TS339_05中文资料
3395A使用说明书[2]
4.3 动态范围 频段 1:50mVrms~1Vrms 频段 2:50mVrms~1Vrms 频段 3:-25dBm~+5dBm
1GHz~12.4GHz
旧底图总号
-20dBm~+5dBm 12.4GHz~26.5GHz -15dBm~+5dBm 26.5GHz~40GHz 4.4 最大不烧毁功率 频段 1:3Vrms(+23dBm) 频段 2:3Vrms(+23dBm) 频段 3:+17dBm 4.5 输入阻抗 频段 1:50/10M BNC 频段 2:50 BNC 频段 3:50 K 型阳头 4.6 闸门时间 500s、1ms、10ms、100 ms、200 ms、500 ms、1s、10s。
标记 数量 更改单号 签名 日 期
底图总号
拟制 审核
日期
签名
EE3395A 型毫米波频率计数器 等级 使用说明书
标准化 批准
描图: 幅面:4
KL 2.720.8005SS
标记 第 2 张 共 12 张
格式(4)
1 概述 EE3395A 型毫米频率计数器是采用微波取样技术来实现对信号频率的测量,整个测量过程的功能控制和 时 序、数据处理均由机内微处理器来完成。它是新一代的智能化毫米波测频仪器。本仪器采用了中大规模集成 电路和一些性能优异的单片集成电路(如 EPLD 芯片,单片频率合成器),使仪器的设计更加合理,有功耗小、 可靠 性高、动态范围大、精度高、使用方便等特点,满足了国防、科研和电子产品生产等领域对微波及毫米波的频 率测量要求。 2 仪器的基本工作原理 EE3395A 型毫米波频率计数器采用等精度的测量技术进行测量,因此其测量误差和被测频率的频率值无 关, 而只决定于标称频率的准确度。 本机配置 110-8/日的 5MHz 标频, 如有需要, 还可外接稳定度更高的 5MHZ 或 10MHZ 信号。在测量时,由主门控制,将被测信号及时钟信号(100MHZ)分别送入 E、T 计数器,由微 处理器对这两个计数器的值进行运算、处理及显示。频段 1 采用直接计数方式,频段 2 采用预定标方式(除 16),频段 3 采用取样混频技术,整机原理框图见图 1。 3 工作模式 EE3395A 型毫米波频率计数器的主要工作模式有以下几种,50MHz 自校,10Hz~100MHz 周期测量, 10Hz~40GHz 频率测量。 4 技术指标 4.1 频率测量范围:10Hz~40GHz 频段 1:10Hz~100MHz 频段 2:100MHz~1000MHz 频段 3:1GHz~40GHz 4.2 灵敏度 频段 1:50mVrms(-13dBm) 频段 2:50mVrms(-13dBm) 频段 3:-25dBm 1GHz~12.4GHz -20dBm -15dBm 12.4GHz~26.5GHz 26.5GHz~40GHz
YW-UTC339中文PDF资料
RL=∞
5
10 15 20 25 30 35 40
电电电电 (V)
(mA)
110 100 90 80
输输电电 70 60
50 40
30 20
10 0
图2 图图电图图图
℃ Ta=-40 ℃ Ta=-25 ℃ Ta=25 ℃ Ta=70
Vcm=OVDC Rcm=1GΩ 5 10 15 20 25 30 35 40
测试条件
至 VCM=0V VCC-1.5V Ω VO(P)=1.4V,RS=0 0≤TA≤+70℃(其余同上)
≤ ≤ ℃ 0 TA +70
≤ ≤ ℃ 0 TA +70
≤ ≤ ℃ 0 TA +70
∞ RL=
≥ Ω VCC=15V,RL 15K
(大信号摆幅)
逻辑摆幅, VI=TTL
VREF=1.4V
Ω VRL=5V,RL=5.1K
1.2
1.6
(V)
(mV)
图4 图图图图图图图图图图图 (图图图 )
输输输输-1000
℃ Ta=25
6.0
输输输输输
输输输输24..00
50mV
20mV 5.0mV
0
0
0.4
0.8
1.2
1.6
时时 (μs)
(mV)
(V)
IC网络超市 www.ic-jiazhi.com Tel;400-660-8382 3
连续
570
0—+70
-65—+150
单位
V V V
mW
℃ ℃
电参数(除非特别说明,Vcc=5.0V,TA=25℃)
参数
输入失调电压
LMX339AUD-T中文资料
General DescriptionThe LMX331/LMX393/LMX339 single/dual/quad com-parators are drop-in, pin-for-pin-compatible replace-ments for the LMV331/LMV393/LMV339. The LMX331H/LMX393H/LMX339H offer the performance of the LMX331/LMX393/LMX339 with the added benefit of inter-nal hysteresis to provide noise immunity, preventing out-put oscillations even with slow-moving input signals.Advantages of the LMX331/LMX393/LMX339 series include low supply voltage, small package, and low cost.The LMX331 is available in both 5-pin SC70 and SOT23packages, LMX393 is available in both 8-pin µMAX and smaller SOT23 packages, and the LMX339 is available in 14-pin TSSOP and SO packages. They are manufac-tured using advanced submicron CMOS technology.Designed with the most modern techniques, the LMX331/LMX393/LMX339 achieve superior performance over BiCMOS or bipolar versions on the market.The LMX331/LMX393/LMX339 offer performance advantages such as wider supply voltage range, wider operating temperature range, better CMRR and PSRR,improved response time characteristics, reduced off-set, reduced output saturation voltage, reduced input bias current, and improved RF immunity.ApplicationsMobile Communications Notebooks and PDAs Automotive Applications Battery-Powered ElectronicsGeneral-Purpose Portable DevicesGeneral-Purpose Low-Voltage ApplicationsFeatureso Guaranteed 1.8V to 5.5V Performanceo -40°C to +125°C Automotive Temperature Range o Low Supply Current (60µA/Comparator at V DD = 5.0V)o Input Common-Mode Voltage Range Includes Groundo No Phase Reversal for Overdriven Inputs o Low Output Saturation Voltage (100mV)o Internal 2mV Hysteresis(LMX331H/LMX393H/LMX339H)o 5-Pin SC70 Space-Saving Package (2.0mm ✕2.1mm ✕1.0mm)(LMX331/LMX331H)LMX331/LMX393/LMX339General-Purpose, Low-Voltage,Single/Dual/Quad, Tiny-Pack Comparators________________________________________________________________Maxim Integrated Products 1Pin Configurations19-1958; Rev 2; 1/02For pricing, delivery, and ordering information,please contact Maxim/Dallas Direct!at1-888-629-4642, or visit Maxim’s website at .Ordering InformationL M X 331/L M X 393/L M X 339General-Purpose, Low-Voltage,Single/Dual/Quad, Tiny-Pack ComparatorsABSOLUTE MAXIMUM RATINGSDC ELECTRICAL CHARACTERISTICS —2.7V OPERATIONStresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.Supply Voltage (V DD to V SS )...................................-0.3V to +6V All Other Pins..................................(V SS - 0.3V) to (V DD + 0.3V)Continuous Power Dissipation (T A = +70°C)5-Pin SC70 (derate 3.1mW/°C above +70°C)..............247mW 5-Pin SOT23 (derate 7.1mW/°C above +70°C)............571mW 8-Pin SOT23 (derate 8.9mW/°C above +70°C)............714mW 8-Pin µMAX (derate 10.3mW/°C above +70°C)...........825mW14-Pin TSSOP (derate 9.1mW/°C above +70°C).........727mW 14-Pin SO (derate 8.3mW/°C above +70°C).............666.7mW Operating Temperature Range .........................-40°C to +125°C Junction Temperature......................................................+150°C Storage Temperature Range.............................-65°C to +150°C Lead Temperature (soldering, 10s).................................+300°CAC ELECTRICAL CHARACTERISTICS —2.7V OPERATION(V DD = 2.7V, V SS = 0, V CM = 0, R L = 5.1k Ωconnected to V DD . Typical values are at T A = +25°C.) (Note 1)LMX331/LMX393/LMX339General-Purpose, Low-Voltage,Single/Dual/Quad, Tiny-Pack ComparatorsDC ELECTRICAL CHARACTERISTICS —5.0V OPERATION(V = 5V, V = 0, V = 0, R = 5.1k Ωconnected to V . Typical values are at T = +25°C.) (Note 1)AC ELECTRICAL CHARACTERISTICS —5.0V OPERATION(V DD = 5V, V SS = 0, V CM = 0, R L = 5.1k Ωconnected to V DD . Typical values are at T A = +25°C.) (Note 1)L M X 331/L M X 393/L M X 339General-Purpose, Low-Voltage,Single/Dual/Quad, Tiny-Pack Comparators 4_______________________________________________________________________________________DC ELECTRICAL CHARACTERISTICS —1.8V OPERATION(V DD = 1.8V, V SS = 0, V CM = 0, R L = 5.1k Ωconnected to V DD . Typical values are at T A = +25°C.)Note 2:Supply current when output is high.Note 3:Input overdrive is the overdrive voltage beyond the offset and hysteresis-determined trip points.AC ELECTRICAL CHARACTERISTICS —1.8V OPERATION(V DD = 1.8V, V SS = 0, V CM = 0, R L = 5.1k Ωconnected to V DD . Typical values are at T A = +25°C.)LMX331/LMX393/LMX339General-Purpose, Low-Voltage,Single/Dual/Quad, Tiny-Pack Comparators_______________________________________________________________________________________50302010405060708090100132456LMX331SUPPLY CURRENT vs. SUPPLY VOLTAGESUPPLY VOLTAGE (V)S U P P L Y C U R R E N T (µA )40201008060160140120180132456LMX331SUPPLY CURRENT vs. SUPPLY VOLTAGESUPPLY VOLTAGE (V)S U P P L Y C U R R E N T (µA )-1.0-0.50.51.01.5-4020-20406080100120INPUT OFFSET VOLTAGE vs. TEMPERATURETEMPERATURE (°C)I N P U T O F F S E T V O L T A G E (m V )040208060120100140OUTPUT LOW VOLTAGE vs. SINK CURRENTSINK CURRENT (mA)O U T P U T L O W V O L T A G E (m V )123460708090100110120-400-2020406080100120OUTPUT LOW VOLTAGE vs. TEMPERATURETEMPERATURE (°C)O U T P U T L O W V O L TA G E (m V )0200100400300500600040602080100120PROPAGATION DELAY vs. CAPACITIVE LOADCAPACITIVE LOAD (pF)P R O P A G A T I O N D E L A Y (n s )0257550125150100175-4020-20406080100120PROPAGATION DELAY vs. TEMPERATURETEMPERATURE (°C)P R O P A G A T I O N D E L A Y (n s )015010050200250300350400450500502575100125150PROPAGATION DELAY vs. INPUT OVERDRIVE (t PLH )INPUT OVERDRIVE (mV)P R O P A G A T I O N D E L A Y (n s )060402080100120140160180200502575100125150PROPAGATION DELAY vs. INPUT OVERDRIVE (t PHL )INPUT OVERDRIVE (mV)P R O P A G A T I O N D E L A Y (n s )Typical Operating Characteristics(V DD = 5V, V SS = 0, V CM = 0, R L = 5.1k Ω, C L = 10pF, overdrive = 100mV, T A = +25°C, unless otherwise noted.)L M X 331/L M X 393/L M X 339General-Purpose, Low-Voltage,Single/Dual/Quad, Tiny-Pack Comparators 6_______________________________________________________________________________________Typical Operating Characteristics (continued)(V DD = 5V, V SS = 0, V CM = 0, R L = 5.1k Ω, C L = 10pF, overdrive = 100mV, T A = +25°C, unless otherwise noted.)00.51.01.52.02.53.0-40-2020406080100120LMX331H/LMX393H/LMX339H HYSTERESIS vs. TEMPERATUREL M X 331 t o c 10TEMPERATURE (°C)H Y S T E R E S I S (m V )13245132456LMX331H/LMX393H/LMX339H HYSTERESIS vs. SUPPLY VOLTAGESUPPLY VOLTAGE (V)H Y S T E R E S I S (m V )TIME (200ns/div)(IN-) - IN+100mV/divOUT 2V/divL M X 331 t o c 12PROPAGATION DELAY 100mV OVERDRIVETIME (200ns/div)(IN-) - IN+10mV/div OUT 2V/divL M X 331 t o c 13PROPAGATION DELAY 10mV OVERDRIVETIME (500ns/div)(IN-) - IN+100mV/divOUT 2V/divL M X 331 t o c 14500kHz RESPONSE 100mV OVERDRIVETIME (500ns/div)(IN-) - IN+10mV/divOUT 2V/divL M X 331 t o c 15500kHz RESPONSE 10mV OVERDRIVETIME (2µs/div)(IN-) - IN+100mV/div OUT 2V/divL M X 331 t o c 16100kHz RESPONSE 100mV OVERDRIVETIME (2µs/div)(IN-) - IN+10mV/divOUT 2V/divL M X 331 t o c 17100kHz RESPONSE 10mV OVERDRIVETIME (1µs/div)V DD 2V/divOUT 2V/divL M X 331 t o c 18POWER-UP RESPONSELMX331/LMX393/LMX339General-Purpose, Low-Voltage,Single/Dual/Quad, Tiny-Pack Comparators_______________________________________________________________________________________7Detailed DescriptionThe LMX331/LMX393/LMX339 are single/dual/quad,low-cost, general-purpose comparators. They have a single-supply operating voltage of 1.8V to 5V. The com-mon-mode input range extends from -0.1V below the negative supply to within 0.7V of the positive supply.They require approximately 60µA per comparator with a 5V supply and 40µA with a 2.7V supply.The LMX331H/LMX393H/LMX339H have 2mV of hys-teresis for noise immunity. This significantly reduces the chance of output oscillations even with slow-moving input signals. The LMX331/LMX393/LMX339 and LMX331H/LMX393H/LMX339H are ideal for automotive applications because they operate from -40°C to +125°C (see Typical Operating Characteristics ).Applications InformationHysteresisMany comparators oscillate in the linear region of oper-ation because of noise or undesired parasitic feed-back. This tends to occur when the voltage on one input is equal or very close to the voltage on the other input. The LMX331H/LMX393H/LMX339H have internal hysteresis to counter parasitic effects and noise.The hysteresis in a comparator creates two trip points:one for the rising input voltage and one for the fallinginput voltage (Figure 1). The difference between the trip points is the hysteresis. When the comparator's input voltages are equal, the hysteresis effectively causes one comparator input to move quickly past the other,thus taking the input out of the region where oscillation occurs. This provides clean output transitions for noisy,slow-moving input signals.Additional hysteresis can be generated with two resis-tors, using positive feedback (Figure 2). Use the follow-ing procedure to calculate resistor values:Figure 1. Threshold Hysteresis Band (Not to Scale)L M X 331/L M X 393/L M X 339General-Purpose, Low-Voltage,Single/Dual/Quad, Tiny-Pack Comparators 8_______________________________________________________________________________________1)Find output voltage when output is high:V OUT(HIGH)= V DD - I LOAD ✕R L2)Find the trip points of the comparator using theseformulas:V TH = V REF + ((V OUT(HIGH)- V REF )R2) / (R1 + R2)V TL = V REF (1 - (R2 / (R1 + R2)))where V TH is the threshold voltage at which the com-parator switches its output from high to low as V IN rises above the trip point, and V TL is the threshold voltage at which the comparator switches its output from low to high as V IN drops below the trip point.3)The hysteresis band will be:V HYST = V TH - V TL = V DD (R2 / (R1 + R2))In this example, let V DD = 5V, V REF = 2.5V, I LOAD =50nA, R L = 5.1k Ω:V OUT(HIGH)= 5.0V - (50 ✕10-9✕5.1 ✕103Ω) ≈5.0VV TH = 2.5V + 2.5V(R2 / (R1 + R2))V TL = 2.5V(1 - (R2 / (R1 + R2)))Select R2. In this example, we will choose 1k Ω.Select V HYST . In this example, we will choose 50mV.Solve for R1:V HYST = V OUT(HIGH)(R2 / (R1 + R2)) V0.050V = 5(1000 / (R1 + 1000)) Vwhere R1 ≈100k Ω, V TH = 2.525V, and V TL = 2.475V.Choose R1 and R2 to be large enough as not to exceed the amount of current the reference can supply.The source current required is V REF / (R1 + R2).The sink current is (V OUT(HIGH)- V REF ) ✕(R1 + R2).Choose R L to be large enough to avoid drawing excess current, yet small enough to supply the necessary cur-rent to drive the load. R L should be between 1k Ωand 10k Ω.Board Layout and BypassingUse 0.1µF bypass capacitors from V DD to V SS . To max-imize performance, minimize stray inductance by putting this capacitor close to the V DD pin and reduc-ing trace lengths. For slow-moving input signals (rise time > 1ms), use a 1nF capacitor between IN+ and IN-to reduce high-frequency noise.Chip InformationLMX331/LMX331H TRANSISTOR COUNT: 112LMX393/LMX393H TRANSISTOR COUNT: 211LMX339/LMX339H TRANSISTOR COUNT: 411Figure 2. Adding Hysteresis with External ResistorsLMX331/LMX393/LMX339General-Purpose, Low-Voltage,Single/Dual/Quad, Tiny-Pack ComparatorsPackage InformationL M X 331/L M X 393/L M X 339General-Purpose, Low-Voltage,Single/Dual/Quad, Tiny-Pack ComparatorsPackage Information (continued)LMX331/LMX393/LMX339General-Purpose, Low-Voltage,Single/Dual/Quad, Tiny-Pack Comparators ______________________________________________________________________________________11Package Information (continued)L M X 331/L M X 393/L M X 339General-Purpose, Low-Voltage,Single/Dual/Quad, Tiny-Pack ComparatorsMaxim cannot assume responsibility f or use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.12____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600©2002 Maxim Integrated Products Printed USAis a registered trademark of Maxim Integrated Products.Package Information (continued)。
LM339中文资料及PDF下载
LM339/LM393中文资料及PDF下载什么是lm339LM339/LM393是四电压比较器集成电路。
由于LM339 使用灵活,应用广泛,所以世界上各大IC 生产厂、公司竟相推出自己的四比较器,如IR2339、ANI339、SF339 等,它们的参数基本一致,可互换使用。
LM339 类似于增益不可调的运算放大器。
每个比较器有两个输入端和一个输出端。
两个输入端一个称为同相输入端,用“+”表示,另一个称为反相输入端,用“-”表示。
用作比较两个电压时,任意一个输入端加一个固定电压做参考电压(也称为门限电平,它可选择LM339 输入共模范围的任何一点),另一端加一个待比较的信号电压。
当“+”端电压高于“-”端时,输出管截止,相当于输出端开路。
当“-”端电压高于“+”端时,输出管饱和,相当于输出端接低电位。
两个输入端电压差别大于10mV 就能确保输出能从一种状态可靠地转换到另一种状态,因此,把LM339 用在弱信号检测等场合是比较理想的。
LM339 的输出端相当于一只不接集电极电阻的晶体三极管,在使用时输出端到正电源一般须接一只电阻(称为上拉电阻,选3-15K)。
选不同阻值的上拉电阻会影响输出端高电位的值。
因为当输出晶体三极管截止时,它的集电极电压基本上取决于上拉电阻与负载的值。
另外,各比较器的输出端允许连接在一起使用。
�8�5 图1a 给出了一个基本单限比较器。
输入信号Uin,即待比较电压,它加到同相输入端,在反相输入端接一个参考电压(门限电平)Ur。
当输入电压Uin>Ur 时,输出为高电平U OH 。
该电路的特点如下:1 .工作电源电压范围宽,单电源、双电源均可工作,单电源:2~36V,双电源:±1~±18V;2. 消耗电流小,Icc=1.3mA;3. 输入失调电压小,VIO=±2mV;ab126计算公式大全4. 共模输入电压范围宽,Vic=0~Vcc-1.5V;5. 对比较信号源的内阻限制较宽;6. 输出与TTL,DTL,MOS,CMOS 等兼容;7. 输出可以用开路集电极连接“或”门;8. 采用双列直插14引脚塑料封装(DIP14)和微形的双列14脚塑料封装(SOP14)内部结构图及引脚图功能排列表引脚功能符号引引脚功能符号1 输出端2 OUT2 8 反向输入端31N-(3)2 输出端1OUT1 9正向输入端31N+(3)3 电源VCC + 10反向输入端41N-(4)4 反向输入端11N-(1) 11正向输入端41N+(4)5 正向输入端1 1N+(1) 12电源Vcc-6 反向输入端2 1N-(2) 13输出端4 OUT47 正向输入端2OUT2(2) 14输出端3 OUT3LM339主要参数表:参数名称符号数值单位电源电压 VCC ±18 或36 V 差模输入电压 VID ±36 V 共模输入电压 VI -0.3~VCC V 功耗Pd 570 mW 工作环境温度 Topr 0 to +70 ℃贮存温度Tstg -65 to 150 ℃ 电特性(除非特别说明,VCC=5.0V,Tamb=25℃)数名称符号测试条件最小典型最大单位输入失调电压VIOVCM=0 toVCC-1.5VO(P)=1.4V, Rs=0-±1.0 ±5.0 mV输入失调电流IIO --±5 ±50 nA输入偏置电流Ib--65 250 nA共模输入电压VIC -0 -VCC-1.5 V 静态电流ICCVCC = +5V, noload- 1.1 2.0 mA VCC = +30V, noload- 1.3 2.5 mA电A V -200 -V/mV压增益灌电流lsinkVi(-)>1V,Vi(+)=0V, V o(p)<1.5V6 16 -mA输出漏电流IOLEVi(-)=0V,Vi(+)=1V, VO=5V-0.1 -nALM339/LM393中文资料及PDF下载http://www.originic.hk/Item/Show.asp?m=1&d=1566。
R05J09中文资料
Dual Output TypesRxxG055/12±5±1007127RxxG095/12±9±557435DIP14 RxxG125/12±12±427542RxxG155/12±15±337641RxxG0524/48±5±10080/7045RxxG0924/48±9±557052/58DIP14 RxxG1224/48±12±427065/68RxxG1524/48±15±337070/75RxxH055/12±5±1007127RxxH095/12±9±557435SIP7 RxxH125/12±12±427542RxxH155/12±15±337641RxxH0524/48±5±10070/8045RxxH0924/48±9±557052/58SIP7 RxxH1224/48±12±427065/68RxxH1524/48±15±337070/75Absolute Maximum RatingsInput Voltage V IN5V types 7V typ.12V types 15V typ.24V types 24V typ.48V types48V typ.Short Circuit Duration 1)1s Internal Power Dissipation560mW Lead Temperature (1.5 mm from case for 10 seconds)300 °C1).Supply voltage must be discontinued at the end of the short circuit duration.Input Voltage Range V IN (continuous operation)5V input types 4.5VDC min./ 5.5VDC max.12V input types 10.8VDC min./ 13.2VDC max.24V input types 28VDC max.48V input types54VDC max.Reflected Ripple Current (depending on the type)20 mA p-p min.to 40 mA p-p max.Voltage Set Point Accuracy See Tolerance EnvelopeLine Regulation1.0% / 1.2% of V INLoad Voltage Regulation (10% load to 100% full load)single output types 6.7% min./ 15% max.dual output types 6.8% min./ 10% max.Ripple & Noise (20MHz band limited)single output types 32mVp-p min./ 80mVp-p max.dual output types24mVp-p min./ 40mVp-p max.Isolation Voltage (for 1 minute)3000VDC min.Test Voltage (50Hz,10 seconds)3000 Vpk min.Resistance (Viso = 1000V)10 G Ωtyp.Switching Frequency at Full Load (depending on the type)V IN 5V output types 120kHz min./ 135kHz max.V IN 12V output types 150kHz min./ 170kHz max.V IN 24V output types 150kHz max.V IN 48V output types150kHz max.Package Weight2.11 gOperating Temperature Range (all output types)–40°C min.to +85°C max.(see graph)Storage Temperature Range–50°C min.+125°C max.Case Temperature Above Ambient (depending on the type)5V output types+28°C max.all other output types +25°C max.MTTF 1) (depending on the type)–40°C,single output types 303kHrs min./ 2938kHrs max.+25°C,single output types 252kHrs min./ 2414kHrs max.+85°C,single output types 212kHrs min./ 1961kHrs max.–40°C,dual output types 185kHrs min./ 2068kHrs max.+25°C,dual output types 154kHrs min./ 1697kHrs max.+85°C,dual output types130kHrs min./ 1368kHrs max.1).Calculated using MIL-HDBK-217F with nominal input voltage at full load.Please contact us,if you need exact parameters for the converter you have selected.Electrical Specifications (measured at T A = 25°C,at nominal input voltage and rated output current unless otherwise specified)Package Style and Pinning (mm)。
lm339中文资料
LM339中文资料1. 简介LM339是一种通用比较器(comparator),由Texas Instruments(TI)公司生产。
它是一款低功耗、高精度、高速度的集成电路,适用于电压比较和电压测量等应用。
LM339内部集成了四个电压比较器,每个比较器都具有两个输入端和一个输出端,并且可以独立设置电源电压。
2. LM339的特性2.1 低功耗LM339采用了低功耗设计,工作电流仅为1.3mA。
它适用于电池供电和功耗敏感的应用。
2.2 高精度LM339具有高精度的比较能力,其输入偏置电流仅为25nA,输入偏置电压仅为5mV。
这使得LM339可以在对精度要求较高的应用中使用,如电压测量和自动控制等。
2.3 高速度LM339具有快速的响应速度,其响应时间为1μs。
这使得LM339可以在需要高速比较的应用中使用,如开关电路和信号处理等。
2.4 宽电源电压范围LM339的电源电压范围广,可以接受单一供电或双供电。
单一供电时,其工作范围为2V至36V;双供电时,其工作范围为±1V至±18V。
这使得LM339适用于各种供电系统和应用场景。
2.5 开关速度快LM339的开关速度快,可以在约30nS的时间内完成比较操作。
这使得LM339适用于高频率信号处理和数字电路。
3. LM339的应用3.1 电压比较由于LM339是一种比较器,其主要应用是进行电压比较。
通过调整输入电压和参考电压,可以判断两个电压的大小关系,并通过输出端的电平状态表示。
3.2 开关电路由于LM339的快速开关速度和高精度的比较能力,它可以用于开关电路,如电源切换、开关控制等。
通过比较输入电压和参考电压,可以控制开关的状态。
3.3 电压测量由于LM339具有高精度和低功耗的特点,可以用于电压测量和监测。
通过将待测电压与参考电压进行比较,可以得到准确的电压值。
3.4 自动控制LM339的高精度和高速度使其非常适合于自动控制系统。
TS15P05G中文资料
INSTANTANEOUS FORWARD CURRENT. (A)
Tj=125 0C 1
100
10
Tj=25 0C 0.1
1.0
0.01
0
20
40
60
80
100
120
140
0.1 .6
.8
1.0
1.2
1.4
1.6
1.8
2.0
PERCENT OF RATED PEAK REVERSE VOLTAGE. (%)
FIG.3- TYPICAL REVERSE CHARACTERISTICS PER BRIDGE ELEMENT
10
FIG.4- TYPICAL FORWARD CHARACTERISTICS PER BRIDGE ELEMENT
1000
INSTANTANEOUS REVERSE CURRENT. ( A)
VRRM VRMS VDC I(AV) IFSM VF
50 35 50
100 70 100
200 140 200
400 280 400
600 420 600
800 560 800Байду номын сангаас
1000 700 1000
15.0 200 1.1 10.0 500 0.8 -55 to +150 -55 to + 150
FORWARD VOLTAGE. (V)
FIG.5- TYPICAL TRANSIENT THERMAL IMPEDANCE
TRANSIENT THERMAL IMPEDANCE ( C/W)
10
o
1
0.1 0.01 0.1 1 10
油性漆中文表
216青铜
217金
218 钮
219黄铜
301 灰 FS36081(半光泽)
302 绿色 FS34102(半光泽)
303 绿 FS34102(半光泽)
304 橄榄绿 FS34087(半光泽)
305灰色FS36188
306 灰色 FS36270(半光泽)
307 灰色 FS36320(半光泽)灰色 FS36175 309 绿 FS34079(半光泽)
TS-49 亮光鲜红 TS-50金属云母蓝 TS-51金属Telefonica蓝
TS-52 亮光川崎蓝 TS-53 金属深蓝 TS-54 金属浅蓝
TS-55 亮光暗蓝 TS-56 亮光亮橙 TS-57 亮光紫罗兰
035 明灰白色(三菱系)(半光泽)
036 RLM74 灰绿色(半光泽)
037 LM75 灰紫色(半光泽)
038 橄榄绿2 (消光)
039 暗黄(消光)
040 德国灰(消光)
041红棕色(消光)
042 赤褐色(半光泽) 来自 043 木棕色 044 甲板革(半光泽)
045 帆布色(半光泽)
XF-11 日海军军机绿 XF-12 日海军军机灰
XF-13 日空军军机绿 XF-14 日空军军机灰
XF-15 肌肉色 XF-16金属铝 XF-17消光海蓝 XF-18消光中度蓝
XF-19 消光天灰 XF-20 消光中度灰
XF-21 消光天色 XF-22 消光RLM灰
XF-23 消光浅蓝 XF-24 消光暗灰
012 橄榄绿(半光泽)
013 灰色(半光泽)
014 海军蓝(半光泽)
015 暗绿色(中岛系)(半光泽)
131P474X2600S04中文资料
1000 WVDC / 500 VAC 0.010 0.022 0.047 0.10 0.22 0.47 131P103X91K0S02* 131P223X91K0S02* 131P473X91K0S02* 131P104X91K0S02* 131P224X91K0S02* 131P474X91K0S02* 0.400 x 0.875 [10.16 x 22.23] 0.400 x 1.375 [10.16 x 34.93] 0.562 x 1.375 [14.27 x 34.93] 0.670 x 1.625 [17.02 x 41.28] 0.750 x 2.125 [19.05 x 53.98] 1.000 x 2.375 [25.40 x 60.33] 0.039 0.079 0.133 0.241 0.427 0.772 2.5 5.5 11.0 25.0 55.0 117.0 0.027 0.055 0.093 0.168 0.298 0.540 1.7 3.8 7.7 17.5 38.5 81.9
DC Life Test: 140% of rated voltage for 250 hours @ + 125°C. No open or short circuits. No visible damage. Maximum Capacitance Change: ± 5%. Minimum IR = 60% of initial limit. Maximum DF = 1.0%. Moisture Resistance: MIL-STD-202, Method 106E, 10 cycles. No visible damage. Maximum Capacitance Change: ± 3%. Minimum IR = 60% of initial limit. Maximum DF = 1.2%. Thermal Shock and Immersion Cycling: No visible damage. Maximum Capacitance Change: ± 1%. Minimum IR = 50% of initial limit. Maximum DF = 1.2%.
LMV331_05中文资料
IMPORTANT NOTICETexas Instruments Incorporated and its subsidiaries(TI)reserve the right to make corrections,modifications,enhancements, improvements,and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty.Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty.Except where mandated by government requirements,testing of all parameters of each product is not necessarily performed.TI assumes no liability for applications assistance or customer product design.Customers are responsible for their products and applications using TI components.To minimize the risks associated with customer products and applications,customers should provide adequate design and operating safeguards.TI does not warrant or represent that any license,either express or implied,is granted under any TI patent right,copyright,mask work right,or other TI intellectual property right relating to any combination,machine,or process in which TI products or services are rmation published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement e of such information may require a license from a third party under the patents or other intellectual property of the third party,or a license from TI under the patents or other intellectual property of TI. Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties,conditions,limitations,and notices.Reproduction of this information with alteration is an unfair and deceptive business practice.TI is not responsible or liable for such altered documentation.Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice.TI is not responsible or liable for any such statements.TI products are not authorized for use in safety-critical applications(such as life support)where a failure of the TI product would reasonably be expected to cause severe personal injury or death,unless officers of the parties have executed an agreement specifically governing such use.Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications,and acknowledge and agree that they are solely responsible for all legal,regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications,notwithstanding any applications-related information or support that may be provided by TI.Further,Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or"enhanced plastic."Only products designated by TI as military-grade meet military specifications.Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk,and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS16949requirements.Buyers acknowledge and agree that,if they use anynon-designated products in automotive applications,TI will not be responsible for any failure to meet such requirements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions:Products ApplicationsAmplifiers AudioData Converters AutomotiveDSP BroadbandInterface Digital ControlLogic MilitaryPower Mgmt Optical NetworkingMicrocontrollers SecurityLow Power TelephonyWirelessVideo&ImagingWirelessMailing Address:Texas Instruments,Post Office Box655303,Dallas,Texas75265Copyright©2007,Texas Instruments IncorporatedPACKAGING INFORMATIONOrderable Device Status(1)PackageType PackageDrawingPins PackageQtyEco Plan(2)Lead/Ball Finish MSL Peak Temp(3)LMV331IDBVR ACTIVE SOT-23DBV53000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLMV331IDBVRE4ACTIVE SOT-23DBV53000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLMV331IDBVRG4ACTIVE SOT-23DBV53000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLMV331IDBVT ACTIVE SOT-23DBV5250Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLMV331IDBVTE4ACTIVE SOT-23DBV5250Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLMV331IDCKR ACTIVE SC70DCK53000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLMV331IDCKRE4ACTIVE SC70DCK53000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLMV331IDCKRG4ACTIVE SC70DCK53000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLMV331IDCKT ACTIVE SC70DCK5250Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLMV331IDCKTE4ACTIVE SC70DCK5250Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIM LMV331IDCKTG4ACTIVE SC70DCK5250TBD Call TI Call TI LMV339ID ACTIVE SOIC D1450Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLMV339IDE4ACTIVE SOIC D1450Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLMV339IDG4ACTIVE SOIC D1450Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLMV339IDR ACTIVE SOIC D142500Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLMV339IDRE4ACTIVE SOIC D142500Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLMV339IDRG4ACTIVE SOIC D142500Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLMV339IPW ACTIVE TSSOP PW1490Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLMV339IPWE4ACTIVE TSSOP PW1490Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLMV339IPWR ACTIVE TSSOP PW142000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLMV339IPWRE4ACTIVE TSSOP PW142000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLMV393ID ACTIVE SOIC D875Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLMV393IDDUR ACTIVE VSSOP DDU83000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLMV393IDDURE4ACTIVE VSSOP DDU83000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLMV393IDE4ACTIVE SOIC D875Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMOrderable Device Status(1)PackageType PackageDrawingPins PackageQtyEco Plan(2)Lead/Ball Finish MSL Peak Temp(3)LMV393IDG4ACTIVE SOIC D875Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLMV393IDGKR ACTIVE MSOP DGK82500Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLMV393IDGKRG4ACTIVE MSOP DGK82500Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLMV393IDR ACTIVE SOIC D82500Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLMV393IDRE4ACTIVE SOIC D82500Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLMV393IDRG4ACTIVE SOIC D82500Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLMV393IPW ACTIVE TSSOP PW8150Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLMV393IPWE4ACTIVE TSSOP PW8150Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLMV393IPWR ACTIVE TSSOP PW82000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLMV393IPWRE4ACTIVE TSSOP PW82000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIMLMV393IPWRG4ACTIVE TSSOP PW82000Green(RoHS&no Sb/Br)CU NIPDAU Level-1-260C-UNLIM(1)The marketing status values are defined as follows:ACTIVE:Product device recommended for new designs.LIFEBUY:TI has announced that the device will be discontinued,and a lifetime-buy period is in effect.NRND:Not recommended for new designs.Device is in production to support existing customers,but TI does not recommend using this part in a new design.PREVIEW:Device has been announced but is not in production.Samples may or may not be available.OBSOLETE:TI has discontinued the production of the device.(2)Eco Plan-The planned eco-friendly classification:Pb-Free(RoHS),Pb-Free(RoHS Exempt),or Green(RoHS&no Sb/Br)-please check /productcontent for the latest availability information and additional product content details.TBD:The Pb-Free/Green conversion plan has not been defined.Pb-Free(RoHS):TI's terms"Lead-Free"or"Pb-Free"mean semiconductor products that are compatible with the current RoHS requirements for all6substances,including the requirement that lead not exceed0.1%by weight in homogeneous materials.Where designed to be soldered at high temperatures,TI Pb-Free products are suitable for use in specified lead-free processes.Pb-Free(RoHS Exempt):This component has a RoHS exemption for either1)lead-based flip-chip solder bumps used between the die and package,or2)lead-based die adhesive used between the die and leadframe.The component is otherwise considered Pb-Free(RoHS compatible)as defined above.Green(RoHS&no Sb/Br):TI defines"Green"to mean Pb-Free(RoHS compatible),and free of Bromine(Br)and Antimony(Sb)based flame retardants(Br or Sb do not exceed0.1%by weight in homogeneous material)(3)MSL,Peak Temp.--The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications,and peak solder temperature.Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided.TI bases its knowledge and belief on information provided by third parties,and makes no representation or warranty as to the accuracy of such information.Efforts are underway to better integrate information from third parties.TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.TI and TI suppliers consider certain information to be proprietary,and thus CAS numbers and other limited information may not be available for release.In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s)at issue in this document sold by TI to Customer on an annual basis.TAPE AND REEL INFORMATIONDevice Package Pins Site ReelDiameter(mm)ReelWidth(mm)A0(mm)B0(mm)K0(mm)P1(mm)W(mm)Pin1QuadrantLMV339IDR D14MLA33016 6.59.0 2.1816Q1 LMV339IPWR PW14MLA330127.0 5.6 1.6812Q1 LMV393IDGKR DGK8HNT18013 5.3 3.4 1.4812Q1 LMV393IDR D8FMX33012 6.4 5.2 2.1812Q1 LMV393IPWR PW8MLA330127.0 3.6 1.6812Q1TAPE AND REEL BOX INFORMATIONDevice Package Pins Site Length(mm)Width(mm)Height(mm)LMV339IDR D14MLA333.2333.228.58LMV339IPWR PW14MLA338.1340.520.64LMV393IDGKR DGK8HNT0.00.00.0LMV393IDR D8FMX338.1340.520.64LMV393IPWR PW8MLA338.1340.520.64。
YW-UTC339中文资料
YW-UTC339 双极型线性集成电路
摘自—第一价值网(IC网络超市)
四差分比较器
1.UTC339/E内部包括有四个独立的电压比较器
在很宽的电源电压范围内适用于双电源工作模式,
也适用于单电源工作模式.它的使用范围包括方波发生
器、时间延长器、脉冲发生器、多谐振荡器、高压数字逻
辑门、A/D转换器和MOS时钟驱动器等。
2.UTC339/E的封装形式为14引线双列塑封直插式
特点:
★单或双电源工作模式
★电源电压范围宽:单电源(2—36V); 双电源(±1—±18V)
★低功耗电流,典型值为800μA
★开路集电极输出,便于线连
★输入偏置电流小,典型值为25nA
★输入失调电流小,典型值为±2.3nA
★输入失调电压小,典型值为±1.4mV
★共模输入电压范围宽,包括接地
★输出饱和压降小
★输出能与TTL、DTL和MOS逻辑系统相匹配
内部电路图
极限参数
第一价值网为您提供最低廉的价格,保证您最好的品质! YW-UTC339PDF资料下载/查看。
LM339中文资料汇总(LM339工作原理
LM339中⽂资料汇总(LM339⼯作原理 ⼀、LM339⼯作原理 LM339(四路差动⽐较器)是在电压⽐较器芯⽚内部装有四个独⽴的电压⽐较器,是⼀种常见的集成电路,主要应⽤于⾼压数字逻辑门电路。
利⽤LM339可以⽅便的组成各种电压⽐较器电路和振荡器电路。
特点参数: 1)电压失调⼩,⼀般是2mV; 2)共模范围⾮常⼤,为0v到电源电压减1.5v; 3)他对⽐较信号源的内阻限制很宽; 4)LM339 vcc电压范围宽,单电源为2-36V,双电源电压为±1V-±18V; 5)输出端电位可灵活⽅便地选⽤。
6)差动输⼊电压范围很⼤,甚⾄能等于vcc; LM339类似于增益不可调的运算放⼤器。
每个⽐较器有两个输⼊端和⼀个输出端。
两个输⼊端⼀个称为同相输⼊端,⽤“+”表⽰,另⼀个称为反相输⼊端,⽤“-”表⽰。
⽤作⽐较两个电压时,任意⼀个输⼊端加⼀个固定电压做参考电压(也称为门限电平,它可选择LM339输⼊共模范围的任何⼀点),另⼀端加⼀个待⽐较的信号电压。
当“+”端电压⾼于“-”端时,输出管截⽌,相当于输出端开路。
当“-”端电压⾼于“+”端时,输出管饱和,相当于输出端接低电位。
两个输⼊端电压差别⼤于10mV就能确保输出能从⼀种状态可靠地转换到另⼀种状态,因此,把LM339⽤在弱信号检测等场合是⽐较理想的。
LM339的输出端相当于⼀只不接集电极电阻的晶体三极管,在使⽤时输出端到正电源⼀般须接⼀只电阻(称为上拉电阻,选3-15K)。
选不同阻值的上拉电阻会影响输出端⾼电位的值。
因为当输出晶体三极管截⽌时,它的集电极电压基本上取决于上拉电阻与负载的值。
另外,各⽐较器的输出端允许连接在⼀起使⽤。
⼆、LM339引脚图及功能 1、LM339引脚图 2、LM339引脚功能排列表 三、LM339内部结构 图内部结构图 四、LM339特性参数 1、LM339主要参数表: 2、LM339电特性(除⾮特别说明,VCC=5.0V, Tamb=25℃) 3、LM339使⽤说明: LM393/339是⾼增益,宽频带器件,象⼤多数⽐较器⼀样,如果输出端到输⼊端有寄⽣电容⽽产⽣耦合,则很容易产⽣振荡。
ST TS339 数据手册
Rev 2August 20051/9TS339Micropower Quad CMOS Voltage Comparators■Extremely low supply current: 9µa typ/comp.■Wide single supply range 2.7V to 16V or dual supplies (±1.35V to ±8V)■Extremely low input bias current: 1pA typ.■Extremely low input offset current: 1pA typ.■Input common-mode voltage range includes GND■High input impedance: 1012Ω typ ■Fast response time: 1.5µs typ. for 5mV overdrive■Pin-to-pin and functionally compatible with bipolar LM339DescriptionThe TS339 is a micropower CMOS quad voltage comparator with extremely low consumption of 9µA typ / comparator (20 times less than bipolar LM339). Similar performances are offered by the quad micropower comparator TS3704 with a push-pull CMOS output.Thus response times remain similar to the LM339.Order CodesPart Number TemperatureRange Package Packaging Marking TS339CN 0°C, +70°CDIP14T ubeTS339CN TS339CD/CDT SO-14T ube or T ape & ReelS339C TS339IN -40°C, +125°C DIP14T ubeTS339IN TS339ID/IDT SO-14T ube or T ape & ReelS339I TS339IPT TSSOP14(Thin Shrink Outline Package)Tape & Reel S339I TS339IYD/IYDTSO-14 (automotive grade level)T ube or T ape & ReelS339IYAbsolute Maximum Ratings TS3392/91 Absolute Maximum RatingsTable 1.Key parameters and their absolute maximum ratingsSymbol ParameterValue Unit V CC +Supply Voltage (1)1.All voltage values, except differential voltage, are with respect to network ground terminal.18V V id Differential Input Voltage (2)2.Differential voltages are the non-inverting input terminal with respect to the inverting input terminal.±18V V i Input Voltage (3)3.Excursions of input voltages may exceed the power supply level. As long as the common mode voltage[V icm =(V in + + V in -)/2] remains within the specified range, the comparator will provide a stable output state. However, the maximum current through the ESD diodes (IF) of the input stage must strictly be observed.18V V o Output Voltage 18V I o Output Current20mA I F Forward Current in ESD Protection Diodes on Inputs (4)4.Guaranteed by design.50mA p d Power Dissipation (5) DIP14SO14TSSOP145.Pd is calculated with T amb = +25°C, T j = +150°C andR thja = 80 °C/W for DIP14 package R thja = 150 °C/W for SO14 package R thja = 175°C/W for TSSOP14 package1500830710mW T stgStorage Temperature Range -65 to +150°C ESDHBM: Human Body Model (6)6.Human body model, 100pF discharged through a 1.5k Ω resistor into pin of device.50V MM: Machine Model (7)7.Machine model ESD, a 200pF cap is charged to the specified voltage, then discharged directly into the IC withno external series resistor (internal resistor < 5Ω), into pin to pin of device.40V CDM: Charged Device Model800VTS339Typical Application Schematics3/92 Typical Application Schematics4/93 Electrical CharacteristicsTable 2.V CC + = 3V, V CC - = 0V, T amb = 25°C (unless otherwise specified)SymbolParameterMin.Typ.Max.UnitV ioInput Offset Voltage (1)V ic = 1.5VT min . ≤ T amb ≤ T max.1.The specified offset voltage is the maximum value required to drive the output up to 2.5V or down to 0.3V.56.5mVI ioInput Offset Current (2)V ic = 1.5VT min . ≤ T amb ≤ T max.2.Maximum values including unavoidable inaccuracies of the industrial test.1300pAI ib Input Bias Current 2)V ic = 1.5VT min . ≤ T amb ≤ T max.1600pAV icmInput Common Mode Voltage Range T min . ≤ T amb ≤ T max00V CC +-1.2V CC + -1.5VCMR Common-mode Rejection Ratio V ic = V icm min.70dB SVRSupply Voltage Rejection Ratio V CC + = 3V to 5V70dBI OHHigh Level Output Current V id = +1V , V OH = 3V T min . ≤ T amb ≤ T max.2401000nAV OL Low Level Output Voltage V id = -1V , I OL = +6mA T min . ≤ T amb ≤ T max.400550800mVI CCSupply Current (each comparator)No load - Outputs low T min . ≤ T amb ≤ T max.92025µAt PLHResponse Time Low to HighV ic = 0V , f = 10kHz, T min . ≤ T amb ≤ T max C L = 50pF , Overdrive = 5mV TTL Input1.50.7µst PHLResponse Time High to LowV ic = 0V, f = 10kHz, R L = 5.1k Ω, C L = 50pF , Overdrive = 5mV TTL Input2.50.08µs5/9Table 3.V CC + = 5V, V CC - = 0V, T amb = 25°C (unless otherwise specified)SymbolParameterMin.Typ.Max.UnitV ioInput Offset Voltage (1)V ic = 2.5V , V cc + = 5V to 10V T min . ≤ T amb ≤ T max.1.The specified offset voltage is the maximum value required to drive the output up to 4.5V or down to 0.3V.1.456.5mVI ioInput Offset Current (2)V ic = 2.5VT min . ≤ T amb ≤ T max.2.Maximum values including unavoidable inaccuracies of the industrial test.1300pAI ibInput Bias Current 2)V ic = 2.5VT min . ≤ T amb ≤ T max.1600pAV icmInput Common Mode Voltage Range T min . ≤ T amb ≤ T max00V CC +-1.2V CC + -1.5VCMR Common-mode Rejection Ratio V ic = 0V75dB SVRSupply Voltage Rejection Ratio V CC + = +5V to +10V 85dBI OHHigh Level Output Voltage V id = 1V , V OH = +5V T min . ≤ T amb ≤ T max.27401000nAV OLLow Level Output Voltage V id = -1V , I OL = 6mA T min . ≤ T amb ≤ T max.260400650mVI CCSupply Current (each comparator)No load - Outputs low T min . ≤ T amb ≤ T max.102025µAt PLHResponse Time Low to HighV ic = 0V, f = 10kHz, R L = 5.1k Ω, C L = 15pF , Overdrive = 5mV Overdrive = 10mV Overdrive = 20mV Overdrive = 40mV TTL Input1.51.21.10.90.8µst PHLResponse Time High to LowV ic = 0V, f = 10kHz, R L = 5.1k Ω, C L = 15pF , Overdrive = 5mV Overdrive = 10mV Overdrive = 20mV Overdrive = 40mV TTL Input2.51.91.20.80.08µst fFall timef = 10kHz, C L = 50pF , R L = 5.1k Ω, Overdrive 50mV30ns4 Package Mechanical DataIn order to meet environmental requirements, ST offers these devices in ECOPACK® packages.These packages have a Lead-free second level interconnect. The category of second levelinterconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked onthe inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at:.6/94.2 SO-14Package7/94.3 TSSOP14Package8/9TS339Revision History9/95 R evision HistoryDate RevisionChangesJan. 20031Initial release.Aug. 200521 - PP AP references inserted in the datasheet see T able : Order Codeson page 1.2 - ESD protection inserted in T able 1: Key parameters and their absolute maximum ratings on page 2.Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.The ST logo is a registered trademark of STMicroelectronics.All other names are the property of their respective owners© 2005 STMicroelectronics - All rights reservedSTMicroelectronics group of companiesAustralia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America。
SC339资料
Parameter Supply Voltage Quiescent Current Standby Current Input Under-Voltage Lockout Start Threshold Hysteresis EN Enable Input Threshold
Symbol VIN IQ IQ(OFF)
© 2006 Semtech Corp.
3
元器件交易网
SC339
POWER MANAGEMENT Pin ConfiguD EN 1 2 3 6 5 4 DRV ADJ PGD
PRELIMINARY Ordering Information
Marking Information
Marking for SOT23, 6 lead package: yyww = Datecode (Example: E652)
Pin Descriptions
Pin 1 2 3 4 5 6 Pin Name IN GND EN PGD ADJ DRV Pin Function 5V supply Ground Active high enable control - connect to IN if not being used - do not allow to float Power good signal output for VOUT Regulator sense input - used for sensing the output voltage for power good and under-voltage and to set the output voltage Output of regulator - drives the gate of an N-channel MOSFET to maintain VOUT set by R1 and R2
lm339 数据手册
● Wide range VOC● MOS clock generator ORDERING INFORMATION● Hihg voltage logic gate ● MultivibratorsDESCRIPTIONThe LM339 consists of four independent precision voltage comparators, with an offset voltagespecification as low as 20㎷ max for each comparator, which were designed specifically to operate from a single power supply over a wide range of voltages.Operation from split power supplies is also possible and the low power supply current drain is independent of the magnitude of the power supply voltage.These comparators also have a unique characteristic in that the input common-mode voltage range includes ground, even though they are operated from a single power supply voltage.The LM339 series was designed to directly interface with TTL and CMOS.When operated from both plus and minus power supplies, the LM339 series will directly interface with MOS logic where their low power drain is a distinct advantage over standard comparators.HTCSOP 14LM339N DIP 14Device PackageLM339DABSOLUTE MAXIMUM RATINGSCHARACTERISTIC Supply VoltageDifferential Input Voltage Input VoltageOutput Short Circuit to GND Power Dissipation Operating Temperature Storage TemperatureElectrical characterisitics at specified free-air temperature, VCC =5V(unless otherwise noted)V IOV CC =5V to 30V Input Offset VoltageV IC =V ICR MIN, V O =1.4V I IOInput Offset Current I IBInput Bias Current V ICRCommon-Mode Input Voltage Range** A VDV CC =15V,Large-Signal Differential V O =1.4V to 11.4V, Voltage Amplification R L ≥15㏀ to V CC I OHV OH =5V, V ID =1V High-Level Output Current V OH =30V, V ID =1V V OLLow-Level Output Voltage I OLLow-Level Output Current I CCV CC =5V Supply CurrentV CC =30V* Full range (MIN to MAX), for LM339 is 0℃ to 70℃. All characteristics are measured with zero common-mode input voltage unless otherwise specified.** The voltage at either input or common-mode should not be allowed to go negative by more than 0.3V.The upper end of the common-mode voltage range is V CC -1.5V, but either or both inputs can go to 30V without damage.Switching characteristics, VCC =5V, T A =25℃RL Connected to 5V100-㎷ Input Step with 5-㎷ Through 5.1㏀,OverdriveC L =15㎊*(See Note 1)TTL-Level Input Step* C L includes probe and jig capacitance.Note 1 : The response time specified is the interval between the input step function and the instant when the output crosses 1.4V.V UNITMINPARAMETERTEST CONDITION*LM339V V I-65 to +150T STG TYP MAX ㎷Full Range 925℃25 V O =1.4V 25℃5Full Range 50㎁150 V O =1.4V25℃-25-250㎁Full Range -40025℃0toV CC -1.5Full Range0toV CC -2V25℃50200V/㎷㎁Full Range 1㎂25℃0.15025℃150Full Range 400㎷700V OL =1.5V, V ID =-1V 25℃6㎃I OL =4㎃, V ID =-1V RL=∞25℃0.8Full Range2㎃2.5PARAMETERTEST CONDITIONSLM339UNITMINTYP MAXResponse Time1.30.3㎲±18 or 36V CC UNIT VALUE SYMBOL ContinuousV -0.3 to +36℃V I(DIFF)570㎽T OPR ℃0~+70P D 36TYPICAL PERFORMANCE CHARACTERISTICSTYPICAL APPLICATIONS。
KA339中文资料
©2002 Fairchild Semiconductor CorporationRev. 1.0.2Features•Single or Dual Supply Operation •Wide Range of Supply V oltageKA239/KA239A, KA339/KA339A, KA2901 : 2 ~ 36V (or ±1 ~ ±18V)KA3302 : 2 ~ 28V (or ±1 ~ ±14V)•Low Supply Current Drain 800µA Typ.•Open Collector Outputs for Wired and Connectors •Low Input Bias Current 25nA Typ.•Low Input Offset Current ±2.3nA Typ.•Low Input Offset V oltage ±1.4mV Typ.•Input Common Mode V oltage Range Includes Ground.•Low Output Saturation V oltage•Output Compatible With TTL, DTL and MOS Logic SystemDescriptionThe KA239/KA239A, KA339/KA339A, KA3302, KA2901consist of four independent voltage comparators designed to operate from single power supply over a wide voltage range.14-SOP14-DIP11Internal Block Diagram141131*********4567-+--+++-OUT3OUT4IN4(+)GNDIN4(-)IN3(+)IN3(-)OUT2OUT1IN1(+)IN1(-)IN2(-)IN2(+)V CC KA239/KA239A,KA339/KA339A KA3302,KA2901Quad ComparatorKA239/KA239A,KA339/KA339A KA3302,KA29012Schematic DiagramAbsolute Maximum RatingsParameter Symbol Value Unit Supply VoltageV CC ±18 or 36V Supply Voltage Only KA3302V CC ±14 or 28V Differential Input VoltageV I(DIFF)36V Differential Input Voltage Only KA3302V I(DIFF)28V Input VoltageV I -0.3 to +36V Input Voltage Only KA3302V I -0.3 to +28V Output Short Circuit to GND -Continuous-Power Dissipation P D570mWOperating Temperature KA339/KA339A KA239/KA239A KA2901/KA3302T OPR 0 ~ +70-25 ~ +85-40 ~ +85°C Storage TemperatureT STG-65 ~ +150°CV CCQ9Q12Q14Q3Q1Q2Q7Q13Q8Q5Q6Q4D4D5D6D1D2D3R2R1GNDOUTPUTIN(-)IN(+)KA239/KA239A,KA339/KA339A KA3302,KA29013Electrical Characteristics(V CC = 5V, T A = 25°C, unless otherwise specified)Note:1. KA339 / KA339A: 0 ≤ T A ≤ +70°CKA239 / KA239A: -25 ≤ T A ≤ +85°C KA2901 / KA3302: -40 ≤ T A ≤ +85°C2. These parameters, although guaranteed, are not 100% tested in production.ParameterSymbol ConditionsKA239A/KA339A KA239/KA339Unit Min.Typ.Max.Min.Typ.Max.Input Offset Voltage V IO V O(P) = 1.4V, R S = 0Ω-12- 1.45mVNote1-- 4.0--9.0Input Offset Current I IO I IN(+) - I IN(-), V CM = 0V- 2.350- 2.350nA Note1--150--150Input Bias Current I BIAS V CM = 0V-57250-57250nA Note1--400--400Input Common Mode Voltage Range V I(R)V CC = 30V0-V CC -1.50-V CC -1.5V Note10-V CC -20-V CC -2Supply Current I CC V CC = 5V, R L = ∞- 1.1 2.0- 1.1 2.0mA Voltage Gain G V V CC = 15V, R L ≥ 15k Ω(for large swing)50200-50200-V/mV Large Signal Response Time T LRES V I = TTL Logic Swing V REF = 1.4V, V RL = 5V, R L = 5.1k Ω (Note2)-300--300-ns Response Time T RES V RL = 5V, R L = 5.1k Ω (Note2)- 1.3-- 1.3-µs Output Sink Current I SINK V I(-) ≥ 1V, V I(+) = 0V, V O(P) ≤ 1.5V 618-618-mA Output Saturation Voltage V SAT V I(-) ≥ 1V, V I(+) = 0V -140400-140400mV I SINK = 4mA Note1--700--700Output Leakage CurrentI o(LKG)V I(-) = 0V V I(+) = 1VV O(P) = 5V -0.1--0.1-nA V O(P) =30V -- 1.0-- 1.0µA Differential VoltageV I(DIFF)Note1--36--36VKA239/KA239A,KA339/KA339A KA3302,KA29014Electrical Characteristics (Continued)(V CC = 5V, T A = 25°C, unless otherwise specified)Note:1. KA339 / KA339A: 0 ≤ T A ≤ +70°CKA239 / KA239A: -25 ≤ T A ≤ +85°C KA2901 / KA3302: -40 ≤ T A ≤ +85°C2. These parameters, although guaranteed, are not 100% tested in production.ParameterSymbol ConditionsKA2901KA3302Unit Min.Typ.Max.Min.Typ.Max.Input Offset Voltage V IO V O(P) = 1.4V, R S = 0Ω-27-220mV Note1-915--40Input Offset Current I IO - 2.350-3100nA Note1-50200--300Input Bias Current I BIAS-57250-57250nANote1-200500--1000Input Common ModeVoltage Range V I(R)KA2901, V CC =30V KA3302, V CC =28V0-V CC -1.50-V CC -1.5VNote10-V CC -20-V CC -2Supply CurrentI CC R L =∞, V CC =5V- 1.1 2.0- 1.1 2.0mA R L =∞, V CC =30V (KA3302, V CC =28V)- 1.6 2.5- 1.6 2.5Voltage Gain G V V CC =15V, R L ≥15k Ω(for large swing)25100-230-V/mV Large Signal Response Time T LRES V I =TTL Logic Swing V REF =1.4V, V RL = 5V, R L =5.1k Ω (Note2)-300--300-ns Response Time T RES V RL = 5V, R L =5.1k Ω (Note2)- 1.3-- 1.3-µs Output Sink Current I SINK V I(-) ≥ 1V, V I(+) = 0V, V O(P) ≤ 1.5V 618-618-mA Output Saturation Voltage V SAT V I(-) ≥ 1V, V I(+) =0V -140400-140400mV I SINK = 4mA Note1--700--700Output Leakage CurrentI O(LKG)V I(-) = 0V V I(+) = 1VV O(P) = 5V -0.1--0.1-nA V O(P) = 30V -- 1.0-- 1.0µA Differential VoltageV I(DIFF)-Note1--36--28VKA239/KA239A,KA339/KA339A KA3302,KA29015Typical Performance CharacteristicsFigure 1.Supply Current vs Supply Voltage Figure 2.Input Current vs Supply VoltageFigure 3.Output Saturation Voltage vs Sink CurrentFigure 4.Response Time for Various InputOverdrive-Negative TransitionFigure 5.Response Time for Various InputOverdrive-Positive TransitionKA239/KA239A,KA339/KA339A KA3302,KA2901Mechanical DimensionsPackageDimensions in millimeters14-DIP6KA239/KA239A,KA339/KA339A KA3302,KA2901 Mechanical Dimensions (Continued)PackageDimensions in millimeters14-SOP7KA239/KA239A,KA339/KA339A KA3302,KA290111/19/02 0.0m 001Stock#DSxxxxxxxx2002 Fairchild Semiconductor CorporationLIFE SUPPORT POLICYFAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:1.Life support devices or systems are devices or systemswhich, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can bereasonably expected to result in a significant injury of the user.2. A critical component in any component of a life supportdevice or system whose failure to perform can bereasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.DISCLAIMERFAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANYLIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.Ordering InformationProduct NumberPackage Operating TemperatureKA33914-DIP0 ~ +70°CKA339A KA339D 14-SOP KA339AD KA23914-DIP-25 ~ +85°CKA239A KA239D 14-SOP KA239AD KA290114-DIP -40 ~ +85°C KA2901D 14-SOP KA330214-DIP KA3302D14-SOP。
LMV339M资料
LMV331Single /LMV393Dual /LMV339QuadGeneral Purpose,Low Voltage,TinyPack ComparatorsGeneral DescriptionThe LMV393and LMV339are low voltage (2.7-5V)versions of the dual and quad comparators,LM393/339,which are specified at 5-30V.The LMV331is the single version,which is available in space saving SC70-5and SOT23-5packages.SC70-5is approximately half the size of SOT23-5.The LMV393is available in 8-pin SOIC and 8-pin MSOP .The LMV339is available in 14-pin SOIC and 14-pin TSSOP .The LMV331/393/339is the most cost-effective solution where space,low voltage,low power and price are the pri-mary specification in circuit design for portable consumer products.They offer specifications that meet or exceed the familiar LM393/339at a fraction of the supply current.The chips are built with National’s advanced Submicron Silicon-Gate BiCMOS process.The LMV331/393/339have bipolar input and output stages for improved noise perfor-mance.Features(For 5V Supply,Typical Unless Otherwise Noted)n Space Saving SC70-5Package (2.0x 2.1x 1.0mm)n Space Saving SOT23-5Package (3.00x 3.01x1.43mm)n Guaranteed2.7V and 5V Performance n Industrial Temperature Range −40˚C to +85˚C n Low Supply Current60µA/Channeln Input Common Mode Voltage Range Includes Groundn Low Output Saturation Voltage200mVApplicationsn Mobile Communications n Notebooks and PDA’sn Battery Powered Electronicsn General Purpose Portable DevicenGeneral Purpose Low Voltage ApplicationsConnection Diagrams5-Pin SC70-5/SOT23-5DS100080-1Top View 8-Pin SO/MSOPDS100080-2Top View14-Pin SO/TSSOPDS100080-3Top ViewAugust 1999LMV331Single /LMV393Dual /LMV339Quad General Purpose,Low Voltage,TinyPack Comparators©1999National Semiconductor Corporation Ordering InformationPackage Temperature Range PackagingMarkingTransportMediaNSCDrawing Industrial−40˚C to+85˚C5-pin SC70-5LMV331M7C131k Units Tape and Reel MAA05LMV331M7X C133k Units Tape and Reel 5-pin SOT23-5LMV331M5C121k Units Tape and Reel MA05BLMV331M5X C123k Units Tape and Reel 8-pin Small Outline LMV393M LMV393M RailsM08ALMV393MX LMV393M 2.5k Units Tape and Reel 8-pin MSOP LMV393MM LMV3931k UnitsTape and ReelMUA08ALMV393MMX LMV393 3.5k Units Tape and Reel 14-pin Small Outline LMV339M LMV339M RailsM14ALMV339MX LMV339M 2.5k Units Tape and Reel 14-pin TSSOP LMV339MT LMV339MT RailsMTC14LMV339MTX LMV339MT 2.5k Units Tape and Reel2Absolute Maximum Ratings(Note1)If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.ESD Tolerance(Note2)Human Body ModelLMV331/393/339800VMachine Model LMV331/339/393120V Differential Input Voltage±Supply Voltage Voltage on any pin(referred to V−pin)5.5V Soldering InformationInfrared or Convection(20sec)235˚C Storage Temp.Range−65˚C to+150˚C Junction Temperature(Note3)150˚C Operating Ratings(Note1)Supply Voltage 2.7V to5.0V Temperature RangeLMV393,LMV339,LMV331−40˚C≤T J≤+85˚CThermal Resistance(θJA)M Package,8-pin SurfaceMount190˚C/WM Package,14-pin SurfaceMount145˚C/WMTC Package,14-pinTSSOP155˚C/WMAA05Package,5-pinSC70-5478˚C/WM05A Package5-pinSOT23-5265˚C/WMM Package,8-pin MiniSurface Mount235˚C/W2.7V DC Electrical CharacteristicsUnless otherwise specified,all limits guaranteed for T J=25˚C,V+=2.7V,V−=0V.Boldface limits apply at the temperature extremes.Symbol Parameter Conditions Typ(Note4)LMV331/393/339Limit(Note5)UnitsV OS Input Offset Voltage1.77mV maxTCV OS Input Offset VoltageAverage Drift5µV/˚CI B Input Bias Current10250400nA maxI OS Input Offset Current550150nA maxV CM Input Voltage Range−0.1V2.0VV SAT Saturation Voltage I sink≤1mA200mVI O Output Sink Current V O≤1.5V235mA minI S Supply Current LMV33140100µA maxLMV393Both Comparators70140µA maxLMV339All four Comparators140200µA max Output Leakage Current.0031µA max 2.7V AC Electrical CharacteristicsT J=25˚C,V+=2.7V,R L=5.1kΩ,V−=0V.Symbol Parameter Conditions Typ(Note4)Unitst PHL Propagation Delay(High to Low)Input Overdrive=10mV1000nsInput Overdrive=100mV350nst PLH Propagation Delay(Low to High)Input Overdrive=10mV500nsInput Overdrive=100mV400ns35V DC Electrical CharacteristicsUnless otherwise specified,all limits guaranteed for T J=25˚C,V+=5V,V−=0V.Boldface limits apply at the temperature extremes.Symbol Parameter Conditions Typ(Note4)LMV331/393/339Limit(Note5)UnitsV OS Input Offset Voltage 1.779mV maxTCV OS Input Offset VoltageAverage Drift5µV/˚CI B Input Bias Current25250400nA maxI OS Input Offset Current250150nA maxV CM Input Voltage Range−0.1V4.2VA V Voltage Gain5020V/mV minV sat Saturation Voltage I sink≤4mA200400700mV maxI O Output Sink Current V O≤1.5V8410mA I S Supply Current LMV33160120150µA maxLMV393Both Comparators 100200250µA maxLMV339All four Comparators 170300350µA maxOutput Leakage Current.0031µA max 5V AC Electrical CharacteristicsT J=25˚C,V+=5V,R L=5.1kΩ,V−=0V.Symbol Parameter Conditions Typ(Note4)Units t PHL Propagation Delay(High to Low)Input Overdrive=10mV600nsInput Overdrive=100mV200nst PLH Propagation Delay(Low to High)Input Overdrive=10mV450nsInput Overdrive=100mV300ns Note1:Absolute Maximum Ratings indicate limits beyond which damage to the device may occur.Operating Ratings indicate conditions for which the device is in-tended to be functional,but specific performance is not guaranteed.For guaranteed specifications and the test conditions,see the Electrical characteristics.Note2::Human body model,1.5kΩin series with100pF.Machine model,200Ωin series with100pF.Note3:The maximum power dissipation is a function of T J(max),θJA,and T A.The maximum allowable power dissipation at any ambient temperature is P D=(T J(max) -T A)/θJA.All numbers apply for packages soldered directly into a PC board.Note4:Typical Values represent the most likely parametric norm.Note5:All limits are guaranteed by testing or statistical analysis.4Typical Performance CharacteristicsUnless otherwise specified,V S =+5V,single supply,T A =25˚CSupply Current vsSupply Voltage Output High (LMV331)DS100080-34Supply Current vsSupply Voltage Output Low (LMV331)DS100080-33Output Voltage vsOutput Current at 5V SupplyDS100080-37Output Voltage vs Output Current at 2.7SupplyDS100080-38Input Bias Current vs Supply VoltageDS100080-36Response Time vs Input Overdrives Negative TransitionDS100080-42Response Time for Input Overdrive Positive TransitionDS100080-43Response Time vs Input Overdrives Negative TransitionDS100080-41Response Time for Input Overdrive Positive TransitionDS100080-405Simplified SchematicDS100080-47 6Application CircuitsBasic ComparatorA basic comparator circuit is used for converting analog sig-nals to a digital output.The LMV331/393/339have an open-collector output stage,which requires a pull-up resistor to a positive supply voltage for the output to switch properly.When the internal output transistor is off,the output voltage will be pulled up to the external positive voltage.The output pull-up resistor should be chosen high enough so as to avoid excessive power dissipation yet low enough to supply enough drive to switch whatever load circuitry is used on the comparator output.On the LMV331/393/339the pull-up resistor should range between 1k to 10k Ω.The comparator compares the input voltage (V in )at the non-inverting pin to the reference voltage (V ref )at the invert-ing pin.If V in is less than V ref ,the output voltage (V o )is at the saturation voltage.On the other hand,if V in is greater than V ref ,the output voltage (V o )is at V cc..Comparator with HysteresisThe basic comparator configuration may oscillate or produce a noisy output if the applied differential input voltage is near the comparator’s offset voltage.This usually happens when the input signal is moving very slowly across the compara-tor’s switching threshold.This problem can be prevented by the addition of hysteresis or positive feedback.Inverting Comparator with HysteresisThe inverting comparator with hysteresis requires a three re-sistor network that are referenced to the supply voltage V cc of the comparator.When Vin at the inverting input is less than V a ,the voltage at the non-inverting node of the com-parator (V in <V a ),the output voltage is high (for simplicity assume V o switches as high as V cc ).The three network re-sistors can be represented as R 1//R 3in series with R 2.The lower input trip voltage V a1is defined asWhen V in is greater than Va (V in V a ),the output voltage is low very close to ground.In this case the three network re-sistors can be presented as R 2//R 3in series with R 1.The up-per trip voltage V a2is defined asThe total hysteresis provided by the network is defined as∆V a =V a1-V a2To assure that the comparator will always switch fully to V cc and not be pulled down by the load the resistors values should be chosen as follow:R pull-up <<R loadand R 1>R pull-up .DS100080-26DS100080-4FIGURE 1.Basic Comparator7Application Circuits(Continued)Non-Inverting Comparator with HysteresisNon inverting comparator with hysteresis requires a two re-sistor network,and a voltage reference (V ref )at the inverting input.When V in is low,the output is also low.For the output to switch from low to high,V in must rise up to V in1where V in1is calculated byWhen V in is high,the output is also high,to make the com-parator switch back to it’s low state,V in must equal V ref be-fore V a will again equal V ref .V in can be calculated by:The hysteresis of this circuit is the difference between V in1and V in2.∆V in =V cc R 1/R 2DS100080-25FIGURE 2.Inverting Comparator with HysteresisDS100080-22DS100080-23 8Application Circuits(Continued)Square Wave OscillatorComparators are ideal for oscillator applications.This squarewave generator uses the minimum number of components.The output frequency is set by the RC time constant of thecapacitor C1and the resistor in the negative feedback R4.The maximum frequency is limited only by the large signalpropagation delay of the comparator in addition to any ca-pacitive loading at the output,which would degrade the out-put slew rate.To analyze the circuit,assume that the output is initially high.For this to be true,the voltage at the inverting input V c has tobe less than the voltage at the non-inverting input V a.For V cto be low,the capacitor C1has to be discharged and willcharge up through the negative feedback resistor R4.Whenit has charged up to value equal to the voltage at the positiveinput V a1,the comparator output will switch.V a1will be given by:If:R1=R2=R3Then:V a1=2V cc/3When the output switches to ground,the value of V a is re-duced by the hysteresis network to a value given by:V a2=V cc/3Capacitor C1must now discharge through R4towardsground.The output will return to its high state when the volt-age across the capacitor has discharged to a value equal toV a2.For the circuit shown,the period for one cycle of oscillationwill be twice the time it takes for a single RC circuit to chargeup to one half of its final value.The time to charge the ca-pacitor can be calculated fromWhere V max is the max applied potential across the capaci-tor=(2V cc/3)and V C=Vmax/2=V CC/3One period will be given by:1/freq=2tor calculating the exponential gives:1/freq=2(0.694)R4C1Resistors R3and R4must be at least two times larger thanR5to insure that V o will go all the way up to V cc in the highstate.The frequency stability of this circuit should strictly bea function of the external components.Free Running MultivibratorA simple yet very stable oscillator that generates a clock forslower digital systems can be obtained by using a resonatoras the feedback element.It is similar to the free running mul-tivibrator,except that the positive feedback is obtainedthrough a quartz crystal.The circuit oscillates when thetransmission through the crystal is at a maximum,so thecrystal in its series-resonant mode.The value of R1and R2are equal so that the comparator willswitch symmetrically about+V cc/2.The RC constant of R3and C1is set to be several times greater than the period ofthe oscillating frequency,insuring a50%duty cycle by main-taining a DC voltage at the inverting input equal to the abso-lute average of the output waveform.When specifying the crystal,be sure to order series resonantwith the desired temperature coefficientDS100080-8DS100080-24FIGURE5.Squarewave OscillatorDS100080-7FIGURE6.Crystal controlled Oscillator9Application Circuits(Continued)Pulse generator with variable duty cycle:The pulse generator with variable duty cycle is just a minor modification of the basic square wave generator.Providing a separate charge and discharge path for capacitor C 1gener-ates a variable duty cycle.One path,through R 2and D 2will charge the capacitor and set the pulse width (t 1).The other path,R 1and D 1will discharge the capacitor and set the time between pulses (t 2).By varying resistor R 1,the time between pulses of the gen-erator can be changed without changing the pulse width.Similarly,by varying R 2,the pulse width will be altered with-out affecting the time between pulses.Both controls will change the frequency of the generator.The pulse width and time between pulses can be found from:Solving these equations for t 1and t 2t 1=R 4C 1ln2t 2=R 5C 1ln2These terms will have a slight error due to the fact that V max is not exactly equal to 2/3V CC but is actually reduced by the diode drop to:Positive Peak Detector:Positive peak detector is basically the comparator operated as a unit gain follower with a large holding capacitor from the output to ground.Additional transistor is added to the output to provide a low impedance current source.When the output of the comparator goes high,current is passed through the transistor to charge up the capacitor.The only discharge path will be the 1M ohm resistor shunting C1and any load that is connected to the output.The decay time can be al-tered simply by changing the 1M ohm resistor.The output should be used through a high impedance follower to a avoid loading the output of the peak detector.Negative Peak Detector:For the negative detector,the output transistor of the com-parator acts as a low impedance current sink.The only dis-charge path will be the 1M Ωresistor and any load imped-ance used.Decay time is changed by varying the 1M ΩresistorDS100080-9FIGURE 7.Pulse GeneratorDS100080-17FIGURE 8.Positive Peak DetectorDS100080-18FIGURE 9.Negative Peak Detector10Application Circuits(Continued)Driving CMOS and TTLThe comparator’s output is capable of driving CMOS andTTL Logic circuits.AND GatesThe comparator can be used as three input AND gate.Theoperation of the gate is as follow:The resistor divider at the inverting input establishes a refer-ence voltage at that node.The non-inverting input is the sumof the voltages at the inputs divided by the voltage dividers.The output will go high only when all three inputs are high,casing the voltage at the non-inverting input to go above thatat inverting input.The circuit values shown work for a″0″equal to ground and a″1″equal to5V.The resistor values can be altered if different logic levels aredesired.If more inputs are required,diodes are recom-mended to improve the voltage margin when all but one ofthe inputs are high.OR GatesA three input OR gate is achieved from the basic AND gatesimply by increasing the resistor value connected from theinverting input to V cc,thereby reducing the reference volt-age.A logic″1″at any of the inputs will produce a logic″1″at theoutput.ORing the OutputBy the inherit nature of an open collector comparator,theoutputs of several comparators can be tied together with apull up resistor to V cc.If one or more of the comparators out-puts goes low,the output V o will go low.DS100080-5FIGURE10.Driving CMOSDS100080-6FIGURE11.Driving TTLDS100080-11FIGURE12.AND GateDS100080-10FIGURE13.OR Gate11Application Circuits(Continued)DS100080-12FIGURE14.ORing the OutputsDS100080-13rge Fan-In AND Gate12SC70-5Tape and Reel SpecificationDS100080-44 SOT-23-5Tape and Reel SpecificationTAPE FORMATTape Section#Cavities Cavity Status Cover Tape StatusLeader0(min)Empty Sealed(Start End)75(min)Empty SealedCarrier3000Filled Sealed250Filled SealedTrailer125(min)Empty Sealed(Hub End)0(min)Empty Sealed13SOT-23-5Tape and Reel Specification(Continued)TAPE DIMENSIONSDS100080-45 8mm0.1300.1240.1300.1260.138±0.0020.055±0.0040.1570.315±0.012(3.3)(3.15)(3.3)(3.2)(3.5±0.05)(1.4±0.11)(4)(8±0.3)Tape Size DIM A DIM Ao DIM B DIM Bo DIM F DIM Ko DIM P1DIM W14SOT-23-5Tape and Reel Specification(Continued)REEL DIMENSIONSDS100080-46 8mm7.000.0590.5120.795 2.1650.331+0.059/−0.0000.567W1+0.078/−0.039330.00 1.5013.0020.2055.008.40+1.50/−0.0014.40W1+2.00/−1.00 Tape Size A B C D N W1W2W315Physical Dimensions inches(millimeters)unless otherwise noted5-Pin SC70-5Tape and ReelOrder Number LMV331M7and LMV331M7XNS Package Number MAA05A 16Physical Dimensions inches(millimeters)unless otherwise noted(Continued)5-Pin SOT23-5Tape and ReelOrder Number LMV331M5and LMV331M5XNS Package Number MA05B17Physical Dimensions inches(millimeters)unless otherwise noted(Continued)8-Pin Small OutlineOrder Number LMV393M and LMV393MXNS Package Number M08A18Physical Dimensions inches(millimeters)unless otherwise noted(Continued)8-Pin MSOPOrder Number LMV393MM and LMV393MMXNS Package Number MUA08A19Physical Dimensions inches(millimeters)unless otherwise noted(Continued)14-Pin Small OutlineOrder Number LMV339M and LMV339MXNS Package Number M14A20Physical Dimensions inches (millimeters)unless otherwise noted (Continued)LIFE SUPPORT POLICYNATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION.As used herein:1.Life support devices or systems are devices or systems which,(a)are intended for surgical implant into the body,or (b)support or sustain life,and whose failure to perform when properly used in accordance with instructions for use provided in the labeling,can be reasonably expected to result in asignificant injury to the user.2.A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system,or to affect its safety or effectiveness.National Semiconductor Corporation Americas Tel:1-800-272-9959Fax:1-800-737-7018Email:support@ National Semiconductor Europe Fax:+49(0)180-5308586Email:europe.support@ Deutsch Tel:+49(0)180-5308585English Tel:+49(0)180-5327832Français Tel:+49(0)180-5329358Italiano Tel:+49(0)180-5341680National Semiconductor Asia Pacific Customer Response Group Tel:65-2544466Fax:65-2504466Email:sea.support@National Semiconductor Japan Ltd.Tel:81-3-5639-7560Fax: 14-Pin TSSOPOrder Number LMV339MT and LMV339MTXNS Package Number MTC14LMV331Single /LMV393Dual /LMV339Quad General Purpose,Low Voltage,TinyPack Comparators National does not assume any responsibility for use of any circuitry described,no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.元器件交易网。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Rev 2August 20051/9TS339Micropower Quad CMOS Voltage Comparators■Extremely low supply current: 9µa typ/comp.■Wide single supply range 2.7V to 16V or dual supplies (±1.35V to ±8V)■Extremely low input bias current: 1pA typ.■Extremely low input offset current: 1pA typ.■Input common-mode voltage range includes GND■High input impedance: 1012Ω typ ■Fast response time: 1.5µs typ. for 5mV overdrive■Pin-to-pin and functionally compatible with bipolar LM339DescriptionThe TS339 is a micropower CMOS quad voltage comparator with extremely low consumption of 9µA typ / comparator (20 times less than bipolar LM339). Similar performances are offered by the quad micropower comparator TS3704 with a push-pull CMOS output.Thus response times remain similar to the LM339.Order CodesPart Number TemperatureRange Package Packaging Marking TS339CN 0°C, +70°CDIP14T ubeTS339CN TS339CD/CDT SO-14T ube or T ape & ReelS339C TS339IN -40°C, +125°C DIP14T ubeTS339IN TS339ID/IDT SO-14T ube or T ape & ReelS339I TS339IPT TSSOP14(Thin Shrink Outline Package)Tape & Reel S339I TS339IYD/IYDTSO-14 (automotive grade level)T ube or T ape & ReelS339IYAbsolute Maximum Ratings TS3392/91 Absolute Maximum RatingsTable 1.Key parameters and their absolute maximum ratingsSymbol ParameterValue Unit V CC +Supply Voltage (1)1.All voltage values, except differential voltage, are with respect to network ground terminal.18V V id Differential Input Voltage (2)2.Differential voltages are the non-inverting input terminal with respect to the inverting input terminal.±18V V i Input Voltage (3)3.Excursions of input voltages may exceed the power supply level. As long as the common mode voltage[V icm =(V in + + V in -)/2] remains within the specified range, the comparator will provide a stable output state. However, the maximum current through the ESD diodes (IF) of the input stage must strictly be observed.18V V o Output Voltage 18V I o Output Current20mA I F Forward Current in ESD Protection Diodes on Inputs (4)4.Guaranteed by design.50mA p d Power Dissipation (5) DIP14SO14TSSOP145.Pd is calculated with T amb = +25°C, T j = +150°C andR thja = 80 °C/W for DIP14 package R thja = 150 °C/W for SO14 package R thja = 175°C/W for TSSOP14 package1500830710mW T stgStorage Temperature Range -65 to +150°C ESDHBM: Human Body Model (6)6.Human body model, 100pF discharged through a 1.5k Ω resistor into pin of device.50V MM: Machine Model (7)7.Machine model ESD, a 200pF cap is charged to the specified voltage, then discharged directly into the IC withno external series resistor (internal resistor < 5Ω), into pin to pin of device.40V CDM: Charged Device Model800VTS339Typical Application Schematics3/92 Typical Application Schematics4/93 Electrical CharacteristicsTable 2.V CC + = 3V, V CC - = 0V, T amb = 25°C (unless otherwise specified)SymbolParameterMin.Typ.Max.UnitV ioInput Offset Voltage (1)V ic = 1.5VT min . ≤ T amb ≤ T max.1.The specified offset voltage is the maximum value required to drive the output up to 2.5V or down to 0.3V.56.5mVI ioInput Offset Current (2)V ic = 1.5VT min . ≤ T amb ≤ T max.2.Maximum values including unavoidable inaccuracies of the industrial test.1300pAI ib Input Bias Current 2)V ic = 1.5VT min . ≤ T amb ≤ T max.1600pAV icmInput Common Mode Voltage Range T min . ≤ T amb ≤ T max00V CC +-1.2V CC + -1.5VCMR Common-mode Rejection Ratio V ic = V icm min.70dB SVRSupply Voltage Rejection Ratio V CC + = 3V to 5V70dBI OHHigh Level Output Current V id = +1V , V OH = 3V T min . ≤ T amb ≤ T max.2401000nAV OL Low Level Output Voltage V id = -1V , I OL = +6mA T min . ≤ T amb ≤ T max.400550800mVI CCSupply Current (each comparator)No load - Outputs low T min . ≤ T amb ≤ T max.92025µAt PLHResponse Time Low to HighV ic = 0V , f = 10kHz, T min . ≤ T amb ≤ T max C L = 50pF , Overdrive = 5mV TTL Input1.50.7µst PHLResponse Time High to LowV ic = 0V, f = 10kHz, R L = 5.1k Ω, C L = 50pF , Overdrive = 5mV TTL Input2.50.08µs5/9Table 3.V CC + = 5V, V CC - = 0V, T amb = 25°C (unless otherwise specified)SymbolParameterMin.Typ.Max.UnitV ioInput Offset Voltage (1)V ic = 2.5V , V cc + = 5V to 10V T min . ≤ T amb ≤ T max.1.The specified offset voltage is the maximum value required to drive the output up to 4.5V or down to 0.3V.1.456.5mVI ioInput Offset Current (2)V ic = 2.5VT min . ≤ T amb ≤ T max.2.Maximum values including unavoidable inaccuracies of the industrial test.1300pAI ibInput Bias Current 2)V ic = 2.5VT min . ≤ T amb ≤ T max.1600pAV icmInput Common Mode Voltage Range T min . ≤ T amb ≤ T max00V CC +-1.2V CC + -1.5VCMR Common-mode Rejection Ratio V ic = 0V75dB SVRSupply Voltage Rejection Ratio V CC + = +5V to +10V 85dBI OHHigh Level Output Voltage V id = 1V , V OH = +5V T min . ≤ T amb ≤ T max.27401000nAV OLLow Level Output Voltage V id = -1V , I OL = 6mA T min . ≤ T amb ≤ T max.260400650mVI CCSupply Current (each comparator)No load - Outputs low T min . ≤ T amb ≤ T max.102025µAt PLHResponse Time Low to HighV ic = 0V, f = 10kHz, R L = 5.1k Ω, C L = 15pF , Overdrive = 5mV Overdrive = 10mV Overdrive = 20mV Overdrive = 40mV TTL Input1.51.21.10.90.8µst PHLResponse Time High to LowV ic = 0V, f = 10kHz, R L = 5.1k Ω, C L = 15pF , Overdrive = 5mV Overdrive = 10mV Overdrive = 20mV Overdrive = 40mV TTL Input2.51.91.20.80.08µst fFall timef = 10kHz, C L = 50pF , R L = 5.1k Ω, Overdrive 50mV30ns4 Package Mechanical DataIn order to meet environmental requirements, ST offers these devices in ECOPACK® packages.These packages have a Lead-free second level interconnect. The category of second levelinterconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked onthe inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at:.6/94.2 SO-14Package7/94.3 TSSOP14Package8/9TS339Revision History9/95 Revision HistoryDate RevisionChangesJan. 20031Initial release.Aug. 200521 - PP AP references inserted in the datasheet see T able : Order Codeson page 1.2 - ESD protection inserted in T able 1: Key parameters and their absolute maximum ratings on page 2.Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.The ST logo is a registered trademark of STMicroelectronics.All other names are the property of their respective owners© 2005 STMicroelectronics - All rights reservedSTMicroelectronics group of companiesAustralia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America。