学生干部,下表是班长、学习委员和团支部书记的得分情况:班长学习委员团支部书记思想表现242826学习成绩262624工作能力282426假设在评选优秀干部时,思想表现、学习成绩、工作能力这三方面的重要比为3:3:4,通过计算说明谁应当选为优秀学生干部.14.(10分)某快餐店共有10名员工,所有员工工资的情况如下表:人员店长厨师甲厨师乙会计服务员甲服务员乙勤杂工人数111113220000700040002500220018001200工资额(元)请解答下列问题:(1)餐厅所有员工的平均工资是;所有员工工资的中位数是.(2)用平均数还是用中位数描述该餐厅员工工资的一般水平比较恰当?(3)去掉店长和厨师甲的工资后,其他员工的平均工资是多少?它是否也能反映该快餐店员工工资的一般水平?15.(10分)下表是七年级三班30名学生期末考试数学成绩表(已破损)成绩(分)5060708090100人数(人)2573已知该班学生期末考试数学成绩平均分是76分.(1)求该班80分和90分的人数分别是多少?(2)设该班30名学生成绩的众数为a,中位数为b,求a+b的值.四、综合题:(共36分)16.(12分)随着我市社会经济的发展和交通状况的改善,我市的旅游业得到了高速发展,某旅游公司对我市一企业旅游年消费情况进行了问卷调查,随机抽取部分员工,记录每个人消费金额,并将调查数据适当调整,绘制成如图两幅尚不完整的表和图.频数(人数)频率组别个人年消费金额x(元)A x≤2000180.15B2000<x≤4000a bC4000<x≤6000D6000<x≤8000240.20E x>8000120.10合计c 1.00根据以上信息回答下列问题:(1)a=,b=,c=.并将条形统计图补充完整;(2)这次调查中,个人年消费金额的中位数出现在组;(3)若这个企业有3000多名员工,请你估计个人旅游年消费金额在6000元以上的人数.17.(12分)某高中学校为使高一新生入校后及时穿上合身的校服,现提前对某校九年级三班学生即将所穿校服型号情况进行了摸底调查,并根据调查结果绘制了如图两个不完整的统计图(校服型号以身高作为标准,共分为6种型号).根据以上信息,解答下列问题:(1)该班共有多少名学生?其中穿175型校服的学生有多少?(2)在条形统计图中,请把空缺部分补充完整.(3)在扇形统计图中,请计算185型校服所对应的扇形圆心角的大小;(4)求该班学生所穿校服型号的众数和中位数.18.(12分)班主任要从甲、乙两名跳远运动员中挑选一人参加校运动会比赛.在最近的10次选拔赛中,他们的成绩如下(单位:cm):甲584594608596608597602600612599乙615618580579618593585590598624(1)他们的平均成绩分别是多少?(2)甲、乙两名运动员这10次比赛成绩的极差、方差分别是多少?(3)怎样评价这两名运动员的运动成绩?(4)历届比赛表明,成绩达到5.96m就有可能夺冠,你认为为了夺冠应选择谁参加这项比赛?如果历届比赛成绩表明,成绩达到6.10m就能打破纪录,那么你认为为了打破纪录应选择谁参加这项比赛?人教新版八年级下册《第20章数据的分析》单元测试卷(1)参考答案与试题解析一、选择题:(每题3分,共18分,请将答案填写在表格中)1.(3分)数据2,3,5,5,4的众数是()A.2B.3C.4D.5【考点】众数.【分析】由于众数是一组数据中出现次数最多的数据,注意众数可以不止一个,由此即可确定这组数据的众数.【解答】解:∵5是这组数据中出现次数最多的数据,∴这组数据的众数为5.故选:D.2.(3分)两名同学进行了10次三级蛙跳测试,经计算,他们的平均成绩相同,若要比较这两名同学的成绩哪一位更稳定,通常还需要比较他们成绩的()A.众数B.中位数C.方差D.以上都不对【考点】统计量的选择.【分析】根据方差的意义:是反映一组数据波动大小,稳定程度的量;方差越大,表明这组数据偏离平均数越大,即波动越大,反之也成立.故要判断哪一名学生的成绩比较稳定,通常需要比较这两名学生三级蛙跳测试成绩的方差.【解答】解:由于方差能反映数据的稳定性,需要比较这两名学生三级蛙跳成绩的方差.故选:C.3.(3分)某校五个绿化小组一天植树的棵树如下:10、10、12、x、8.已知这组数据的众数与平均数相同,那么这组数据的平均数是()A.12B.10C.8D.9【考点】众数;算术平均数.【分析】根据题意先确定x的值,再根据定义求解即可.【解答】解:当x=8或12时,有两个众数,而平均数只有一个,不合题意舍去,当众数为10,根据题意得=10,解得x=10,∵这组数据的众数与平均数相同,∴这组数据的平均数是10;故选:B.4.(3分)从鱼塘捕获同时放养的草鱼240条,从中任选8条称得每条鱼的质量分别为:1.5,1.6,1.4,1.3,1.5,1.2,1.7,1.8(单位:千克),那么可估计这240条鱼的总质量大约为()A.300千克B.360千克C.36千克D.30千克【考点】用样本估计总体;算术平均数.【分析】先计算出8条鱼的平均质量,然后乘以240即可.【解答】解:8条鱼的质量总和为(1.5+1.6+1.4+1.3+1.5+1.2+1.7+1.8)=12千克,每条鱼的平均质量=12÷8=1.5(千克),可估计这240条鱼的总质量大约为1.5×240=360(千克).故选:B.5.(3分)若样本x1+1,x2+1,…,x n+1的平均数为10,方差为2,则对于样本x1+2,x2+2,…,x n+2,下列结论正确的是()A.平均数为10,方差为2B.平均数为11,方差为3C.平均数为11,方差为2D.平均数为12,方差为4【考点】方差;算术平均数.【分析】一般地设n个数据,x1,x2,…x n,平均数=(x1+x2+x3…+x n),方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2].直接用公式计算.【解答】解:由题知,x1+1+x2+1+x3+1+…+x n+1=10n,∴x1+x2+…+x n=10n﹣n=9nS12=[(x1+1﹣10)2+(x2+1﹣10)2+…+(x n+1﹣10)2]=[(x12+x22+x32+…+x n2)﹣18(x1+x2+x3+…+x n)+81n]=2,∴(x12+x22+x32+…+x n2)=83n另一组数据的平均数=[x1+2+x2+2+…+x n+2]=[(x1+x2+x3+…+x n)+2n]=[9n+2n]=×11n=11,另一组数据的方差=[(x1+2﹣11)2+(x2+2﹣11)2+…+(x n+2﹣11)2]=[(x12+x22+…+x n2)﹣18(x1+x2+…+x n)+81n]=[83n﹣18×9n+81n]=2,故选:C.6.(3分)甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字的个数统计结果如下表:班级参加人数中位数方差平均数甲55149 1.91135乙55151 1.10135某同学分析上表后得出如下结论:①甲、乙两班学生成绩平均水平相等;②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字≥150个为优秀);③甲班成绩的波动比乙班大.上述结论正确的是()A.①②③B.①②C.①③D.②③【考点】方差;算术平均数;中位数.【分析】平均水平的判断主要分析平均数;优秀人数的判断从中位数不同可以得到;波动大小比较方差的大小.【解答】解:从表中可知,平均字数都是135,①正确;甲班的中位数是149,乙班的中位数是151,比甲的多,而平均数都要为135,说明乙的优秀人数多于甲班的,②正确;甲班的方差大于乙班的,又说明甲班的波动情况大,所以③也正确.①②③都正确.故选:A.二、填空题(每小题3分,共18分)7.(3分)若x,y,z的平均数是6,则5x+3、5y﹣2、5z+5的平均数是32.【考点】算术平均数.【分析】5x+3,5y﹣2,5z+5的平均数是(5x+3+5y﹣2+5z+5)÷3=[5(x+y+z)+6]÷3,因为x,y,z的平均数是6,则x+y+z=18;再整体代入即可求解.【解答】解:∵x,y,z的平均数是6,∴x+y+z=18;∴(5x+3+5y﹣2+5z+5)÷3=[5(x+y+z)+6]÷3=[5×18+6]÷3=96÷3=32.故答案为:32.8.(3分)一组数据1,3,2,5,2,a的众数是a,这组数据的中位数是2.【考点】中位数;众数.【分析】一组数据中出现次数最多的数据叫做众数,由此可得出a的值,将数据从小到大排列可得出中位数.【解答】解:1,3,2,5,2,a的众数是a,∴a=2,将数据从小到大排列为:1,2,2,2,3,5,中位数为:2.故答案为:2.9.(3分)已知样本方差S2=,则这个样本的容量是4,样本的平均数是3.【考点】方差;总体、个体、样本、样本容量;算术平均数.【分析】从方差公式中可以得到样本容量和平均数.【解答】解:根据样本方差S2=[(x1﹣)2+(x2﹣)2+…+(x n﹣)2,其中n是这个样本的容量,是样本的平均数,所以本题中这个样本的容量是4,样本的平均数是3.故填4,3.10.(3分)某校体育期末考核“立定跳远”、“800米”、“仰卧起坐”三项,并按3:5:2的比重算出期末成绩.已知小林这三项的考试成绩分别为80分、90分、100分,则小林的体育期末成绩为89分.【考点】加权平均数.【分析】根据加权平均数的计算公式列出算式,再进行计算即可.【解答】解:根据题意得:(80×3+90×5+100×2)÷(3+5+2)=89(分);故答案为:89.11.(3分)一名射击运动员连续打靶8次,命中的环数如图所示,这组数据的中位数是8.5环,众数是8环.【考点】众数;条形统计图;中位数.【分析】根据众数和中位数的概念求解.【解答】解:把数据按照从小到大的顺序排列为:7,8,8,8,9,9,10,10,中位数为:=8.5,众数为:8.故答案为:8.5,8.12.(3分)已知一组数据的平均数是3,方差是2,把这组数据扩大2倍,那么新数据的平均数是6,方差是8.【考点】方差;算术平均数.【分析】由题意可知,将这组数据的每个数都扩大2倍,那它的和也将扩大2倍,它的平均数也扩大2倍;根据方差的性质可知,数据中的每个数据都扩大2倍,则方差扩大4倍,即可得出答案.【解答】解:设这组数有x个,这组数的平均数是3,那么这组数的和为3x,如果这组数据的每个数都扩大2倍,则这组数的总和为3x×2,平均数为3x×2÷x=6.将这组数据中的每个数据都扩大2倍,所得到的一组数据的方差将扩大4倍,∴新数据的方差是2×4=8,故答案为:6;8.三、计算题:(共28分)13.(8分)学期末,某班评选一名优秀学生干部,下表是班长、学习委员和团支部书记的得分情况:班长学习委员团支部书记思想表现242826学习成绩262624工作能力282426假设在评选优秀干部时,思想表现、学习成绩、工作能力这三方面的重要比为3:3:4,通过计算说明谁应当选为优秀学生干部.【考点】加权平均数.【分析】根据三项成绩的不同权重,分别计算三人的成绩.【解答】解:班长的成绩=24×0.3+26×0.3+28×0.4=26.2(分);学习委员的成绩=28×0.3+26×0.3+24×0.4=25.8(分);团支部书记的成绩=26×0.3+24×0.3+26×0.4=25.4(分);∵26.2>25.8>25.4,∴班长应当选.14.(10分)某快餐店共有10名员工,所有员工工资的情况如下表:人员店长厨师甲厨师乙会计服务员甲服务员乙勤杂工人数1111132 20000700040002500220018001200工资额(元)请解答下列问题:(1)餐厅所有员工的平均工资是4350;所有员工工资的中位数是2000.(2)用平均数还是用中位数描述该餐厅员工工资的一般水平比较恰当?(3)去掉店长和厨师甲的工资后,其他员工的平均工资是多少?它是否也能反映该快餐店员工工资的一般水平?【考点】中位数;加权平均数.【分析】(1)根据加权平均数的定义和中位数的定义即可得到结论;(2)中位数描述该餐厅员工工资的一般水平比较恰当;(3)由平均数的定义即可得到结论.【解答】解:(1)平均工资为(20000+7000+4000+2500+2200+1800×3+1200×2)=4350元;工资的中位数为=2000元;故答案为:4350,2000;(2)由(1)可知,用中位数描述该餐厅员工工资的一般水平比较恰当;(3)去掉店长和厨师甲的工资后,其他员工的平均工资是2062.5元,和(2)的结果相比较,能反映餐厅员工工资的一般水平.15.(10分)下表是七年级三班30名学生期末考试数学成绩表(已破损)成绩(分)5060708090100人数(人)2573已知该班学生期末考试数学成绩平均分是76分.(1)求该班80分和90分的人数分别是多少?(2)设该班30名学生成绩的众数为a,中位数为b,求a+b的值.【考点】众数;二元一次方程组的应用;统计表;中位数.【分析】(1)根据题意:设该班80分和90分的人数分别是x、y;得方程=76与x+y=30﹣2﹣5﹣7﹣3;解方程组即可.(2)众数是一组数据中出现次数最多的数;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.求出a,b的值就可以.【解答】解:(1)据题意得,∴∴该班80分和90分的人数分别是8人,5人.成绩(分)5060708090100人数(人)257853(2)据题意得a=80,b=(80+80)÷2=80∴a+b=160四、综合题:(共36分)16.(12分)随着我市社会经济的发展和交通状况的改善,我市的旅游业得到了高速发展,某旅游公司对我市一企业旅游年消费情况进行了问卷调查,随机抽取部分员工,记录每个人消费金额,并将调查数据适当调整,绘制成如图两幅尚不完整的表和图.组别个人年消费金额x(元)频数(人数)频率A x ≤2000180.15B 2000<x ≤4000abC 4000<x ≤6000D 6000<x ≤8000240.20Ex >8000120.10合计c1.00根据以上信息回答下列问题:(1)a =36,b =0.30,c =120.并将条形统计图补充完整;(2)这次调查中,个人年消费金额的中位数出现在C组;(3)若这个企业有3000多名员工,请你估计个人旅游年消费金额在6000元以上的人数.【考点】频数(率)分布表;条形统计图;中位数;用样本估计总体.【分析】(1)首先根据A 组的人数和所占的百分比确定c 的值,然后确定a 和b 的值;(2)根据样本容量和中位数的定义确定中位数的位置即可;(3)利用样本估计总体即可得到正确的答案.【解答】解:(1)观察频数分布表知:A 组有18人,频率为0.15,∴c =18÷0.15=120,∵a =36,∴b =36÷120=0.30;∴C 组的频数为120﹣18﹣36﹣24﹣12=30,补全统计图为:故答案为:36,0.30,120;(2)∵共120人,∴中位数为第60和第61人的平均数,∴中位数应该落在C小组内;(3)个人旅游年消费金额在6000元以上的人数3000×(0.10+0.20)=900人.17.(12分)某高中学校为使高一新生入校后及时穿上合身的校服,现提前对某校九年级三班学生即将所穿校服型号情况进行了摸底调查,并根据调查结果绘制了如图两个不完整的统计图(校服型号以身高作为标准,共分为6种型号).根据以上信息,解答下列问题:(1)该班共有多少名学生?其中穿175型校服的学生有多少?(2)在条形统计图中,请把空缺部分补充完整.(3)在扇形统计图中,请计算185型校服所对应的扇形圆心角的大小;(4)求该班学生所穿校服型号的众数和中位数.【考点】条形统计图;中位数;众数;扇形统计图.【分析】(1)根据穿165型的人数与所占的百分比列式进行计算即可求出学生总人数,再乘以175型所占的百分比计算即可得解;(2)求出185型的人数,然后补全统计图即可;(3)用185型所占的百分比乘以360°计算即可得解;(4)根据众数的定义以及中位数的定义解答.【解答】解:(1)15÷30%=50(名),50×20%=10(名),即该班共有50名学生,其中穿175型校服的学生有10名;(2)185型的学生人数为:50﹣3﹣15﹣15﹣10﹣5=50﹣48=2(名),补全统计图如图所示;(3)185型校服所对应的扇形圆心角为:×360°=14.4°;(4)165型和170型出现的次数最多,都是15次,故众数是165和170;共有50个数据,第25、26个数据都是170,故中位数是170.18.(12分)班主任要从甲、乙两名跳远运动员中挑选一人参加校运动会比赛.在最近的10次选拔赛中,他们的成绩如下(单位:cm):甲584594608596608597602600612599乙615618580579618593585590598624(1)他们的平均成绩分别是多少?(2)甲、乙两名运动员这10次比赛成绩的极差、方差分别是多少?(3)怎样评价这两名运动员的运动成绩?(4)历届比赛表明,成绩达到5.96m就有可能夺冠,你认为为了夺冠应选择谁参加这项比赛?如果历届比赛成绩表明,成绩达到6.10m就能打破纪录,那么你认为为了打破纪录应选择谁参加这项比赛?【考点】方差;算术平均数;极差.【分析】(1)根据平均数的公式进行计算即可;(2)根据极差和方差的计算公式计算即可;(3)从方差和极差两个数比较即可;(4)根据成绩稳定性与目标进行分析即可.【解答】解:(1)甲的平均数=(584+594+…+599)=600(cm),乙的平均数=(615+618+…+624)=600(cm);(2)甲的极差为:612﹣584=28;乙的极差为:624﹣579=45;S甲2=[(584﹣600)2+(594﹣600)2+…+(599﹣600)2]=59.4,S乙2=[(615﹣600)2+(618﹣600)2+…+(624﹣600)2]=266.8.(3)甲的方差较小,成绩较稳定,乙的方差较大,波动较大,但最好成绩较好,爆发力强.(4)若只想夺冠,选甲参加比赛,因为甲的方差较小,成绩较稳定,且大于或等于5.96m 的次数有8次;若要打破纪录,应选乙参加比赛,因为有四次超过6.10m,最好成绩较好,爆发力强.。

人教版数学《数据的分析》单元测试B卷(含答案 )

人教版数学《数据的分析》单元测试B卷(含答案 )

人教版数学《数据的分析》单元测试B卷一、单选题1.小璇5次仰卧起坐的测试成绩(单位:个)分别为:48、50、52、50、50,对此成绩描述错误的是()A.平均数是50 B.众数是50 C.方差是0 D.中位数是50 2.某班预开展社团活动,对全班42名学生开展“你最喜欢的社团”问卷调查(每人只选一项),并将结果制成如下统计表,则学生最喜欢的项目是()A.篮球B.足球C.唱歌D.器乐3.小明在一次射击训练时,连续10次的成绩为6次10环、4次9环,则小明这10次射击的平均成绩为()A.9.6环B.9.5环C.9.4环D.9.3环4.某皮鞋专卖店对不同价位的皮鞋销售情况作了一个统计表,结果如下表:要想销售金额更大,下次应多进哪个价位的皮鞋()A.100元以下B.100~150元C.150~200元D.200元以上5.甲、乙、丙三个游客团的年龄的方差分别是S甲2=1.4,S乙2=18.8,S丙2=2.5,导游小方最喜欢带游客年龄相近的团队,若在这三个游客团中选择一个,则他应选()A.甲队B.乙队C.丙队D.哪一个都可以6.下列统计量中,反映一组数据波动情况的是()A.平均数 B.众数 C.频率 D.方差7.甲同学进行了六次射击训练,训练成绩(单位:环)如下表:下列说法正确的是()A.他的训练成绩的中位数是7B.他的训练成绩的中位数是8C.他的训练成绩的众数是7D.他的训练成绩的众数是88.一次中学生田径运动会上,21名参加男子跳高项目的运动员成绩統计如下:其中有两个数据被雨水淋混模不清了,则在这组数据中能确定的统计量是()A.平均数B.中位数C.众数D.方差9.王明同学把5次月考成绩(单位:分,满分100分)整理如下:75,74,78,73,75,关于这组数据的说法正确的是( )A.众数为74 B.中位数为74 C.平均数为76 D.方差为2.8 10.在某次训练中,甲、乙两名射击运动员各射击10发子弹的成绩统计图如图所示,对于本次训练,有如下结论:①S甲2>S乙2;②S甲2<S乙2;③甲的射击成绩比乙稳定;④乙的射击成绩比甲稳定,由统计图可知正确的结论是()A.①③B.①④C.②③D.②④二、填空题11.某排球队6名上场队员的身高(单位:cm)是:180,184,188,190,192,194,现用一名身高为186cm的队员换下场上身高为192cm的队员,与换人前相比,场上队员的身高平均数________.填“变大”.“不变”.“变小”),方差________.(填“变大”.“不变”.“变小”)12.张老师随机抽取6名学生,测试他们的文字输入能力,测得他们每分钟打字个数分别为:100,80,80,90,60,70,那么这组数据的方差是____.13.某公司全体员工年薪的具体情况如下表:则该公司全体员工年薪的平均数比中位数多____万元.14.某小组计划在本周的一个下午借用A、B、C三个艺术教室其中的一个进行元旦节目的彩排,他们去教学处查看了上一周A、B、C三个艺术教室每天下午的使用次数(一节课记为一次)情况,列出如下统计表:通过调查,本次彩排安排在星期______的下午找到空教室的可能性最大.15.一组数据:5、1、3、2、﹣1的极差是_____.16.小莹同学10个周的综合素质评价成绩统计如下:这10个周的综合素质评价成绩的中位数是_____.17.学校足球队5名队员的年龄分别是17,15,17,16,15,其方差为______.18.某小区开展“节约用水,从我做起”活动,下表是从该小区抽取的10个家庭,8月份比7月份节约用水情况统计:那么这10个家庭8月份比7月份的节水量的平均数是_______m319.市运会举行射击比赛,校射击队从甲、乙、丙、丁四人中选拔一人参赛.在选拔赛中,每人射击10次,计算他们10发成绩的平均数(环)及方差如下表.请你根据表中数据选一人参加比赛,最合适的人选是_____.20.若一组数据1、-3、5、2,则这组数据的极差为______.三、解答题21.某公司需招聘一名员工,对应聘者甲、乙、丙从笔试、面试、体能三个方面进行量化考核.甲、乙、丙各项得分如下表: (1)根据三项得分的平均分,从高到低确定三名应聘者的排名顺序.(2)该公司规定:笔试,面试、体能得分分别不得低于80分,80分,70分,并按60%,30%,10%的比例计入总分.根据规定,请你说明谁将被录用.22.疫情防控,人人有责.为此某校开展了“新冠疫情”防控知识竞赛现从该校七、八年级中各随机抽取10名学生的竞赛成绩(百分制)进行整理、描述和分析(成绩得分用x 表示,共分成四组:A .80≤x <85,B .85≤x <90,C .90≤x <95,D .95≤x ≤100),下面给出了部分信息:七年级10名学生的竞赛成绩是:99,80,99,86,99,96,90,100,89,82 八年级10名学生的竞赛成绩在C 组中的数据是:94,90,94七八年级抽取的学生竞赛成绩统计表:根据以上信息,解答下列问题:(1)直接写出上述图表中a、b、c的值:a=、b=、c=.(2)由以上数据,你认为该校七、八年级中哪个年级学生掌握“新冠疫情”防控知识较好?请说明理由(一条理由即可);(3)该校七、八年级参加此次竞赛活动的人数分别为1200人和1300人,估计在本次竞赛活动中七、八年级成绩优秀(x≥90)的学生人数共有多少?23.为了了解某校初中各年级学生每天的平均睡眠时间(单位:h,精确到1h,抽样调查了部分学生,并用得到的数据绘制了下面两幅不完整的统计图.请你根据图中提供的信息,回答下列问题:(1)求出扇形统计图中百分数a的值为_____,所抽查的学生人数为______.(2)求出平均睡眠时间为8小时的人数,并补全条形统计图.(3)求出这部分学生的平均睡眠时间的众数和平均数.(4)如果该校共有学生1800名,请你估计睡眠不足(少于8小时)的学生数.24.车间有20名工人,某天他们生产的零件个数统计如下表.车间20名工人某一天生产的零件个数统计表(1)求这一天20名工人生产零件的平均个数;(2)为了提高大多数工人的积极性,管理者准备实行“每天定额生产,超产有奖”的措施.如果你是管理者,从平均数、中位数、众数的角度进行分析,你将如何确定这个“定额”?25.甲乙两台机床同时生产一种零件,在10天中,两台机床每天出次品的数量如下表:(1)分别计算两组数据的平均数和方差;(2)从计算的结果看,在10天中,那台机床出次品的平均数较小?那台机床出次品的波动性较小.26.某学校举行实践操作技能大赛,所有参赛选手的成绩统计如下表所示(满分10分)(1)本次参赛学生成绩的众数是多少?(2)本次参赛学生的平均成绩是多少?(3)肖刚同学的比赛成绩是8.8分,能不能说肖刚同学的比赛成绩处于参赛选手的中游偏上水平?试说明理由.27.某公司对应聘者A,B,进行面试,并按三个方面给应聘者打分,每方面满分20分,最后打分结果如下表,根据实际需要,公司将专业知识、工作经验和仪表形象三项成绩得分按6:3:1的比例确定各人的成绩,此时谁将被录用?28.某校为了提升初中学生学习数学的兴趣,培养学生的创新精神,举办“玩转数学”比赛,现有甲、乙、丙三个小组进入决赛,评委从研究报告、小组展示、答辩三个方面为各小组打分,各项成绩均按百分制记录,甲、乙、丙三个小组各项得分如下表:如果研究报告、小组展示和答辩按照5:3:2的权重确定各小组的成绩,哪个小组的成绩最高?29.下表是厦门市某品牌专卖店全体员工9月8日的销售量统计资料.(1)写出该专卖店全体员工9月8日销售量的众数;(2)求该专卖店全体员工9月8日的平均销售量.30.为积极响应“节能减排”的号召,某市开展节约用水活动,根据对该市200户家庭用水情况统计分析,2016年6月份比5月份节约用水情况如下表所示:则6月份该市每户家庭节水量的平均数是多少?参考答案1.C2.B3.A4.C5.A6.D7.C8.C9.D10.C11.变小变小12.500 313.2 14.三15.6 16.97.517.4 518.0.419.丁.20.821.(1) 甲,丙,乙;(2) 乙.22.(1)1,94,99;(2)八年级成绩较好,八年级的竞赛成绩的中位数、众数都比七年级的高;(3)1630人23.(1)45%,60人;(2)18人,条形统计图见解析;(3)众数7,平均数7.2;(4)1170人.24.(1)这一天20名工人生产零件的平均个数为13个;(2)定额为11个时,有利于提高大多数工人的积极性.25.(1)=1.5=1.2x x 甲乙, ,22S =1.65=0.76S甲乙,,见详解;(2)在10天中,乙台机床出次品的平均数较小,乙台机床出次品的波动较小,见详解. 26.(1)9.2分;(2)8.7分;(3)错误,理由见解析. 27.B 应被录用 28.甲小组成绩最高.29.(1)该专卖店全体员工9月8日销售量的众数是11件;(2)该专卖店全体员工9月8日的平均销售量是10件. 30.1.85.。

八年级数学第二十章《数据的分析》基础测试题含答案

八年级数学第二十章《数据的分析》基础测试题含答案

八年级数学第二十章《数据的分析》基础测试题测试1 平均数(一)学习要求了解加权平均数的意义和求法,会求实际问题中一组数据的平均数.课堂学习检测一、填空题1.一组数据中有3个7,4个11和3个9,那么它们的平均数是______.2.某组学生进行“引体向上”测试,有2名学生做了8次,其余4名学生分别做了10次、7次、6次、9次,那么这组学生的平均成绩为______次,在平均成绩之上的有______人.3.某校一次歌咏比赛中,7位评委给8年级(1)班的歌曲打分如下:9.65,9.70,9.68,9.75,9.72,9.65,9.78,去掉一个最高分,再去掉一个最低分,计算平均分为该班最后得分,则8年级(1)班最后得分是______分.二、选择题4.如果数据2,3,x,4的平均数是3,那么x等于( ).(A)2 (B)3 (C)3.5 (D)45.某居民大院月底统计用电情况,其中3户用电45度,5户用电50度,6户用电42度,则每户平均用电( ).(A)41度(B)42度(C)45.5度(D)46度三、解答题6.甲、乙两支仪仗队队员的身高(单位:厘米)如下:甲队:178 177 179 178 177 178 177 179 178 179;乙队:178 179 176 178 180 178 176 178 177 180.(1)(2)甲队队员身高的平均数为______厘米,乙队队员身高的平均数为______厘米;(3)你认为哪支仪仗队更为整齐?简要说明理由.7假如学期总评按平时成绩、期中成绩、期末成绩各占1∶3∶6的比例来计算,那么小明和小颖的学期总评成绩谁较高?综合、运用、诊断一、填空题8.某公园对游园人数进行了10天统计,结果有4天是每天900人游园,有2天是每天1100人游园,有4天是每天800人游园,那么这10天平均每天游园人数是______人.9.如果10名学生的平均身高为1.65米,其中2名学生的平均身高为1.75米,那么余下8名学生的平均身高是______米.10.某校规定学生的学期体育成绩由三部分组成:体育课外活动占学期成绩的10%,理论测试占30%,体育技能测试占60%,一名同学上述三项成绩依次为90,92,73分,则这名同学本学期的体育成绩为______分,可以看出,三项成绩中______的成绩对学期成绩的影响最大. 二、选择题 11.为了解乡镇企业的水资源的利用情况,市水利管理部门抽查了部分乡镇企业在一个月中的用水情况,其中用水15吨的有3家,用水20吨的有5家,用水30吨的有7家,那么平均每家企业1个月用水( ). (A)23.7吨 (B)21.6吨 (C)20吨 (D)5.416吨 12.m 个x 1,n 个x 2和r 个x 3,由这些数据组成一组数据的平均数是( ).(A)3321x x x ++(B)3r n m ++ (C ) 3321rx nx mx ++ (D)r n m rx nx mx ++++321 三、解答题13.从1月15日起,小明连续8天每天晚上记录了家中天然气表显示的读数(如下表):日期 15日 16日 17日 18日 19日 20日 21日 22日 天然气表读数(单位:m 3)220229241249259270279290小明的父亲买了一张面值600元的天然气使用卡,已知天然气每立方米1.70元,请估计这张卡是否够小明家用一个月(按30天计算),将结果填在后面的横线上.(只填“够”或“不够”)结果为:______.并说明为什么.14.四川汶川大地震发生后,某中学八年级(1)班共有40名同学参加了“我为灾区献爱心”的活动.活动结束后,生活委员小林将捐款情况进行了统计,并绘制成如右的统计图.(1)求这40名同学捐款的平均数;(2)该校共有学生1200名,请根据该班的捐款情况,估计这个中学的捐款总数大约是多少元?15.某地为了解从2004年以来初中学生参加基础教育课程改革的情况,随机调查了本地区1000名初中学习能力优秀的学生.调查时,每名学生可在动手能力、表达能力、创造能力、解题技巧、阅读能力和自主学习等六个方面中选择自己认为是优秀的项.调查后绘制了如下图所示的统计图.请根据统计图反映的信息解答下列问题:(1)学生获得优秀人数最多的一项和最有待加强的一项各是什么?(2)这1000名学生平均每人获得几个项目优秀?(3)若该地区共有2万名初中学生,请估计他们表达能力为优秀的学生有多少人?测试2 平均数(二)学习要求加强实际问题中平均数的计算,体会用样本平均数估计总体平均数的思想.课堂学习检测一、填空题1.已知7,4,5和x的平均数是5,则x=______.2.某校12名同学参加数学科普活动比赛,其中8名男同学的平均成绩为85分,其余的女同学的平均成绩为76分,则该校12名同学的平均成绩为______分.3.某班50名学生平均身高168cm,其中30名男生平均身高170cm,则20名女生的平均身高为______cm.二、选择题4.如果a、b、c的平均数是4,那么a-1,b-5和c+3的平均数是( ).(A)-1 (B)3 (C)5 (D)95那么这次知识问答全班的平均成绩是( )(结果保留整数).(A)80分(B)81分(C)82分(D)83分三、解答题6.某班有学生52人,期末数学考试平均成绩是72分.有两名同学下学期要转学,已知他俩的成绩分别为70分和80分.求他俩转学后该班的数学平均分.7.某瓜农采用大棚栽培技术种植了1亩地的两种西瓜,共产出了约600个西瓜.在西瓜上计算这10个西瓜的平均质量,并估计这1亩地的西瓜产量是多少千克.综合、运用、诊断一、填空题8.如果一组数据中有3个6、4个-1,2个-2、1个0和3个x,其平均数为x,那么x=______.9若该小组的平均成绩为7.7环,则成绩为8环的人数是______.二、选择题10.一次考试后,某学习小组组长算出全组5位同学数学的平均分为M,如果把M当成另一个同学的分数,与原来的5个分数一起,算出这6个分数的平均数为N,那么M∶N 为( ).(A)5∶6 (B)1∶1 (C)6∶5 (D)2∶111.某辆汽车从甲地以速度v 1匀速行驶至乙地后,又从乙地以速度v 2匀速返回甲地,则汽车在这个行驶过程中的平均速度是( ).(A)2121v v v v +(B) 2121v v vv + (C)221v v + (D) 21212v v vv +12.某同学在用计算器求30个数据的平均数时,错将其中一个数据105输入为15,那么由此算出的平均数与实际平均数的差为( ). (A)3 (B)-3 (C)3.5 (D)-3.5 三、解答题13.我国从2008年6月1日起执行“限塑令”.“限塑令”执行前,某校为了了解本校学生所在家庭使用塑料袋的数量情况,随机调查了10名学生所在家庭每月使用塑料袋的数量,结果如下(单位:只)65 70 85 75 79 74 91 81 95 85 (1)计算这10名学生所在家庭平均每月使用塑料袋多少只?(2)“限塑令”执行后,家庭每月使用塑料袋数量预计将减少50%.根据上面的计算结果,估计该校1000名学生所在家庭每月使用塑料袋可减少多少只?拓展、探究、思考一、解答题14.某中学为了了解本校学生的身体发育情况,抽测了同年龄的40名女学生的身高情况,统计人员将上述数据整理后,列出了频数分布表如下:根据以上信息回答下列问题: (1)频数分布表中的A =______;(2)这40名女学生的平均身高是______cm(精确到0.1cm). 15.某人为了了解他所在地区的旅游情况,收集了该地区2004至2007年每年的旅游收入及入境旅游人数(其中缺少2006年入境旅游人数)的有关数据,整理并分别绘成图1,图2.图1 图2根据上述信息,回答下列问题:(1)该地区2004至2007年四年的年旅游收入的平均数是______亿元;(2)据了解,该地区2006年、2007年入境旅游人数的年增长率相同,那么2006年入境旅游人数是______万人;(3)根据第(2)小题中的信息,请把图2补画完整.测试3 中位数和众数(一)学习要求了解中位数和众数的意义,掌握它们的求法.课堂学习检测一、填空题1.学校篮球集训队11名队员进行定点投篮训练,将11名队员在1分钟内投进篮筐的球数由小到大排序后为6,7,8,9,9,9,9,10,10,10,12,这组数据的众数和中位数分别是______.2.资阳市某学校初中2008级有四个绿化小组,在植树节这天种下柏树的棵数如下:10,10,x,8,若这组数据的众数和平均数相等,那么它的中位数是______棵.3.已知数据1,2,x和5的平均数是2.5,则这组数据的众数是______.二、选择题4.对于数据2,4,4,5,3,9,4,5,1,8,其众数、中位数和平均数分别为( ).(A)4 4 6 (B)4 6 4.5 (C)4 4 4.5 (D)5 6 4.55.为了筹备班里的新年联欢会,班长以全班同学最爱吃哪几种水果做民意调查,以决定最终买什么水果.该次调查结果最终应该由数据的( )决定.(A)平均数(B)中位数(C)众数(D)无法确定6.一名射击运动员连续打靶8次,命中的环数如图所示,这组数据的众数与中位数分别为( )(A)9与8(B)8与9(C)8与8(D)8.5与9三、解答题7.公园里有甲、乙两群游客正在进行团体活动,两群游客的年龄如下(单位:岁):甲群:13 13 14 15 15 15 1 5 16 17 17;乙群:3 4 4 5 5 6 6 54 57.回答下列问题:(1)甲群游客的平均年龄是______岁,中位数是______岁,众数是______,其中______能较好地反映这群游客的年龄特征:(2)乙群游客的平均年龄是______岁,中位数是______岁,众数是______,其中______能较好地反映这群游客的年龄特征.8.某饮食公司为一学校提供午餐,有3元、4元和5元三种价格的饭菜供师生选择(每人限定一份).如图,是五月份的销售情况统计图,这个月一共销售了10400份饭菜,那么师生购买午餐费用的平均数、中位数和众数各是多少?综合、运用、诊断一、填空题9成绩/米 1.50 1.60 1.65 ⒈70 1.75 1.80 1.85 1.90人数/人 2 3 2 3 4 1 1 1那么运动员成绩的众数是______,中位数是______,平均数是______.10.如果数据20,30,50,90和x的众数是20,那么这组数据的中位数是______,平均数是______.二、选择题11.已知数据x,5,0,3,-1的平均数是1,那么它的中位数是( ).(A)0 (B)2.5 (C)1 (D)0.512.如果一组数据中有一个数据变动,那么( ).(A)平均数一定会变动(B)中位数一定会变动(C)众数一定会变动(D)平均数、中位数和众数可能都不变三、解答题13.某校八年级(1)班50名学生参加2009年贵阳市数学质量监控考试,全班学生的成绩统成绩/分71 74 78 80 82 83 85 86 88 90 91 92 94 人数/人 1 2 3 5 4 5 3 7 8 4 3 3 2 请根据表中提供的信息解答下列问题:(1)该班学生考试成绩的众数是______;(2)该班学生考试成绩的中位数是______;(3)该班张华同学在这次考试中的成绩是83分,能不能说张华同学的成绩处于全班中游偏上水平?试说明理由.14.某中学要召开运动会,决定从九年级全部的150名女生中选30人,组成一个花队(要求参加花队的同学的身高尽可能接近).现在抽测了10名女生的身高,结果如下(单位:厘米):166 154 151 167 162 158 158 160 162 162.(1)依据数据估计,九年级全体女生的平均身高约是多少?(2)这10名女生的身高的中位数和众数各是多少?(3)请你依据本数据,设计一个挑选参加花队的女生的方案.(要简要说明)拓展、探究、思考一、选择题15.国家规定“中小学生每天在校体育活动时间不低于1小时”.为此,我市就“你每天在校体育活动时间是多少”的问题随机调查了某区300名初中学生,根据调查结果绘制成的统计图(部分)如图所示,其中分组情况是:A组:t<0.5h;B组:0.5h≤t<1h;C组:1h≤t<1.5h;D组:t≥1.5h.根据上述信息,你认为本次调查数据的中位数落在( ).(A)B组(B)C组(C)D组(D)A组二、解答题16.为了解某校九年级学生体育测试成绩情况,现从中随机抽取部分学生的体育成绩统计如下,其中右侧扇形统计图中的圆心角 为36°.体育成绩统计表体育成绩/分人数/人百分比/%26 8 1627 2428 152930 m根据上面提供的信息,回答下列问题:(1)写出样本容量、m的值及抽取部分学生体育成绩的中位数;(2)已知该校九年级共有500名学生,如果体育成绩达28分以上(含28分)为优秀,请估计该校九年级学生体育成绩达到优秀的总人数.测试4 中位数和众数(二)学习要求进一步理解平均数、中位数和众数所代表的不同的数据特征.课堂学习检测一、填空题1.在一组数据中,受最大的一个数据值影响最大的数据代表是______.2.数据2,2,1,5,-1,1的众数和中位数之和是______.二、选择题3.某班第一小组7名同学的毕业升学体育测试成绩(满分30分)依次为:25,23,25,23,27,30,25,这组数据的中位数和众数分别是( )(A)23 25 (B)23 23 (C)25 23 (D)25 254.为调查八年级学生完成作业的时间,某校抽查了8名学生完成作业的时间,依次是:75,70,90,70,70,58,80,55(单位:分钟),那么这组数据的众数、中位数和平均数依次为( ).(A)70 70 71 (B)70 71 70 (C)71 70 70 (D)70 70 70三、解答题5.某校九年级举行了一次数学测验,为了估计平均成绩,在619份试卷中抽取一部分试卷的成绩如下:有1人100分,2人90分,12人85分,8人80分,10人75分,5人70分.(1)求出样本平均数、中位数和众数;(2)估计全年级的平均分.6(2)假设副董事长的工资提升到2万元,董事长的工资提升到3万元,那么新的职工月工资的平均数、中位数和众数是什么?(3)你认为哪个统计量更能反映这个公司员工的工资水平?谈一谈你的看法.综合、运用、诊断一、填空题7.已知a<b<c<d,则数据a,a,b,c,d,b,c,c的众数为______,中位数为______,平均数为______.8.一组数据的中位数是m,众数是n,则将这组数据中每个数都减去a后,新数据的中位数是______,众数是______.二、选择题9.有7个数由小到大排列,其平均数是38.如果这组数中前4个数的平均数是33,后4个数的平均数是42,那么这7个数的中位数是( ).(A)34 (B)1 6 (C)38 (D)20三、解答题10.文艺会演中,参加演出的10个班各派1名代表担任评委给演出打分,1班和2班的成绩如下:评委班级 1 2 3 4 5 6 7 8 9 101班得分8 7 7 4 8 7 8 8 8 82班得分7 8 8 10 7 7 8 7 7 7(1)若根据平均数作为评选标准,两个班谁将获胜?你认为公平吗?为什么?(2)采用怎样的方法,对参赛的班级更为公平?如果采用你提供的方法,两个班谁将获胜?11.某同学为了完成统计作业,对全校的耗电情况进行调查.他抽查了10天中全校每天的耗电量,数据如下(单位:度):度数90 93 102 113 114 120天数 1 1 2 3 1 2(1)写出上表中数据的众数和平均数;(2)由(1)获得的数据,估计该校一个月(按30天计算)的耗电量;(3)若当地每度电的定价是0.5元,写出该校应付的电费y(元)与天数x(取正整数)之间的函数关系式.拓展、探究、思考一、解答题12.在学校组织的“喜迎奥运,知荣明耻.文明出行”的知识竞赛中,每班参加比赛的人数相同,成绩分为A,B,C,D四个等级,其中相应等级的得分依次记为100分,90分,80分,70分.学校将某年级的1班和2班的成绩整理并绘制成如下的统计图:请你根据以上提供的信息解答下列问题:(1)此次竞赛中,2班成绩在C级以上(包括C级)的人数为______;(2)平均数/分中位数/分众数/分1班87.6 902班87.6 100(3)①从平均数和中位数的角度来比较1班和2班的成绩;②从平均数和众数的角度来比较1班和2班的成绩;③从B级以上(包括B级)的人数的角度来比较1班和2班的成绩.测试5 极差和方差(一)学习要求了解极差和方差的意义和求法,体会它们刻画数据波动的不同特征.课堂学习检测一、填空题1.一组数据100,97,99,103,101中,极差是______,方差是______. 2.数据1,3,2,5和x 的平均数是3,则这组数据的方差是______. 3.一个样本的方差1212s [(x 1-3)2+(x 2-3)2+…+(x n -3)2],则样本容量是______,样本平均数是______. 二、选择题4.一组数据-1,0,3,5,x 的极差是7,那么x 的值可能有( ). (A)1个 (B)2个 (C)4个 (D)6个 5.已知样本数据1,2,4,3,5,下列说法不正确的是( ). (A)平均数是3 (B)中位数是4 (C)极差是4 (D)方差是2 三、解答题6.甲、乙两组数据如下:甲组:10 9 11 8 12 13 10 7; 乙组:7 8 9 10 11 12 11 12.分别计算出这两组数据的极差和方差,并说明哪一组数据波动较小.7.为检测一批橡胶制品的弹性,现抽取15条皮筋的抗拉伸程度的数据(单位:牛): 5 4 4 4 5 7 3 3 5 5 6 6 3 6 6 (1)这批橡胶制品的抗拉伸程度的极差为______牛;(2)若生产产品的抗拉伸程度的波动方差大于1.3,这家工厂就应对机器进行检修,现在这家工厂是否应检修生产设备?通过计算说明.综合、运用、诊断一、填空题8.随机从甲、乙两块试验田中各抽取100株麦苗测量高度,计算平均数和方差的结果:甲x =13,乙x =13,2甲s =3.6,2乙s =15.8,则小麦长势比较整齐的试验田是______.9.把一组数据中的每个数据都减去同一个非零数,则平均数______,方差______.(填“改变”或“不变”) 二、选择题10.关于数据-4,1,2,-1,2,下面结果中,错误的是( ).(A)中位数为1 (B)方差为26 (C)众数为2 (D)平均数为011.某工厂共有50名员工,他们的月工资方差是s 2,现在给每个员工的月工资增加200元,那么他们的新工资的方差( ).(A)变为s2+200 (B)不变(C)变大了(D)变小了12.数据-1,0,3,5,x的极差为7,那么x等于( ).(A)6 (B)-2 (C)6或-2 (D)不能确定三、解答题13.甲、乙两个组各10名同学进行英语口语会话测试,每个人测试5次,每个同学合格的次数分别如下:甲组:4 1 2 2 1 3 3 1 2 1;乙组:4 3 0 2 1 3 3 0 1 3.(1)如果合格3次以上(含3次)为及格标准,请你说明哪个小组的及格率高;(2)请你比较两个小组口语会话的合格次数谁比较稳定.测试6 极差和方差(二)学习要求体会用样本方差估计总体方差的思想,掌握分析数据的思想和方法.课堂学习检测一、选择题 1.如图是根据某地2008年4月上旬每天最低气温绘成的折线图,那么这段时间最低气温的极差、众数、平均数依次是( ).A .5° 5° 4°B .5° 5° 4.5°C .2.8° 5° 4°D .2.8° 5° 4.5°2.已知甲、乙两组数据的平均数都是5,甲组数据的方差2甲s =121,乙组数据的方差2乙s =101,那么下列说法正确的是( ).(A)甲组数据比乙组数据的波动大 (B)乙组数据比甲组数据的波动大 (C)甲组数据与乙组数据的波动一样大 (D)甲、乙两组数据的波动大小不能比较 二、填空题3.已知一组数据1,2,0,-1,x ,1的平均数是1,则这组数据的极差为______. 4.样本数据3,6,a ,4,2的平均数是5,则这个样本的方差是______.综合、运用、诊断一、填空题5.样本数据3,6,a ,4,2的平均数是5,则这个样本的方差是______.6.已知样本x 1、x 2,…,x n 的方差是2,则样本3x 1+2,3x 2+2,…,3x n +2的方差是_____ ____.7.如图,是甲、乙两地5月上旬的日平均气温统计图,则甲、乙两地这6天日平均气温的方差大小关系为:2甲s ______2乙s (填“<”或“>”号),甲、乙两地气温更稳定的是:______.二、解答题8.星期天上午,茱萸湾动物园熊猫馆来了甲、乙两队游客,两队游客的年龄如下表所示:甲队.年龄13 14 15 16 17人数 2 1 4 1 2乙队:年龄 3 4 5 6 54 57人数 1 2 2 3 1 1(1)根据上述数据完成下表:平均数中位数众数方差甲队游客年龄15 15乙队游客年龄15 411.4(2)根据前面的统计分析,回答下列问题:①能代表甲队游客一般年龄的统计数据是_____________________;②平均数能较好地反映乙队游客的年龄特征吗?为什么?9.为了解某品牌A,B两种型号冰箱的销售状况,王明对其专卖店开业以来连续七个月的销售情况进行了统计,并将得到的数据制成如下的统计表:月份1月2月3月4月5月6月7月A型销售量/台10 14 17 16 13 14 14B型销售量/台 6 10 14 15 16 17 20(1)完成下表(结果精确到0.1):平均数中位数方差A型销售量14B型销售量14 18.6(2)请你根据七个月的销售情况在图中绘制成折线统计图,并依据折线图的变化趋势,对专卖店今后的进货情况提出建议(字数控制在20~50字).参考答案第二十章 数据的分析测试1 平均数(一)1.9.2. 2.8;2. 3.9.70. 4.B . 5.C . 6.(1)略;(2)178,178;(3)甲队,理由略. 7.小明8.900. 9.1.625. 10.80.4;体育技能测试. 11.A . 12.D . 13.够用;∵30×10×1.7=510<600. 14.(1)41元;(2)49200元.15.(1)解题技巧,动手能力;(2)2.84;(3)7000.测试2 平均数(二)1.4. 2.82. 3.165. 4.B . 5.C . 6.88.715070805272=--⨯(分).7.10个西瓜的平均质量51013.416.429.430.524.515.5=⨯+⨯+⨯+⨯+⨯+⨯ (千克),估计总产量是5×600=3000(千克).8.1. 9.4. 10.B . 11.D . 12.B . 13.(1)80; (2)4000.14.(1)6;(2)158.8. 15.(1)45; (2)220;(3)略.测试3 中位数和众数(一)1.9;9. 2.11. 3.2. 4.C . 5.C . 6.C .7.(1)15,15,15,平均数、中位数和众数;(2)16,5,4、5和6,中位数和众数.8.按百分比计算得这个月3元、4元和5元的饭菜分别销售10400×20%=2080份,10400×65%=6760份,10400×15%=1560份,所以师生购买午餐费用的平均数是95.310400515604676032080=⨯+⨯+⨯元;中位数和众数都是4元.9.1.75;1.70;1.69. 10.30;42. 11.A . 12.A . 13.(1)88;(2)86;(3)不能.因为83小于中位数. 14.(1)平均身高为16010162162160158162167151154166=++++++++(厘米);(2)中位数是161厘米,众数是162厘米;(3)根据(1)(2)的计算可知,大多数女生的身高应该在160厘米和162厘米之间,因此可以选择这部分身高的女生组成花队. 15.B .16.(1)50,5,28;(2)300.测试4 中位数和众数(二)1.平均数. 2.2.5或3.5. 3.D . 4.A .5.(1)样本平均数是80分,中位数是80分,众数是85分;(2)估计全年级平均80分. 6.(1)平均数是209133200350051000115002200013500140001500≈⨯+⨯+⨯+⨯+⨯+⨯+⨯+(元),中位数和众数都是1500(元); (2)平均数是32883320035005100011500220001185001285001500≈⨯+⨯+⨯+⨯+⨯+⨯+⨯+(元),中位数和众数都是1500(元).(3)中位数和众数都能反映该公司员工的工资水平.而公司中少数人的工资与大多数人的工资差别较大,导致平均数和中位数偏差较大,所以平均数不能反映该公司员工的工资水平. 7.⋅++++8322;2;dc b a c b c 8.m -a ;n -a . 9.A . 10.(1)3.7101437681=⨯+⨯+⨯=x (分),6.71011067382=⨯+⨯+⨯=x (分),2班将获胜;我认为不公平,因为4号评委给两个班的打分明显有偏差,影响了公正性;(2)可以采取去掉一个最高分和一个最低分后,再计算平均数,这样1班获胜;也可以用中位数来衡量标准,也是1班获胜. 11.(1)众数是113度,平均数是108度;(2)估计一个月的耗电量是108×30=3240(度); (3)解析式为y =54x (x 是正整数).12.(1)21; (2)1班众数:90分;2班中位数:80分;(3)略测试5 极差和方差(一)1.6;4. 2.2. 3.12;3. 4.B . 5.B .6.甲组的极差是6,方差是3.5;乙组的极差是5,方差是3;说明乙组的波动较小. 7.(1)4;(2)方差约是1.5,大于1.3,说明应该对机器进行检修. 8.甲. 9.改变;不变. 10.B . 11.B . 12.C . 13.(1)甲组及格率是30%,乙组及格率是50%,乙组及格率高;(2)甲x =2,乙x =2,2甲s =1,2乙s =1.8,甲组更稳定. 测试6 极差和方差(二)1.B . 2.B. 3.4. 4.8. 5.8. 6.18. 7.>,乙. 8(2)①平均数;②不能;方差太大.9.(1)A 型:平均数 14;方差4.3(约);B 型:中位数 15. (2)略.。

人教版八年级下册第20章数据的分析单元测试题含答案

人教版八年级下册第20章数据的分析单元测试题含答案

第4题图55%25%20%4元3元2元③②①③②①第20章《数据的分析》单元测试题一、选择题(本大题共分12小题,每小题2分共24分)1.某班七个兴趣小组人数分别为:3,3,4,4,5,5,6,则这组数据的中位数是()A. 2B. 4C. 4.5D. 52.数据2、4、4、5、5、3、3、4的众数是()A. 2B. 3C. 4D. 53.已知样本x1,x2,x3,x4的平均数是2,则x1+3,x2+3,x3+3,x4+3的平均数是()A. 2B. 2.75C. 3D. 54.学校食堂有2元,3元,4元三种价格的饭菜供师生选择(每人限购一份).如图是某月的销售情况统计图,则该校师生购买饭菜费用的平均数和众数是()A. 2.95元,3元B. 3元,3元C. 3元,4元D. 2.95元,4元5.如果a、b、c的中位数与众数都是5,平均数是4,且a≤b≤c,那么a可能是()A. B. 3 C. 4 D. 56.已知甲、乙两组数据的平均数相等,若甲组数据的方差=0.055,乙组数据的方差=0.105,则()A.甲组数据比乙组数据波动大B. 乙组数据比甲组数据波动大C.甲组数据与乙组数据的波动一样大 D. 甲、乙两组数据的数据波动不能比较7.样本数据3,6,a,4,2的平均数是4,则这个样本的方差是()A. 4B.2C. 3D. 28.某同学5次上学途中所花的时间(单位:分钟)分别为x,y,10,11,9,已知这组数据的平均数为10,方差为2,则yx 的值为()A. 1B. 2C. 3D. 49.若样本x1+1,x2+1,x3+1,…,x n+1的平均数为18,方差为2,则对于样本x1+2,x2+2,x3+2,…,x n+2,下列结论正确的是()A.平均数为18,方差为2B.平均数为19,方差为3C.平均数为19,方差为2D.平均数为20,方差为410.小波同学将某班级毕业升学体育测试成绩(满分30分)统计整理,得到下表,则下列说法错误的是()A.该组数据的众数是24分B.该组数据的平均数是25分C.该组数据的中位数是24分D.该组数据的极差是8分11.为了解某校计算机考试情况,抽取了50名学生的计算机考试进行统计,统计结果如下表所示,则50名学生计算机考试成绩的众数、中位数分别为()考试分数(分)20 16 12 8人数24 18 5 3第18题图分数/分测验6测验5测验4测验3测验2测验1 A.20,16 B.16,20 C.20,12 D.16,12 12.如果将一组数据中的每一个数都乘以一个非零常数,那么该组数据的() A.平均数改变,方差不变 B.平均数改变,方差改变 C.平均数不变,方差改变 D.平均数不变,方差不变 二、填空题(本大题共8小题,每小题3分,共24分)13.有10个数据的平均数为12,另有20个数据的平均数为15,那么所有这30个数据的平均数是 . 14.若x 1,x 2,x 3的平均数为7,则x 1+3,x 2+2,x 3+4的平均数为 . 15.一组数据1,6,x ,5,9的平均数是5,那么这组数据的中位数是 . 16.五个数1,2,4,5,a 的平均数是3,则a =,这五个数的方差为 .17.若10个数的平均数是3,极差是4,则将这10个数都扩大10倍,则这组数据的平均数是 ,极差是 .18.如图是某同学6次数学测验成绩统计表,则该同学6次成绩的中位数是 .19. 已知数据3x 1,3x 2,3x 3,…,3x n 的方差为3,则一组新数据6x 1,6x 2,…,6x n 的方差是 . 20.已知样本99,101,102,x ,y (x ≤y )的平均数为100,方差为2,则x = ,y = . 三、解答题(本大题共52分)21.计算题(每小题6分,共12分)(1)若1,2,3,a 的平均数是3;4,5,a ,b 的平均数是5.求:0,1,2,3,4,a ,b 的方差是多少?(2)有七个数由小到大依次排列,其平均数是38,如果这组数的前四位数的平均数是33,后四个数的平均数是42. 求它们的中位数.22.(本小题10分)如图是根据某班40名同学一周的体育锻炼情况绘制的条形统计图.那么该班学生每周锻炼时间的中位数是多少?012341245678345678环数环数次甲乙23.(本小题10分)如图是某中学乒乓球队队员年龄分布的条形图. ⑴计算这些队员的平均年龄; ⑵大多数队员的年龄是多少? ⑶中间的队员的年龄是多少?24.(本小题10分)甲、乙两人在相同的条件下各射靶5次,每次射靶的成绩情况如图所示:(1)你根据图中的数据填写下表:(2)从平均数和方差相结合看,分析谁的成绩好些.25.(本小题10分)为了普及环保知识,增强环保意识,某中学组织了环保知识竞赛,初中三个年级根据初赛成姓名 平均数(环) 众数(环)方差 甲乙⑴请你填写下表:⑵请从以下两个不同的角度对三个年级的决赛成绩进行分析:①从平均数和众数相结合看(分析哪个年级成绩好些);②从平均数和中位数相结合看(分析哪个年级成绩好些)③如果在每个年级分别选出3人参加决赛,你认为哪个年级的实力更强一些?并说明理由.参考答案:一、1.B;2.C;3.D;4.A;5.A;6.B;7.D;8.D;9.C;10.B;11.A;12.B;二、13.14;14.10;15.5;16.3,2;17.30,40;18.75分;19.12;20.98,100;三、21. ⑴由=3 得a=6;由=5 得b=50,1,2,3,4,6,5的平均数为3,∴=4.⑶设七个数为a,b,c,d,e,f,g,a<b<c<d<e<f<g依题意得=38 ①,=33 ②,=42 ③,由①、②得e+f+g=7×38-33×4 ④,将④代入③得d=34.22.因为有40名学生,所以中位数应是从小到大排列后的第20、第21个数据的平均数.因为从图中可以看到锻炼时间是7小时的有3人;锻炼8小时的有16人,3+16=19人;锻炼9小时的有14人;所以,该班学生的每周锻炼时间中位数是9小时.23. ⑴这些队员平均年龄是:=15⑵大多数队员是15岁⑶中间的队员的年龄是15岁24. ⑴甲:6,6,0.4 乙:6,6,2.8⑵甲、乙成绩的平均数都是6,且<,所以,甲的成绩较为稳定,甲成绩比乙成绩要好些.25.⑴七年级众数是80;八年级中位数是86;九年级的平均数为85.5,众数为78.⑵①从平均数和众数相结合看,八年级的成绩好些.②从平均数和中位数相结合看,七年级成绩好些.⑶九年级.。

人教版八年级下册数学《第20章 数据的分析》单元测试卷 试题试卷 含答案解析(1)

人教版八年级下册数学《第20章 数据的分析》单元测试卷 试题试卷 含答案解析(1)

人教版八年级下册数学《第20章数据的分析》单元测试卷一、选择题(共9小题,满分36分)1.某商店5天的营业额如下(单位:元):14845,25706,18957,11672,16330,利用计算器求得这5天的平均营业额是()A.18116元B.17805元C.17502元D.16678元2.某工厂为了选拔1名车工参加加工直径为10mm的精密零件的技术比赛,随机抽取甲、乙两名车工加工的5个零件,现测得的结果如下表,请你用计算器比较S2甲、S2乙的大小()甲10.0510.029.979.9610乙1010.0110.029.9710A.S2甲>S2乙B.S2甲=S2乙C.S2甲<S2乙D.S2甲≤S23.一组数据5,3,3,2,5,7的中位数是()A.2B.2.5C.3D.44.2022年杭州亚运会以“中国新时代•杭州新亚运”为定位.“中国风范、浙江特色、杭州韵味、共建共享”为目标,秉持“绿色、智能、节俭、文明”的办会理念,坚持“以杭州为主,全省共享”的办赛原则,高质量推进亚运会筹办工作,某校对亚运知识进行了相关普及,学生会为了了解学生掌握情况,从中抽取50名学生成绩,列表如下:分数(分)9092949698100人数(人)241081511根据表格提供的信息可知,这组数据的众数与中位数分别是()A.100分,95分B.98分.95分C.98分,98分D.97分,98分5.在一次科技作品制作比赛中,某小组六件作品的成绩(单位:分)分别是:7,10,9,8,7,9.对这组数据,下列说法正确的是()A.平均数是7B.众数是7C.极差是5D.中位数8.5 6.甲、乙两人在相同条件下进行射击练习,每人10次射击成绩的平均数都是8环,方差分别为S甲2=1.4,S乙2=0.6,则两人射击成绩波动情况是()A.甲波动大B.乙波动大C.甲、乙波动一样D.无法比较7.一组数据x、0、1、﹣2、3的平均数是1,则x的值是()A.3B.1C.2.5D.08.某校评价项目化成果展示,对甲、乙、丙、丁展示成果进行量化评分,具体成绩(百分制)如表,如果按照创新性占55%,实用性占45%计算总成绩,并根据总成绩择优推广,那么应推广的作品是()项目作品甲乙丙丁创新性87939091实用性90919093A.甲B.乙C.丙D.丁9.某校九年级有9名同学参加“建党一百周年”知识竞赛,预赛成绩各不相同,要取前5名参加决赛.小兰已经知道了自己的成绩,她想知道自己能否进入决赛,还需要知道这9名同学成绩的()A.中位数B.众数C.平均数D.方差二、填空题(共9小题,满分36分)10.一组数据1,6,3,﹣4,5的极差是.11.一鞋店试销一种新款式鞋,试销期间卖出情况如表:型号2222.52323.52424.525数量(双)351015832鞋店经理最关心哪种型号鞋畅销,则下列统计量对鞋店经理来说最有意义的是.(填“平均数”、“众数”或“中位数”)12.有甲、乙两组数据,如表所示:甲1012131416乙1212131414甲、乙两组数据的方差分别为s甲2,s乙2,则s甲2s乙2(填“>”、“<”或“=”).13.某车间20名工人每天加工零件数如表所示:每天加工零件数45678人数36542这些工人每天加工零件数的众数、中位数分别是.14.在某学校开展的艺术作品征集活动中,五个班上交的作品数量(单位:件)分别为:46,45,49,42,50,则这组数据的中位数是.15.某同学用计算器求20个数据的平均数时,错将一个数据75输入为15,那么由此求出的平均数与实际平均数的差是.16.某电力公司需招聘一名电工技师,对应聘者李某从形象、实践操作、理论检测三个方面进行量化考核.李某各项得分如表:考查项目形象实践操作理论检测李技师85分90分80分该公司规定:形象、实践操作、理论检测得分分别按20%,50%,30%的比例计入总分,则应聘者李某的总分为分.17.已知数据a,b,c的平均数为8,那么数据a+1,b+1,c+1的平均数是.18.利用计算器求数据2,1,3,4,3,5的平均数是;方差;中位数.三、解答题(共6小题,满分78分)19.河南省对居民生活用电采用阶梯电价,鼓励居民节约用电,其中年用电量为2160千瓦时及以下执行基础电价0.56元/千瓦时;2160~3120千瓦时的部分按0.61元/千瓦时收费;超过3120千瓦时的部分按0.86元/千瓦时收费.为了解某小区居民生活用电情况.调查小组从该小区随机调查了200户居民的月平均用电量x(千瓦时),并将全部调查数据分组统计如下:组别60<x≤100100<x≤140140<x≤180180<x≤220220<x≤260260<x≤300频数(户数)2842a302010把这200个数据从小到大排列后,其中第96到第105(包含第96和第105这两个数据)个数据依次为:148148150152152154160161161162根据以上信息,回答下列问题:(1)本次调查中,该小区居民月平均用电量的中位数为,表中a=;(2)估计该小区能享受基础电价的居民占全小区的百分比;(3)国家在制订收费标准时,为了减轻居民用电负担,制订的收费标准能让85%的用户享受基础电价.请你根据以上信息对该小区居民的用电情况进行评价,并写出一条建议.20.2021年12月4日是我国第二十一个法制宣传日,也是第八个国家宪法日.为大力弘扬宪法精神,维护宪法权威,普及宪法知识,进一步增强学生的法制观念,某学校在全校七、八年级共2000名学生中开展“国家宪法日”知识竞赛,并从七、八年级学生中各抽取20名学生统计这部分学生的竞赛成绩(竞赛成绩均为整数,满分10分,6分及以上为合格).相关数据统计、整理如下:七年级抽取的学生的竞赛成绩:2,4,5,6,7,7,7,7,7,7,8,8,9,9,9,9,9,10,10,10.八年级抽取的学生的竞赛成绩:4,5,5,5,6,6,7,7,7,8,8,8,8,8,9,9,10,10,10,10.七、八年级抽取的学生的竞赛成绩的统计表年级七年级八年级平均数7.57.5中位数7.5m众数n8根据以上信息,解答下列问题:(1)填空:m=,n=;(2)你觉得哪个年级学生的知识竞赛成绩更好?请说明理由(一条理由即可);(3)若该校七、八年级学生人数均为1000人,估计本次竞赛中成绩合格的人数.21.至善中学七年一班期中考试数学成绩平均分为84.75,该班小明的数学成绩为92分,把92与84.75的差叫做小明数学成绩的离均差,即小明数学成绩的离均差为+7.25.(1)该班小丽的数学成绩为82分,求小丽数学成绩的离均差.(2)已知该班第一组8名同学数学成绩的离均差分别为:+10.25,﹣8.75,+31.25,+15.25,﹣3.75,﹣12.75,﹣10.75,﹣32.75.①求这组同学数学成绩的最高分和最低分;②求这组同学数学成绩的平均分;③若该组数学成绩最低的同学达到及格的72分,则该组数学成绩的平均分是否达到或超过班平均分?超过或低于多少分?22.21世纪已经进入了中国太空时代,2021年到2022年,我国会通过11次航天发射完成空间站建设,空间站由“天和”核心舱、“问天”和“梦天”两个实验舱,我国空间站的建成将为开展太空实验及更广泛的国际合作提供精彩舞台.校团委以此为契机,组织了“中国梦•航天情”系列活动.下面是八年级甲,乙两个班各项目的成绩(单位:分):(1)如果根据三项成绩的平均分计算最后成绩,请通过计算说明甲、乙两班谁将获胜;(2)如果将知识竞赛、演讲比赛、版面创作按5:3:2的比例确定最后成绩,请通过计算说明甲乙两班谁将获胜.项目班次知识竞赛演讲比赛版面创作甲859188乙90848723.某校为了了解九年级学生在寒假期间的数学学习情况,开学之际进行了一次数学小测验(满分100分),并从甲、乙两个班各抽取10名学生的测验成绩进行统计分析.收集数据:甲班:90,90,70,90,100,80,80,90,95,65乙班:95,70,80,90,70,80,95,80,100,90整理数据成绩x (分)60≤x≤7070<x≤8080<x≤9090<x≤100甲班2242乙班23a3分析数据数据平均数中位数众数甲班8590d乙班b c80解答下列问题:(1)直接写出a、b、c、d的值;(2)小明同学说:“这次测验我得了90分,在我们小组中属于中游偏上!”观察上面的表格判断,小明可能是班的学生;(3)若乙班共有50人参加测验,请估计乙班测验成绩超过90分的人数.24.2022年北京冬奥会的成功举办,掀起了广大群众的冰雪热情.某学校社团发起了对同学们的冰雪运动知识了解程度的调查,现从初中、高中各随机抽取了15名同学进行知识问答测试,测试成绩用x表示,共分成4组:A:70以下.B:70≤x<80.C;80≤x<90,D:90≤x<100,对成绩进行整理分析,给出了下面部分信息:初中同学的测试成绩在C组中的数据为:81,85,88.高中同学的测试成绩:76,83,71,100,81,100,82,88,95,90,100,86,89,93,86.成绩统计表如表:校部平均数中位数最高分众数极差初中88a989832高中8888100b c (1)a=,b=,c=;(2)通过以上数据分析,你认为(填“初中”或“高中”)的学生对冰雪项目的知识掌握更好?请写出理由(给出一条理由即可);(3)若初中、高中共有2400名学生,请估计此次测试成绩达到90分及以上的学生共有多少人?参考答案一、选择题(共9小题,满分36分)1.C2.A3.D4.C5.D6.A7.A8.B9.A二、填空题(共9小题,满分36分)10.10.11.众数.12.>.13.5,6.14.46.15.﹣3.16.86.17.9.18.3,,3.三、解答题(共6小题,满分78分)19.解:(1)根据中位数的定义,中位数为按照从小到大排好顺序的数据的第100个和第101个数的平均值,∴中位数为:=153,∵28+42+a+30+20+10=200,∴a=70,故答案为:153,70;(2)年用电量为2160千瓦时及以下执行基础电价,∴每月平均电量为2160÷12=180(千瓦时),从表中可知,200户中,能享受基础电价的户数为:28+42+70=140,∴该小区能享受基础电价的居民占全小区的百分比为:×100%=70%;(3)∵70%<85%,∴不能达到让85%的用户享受基础电价的目标,故该小区用电量较多,应该节约用电,例如离开天气不是太热或太冷时少开空调.20.解:(1)由图表可得:m==8,n=8.故答案为:8,7;(2)八年级学生的知识竞赛成绩更好,理由:八年级的中位数和众数高于七年级的中位数和众数,∴八年级学生的知识竞赛成绩更好;(3)1000×2×=1650(人),答:本次竞赛中成绩合格的人数为1650人.21.解:(1)82﹣84.75=﹣2.75,答:小丽数学成绩的离均差为﹣2.75;(2)①最高分为84.75+31.25=116(分),最低分为84.75﹣32.75=52(分),答:最高分为116分,最低分为52分;②10.25﹣8.75+31.25+15.25﹣3.75﹣12.75﹣10.75﹣32.75=﹣12,﹣12÷8+84.75=83.25(分),答:这组同学的平均分是83.25分;③该组最低分是52分,若达到72分,则增加20分,(﹣12+20)÷8=1,1+83.25=84.25(分),84.75﹣84.25=0.5(分),答:该组数学成绩的平均分没有达到班平均分,低0.5分.22.解:(1)甲班的平均分为:(85+91+88)÷3=88(分),乙班的平均分为:(90+84+87)÷3=87(分),∵88>87,∴甲班将获胜;(2)由题意可得,甲班的平均分为:=87.4(分),乙班的平均分为:=87.6(分),∵87.4<87.6,∴乙班将获胜.23.解:(1)a=10﹣2﹣3﹣3=2,乙班的平均数b=(95+70+80+90+70+80+95+80+100+90)=85(分),乙班成绩按顺序排列后第5个数是80,第6个数是90,所以中位数c=(80+90)=85(分),甲班的众数d=90(分),答:a=2,b=85,c=85,d=90;(2)小明可能是乙班的学生,理由如下:因为甲班的中位数是90分,乙班的中位数是85分,所以小明可能在乙班,故答案为:乙;(3)50×=15(人),答:估计乙班测验成绩超过90分的有15人.24.解:(1)由直方图可知,初中同学的测试成绩15个数据按从小到大的顺序排列,第8个数落在C组的第二个,∵初中同学的测试成绩在C组中的数据为:81,85,88,∴中位数a=85,∵高中同学的测试成绩:76,83,71,100,81,100,82,88,95,90,100,86,89,93,86.∴按从小到大排列是:71,76,81,82,83,86,86,88,89,90,93,95,100,100,100,∴众数b=100,极差c=100﹣71=29,故答案为:85,100,29;(2)根据以上数据,我认为高中的同学对冰雪项目的知识掌握更好.理由:两个校部的平均成绩一样,而高中校部的中位数、最高分、众数均高于初中校部,说明高中校部掌握的较好.故答案为:高中,两个校部的平均成绩一样,而高中校部的中位数、最高分、众数均高于初中校部,说明高中校部掌握的较好(答案不唯一);(3)2400×=960(人).答:此次测试成绩达到90分及以上的学生共有960人.。

人教新版八年级下册数学《第20章 数据的分析》单元测试卷及答案详解(PDF可打印)

人教新版八年级下册数学《第20章 数据的分析》单元测试卷及答案详解(PDF可打印)

人教新版八年级下册《第20章数据的分析》单元测试卷(2)一、选择题1.(3分)点点同学对数据26,36,46,5□,52进行统计分析,发现其中一个两位数的个位数字被黑水涂污看不到了,则计算结果与被涂污数字无关的是()A.平均数B.中位数C.方差D.标准差2.(3分)一组数据2,3,5,5,5,6,9.若去掉一个数据5,则下列统计量中,发生变化的是()A.平均数B.众数C.中位数D.方差3.(3分)某校规定学生的学期学业成绩由三部分组成:平时成绩占20%,期中成绩占30%,期末成绩占50%,小颖的平时、期中、期末成绩分别为85分、90分、92分,则她本学期的学业成绩为()A.85B.90C.92D.894.(3分)人民商场对上周女装的销售情况进行了统计,如下表所示:色黄色绿色白色紫色红色数量(件)10018022080520经理决定本周进女装时多进一些红色的,可用来解释这一现象的统计知识是()A.平均数B.中位数C.众数D.方差5.(3分)期中考试后,班里有两位同学议论他们小组的数学成绩,小晖说:“我们组考分是82分的人最多”,小聪说:“我们组的7位同学成绩排在最中间的恰好也是82分”.上面两位同学的话能反映出的统计量是()A.众数和平均数B.平均数和中位数C.众数和方差D.众数和中位数6.(3分)如图,是学校举行“爱国主义教育”比赛活动中获得前10名学生的参赛成绩,对于这些成绩,下列说法正确的是()A.众数是90分B.中位数是95分C.平均数是95分D.方差是157.(3分)某科普小组有5名成员,身高(单位:cm)分别为:160,165,170,163,172.把身高160cm的成员替换成一位165cm的成员后,现科普小组成员的身高与原来相比,下列说法正确的是()A.平均数变小,方差变小B.平均数变大,方差变大C.平均数变大,方差不变D.平均数变大,方差变小8.(3分)某校为了解八年级参加体育锻炼情况,在八年级学生中随机调查了50名学生一周参加体育锻炼的时间,并根据数据绘成统计图如下,则关于这50个数据的说法错误的是()A.平均数是9B.众数是9C.中位数是9D.方差是9 9.(3分)某射击队教练为了了解队员训练情况,从队员中选取甲、乙两名队员进行射击测试,相同条件下各射靶5次,成绩统计如表:命中环数678910甲命中相应环数的次数01310乙命中相应环数的次数20021关于以上数据,下列说法错误的是()A.甲命中环数的中位数是8环B.乙命中环数的众数是9环C.甲的平均数和乙的平均数相等D.甲的方差小于乙的方差10.(3分)甲、乙两名同学五次引体向上的测试成绩(个数)如图所示,下列判断正确的是()A.甲的最好成绩比乙好B.甲的成绩的中位数比乙大C.甲的成绩比乙稳定D.甲的成绩的平均数比乙大二、填空题11.(3分)若一组数据8,9,7,8,x,3的平均数是7,则这组数据的众数是.12.(3分)某班一次体育测试中得100分的有4人,90分的有11人,80分的有11人,70分的有8人,60分的有5人,剩下8人,一共得了300分,则平均数是(精确到0.1),众数是,中位数是.13.(3分)某班学生理化生实验操作测试成绩的统计结果如下表.则这些学生成绩的众数为.成绩/分345678910人数112289151214.(3分)某校为了了解九年级男生的体能情况,规定参加测试的每名男生从“仰卧起坐”、“引体向上”、“耐久跑1000米”三个项目中随机抽取一项作为测试项目.(1)九(1)班的全体25名男生积极参加,参加各项测试项目的统计结果如图所示,则参加“引体向上”测试的男生有名;(2)九(1)班男生参加“耐久跑1000米”测试的部分成绩(单位:分)为:95,100,82,90,95,85.①若九(1)班所有参加“耐久跑1000米”测试的男生成绩的众数是90分,则中位数是分;②如果将不低于90分的成绩评为优秀,请你估计该校九年级抽中“耐久跑1000米”的120名男生的成绩为优秀的约有多少人?15.(3分)如图,是甲、乙两人10次射击成绩(环数)的条形统计图,则甲、乙两人成绩较稳定的是;如果甲又连续射击了5次,且环数均为9环,那么甲的方差变化情况是(填“变大”“变小”或“不变”).三、解答题16.已知有理数﹣3,1,m.(1)计算﹣3,1这两个数的平均数;(2)如果这三个数的平均数是2,求m的值.17.(10分)为了强化学生的环保意识,某校团委在全校举办了“保护环境,人人有责”知识竞赛活动,初、高中根据初赛成绩,各选出5名选手组成初中代表队和高中代表队进行复赛,两个队学生的复赛成绩如图所示:(1)根据图示填写表:平均数中位数众数方差初中队8.50.7高中队8.510(2)小明同学说:“这次复赛我得了8分,在我们队中排名属中游偏下!”小明是初中队还是高中队的学生?为什么?(3)结合两队成绩的平均数、中位数和方差,分析哪个队的复赛成绩较好.18.(10分)某学校举行演讲比赛,选出了10名同学担任评委,并事先拟定从如下4个方案中选择合理的方案来确定每个演讲者的最后得分(满分为10分):方案1:所有评委所给分的平均数.方案2:在所有评委所给分中,去掉一个最高分和一个最低分,然后再计算其余给分的平均数.方案3:所有评委所给分的中位数.方案4:所有评委所给分的众数.为了探究上述方案的合理性,先对某个同学的演讲成绩进行了统计实验,如图是这个同学的得分统计图:(1)分别按上述4个方案计算这个同学演讲的最后得分;(2)根据(1)中的结果,请用统计的知识说明哪些方案不适合作为这个同学演讲的最后得分.19.(80分)某校为了解七、八年级学生对“防溺水”安全知识的掌握情况,从七、八年级各随机抽取50名学生进行测试,并对成绩(百分制)进行整理、描述和分析.部分信息如下:a.七年级成绩频数分布直方图:b.七年级成绩在70≤x<80这一组的是:7072747576767777777879c.七、八年级成绩的平均数、中位数如下:年级平均数中位数七76.9m八79.279.5根据以上信息,回答下列问题:(1)在这次测试中,七年级在80分以上(含80分)的有人;(2)表中m的值为;(3)在这次测试中,七年级学生甲与八年级学生乙的成绩都是78分,请判断两位学生在各自年级的排名谁更靠前,并说明理由;(4)该校七年级学生有400人,假设全部参加此次测试,请估计七年级成绩超过平均数76.9分的人数.人教新版八年级下册《第20章数据的分析》单元测试卷(2)参考答案与试题解析一、选择题1.(3分)点点同学对数据26,36,46,5□,52进行统计分析,发现其中一个两位数的个位数字被黑水涂污看不到了,则计算结果与被涂污数字无关的是()A.平均数B.中位数C.方差D.标准差【考点】标准差;算术平均数;中位数;方差.【分析】利用平均数、中位数、方差和标准差的定义对各选项进行判断.【解答】解:这组数据的平均数、方差和标准差都与第4个数有关,而这组数据的中位数为46,与第4个数无关.故选:B.2.(3分)一组数据2,3,5,5,5,6,9.若去掉一个数据5,则下列统计量中,发生变化的是()A.平均数B.众数C.中位数D.方差【考点】统计量的选择.【分析】依据平均数、中位数、众数、方差的定义和公式分别进行求解即可.【解答】解:A、原来数据的平均数是(2+3+5+5+5+6+9)=5,去掉一个数据5后平均数仍为5,故A与要求不符;B、原来数据的众数是5,去掉一个数据5后众数仍为5,故B与要求不符;C、原来数据的中位数是5,去掉一个数据5后中位数仍为5,故C与要求不符;D、原来数据的方差是:[(2﹣5)2+(3﹣5)2+3×(5﹣5)2+(6﹣5)2+(9﹣5)2]=,去掉一个数据5后,方差是[(2﹣5)2+(3﹣5)2+2×(5﹣5)2+(6﹣5)2+(9﹣5)2]=5,发生变化的是方差;故选:D.3.(3分)某校规定学生的学期学业成绩由三部分组成:平时成绩占20%,期中成绩占30%,期末成绩占50%,小颖的平时、期中、期末成绩分别为85分、90分、92分,则她本学期的学业成绩为()A.85B.90C.92D.89【考点】加权平均数.【分析】根据加权平均数的计算方法计算即可.【解答】解:她本学期的学业成绩为:20%×85+30%×90+50%×92=90(分).故选:B.4.(3分)人民商场对上周女装的销售情况进行了统计,如下表所示:色黄色绿色白色紫色红色数量(件)10018022080520经理决定本周进女装时多进一些红色的,可用来解释这一现象的统计知识是()A.平均数B.中位数C.众数D.方差【考点】统计量的选择.【分析】在决定本周进女装时多进一些红色的,主要考虑的是各色女装的销售的数量,而红色上周销售量最大.【解答】解:在决定本周进女装时多进一些红色的,主要考虑的是各色女装的销售的数量,而红色上周销售量最大.由于众数是数据中出现次数最多的数,故考虑的是各色女装的销售数量的众数.故选:C.5.(3分)期中考试后,班里有两位同学议论他们小组的数学成绩,小晖说:“我们组考分是82分的人最多”,小聪说:“我们组的7位同学成绩排在最中间的恰好也是82分”.上面两位同学的话能反映出的统计量是()A.众数和平均数B.平均数和中位数C.众数和方差D.众数和中位数【考点】统计量的选择.【分析】根据中位数和众数的定义回答即可.【解答】解:在一组数据中出现次数最多的数是这组数据的众数,排在中间位置的数是中位数,故选:D.6.(3分)如图,是学校举行“爱国主义教育”比赛活动中获得前10名学生的参赛成绩,对于这些成绩,下列说法正确的是()A.众数是90分B.中位数是95分C.平均数是95分D.方差是15【考点】方差;算术平均数;中位数;众数.【分析】根据众数、中位数、平均数、方差的定义和统计图中提供的数据分别列出算式,求出答案.【解答】解:A、众数是90分,人数最多,正确;B、中位数是90分,错误;C、平均数是=91(分),错误;D、×[(85﹣91)2×2+(90﹣91)2×5+(100﹣91)2+2(95﹣91)2]=19(分2),错误;故选:A.7.(3分)某科普小组有5名成员,身高(单位:cm)分别为:160,165,170,163,172.把身高160cm的成员替换成一位165cm的成员后,现科普小组成员的身高与原来相比,下列说法正确的是()A.平均数变小,方差变小B.平均数变大,方差变大C.平均数变大,方差不变D.平均数变大,方差变小【考点】方差;算术平均数.【分析】根据平均数、中位数的意义、方差的意义,可得答案.【解答】解:原数据的平均数为×(160+165+170+163+172)=166(cm)、方差为×[(160﹣166)2+(165﹣166)2+(170﹣166)2+(163﹣166)2+(172﹣166)2]=19.6(cm2),新数据的平均数为×(165+165+170+163+172)=167(cm),方差为×[2×(165﹣167)2+(170﹣167)2+(163﹣167)2+(172﹣167)2]=11.6(cm2),所以平均数变大,方差变小,故选:D.8.(3分)某校为了解八年级参加体育锻炼情况,在八年级学生中随机调查了50名学生一周参加体育锻炼的时间,并根据数据绘成统计图如下,则关于这50个数据的说法错误的是()A.平均数是9B.众数是9C.中位数是9D.方差是9【考点】条形统计图;加权平均数;中位数;众数;方差.【分析】利用加权平均数公式、方差公式以及众数、中位数的定义即可求解.【解答】解:A、平均数是:=9,故命题正确;B、众数是9,命题正确;C、中位数是9,命题正确;D、方差是:【2(7﹣9)2+12(8﹣9)2+20(9﹣9)2+10(10﹣9)2】=0.6,故命题错误.故选:D.9.(3分)某射击队教练为了了解队员训练情况,从队员中选取甲、乙两名队员进行射击测试,相同条件下各射靶5次,成绩统计如表:命中环数678910甲命中相应环数的次数01310乙命中相应环数的次数20021关于以上数据,下列说法错误的是()A.甲命中环数的中位数是8环B.乙命中环数的众数是9环C.甲的平均数和乙的平均数相等D.甲的方差小于乙的方差【考点】方差;加权平均数;中位数;众数.【分析】根据中位数、众数、平均数的定义以及方差的计算公式分别对每一项进行分析,即可得出答案.【解答】解:A、把甲命中环数从小到大排列为7,8,8,8,9,最中间的数是8,则中位数是8环,故本选项正确;B、在乙命中环数中,6和9都出现了2次,出现的次数最多,则乙命中环数的众数是6和9,故本选项错误;C、甲的平均数是:(7+8+8+8+9)÷5=8(环),乙的平均数是:(6+6+9+9+10)÷5=8(环),则甲的平均数和乙的平均数相等,故本选项正确;D、甲的方差是:[(7﹣8)2+3×(8﹣8)2+(9﹣8)2]=0.4,乙的方差是:[2×(6﹣8)2+2×(9﹣8)2+(10﹣8)2]=2.8,则甲的方差小于乙的方差,故本选项正确;故选:B.10.(3分)甲、乙两名同学五次引体向上的测试成绩(个数)如图所示,下列判断正确的是()A.甲的最好成绩比乙好B.甲的成绩的中位数比乙大C.甲的成绩比乙稳定D.甲的成绩的平均数比乙大【考点】方差;算术平均数;中位数.【分析】分别计算出两人成绩的平均数、中位数、方差可得出答案.【解答】解:甲同学的成绩依次为:7、8、8、8、9,则其中位数为8,平均数为8,方差为×[(7﹣8)2+3×(8﹣8)2+(9﹣8)2]=0.4;乙同学的成绩依次为:6、7、8、9、10,则其中位数为8,平均数为8,方差为×[(6﹣8)2+(7﹣8)2+(8﹣8)2+(9﹣8)2+(10﹣8)2]=2,∴甲的成绩比乙稳定,甲、乙的平均成绩和中位数均相等,甲的最好成绩比乙低,故选:C.二、填空题11.(3分)若一组数据8,9,7,8,x,3的平均数是7,则这组数据的众数是7和8.【考点】众数;算术平均数.【分析】根据平均数先求出x,再确定众数.【解答】解:因为数据的平均数是7,所以x=42﹣8﹣9﹣7﹣8﹣3=7.根据众数的定义可知,众数为7和8.故答案为:7和8.12.(3分)某班一次体育测试中得100分的有4人,90分的有11人,80分的有11人,70分的有8人,60分的有5人,剩下8人,一共得了300分,则平均数是 6.4(精确到0.1),众数是80和90,中位数是80.【考点】众数;加权平均数;中位数.【分析】根据平均数的定义,用总分除以总人数即可求出平均数,找出出现的次数最多数就是众数,把这47个数从小到大排列,最中间的数是第24个数,即可求出中位数.【解答】解;平均数是:300÷(4+11+11+8+5+8)=300÷47≈6.4,90分的有11人,80分的有11人,出现的次数最多,则众数是80和90,把这47个数从小到大排列,最中间的数是第24个数,是80,则中位数是80;故答案为;6.4,80和90,80.13.(3分)某班学生理化生实验操作测试成绩的统计结果如下表.则这些学生成绩的众数为9.成绩/分345678910人数1122891512【考点】众数.【分析】众数指一组数据中出现次数最多的数据,根据众数的定义就可以求解.【解答】解:本题中数据9出现了15次,出现的次数最多,所以本题的众数是9.故填9.14.(3分)某校为了了解九年级男生的体能情况,规定参加测试的每名男生从“仰卧起坐”、“引体向上”、“耐久跑1000米”三个项目中随机抽取一项作为测试项目.(1)九(1)班的全体25名男生积极参加,参加各项测试项目的统计结果如图所示,则参加“引体向上”测试的男生有9名;(2)九(1)班男生参加“耐久跑1000米”测试的部分成绩(单位:分)为:95,100,82,90,95,85.①若九(1)班所有参加“耐久跑1000米”测试的男生成绩的众数是90分,则中位数是90分;②如果将不低于90分的成绩评为优秀,请你估计该校九年级抽中“耐久跑1000米”的120名男生的成绩为优秀的约有多少人?【考点】众数;用样本估计总体;中位数.【分析】(1)由统计结果图即可得出结果;(2)①根据已知数据通过由小到大排列确定出众数与中位数即可;②求出8名男生成绩的平均数,然后用92与平均数进行比较即可;③求出成绩不低于90分占的百分比,乘以80即可得到结果.【解答】解:(1)由统计结果图得,参加“引体向上”测试的男生有9名;故答案为:9;(2)①九(1)班男生参加“耐久跑1000米”测试的部分成绩从高到低排列为:100,95,95,90,85,82,共有8名男生参加“耐久跑1000米”.若九(1)班所有参加“耐久跑1000米”测试的男生成绩的众数是90分,故答案为:90;则这8名男生中共有三名男生得分为90分,则参加“耐久跑1000米”测试的男生成绩的中位数是.则6÷8×120=90(人),∴该校九年级抽中“耐久跑1000米”的120名男生的成绩为优秀的约有90人.15.(3分)如图,是甲、乙两人10次射击成绩(环数)的条形统计图,则甲、乙两人成绩较稳定的是乙;如果甲又连续射击了5次,且环数均为9环,那么甲的方差变化情况是变小(填“变大”“变小”或“不变”).【考点】条形统计图;方差.【分析】根据条形统计图中提供的数据分别计算甲、乙两组的平均数、方差,通过方差的大小比较,得出稳定性.【解答】解:甲的平均数是:=9(环),甲的方差是:×[(8﹣9)2×4+(9﹣9)2×2+(10﹣9)2×4]=0.8,乙的平均数是:=9(环),乙的方差是:×[(8﹣9)2×3+(9﹣9)2×4+(10﹣9)2×3]=0.6,∵0.8>0.6,∴乙成绩稳定.甲又连续射击5次,环数均为9环,则平均数还为9,则方差为×[(8﹣9)2×4+(9﹣9)2×2+(10﹣9)2×4]=<0.8,故方差变小.故答案为:乙;变小.三、解答题16.已知有理数﹣3,1,m.(1)计算﹣3,1这两个数的平均数;(2)如果这三个数的平均数是2,求m的值.【考点】算术平均数.【分析】(1)根据平均数的计算公式列出算式,再进行计算即可得出答案;(2)根据这三个数的平均数是2,得出=2,然后求解即可得出答案.【解答】解:(1)﹣3,1这两个数的平均数为=﹣1;(2)∵这三个数的平均数是2,∴=2,∴m=8.17.(10分)为了强化学生的环保意识,某校团委在全校举办了“保护环境,人人有责”知识竞赛活动,初、高中根据初赛成绩,各选出5名选手组成初中代表队和高中代表队进行复赛,两个队学生的复赛成绩如图所示:(1)根据图示填写表:平均数中位数众数方差初中队8.58.58.50.7高中队8.5810 1.6(2)小明同学说:“这次复赛我得了8分,在我们队中排名属中游偏下!”小明是初中队还是高中队的学生?为什么?(3)结合两队成绩的平均数、中位数和方差,分析哪个队的复赛成绩较好.【考点】方差;算术平均数;中位数;众数.【分析】(1)由条形图得出初中队和高中队成绩,再根据中位数、众数及方差的概念求解可得;(2)根据中位数的意义求解可得;(3)从平均数、中位数及方差的意义求解可得.【解答】解:(1)由图知初中队的成绩从小到大排列为:7.5、8、8.5、8.5、10,所以初中队成绩的中位数是8.5,众数是8.5;高中队成绩从小到大排列为:7、7.5、8、10、10,所以高中队成绩的中位数为8,方差为×[(7﹣8.5)2+(7.5﹣8.5)2+(8﹣8.5)2+2×(10﹣8.5)2]=1.6,补全表格如下:平均数中位数众数方差初中队8.58.58.50.7高中队8.5810 1.6(2)小明在初中队.理由如下:根据(1)可知,初中、高中队的中位数分别为8.5分和8分,∵8<8.5,∴小明在初中队.(3)初中队的成绩好些.因为两个队的平均数相同,初中队的中位数高,而且初中队的方差小于高中队的方差,所以在平均数相同的情况下中位数高、方差小的初中队成绩较好.18.(10分)某学校举行演讲比赛,选出了10名同学担任评委,并事先拟定从如下4个方案中选择合理的方案来确定每个演讲者的最后得分(满分为10分):方案1:所有评委所给分的平均数.方案2:在所有评委所给分中,去掉一个最高分和一个最低分,然后再计算其余给分的平均数.方案3:所有评委所给分的中位数.方案4:所有评委所给分的众数.为了探究上述方案的合理性,先对某个同学的演讲成绩进行了统计实验,如图是这个同学的得分统计图:(1)分别按上述4个方案计算这个同学演讲的最后得分;(2)根据(1)中的结果,请用统计的知识说明哪些方案不适合作为这个同学演讲的最后得分.【考点】中位数;众数;条形统计图;算术平均数.【分析】本题关键是理解每种方案的计算方法:(1)方案1:平均数=总分数÷10.方案2:平均数=去掉一个最高分和一个最低分的总分数÷8.方案3:10个数据,中位数应是第5个和第6个数据的平均数.方案4:求出评委给分中,出现次数最多的分数.(2)考虑不受极值的影响,不能有两个得分等原因进行排除.【解答】解:(1)方案1最后得分:×(3.2+7.0+7.8+3×8+3×8.4+9.8)=7.7;方案2最后得分:(7.0+7.8+3×8+3×8.4)=8;方案3最后得分:8;方案4最后得分:8或8.4.(2)因为方案1中的平均数受极端数值的影响,不适合作为这个同学演讲的最后得分,所以方案1不适合作为最后得分的方案.因为方案4中的众数有两个,众数失去了实际意义,所以方案4不适合作为最后得分的方案.19.(80分)某校为了解七、八年级学生对“防溺水”安全知识的掌握情况,从七、八年级各随机抽取50名学生进行测试,并对成绩(百分制)进行整理、描述和分析.部分信息如下:a.七年级成绩频数分布直方图:b.七年级成绩在70≤x<80这一组的是:7072747576767777777879c.七、八年级成绩的平均数、中位数如下:年级平均数中位数七76.9m八79.279.5根据以上信息,回答下列问题:(1)在这次测试中,七年级在80分以上(含80分)的有23人;(2)表中m的值为77.5;(3)在这次测试中,七年级学生甲与八年级学生乙的成绩都是78分,请判断两位学生在各自年级的排名谁更靠前,并说明理由;(4)该校七年级学生有400人,假设全部参加此次测试,请估计七年级成绩超过平均数76.9分的人数.【考点】频数(率)分布直方图;加权平均数;中位数;用样本估计总体.【分析】(1)根据条形图及成绩在70≤x<80这一组的数据可得;(2)根据中位数的定义求解可得;(3)将各自成绩与该年级的中位数比较可得答案;(4)用总人数乘以样本中七年级成绩超过平均数76.9分的人数所占比例可得.【解答】解:(1)在这次测试中,七年级在80分以上(含80分)的有15+8=23人,故答案为:23;(2)七年级50人成绩的中位数是第25、26个数据的平均数,而第25、26个数据分别为77、78,∴m==77.5,故答案为:77.5;(3)甲学生在该年级的排名更靠前,∵七年级学生甲的成绩大于中位数77.5分,其名次在该年级抽查的学生数的25名之前,八年级学生乙的成绩小于中位数79.5分,其名次在该年级抽查的学生数的25名之后,∴甲学生在该年级的排名更靠前.(4)估计七年级成绩超过平均数76.9分的人数为400×=224(人).。

人教版八年级数学下册第二十章《数据的分析》单元练习题(含答案)

人教版八年级数学下册第二十章《数据的分析》单元练习题(含答案)

人教版八年级数学下册第二十章《数据的分析》单元练习题(含答案)一、单选题1.已知一组数据:12,5,9,5,14,下列说法不正确的是( ) A .平均数是9B .中位数是9C .众数是5D .极差是52.在方差的计算公式s 2=110[(x 1-20)2+(x 2-20)2+……+(x 10-20)2]中,数字10和20分别表示的意义可以是( ) A .数据的个数和方差 B .平均数和数据的个数 C .数据的个数和平均数D .数据组的方差和平均数3.某校八年级(1)班全体学生进行了第一次体育中考模拟测试,成绩统计如下表:根据上表中的信息判断,下列结论中错误的是( ) A .该班一共有42名同学B .该班学生这次考试成绩的众数是8C .该班学生这次考试成绩的平均数是27D .该班学生这次考试成绩的中位数是27分4.若一组数据12345,,,,x x x x x 的方差是3,则1234523,23,23,23,23x x x x x -----的方差是( ) A .3B .6C .9D .125.某市6月份某周气温(单位:℃)为23、25、28、25、28、31、28,则这组数据的众数和中位数分别是( ) A .25、25B .28、28C .25、28D .28、316.中国六个城市某日的污染指数如下表:在这组数据中的中位数是( ) 城市 北京 合肥 南京 哈尔滨 成都 郑州 污染指数 342 163 165 45 227 163 A .105B .163C .164D .1657. 一组数据1,4,5,2,8,它们的数据分析正确的是( )A.平均数是5 B.中位数是4 C.方差是30 D.极差是68.九年级1班30位同学的体育素质测试成绩统计如表所示,其中有两个数据被遮盖成绩24 25 26 27 28 29 30人数▄▄ 2 3 6 7 9下列关于成绩的统计量中,与被遮盖的数据无关的是()A.平均数,方差B.中位数,方差C.中位数,众数D.平均数,众数9.河南省旅游资源丰富,2013~2017年旅游收入不断增长,同比增速分别为:15.3%,12.7%,15.3%,14.5%,17.1%.关于这组数据,下列说法正确的是()A.中位数是12.7% B.众数是15.3%C.平均数是15.98% D.方差是010.某球员参加一场篮球比赛,比赛分4节进行,该球员每节得分如折线统计图所示,则该球员平均每节得分为()A.7分B.8分C.9分D.10分11.数据2,2,6,2,3,4,3,2,6,5,4,5,4的众数是().A.2 B.3 C.4 D.612.小华续五次数学测验成绩与班级每次测试成绩平均分的差值分别为0,1,-1,3,2;与小华同班的小梅这五次数学测验成绩的方差为15,小华与小梅这五次数学测试的平均成绩恰好相等,则下列说法正确的是()A.小华的数学成绩更稳定B.小梅的数学成绩更稳定C.小华与小梅的数学成绩一样稳定D.无法判定谁的成绩更稳定二、填空题13.李老师为了了解学生的数学周考成绩,在班级随机抽查了10名学生的成绩,其统计数据如下表:则这10名学生的数学周考成绩的中位数是________分. 14.已知一组数据2,3,4,5,x 2的众数为4,则x=________. 15.某种蔬菜按品质分成三个等级销售,销售情况如表:则售出蔬菜的平均单价为________元/千克.16.在今年“全国助残日”捐款活动中,某班级第一小组7名同学积极捐出自己的零花钱,奉献自己的爱心.他们捐款的数额分别是(单位:元)50,20,50,30,25,55,25,这组数据的众数_____.17.一组数据-1、-2、x 、1、2其中x 是小于10的非负整数,且数据的方差是整数,则数据的标准差是_______________18.某中学随机调查了15名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:那么这15名学生这一周在校参加体育锻炼的时间的中位数是 小时.19.甲、乙两人参加某网站的招聘测试,测试由网页制作和语言两个项目组成,他们各自的成绩(百分制)如下表所示:乙 70 80该网站根据成绩在两人之间录用了甲,则本次招聘测试中权重较大的是_____项目. 20.甲乙两组数据的平均数相同,方差分别为2=0.26S 甲和2=0.18S 乙,甲乙两组数据那一组数据较为稳定 .(填甲或乙)三、解答题21.某校八年级学生开展踢毽子比赛活动,每班派5名学生参加.按团体总分多少排列名次,在规定时间每人踢100个以上(含100个)为优秀,表--是 成绩最好的甲班和乙班5名学生的比赛数据(单位:个),经统计发现两班总分相等,而冠军只能有一个,怎样才能确定冠军呢?此时有学生建议,可通过考查数据中的其他信息作为参考进行名次排列.请你完成下列解答:(1)根据表中提供的数据求出表二中a 1、b 1、c 1、a 2、b 2、c 2数据; (2)根据表二信息,你认为应该把冠军奖状发给哪一个班级?简述理由.22.为了让同学们了解自己的体育水平,初二1班的体育刘老师对全班45名学生进行了一次体育模拟测试(得分均为整数),成绩满分为10分,1班的体育委员根据这次测试成绩,制作了统计图和分析表如下:初二1班体育模拟测试成绩分析表平均分方差中位数众数男生________ 2 8 7女生7.92 1.99 8 ________根据以上信息,解答下列问题:(1)这个班共有男生________人,共有女生________人;(2)补全初二1班体育模拟测试成绩分析表;(3)你认为在这次体育测试中,1班的男生队、女生队哪个表现更突出一些?并写出一条支持你的看法的理由.23.某校围绕“扫黑除恶”专项斗争进行了普法宣传,然后在各班级分别随机抽取了5名同学进行了测试.规定:95分或以上为优秀。

人教版八年级数学下册第二十章《数据的分析》单元练习题(含答案)

人教版八年级数学下册第二十章《数据的分析》单元练习题(含答案)

人教版八年级数学下册第二十章《数据的分析》单元练习题(含答案)一、单选题1.初三•一班五个劳动竞赛小组一天植树的棵数是:10,10,12,x,8,如果这组数据的众数与平均数相等,那么这组数据的中位数是()A.12 B.10 C.9 D.82.在社会实践活动中,某同学对甲、乙、丙、丁四个城市一至五月份的白菜价格进行调查.四个城市5个月白菜的平均值均为3.50元,方差分别为S甲2=18.3,S乙2=17.4,S丙2=20.1,S丁2=12.5.一至五月份白菜价格最稳定的城市是()A.甲B.乙C.丙D.丁3.某班派9名同学参加红五月歌咏比赛,他们的身高分别是(单位:厘米):167,159,161,159,163,157,170,159,165.这组数据的众数和中位数分别是()A.159,163 B.157,161 C.159,159 D.159,1614.为了预防新冠病毒,6名学生准备了口罩,口罩数量(单位:个)分别为:87、88、73、88、79、85,这组数据的众数是()A.79 B.87 C.88 D.855.2011年春季因干旱影响,政府鼓励居民节约用水,为了解居民用水情况,在某小区随机抽查了20户家庭的月用水量,结果如下表:则关于这20户家庭的月用水量,下列说法错误的是()A.中位数是6吨B.平均数是5.8吨C.众数是6吨D.极差是4吨6.数据5,2,3,0,5的众数是( )A.0 B.3 C.6 D.57.某同学在一次期末测试中,七科的成绩分别是92,100,96,93,96,98,95,则这位同学成绩的中位数和众数分别是().A.93,96 B.96,96 C.96,100 D.93,1008.从整体中抽取一个样本,计算出样本方差为1,可以估计总体方差()A.一定大于1 B.约等于1 C.一定小于1 D.与样本方差无关9.甲、乙两台机床同时生产一种零件,在5天中,两台机床每天出次品的数量如下表:甲0 1 2 0 2乙 2 1 0 1 1关于以上数据的平均数、中位数、众数和方差,说法不正确...的是( )A.甲、乙的平均数相等B.甲、乙的众数相等C.甲、乙的中位数相等D.甲的方差大于乙的方差10.如图是我市4月1日至7日一周内“日平均气温变化统计图”,在这组数据中,众数和中位数分别是()A.13;13 B.14;10 C.14;13 D.13;1411.为了迎接2022年的冬奥会,中小学都积极开展冰上运动,小明和小刚进行米短道速滑训练,他们的五次成绩如下表所示:设两个人的五次成绩的平均数依次为、,方差依次为、,则下列判断正确的是()A.B.C.D.12.某中学为了解学生参加“青年大学习”网上班课的情况,对九年级6个班的学习人数进行了统计,得到各班参加班课的人数数据为5,10,10,12,14,9.对于这组数据,下列说法错误的是()A.平均数是10B.众数是10C.中位数是11D.方差是23 3二、填空题13.某衬衫店为了准确进货,对一周中商店各种尺码的衬衫的销售情况进行统计,结果如下:38码的5件、39码的3件、40码的6件、41码的4件、42码的2件、43码的1件.则该组数据中的中位数是码.14.某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是______.15.在学校艺术节文艺汇演中,甲、乙两个舞蹈队队员的身高的方差依次是1.5、2.5,那么身高更整齐的是______队(填“甲”或“乙”).16.某班10名学生校服尺寸与对应人数如图所示,那么这10名学生校服尺寸的中位数为_____cm.17.热爱劳动,劳动最美!某合作学习小组6名同学一周居家劳动的时间(单位:h),分别为:4,3,3,5,5,6.这组数据的中位数是________.18.一组数据3,4,x,6,7的平均数为5.则这组数据的方差是______.19.数据组:26,28,25,24,28,26,28的众数是.20.若一组数据1,3,5,x,的众数是3,则这组数据的方差为______.三、解答题21.在“停课不停学”期间,某中学要求学生合理安排学习和生活,主动做一些力所能及的家务劳动,并建议同学们加强体育锻炼,坚持做“仰卧起坐”等运动项目.开学后,七年级甲、乙两班班主任想了解学生做“仰卧起坐”的情况,他们分别在各自班中随机抽取了5名女生和5名男生,测试了这些学生一分钟所做“仰卧起坐”的个数,测试结果统计如表:甲班组别个数x 人数A 25≤x<30 1B 30≤x<35 3C 35≤x<40 4D 40≤x<45 2请根据图中提供的信息,回答下列问题:(1)测得的甲班这10名学生所做“仰卧起坐”个数的中位数落在哪个组?(2)求测得的乙班这10名学生所做“仰卧起坐”个数的平均数;(3)请估计这两个班中哪个班的学生“仰卧起坐”做得更好一些?并说明理由.22.某中学为了培养学生的社会实践能力,今年“五一”长假期间要求学生参加一项社会调查活动.为此,小明在他所居住小区的600个家庭中,随机调查了50个家庭在新工资制度实施后的收入情况,并绘制了如下的频数分布表和频数分布直方图(收入取整数,单位:元).请你根据以上提供的信息,解答下列问题: (1)补全频数分布表和频数分布直方图;(2)这50个家庭收入的中位数落在 小组; (3)请你估算该小区600个家庭中收入较低(不足1400元)的家庭个数大约有多少?23.某市开展“环境治理留住青山绿水,绿色发展赢得金山银山”活动,对其周边的环境污染进行综合治理.2018年对A 、B 两区的空气量进行监测,将当月每天的空气污染指数(简称:API )的平均值作为每个月的空气污染指数,并将2018年空气污染指数绘制如下表.据了解,空气污染指数50≤时,空气质量为优:50<空气污染指数100≤时,空气质量为良:100<空气污染指数150≤时,空气质量为轻微污染.月份地区12 3 4 5 6 7 8 9 10 11 12A 区115 108 85 100 95 5080 70 50 50 100 45 B 区1059590 80 90 60 9085 60709045(1)请求出A 、B 两区的空气污染指数的平均数;(2)请从平均数、众数、中位数、方差等统计量中选两个对A区、B区的空气质量进行有效对比,说明哪一个地区的环境状况较好.24.在全民读书月活动中,某校随机调查了部分同学,本学期计划购买课外书的费用情况,并将结果绘制成如图所示的统计图.根据相关信息,解答下列问题.(1)这次调查获取的样本容量是.(直接写出结果)(2)这次调查获取的样本数据的众数是,中位数是.(直接写出结果)(3)若该校共有1000名学生,根据样本数据,估计该校本学期计划购买课外书的总花费.25.在“新冠肺炎防控”知识宣传活动中,某社区对居民掌握新冠肺炎防控知识的情况进行调查.其中A、B两区分别有500名居民,社区从中各随机抽取50名居民进行相关知识测试,并将成绩进行整理得到部分信息:(信息一)A小区50名居民成绩的频数直方图如图(每一组含前一个边界值,不含后一个边界值);(信息二)图中,A小区从左往右第四组的成绩如下75 75 79 79 79 79 80 8081 82 82 83 83 84 84 84(信息三)A、B两小区各50名居民成绩的平均数、中位数、众数、优秀率(80分及以上为优秀)、方差等数据如下(部分空缺):小区平均数中位数众数优秀率方差A75.1 79 40%277B75.1 77 76 45%211根据以上信息,回答下列问题:(1)求A小区50名居民成绩的中位数;(2)请估计A小区500名居民中能超过平均数的有多少人?(3)请尽量从多个角度比较、分析A,B两小区居民掌握新冠防控知识的情况.26.某市甲、乙两个汽车销售公司,去年一至十月份每月销售同种品牌汽车的情况如图所示:(1)请你根据左图填写右表:销售公司平均数方差中位数众数甲9乙9 17.0 8(2)请你从以下两个不同的方面对甲、乙两个汽车销售公司去年一至十月份的销售情况进行分析:①从平均数和方差结合看;②从折线图上甲、乙两个汽车销售公司销售数量的趋势看(分析哪个汽车销售公司较有潜力).27.某中学由6名师生组成一个排球队.他们的年龄(单位:岁)如下:15 16 17 17 17 40 (1)这组数据的平均数为,中位数为,众数为.(2)用哪个值作为他们年龄的代表值较好?28.某中学对全校学生60秒跳绳的次数进行了统计,全校学生60秒跳绳的平均次数是100次,某班体育委员统计了全班50名学生60秒跳绳的成绩,列出的频数分布直方图如图所示(每个分组包括左端点,不包括右端点).(1)该班学生60秒跳绳的平均次数至少是多少?是否超过全校平均次数?(2)该班一个学生说:“我的跳绳成绩在我班是中位数.”请你给出该生跳绳成绩所在的范围.29.某射击队教练为了了解队员训练情况,从队员中选取甲、乙两名队员进行射击测试,相同条件下各射靶5次,成绩统计如下:(1)根据上述信息可知:甲命中环数的众数是环;(2)通过计算说明甲、乙两人的成绩谁比较稳定.(3)如果乙再射击1次,命中8环,那么乙射击成绩的方差会.(填“变大”、“变小” 或“不变”)参考答案1.B2.D3.D4.C5.D6.D7.B8.B9.B10.C11.B12.C13.40.14.715.甲16.17017.4.518.219.28.20.221.(1)∵甲班共有10名学生,处于中间位置的是第5、第6个数的平均数,∴测得的甲班这10名学生所做“仰卧起坐”个数的中位数落在C组;(2)乙班这10名学生所做“仰卧起坐”个数的平均数是:110(22+30×3+35×4+37+41)=33(个);(3)甲班的平均数是:110(27×1+32×3+37×4+42×2)=35.5(个),乙班的平均数是:110(22+30×3+35×4+37+41)=33(个),∵35.5>33,∴甲班的学生“仰卧起坐”的整体情况更好一些.22.(1)A区的空气污染指数的平均数是:112(115+108+85+100+95+50+80+70+50+50+100+45)=79;B区的空气污染指数的平均数是:112(105+95+90+80+90+60+90+85+60+70+90+45)=80;(2)∵A区的众数是50,B区的众数是90,∴A地区的环境状况较好.∵A区的平均数小于B区的平均数,∴A区的环境状况较好.24.(1)40;(2)30,50;(3)50500元25.(1)75;(2)240人;(3)从平均数看,两个小区居民对新冠肺炎防控知识掌握情况的平均水平相同;从方差看,B小区居民新冠肺炎防控知识掌握的情况比A小区稳定;从中位数看,B小区至少有一半的居民成绩高于平均数.26.(1)(2)①甲、乙两个汽车销售公司去年一至十月份的销售平均数一样,都是9辆,但甲销售公司的方差较小,说明甲销售公司的销售情况更稳定。

第二十章《数据的分析》单元测试题(含答案)-

第二十章《数据的分析》单元测试题(含答案)-

第二十章《数据的分析》单元测试题一、选择题)1.为了了解参加某运动会的200名运动员的年龄情况,从中抽查了20名运动员的年龄,就这个问题来说,下面说法正确的是()A.200名运动员是总体 B.每个运动员是总体C.20名运动员是所抽取的一个样本 D.样本容量是202.一城市准备选购一千株高度大约为2m的某种风景树来进行街道绿化,•有四个苗圃生产基地投标(单株树的价格都一样).•采购小组从四个苗圃中都任意抽查了20株树苗的高度,得到的数据如下:请你帮采购小组出谋划策,应选购() A.甲苗圃的树苗 B.乙苗圃的树苗; C.丙苗圃的树苗 D.丁苗圃的树苗3.将一组数据中的每一个数减去50后,所得新的一组数据的平均数是2,•则原来那组数据的平均数是()A.50 B.52 C.48 D.24.一个射手连续射靶22次,其中3次射中10环,7次射中9环,9次射中8环,3次射中7环.则射中环数的中位数和众数分别为() A.8,9 B.8,8 C.8.5,8 D.8.5,95.为鼓励市民珍惜每一滴水,某居委会表扬了100个节约用水模范户,8月份节约用水的情况如下表:那么,8月份这100户平均节约用水的吨数为(精确到0.01t)()A.1.5t B.1.20t C.1.05t D.1t6.已知一组数据-2,-2,3,-2,-x,-1的平均数是-0.5,•那么这组数据的众数与中位数分别是()A.-2和3 B.-2和0.5 C.-2和-1 D.-2和-1.57.方差为2的是()A.1,2,3,4,5 B.0,1,2,3,5 C.2,2,2,2,2 D.2,2,2,3,38.甲、乙两班举行电脑汉字输入速度比赛,•参赛学生每分钟输入汉字的个数经统计计算后结果如下表:某同学根据上表分析得出如下结论:(1)甲、乙两班学生成绩的平均水平相同;(2)乙班优秀的人数多于甲班优秀的人数;(每分钟输入汉字≥150个为优秀)(3)甲班成绩的波动情况比乙班成绩的波动小上述结论中正确的是()A.(1)(2)(3) B.(1)(2) C.(1)(3) D.(2)(3)9.某校把学生的纸笔测试、实践能力、成长纪录三项成绩分别按50%、20%•、•30%的比例计入学期总评成绩,90分以上为优秀.甲、乙、•丙三人的各项成绩如下表(单位:分),学期总评成绩优秀的是()A.甲 B.乙丙 C.甲乙 D.甲丙10.对于数据3,3,2,3,6,3,10,3,6,3,2.①这组数据的众数是3;②这组数据的众数与中位数的数值不等;③这组数据的中位数与平均数的数值相等;④这组数据的平均数与众数的数值相等,其中正确的结论有() A.1个B.2个 C.3个 D.4个二、填空题12.某日天气预报说今天最高气温为8℃,气温的极差为10℃,则该日最低气温为_________.13.在演唱比赛中,8位评委给一名歌手的演唱打分如下:9.3,9.5,9.9,9.4,9.3,8.9,9.2,9.6,若去掉一个最高分和一个最低分后的平均分为得分,则这名歌手最后得分约为________.14.一个样本,各个数据的和为515,如果这个样本的平均数为5,那么这个样本的容量是_________.15.为了估计湖里有多少鱼,我们从湖里捕上150条鱼作上标记,然后放回湖里去,经过一段时间再捕上300条鱼,其中带标记的鱼有30条,•则估计湖里约有鱼_______条.16.一名学生军训时连续射靶10次,命中的环数分别为4,7,8,6,8,5,9,10,7.•则这名学生射击环数的方差是_________.17.某人开车旅行100km ,在前60km 内,时速为90km ,在后40km 内,时速为120km ,则此人的平均速度为_________.18.小明家去年的旅游、教育、饮食支出分别出3600元,1200元,7200元,今年这三项支出依次比去年增长10%,20%,30%,则小时家今年的总支出比去年增长的百分数是_________.19.将5个整数从大到小排列,中位数是4;如果这个样本中的惟一众数是6,•则这5个整数可能的最大的和是_____. 20.某公司欲招聘工人,对候选人进行三项测试:语言、创新、综合知识,并按测试得分1:4:3的比例确定测试总分,已知三项得分分别为88,72,50,•则这位候选人的招聘得分为________. 三、解答题(60分)22.(8分)为了了解某小区居民的用水情况,随机抽查了该小区10•户家庭的月用水量,结果如下:(1)计算这10户家庭的平均月用水量;(2)如果该小区有500户家庭,根据上面的计算结果,估计该小区居民每月共用水多少吨? 23.(8分)下表是某校八年级(1)班20名学生某次数学测验的成绩统计表(1)若这20名学生成绩的平均分数为82分,求x 和y 的值;(2)在(1)的条件下,设这20名学生本次测验成绩的众数为a ,中位数为b ,求a ,b 的值.24.某乡镇企业生产部有技术工人15人,•生产部为了合理制定产品的每月生产定额,统计了15人某月的加工零件个数:(1)写出这15人该月加工零件数的平均数、中位数和众数.(2)假如生产部负责人把每位工人的月加工零件数定为260(件),•你认为这个定额是否合理,为什么?26.(10分)某学校对初中毕业班经过初步比较后,决定从九年级(1)、(4)、(8)•班这三个班中推荐一个班为市级先进班集体的候选班,•现对这三个班进行综合素质考评,下表是它们五项素质考评的得分表:(以分为单位,每项满分为10分)(1)请问各班五项考评分的平均数、•中位数和众数中哪个统计量不能反映三个班的考评结果的差异?并从中选择一个能反映差异的统计量将他们的得分进行排序.(2)根据你对表中五个项目的重要程度的认识,•设定一个各项考评内容的占分比例(比例的各项须满足:①均为整数;②总和为10;③不全相同),•按这个比例对各班的得分重新计算,比较出大小关系,并从中推荐一个得分最高....的班作为市级先进班集体的候选班.2、中学人数相等的甲、乙两班学生参加了同一次数学测验,班平均分和方差分别为=甲x 82分,=乙x 82分,=2甲s 245分2,=2乙s 190分2。

人教版八年级数学下册第二十章《数据的分析》单元练习题(含答案)

人教版八年级数学下册第二十章《数据的分析》单元练习题(含答案)

人教版八年级数学下册第二十章《数据的分析》单元练习题(含答案)一、单选题1.如图是嘉淇同学完成的作业,则他做错的题数是()A.0个B.1个C.2个D.3个2.在某校初三年级古诗词比赛中,初三(1)班42名学生的成绩统计如下:分数50 60 70 80 90 100人数 1 2 8 13 14 4 则该班学生成绩的中位数和众数分别是()A.70,80 B.70,90 C.80,90 D.80,1003.射击训练中,甲、乙、丙、丁四人每人射击10次,平均环数均为8.7环,方差分别为S甲2=0.51,S乙2=0.62,S丙2=0.48,S丁2=0.45,则四人中成绩最稳定的是( )A.甲B.乙C.丙D.丁4.为了解学校九年级学生某次知识问卷的得分情况,小红随机调查了50名九年级同学,结果如表:知识问卷得分(单位:分)65 70 75 80 85人数 1 15 15 16 3则这50名同学问卷得分的众数和中位数分别是()A.75,75 B.75,80 C.80,75 D.80,855.某校规定学生的学期数学成绩由研究性学习成绩与期末卷面成绩共同确定,其中研究性学习成绩占40%,期末卷面成绩占60%,小明研究性学习成绩为80分,期末卷面成绩为90分,则小明的学期数学成绩是()A.80分B.82分C.84分D.86分6.某课外小组的同学们在社会实践活动中调查了20户家庭莱月的用电量,如表所示则这20户家庭该月用电量的众数和中位数、平均数分别是()A.180,160,164 B.160,180;164 C.160,160,164 D.180,180,164 7.为参加电脑汉字输入比赛,甲和乙两位同学进行了6次测试,成绩如下表:甲和乙两位同学6次测试成绩(每分钟输入汉字个数)及部分统计数据表第1次第2次第3次第4次第5次第6次平均数方差甲134 137 136 136 137 136 136 1.0乙135 136 136 137 136 136 136有四位同学在进一步算得乙测试成绩的方差后分别作出了以下判断,其中说法正确的是()A.甲的方差小于乙的方差,所以甲的成绩比较稳定;B.乙的方差小于甲的方差,所以乙的成绩比较稳定;C.甲的方差大于乙的方差,所以甲的成绩比较稳定;D.乙的方差大于甲的方差,所以乙的成绩比较稳定;8.已知一组数据:46,44,x,50,48,42的众数是46,则这组数据的平均数和中位数分别()A.44,43 B.43,45C.46,46 D.45,449.某校八年级共有四个班,在一次英语测试中四个班的平均分与各班参加考试的人数如表:班级一班二班三班四班参加人数51 49 50 60班平均分/分83 89 82 79.5则该校八年级参加这次英语测试的所有学生的平均分约为(精确到0.1)()A.83.1分B.83.2分C.83.4分D.83.5分10.某班50名学生的一次安全知识竞赛成绩分布如表所示(满分10分)这次安全知识竞赛成绩的众数是( ) A .5分B .6分C .9分D .10分11.下列说法正确的是( )A .中位数就是一组数据中最中间的一个数B .8,9,9,10,10,11这组数据的众数是9C .如果x 1,x 2,x 3,…,x n 的平均数是x ,那么()()()12n x x x x x x 0-+-+⋅⋅⋅+-=D .一组数据的方差是这组数据的极差的平方12.九年级(1)班15名男同学进行引体向上测试,每人只测一次,测试结果统计如下:这15名男同学引体向上数的中位数是( ) A .2 B .3C .4D .5二、填空题13.已知1x ,2x ,3x ,...,20x 的平均数是5,方差是2,则132x +,232x +,332x +, (2032)x +的平均数是_____,方差是____.14.五名学生一分钟跳绳的次数分别为189,195,163,184,201,该组数据的中位数是______. 15.某公司销售部有五名销售员,2007年平均每人每月的销售额分别是6,8,11,9,8(万元),现公司需增加一名销售员,三人应聘试用三个月,平均每人每月的销售额分别为:甲是上述数据的平均数,乙是中位数,丙是众数,最后录用三人中平均月销售额最高的人是___. 16.某校合唱团成员的年龄分布如下表:对于不同的x,则表中数据的中位数是______.17.一组数据-4,-2,0,2,4的方差是.18.甲、乙、丙三种糖果售价分别为每千克6元,7元,8元,若将甲5kg种,乙种10kg,丙种10kg混在一起,则售价应定为每千克__________.19.某中学八年级开展“光盘行动”宣传活动,6个班级参加该活动的人数统计结果为:52,60,62,54,58,62,对于这组统计数据的众数是_____.20.如图,是某班50名同学的视力频数分布直方图,则这个班同学的视力众数为_______.三、解答题21.初二(1)班对数学期末总评成绩规定如下:总评成绩由考试成绩和平时成绩(满分120分)两部分组成,其中考试成绩占80%,平时成绩占20%,且总评成绩大于或等于100分时,该生综合评定为A等.(1)小敏的考试成绩为90分,它的综合评定有可能达到A等吗?为什么?(2)小浩的平时成绩为120分,综合评定若要达到A等,他的考试成绩至少要多少分?22.在学校组织的科学常识竞赛中,每班参加比赛的人数相同,成绩分为A,B,C,D四个等级,其中相应等级的得分依次记为90分,80分,70分,60分,学校将八年级一班和二班的成绩整理并绘制成如下的统计图:请你根据以上提供的信息解答下列问题:(1)此次竞赛中二班成绩在70分以上(包括70分)的人数为;(2)请你将表格补充完整:平均数(分)中位数(分)众数(分)一班77.6 80二班90(3)请从不同角度对这次竞赛成绩的结果进行分析.(至少两个角度)23.甲、乙两校参加市教育局举办的初中生英语口语竞赛,两校参赛人数相等.比赛结束后,发现学生成绩分别为7分、8分、9分、10分(满分为10分).依据统计数据绘制了如下尚不完整的统计图表.分数7分8分9分10分人数11 0 8(1)请将甲校成绩统计表和图2的统计图补充完整;(2)经计算,乙校的平均分是8.3分,中位数是8分,请写出甲校的平均分、中位数;并从平均分和中位数的角度分析哪个学校成绩较好.24.为了参加“中小学生诗词大会”,某校八年级的两班学生进行了预选,其中班上前5名学生的成绩(百分制)分别为:八(1)班:85,86,82,91,86,八(2)班:80,85,85,92,88,通过数据分析,列表如下:(1)直接写出表中a,b,c,d的值;(2)根据以上数据分析,你认为哪个班前5名同学的成绩较好?请说明理由.25.某校举办的八年级学生数学素养大赛共设3个项目:七巧板拼图,趣题巧解,数学应用,每个项目得分都按一定百分比折算后计入总分,总分高的获胜,下表为小米和小麦两位同学的得分情况(单位:分):七巧板拼图趣题巧解数学应用小米809088小麦908685()1若七巧板拼图,趣题巧解,数学应用三项得分分别40%,20%,40%按折算计入总分,最终谁能获胜?()2若七巧板拼图按20%折算,小麦(填“可能”或“不可能”)获胜.26.城南中学九年级共有12个班,每班48名学生,学校要对该年级学生数学学科学业水平测试成绩进行抽样分析,请按要求回答下列问题:收集数据(1)若要从全年级学生中抽取一个48人的样本,你认为以下抽样方法中比较合理的有.①随机抽取一个班级的48名学生;②在全年级学生中随机抽取48名学生;③在全年级12个班中分别各随机抽取4名学生.整理数据(2)将抽取的48名学生的成绩进行分组,绘制出的频数分布表和成绩分布扇形统计图如下.请根据图表中数据填空:①C类和D类部分的圆心角度数分别为;;②估计全年级A、B类学生大约一共有名.成绩(单位:分)频数频率分析数据(3)教育主管部门为了解学校教学情况,将同层次的城南、城北两所中学的抽样数据进行对比,得下表:你认为哪所学校的教学效果较好?结合数据,请提出一个解释来支持你的观点.27.某公司销售部有营业员15人,该公司为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励,为了确定一个适当的月销售目标,公司有关部门统计了这15人某月的销售量,如下表所示:(1)直接写出这15名营业员该月销售量数据的平均数、中位数、众数;(2)如果想让一半左右的营业员都能达到月销售目标,你认为(1)中的平均数、中位数、众数中,哪个最适合作为月销售目标?请说明理由.温馨提示:确定一个适当的月销售目标是一个关键问题;如果目标定得太高,多数营业员完不成任务,会使营业员失去信心;如果目标定得太低,不能发挥营业员的潜力.28.下面的表格是李刚同学一学期数学成绩的记录,根据表格提供的信息回答下面的问题考试类别平时期中考试期末考试第一单元第二单元第三单元第四单元成绩88 86 90 92 90 96(1)李刚同学6次成绩的极差是.(2)李刚同学6次成绩的中位数是.(3)李刚同学平时成绩的平均数是.(4)如果用下图的权重给李刚打分,他应该得多少分?(满分100分,写出解题过程)29.某企业生产部统计了15名工人某月加工的零件数:(1)写出这15人该月加工的零件数的平均数、中位数和众数;(2)若生产部领导把每位工人的月加工零件数定为260件,你认为是否合理,为什么?参考答案1.C2.C3.D4.C5.D6.A7.B8.C9.B11.C12.C13.17 1814.18915.甲16.1417.818.7.2元.19.6220.4.421.(1)设小敏的平时成绩为x分,根据题意得:90×80%+20%x≥100,解得:x≥140,∵满分是120分,∴小敏的综合评定不可能达到A等;(2)设小浩的考试成绩为x,根据题意得:80%x+20%×120≥100,解得:x≥95,∴他的考试成绩至少要95分.22.(1)一班参赛人数为:6+12+2+5=25(人),∵两班参赛人数相同,∴二班成绩在70分以上(包括70分)的人数为25×84%=21人;(2)二班成绩的平均数:90×44%+80×4%+70×36%+60×16%=77.6(分);二班成绩的中位数:70(分);一班成绩的众数:80(分).填表如下:平均数(分)中位数(分)众数(分)一班77.68080二班77.6 70 90(3)①平均数相同的情况下,二班的成绩更好一些.②请一班的同学加强基础知识训练,争取更好的成绩.23.(1)根据已知10分的有5人,所占扇形圆心角为90°,可以求出总人数为:5÷90360=20(人),即可得出8分的人数为:20-8-4-5=3(人),画出图形如图:甲校9分的人数是:20-11-8=1(人),(2)甲校的平均分为=120(7×11+8×0+9×1+10×8)=8.3分,分数从低到高,第10人与第11人的成绩都是7分,∴中位数=12(7+7)=7(分);平均分相同,乙的中位数较大,因而乙校的成绩较好.24.(1)86,86,85,8.4;(2)八(1)班前5名同学成绩较好25.(1)小麦获胜;(2)不可能26.(1)②、③;(2)432;(3)本题答案不唯一27.(1)平均数为278,中位数为180,众数为90;(2)中位数最适合作为月销售目标,理由见解析.28.(1)10分;(2)90分;(3)89分;(4)93.5分29.(1)平均数为260(件);中位数为240件;众数为240件;(2)不合理。

人教版八年级数学下册第二十章《数据的分析》单元测试卷附答案

人教版八年级数学下册第二十章《数据的分析》单元测试卷附答案

第二十章《数据的分析》单元测试卷(共23题,满分120分,考试用时90分钟)学校班级姓名学号一、选择题(共10小题,每小题3分,共30分)1.一组数据2,3,5,7,8的平均数是()A.2B.3C.4D.52.已知n个数据的和为108,平均数为12,则n为()A.7B.8C.9D.103.(跨学科融合)“青年大学习”是共青团中央为组织引导广大青少年,深入学习贯彻习近平新时代中国特色社会主义思想的青年学习行动.某校为了解同学们某季度学习“青年大学习”的情况,从中随机抽取5位同学,经统计他们的学习时间(单位:分钟)分别为78,80,85,90,80,则这组数据的众数为()A.78B.80C.85D.904.在以下一列数3,3,5,6,7,8中,中位数是()A.3B.5C.5.5D.65.现有相同个数的甲、乙两组数据,经计算得x甲=x乙,且s甲2=0.35,s乙2=0.25,比较这两组数据的稳定性,下列说法正确的是()A.甲比较稳定B.乙比较稳定C.甲、乙一样稳定D.无法确定6.八年级某同学6次数学小测验的成绩分别为80分,85分,95分,95分,95分,100分,则该同学这6次成绩的众数和中位数分别是()A.95分,95分B.95分,90分C.90分,95分D.95分,85分7.(跨学科融合)奥林匹克官方旗舰店统计了某一段时间内各款“冰墩墩”销售情况(如下表),厂家决定多生产20 cm高的“冰墩墩”,则依据的统计量是()A.平均数8.对于一组统计数据3,3,6,5,3,下列说法错误的是()A.众数是3B.平均数是4C.方差是1.6D.中位数是69.学校食堂午餐供应6元、8元和10元三种价格的盒饭,如图是食堂某月销售三种午餐盒饭数量的统计图,则该月食堂销售午餐盒饭的平均价格为()A.7.9元B.8元C.8.9元D.9.2元10.某市举行了一次数学竞赛,分段统计参赛同学的成绩,从中抽查了50名学生的成绩如下表:A.81分B.82分C.79分D.75.5分二、填空题(共5小题,每小题3分,共15分)11.冬天某地区一周最高气温的走势图如图所示,则这组数据的众数是℃.12.某班50人一次测验成绩(10分制)如下:10分4人,9分7人,8分14人,7分18人,6分5人,5分2人,则本次测验的中位数是分.13.学校组织“我的青春我做主”演讲比赛,小红演讲内容得100分,语言表达得80分,若按演讲内容占40%,语言表达占60%的比例计算总成绩,则她的总成绩是分.14.在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的(从“平均数、中位数、众数、方差”中选择答案).15.(创新题)某学校随机抽查了学生读课外书册数的情况,绘制成条形图和不完整的扇形图(如图),其中条形图被墨迹遮盖了一部分,则被调查的学生读课外书册数的中位数为.三、解答题(一)(共3小题,每小题8分,共24分)16.某饮料店为了解某一种罐装饮料上半年的销售情况,随机调查了6天该种饮料的日销售量,结果如下(单位:听):33,32,28,32,24,31.求这6天的日销售量的众数和平均数.17.在一次大学生一年级新生训练射击比赛中,某小组10人的成绩如下表:(1)该小组射击数据的众数是,中位数是;(2)该小组的平均成绩为多少?18.在校体育集训队中,跳高运动员小军和小明的9次成绩如下(单位:m):小军:1.41,1.42,1.42,1.43,1.43,1.43,1.44,1.44,1.45;。

人教版八年级下册《第二十章数据的分析》单元练习题(含答案)

人教版八年级下册《第二十章数据的分析》单元练习题(含答案)

第二十章《数据的分析》单元练习题一、选择题1.已知一组数据0,-1,1,2,3,则这组数据的方差为()A. 1B.-1C.D. 22.有甲、乙两班,甲班有m个人,乙班有n个人.在一次考试中甲班平均分是a分,乙班平均分是b分.则甲、乙两班在这次考试中的总平均分是()A.B.C.D.3.为了弘扬优秀传统文化,通州区30所中学参加了“名著·人生”戏剧展演比赛,最后有13所中学进入决赛,他们的决赛成绩各不相同.某中学已进入决赛且知道自己的成绩,但是否进入前7名,还必须知道这13所中学成绩的()A.中位数B.平均数C.众数D.方差4.“倡导全民阅读”、“推动国民素质和社会文明程度显著提高”已成为“十三五”时期的重要工作.教育主管部门对某学校青年学校青年教师2016年度阅读情况进行了问卷调查,并将收集的数据统计如表,根据表中的信息判断,下列结论错误的是()A.该学校中参与调查的青年教师人数为40人B.该学校中青年教师2016年平均每人阅读8本书C.该学校中青年教师2016年度看书数量的中位数为4本D.该学校中青年教师2016年度看书数量的众数为4本5.一组数据6、4、a、3、2的平均数是5,则a的值为()A. 10B. 5C. 8D. 126.某服装厂生产一批男衬衫,经过抽样调查60名中年男子,得知所需衬衫型号的人数如表所示.求出它的中位数是74,众数是76,平均数是74.6,下列说法正确的是()A.所需78号人数太少,78号的可以不生产B.这批衬衫可以一律按身长是74.6这个平均数生产C.因为众数是76,故76号的生产量要占第一位D.因为中位数是74,故74号的生产量要占第一位7.有100名学生参加两次科技知识测试,条形图显示两次测试的分数分布情况如图所示:根据条形图提供的信息,下列说法中,正确的是()A.两次测试,最低分在第二次测试中B.第一次测试和第二次测试的平均分相同C.第一次分数的中位数在20~39分数段D.第二次分数的中位数在60~79分数段8.一组数据的方差为s2,将该组每一个数据都乘以4,所得到的一组新数据的方差是()A.B.s2C. 4s2D. 16s2二、填空题9.一组数据201、203、198、199、200、205的平均数为________.10.某次数学测验中,某班六位同学的成绩分别是:86,79,81,86,90,84,这组数据的中位数是________.11.在“争创美丽校园,争做文明学生”示范校评比活动中,10位评委给某校的评分情况如下表所示:则这10位评委评分的平均数是________分.12.为了调查某小区居民的用水情况,随机抽查了若干户家庭月用水量,结果如表:则关于这若干户家庭的月用水量,中位数是________吨,月平均用水________吨.13.某校规定学生的学期学业成绩由三部分组成:平时占20%,期中占30%,期末占50%,小颖的平时、期中、期末成绩分别为85分、90分、92分,则她本学期的学业成绩为90分,这个成绩是________平均数.(填“算术”或“加权”)14.如下表记录的是某班级女生在一次跳绳练习中跳绳的次数及相应的人数,则该班级女生本次练习中跳绳次数的平均数是________.15.某小组10个人在一次数学小测试中,有3个人的平均成绩为96,其余7个人的平均成绩为86,则这个小组的本次测试的平均成绩为________.16.某乒乓球训练队共有9名队员,他们的年龄(单位:岁)分别为:12,13,13,14,12,13,15,13,15,则他们年龄的众数为________.三、解答题17.我校50名学生在某一天调查了75户家庭丢弃塑料袋的情况,统计结果如下表:根据上表回答下列问题:(1)这天,一个家庭一天最多丢弃________个塑料袋.(2)这天,丢弃3个塑料袋的家庭户数占总户数的________.(3)该校所在的居民区共有居民0.8万户,则该区一天丢弃的塑料袋有多少个.18.我国淡水资源短缺问题十分突出,已成为我国经济和社会可持续发展的重要制约因素,节约用水是各地的一件大事.某校初三学生为了调查居民用水情况,随机抽查了某小区20户家庭的月用水量,结果如表所示:(1)求这20户家庭月用水量的平均数、众数及中位数.(2)政府为了鼓励节约用水,拟试行水价浮动政策.即设定每个家庭月基本用水量a(t),家庭月用水量不超过a(t)的部分按原价收费,超过a(t)的部分加倍收费.①你认为以平均数作为该小区的家庭月基本用水量a(t)合理吗?为什么?(简述理由)②你认为该小区的家庭月基本用水量a(t)为多少时较为合理?为什么?(简述理由)19.某次歌咏比赛,得分最高的三名选手的成绩统计如下表:若按算术平均分排出冠军、亚军、季军,则冠军、亚军、季军各是谁?20.某地区教育部门要了解初中学生阅读课外书籍的情况,随机调查了本地区500名初中学生一学期阅读课外书的本数,并绘制了如下的统计图,请根据统计图反映的信息回答问题.(1)这些课外书籍中,哪类书的阅读数量最大?(2)这500名学生一学期平均每人阅读课外书多少本?(精确到1本)(3)若该地区共有2万名初中学生,请估计他们一学期阅读课外书的总本数.21.小红在期末考试中,语文,数学,外语,政治,物理,化学,生理卫生7门学科的总成绩是664分,其中语文和数学两门学科的总成绩是187分,求小红的外语,政治,物理,化学,生理卫生5门学科的平均成绩.第二十章《数据的分析》单元练习题答案解析1.【答案】D【解析】根据平均数的计算公式先算出这组数据的平均数,再根据方差公式进行计算即可.这组数据的平均数是:(-1+1+2+3)÷5=1,则这组数据的方差为:[(0-1)2+(-1-1)2+(1-1)2+(2-1)2+(3-1)2]=2;故选D.2.【答案】D【解析】根据加权平均数的定义可得:数据a的权是m,数据b的权是n,所以甲、乙两班在这次考试中的总平均分是.故选D.3.【答案】A【解析】∵共有13所中学参加决赛,取前7名,∴把所有学校的成绩按大小顺序排列,第7名的成绩是这组数据的中位数,所以该学校知道这组数据的中位数,才能知道自己是否进入前7名,故选A.4.【答案】B【解析】根据统计表可得出每个月课外阅读书籍的数量,即可求得平均数;出现次数最多的数据是众数;将这些数据按大小顺序排列,中间两个数的平均数为中位数;依此即可求解.A.8+6+5+10+4+7=40(人),故该学校中参与调查的青年教师人数为40人是正确的,不符合题意;B.平均数为:×(15×8+11×6+8×5+4×10+3×4+2×7)=7.3,原来的说法错误,符合题意;C.中间两个数都是4,所以中位数为4,故该学校中青年教师2016年度看书数量的中位数为4本,是正确的,不符合题意;D.4出现的次数最多,是10次,众数为4,故该学校中青年教师2016年度看书数量的众数为4本,是正确的,不符合题意.故选B.5.【答案】A【解析】根据平均数的定义列出方程,解方程可得.∵数据6、4、a、3、2的平均数是5,∴=5,解得:a=10,故选A.6.【答案】C【解析】因为众数是76,说明此型号的衬衫需求最大,故76号的生产量要占第一位.7.【答案】C【解析】解决本题需要从统计图获取信息,由此关键是明确图表中数据的来源及所表示的意义,依据所示的实际意义获取正确的信息.根据统计图各部分表示的意义,发现:A中,两次测试,最低分在第一次测试中,错误;B中,根据此条形统计图,显然第二次测试的分数明显高于第一次的分数,错误;C中,共有100名学生,所以中位数应是第50和51的平均数,显然第一次测试的中位数落在20~39段内,正确;D中,第二次测试的中位数应落在40~59段内,错误.故选C.8.【答案】D【解析】根据当数据都乘以一个数a时,方差变为原方差a2倍进行解答即可.∵一组数据的方差为s2,∴将该组每一个数据都乘以4,所得到的一组新数据的方差42×s2=16s2,故选D.9.【答案】201【解析】首先求出数据201、203、198、199、200、205的和是多少;然后用所有数据的和除以6,求出数据201、203、198、199、200、205的平均数为多少即可.(201+203+198+199+200+205)÷6=1206÷6=201,∴数据201、203、198、199、200、205的平均数为201.10.【答案】85【解析】把这组数据从小到大排列为79,81,84,86,86,90,共有6个数,中位数是第3,4个数的平均数,则中位数是(84+86)÷2=85.11.【答案】89【解析】在求n个数的平均数时,如果x1出现f1次,x2出现f2次,x3出现f3次,…,xk出现fk次(这里f1+f2+f3+…+fk=n),那么这n个数的平均数=.所以,这10位评委评分的平均数是:(80+85×2+90×5+95×2)÷10=89(分).12.【答案】5,4.6【解析】将所有数据按照从小到大的顺序排列为:3,3,4,4,4,5,5,5,5,5,8,则中位数为:5,平均数为:≈4.6.故答案为:5,4.6.13.【答案】加权【解析】根据加权平均数的定义可得.∵85×20%+90×30%+92×50%=90,∴这个成绩是加权平均数.14.【答案】54【解析】在求n个数的平均数时,如果x1出现f1次,x2出现f2次,x3出现f3次,…,xk出现fk次(这里f1+f2+f3+…+fk=n),那么这n个数的平均数=.所以,该班级女生本次练习中跳绳次数的平均数是==54. 15.【答案】89【解析】在求n个数的平均数时,如果x1出现f1次,x2出现f2次,x3出现f3次,…,xk出现fk次(这里f1+f2+f3+…+fk=n),那么这n个数的平均数=.所以,这个小组的本次测试的平均成绩为:=89.16.【答案】13【解析】由于众数是一组数据中出现次数最多的数据,由此可以确定这组数据的众数.依题意得13在这组数据中出现四次,次数最多,则他们年龄的众数为13.17.【答案】解:(1)由表得:一个家庭一天最多丢弃5个塑料袋,故答案为5;(2)30÷75×100%=40%,故答案为40%;(3)×8000=28 800个.【解析】(1)由表直接写出结果;(2)由表看出,75户中丢弃3个塑料袋的家庭户数为30户,再求出所占总户数的百分比;(3)算出75户家庭丢弃塑料袋的总量,再求出该校所在的居民区共有居民0.8万户一天丢弃的塑料袋的总量.18.【答案】解:(1)平均数=(3×4+4×2+5×3+7×6+8×3+9×1+10×1)=6.这组数据是按从小到大排列的,第10,11位,都是7,则中位数为7.因为7出现的次数最多,则该组数据的众数为7,故众数和中位数均为7.(2)①以平均数6作为家庭月用水量a不合理.因为不能满足大多数家庭的月用水量.②以众数(中位数)7作为家庭月用水量a较为合理.因为这样可以满足大多数家庭的月用水量.【解析】平均数、中位数和众数都是刻画了数据的集中趋势,但是又各有特点,平均数受极端值的影响较大,中位数和众数不受极端值影响.19.【答案】解:王晓丽的平均分为:(98+80+80)÷3=86;李真的平均分为:(95+90+90)÷3=91;林飞扬的平均分为:(80+100+100)÷3=93.∵93>91>86,∴冠军是林飞扬,亚军是李真,季军是王晓丽.【解析】用每个选手的总分除以3,就是这名选手的平均分;求出平均分再比较它们的大小即可求解.20.【答案】解:(1)这些类型的课外书籍中,小说类课外书阅读数量最大.(2)(2.0+3.5+6.4+8.4+2.4+5.5)×100÷500=5.64≈6(本).答:这500名学生一学期平均每人阅读课外书6本.(3)2 0000×6=120 000(本)或2×6=12(万本)答:他们一学期阅读课外书的总数是12万本.【解析】由样本的情况可以估算出总体的情况,这在数学统计中是经常采用的一种方法.21.【答案】解:∵7门学科的总成绩是664分,其中语文和数学两门学科的总成绩是187分,∴5门的总分为664-187=477分,∴5门的平均分为477÷5=95.4分.答:小红这5门学科的平均成绩为95.4分.【解析】根据总分和另外两科的分数求得其他5科的总分,进而可以求得平均分.。

(完整word版)新人教版八年级数学下第20章《数据的分析》测试题含答案

(完整word版)新人教版八年级数学下第20章《数据的分析》测试题含答案

2015—2016学年度第二学期新课程素质能力测试八年级(下)数学试题第二十章数据的分析测试题时限.100分钟满分.120分命题人:周艺班级____姓名_____得分_____一.选择题(本大题共12个小题,每小题3分,共36分。

在每小题给出的四个选项中,只有一项是满足题目要求的,请把其代号填在答题栏中相应题号的下面)。

123456789101112题号答案1.数据5,3,2,1,4的平均数是A. 2B. 5C. 4D. 32.六个学生进行投篮比赛,投进的个数分别为2,3,3,5,10,13,这六个数的中位数是A.3B.4C.5D.63.10名学生的体重分别是41,48,50,53,49,53,53,51,67(单位:kg),这组数据的众数是A.67B.53C.50D.494.人数相等的甲.乙两班学生参加了同一次数学测验,班平均分和方差分别为=82分,82分,245分190分那么成绩较为整齐的是A.甲班B.乙班C.两班一样整齐D.无法确定5.某电视台举办的青年歌手电视大奖赛上,六位评委给3号选手的评分如下:90,96,91,96,95,94,这组数据的中位数是A.95B.94C.94.5D.966、数据按从小到大排列为1,2,4,x,6,9,这组数据的中位数为5,那么这组数据的众数是A.4B.5C.5.5D.67.某车间对生产的零件进行抽样调查,在10天中,该车间生产的零件次品数如下(单位:个):0,3,0,1,2,1,4,2,1,3,在这10天中,该车间生产的零件次品数的A.中位数是2B.平均数是1C.众数是1D.以上均不正确8.从鱼塘捕获同时放养的草鱼240条,从中任选8条称得每条鱼的质量分别为1.5,1.6,1.4,1.3,1.5,1.2,1.7,1.8(单位:千克),那么可估计这240条鱼的总质量大约为A. 300千克B.360千克C.36千克D.30千克9.一个射手连续射靶22次,其中三次射中10环,7次射中9环,9次射中8环,3次射中7环,则射中环数的中位数和众数分别为A.8,9B.8,8C.8.5,8D.8.5,910.若样+1,+1,…,+1的平均数为10,方差为2,则对于样本,x2+2,…,x n+2,下列结论正确的是A.平均数为10,方差为2B.平均数为11,方差为3C.平均数为11,方差为2D.平均数为12,方差为411.已知甲、乙两组数据平均数都是5,甲组数据的方差=,乙组数据的方差=下列结论正确的是A.甲组数据比一组数据的波动大B.乙组数据比甲组数据的波动大C.甲组数据和乙组数据的波动一样大D.甲组数据和乙组数据的波动不能比较12.一组数据共分6个小组,其中一个小组的数据占整个数据组的,那么这个小组在扇形统计图中所对应的圆心角的度数是A. B. C. D.二.填空题(本大题共4个小题,每小题3分,共12分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
温度/℃
第二十章数据分析测试卷(B)
一、选择题(每小题6分,共36分) 1.数据2,3,5,5,4的众数是( )
A.2
B.3
C.4
D.5 2.某市在一次空气污染指数抽查中,收集到10天的数据如下:61,75,70,56,81,91,92,91,75,81.该组数据的中位数是( )
A.78
B.81
C.91
D.77.3
3.某男装专卖店老板专营某品牌夹克,店主统计了一周中不同尺码的夹量中的( )
A.平均数
B.方差
C.众数
D.中位数 4.12位参加歌唱比赛的同学的成绩各不相同,按成绩取前6位进入决赛.如果小颖知道了自己的成绩后,要判断能否进入决赛,小颖要知道这12位同学成绩的( )
A.平均数
B.众数
C.中位数
D.方差
5.某学校在开展“节约每一滴水”的活动中,从七年级的100名同学中任选出20名同学汇报了各自家庭一个月的节水情况,将有关数据(每人
A.180t
B.300t
C.230t
D.250t
6.甲、乙两班举行电脑汉字输入比赛,参赛学生每分输入汉字的个数统计结果如下表:
② 、乙两班平均成绩相同;
②乙班优秀的人数多于甲班优秀的人数(每分输入汉字个数≥150为优秀); ③甲班成绩的波动比乙班大. 上述结论中正确的是( )
A.①②③
B.①②
C.①③
D.②③ 二、填空题(每小题6分,共24分)
7.一家鞋店在一段时间内销售了某种女鞋30双,各种尺码的销售量如下
码女鞋数量最合适的分别是___________________.
8.甲、乙两地9月上旬的日平均气温如图所示,则甲、乙两地这十天气温的方差大小关系为
S 2甲____S 2乙(填>或<).
(第8题)
2
9.一组数据25,29,20,x ,14,它的中位数是23,则这组数据的平均数为______________. 10.阅读下列材料:
为了在甲、乙两名运动员中选拔一人参加全省跳水比赛,对他们的跳水
(1)甲成绩的平均数是________,乙成绩的平均数是____________ (2)经计算S 2甲=13.2,S 2乙=26.36,这表明__________________________(用简明的文字语言表述).
(3)你认为选谁去参加比赛更合适?_________,理由是____________________________________. 三、解答题(每小题10分,共40分)
11.国家规定“中小学生每天在校体育活动时间不低于1h ”.为此,某市就“每天在校体育活动时间”的问题随机调查了辖区内320名初中学生,根据调查结果绘制成统计图(部分)如图所示,其中分组情况是: A 组:t <0.5h B 组:0.5h ≤t <1h C 组:1h ≤t <1.5h D 组:t ≥1.5 请根据上述信息解答下列问题: (1)C 组的人数是____________;
(2)本次调查数据的中位数落在______组内;
(3)若该市辖区内约有32 000名初中学生,请你估计其中达国家规定体育活动时间的人数约有多少.
12.一养鱼专业户为了估计池塘里有多少条鱼,先捕上100条作上标记,然后放回池塘里.过了一段时间,待带有标记的鱼混合于鱼群后,再次捕捞5次,记录如下:第一次捕捞90条,带有标记的有11条;第二次捕捞100条,带有标记的有9条;第三次捕捞120条,带有标记的有12条;第四次捕捞100条,带有标记的有9条;第五次捕捞80条,带有标记的有8条.鱼塘内大约有多少条鱼?
14.某商场统计了每个营业员在某月的销售额,统计图如下:
解答下列问题:
(1)设营业员的月销售额为x(单位:万元),商场规定:当x <15时为不称职,当15≤x<20时,为基本称职,当20≤x<25为称职,当x≥25时为优秀.试求出不称职、基本称职、称职、优秀四个层次营业员人数所占百分比(精确到0.1%),并用扇形图统计出来.
(2)根据(1)中规定,所有称职和优秀这两个层次的营业员月销售额的中位数、众数和平均数分别是多少?
(3)为了调动营业员的工作积极性,决定制定月销售额奖励标准,凡到达或超过这个标准的营业员将受到奖励.如果要使得称职和优秀这两个层次的所有营业员的半数左右能获奖,你认为这个奖励标准应定为多少元合适?并简述其理由.
3
4。

相关文档
最新文档