《图形的旋转》练习题
图形的旋转--巩固练习
图形的旋转--巩固练习【巩固练习】一.选择题1.如图四个圆形网案中,分别以它们所在网的圆心为旋转中心,顺时针旋转72°后,能与原图形完全重合的是()A.B.C.D.2.(2016•呼和浩特)将数字“6”旋转180°,得到数字“9”,将数字“9”旋转180°,得到数字“6”,现将数字“69”旋转180°,得到的数字是()A.96B.69C.66D.993.有下列四个说法,其中正确说法的个数是().①图形旋转时,位置保持不变的点只有旋转中心;②图形旋转时,图形上的每一个点都绕着旋转中心旋转了相同的角度;③图形旋转时,对应点与旋转中心的距离相等;④图形旋转时,对应线段相等,对应角相等,图形的形状和大小都没有发生变化.A.1个B.2个C.3个D.4个4.如图,4×4的正方形网格中,△MNP绕某点旋转一定的角度,得到△M1N1P1,则其旋转中心可能是().A.点A B.点B C.点C D.点D5.如图,△ADE绕点D的顺时针旋转,旋转的角是∠ADE,得到△CDB,那么下列说法错误的是().A.DE平分∠ADB B.AD=DC C.AE∥BD D.AE=BC6.如图,在正方形ABCD中,E为DC边上的点,连结BE,将△BCE绕点C顺时针方向旋转90°得到△DCF,连结EF,若∠BEC=60°,则∠EFD的度数为()A.10°B.15°C.20°D.25°二.填空题7.如图,△ABC与△ADE都是直角三角形,∠C与∠AED都是直角,点E在AB 上,∠D=30°,如果△ABC经旋转后能与△ADE重合,那么旋转中心是点______,至少旋转了_____度.8.钟表的分针匀速旋转一周需要60分钟,则经过15分钟,分针旋转了__________度.9.正三角形绕其中心至少旋转__________度,可与其自身重合.10.一个平行四边形ABCD绕其对角线的交点旋转,至少要旋转________度,才可与其自身重合.11.如图,在Rt△ABC中,∠ACB=90°,AC=5cm,BC=12cm,将△ABC绕点B顺时针旋转60°,得到△BDE,连接DC交AB于点F,则△ACF与△BDF 的周长之和为cm.12.如图,P是等边三角形ABC内的一点,且PA=6,PB=8, PC=10,若将△PAC绕点A逆时针旋转后, 得到△P′AB, 则点P 与点P′之间的距离为_____,∠PAP′=_______.三.解答题13.你能用今天所学的知识来描述一下图中可以看作是一个菱形通过几次旋转得到的?每次旋转了多少度?14.如图,在网格中有△ABC和点O,将△ABC以O为旋转中心逆时针分别旋转90°得到△A1B1C1,旋转180°得到△A2B2C2,画出旋转后的图形.15.(2016•毕节市)如图,已知△ABC中,AB=AC,把△ABC绕A点沿顺时针方向旋转得到△ADE,连接BD,CE交于点F.(1)求证:△AEC≌△ADB;(2)若AB=2,∠BAC=45°,当四边形ADFC是菱形时,求BF的长.。
中考数学元复习《图形的旋转》练习题含答案
中考数学复习图形的旋转一、选择题1.下列图形中是中心对称图形的有( B )A.1个B.2个C.3个D.4个2.如图,将△ABC绕点B顺时针旋转60°得△DBE,点C的对应点E恰好落在AB 的延长线上,连结AD.下列结论一定正确的是( C )A.∠ABD=∠E B.∠CBE=∠CC.AD∥BC D.AD=BC,第2题图),第3题图) 3.如图,在平面直角坐标系中,点B,C,E在y轴上,Rt△ABC经过变换得到Rt△ODE.若点C的坐标为(0,1),AC=2,则这种变换可以是( A )A.△ABC绕点C顺时针旋转90°,再向下平移3个单位B.△ABC绕点C顺时针旋转90°,再向下平移1个单位C.△ABC绕点C逆时针旋转90°,再向下平移1个单位D.△ABC绕点C逆时针旋转90°,再向下平移3个单位4.如图,在△ABC中,∠C=90°,AC=4,BC=3,将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,则B,D两点间的距离为( A )A.10 B.2 2 C.3 D.25【解析】∵在△ABC中,∠C=90°,AC=4,BC=3,∴AB=5,∵将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,∴AE=4,DE=3,∴BE=1,在Rt△BED中,BD=BE2+DE2=10.故选A.,第4题图),第5题图) 5.如图,将线段AB绕点O顺时针旋转90°得到线段A′B′,那么A(-2,5)的对应点A′的坐标是( B )A.(2,5) B.(5,2) C.(2,-5) D.(5,-2)【解析】∵线段AB绕点O顺时针旋转90°得到线段A′B′,∴△ABO≌△A′B′O,∠AOA′=90°,∴AO=A′O.作AC⊥y轴于C,A′C′⊥x轴于C′,∴∠ACO=∠A′C′O=90°.∵∠COC′=90°,∴∠AOA′-∠COA′=∠COC′-∠COA′,∴∠AOC=∠A′OC′.∴△ACO≌△A′C′O,∴AC=A′C′,CO=C′O.∵A(-2,5),∴AC=2,CO=5,∴A′C′=2,OC′=5,∴A′(5,2).故选B.6.如图,将等边△ABC绕点C顺时针旋转120°得到△EDC,连结AD,BD.则下列结论:①AC=AD;②BD⊥AC;③四边形ACED是菱形.其中正确的个数是( D ) A.0个B.1个C.2个D.3个【解析】∵将等边△ABC绕点C顺时针旋转120°得到△EDC,∴∠ACE=120°,∠DCE =∠BCA=60°,A C=CD=DE=CE,∴∠ACD=120°-60°=60°,∴△ACD是等边三角形,∴AC=AD,AC=AD=DE=CE,∴四边形ACED是菱形,∵将等边△ABC绕点C顺时针旋转120°得到△EDC,AC=AD,∴AB=BC=CD=AD,∴四边形ABCD是菱形,∴BD⊥AC,∴①②③都正确,故选D.二、填空题7.如图,将△AOB绕点O按逆时针方向旋转45°后得到△COD,若∠AOB=15°,则∠AOD的度数是__60°__.,第7题图),第8题图) 8.如图,在平面直角坐标系xOy中,△AOB可以看作是△OCD经过若干次图形的变化(平移、轴对称、旋转)得到的,写出一种由△OCD得到△AOB的过程:__将△COD绕点C顺时针旋转90°,再向左平移2个单位长度得到△AOB(答案不唯一).__.9.如图,在△ABC中,∠A=70°,AC=BC,以点B为旋转中心把△ABC按顺时针旋转α度,得到△A′BC′,点A恰好落在AC上的点A′处,连结CC′,则∠ACC′=__110°__.【解析】∵∠A=70°,AC=BC,∴∠BCA=40°,根据旋转的性质,AB=BA′,BC=BC′,∴∠α=180°-2×70°=40°,∵∠CBC′=∠α=40°,∴∠BCC′=70°,∴∠ACC′=∠ACB+∠BCC′=110°.10.如图,在正方形ABCD中,AD=23,把边BC绕点B逆时针旋转30°得到线段BP,连结AP并延长交CD于点E,连结PC,则△PCE的面积为__9-53__.【解析】∵四边形ABCD是正方形,∴∠ABC=90°,∵把边BC绕点B逆时针旋转30°得到线段BP,∴PB=BC=AB,∠PBC=30°,∴∠ABP=60°,∴△ABP是等边三角形,∴∠BAP =60°,AP=AB=23,∵AD=23,∴AE=4,DE=2,∴CE=23-2,PE=4-23,过P作PF ⊥CD 于F ,∴PF =32PE =23-3,∴△PCE 的面积为12CE ·PF =12×(23-2)×(23-3)=9-5 3.故答案为9-5 3.,第10题图) ,第11题图)11.如图,正方形ABCD 和正方形CEFG 边长分别为a 和b ,正方形CEFG 绕点C 旋转,则DE 2+BG 2=__2a 2+2b 2__.【解析】连结BD ,EG ,如图所示,∴DO 2+BO 2=BD 2=BC 2+CD 2=2a 2,EO 2+OG 2=EG 2=CG 2+CE 2=2b 2,则BG 2+DE 2=DO 2+BO 2+EO 2+OG 2=2a 2+2b 2.三、解答题12. 如图,在边长为1的正方形组成的网格中,△ABC 的顶点均在格点上,点A ,B ,C 的坐标分别是A (-2,3),B (-1,2),C (-3,1),△ABC 绕点O 顺时针旋转90°后得到△A 1B 1C 1.(1)在正方形网格中作出△A 1B 1C 1;(2)在旋转过程中,点A 经过的路径AA 1︵的长度为__132π__;(3)在y 轴上找一点D ,使DB +DB 1的值最小,并求出D 点的坐标.,题图),答图)解:(1)如图所示: (2)在旋转过程中,点A 经过的路径AA 1︵的长度为90×π×13180=132π (3)∵点B ,B 1在y 轴两旁,连结BB 1交y 轴于点D ,设D′为y 轴上异于D 的点,显然D′B +D′B 1>DB +DB 1,∴当点D 是BB 1与y 轴交点时,DB +DB 1最小.设直线BB 1的解析式为y =kx +b ,依据题意得⎩⎨⎧-k +b =2,2k +b =1,解得⎩⎨⎧k =-13,b =53,∴y =-13x +53,∴D (0,53) 13.如图,已知正方形ABCD 的边长为3,E ,F 分别是AB ,BC 边上的点,且∠EDF =45°,将△DAE 绕点D 逆时针旋转90°,得到△DCM .(1)求证:△DEF ≌△DMF ;(2)若AE =1,求FM 的长.解:(1)∵△DAE 逆时针旋转90°得到△DCM ,∴∠FCM =∠FCD +∠DCM =180°,∴F ,C ,M 三点共线,∴DE =DM ,∠EDM =90°,∴∠EDF +∠MDF =90°,∵∠EDF=45°,∴∠MDF =∠EDF =45°,在△DEF 和△DMF 中,∵⎩⎨⎧DE =DM ,∠EDF =∠MDF ,DF =DF ,∴△DEF ≌△DMF (SAS ) (2)由(1)得EF =MF ,设EF =MF =x ,∵AE =CM =1,且BC =3,∴BM =BC +CM =3+1=4,∴BF =BM -MF =BM -EF =4-x ,∵EB =AB -AE =3-1=2,在Rt △EBF 中,由勾股定理得EB 2+BF 2=EF 2,即22+(4-x )2=x 2,解得x =52,∴FM =5214.如图①,将一个边长为2的正方形ABCD 和一个长为2,宽为1的长方形CEFD 拼在一起,构成一个大的长方形ABEF .现将小长方形CEFD 绕点C 顺时针旋转至CE ′F ′D ′,旋转角为α.(1)当点D ′恰好落在EF 边上时,求旋转角α的值;(2)如图②,G 为BC 中点,且0°<α<90°,求证:GD ′=E ′D ;(3)小长方形CEFD 绕点C 顺时针旋转一周的过程中,△DCD ′与△CBD ′能否全等?若能,直接写出旋转角α的值;若不能,请说明理由.解:(1)∵DC ∥EF ,∴∠DCD ′=∠CD′E =α,∵sin α=CE CD′=CE CD =12,∴α=30° (2)∵G 为BC 中点,∴GC =CE′=CE =1.∵∠D′CG =∠DCG +∠DCD′=90°+α,∠DCE ′=∠D′CE′+∠DCD′=90°+α,∴∠D ′CG =∠DCE′.又∵CD′=CD ,∴△GCD ′≌△E ′CD (SAS ),∴GD ′=E′D (3)能.α=135°或α=315°。
【小学】小学三年级数学(下)《图形的旋转》练习题(含答案)
小学三年级数学(下)《图形的旋转》练习题一、选择题。
1、如图,2绕中心逆时针旋转90°到()所在的位置。
A、1B、3C、42、下面的运动属于旋转的是()。
A、推拉抽屉B、荡秋千C、乘电梯上楼3、是图形经过()得到的。
A、平移B、旋转C、既平稳又旋转D、无法确定4、下面()是顺时针旋转一周后的图形。
5、开着的电风扇是属于()现象。
A、平移B、旋转C、对称6、将下面的图形绕各自的中心点旋转12021,不能与原来图形重合的是()二、判断题。
1、钟表上的分针运动是平移现象。
()2、拉抽屉是旋转现象。
()3、在推导三角形的面积公式时用到平移和旋转方法。
()4、旋转就是绕一个点或一条轴做圆周运动。
()5、收费站的转杆打开,旋转了180°()三、填空题。
1、小明推开教室门,门的运动是()现象。
2、把一个圆形绕某个点旋转,会得到一个新图形,新图形与原图形()和()完全相同。
3、正方形绕中心点旋转()度与原来的图形重合,旋转一周可以重合()次。
4、旋转是由()和()决定的。
5、图形旋转有三个关键要素,一是旋转的(),二是旋转的(),三是旋转、的()6、一个长方形绕着它的长边旋转一周可以成为一个()体。
7、看图填空。
(1)指针从A开始,()时针旋转90°到B。
(2)指针从C开始,逆时针旋转()到B。
(3)指针从D开始,逆时针旋转90°到()。
四、解答题。
1、左边的图形在平面上旋转后,会和右边的哪个图形形状相同?给它涂上颜色。
2、按规律画一画。
附参考答案一、选择。
B,B,B,A,B,C二、判断。
×,×,√,√,×,三、填空。
1、旋转,2、形状和大小,3、90,4,4、旋转中心点,旋转方向,5、中心点,方向,角度,6、圆柱体,7、(1)顺时针,(2)90°,(3)C四、解答。
1、左起第一个。
2。
图形的旋转练习题精选
旋转单元练习一、选择题1、下列图形:①平行四边形;②菱形;③圆;④梯形;⑤等腰三角形;⑥直角三角形;⑦国旗上的五角星.这些图形中既是轴对称图形又是中 心对称图形的有( )A.、1种 B 、2种 C 、 3种 D 、 4种2、下列图案中是中心对称图形但不是轴对称图形的是( )3、如图,将△AOB 绕点O 按逆时针方向旋转45°后得到△A′OB′,若∠AOB=15°,则∠AOB′的度数是( )A .25°B .30°C .35°D .40°4、如图,O 是正△ABC 内一点,OA=3,OB=4,OC=5,将线段BO 以点B 为旋转中心逆时针旋转60°得到线段BO′,下列结论:①△BO′A 可以由△BOC 绕点B 逆时针旋转60°得到;②点O 与O′的距离为4; ③∠AOB=150°;④S 四边形AOBO =336+;⑤ S △AOC +S △AOB =6+349 . 其中正确的结论是( )A .①②③⑤B .①②③④C .①②③④⑤D .①②③5、如图Rt △ABC 中,∠ACB=90°,∠B=30°,AC=1,且AC在直线l 上,将△ABC 绕点A 顺时针旋转到①,可得到点P 1,此时AP 1=2;将位置①的三角形绕点P 1顺时针旋转到位置②,可得到点P 2,此时AP 2=32+;将位置②的三角形绕点P 2顺时针旋转到位置③,可得到点P 3,此时AP 3=33+;…按此规律继续旋转,直到点P 2012为止,则AP 2012等于( ) A.36712011+ B. 36712012+ C. 36712013+ D. 36712014+6、如图,A (3, 1)B (1, 3).将△AOB 绕点O 旋转150°得到△A′OB′,则此时点A 的对应点A′的坐标为( )A .(3-,-1)B .(-2,0)C 。
初中数学九年级上册《图形的旋转》基础典型练习题(整理含答案)
《图形的旋转》基础典型练习题一、选择题(每题3分,共18分)1.下列物体的运动不是旋转的是()A.坐在摩天轮里的小朋友B.正在走动的时针C.骑自行车的人D.正在转动的风车叶片2.在10分钟的时间内,分针转过的角度是()A.15°B.30°C.15°D.30°3.在10分钟的时间内,时钟的时针旋转过的角度是()A.5°B.10°C.15°D.30°4.等边三角形绕着它的中心旋转一周,可与原图形重合的次数是()A.1 B.2 C.3 D.45.在图形的旋转中,下列说法错误的是()A.图形上的每一点到旋转中心的距离都相等B.图形上的每一点转动的角度都相同C.图形上可能存在不动的点D.旋转前和旋转后的图形全等6.有一种平面图形,它绕着中心旋转,不论旋转多少度,•所得到的图形都与原图形完全重合,你觉得它可能是()A.三角形B.等边三角形C.正方形D.圆二、填空题(7题4分,11题5分,其余每题3分,共18分)7.经过旋转后的图形与原图形的关系是________,它们的对应线段_______,•对应角________,对应点到旋转中心的距离________.8.一架风车有分布均匀的四个叶片,旋转一周可与原来的位置重合______次.9.如图所示,图①沿逆时针方向旋转90°可得到图_________.10.如上图所示,图①按顺时针方向至少旋转_______度可得图③.11.如图所示,在△ABC中,∠C=90°,AB=5cm,BC=3cm,•把这个三角形在平面内绕点C逆时针旋转60°至△A′B′C′,那么AA′的长度是______cm.(•不取近似值)三、作图题(每题6分,共18分)12.如图所示,△ABC绕点A旋转后,点B与点D•重合,•作出旋转后的三角形ADE.13.把边长为2cm的正方形ABCD,绕着点D逆时针旋转45°后,变为正方形A′B•′C′D′,作出上述图形.14.如图所示是计算机操作人员用Flash设计出的美丽图案,•试把它按逆时针方向旋转180°,作出旋转后的图案.四、解答题(6分)15.如图所示,①图怎样变化可成②图呢?请你分析变化过程.参考答案:一、1.C 点拨:骑自行车的人的运动可以看作是平移.2.D 点拨:分针60分钟经过的角度为360°,则1分钟转6°,10分钟转6•°×10=60°.3 .A 点拨:时针1小时转过的角度是360°×112=30°, 则时针在10•分钟内经过30°×16=5°,故选A . 4.C 点拨:转过120°,240°,360°,均可与原图形重合.5.A 点拨:图形上的点到旋转中心的距离不一定相等,•但对应点到旋转中心的距离相等,一定要熟练掌握图形旋转的性质和定义.6.D 点拨:在平面图形中,具有这种性质的有圆,在立体图形中有球体,•这种性质叫图形的旋转不变性.二、7.全等;相等;相等;相等点拨:考查旋转图形的性质.8.四 点拨:在旋转一周的过程中,当风车旋转90°,180°,270°,360°时均可与原来的位置重合.9.⑤ 点拨:单独观察图形中的食指,原来的图案中食指向右,•当图案沿逆时针旋转90°时,食指向上,故应是图⑤.10.180 点拨:原来图案中的食指指向右,图③中的食指指向左,•故让图①按顺时针旋转180°即可.11.4 点拨:根据旋转的性质,可知AC=A ′C ,依题意∠ACA ′=60°,所以△ACA ′为等边三角形,故AA ′=AC .在Rt △ABC 中,AC=22AB BC -=2253-=4(cm),故AA ′=4cm .三、12.解:作法:①作∠DAE=∠BAC .②在∠DAE 的边AE 上取AE=AC .③连接DE . △ADE 即为所求.(如答图所示)点拨:回忆作一个角等于已知角的方法.13.解:如答图所示.点拨:作图时要注意旋转中心,旋转方向,旋转角度.14.解:如答图所示.点拨:原来的图案中“头发”向上,按逆时针方向旋转180°后,图案中“头发”向下.四、15.解:(1)先把①图向右平移直到两个大圆重合.(2)把图案按逆时针方向旋转90°即得②图.或把图案按顺时针方向旋转270°也可得到②图.点拨:先把图案向右平移,再把图案旋转即可.。
图形的旋转练习题
图形的旋转练习题一、选择题1. 一个图形绕某点旋转90度后,其形状和大小:A. 发生变化B. 不发生变化C. 无法确定D. 形状不变,大小变小2. 如果一个图形绕其对称中心旋转180度,其位置:A. 不变B. 改变C. 无法确定D. 形状改变3. 一个正方形绕其中心点旋转45度后,其:A. 形状和位置都不变B. 形状不变,位置改变C. 形状改变,位置不变D. 形状和位置都改变4. 一个等边三角形绕其一个顶点旋转120度后,其:A. 形状和位置都不变B. 形状不变,位置改变C. 形状改变,位置不变D. 形状和位置都改变5. 一个圆绕其圆心旋转任意角度后,其:A. 形状和位置都不变B. 形状不变,位置改变C. 形状改变,位置不变D. 形状和位置都改变二、填空题6. 一个图形绕某点旋转______度后,其形状和位置都不变。
7. 如果一个图形绕其对称中心旋转______度,其位置不变。
8. 一个图形绕某点旋转180度后,其形状______,位置______。
9. 一个图形绕某点旋转90度后,其形状______,位置______。
10. 一个图形绕其对称中心旋转任意角度后,其形状______,位置______。
三、简答题11. 描述一个正方形绕其中心点顺时针旋转90度后,其四个顶点的新位置。
12. 解释为什么一个圆在绕其圆心旋转任意角度后,其形状和位置都不变。
13. 如果一个正六边形绕其中心点旋转60度,描述其顶点的新位置。
14. 一个矩形绕其对角线中点旋转180度后,其四个顶点的新位置是什么?15. 解释为什么一个图形绕其对称中心旋转180度后,其位置不变。
四、应用题16. 一个时钟的时针在12小时内绕钟面中心点旋转了多少度?17. 如果一个图形被设计为可以围绕其对称中心旋转,那么在旋转过程中,它的对称性如何保持?18. 一个图形绕其一个顶点旋转,如果旋转角度是360度的整数倍,图形的最终位置是什么?19. 在一个平面直角坐标系中,一个点绕原点旋转θ度后,其新的坐标如何计算?20. 如果一个图形绕其对称中心旋转了θ度,那么它的对称轴会如何变化?五、综合题21. 给出一个图形的旋转矩阵,并说明如何使用它来计算图形绕某点旋转后的新位置。
(完整版)图形的旋转测试题(含答案)
MB' A'C A B 图5 图4 《图形的旋转》测试题一、选择题:1、在右边四个图形中,既是轴对称图形又是中心对称图形的是( )DA .①②③④B .①②③C .①③D .③2、如图1为旋转对称图形,要使它旋转后与自身重合,应将它绕中心逆时针方向旋转的度数至少为( )度. CA 、30 oB 、45 oC 、60 oD 、90 o图1 图2 图33、如图2,边有两个边长为4cm 的正方形,其中一个正方形的顶点在另一个正方形的中心上,那么图中阴影部分的面积是( ).A(A)4cm2 (B)8cm2 (C)16cm2 (D)无法确定4、如图4, △DEF 是由△ABC 绕着某点旋转得到的, 则这点的坐标是( B )A. (1,1)B. (0,1)C. (−1,1)D. (2,0)二、填空题5、点a 4(,)与3b (,)关于原点对称,则a b += .-76、如图3,把三角形△ABC 绕着点C 顺时针旋转350,得到△A 'B 'C ,A 'B '交AC 于点D ,若∠A 'DC=900,则∠A 的度数是__________。
5507、如图5, △ABC 中, (ACB = 90(, (B = 30(, BC = 6, 三角板绕C 逆时针旋转, 当点A的对应点A' 落在AB 边上时即停止转动, 则BM 的长为 3 .8、如图6,△ABC 中, 已知∠C=90°, ∠B=50°, 点D 在边BC 上, BD=2CD. 把△ABC 绕着点D逆时针旋转m (0(<m<180()度后, 如果点B 恰好落在初始Rt △ABC 的边上, 那么m = _______. 80(或.O A B C D E F x y2 3图6 A C BD三、解答题9、作图题(1)如图7,画出△ABC 绕点O 顺时针旋转60°所得到的图形.图7 图8(2)如图8,在直角坐标系中,点P 的坐标为(3,4),将OP 绕原点O 逆时针旋转90°得到线段OP ′,(1)在图中画出线段OP ′;(2)P ′的坐标为 ______. (-4,3)1、如图,在△ABC 中,∠B=900,∠C=300,AB=1,将△ABC 绕顶点 A 旋转1800,点C 落在C1处,则C C1的长为( )A .24B .4C .32D .522、如图,△ABC 中,∠ACB=1200,将它绕着点C 旋转300 后得到△DCE ,则∠ACE=∠A+∠E=3、如图,在Rt △ABC 中,∠ACB=90°,∠A=35°,以直角顶点C•为旋转中心,将△ABC 旋转到△A ′B ′C 的位置,其中A ′、B ′分别是A 、B 的对应点,且点B 在斜边A ′B ′上,直角边CA ′交AB 于D ,求∠BDC 的度数.E DC BA B A C O ABC B C4,如图,正方形ABCD 中,E 在BC 上,F 在AB 上且∠FDE=45°,•△DEC 按顺时针方向转动一个角度后成为△DGA .(1)图中哪一个点是旋转中心?(2)旋转了多少度?(3)指出图中的对应点,对应线段和对应角;(4)求∠GDF 的度数.5、已知如图,正方形ABCD 中,E 为CD 边上一点,F 为BC 边上一点,CE=CF:(1)EBC FDC ∠∠与相等吗?(2)△DCF 能与△BCE 重合吗?(3)试判断BE 与DF 的位置关系并说明理由,6.如图所示,四边形ABCD 中,∠BAD=∠C=90°,AB=AD ,AE ⊥BC 于E ,△BEA 旋转后能与△DFA 重合.(1)旋转中心是哪一点?(2)旋转了多少度?(3)若AE=5cm ,求四边形ABCD 的面积.7,如图,K 是正方形ABCD 内一点,以AK 为一边作正方形AKLM ,使L ,M ,D 在AK 的同旁,连结BK 和DM ,试用旋转的思想说明线段BK 与DM 的关系. C FEDB A,8,.如图所示,等边△ABC中,D是AB边上的动点(不与A、B重合),以CD为一边,向上作等边△EDC。
九年级数学:图形的旋转练习(含答案)
九年级数学:图形的旋转练习(含答案)1.图形旋转的性质:图形经过旋转所得的图形与原图形________;对应点到旋转中心的距离________;任何一对对应点与旋转中心连线所成的角度等于____________.2.圆既是一个轴对称图形,又是一个________对称图形.A组基础训练1.下列图案中,可以由一个“基本图案”连续旋转45°得到的是( )2.在图形旋转中,下列说法错误的是( )A.图形上各点的旋转角度相同B.对应点到旋转中心的距离相等C.由旋转得到的图形也一定可以由平移得到D.旋转不改变图形的大小、形状3.如图所示的图形由四个相同的正方形组成,通过旋转不可能得到的图形是( )第3题图4.如图,把△ABC绕点C顺时针旋转35°,得到△A′B′C,A′B′交AC于点D,若∠A′DC =90°,则∠A的度数为( )第4题图A .45°B .55°C .65°D .75° 5.下图中的各种变换分别属于平移、轴对称、旋转中的哪种图形变换(填空)?第5题图①________ ②________ ③________6.如图,△ABC 经过旋转得到△A′B′C′,且∠AOB =25°,∠AOB ′=20°,则线段OB 的对应线段是________;∠OAB 的对应角是________;旋转中心是________;旋转的角度是________.第6题图7.如图,下面的图案由三个叶片组成,绕点O 旋转120°后可以和自身重合.若每个..叶片的面积为4cm 2,∠AOB 为120°,则图中阴影部分的面积之和为________cm 2.第7题图8.如图,直线y =-43x +4与x 轴、y 轴分别交于A 、B 两点,把△AOB 绕点A 顺时针旋转90°后得到△AO′B′,则点B′的坐标为________.第8题图9.如图,在△ABC 和△AEF 中,∠B =∠E ,AB =AE ,BC =EF ,∠BAE =25°,∠F =60°.(1)求证:∠BAE=∠CAF;(2)△ABC可以经过图形变换得到△AEF,请你描述这个变换;(3)求∠AMB的度数.第9题图10.如图,在正方形ABCD中,E,F分别是边BC,CD上的点,∠EAF=45°.(1)求证:EF=DF+BE;(2)若DF=3,BE=2,求正方ABCD的边长.第10题图B组自主提高11.如图,将△ABC绕点P顺时针旋转90°得到△A′B′C′,则点P的坐标是( )第11题图A.(1,1)B.(1,2)C.(1,3)D.(1,4)12.如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE,若∠CAE=65°,∠E=70°,且AD⊥BC,则∠BAC的度数为________.第12题图13.在数学活动课中,小辉将边长为2和3的两个正方形放置在直线l上,如图1,他连结AD,CF,经测量发现AD=CF.(1)他将正方形ODEF绕O点逆时针旋转一定的角度,如图2,试判断AD与CF还相等吗?说明你的理由;(2)他将正方形ODEF绕O点逆时针旋转,使点E旋转至直线l上,如图3,请你求出CF 的长.第13题图C组综合运用14.在△ABC中,AB=AC,∠BAC=α(0°<α<60°),将线段BC绕点B逆时针旋转60°得到线段BD.第14题图(1)如图1,直接写出∠ABD的大小(用含α的式子表示);(2)如图2,∠BCE=150°,∠ABE=60°,判断△ABE的形状并加以证明;(3)在(2)的条件下,连结DE,若∠DEC=45°,求α的值.3.2 图形的旋转【课堂笔记】1.全等相等旋转的角度 2.中心【课时训练】1-4.BCCB5.①旋转②平移③轴对称6.OB′∠OA′B′点O 45°7. 48.(7,3)9.(1)∵∠B=∠E,AB=AE,BC=EF,∴△ABC≌△AEF,∴∠BAC=∠EAF,∴∠BAC-∠PAF =∠EAF-∠PAF,即∠BAE=∠CAF;(2)通过观察可知,△ABC绕点A顺时针旋转25°得到△AEF; (3)由(1)知,∠C =∠F=60°,∠CAF =∠BAE=25°,∴∠AMB =∠C+∠CAF=60°+25°=85°.第10题图10.(1)将△DAF 绕点A 顺时针旋转90度到△BAF′位置,由题意可得出:△DAF≌△BAF′,∴DF =BF′,∠DAF =∠BAF′,∴∠EAF ′=45°,在△FAE 和△F′AE 中,⎩⎨⎧AF =AF′,∠FAE =∠EAF′AE =AE ,,∴△FAE ≌△F ′AE(SAS),∴EF =EF′=DF +BE. (2)∵DF=3,BE =2,∴EF =5,设边长为x ,在△CFE 中,(x -3)2+(x -2)2=52,∴x =6,(x =-1舍去).∴正方形的边长为6.11. B 12.85°第13题图13.(1)AD 与CF 还相等,理由:∵四边形ODEF ,四边形ABCO 为正方形,∴∠DOF =∠COA =90°,DO =OF ,CO =OA ,∴∠COF =∠AOD,∴△COF ≌△AOD(SAS),∴AD =CF ; (2)如图,连结DF ,交EO 于G ,则DF⊥EO,DG =OG =12EO =1,∴GA =4,∴CF =AD =DG 2+GA 2=1+42=17.14.(1)30°-12α; (2)△ABE 为等边三角形.证明:连结AD ,CD ,∵线段BC 绕点B逆时针旋转60°得到线段BD ,则BC =BD ,∠DBC =60°,又∵∠ABE=60°,∴∠ABD =60°-∠DBE=∠EBC=30°-12α;且△BCD为等边三角形,在△ABD与△ACD中,⎩⎨⎧AB=AC,AD=AD,BD=CD.∴△ABD≌△ACD(SSS).∴∠BAD=∠CAD=12∠BAC=12α.∵∠BCE=150°,∴∠BEC=180°-(30°-12α)-150°=12α.在△ABD与△EBC中,⎩⎨⎧∠BEC=∠BAD,∠EBC=∠ABD,BC=BD.∴△ABD≌△EBC(AAS).∴AB=BE.又∠ABE=60°.∴△ABE为等边三角形;(3)∵∠BCD=60°,∠BCE=150°,∴∠DCE=150°-60°=90°,∵∠DEC=45°,∴△DCE为等腰直角三角形,∴DC=CE=BC,∵∠BCE=150°,∴∠EBC=180°-150°2=15°,而∠EBC=30°-12α=15°,∴α=30°.。
五年级图形的旋转练习题
五年级图形旋转练习题1。
如右图,绕它的中心至少旋转( )才能与原图形重合。
A.30° B.60° C.90° D.180°·2.把图形绕着O点顺时针旋转90°后,得到的图形是( )。
A. B. C. D.3.利用旋转画一朵小花:4.图形(1)是以点()为中心旋转的;图形(2)是以点( )为中心旋转的;图形(3)是以点()为中心旋转的。
5.如图,指针从A开始,顺时针旋转了90°到()点,逆时针旋转了90°到()点;要从A旋转到C,可以按()时针方向旋转()°,也可以按()时针方向旋转( )°。
6.观察图形,填写空格。
①号图形是绕A点按()时针方向旋转了()°;②号图形是绕()点按顺时针方向旋转了()°;③号图形是绕()点按()时针方向旋转了90°;④号图形是绕( )点按()时针方向旋转了()。
7.观察图形并填空.(1)图1绕点“O”逆时针旋转90°到达图()的位置;(2)图1绕点“O”逆时针旋转180°到达图()的位置;(3)图1绕点“O”顺时针旋转()°到达图4的位置;(4)图2绕点“O”顺时针旋转( )°到达图4的位置;(5)图2绕点“O”顺时针旋转90°到达图()的位置;(6)图4绕点“O”逆时针旋转90°到达图()的位置。
8.将下面的图案绕点“O”按顺时针方向旋转90°,得到的图案是( )。
9.如右图,绕它的中心至少旋转()才能与原图形重合。
·A.30° B.60° C.90° D.180°10.将下列图形绕着各自的中心点旋转120°后,不能与原来的图形重合的是().11.由图形(1)不能变为图形(2)的方法是( )。
A.图形(1)绕“O”点逆时针方向旋转90°得到图形(2)B.图形(1)绕“O"点顺时针方向旋转90°得到图形(2)C.图形(1)绕“O”点逆时针方向旋转270°得到图形(2)D.以线段OP所在的直线为对称轴画图形(1)的轴对称图形得到图形(2)12.观察下图,是怎样从图形A得到图形B的().A.先顺时针旋转90°,再向右平移10格B.先逆时针旋转90°,再向右平移10格C.先顺时针旋转90°,再向右平移8格D。
23.1图形的旋转练习卷
学校:___________姓名:___________班级:___________考号:___________一、选择题1.以下实际现象中,属于旋转的是( )A.钟表指针运动B.站在电梯上的人的运动C.在火车上睡觉的旅客D.地下水位逐年下降【答案】A【解析】试题分析:根据旋转的定义进行判断.解:根据旋转的定义可得:A选项:钟表指针运动是旋转;B选项:站在电梯上的人的运动是平移;C选项:在火车上睡觉的旅客是平移;D选项:地下水位逐年下降是平移.故选A.考点:图形的旋转的定义2.如下图所示,将△ABC旋转到△AB′C′,下列说法正确的个数是( )①AC=AB′②BC=B′C′③∠BAC=∠B′AC′④∠CAC′=∠BAB′A.1B.2C.3D.4【答案】C【解析】试题分析:根据在平面内,一个图形旋转后得到的图形与原来的图形之间对应线段相等;对应角相等;对应点到旋转中心的距离相等;每对对应点与旋转中心连线所成的角都是相等的角,它们都等于旋转角进行判断.解:①:因为点C与点B′不是对应点,所以AC与AB′不一定相等;②:因为BC与BC′是对应线段,所以BC=BC′;③:因为∠BAC与∠B′AC′是对应角,所以∠BAC=∠B′AC′;④:因为∠CAC′与∠BAB′是对应角,所以∠CAC′=∠BAB′.所以正确的有三个,故应选C.考点:图形的旋转的性质3.如图所示,△ACB和△DCE都是直角三角形,其中一个三角形是由另一个三角形旋转得到的,下列叙述错误的是( )A.旋转中心是点CB.旋转角度是90°C.既可以是逆时针旋转也可以是顺时针旋转D.旋转中心是点B,旋转角是∠ABC【答案】D【解析】试题分析:根据旋转的定义进行判断.解:A选项:因为△ACB和△DCE都是直角三角形,可得:点A的对应点是点D,点B的对应点是点E,所以旋转中心是点C,故A选项正确;B选项:根据旋转的定义可得:旋转角是∠ACD,因为∠ACD=∠ACB=90°,所以旋转角是90°,故B选项正确;C选项:△DCE可以看作是由△ACB顺时针旋转90°得到的,也可以看作是逆时针旋转270°得到的,故C选项正确;D选项:根据旋转的定义可得:旋转中心是点C,旋转角是∠ACD,故D选项错误.故应选D考点:图形的旋转的定义4.将△ABC绕着点C顺时针旋转50°后得到△A′B′C′,若∠A=40°,∠B′=100°,则∠BCA′的度数是( )A.110°B. 80°C.40°D.90°【答案】D【解析】试题分析:根据旋转的性质可得:△ABC≌△A′B′C,因为∠B′=100°,所以∠B=100°,根据三角形内角和定理可以求出∠BCA=40°,因为旋转角是50°,所以∠ACA′=50°,所以∠BCA′=50°+40°=90°.解:根据旋转的性质可得:△ABC≌△A′B′C,∴∠B=∠B′∵∠B′=100°,∴∠B=100°,∴∠BCA=40°,∵旋转角是50°,∴∠ACA′=50°,∴∠BCA′=50°+40°=90°.考点:旋转角;旋转的性质5.中午12点15分时,钟表上的时针和分针的夹角的度数( )A.90°B. 75°C. 82.5°D.60°答案:C试题分析:在钟面上,时针每个小时旋转30°,分针每分钟旋转6°,用15分钟分针旋转的度数减去时针旋转的度数,得到时针与分针的夹角的度数.解:115630907.582.54⨯︒-⨯︒=︒-︒=︒.故应选C二、填空题6.写出三个旋转180°后可以与自身重合的英文字母______________.【答案】H、I、X(答案不唯一).【解析】试题分析:根据旋转的性质可得:旋转180°后可以与自身重合的英文字母有:H、I、X、O、S、Z,写出其中的三个即可..解:H、I、X.7.如图E、F分别是正方形ABCD的边AB、BC上的点,BE=CF,连接CE、DF,将△BCE绕着正方形的中心O,按逆时针旋转到△CDF的位置,则旋转角是________.【答案】90°.【解析】试题分析:连接线段OC、OB,则线段OC、OB的夹角就是旋转角,根据正方形的性质可得:∠BOC=90°.解:如下图所示,连接OB、OC,根据正方形的性质可得:∠BOC=90°,所以旋转角是90°.故答案是90°.8.如图,在直角△OAB中,∠AOB=30°,将△OAB绕点O逆时针旋转100°,得到△OCD,则∠COB=_______.【答案】70°.【解析】试题分析:首先根据旋转角是100°,可以求出∠AOC=100°,又因为∠AOB=30°,所以∠COB=∠AOC-∠AOB=100°.解:∵旋转角是100°,∴∠AOC=100°,又∵∠AOB=30°,∴∠COB=∠AOC-∠AOB=70°.故答案是70°.9.在钟面上,时针旋转1小时的旋转角是_______;分针旋转1分钟的旋转角是______.【答案】30°;6°.【解析】试题分析:根据时针旋转360°时所用的时间是12个小时,求出时针旋转1小时的旋转角;根据分针旋转360°时所用的时间是60分钟,求出分针旋转1分钟的旋转角.解:时针旋转1小时的旋转角是360°÷12=30°,分针旋转1分钟的旋转角是360°÷60=6°.故答案是30°;6°.10.如图,在△ABC中,∠BAC=90°,AB=AC=5cm,△ABC按逆时针旋转一个角度后成为△ACD,则旋转中心是点____;旋转角是_____.【答案】A;90°.【解析】试题分析:因为图形旋转前后,只有点A的位置没有改变,所以旋转中心是点A,根据旋转前后∠BAC与∠DAC重合,所以可以求出∠BAC=∠DAC=90°,所以可以得到旋转角是90°.解:因为旋转后△ABC与△ACD中,点C与点D是对应点,点B与点C是对应点,点A与点A是对应点,所以旋转中心是点A;因为点C、D是对应点,所以∠DAC是旋转角,根据旋转前后∠BAC与∠DAC重合,所以∠BAC=∠DAC=90°,所以旋转角是90°.三、解答题11.已知△ABC绕点O旋转,点D是点A的对应点,试作出旋转后的△DEF.【答案】作图见解析.【解析】试题分析:首连接AO、DO;再连接OB、OC,分别作∠BOE=∠COF=∠AOD;在射线OE、OF上截取OE=OF,OF=OC,连接DE、EF、FD,则△DEF就是旋转后的图形.解:作图如下,12.从12时整开始计时到几时几分时,分针和时针的旋转角第一次相差90°【答案】12时18011分.【解析】试题分析:设经过x分钟时分针和时针的旋转角第一次相差90°,可以列出关于x的方程,解方程求出经过的时间.解:设经过x分钟时分针和时针的旋转角第一次相差90°根据题意可得:6309060x x -⨯=, 解得:18011x =. 答:12时18011分时,时针和分针的旋转角第一次相差90°.。
数学五年级上册 图形的旋转练习卷
2.2图形的旋转一、选择题。
1. 下列现象中,()是平移。
A. B. C. D.2. 下列说法正确的是()A. “旋转”改变图形的形状和大小。
B. “平移”改变图形的形状和大小。
C. “旋转”和“平移”都不改变图形的形状和大小。
3. 钟面上分针从12走到6,我们说分针沿顺时针方向旋转了()。
A. 30°B. 90°C. 180°4. 在下面三个图中,是由旋转而得的是( )。
A. B. C.5. 下面图形中,( )绕着中心O点旋转60 º后能和原图重合.A.B.C.6. 汽车在行驶过程中,车轮的运动属于()现象。
A. 旋转B. 平移7. 图示表示一张纸片被图钉固定在墙上,可以绕图钉旋转这张纸片.下面( )图是纸片绕图钉旋转后得到的.A. B. C. D.8. a图形平移后得到的是________,旋转后得到的是________,正确选项为()。
①②③④A. ①③B. ②③C. ①④D. ④②9. 下图是平移现象的是()。
A. 风车B. 绳子C. 小汽车D. 锤子10. 下图中,第()幅图的运动是旋转。
A. B. C.D.二、填空题。
11. 图形B是图形A绕O点________方向旋转90°得到的;图形B绕O点________方向旋转________度,得到图形D。
12. 填空。
(1)图B绕点O()旋转()°得到图C。
(2)图A向()得到图D。
13. 从6:00至9:00,时针旋转了________°.14. 填上“平移”或“旋转”。
()→()→。
15. 图形旋转后的()和()发生了改变,()不变。
16. 下面的现象是平移运动的在横线上画“√”,是旋转运动的画“○”。
________________________________17. 下面这些现象哪些是“平移”现象,哪些是“旋转”现象。
图1图2(1)风力发电站里风轮的运动是________现象。
五年级旋转题型练习题
五年级旋转题型练习题一、选择题1. 下图中,哪一个是旋转图形?A. B.2. 以下哪个选项是图形 A 经过旋转后得到的结果?A. B. C.3. 下列选项中,哪一个图形与原图形经过旋转后得到的结果相同?A. B. C.4. 下图中,哪一个图形经过旋转后与原图形相同?A. B. C.5. 这两个图形之间的变化是什么?A. 平移B. 旋转C. 缩放二、填空题1. 将图形 A 顺时针旋转 90°,得到的结果是 ________________。
2. 将图形 B 逆时针旋转 270°,得到的结果是 ________________。
3. 将图形 C 顺时针旋转 180°,得到的结果是 ________________。
4. 将图形 D 逆时针旋转 360°,得到的结果是 ________________。
5. 将图形 E 顺时针旋转 270°,得到的结果是 ________________。
三、应用题小明正在玩一个旋转游戏。
以下是他的游戏规则:1. 他首先画出一个图形,然后对它进行旋转。
2. 他将旋转后的图形分成 4 个部分,每个部分都要填上数字。
3. 每个部分的数字要满足以下条件:- 两个相邻部分的数字之和为 10。
- 每个部分的数字都是不大于 5 的正整数。
- 每个部分的数字都不同。
以下是小明画的图形和其中一个解法的示例:__ __| || 5 |-- --| 3 || 4 |-- --请你帮助小明完成以下旋转题目:1. 请根据上述规则,完成以下图形:a)__ __ | | | ? | -- -- | 2 | | ? | -- --b)__ __ | | | ? | -- -- | ? | | ? | -- --c)__ __ | |-- --| ? || 1 |-- --d)__ __| || ? |-- --| 5 || ? |-- --2. 请你根据自己的创意,画一个满足上述规则的图形,并写出解法。
小学图形旋转练习题
小学图形旋转练习题一、选择题1. 下列哪个图形经过旋转后,形状不变?A. 正方形B. 圆形C. 长方形D. 三角形2. 一个图形绕某点旋转了180度,这个图形会:A. 位置不变B. 形状改变C. 位置和形状都不变D. 位置改变,形状不变3. 一个图形绕中心点旋转90度后,图形的:A. 面积不变B. 周长不变C. 面积和周长都不变D. 面积和周长都改变二、填空题4. 一个正方形绕其中心点旋转____度,可以回到原来的位置。
5. 如果一个图形绕某点旋转360度,那么这个图形的位置____。
三、判断题6. 所有图形旋转后,其面积都会改变。
()7. 一个图形旋转后,其周长不会改变。
()四、简答题8. 请描述一个图形旋转的过程,并说明旋转前后图形的特点。
五、操作题9. 请画出一个等边三角形,并标出旋转中心点。
然后,描述如何旋转这个三角形,使其回到原位。
六、计算题10. 假设有一个边长为10厘米的正方形,计算它绕中心点旋转90度后,边长的变化。
七、综合题11. 给定一个半径为5厘米的圆,计算它绕中心点旋转任意角度后,圆的面积和周长。
八、拓展题12. 如果一个图形可以绕某点旋转任意角度后回到原位,我们称这个点为图形的旋转中心。
请列举出几个常见的旋转中心,并说明它们的特点。
九、应用题13. 一个风车有四个等长的叶片,当风车旋转时,叶片的旋转中心是哪里?如果风车旋转了一周,叶片会回到原来的位置吗?十、创新题14. 设计一个图形,它在旋转一定角度后,形状会发生变化,但旋转360度后,形状和位置都回到原位。
请画出这个图形,并描述其旋转过程。
十一、思维题15. 在一个正方形的四个顶点上各放置一个相同的小圆,这些小圆绕正方形的中心旋转,当正方形旋转90度时,这些小圆的位置会如何变化?十二、探索题16. 观察生活中的物体,找出哪些物体在旋转时,形状和位置都不会改变。
请列举至少三个例子,并简要说明原因。
通过这些练习题,学生可以更好地理解图形旋转的基本概念,掌握旋转的性质和特点,提高空间想象能力和解决问题的能力。
《图形旋转》经典好题
16/9/21旋转构图,聚拢条件(1)姓名舟1.正三角形类型在正A ABC中,P为AABC内一点,将△ ABP绕A点按逆时针方向旋转60°,使得AB与AC 重合。
经过这样旋转变化,将图(l-1-a)中的PA、PB> PC三条线段集中于图(l-1-b)中的一个AP'CP中,此时AP'AP也为正三角形。
例1・图1T,设P是等边AABC内的一点,PA=3, PB=4, PC二5,求ZAPB的度数解:将AAPC绕A点逆时针旋转60°,使得AC与AB重合并连接PP',2•正方形类型图(1」) 在正方形ABCD中,P为正方形ABCD内一点,将△ ABP绕B点按顺时针方向旋转90",使得BA与BC重合。
经过旋转变化,将图(2-l-a)中的PA、PB、PC三条线段集中于图(2-1-b) 中的ACPP'中,此时ABPP'为等腰直角三角形。
例2•如图(2-1) , P是正方形ABCD内一点,点P到正方形的三个顶点A、B、C的距离分别为PA=1, PB=2, PC二3。
求ZAPB 的度数。
图(2-1-a) 图(2-l-b> a图2-13•等腰直角三角形类型在等腰直角三角形AABC中,zC二90° , P为AABC内一点,将△ APC绕C点按逆时针方向旋转90°,使得AC与BC重合。
经过这样旋转变化,在图(3-1-b)中的一个AP' CP为等腰直角三角形。
例3・如下图,在 A ABC 中,z ACB 二90°, BC 二AC, P 为AABC 内一点,且PA 二3, PB 二1, PC 二2。
求z BPC的度数。
解:练习:在RtAABC 中,ZC=90° , AC二1, ZABC二聖°,点0 为RtAABC 内一点,连接AO. BO、CO, 且ZA0C 二ZC0B二BOA二120° ,(1)按下列要求画图(保留画图痕迹):以点B为旋转中心,将AAOB绕点B顺时针方向旋转60°,得到O' B (得到A、0的对应点分别为点A'、0,),(2)分别求ZA‘ BC、OA+OB+OC的大小。
图形的旋转练习题及答案
图形的旋转练习题及答案图形的旋转练习题及答案在数学学科中,图形的旋转是一个重要的概念。
通过旋转,我们可以改变图形的方向和位置,从而帮助我们更好地理解和解决问题。
在本文中,我们将介绍一些关于图形旋转的练习题,并提供相应的答案。
1. 练习题:将一个正方形逆时针旋转90度,得到的图形是什么?并画出旋转后的图形。
答案:将正方形逆时针旋转90度,得到的图形是一个新的正方形。
旋转后的图形与原始图形的边长相等,但是边的方向发生了变化。
下图展示了旋转前后的对比:旋转前:┌───┐│ │└───┘旋转后:┌───┐│ │└───┘2. 练习题:将一个长方形顺时针旋转180度,得到的图形是什么?并画出旋转后的图形。
答案:将长方形顺时针旋转180度,得到的图形仍然是一个长方形。
旋转后的图形与原始图形的长宽相等,但是边的方向发生了变化。
下图展示了旋转前后旋转前:┌─────┐│ │└─────┘旋转后:┌─────┐│ │└─────┘3. 练习题:将一个三角形逆时针旋转270度,得到的图形是什么?并画出旋转后的图形。
答案:将三角形逆时针旋转270度,得到的图形仍然是一个三角形。
旋转后的图形与原始图形的边长相等,但是边的方向发生了变化。
下图展示了旋转前后的对比:旋转前:/\/ \/____\旋转后:_____\ /\ /通过以上的练习题,我们可以看到图形旋转是一种非常有趣和有用的操作。
通过旋转,我们可以改变图形的朝向和位置,从而帮助我们更好地理解和解决数学问题。
在实际生活中,图形旋转也有着广泛的应用,例如在建筑设计、机械制造以及计算机图形学等领域。
除了上述练习题,还有许多其他类型的图形旋转练习题可以帮助我们提高对图形旋转的理解和应用能力。
通过不断练习和思考,我们可以逐渐掌握图形旋转的技巧,并将其应用于更复杂的问题中。
总结起来,图形旋转是数学学科中的一个重要概念。
通过练习题的形式,我们可以更好地理解和应用图形旋转。
希望本文提供的练习题和答案能够帮助读者加深对图形旋转的理解,并在解决问题时起到一定的指导作用。
九年级数学上册23-1《图形的旋转》基础课时练习题(含答案解析)
九年级数学上册23-1《图形的旋转》基础课时练习题(含答案解析)1、如图,假设篱笆(虚线部分)的长度16m,则所围成矩形ABCD的最大面积是().A. 60m2B. 63m2C. 64m2D. 66m22、星光中学课外活动小组准备围建一个矩形生物苗圃园,其中一边靠墙,另外三边用长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x米.(1) 若平行于墙的一边长为y米,直接写出y与x的函数关系式及其自变量x的取值范围.(2) 垂直于墙的一边的长为多少米时,这个苗圃园的面积最大,并求出这个最大值.(3) 当这个苗圃园的面积不小于88平方米时,试结合函数图象,直接写出x的取值范围.3、某商店销售一批头盔,售价为每顶80元,每月可售出200顶.在“创建文明城市”期间,计划将头盔降价销售,经调查发现:每降价1元,每月可多售出20顶.已知头盔的进价为每顶50元,则该商店每月获得最大利润时,每顶头盔的售价为元.4、某工厂设计了一款产品,成本为每件20元.投放市场进行试销,经调查发现,该种产品每天的销售量y(件)与销售单价x(元)之间满足y=−2x+80(20⩽x⩽40),设销售这种产品每天的利润为W(元).(1) 求销售这种产品每天的利润W(元)与销售单价x(元)之间的函数表达式.(2) 当销售单价定为多少元时,每天的利润最大?最大利润是多少元?5、某片果园有果树80棵,现准备多种一些果树提高果园产量,但是如果多种树,那么树之间的距离和每棵树所受光照就会减少,单棵树的产量随之降低.若该果园每棵果树产果y(千克),增种果树x(棵),它们之间的函数关系如图所示.(1) 求y与x之间的函数关系式.(2) 在投入成本最低的情况下,增种果树多少棵时,果园可以收获果实6750千克?(3) 当增种果树多少棵时,果园的总产量w(千克)最大?最大产量是多少?6、解答:(1) 一辆宽2米的货车要通过跨度为8米,拱高为4米的单行抛物线隧道(从正中通过),为保证安全,车顶左右两侧离隧道的垂直距离至少要0.5米,求货车的限高为多少?(2) 若将(1)中的单行道改为双行道,即货车必须从隧道中线的右侧通过,求货车的限高应是多少?7、把一个足球垂直水平地面向上踢,时间为t(秒)时该足球距离地面的高度ℎ(米)适用公式ℎ=20t−5t2(0⩽t⩽4).(1) 经过多少时间足球能到达最大高度,最大高度是几米?(2) 足球从开始踢至回到地面需要多少时间?(3) 若存在两个不相等的实数t,能使足球距离地面的高度都为m(米),请直接写出m的取值范围.8、运动员将小球沿与地面成一定角度的方向击出,在不考虑空气阻力的条件下,小球的飞行高度ℎ(m)与它的飞行时间t(s)满足二次函数关系,t与ℎ的几组对应值如下表所示:(1) 求ℎ与t之间的函数关系式(不要求写t的取值范围).(2) 求小球飞行3s时的高度.(3) 问:小球的飞行高度能否达到22m.请说明理由.9、军事演习在平坦的草原上进行,一门迫击炮发射的一发炮弹飞行的高度y(m)与飞行时间x(s)的x2+10x,经过秒时间,炮弹落到地上爆炸了.关系满足y=−1510、如图,在△ABC中,∠C=90°,AB=10cm,BC=8cm,点P从点A出发沿AC向点C以1cm/s的速度运动,同时点Q从点C出发沿CB向点B以2cm/s的速度运动(点Q运动到点B停止),在运动过程中,四边形PABQ的面积最小为().A. 19cm2B. 16cm2C. 15cm2D. 12cm211、如图,某中学准备围建一个矩形苗圃,其中一边靠墙,另外三边用长为30米的篱笆围成,若墙长为18米,设这个苗圃垂直于墙的一边长为x米.(1) 若苗圃园的面积为100平方米,求x的值.(2) 若平行于墙的一边长不小于8米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值,如果没有,请说明理由.12、如图,有长为24米的篱笆,一面利用墙(墙的最大可用长度为10米),围成中间隔有一道篱笆的长方形花圃,设花圃的宽AB为x米,面积为S米2.(1) 求S与x的函数关系式.(2) 如果要围成面积为45m2的花圃,AB的长是多少米?(3) 能围成面积比45m2更大的花圃吗?如果能,请求出最大面积,并说明围法;如果不能,请说明理由.13、某种水果进价为每千克20元,市场调查发现,该水果每天的销售量y(千克)与售价x(元/千克)有如下关系:y=−2x+80,设这种水果每天的销售利润为w元.(1) 求w与x之间的函数关系式.(2) 该水果售价定为每千克多少元时,每天销售利润最大?最大利润是多少元.(3) 如果商家为“薄利多销”,规定这种水果售价每千克不高于28元,则商家要想每天获利150元的销售利润,售价应定为每千克多少元.14、服装厂批发某种服装,每件成本为65元,规定不低于10件可以批发,其批发价y(元/件)与批发数量x(件)(x为正整数)之间所满足的函数关系如图所示.(1) 求y与x之间所满足的函数关系式,并写出x的取值范围.(2) 设服装厂所获利润为w(元),若10⩽x⩽50(x为正整数),求批发该种服装多少件时,服装厂获得利润最大?最大利润是多少元?15、一条单车道的抛物线形隧道如图所示,隧道中公路的宽度AB=8m,隧道的最高点C到公路的距离为6m.(1) 建立适当的平面直角坐标系,求抛物线的表达式.(2) 现有一辆货车的高度是4.4m,货车的宽度是2m,为了保证安全,车顶距离隧道顶部至少0.5m,通过计算说明这辆货车能否安全通过这条隧道.16、如图,以40m/s的速度将小球沿与地面成某一角度的方向击出时,小球的飞行路线将是一条抛物线.如果不考虑空气阻力,小球的飞行高度ℎ(单位:m)与飞行时间(单位:s)之间具有函数关系ℎ=20t−5t2.请解答以下问题:(1) 小球的飞行高度能否达到15m?如果能,需要多少飞行时间?(2) 小球的飞行高度能否达到20.5m?为什么?(3) 小球从飞出到落地要用多少时间?1 、【答案】 C;【解析】设BC=xm,矩形ABCD的面积为ym2,易知AB=(16−x)m,根据题意得y=(16−x)x=−x2+16x=−(x−8)2+64,当x=8时,y取得最大值,为64,则所围成矩形ABCD的最大面积是64m2.故选C.2 、【答案】 (1) y=30−2x(6⩽x<15).;(2) 当x=7.5时,S最大值=112.5.;(3) x的取值范围为6⩽x⩽11.;【解析】 (1) y=30−2x(6⩽x<15).(2) 设矩形苗圃园的面积为S,则S=xy=x(30−2x)=−2x2+30x,∴S=−2(x−7.5)2+112.5.由(1)知,6⩽x<15,∴当x=7.5时,S最大值=112.5,即当矩形苗圃园垂直于墙的一边的长为7.5米时,这个苗圃园的面积最大,这个最大值为112.5.(3) ∵这个苗圃园的面积不小于88平方米,即−2(x−7.5)2+112.5⩾88,∴6⩽x⩽11.由(1)可知6⩽x<15,∴x的取值范围为6⩽x⩽11.3 、【答案】70;【解析】解:设每顶头盔的售价为x元,获得的利润为w元,w=(x−50)[200+(80−x)×20]=−20(x−70)2+8000,∴当x=70时,w取得最大值,此时w=8000,故答案为:70.4 、【答案】 (1) w=−2x2+120x−1600 (20⩽x⩽40);(2) 当销售单价定为30元时,工厂每天获得的利润最大,最大利润是200元;【解析】 (1) w=y(x−20)=(x−20)(−2x+80)=−2x2+120x−1600 (20⩽x⩽40).(2) w=−2x2+120x−1600=−2(x−30)2+200则当销售单价定为30元时,工厂每天获得的利润最大,最大利润是200元.5 、【答案】 (1) y=−0.5x+80.;(2) 增种果树10棵时,果园可以收获果实6750千克.;(3) 当增种果树40棵时果园的最大产量是7200千克.;【解析】 (1) 设函数的表达式为y =kx +b ,该一次函数过点(12,74),(28,66),根据题意,得:{74=12k +b 66=28k +b ,解得,{k =−0.5b =80, ∴该函数的表达式为y =−0.5x +80.(2) 根据题意,得,(−0.5x +80)(80+x)=6750,解这个方程得,x 1=10,x 2=70,∵投入成本最低.∴x 2=70不满足题意,舍去.∴增种果树10棵时,果园可以收获果实6750千克.(3) 根据题意,得w =(−0.5x +80)(80+x)=−0.5(x −40)2+7200, ∵a =−0.5<0,则抛物线开口向下,函数有最大值,∴当x =40时,w 最大值为7200千克.∴当增种果树40棵时果园的最大产量是7200千克.6 、【答案】 (1) 3.25米.;(2) 2.5米.;【解析】 (1) 以抛物线的对称轴为y 轴,地平线为x 轴,建立如图所示坐标系,∵抛物线的顶点坐标是(0,4),∴可设抛物线的解析式为y =ax 2+4.又∵抛物线过(4,0)点,∴0=a×42+4,∴a=−1.4x2+4(−4⩽x⩽4)∴y=−14当x=1时,y=3.75.∴货车限高为3.75−0.5=3.25(米).(2) 当x=2时,y=3,故货车限高为3−0.5=2.5(米).7 、【答案】 (1) 经过2s足球能到达最大高度,最大高度是20米.;(2) 足球从开始踢至回到地面需要4秒.;(3) 0⩽m<20.;【解析】 (1) ∵ℎ=20t−5t2=−5(t−2)2+20,∴t=2时,ℎ最大,最大值为20m,答:经过2s足球能到达最大高度,最大高度是20米.(2) 令ℎ=0,得:20t−5t2=0,解得:t=0或t=4,∴足球从开始踢至回到地面需要4秒.(3) 由(1)知足球的最大高度为20米,∴0⩽m<20.8 、【答案】 (1) ℎ=−5t2+20t.;(2) 15m.;(3) 小球的飞行高度不能达到22m.;【解析】 (1) ∵t =0时,ℎ=0∴设ℎ与t 的函数关系式为ℎ=at 2+bt(a ≠0),∵t =1时,ℎ=15,t =2时,ℎ=20,∴{a +b =154a +2b =20, 解得{a =−5b =20, ∴ℎ与t 之间的函数关系式为ℎ=−5t 2+20t .(2) 小球飞行3秒时,t =3,此时ℎ=−5×32+20×3=15(m),答:此时小球的高度为15m .(3) 方法一 : 设ts 时,小球的飞行高度达到22m ,则−5t 2+20t =22,即5t 2−20t +22=0,∵Δ=(−20)2−4×5×22<0,∴此方程无实数根,∴小球的飞行高度不能达到22m .(3) 方法二 : ∵ℎ=−5t 2+20t =−5(t −2)2+20,∴小球飞行的最大高度为20m ,∵22>20,∴小球的飞行高度不能达到22m .9 、【答案】 50;【解析】 依题意,关系式化为:y =−15(x −25)2+125.令y =0,解得:x =50秒.10 、【答案】 C;【解析】 在Rt △ABC 中,∠C =90°,AB =10cm ,BC =8cm ,∴AC =√AB 2−BC 2=√102−82=6(cm).设运动时间为t 秒(0⩽t ⩽4),则PC =(6−t)cm ,CQ =2tcm ,∴S 四边形PABQ =S △ABC −S △CPQ=12AC ⋅BC −12PC ⋅CQ=12×6×8−12(6−t)×2t=t 2−6t +24=(t −3)2+15,∴当t =3时,四边形PABQ 的面积有最小值,最小值为15.故选C .11 、【答案】 (1) x =10.;(2) 有,当x =7.5时,y 取得最大值,最大值为2252. 当x =11时,y 取得最小值,最小值为88.;【解析】 (1) 由题意,得:平行于墙的一边长为(30−2x),根据题意,得:x(30−2x)=100,解得:x =5或x =10,∵{30−2x ⩽182x <30, ∴6⩽x <15.∴x =10.(2) ∵矩形的面积y =x(30−2x)=−2(x −152)2+2252,且30−2x ⩾8,即x ⩽11, ∴当x =7.5时,y 取得最大值,最大值为2252. 当x =11时,y 取得最小值,最小值为88.12 、【答案】 (1) S =−3x 2+24x .;(2) 5m .;(3) 能,当长为10m ,宽为143m 时,最大面积为1403m 2. ;【解析】 (1) 根据题意,得S =x (24−3x ),即所求的函数解析式为:S =−3x 2+24x .(2) 根据题意,设AB 长为x ,则BC 长为24−3x ,则−3x 2+24x =45.整理,得x 2−8x +15=0,解得x =3或5,当x =3时,BC =24−9=15>10不成立,当x =5时,BC =24−15=9<10成立,∴AB 长为5m .(3) S =24x −3x 2=−3(x −4)2+48,由于0<24−3x ⩽10,得143⩽x <8. ∵143>4,∴当x =143时,S 取得最大值为1403>45,∴能围成面积比45m 2更大的花圃,当长为10m ,宽为143m 时,最大面积为1403m 2. 13 、【答案】 (1) w =−2x 2+120x −1600.;(2) 该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润200元.;(3) 该农户想要每天获得150元的销售利润,销售价应定为每千克25元.;【解析】 (1) 由题意得出:w =(x −20)⋅y=(x −20)(−2x +80)=−2x 2+120x −1600,故w 与x 的函数关系式为:w =−2x 2+120x −1600.(2) w =−2x 2+120x −1600=−2(x −30)2+200,∵−2<0,∴当x =30时,w 有最大值.w 最大值为200.答:该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润200元.(3) 当w =150时,可得方程−2(x −30)2+200=150.解得x 1=25,x 2=35.∵35>28,∴x 2=35不符合题意,应舍去.答:该农户想要每天获得150元的销售利润,销售价应定为每千克25元.14 、【答案】 (1) y ={−0.5x +105(10⩽x ⩽50)80(x >50). ;(2) 批发该种服装40件时,服装厂获得利润最大,最大利润是800元.;【解析】 (1) 当10⩽x ⩽50时,设y 与x 的函数关系式为y =kx +b ,{10k +b =10050k +b =80,得{k =−0.5b =105, ∴当10⩽x ⩽50时,y 与x 的函数关系式为y =−0.5x +105,当x >50时,y =80,即y 与x 的函数关系式为:y ={−0.5x +105(10⩽x ⩽50)80(x >50). (2) 由题意可得,w =(−0.5x +105−65)x =−0.5x 2+40x=−0.5(x−40)2+800,∴当x=40时,w取得最大值,此时w=800,y=−0.5×40+105=85,答:批发该种服装40件时,服装厂获得利润最大,最大利润是800元.x2+6.15 、【答案】 (1) (答案不唯一)抛物线的表达式为y=−38;(2) 这辆货车能安全通过这条隧道.;【解析】(1) 以AB所在直线为x轴,以抛物线的对称轴为y轴建立如图所示的平面直角坐标系xOy,则A(−4,0),B(4,0),C(0,6).设这条抛物线的表达式为y=a(x−4)(x+4).∵抛物线经过点C,∴−16a=6.∴a=−3.8x2+6(−4⩽x⩽4).∴这条抛物线表示的二次函数表达式为y=−38(2) 当x=1时,y=45,8∵4.4+0.5=4.9<45,8∴这辆货车能安全通过这条隧道.16 、【答案】 (1) 当小球的飞行1s和3s时,高度达到15m.;(2) 小球的飞行高度不能达到20.5m.;(3) 小球从飞出到落地要用4s.;【解析】 (1) 令ℎ=15,得方程15=20t−5t2,解这个方程得:t1=1,t2=3,当小球的飞行1s和3s时,高度达到15m.(2) 令ℎ=20.5,得方程20.5=20t−5t2,整理得:t2−4t+4.1=0,因为(−4)2−4×4.1<0,所以方程无实数根,所以小球的飞行高度不能达到20.5m.(3) 小球飞出和落地时的高度都为0,令ℎ=0,得方程0=20t−5t2,解这个方程得:t1=0,t2=4,所以小球从飞出到落地要用4s.。
小学三年级形旋转练习题
小学三年级形旋转练习题题目一:图形旋转练习一、填空题1. 把图形逆时针旋转90度,得到的图形是___________。
2. 把图形顺时针旋转180度,得到的图形是___________。
3. 把图形逆时针旋转270度,得到的图形是___________。
4. 把图形顺时针旋转360度,得到的图形是___________。
二、选择题1. 下图中的图形将顺时针旋转了___________度。
A. 90B. 180C. 270D. 360(图形待输入)2. 如下图,将图形B按顺时针旋转90度,得到的图形是___________。
(图形待输入)A. CB. DC. ED. F三、判断题判断下列说法是否正确。
1. 图形的旋转角度只能是90度的整数倍。
()2. 一张正方形图纸顺时针旋转180度,得到的图形是另一张正方形。
()3. 图形的旋转不改变图形的大小。
()题目二:图形旋转应用题一、填空题1. 将下图中的图形沿顺时针方向旋转90度,他将成为一个___________。
(图形待输入)2. 请你画一个正方形,然后沿逆时针方向旋转270度,得到的图形是___________。
(图形待输入)3. 如果将一张长方形图纸按逆时针方向旋转180度,他将成为一个___________。
(图形待输入)二、应用题1. 下图是一个停车场示意图,请你根据图上的标记,将车辆按逆时针方向旋转90度,找出B车牌所对应的停车位。
(图形待输入)2. 小明画了一个倒立的大写字母"L",他想将它逆时针旋转90度,使得它变为正立的字母"L"。
请你帮助小明画出旋转后的图形。
(图形待输入)以上是小学三年级的形旋转练习题,希望对你有帮助!。
2022年五年级上册数学同步练习 图形的旋转 (含解析)
西师大版(含解析)一、选择题(共5题;共10分)1.下面的图形中,()是旋转而成的。
A. B. C.2.下图可以看作是由绕一个顶点经过()变换而得到的。
A. 平移B. 旋转C. 平移和旋转 D. 对折3.下面三幅图中,以点A为旋转中心的图形是()。
A. B. C.4.下列现象中,既有平移现象,又有旋转现象的是()。
A. 正在工作的风扇叶片B. 在笔直道路上行驶的汽车C. 运行中的观光电梯D. 传输带上的物品5.图①绕点O()变为图②。
A. 顺时针旋转90°B. 逆时针旋转180°C. 逆时针旋转90°二、判断题(共3题;共6分)6.把一个图形旋转后,图形的大小不变,但形状会发生改变。
()7.是由右图通过平移得到的。
()8.钟表上的时针从3时走到6时,是顺时针旋转了90°。
三、填空题(共7题;共38分)9.把一个三角形按顺时针方向旋转,旋转后的图形与原图形相比,________和________不会改变。
10.看图,回答问题①指针从“11”绕点O顺时针旋转________°到“1”。
②指针从“2”绕点O顺时针旋转30°到“________”。
③指针从“3”绕点O顺时针旋转到“9”旋转了________°。
11.①图形1绕点O顺时针旋转90°到图形________所在的位置。
②图形2绕点O顺时针旋转180°到图形________所在的位置。
③图形3绕点O顺时针旋转________到图形1所在的位置。
④图形1绕点O________旋转________到图形4所在的位置。
12.观察图形,填空。
①号图形是绕A点按________时针方向旋转了________°;②号图形是绕________点按顺时针方向旋转了________°;③号图形是绕________点按________时针方向旋转了90°;④号图形是绕________点按________时针方向旋转了________°。
《图形的旋转》练习题
《图形的旋转》练习题一、判断题1、图形的旋转是图形沿着某个点旋转一定的角度。
()2、图形的旋转是由旋转中心、旋转方向和旋转角度所决定的。
()3、图形的旋转改变了图形的形状和大小。
()4、图形的旋转不改变图形的形状和大小。
()5、一个图形围绕某一点旋转一定角度后,只要与原来的图形重合,那么这个图形就被旋转对称了。
()6、一个图形围绕某一点旋转一定角度后,只要与原来的图形不重合,那么这个图形就不是旋转对称的。
()7、旋转对称图形是旋转对称的。
()8、旋转对称的图形是旋转对称的。
()9、一个图形如果和另一个图形是旋转对称的,那么这两个图形一定也是轴对称的。
()10、一个图形如果和另一个图形是轴对称的,那么这两个图形一定是旋转对称的。
()二、填空题1、在平面内,将一个图形绕某点转动一个角度,这样的图形运动称为__________。
2、在平面内,将一个图形绕某点转动一个角度,这样的图形变换称为__________。
3、在平面内,将一个图形绕某点转动一个角度,这样的图形变换称为__________。
4、在平面内,将一个图形绕某点转动一个角度,这样的图形变换称为__________。
5、在平面内,将一个图形绕某点转动一个角度,这样的图形变换称为__________。
6、在平面内,将一个图形绕某点转动一个角度,这样的图形变换称为__________。
7、在平面内,将一个图形绕某点转动一个角度,这样的图形变换称为__________。
8、在平面内,将一个图形绕某点转动一个角度,这样的图形变换称为__________。
9、在平面内,将一个图形绕某点转动一个角度,这样的图形变换称为__________。
10、在平面内,将一个图形绕某点转动一个角度,这样的图形变换称为__________。
《图形的平移与旋转》复习全攻略【介绍】《图形的平移与旋转》是初中数学中的重要一课,它涉及到平面几何的基本概念和变换方法。
在这篇复习全攻略中,我们将一起回顾图形的平移和旋转的基本概念、考点、解题技巧以及难点解析,帮助大家充分掌握这一课的内容。
初中数学:《图形的旋转》测试题及答案
初中数学:《图形的旋转》测试题及答案一、选择题1.在图形旋转中,下列说法错误的是()A.图形上的每一点到旋转中心的距离相等B.图形上的每一点转动的角度相同C.图形上可能存在不动点D.图形上任意两点的连线与其对应两点的连线相等2.下面的四个图案中,既包含图形的旋转,又包含图形的轴对称的是()A.B. C.D.3.如图所示的图案绕旋转中心旋转后能够与自身重合,那么它的旋转角可能是()A.60°B.90°C.72°D.120°4.如图,摆放有五杂梅花,下列说法错误的是(以中心梅花为初始位置)()A.左上角的梅花只需沿对角线平移即可B.右上角的梅花需先沿对角线平移后,再顺时针旋转45°C.右下角的梅花需先沿对角线平移后,再顺时针旋转180D.左下角的梅花需先沿对角线平移后,再顺时针旋转90°5.△ABC绕着A点旋转后得到△AB′C′,若∠BAC′=130°,∠BAC=80°,则旋转角等于()A.50°B.210°C.50°或210°D.130°二、填空题6.在图形的平移、旋转、轴对称变换中,其相同的性质是______.7.如图,△ABC和△ADE均是顶角为42°的等腰三角形,BC、DE分别是底边,图中的△ABD绕A旋转42°后得到的图形是______,它们之间的关系是______,其中BD=______.8.如图,将△OAB绕点O按逆时针方面旋转至△0A′B′,使点B恰好落在边A′B′上.已知AB=4cm,BB′=1cm,则A′B长是______cm.9.如图,在平面直角坐标系中,点A的坐标为(1,4),将线段OA绕点O顺时针旋转90°得到线段OA′,则点A′的坐标是______.10.如图,自正方形ABCD的顶点A引两条射线分别交BC、CD于E、F,∠EAF=45°,在保持∠EAF=45°的前提下,当点E、F分别在边BC、CD上移动时,BE+DF与EF 的关系是______.11.如图,在直角坐标系中,已知点A(﹣3,0),B(0,4),对△OAB连续作旋转变换,依次得到三角形①,②,③,④…,则三角形⑩的直角顶点的坐标为______.三、综合提高题12.观察下列图形,它可以看作是什么“基本图形”通过怎样的旋转而得到的?13.如图:若∠AOD=∠BOC=60°,A、O、C三点在同一条线上,△AOB与△COD是能够重合的图形.求:(1)旋转中心;(2)旋转角度数;(3)图中经过旋转后能重合的三角形共有几对?若A、O、C三点不共线,结论还成立吗?为什么?(4)求当△BOC为等腰直角三角形时的旋转角度;(5)若∠A=15°,则求当A、C、B在同一条线上时的旋转角度.14.作图:(1)如图甲,以点O为中心,把点P顺时针旋转45°.(2)如图乙,以点O为中心,把线段AB逆时针旋转90°.(3)如图丙,以点O为中心,把△ABC顺时针旋转120°.(4)如图丁,以点B为中心,把△ABC旋转180°.15.如图,K是正方形ABCD内一点,以AK为一边作正方形AKLM,使L,M,D在AK的同旁,连接BK和DM,试用旋转的思想说明线段BK与DM的关系.16.如图,已知A、B是线段MN上的两点,MN=4,MA=1,MB>1.以A为中心顺时针旋转点M,以B为中心逆时针旋转点N,使M、N两点重合成一点C,构成△ABC,设AB=x.(1)求x的取值范围;(2)若△ABC为直角三角形,求x的值.17.如图在Rt△OAB中,∠OAB=90°,OA=AB=6.(1)请你画出将△OAB绕点O沿逆时针方向旋转90°,得到的△OA1B1;(2)线段OA1的长度是______,∠AOB1的度数是______;(3)连接AA1,求证:四边形OAA1B1是平行四边形.《图形的旋转》参考答案与试题解析一、选择题1.在图形旋转中,下列说法错误的是()A.图形上的每一点到旋转中心的距离相等B.图形上的每一点转动的角度相同C.图形上可能存在不动点D.图形上任意两点的连线与其对应两点的连线相等【解答】解:A、在图形旋转中,根据旋转的性质,图形上对应点到旋转中心的距离相等,故本选项错误;B、图形上的每一点转动的角度都等于旋转角,正确;C、以图形上一点为旋转中心,则这个点不动,正确;D、旋转前后两个图形全等,则图形上任意两点的连线与其对应两点的连线相等,正确.故选A.2.下面的四个图案中,既包含图形的旋转,又包含图形的轴对称的是()A.B. C.D.【解答】解:A、只包含图形的旋转,不符合题意;B、只是轴对称图形,不符合题意;C、只是轴对称图形,不符合题意;D、既包含图形的旋转,又包含图形的轴对称,符合题意.故选:D.3.如图所示的图案绕旋转中心旋转后能够与自身重合,那么它的旋转角可能是()A.60°B.90°C.72°D.120°【解答】解:该图形被平分成五部分,因而每部分被分成的圆心角是72°,并且圆具有旋转不变性,因而旋转72度的整数倍,就可以与自身重合.故选C.4.如图,摆放有五杂梅花,下列说法错误的是(以中心梅花为初始位置)()A.左上角的梅花只需沿对角线平移即可B.右上角的梅花需先沿对角线平移后,再顺时针旋转45°C.右下角的梅花需先沿对角线平移后,再顺时针旋转180D.左下角的梅花需先沿对角线平移后,再顺时针旋转90°【解答】解:由平移和旋转可得,D选项中左下角的梅花需先沿对角线平移后,再逆时针旋转90°,所以D选项错误.故选:B.5.△ABC绕着A点旋转后得到△AB′C′,若∠BAC′=130°,∠BAC=80°,则旋转角等于()A.50°B.210°C.50°或210°D.130°【解答】解:∵∠BAC′=130°,∠BAC=80°,∴如图1,∠CAC′=∠BAC′﹣∠BAC=50°,如图2,∠CAC′=∠BAC′+∠BAC=210°.∴旋转角等于50°或210°.故选C.二、填空题6.在图形的平移、旋转、轴对称变换中,其相同的性质是图形的形状、大小不变,只改变图形的位置.【解答】解:在图形的平移、旋转、轴对称变换中,其相同的性质是图形的形状、大小不变,只改变图形的位置.7.如图,△ABC和△ADE均是顶角为42°的等腰三角形,BC、DE分别是底边,图中的△ABD绕A旋转42°后得到的图形是△ACE ,它们之间的关系是全等,其中BD= CE .【解答】解:△ABD绕点A逆时针旋转42°得到△ACE,它们之间的关系是全等,其中BD=CE.8.如图,将△OAB绕点O按逆时针方面旋转至△0A′B′,使点B恰好落在边A′B′上.已知AB=4cm,BB′=1cm,则A′B长是 3 cm.【解答】解:根据旋转的性质,得:A′B′=AB=4cm.∴A′B=A′B′﹣BB′=4﹣1=3(cm).9.如图,在平面直角坐标系中,点A的坐标为(1,4),将线段OA绕点O顺时针旋转90°得到线段OA′,则点A′的坐标是(4,﹣1).【解答】解:由图知A点的坐标为(1,4),根据旋转中心O,旋转方向顺时针,旋转角度90°,画图,从而得A′点坐标为(4,﹣1).故答案为:(4,﹣1).10.如图,自正方形ABCD的顶点A引两条射线分别交BC、CD于E、F,∠EAF=45°,在保持∠EAF=45°的前提下,当点E、F分别在边BC、CD上移动时,BE+DF与EF 的关系是BE+DF=EF .【解答】解:如图,延长CD到M,使DM=BE,连接AM、EF;∵四边形ABCD为正方形,∴∠B=∠ADC=90°,AB=AD;在△ABE与△ADM中,,∴△ABE≌△ADM(SAS),∴∠BAE=∠DAM,AE=AM;∴∠BAE+DAF=∠DAM+∠DAF=∠MAF;∵∠EAF=45°,∴∠BAE+DAF=90°﹣45°=45°,∴∠EAF=∠MAF=45°;在△EAF与△MAF中,,∴△EAF≌△MAF(SAS),∴MF=EF,而MF=MD+DF=BE+DF,∴BE+DF=EF,故答案为BE+DF=EF.11.如图,在直角坐标系中,已知点A(﹣3,0),B(0,4),对△OAB连续作旋转变换,依次得到三角形①,②,③,④…,则三角形⑩的直角顶点的坐标为(36,0).【解答】解:由原图到图③,相当于向右平移了12个单位长度,象这样平移三次直角顶点是(36,0),再旋转一次到三角形⑩,直角顶点仍然是(36,0),则三角形⑩的直角顶点的坐标为(36,0).故答案为:(36,0).三、综合提高题12.观察下列图形,它可以看作是什么“基本图形”通过怎样的旋转而得到的?【解答】解:图形(1)是通过一条线段绕点O旋转360°而得到的;图形(2)可以看作是“一个Rt△ABC”绕线段AC旋转360°而得到的;图形(3)将矩形ABCD绕AD旋转一周而得到的.13.如图:若∠AOD=∠BOC=60°,A、O、C三点在同一条线上,△AOB与△COD是能够重合的图形.求:(1)旋转中心;(2)旋转角度数;(3)图中经过旋转后能重合的三角形共有几对?若A、O、C三点不共线,结论还成立吗?为什么?(4)求当△BOC为等腰直角三角形时的旋转角度;(5)若∠A=15°,则求当A、C、B在同一条线上时的旋转角度.【解答】解:(1)∵△AOB与△COD是能够重合的图形,∴旋转中心是点O;(2)根据题意得:旋转角是∠AOD或∠BOC,∴旋转角度数是60°,(3)经过旋转后能重合的三角形有△AOB与△DOC,△AOE与△DOF,△BOE与△COF 共三对,若A、O、C三点不共线,△AOE与△DOF,△BOE与△COF不一定重合,结论不一定成立,∵若A、O、C三点不共线,∠DOB≠60°,∴∠AOD=∠BOC=60°≠∠DOB,∴△BOE与△COF不一定重合,结论不一定成立;(4)∵△BOC为等腰直角三角形,∴∠BOC=∠AOD=90°,∴旋转角度为:90°,(5)∵180°﹣∠BOC=180°﹣60°=120°,∴旋转角度为120°.14.作图:(1)如图甲,以点O为中心,把点P顺时针旋转45°.(2)如图乙,以点O为中心,把线段AB逆时针旋转90°.(3)如图丙,以点O为中心,把△ABC顺时针旋转120°.(4)如图丁,以点B为中心,把△ABC旋转180°.【解答】解:(1)如图甲,点P′为所求;(2)如图乙,线段A′B′为所求;(3)如图丙,△A′B′C′为所求;(4)如图丁,△A′BC′为所求.15.如图,K是正方形ABCD内一点,以AK为一边作正方形AKLM,使L,M,D在AK的同旁,连接BK和DM,试用旋转的思想说明线段BK与DM的关系.【解答】解:BK与DM的关系是互相垂直且相等.∵四边形ABCD和四边形AKLM都是正方形,∴AB=AD,AK=AM,∠BAK=90°﹣∠DAK,∠DAM=90°﹣∠DAK,∴∠BAK=∠DAM,∴△ABK≌△ADM(SAS).把△ABK绕A逆时针旋转90°后与△ADM重合,∴BK=DM且BK⊥DM.16.如图,已知A、B是线段MN上的两点,MN=4,MA=1,MB>1.以A为中心顺时针旋转点M,以B为中心逆时针旋转点N,使M、N两点重合成一点C,构成△ABC,设AB=x.(1)求x的取值范围;(2)若△ABC为直角三角形,求x的值.【解答】解:(1)在△ABC中,∵AC=1,AB=x,BC=3﹣x.∴,解得1<x<2.(4分)(2)①若AC为斜边,则1=x2+(3﹣x)2,即x2﹣3x+4=0,无解.②若AB为斜边,则x2=(3﹣x)2+1,解得,满足1<x<2.③若BC为斜边,则(3﹣x)2=1+x2,解得,满足1<x<2.∴或.17.如图在Rt△OAB中,∠OAB=90°,OA=AB=6.(1)请你画出将△OAB绕点O沿逆时针方向旋转90°,得到的△OA1B1;(2)线段OA1的长度是 6 ,∠AOB1的度数是135°;(3)连接AA1,求证:四边形OAA1B1是平行四边形.【解答】(1)解:△OA1B1如图所示.(2)解:根据旋转的性质知,OA1=OA=6.∵将△OAB绕点O沿逆时针方向旋转90°,得到的△OA1B1 ,∴∠BOB1=90°.∵在Rt△OAB中,∠OAB=90°,OA=AB=6, ∴∠BOA=∠OBA=45°,∴∠AOB1=∠BOB1+∠BOA=90°+45°=135°,即∠AOB1的度数是135°.故答案是:6,135°;(3)证明:根据旋转的性质知,△OA1B1≌△OAB,则∠OA1B1=∠OAB=90°,A1B1=AB,∵将△OAB绕点O沿逆时针方向旋转90°,得到的△OA1B1 ,∴∠A1OA=90°,∴∠OA1B1=∠A1OA,∴A1B1∥OA.又∵OA=AB,∴A1B1=OA,∴四边形OAA1B1是平行四边形.。