江苏省盐城市2015年中考数学真题试题(无答案)

合集下载

2015盐城市

2015盐城市

2-21-212C.D.B.A.C.D.B.C.D.D.(第6题)2015江苏省盐城市中考数学试题一、选择题(每题3分,共24分)1.21的倒数为A .B .C .D . 2.下列四个图形中,是中心对称图形的为 A .B .C .D .3.下列运算正确的是A .333)(ab b a =⋅B .632a b a =⋅C .236a b a =÷ D .532)(a a = 4.在下列四个几何体中,主视图与俯视图都是圆的为 A .B .C .D .5.下列事件中,是必然事件的为 A .3天内会下雨B .打开电视,正在播放广告C .367人中至少有2人公历生日相同D .某妇产医院里,下一个出生的是女孩6.将一块等腰直角三角板与一把直尺如图放置,若︒=∠601,则2∠的度数为 A .︒85B .︒75C .︒60D .︒457.若一个等腰三角形的两边长分别是2和5,则它的周长为 A .12B .9C .12或9D .9或78.如图,在边长为2的正方形ABCD 中剪去一个边长为1的小正方形CEFG ,动点P 从点A 出发,沿B G F E D A →→→→→的路线绕多边形的边匀速运动到点B 时停止(不含点A 和点B ),则△ABP 的面积S 随着时间t 变化的函数图像大致为A .B .C .D .二、填空题(每题3分,共30分)9.若二次根式1-x 有意义,则x 的取值范围是.(第13题图)(第14题图)(第16题图)(第17题图)(第18题图)第18题图332121图③图②图①D 110.分解因式:=-a a 22.11.火星与地球的距离约为00000056千米,这个数据用科学记数法表示为. 12.一组数据866878,,,,,的众数是.13.如图,在△ABC 与△ADC 中,已知AB AD =,在不添加任何辅助线的前提下,要使△ABC ≌△ADC ,只需要再添加的一个条件可以是.14.如图,点D 、E 、F 分别是△ABC 各边的中点,连接DE 、EF 、DF ,若△ABC 的周长为10,则△DEF 的周长为.15.若422=-n m ,则代数式22410n m -+的值为.16.如图,在矩形ABCD 中,4=AB ,3=AD ,以顶点D 为圆心作半径为r 的圆,若要求另外三个顶点A 、B 、C 中至少有一个点在圆内,且至少有一个点在圆外,则r 的取值范围是.17.如图,在矩形ABCD 中,4=AB ,2=AD ,以点A 为圆心,AB 长为半径画圆弧交边DC 于点E ,则 的长度为.18.设△ABC 的面积为1,如图①将边BC 、AC 分别2等份,1BE 、1AD 相交于点O ,△AOB 的面积记为1S ;如图②将边BC 、AC 分别3等份,1BE 、1AD 相交于点O ,△AOB 的面积记为2S ;……, 依此类推,则n S 可表示为___________.(用含n 的代数式表示,其中n 为正整数)。

江苏省盐城市初级中学2015届九年级下学期第二次模拟考试数学试题及答案

江苏省盐城市初级中学2015届九年级下学期第二次模拟考试数学试题及答案

盐城市初级中学2014—2015学年度第二次模拟考试初三年级数学试题(考试时间:120分钟 卷面总分:150分)一、选择题(本大题共有8小题.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项前的字母代号填涂在答题卡相应位置上)1.下列四个数中,最小的数是 ( ▲ )A .2B . 2-C .0D . 12- 2.下列运算正确的是 ( ▲ )A5=- B . 21164-⎛⎫-= ⎪⎝⎭ C . 632x x x ÷= D . ()235x x = 3.下列几何体的主视图与众不同的是 ( ▲ )4.据介绍,今年连盐铁路盐城段将完成征地拆迁和工程总投资30亿元.将30亿用科学记数法表示应为 ( ▲ )A .3×109B .3×1010C . 30×108D . 30×1095.下列函数中,y 随x 的增大而减小的是 ( ▲ )A .13y x =; B .13y x =-; C .3y x=; D .3y x =- 6.盐城市亭湖区5月23日至5月29日这7天的日气温最高值统计图如图所示.从统计图看,该地区这7天日气温最高值的中位数是 ( ▲ )A .22B .23C .24D .257.在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中阴影部分构成中心对称图形,该小正方形的序号是 ( ▲ )A .①B .②C .③D .④8.甲、乙两辆摩托车分别从A 、B 两地出发相向而行,图中1l 、2l 分别表示甲、乙两辆摩托车与A 地的距离s (千米)与行驶时间t (小时)之间的函数关系,则下列说法:①A 、B 两地相距24千米; ②甲车比乙车行完全程多用了0.1小时;③甲车的速度比乙车慢8千米/小时;A B C D第7题④两车出发后,经过113小时两车相遇.其中正确的有 ( ▲ ) A .1个 B .2个 C .3个 D .4个二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请将答案直接写在答题卡相应位置上)9.25的平方根是 ▲ .10.在函数11+=x y 中,自变量x 的取值范围是 ▲ .11.抛掷一枚均匀的硬币,前20次都正面朝上,第21次正面朝上的概率为 ▲ .12.对角线互相垂直平分的四边形是 ▲ .13.若两个等边三角形的边长分别为a 与3a ,则它们的面积之比为 ▲ .14.现有人数相等的甲、乙、丙三个旅行团,每个团游客的平均年龄都是32岁,如果这三个团游客年龄的方差分别是2甲S =27,2乙S =19.6,2丙S =1.6.导游小王最喜欢带游客年龄相近的团队,则他应选的团队是 ▲15.如图,圆锥的底面半径OB 长为5cm ,母线AB 长为15cm ,则这个圆锥侧面展开图的圆心角α为 ▲ 度.16.已知正五边形的对称轴是过任意一个顶点与该顶点对边中点的直线.如图所示的正五边形中相邻两条对称轴所夹锐角α的度数为 ▲ .17.如图,在△ABC 中,已知AB=AC ,∠A=45°,BD ⊥AC 于点D .根据该图可以求出tan22.5°= ▲ .18.当-1≤x ≤2时,二次函数y=-(x -m )2+m 2+1有最大值4,则实数m 的值为 ▲ .三、解答题(本大题共有10小题.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(1)计算: 30sin 2)21(8|21|1++--- (2)化简: )1(2)1(2a a -++20.(1) 解方程:x 2-5x -6=0; (2)解不等式组:⎪⎩⎪⎨⎧->-+≥-).12(3121)1(2x x x x21.为了解某校九年级男生的体能情况,体育老师随机抽取部分男生进行引体向上测试,并对成绩进行了统计,绘制成图1和图2两幅尚不完整的统计图.第16题 α 0840.60.50.40.30.20.1第8题第15题 A B C D第17题(1)本次抽测的男生有________人,抽测成绩的众数是_________;(2)请你将图2中的统计图补充完整;(3)若规定引体向上5次以上(含5次)为体能达标,则该校1000名九年级男生中估计有多少人体能达标?22.耩(jiǎng )子是一种传统农用播种的工具,大小款式不一,图(1)是改良后有轮子的一种,图(2)是其示意图,现测得AC=40cm ,∠C=30°,∠BAC=45°.为了使耩子更牢固,AB 处常用粗钢筋制成,则制作此耩子时需要准备多长的粗钢筋?(结果保留根号)23.如图,在△ABC 中,∠A =∠B =30°,过点C 作CD ⊥AC ,交AB 于点D .(1)作⊙O ,使⊙O 经过A 、C 、D 三点(尺规作图,保留作图痕迹,不写作法);(2)判断直线 BC 与⊙O 的位置关系,并说明理由.24.张老师让同学们为班会活动设计一个抽奖方案,拟使中奖概率为60%.(1)小明的设计方案:在一个不透明的盒子中,放入黄球和白球共10个,这些球除颜色外都相同,搅匀后从中任意摸出1个球,摸到黄球则表示中奖,否则不中奖.如果小明的设计符合老师要求,A B C D 第23题 (图1) (图2)4次20%3次 7次 12% 5次 6次 图1抽测成绩/次图2则盒子中黄球应有_______个,白球应有_______个;(2)小兵的设计方案:在一个不透明的盒子中,放入4个黄球,和1个白球,这些球除颜色外都相同,搅匀后从中任意摸出2个球,摸到的2个球都是黄球则表示中奖,否则不中奖.该设计方案是否符合老师的要求?试说明理由.25.某饮料经营部每天的固定成本为200元,其销售的饮料每瓶进价为5元.销售单价与日平均销(元,则日平均销量为瓶;(2)若要使日均毛利润达到最大,销售单价应定为多少元?最大日均毛利润为多少元?(毛利润=售价-进价-固定成本)(3)若要使日均毛利润达到1400元,且每日销量尽可能大,那么销售单价应定为多少元?26.如图,直线AB分别交反比例函数y=图象于A、B两点,且PB⊥x轴于点C,PA⊥y轴于点D,AB分别与x轴,y轴相交于点F、E.已知点B的坐标为(1,3).(1)若点A到y轴的距离为2,说明:△PCD与△PBA相似;(2)若点A为第三象限内任一点,请判断AB与CD的位置关系并说明理由;(3)说明:AE=BF;27.我们定义:有一组对角相等而另一组对角不相等的凸四边形叫做“等对角四边形”.(1)已知:若四边形ABCD 是“等对角四边形”,∠A=70°,∠B=80°.求∠C 、∠D 的度数.(2)如图1,在Rt △ACB 中,∠C=90°,CD 为斜边AB 边上的中线,过点D 作DE ⊥CD 交AC 于点E ,请说明:四边形BCED 是“等对角四边形” .(3)如图2,在Rt △ACB 中,∠C=90°,AC=4,BC=3,CD 平分∠ACB ,点E 在线段AC 上,四边形BCED 为“等对角四边形“,求线段AE 的长.28. 已知:函数34342+-=x ax y 的图象与x 轴只有一个公共点. (1)求这个函数关系式; (2)如图所示,设二次..函数34342+-=x ax y 图象的顶点为A ,与y 轴的交点为B ,P 为图象上的一点,若以线段PA 为直径的圆与直线AB 相切于点A ,求P 点的坐标; (3)如图,直线3+=kx y 经过点D (3,4),且与x 轴交于点E .将抛物线34342+-=x ax y 沿x 轴作左右平移,记平移后的抛物线为C ,其顶点为M .在抛物线平移过程中,将△MED 沿直线ED 翻折得到△NED ,点N 能否落在抛物线C 上?如能,求出此时抛物线C 顶点M 的坐标;如不能,请说明理由.A B C D E图1 A B C D 图2 AB C D 备用图 备用图。

江苏省盐城市中考数学试卷word解析版

江苏省盐城市中考数学试卷word解析版

最大最全最精的教育资源网2015 年江苏省盐城市中考数学试卷分析(本试卷满分150 分,考试时间120 分钟)江苏泰州鸣午数学工作室编写一、选择题:选择题(本大题8 小题,每题 3 分,共 24 分)1. (2015年江苏盐城 3 分)1的倒数为【】2A. 2B. 1 1D. 2 2C.2【答案】 D.【考点】倒数 .【剖析】依据两个数乘积是 1 的数互为倒数的定义,所以求一个数的倒数即用 1 除以这个数.所以,1的倒数为 1 1 2 .应选D.2 22. (2015年江苏盐城 3 分)以下四个图形中,是中心对称图形的为【】A. B. C. D.【答案】 C.【考点】中心对称图形 .【剖析】依据中心对称图形的观点,中心对称图形是图形沿对称中心旋转180 度后与原图重合. 所以,所给图形中是中心对称图形的为. 应选 C.3. (2015年江苏盐城3分)以下运算正确的选项是【】A. a3 b3 (ab)3B. a2b3 a6C. a6 b3 a2D.(a2 ) 3 a5【答案】 A.【考点】同底幂乘法和除法;幂的乘方和积的乘方.【剖析】依据同底幂乘法和除法;幂的乘方和积的乘方逐个计算作出判断:A. 依据“积的乘方等于每一个因数乘方的积”的积的乘方法例得a3 b3(ab)3,故本选项正确;B. 根据“同底数幂相乘,底数不变,指数相加”的乘法法则得:a2 a3a2 3a5a6,故本选项错误;C.根据“ 同底数幂相除,底数不变,指数相减” 的除法法则得:a6b3a6 3a3a2a5a6,故本选项错误;D.根据“ 幂的乘方,底数不变,指数相乘” 的幂的乘方法则得(a2 )3a2 3a6a5,故本选项错误.应选 A.4. (2015年江苏盐城 3 分)在以下四个几何体中,主视图与俯视图都是圆的为【】A. B. C. D.【答案】 D.【考点】简单几何体的三视图.【剖析】主视图、左视图、俯视图是分别从物体正面、左面和上边看,所获得的图形.所以,圆柱的主视图与俯视图都是矩形;圆台的主视图与俯视图都是等腰梯形;圆锥的主视图与俯视图都是等腰三角形;球的主视图与俯视图都是圆.【根源: 21·世纪·教育·网】应选 D.5. (2015年江苏盐城 3 分)以下事件中,是必定事件的为【】A. 3 天内会下雨B. 翻开电视,正在播放广告C. 367 人中起码有 2 人阳历诞辰同样D. 某妇产医院里,下一个出生的婴儿是女孩【答案】 C.【考点】必定事件、随机事件和不行能事件.【剖析】依据必定事件、随机事件和不行能事件和意义作出判断:A .“3 天内会下雨” ,是随机事件;B .“翻开电视,正在播放广告”,是随机事件;C.“367 人中起码有 2 人阳历诞辰同样” ,是确立(必定)事件;D.“某妇产医院里,下一个出生的婴儿是女孩”,是随机事件。

2015盐城中考试卷

2015盐城中考试卷

盐城市二0一五年初中毕业与升学考试英语试卷注意事项:1. 本试卷包含第Ⅰ卷选择题(第1-45题) 、第Ⅱ卷非选择题(第46-80题及书面表达题) 两部分。

本次考试时间为100分钟,卷面总分为120分,考试形式为闭卷。

2. 本试卷共8页,在检查是否有漏印、重印或错印后再开始答题。

3. 所有试题必须作答在答题卡上规定的区域内,注意题号必须对应,否则不给分。

4. 答题前,务必将姓名,准考证号用0.5毫米黑色签字笔填写在试卷及答题卡上。

第Ⅰ卷(选择题,共60分)一、单项选择(共15小题,每小题1分,计15分)从A、B、C、D 四个选项中选出一个可以填入句中空白处的最佳答案。

1. TFBOYS' songs ____ sweet and many of us like listening to them.A. soundB. feelC. tasteD. look2. --Do you have any plans for this summer vacation?--I'm not sure. I ___ take a trip to Taiwan.A. mustB. needC. mayD. should3. Daniel, ___ play with the mobile phone while you're walking in the street.A. don'tB. doesn'tC. won'tD. can't4. This photo reminded the old man ___ the days when he was young.A. withB. forC. byD. of5. ___ great fun we had in Yandu Park last Sunday!A. HowB. WhatC. What aD. How a6. The librarian told me that I could ___ these magazines for three days.A. borrowB. buyC. keepD. return7. Don't go out ___ the rain stops. Otherwise, you'll get wet!A. afterB. sinceC. whenD. until8. --Wow, so many new buildings! But it used to be a poor village.--Yes, ___ has changed in our hometown.A. NothingB. NobodyC. EverythingD. Everybody9. Audrey Hepburn, one of the greatest actresses, was ___ to take on challenges in her life.A. enough braveB. brave enoughC. stupid enoughD. enough stupid10. With the development of modern industry, there will be ___ living space for wild animals.A. fewer and fewerB. less and lessC. more and moreD. bigger and bigger11. Helen encouraged me to speak English as much as possible because practice ___ perfect. A.becomes B. became C. will make D. makes12. Sherlock Holmes asked the suspect what he ___ when the murder took place.A. was doingB. has doneC. is doingD. would do13. --Can Mr. King spare some time for the charity show?--If he ___, he will try his best to make it.A. will be invitedB. is invitedC. invitesD. invited14. In the UK, a lady usually doesn't like to be asked ___.A. whether has she got marriedB. how old is sheC. where she comes fromD. how much she weighs15. --Jane, your new dress looks very nice you!--___. I like it very much.A. You are welcomeB. I don't think soC. Thanks a lotD. Don't say that二、完形填空(共15小题,每小题1分,计15分)阅读下面短文,掌握其大意,然后从各题所给的四个选项中选出一个最佳答案。

2015年江苏省盐城市中考数学试卷-答案

2015年江苏省盐城市中考数学试卷-答案

江苏省盐城市2015年中考数学试卷数学答案解析一、选择题1.【答案】D【解析】∵1212⨯=,∴12的倒数为2,故选D。

【考点】倒数的意义2.【答案】C【解析】A是轴对称图形,不是中心对称图形。

故错误;B是轴对称图形,不是中心对称图形。

故错误;C 是中心对称图形。

故正确;D是轴对称图形,不是中心对称图形。

故错误。

【考点】轴对称图形和中心对称图形的判断3.【答案】A【解析】A有原式=()3ab,正确;B有原式=5a,错误;C有原式=3a,错误;D有原式=6a,错误,故选A。

【考点】整式乘除的运算法则4.【答案】D【解析】圆柱的主视图、左视图都是矩形,俯视图是圆;圆台的主视图、左视图是等腰梯形,俯视图是圆环;圆锥主视图、左视图都是等腰三角形,俯视图是圆和圆中间一点;球的主视图、左视图、俯视图都是圆。

故选D。

【考点】几何体的三视图5.【答案】C【解析】3天内会下雨为随机事件,所以A选项错误;打开电视机,正在播放广告,所以B选项错误;367人中至少有2人公历生日相同是必然事件,所以C选项正确;某妇产医院里,下一个出生的婴儿是女孩是随机事件,所以D选项错误。

故选C。

【考点】随机事件和必然事件6.【答案】B【解析】如图:,∵160∠=︒,∴3160∠=∠=︒,∴4906030∠=︒︒=︒-,∵54∠=∠,∴530∠=︒,∴256304575∠=∠+∠=︒+︒=︒。

故选:B 。

【考点】平行四边形的性质7.【答案】A【解析】∵一个等腰三角形的两边长分别是2和5,∴当腰长为2,则2+2<5,此时不成立,当腰长为5时,则它的周长为:5+5+2=12。

故选:A 。

【考点】等腰三角形的性质,三角形的三边关系,三角形的周长8.【答案】B【解析】当点P 在AD 上时,ABP △的底AB 不变,高增大,所以ABP △的面积S 随着时间t 的增大而增大;当点P 在DE 上时,ABP △的底AB 不变,高不变,所以ABP △的面积S 不变;当点P 在EF 上时,ABP △的底AB 不变,高减小,所以ABP △的面积S 随着时间t 的减小;当点P 在FG 上时,ABP △的底AB 不变,高不变,所以ABP △的面积S 不变;当点P 在GB 上时,ABP △的底AB 不变,高减小,所以ABP △的面积S 随着时间t 的减小;故选:B 。

江苏盐城市中考数学试卷及答案解析

江苏盐城市中考数学试卷及答案解析

盐城市二○一一年高中阶段教育招生统一考试数 学 试 题注意事项:1.本试卷考试时间为120分钟,试卷满分150分,考试形式闭卷. 2.本试卷中所有试题必须作答在答题卡上规定的位置,否则不给分.3.答题前,务必将自己的姓名、准考证号用毫米黑色墨水签字笔填写在试卷及答题卡上. 一、选择题本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上 1.-2的绝对值是 A .-2 B .- 错误! C .2 D .错误!答案C; 考点绝对值;分析根据绝对值的定义,直接得出结果; 2.下列运算正确的是 A .x 2+ x 3= x 5B .x 4·x 2= x 6C .x 6÷x 2= x3D . x 23 = x 8答案B;考点同底幂的乘法; 分析42426x x x x +⋅==3.下面四个几何体中,俯视图为四边形的是答案D;考点几何体的三视图;分析根据几何体的三视图,直接得出结果;4.已知a -b =1,则代数式2a -2b -3的值是 A .-1 B .1 C .-5D .5答案A;考点代数式代换;分析()22323231a b a b --=--=-=-5.若⊙O 1、⊙O 2的半径分别为4和6,圆心距O 1O 2=8,则⊙O 1与⊙O 2的位置关系是 A .内切 B .相交 C .外切 D .外离 答案B; 考点圆心距; 分析126464<OO <-+∴ 两圆相交;6.对于反比例函数y =错误!,下列说法正确的是A .图象经过点1,-1B .图象位于第二、四象限A B C DC .图象是中心对称图形D .当x <0时,y 随x 的增大而增大 答案C;考点反比例函数;分析根据反比例函数性质,直接得出结果;7.某市6月上旬前5天的最高气温如下单位:℃:28,29,31,29,32.对这组数据,下列说法正确的是 A .平均数为30 B .众数为29C .中位数为31D .极差为5答案B;考点平均数、众数、中位数、极差; 分析282931293229.8,29,29,5++++=平均数=众数是中位数是极差是32-28=4;8.小亮从家步行到公交车站台,等公交车去学校. 图中的折线表示小亮的行程s km 与所花时间t min 之间的函数关系. 下列说法错误..的是 A .他离家8km 共用了30min B .他等公交车时间为6min C .他步行的速度是100m/min D .公交车的速度是350m/min 答案D; 考点二次函数;分析从图可知,他离家8km 共用了30min,他等公交车时间为16-10=6min,他步行的速度是1m 1000m10min 10mink ==100m/min,公交车的速度是()()81m 7000m 5003016min 14mink -==-m/min;二、填空题本大题共有10小题,每小题3分,共30分.不需写出解答过程,请将答案直接写在答题卡相应位置上 9.27的立方根为 ▲ . 答案3; 考点立方根;分析根据立方根的定义,直接得出结果;10.某服装原价为a 元,降价10%后的价格为 ▲ 元. 答案;考点用字母表示数;分析降价10%后的价格为a1-10%=;11.“任意打开一本200页的数学书,正好是第35页”,这是 ▲ 事件选填“随机” 或“必然”. 答案随机; 考点概率;分析根据概率的定义,直接得出结果;12.据报道,今年全国高考计划招生675万人.675万这个数用科学记数法可表示为 ▲ .答案12.×106; 考点科学记数法;分析根据用科学记数法表示数的方法,直接得出结果; 13.化简:错误! = ▲ .第8题图答案3x +;考点分式计算,平方差公式;分析()()2339333x x x x x x +--==+--; 14.如图,△ABC 的顶点都在正方形网格格点上,点A 的坐标为-1,4. 将△ABC 沿y 轴翻折到第一象限,则点C 的对应 点C ′的坐标是 ▲ . 答案3,1;考点对称,直角坐标系;分析根据图象知,点C 的坐标是-3,1,则点C 的对应点C ′的坐标是3,1; 15.将两个形状相同的三角板放置在一张矩形纸片上,按图示画线 得到四边形ABCD ,则四边形ABCD 的形状是 ▲ . 答案等腰梯形;考点矩形的性质,内错角,相似三角形的性质,等腰梯形的判定;分析根据矩形的性质,有AD BC DCB ⇒∠∥等于三角板较大锐角内错角相等,等 于ABC ∠相似三角形对应角相等,从而得证四边形ABCD 的形状是等腰梯形; 16.如图,在△ABC 中,AB =AC ,AD ⊥BC ,垂足为D ,E 是AC 的 中点.若DE =5,则AB 的长为 ▲ . 答案10;考点等腰梯形的性质,三角形中位线定理;分析∵AB =AC ,AD ⊥BC ∴D 是BC 的中点;又∵E 是AC 的中点.∴DE 是△ABC 的中位线,∴AB 的=2DE=10;17.如图,已知正方形ABCD 的边长为12cm,E 为CD 边上一点,DE =5cm . 以点A 为中心,将△ADE 按顺时针方向旋转得△ABF ,则点E 所经过的路长 为 ▲ cm . 答案错误!π;考点旋转变形,,扇形弧长;分析当△ADE 按顺时针方向旋转到△ABF 时,点E 所经过的路长是一个以点A 为圆心,AE 为半径,圆心角为900的;而222512513AE AD DE =+=+=,故点E 所经过的路长为90132133602ππ⋅⋅=; 18.将1、错误!、错误!、错误!按右侧方式排列.若规定m ,n 表示第m 排从左向右第n 个数,则5,4与15,7表示的两数之积是 ▲ . 答案2错误!;考点分类、归纳思想,根式计算;分析5,4从右侧可见为错误!;下面求15,7是几:首先看15,7是整个排列的 第几个数,从排列方式看第1排1个数,第2排2个数,……第m 排m 个数,所以前14 排一共的数目是1+2+……+14=1+14+2+13+……+7+8=7×15=105,因此15,7是第105+7=112个数;第二看第112个数是哪个数,因为112/4商余0,所以15,7=错误!;111122663263323第1排第2排第3排第4排第5排则5,4与15,7表示的两数之积是错误!×错误!=2错误!;三、解答题本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出文字说明、推理过程或演算步骤 19.本题满分8分1计算:错误!0-错误!-2+tan45°;答案解:原式=1-4+1=-2.考点零次幂,负指数幂,特殊角直角三角形值;分析根据零次幂、负指数幂定义和特殊角直角三角形值直接求解; 2解方程:错误! - 错误!= 2.答案解:去分母,得 x +3=2x -1 . 解之,得x =5. 经检验,x =5是原方程的解. 考点分式方程;分析根据分式方程的求解方法直接求解 ;20.本题满分8分解不等式组错误!并把解集在数轴上表示出来. 答案解:解不等式错误!<1,得x <1;解不等式21-x ≤5,得x ≥-错误!; ∴原不等式组的解集是- 错误!≤x <1. 解集在数轴上表示为 考点一元一次不等式组,数轴;分析21.本题满分8分小明有3支水笔,分别为红色、蓝色、黑色;有2块橡皮,分别为 白色、灰色.小明从中任意取出1支水笔和1块橡皮配套使用.试用树状图或表格列出所有 可能的结果,并求取出红色水笔和白色橡皮配套的概率.答案解:解法一:画树状图:P 红色水笔和白色橡皮配套= 错误!.P 红色水笔和白色橡皮配套= 错误!.考点概率,树状图或列表法;分析用树状图或列表法列举出所有情况,并找取出红色水笔和白色橡皮配套的情况数,求出概率.22.本题满分8分为迎接建党90周年,某校组织了以“党在我心中”为主题的电子 小报制作比赛,评分结果只有60,70,80,90,100五种.现从中随机抽取部分作品,对 其份数及成绩进行整理,制成如下两幅不完整的统计图. 根据以上信息,解答下列问题:1求本次抽取了多少份作品,并补全两幅统计图;作品成绩扇形统60分 %100分 10%90分30%80分%70分20%成绩/分2已知该校收到参赛作品共900份,请估计该校学生比赛成绩达到90分以上含90分的作品有多少份答案解:1∵24÷20%=120份,∴本次抽取了120份作品.补全两幅统计图2∵900×30%+10%=360份;∴估计该校学生比赛成绩达到90分以上含90分的作品有360份.考点统计图表分析;分析统计图表的分析;23.本题满分10分已知二次函数y = -错误!x 2-x +错误!.1在给定的直角坐标系中,画出这个函数的图象; 2根据图象,写出当y <0时,x 的取值范围; 3若将此图象沿x 轴向右平移3个单位,请写出平移后图象所对应的函数关系式.答案解:1画图如图;2当y <0时,x 的取值范围是x <-3或x >1; 3平移后图象所对应的函数关系式为y =-错误!x -22+2 考点二次函数,平移;分析1∵y = -错误!x 2-x +错误!=-错误!x +12+2;y=0,x=-2,1; ∴这个函数的图象顶点在-1,2,对称轴是x=-1,与x 轴的两个交点是-2,0,1,0;据此可画出这个函数的图象;2根据图象,y <0时图象在x 轴下方,此时对应的x 的取值范围是x <-3或x >1;3若将此图象沿x 轴向右平移3个单位,只要考虑图象顶点-1,2向右平移3个单位得到3,2,从而由y =-错误!x +12+2变为y =-错误!x -22+2;24.本题满分10分如图,放置在水平桌面上的台灯的灯臂AB 长为40cm,灯罩BC 长为30cm,底座厚度为2cm,灯臂与底座构成的∠BAD =60°. 使用发现,光线最佳时灯罩BC 与水平线所成的角为30°,此时灯罩顶端C 到桌面的高度CE 是多少cm 结果精确到,参考数据:错误!≈答案解:过点B 作BF ⊥CD 于F ,作BG ⊥AD 于G .在Rt △BCF 中,∠CBF =30°,∴CF =BC ·sin 30°=30×错误! =15. 在Rt △ABG 中,∠BAG =60°,∴BG =AB ·sin 60°= 40×错误!= 20错误!. ∴CE =CF +FD +DE =15+20错误!+2=17+20错误!≈≈cmcm. 答:此时灯罩顶端C 到桌面的高度CE 约是. 考点解直角三角形,特殊角直角三角形值,矩形性质;分析要求CE 就要考虑三角形,所以作辅助线:过点B 作BF ⊥CD 于F ,作BG ⊥AD 于G . 得到两个直角三角形和一个矩形;这样利用解直角三角形就易求出;xyO42624361260708090100012243648成绩/分份数70分20%80分35%90分30%100分 10%60分 5%11O yxFGD CBA30°60°E25.本题满分10分如图,在△ABC 中,∠C =90°,以AB 上一点O 为圆心,OA 长为半径的圆与BC 相切于点D ,分别交AC 、AB 于点E 、F .1若AC =6,AB =10,求⊙O 的半径;2连接OE 、ED 、DF 、EF .若四边形BDEF 是平行四边形,试判断四边形OFDE的形状,并说明理由.答案解:1连接OD . 设⊙O 的半径为r . ∵BC 切⊙O 于点D ,∴OD ⊥BC .∵∠C =90°,∴OD ∥AC,∴△OBD ∽△ABC .∴错误! = 错误!,即 错误! = 错误!. 解得r = 错误!, ∴⊙O 的半径为错误!.2四边形OFDE 是菱形.∵四边形BDEF 是平行四边形,∴∠DEF =∠B .∵∠DEF =错误!∠DOB ,∴∠B =错误!∠DOB .∵∠ODB =90°,∴∠DOB +∠B =90°,∴∠DOB =60°.∵DE ∥AB ,∴∠ODE =60°.∵OD =OE ,∴△ODE 是等边三角形.∴OD =DE .∵OD =OF ,∴DE =OF .∴四边形OFDE 是平行四边形.∵OE =OF ,∴平行四边形OFDE 是菱形.考点直线与圆相切的性质,相似三角形的判定和性质,平行四边形的性质,同弧所对的圆同角与圆心角的关系,直角三角形两锐角的关系,菱形的判定;分析1要求⊙O 的半径,就要把它放到三角形内,故作辅助线:连接OD;这样△OBD 和△ABC 易证相似,再用对应边的比就可求出半径;2要证四边形OFDE 是菱形,由于OE 和OF 都是半径,故只要证四边形OFDE 是平行四边形即可;要证这一点,由于四边形BDEF 是平行四边形,有DE ∥BFED ∥OF,故只要证DE=OF,这一点由同弧DF 所对的圆同角∠DEF 等于圆心角∠DOB 的一半,平行四边形对角相等∠DEF =∠B 和直角三角形两锐角互余∠DOB +∠B =90°容易得到;26.本题满分10分利民商店经销甲、乙两种商品. 现有如下信息:请根据以上信息,解答下列问题: 1甲、乙两种商品的进货单价各多少元 2该商店平均每天卖出甲商品500件和乙商品300件.经调查发现,甲、乙两种商品零售单价分别每降元,这两种商品每天可各多销售100件.为了使每天获取更大的利润,商店决定把甲、乙两种商品的零售单价都下降m 元. 在不考虑其他因素的条件下,当m 定为多少时,才能使商店每天销售甲、乙两种商品获取的利润最大每天的最大利润是多少答案1设甲商品的进货单价是x 元,乙商品的进货单价是y 元. 根据题意,得错误! 解得错误!答:甲商品的进货单价是2元,乙商品的进货单价是3元.2设商店每天销售甲、乙两种商品获取的利润为s 元,则s =1-m 500+100×错误!+2-m 300+100×错误!即 s =-2000m 2+2200m +1100 =-20002+1705. ∴当m =时,s 有最大值,最大值为1705.答:当m 定为时,才能使商店每天销售甲、乙两种商品获取的利润最大,每信息1:甲、乙两种商品的进货单价之和是5元; 信息2:甲商品零售单价比进货单价多1元, 乙商品零售单价比进货单价的2倍少1元.信息3:按零售单价购买甲商品3件和乙商品2件, 共付了19元. OBFDCE A天的最大利润是1705元.考点根据等量关系列方程组种函数关系式,二次函数的最大值;分析1根据信息1:甲、乙两种商品的进货单价之和是5元;易列第一个方程x+y=5 ; 根据信息2:甲商品零售单价比进货单价多1元,乙商品零售单价比进货单价的2倍少1元知道甲商品零售单价为x+1,乙商品零售单价为2y-1,根据信息3:按零售单价购买甲商品3件和乙商品2件,共付了19元.列第二个方程3x+1+22y-1=19;联立求解即可;2根据利润=销售收入-销售成本公式 甲种商品的销售收入为:3-m 500+100×错误!,销售成本为:2500+100×错误!,利润为1-m 500+100×错误!;乙种商品的销售收入为:5-m 300+100×错误!,销售成本为:3300+100×错误!,利润为2-m 300+100×错误!;从而列出函数式,化为s =-a m -b 2+c 的形式.求出m =b 时,s 有最大利润c;27.本题满分12分情境观察将矩形ABCD 纸片沿对角线AC 剪开,得到△ABC 和△A′C ′D ,如图1所示.将△A′C ′D 的顶点A′与点A 重合,并绕点A 按逆时针方向旋转,使点D 、A A′、B 在同一条直线上,如图2所示.观察图2可知:与BC 相等的ABC线段是 ▲ ,∠CAC ′= ▲ °.问题探究如图3,△中,AG ⊥BC 于点G ,以A 为直角顶点,分别以AB 、AC 为直角边,向△ABC 外作等腰Rt △ABE 和等腰Rt △ACF ,过点E 、F 作射线GA 的垂线,垂足分别为P 、Q . 试探究EP 与FQ 之间的数量关系,并证明你的结论.拓展延伸如图4,△ABC 中,AG ⊥BC 于点G ,分别以AB 、AC 为一边向△ABC 外作矩形ABME 和矩形ACNF ,射线GA 交EF 于点H .若AB =k AE ,AC =k AF ,试探究HE 与HF 之间的数量关系,并说明理由.答案解:情境观察AD 或A′D ,90问题探究结论:EP =FQ .证明:∵△ABE 是等腰三角形,∴AB =AE ,∠BAE=90°.∴∠BAG +∠EAP =90°.∵AG ⊥BC ,∴∠BAG +∠ABG =90°,∴∠ABG =∠EAP .∵EP ⊥AG ,∴∠AGB =∠EPA =90°,∴Rt △ABG ≌Rt △EAP . ∴AG =EP . 同理AG =FQ . ∴EP =FQ . 拓展延伸结论: HE =HF .理由:过点E 作EP ⊥GA ,FQ ⊥GA ,垂足分别为P 、Q. ∵四边形ABME 是矩形,∴∠BAE =90°,∴∠BAG +∠EAP =90°.AG ⊥BC ,∴∠BAG +∠ABG =90°, ∴∠ABG =∠EAP .图4MNG FEC B A H 图3AB CEFGPQQ P H ABCEFGNM∵∠AGB =∠EPA =90°,∴△ABG ∽△EAP ,∴错误! = 错误!. 同理△ACG ∽△FAQ ,∴错误! = 错误!.∵AB =k AE ,AC =k AF ,∴错误! = 错误! =k ,∴错误! =错误!. ∴EP =FQ .∵∠EHP =∠FHQ ,∴Rt △EPH ≌Rt △FQH . ∴HE =HF考点拼图,旋转,矩形性质,直角三角形两锐角关系,等量代换,全等三角形的判定和性质,相似三角形的判定和性质;分析情境观察:易见与BC 相等的线段是AD ,它们是矩形的对边; ∠C ′AC =1800-∠C ′AD -∠C ′AB =1800-900=900;问题探究:找一个可能与EP 和FQ 都相等的线段AG;考虑Rt △ABG ≌Rt △EAP ,这用ASA 易证,得出EP=AG;同样考虑Rt △ACG ≌Rt △FAQ ,得出FQ=AG ;从而得证;拓展延伸:与问题探究相仿,只不过将全等改为相似,证出FQ=AG;再证Rt △EPH ≌Rt △FQH ,从而得证;28.本题满分12分如图,已知一次函数y =-x +7与正比例函数y =错误!x 的图象交于点A , 且与x 轴交于点B .1求点A 和点B 的坐标;2过点A 作AC ⊥y 轴于点C ,过点B 作直线l ∥y 轴. 动点P 从点O 出发,以每秒1个单位长的速度,沿O —C —A 的路线向点A 运动;同时直线l 从点B 出发,以相同速度向左平移,在平移过程中,直线l 交x 轴于点R ,交线段BA 或线段AO 于点Q .当点P 到达点A 时,点P 和直线l 都停止运动.在运动过程中,设动点P 运动的时间为t 秒.①当t 为何值时,以A 、P 、R 为顶点的三角形的面积为8②是否存在以A 、P 、Q 为顶点的三角形是等腰三角形若存在,求t 的值;若不存在,请说明理由.答案1根据题意,得错误!,解得 错误!,∴A 3,4 .令y =-x +7=0,得x =7.∴B7,0. 2①当P 在OC 上运动时,0≤t <4. 由S △APR =S 梯形COBA -S △ACP -S △POR -S △ARB =8,得错误!3+7×4-错误!×3×4-t - 错误!t7-t - 错误!t ×4=8 整理,得t 2-8t +12=0, 解之得t 1=2,t 2=6舍 当P 在CA 上运动,4≤t <7.由S △APR = 错误!×7-t ×4=8,得t =3舍∴当t =2时,以A 、P 、R 为顶点的三角形的面积为8. ②当P 在OC 上运动时,0≤t <4. 此时直线l 交AB 于Q; ∴AP=错误!,AQ=错误!t ,PQ=7-t当AP =AQ 时, 4-t 2+32=24-t 2, 整理得,t 2-8t +7=0. ∴t =1, t =7舍 当AP=PQ 时,4-t 2+32=7-t 2,整理得,6t =24. ∴t =4舍去 当AQ=PQ 时,24-t 2=7-t 2整理得,t 2-2t -17=0 ∴t =1±3错误! 舍 当P 在CA 上运动时,4≤t <7. 此时直线l 交AO 于Q;过A 作AD ⊥OB 于D ,则AD =BD =4.lxy O BAC PR Ql xy OBAC PRlR PC ABOy x设直线l交AC于E,则QE⊥AC,AE=RD=t-4,AP=7-t.由cos∠OAC= 错误! = 错误!,得AQ =错误!t-4.当AP=AQ时,7-t = 错误!t-4,解得t =错误!.当AQ=PQ时,AE=PE,即AE= 错误!AP Array得t-4= 错误!7-t,解得t =5.当AP=PQ时,过P作PF⊥AQ于FAF=错误!AQ =错误!×错误!t-4.在Rt△APF中,由cos∠PAF=错误!=错误!,得AF=错误!AP即错误!×错误!t-4=错误!×7-t,解得t=错误!.∴综上所述,t=1或错误!或5或错误!时,△APQ是等腰三角形.考点一次函数,二元一次方程组,勾股定理,三角函数,一元二次方程,等腰三角形;分析1联立方程y=-x+7和y=错误!x即可求出点A的坐标,今y=-x+7=0即可得点B的坐标;2①只要把三角形的面积用t表示,求出即可;应注意分P在OC上运动和P在CA上运动两种情况了;②只要把有关线段用t表示,找出AP=AQ,AP=PQ,AQ=PQ的条件时t的值即可;应注意分别讨论P在OC上运动此时直线l与AB相交和P在CA上运动此时直线l与AO相交时AP=AQ,AP=PQ,AQ=PQ的条件;。

江苏盐城市中考数学试卷解析审批稿

江苏盐城市中考数学试卷解析审批稿

江苏盐城市中考数学试卷解析YKK standardization office【 YKK5AB- YKK08- YKK2C- YKK18】2015年江苏省盐城市中考数学试卷一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(3分)(2015?盐城)的倒数为()A.﹣2 B.﹣C.D.22.(3分)(2015?盐城)如图四个图形中,是中心对称图形的为()A.B.C.D.3.(3分)(2015?盐城)下列运算正确的是()A.a3?b3=(ab)3B.a2?a3=a6C.a6÷a3=a2D.(a2)3=a 54.(3分)(2015?盐城)在如图四个几何体中,主视图与俯视图都是圆的为()A.B.C.D.5.(3分)(2015?盐城)下列事件中,是必然事件的为()A.3天内会下雨B.打开电视机,正在播放广告C.367人中至少有2人公历生日相同D.某妇产医院里,下一个出生的婴儿是女孩6.(3分)(2015?盐城)将一块等腰直角三角板与一把直尺如图放置,若∠1=60°,则∠2的度数为()A.85°B.75°C.60°D.45°7.(3分)(2015?盐城)若一个等腰三角形的两边长分别是2和5,则它的周长为()A.12 B.9C.12或9 D.9或78.(3分)(2015?盐城)如图,在边长为2的正方形ABCD中剪去一个边长为1的小正方形CEFG,动点P从点A出发,沿A→D→E→F→G→B的路线绕多边形的边匀速运动到点B时停止(不含点A和点B),则△ABP的面积S随着时间t变化的函数图象大致是()A.B.C.D.二、填空题(本大题共有10小题,每小题3分,共30分.)9.(3分)(2015?昆明)若二次根式有意义,则x的取值范围是.10.(3分)(2015?盐城)因式分解:a2﹣2a=.11.(3分)(2015?盐城)火星与地球的距离约为56 000 000千米,这个数据用科学记数法表示为千米.12.(3分)(2015?盐城)一组数据8,7,8,6,6,8的众数是.13.(3分)(2015?盐城)如图,在△ABC与△ADC中,已知AD=AB,在不添加任何辅助线的前提下,要使△ABC≌△ADC,只需再添加的一个条件可以是.14.(3分)(2015?盐城)如图,点D、E、F分别是△ABC各边的中点,连接DE、EF、DF.若△ABC的周长为10,则△DEF的周长为.15.(3分)(2015?盐城)若2m﹣n2=4,则代数式10+4m﹣2n2的值为.16.(3分)(2015?盐城)如图,在矩形ABCD中,AB=4,AD=3,以顶点D为圆心作半径为r的圆,若要求另外三个顶点A、B、C中至少有一个点在圆内,且至少有一个点在圆外,则r的取值范围是.17.(3分)(2015?盐城)如图,在矩形ABCD中,AB=4,AD=2,以点A为圆心,AB长为半径画圆弧交边DC于点E,则的长度为.18.(3分)(2015?盐城)设△ABC的面积为1,如图①,将边BC、AC分别2等分,BE1、AD1相交于点O,△AOB的面积记为S1;如图②将边BC、AC分别3等分,BE1、AD1相交于点O,△AOB的面积记为S2;…,依此类推,则S n可表示为.(用含n的代数式表示,其中n为正整数)三、解答题(本大题共有10小题,共96分.解答时应写出文字说明、推理过程或演算步骤)19.(8分)(2015?盐城)(1)计算:|﹣1|﹣()0+2cos60°(2)解不等式:3(x﹣)<x+4.20.(8分)(2015?盐城)先化简,再求值:(1+)÷,其中a=4.21.(8分)(2015?盐城)2015年是中国人民抗日战争暨世界反法西斯战争胜利70周年,9月3日全国各地将举行有关纪念活动.为了解初中学生对二战历史的知晓情况,某初中课外兴趣小组在本校学生中开展了专题调查活动,随机抽取了部分学生进行问卷调查,根据学生的答题情况,将结果分为A、B、C、D四类,其中A类表示“非常了解”,B 类表示“比较了解”,C类表示“基本了解”;D类表示“不太了解”,调查的数据经整理后形成尚未完成的条形统计图(如图①)和扇形统计图(如图②):(1)在这次抽样调查中,一共抽查了名学生;(2)请把图①中的条形统计图补充完整;(3)图②的扇形统计图中D类部分所对应扇形的圆心角的度数为°;(4)如果这所学校共有初中学生1500名,请你估算该校初中学生中对二战历史“非常了解”和“比较了解”的学生共有多少名?22.(8分)(2015?盐城)有甲、乙两个不透明的布袋,甲袋中有两个完全相同的小球,分别标有数字1和﹣2;乙袋中有三个完全相同的小球,分别标有数字﹣1、0和2.小丽先从甲袋中随机取出一个小球,记录下小球上的数字为x;再从乙袋中随机取出一个小球,记录下小球上的数字为y,设点P的坐标为(x,y).(1)请用表格或树状图列出点P所有可能的坐标;(2)求点P在一次函数y=x+1图象上的概率.23.(10分)(2015?盐城)如图,在△ABC中,∠CAB=90°,∠CBA=50°,以AB为直径作⊙O交BC于点D,点E在边AC上,且满足ED=EA.(1)求∠DOA的度数;(2)求证:直线ED与⊙O相切.24.(10分)(2015?盐城)如图,在平面直角坐标系xOy中,已知正比例函数y=x与一次函数y=﹣x+7的图象交于点A.(1)求点A的坐标;(2)设x轴上有一点P(a,0),过点P作x轴的垂线(垂线位于点A的右侧),分别交y=x和y=﹣x+7的图象于点B、C,连接OC.若BC=OA,求△OBC的面积.25.(10分)(2015?盐城)如图所示,一幢楼房AB背后有一台阶CD,台阶每层高米,且AC=米,设太阳光线与水平地面的夹角为α,当α=60°时,测得楼房在地面上的影长AE=10米,现有一只小猫睡在台阶的MN这层上晒太阳.(取)(1)求楼房的高度约为多少米?(2)过了一会儿,当α=45°时,问小猫能否还晒到太阳?请说明理由.26.(10分)(2015?盐城)如图,把△EFP按图示方式放置在菱形ABCD中,使得顶点E、F、P分别在线段AB、AD、AC上,已知EP=FP=4,EF=4,∠BAD=60°,且AB>4.(1)求∠EPF的大小;(2)若AP=6,求AE+AF的值;(3)若△EFP的三个顶点E、F、P分别在线段AB、AD、AC上运动,请直接写出AP长的最大值和最小值.27.(12分)(2015?盐城)知识迁移我们知道,函数y=a(x﹣m)2+n(a≠0,m>0,n>0)的图象是由二次函数y=ax2的图象向右平移m个单位,再向上平移n个单位得到;类似地,函数y=+n(k≠0,m>0,n>0)的图象是由反比例函数y=的图象向右平移m个单位,再向上平移n个单位得到,其对称中心坐标为(m,n).理解应用函数y=+1的图象可由函数y=的图象向右平移个单位,再向上平移个单位得到,其对称中心坐标为.灵活应用如图,在平面直角坐标系xOy中,请根据所给的y=的图象画出函数y=﹣2的图象,并根据该图象指出,当x在什么范围内变化时,y≥﹣1?实际应用某老师对一位学生的学习情况进行跟踪研究,假设刚学完新知识时的记忆存留量为1,新知识学习后经过的时间为x,发现该生的记忆存留量随x变化的函数关系为y1=;若在x=t(t≥4)时进行第一次复习,发现他复习后的记忆存留量是复习前的2倍(复习的时间忽略不计),且复习后的记忆存留量随x变化的函数关系为y2=,如果记忆存留量为时是复习的“最佳时机点”,且他第一次复习是在“最佳时机点”进行的,那么当x为何值时,是他第二次复习的“最佳时机点”?28.(12分)(2015?盐城)如图,在平面直角坐标系xOy中,将抛物线y=x2的对称轴绕着点P(0,2)顺时针旋转45°后与该抛物线交于A、B两点,点Q是该抛物线上一点.(1)求直线AB的函数表达式;(2)如图①,若点Q在直线AB的下方,求点Q到直线AB的距离的最大值;(3)如图②,若点Q在y轴左侧,且点T(0,t)(t<2)是射线PO上一点,当以P、B、Q为顶点的三角形与△PA T相似时,求所有满足条件的t的值.2015年江苏省盐城市中考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(3分)(2015?盐城)的倒数为()A.﹣2 B.﹣C.D.2考点:倒数.分析:根据倒数的意义,乘积是1的两个数叫做互为倒数,据此解答.解答:解:∵,∴的倒数为2,故选:D.点评:本题主要考查倒数的意义,解决本题的关键是熟记乘积是1的两个数叫做互为倒数.2.(3分)(2015?盐城)如图四个图形中,是中心对称图形的为()A.B.C.D.考点:中心对称图形.分析:根据中心对称图形的概念求解.解答:解:A、是轴对称图形,不是中心对称图形.故错误;B、是轴对称图形,不是中心对称图形.故错误;C、是中心对称图形.故正确;D、是轴对称图形,不是中心对称图形.故错误.故选:C.点评:本题考查了中心对称图形,中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.(3分)(2015?盐城)下列运算正确的是()A.a3?b3=(ab)3B.a2?a3=a6C.a6÷a3=a2D.(a2)3=a5考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.专计算题.题:分析:A、原式利用积的乘方运算法则变形得到结果,即可做出判断;B、原式利用同底数幂的乘法法则计算得到结果,即可做出判断;C、原式利用同底数幂的除法法则计算得到结果,即可做出判断;D、原式利用幂的乘方运算法则计算得到结果,即可做出判断.解答:解:A、原式=(ab)3,正确;B、原式=a5,错误;C、原式=a3,错误;D、原式=a6,错误,故选A.点评:此题考查了同底数幂的乘法,除法,以及幂的乘方与积的乘方,熟练掌握运算法则是解本题的关键.4.(3分)(2015?盐城)在如图四个几何体中,主视图与俯视图都是圆的为()A.B.C.D.考点:简单组合体的三视图.分析:分别分析四个选项的主视图、左视图、俯视图,从而得出都是圆的几何体.解答:解:圆柱的主视图、左视图都是矩形、俯视图是圆;圆台的主视图、左视图是等腰梯形,俯视图是圆环;圆锥主视图、左视图都是等腰三角形,俯视图是圆和圆中间一点;球的主视图、左视图、俯视图都是圆.故选D点评:本题考查了三视图,关键是根据学生的思考能力和对几何体三种视图的空间想象能力的培养.5.(3分)(2015?盐城)下列事件中,是必然事件的为()A.3天内会下雨B.打开电视机,正在播放广告C.367人中至少有2人公历生日相同D.某妇产医院里,下一个出生的婴儿是女孩考点:随机事件.分析:根据随机事件和必然事件的定义分别进行判断.解答:解:A、3天内会下雨为随机事件,所以A选项错误;B、打开电视机,正在播放广告,所以B选项错误;C、367人中至少有2人公历生日相同是必然事件,所以C选项正确;D、某妇产医院里,下一个出生的婴儿是女孩是随机事件,所以D选项错误.故选C.点评:本题考查了随机事件:在一定条件下,可能发生也可能不发生的事件,称为随机事件.事件分为确定事件和不确定事件(随机事件),确定事件又分为必然事件和不可能事件,6.(3分)(2015?盐城)将一块等腰直角三角板与一把直尺如图放置,若∠1=60°,则∠2的度数为()A.85°B.75°C.60°D.45°考点:平行线的性质.分析:首先根据∠1=60°,判断出∠3=∠1=60°,进而求出∠4的度数;然后对顶角相等,求出∠5的度数,再根据∠2=∠5+∠6,求出∠2的度数为多少即可.解答:解:如图1,,∵∠1=60°,∴∠3=∠1=60°,∴∠4=90°﹣60°=30°,∵∠5=∠4,∴∠5=30°,∴∠2=∠5+∠6=30°+45°=75°.故选:B.点评:此题主要考查了平行线的性质,要熟练掌握,解答此题的关键是要明确:①定理1:两条平行线被第三条直线所截,同位角相等.简单说成:两直线平行,同位角相等.②定理2:两条平行线被地三条直线所截,同旁内角互补.简单说成:两直线平行,同旁内角互补.③定理3:两条平行线被第三条直线所截,内错角相等.简单说成:两直线平行,内错角相等.7.(3分)(2015?盐城)若一个等腰三角形的两边长分别是2和5,则它的周长为()A.12 B.9C.12或9 D.9或7考点:等腰三角形的性质;三角形三边关系.分析:利用等腰三角形的性质以及三角形三边关系得出其周长即可.解答:解:∵一个等腰三角形的两边长分别是2和5,∴当腰长为2,则2+2<5,此时不成立,当腰长为5时,则它的周长为:5+5+2=12.故选:A.点此题主要考查了等腰三角形的性质以及三角形三边关系,正确分类讨论得出是解题评:关键.8.(3分)(2015?盐城)如图,在边长为2的正方形ABCD 中剪去一个边长为1的小正方形CEFG ,动点P从点A出发,沿A→D→E→F→G→B的路线绕多边形的边匀速运动到点B时停止(不含点A和点B),则△ABP的面积S随着时间t变化的函数图象大致是()A.B.C.D.考点:动点问题的函数图象.分析:根据点P在AD、DE、EF、FG、GB上时,△ABP的面积S与时间t的关系确定函数图象.解答:解:当点P在AD上时,△ABP的底AB不变,高增大,所以△ABP的面积S随着时间t的增大而增大;当点P在DE上时,△ABP的底AB不变,高不变,所以△ABP的面积S不变;当点P在EF上时,△ABP的底AB不变,高减小,所以△ABP的面积S随着时间t 的减小;当点P在FG上时,△ABP的底AB 不变,高不变,所以△ABP的面积S不变;当点P在GB上时,△ABP的底AB不变,高减小,所以△ABP的面积S随着时间t 的减小;故选:B.点评:本题考查的是动点问题的函数图象,正确分析点P在不同的线段上△ABP的面积S 与时间t的关系是解题的关键.二、填空题(本大题共有10小题,每小题3分,共30分.)9.(3分)(2015?昆明)若二次根式有意义,则x的取值范围是x≥1.考点:二次根式有意义的条件.分析:根据二次根式的性质可知,被开方数大于等于0,列出不等式即可求出x的取值范围.解答:解:根据二次根式有意义的条件,x﹣1≥0,∴x≥1.故答案为:x≥1.点评:此题考查了二次根式有意义的条件,只要保证被开方数为非负数即可.10.(3分)(2015?盐城)因式分解:a2﹣2a=a(a﹣2).考点:因式分解-提公因式法.专题:因式分解.分析:先确定公因式是a,然后提取公因式即可.解答:解:a2﹣2a=a(a﹣2).故答案为:a(a﹣2).点评:本题考查因式分解,较为简单,找准公因式即可.11.(3分)(2015?盐城)火星与地球的距离约为56 000 000千米,这个数据用科学记数法表示为×107千米.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将56 000 000用科学记数法表示为×107.故答案为:×107.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(3分)(2015?盐城)一组数据8,7,8,6,6,8的众数是8.考点:众数.分析:根据众数的定义求解即可.解答:解:数据8出现了3次,出现次数最多,所以此数据的众数为8.故答案为8.点评:本题考查了众数:在一组数据中出现次数最多的数叫这组数据的众数.13.(3分)(2015?盐城)如图,在△ABC与△ADC中,已知AD=AB,在不添加任何辅助线的前提下,要使△ABC≌△ADC,只需再添加的一个条件可以是DC=BC或∠DAC=∠BAC.考点:全等三角形的判定.专题:开放型.分析:添加DC=BC,利用SSS即可得到两三角形全等;添加∠DAC=∠BAC,利用SAS即可得到两三角形全等.解答:解:添加条件为DC=BC,在△ABC和△ADC中,,∴△ABC≌△ADC(SSS);若添加条件为∠DAC=∠BAC,在△ABC和△ADC中,,∴△ABC≌△ADC(SAS).故答案为:DC=BC或∠DAC=∠BAC点评:此题考查了全等三角形的判定,熟练掌握全等三角形的判定方法是解本题的关键.14.(3分)(2015?盐城)如图,点D、E、F分别是△ABC各边的中点,连接DE、EF、DF.若△ABC的周长为10,则△DEF的周长为5.考点:三角形中位线定理.分析:由于D、E分别是AB、BC的中点,则DE是△ABC的中位线,那么DE=AC,同理有EF=AB,DF=BC,于是易求△DEF的周长.解答:解:如上图所示,∵D、E分别是AB、BC的中点,∴DE是△ABC的中位线,∴DE=AC,同理有EF=AB,DF=BC,∴△DEF的周长=(AC+BC+AB)=×10=5.故答案为5.点评:本题考查了三角形中位线定理.解题的关键是根据中位线定理得出边之间的数量关系.15.(3分)(2015?盐城)若2m﹣n2=4,则代数式10+4m﹣2n2的值为18.考点:代数式求值.分析:观察发现4m﹣2n2是2m﹣n2的2倍,进而可得4m﹣2n2=8,然后再求代数式10+4m ﹣2n2的值.解答:解:∵2m﹣n2=4,∴4m﹣2n2=8,∴10+4m﹣2n2=18,故答案为:18.点评:此题主要考查了求代数式的值,关键是找出代数式之间的关系.16.(3分)(2015?盐城)如图,在矩形ABCD中,AB=4,AD=3,以顶点D为圆心作半径为r的圆,若要求另外三个顶点A、B、C中至少有一个点在圆内,且至少有一个点在圆外,则r的取值范围是3<r<5.考点:点与圆的位置关系.分析:要确定点与圆的位置关系,主要根据点与圆心的距离与半径的大小关系来进行判断.当d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内.解答:解:在直角△ABD中,CD=AB=4,AD=3,则BD==5.由图可知3<r<5.故答案为:3<r<5.点评:此题主要考查了点与圆的位置关系,解决本题要注意点与圆的位置关系,要熟悉勾股定理,及点与圆的位置关系.17.(3分)(2015?盐城)如图,在矩形ABCD中,AB=4,AD=2,以点A为圆心,AB 长为半径画圆弧交边DC于点E,则的长度为.考点:弧长的计算;含30度角的直角三角形.分析:连接AE,根据直角三角形的性质求出∠DEA的度数,根据平行线的性质求出∠EAB的度数,根据弧长公式求出的长度.解答:解:连接AE,在Rt三角形ADE中,AE=4,AD=2,∴∠DEA=30°,∵AB∥CD,∴∠EAB=∠DEA=30°,∴的长度为:=,故答案为:.点评:本题考查的是弧长的计算和直角三角形的性质,掌握在直角三角形中,30°所对的直角边是斜边的一半和弧长公式是解题的关键.18.(3分)(2015?盐城)设△ABC的面积为1,如图①,将边BC、AC分别2等分,BE1、AD1相交于点O,△AOB的面积记为S1;如图②将边BC、AC分别3等分,BE1、AD1相交于点O,△AOB的面积记为S2;…,依此类推,则S n可表示为.(用含n的代数式表示,其中n为正整数)考点:相似三角形的判定与性质.专题:规律型.分析:连接D1E1,设AD1、BE1交于点M,先求出S△ABE1=,再根据==得出S△ABM:S△ABE1=n+1:2n+1,最后根据S△ABM:=n+1:2n+1,即可求出S△ABM.解答:解:如图,连接D1E1,设AD1、BE1交于点M,∵AE1:AC=1:n+1,∴S△ABE1:S△ABC=1:n+1,∴S△ABE1=,∵==,∴=,∴S△ABM:S△ABE1=n+1:2n+1,∴S△ABM:=n+1:2n+1,∴S△ABM=.故答案为:.点评:此题考查了相似三角形的判定与性质,用到的知识点是相似三角形的判定与性质、平行线分线段成比例定理、三角形的面积,关键是根据题意作出辅助线,得出相似三角形.三、解答题(本大题共有10小题,共96分.解答时应写出文字说明、推理过程或演算步骤)19.(8分)(2015?盐城)(1)计算:|﹣1|﹣()0+2cos60°(2)解不等式:3(x﹣)<x+4.考点:实数的运算;零指数幂;解一元一次不等式;特殊角的三角函数值.分析:(1)利用绝对值的求法、0指数幂及锐角三角函数的知识代入求解即可;(2)去括号、移项、合并同类项、系数化为1后即可求得不等式的解集.解答:解:(1)原式=1﹣1+2×=1;(2)原不等式可化为3x﹣2<x+4,∴3x﹣x<4+2,∴2x<6,∴x<3.点评:本题考查了实数的运算、零指数幂、解一元一次不等式的知识,解题的关键是了解不等式的性质等,难度不大.20.(8分)(2015?盐城)先化简,再求值:(1+)÷,其中a=4.考点:分式的化简求值.分析:先根据分式混合运算的法则把原式进行化简,再求出x的值代入进行计算即可.解答:解:原式=?=?=,当a=4时,原式==4.点评:本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.21.(8分)(2015?盐城)2015年是中国人民抗日战争暨世界反法西斯战争胜利70周年,9月3日全国各地将举行有关纪念活动.为了解初中学生对二战历史的知晓情况,某初中课外兴趣小组在本校学生中开展了专题调查活动,随机抽取了部分学生进行问卷调查,根据学生的答题情况,将结果分为A、B、C、D四类,其中A类表示“非常了解”,B 类表示“比较了解”,C类表示“基本了解”;D类表示“不太了解”,调查的数据经整理后形成尚未完成的条形统计图(如图①)和扇形统计图(如图②):(1)在这次抽样调查中,一共抽查了200名学生;(2)请把图①中的条形统计图补充完整;(3)图②的扇形统计图中D类部分所对应扇形的圆心角的度数为36°;(4)如果这所学校共有初中学生1500名,请你估算该校初中学生中对二战历史“非常了解”和“比较了解”的学生共有多少名?考点:条形统计图;用样本估计总体;扇形统计图.分析:(1)由图①知A类人数30,由图②知A类人数占15%,即可求出样本容量;(2)由(1)可知抽查的人数,根据图②知C类人数占30%,求出C类人数,即可将条形统计图补充完整;(3)求出D类的百分数,即可求出圆心角的度数;(4)求出B类所占的百分数,可知A、B类共占的百分数,用样本估计总体的思想计算即可.解答:解:(1)30÷15%=200,故答案为:200;(2)200×30%=60,如图所示,(3)20÷200==10%,360°×10%=36°,故答案为:36;(4)B类所占的百分数为:90÷200=45%,该校初中学生中对二战历史“非常了解”和“比较了解”的学生共占15%+45%=60%;故这所学校共有初中学生1500名,该校初中学生中对二战历史“非常了解”和“比较了解”的学生共有:1500×60%=900(名).点评:此题考查了扇形统计图和频数(率)分布表,关键是正确从扇形统计图和表中得到所用的信息.22.(8分)(2015?盐城)有甲、乙两个不透明的布袋,甲袋中有两个完全相同的小球,分别标有数字1和﹣2;乙袋中有三个完全相同的小球,分别标有数字﹣1、0和2.小丽先从甲袋中随机取出一个小球,记录下小球上的数字为x;再从乙袋中随机取出一个小球,记录下小球上的数字为y,设点P的坐标为(x,y).(1)请用表格或树状图列出点P所有可能的坐标;(2)求点P在一次函数y=x+1图象上的概率.考点:列表法与树状图法;一次函数图象上点的坐标特征.分析:(1)画出树状图,根据图形求出点P所有可能的坐标即可;(2)只有(1,2),(﹣2,﹣1)这两点在一次函数y=x+1图象上,于是得到P(点P在一次函数y=x+1的图象上)==.解答:解:(1)画树状图如图所示:∴点P所有可能的坐标为:(1,﹣1),(1,0),(1,2),(﹣2,﹣1),(﹣2,0),(﹣2,2);(2)∵只有(1,2),(﹣2,﹣1)这两点在一次函数y=x+1图象上,∴P(点P在一次函数y=x+1的图象上)==.点评:本题考查了列表法和树状图法求概率,一次函数图象上点的坐标特征,正确的画出树状图是解题的关键.23.(10分)(2015?盐城)如图,在△ABC中,∠CAB=90°,∠CBA=50°,以AB为直径作⊙O交BC于点D,点E在边AC上,且满足ED=EA.(1)求∠DOA的度数;(2)求证:直线ED与⊙O相切.考点:切线的判定.分析:(1)根据圆周角定理即可得到结论;(2)连接OE,通过△EAO≌△EDO,即可得到∠EDO=90°,于是得到结论.解答:(1)解;∵∠DBA=50°,∴∠DOA=2∠DBA=100°,(2)证明:连接OE.在△EAO与△EDO中,,∴△EAO≌△EDO,∴∠EDO=∠EAO,∵∠BAC=90°,∴∠EDO=90°,∴DE与⊙O相切.点评:本题考查了切线的判定,全等三角形的判定和性质,连接OE构造全等三角形是解题的关键.24.(10分)(2015?盐城)如图,在平面直角坐标系xOy中,已知正比例函数y=x与一次函数y=﹣x+7的图象交于点A.(1)求点A的坐标;(2)设x轴上有一点P(a,0),过点P作x轴的垂线(垂线位于点A的右侧),分别交y=x和y=﹣x+7的图象于点B、C,连接OC.若BC=OA,求△OBC的面积.考点:两条直线相交或平行问题;勾股定理.分析:(1)联立两一次函数的解析式求出x、y的值即可得出A点坐标;(2)过点A作x轴的垂线,垂足为D,在Rt△OAD中根据勾股定理求出OA的长,故可得出BC的长,根据P(a,0)可用a表示出B、C的坐标,故可得出a的值,由三角形的面积公式即可得出结论.解答:解:(1)∵由题意得,,解得,∴A(4,3);(2)过点A作x轴的垂线,垂足为D,在Rt△OAD中,由勾股定理得,OA===5.∴BC=OA=×5=7.∵P(a,0),∴B(a,a),C(a,﹣a+7),∴BC=a﹣(﹣a+7)=a﹣7,∴a﹣7=7,解得a=8,∴S△OBC=BC?OP=×7×8=28.点评:本题考查的是两条直线相交或平行问题,根据题意作出辅助线.构造出直角三角形是解答此题的关键.25.(10分)(2015?盐城)如图所示,一幢楼房AB背后有一台阶CD,台阶每层高米,且AC=米,设太阳光线与水平地面的夹角为α,当α=60°时,测得楼房在地面上的影长AE=10米,现有一只小猫睡在台阶的MN这层上晒太阳.(取)(1)求楼房的高度约为多少米?(2)过了一会儿,当α=45°时,问小猫能否还晒到太阳?请说明理由.考点:解直角三角形的应用.分析:(1)在Rt△ABE中,由tan60°==,即可求出AB=10?tan60°=米;(2)假设没有台阶,当α=45°时,从点B射下的光线与地面AD的交点为点F,与MC的交点为点H.由∠BFA=45°,可得AF=AB=米,那么CF=AF﹣AC=米,CH=CF=米,所以大楼的影子落在台阶MC这个侧面上,故小猫仍可以晒到太阳.解答:解:(1)当α=60°时,在Rt△ABE中,∵tan60°==,∴AB=10?tan60°=10≈10×=米.即楼房的高度约为米;(2)当α=45°时,小猫仍可以晒到太阳.理由如下:假设没有台阶,当α=45°时,从点B射下的光线与地面AD的交点为点F,与MC的交点为点H.∵∠BFA=45°,∴tan45°==1,此时的影长AF=AB=米,∴CF=AF﹣AC=﹣=米,∴CH=CF=米,∴大楼的影子落在台阶MC这个侧面上,∴小猫仍可以晒到太阳.点评:本题考查了解直角三角形的应用,锐角三角函数定义,理解题意,将实际问题转化为数学问题是解题的关键.26.(10分)(2015?盐城)如图,把△EFP按图示方式放置在菱形ABCD中,使得顶点E、F、P分别在线段AB、AD、AC上,已知EP=FP=4,EF=4,∠BAD=60°,且AB>4.(1)求∠EPF的大小;(2)若AP=6,求AE+AF的值;(3)若△EFP的三个顶点E、F、P分别在线段AB、AD、AC上运动,请直接写出AP长的最大值和最小值.考点:四边形综合题.分析:(1)过点P作PG⊥EF于G,解直角三角形即可得到结论;(2)如图2,过点P作PM⊥AB于M,PN⊥AD于N,证明△ABC≌△ADC,R t△PME≌R t△PNF,问题即可得证;(3)如图3,当EF⊥AC,点P在EF的右侧时,AP有最大值,当EF⊥AC,点P 在EF的左侧时,AP有最小值解直角三角形即可解决问题.解答:解:(1)如图1,过点P作PG⊥EF于G,∵PE=PF,∴FG=EG=EF=,∠FPG=,在△FPG中,sin∠FPG===,∴∠FPG=60°,∴∠EPF=2∠FPG=120°;(2)如图2,过点P作PM⊥AB于M,PN⊥AD于N,∵四边形ABCD是菱形,∴AD=AB,DC=BC,在△ABC与△ADC中,,∴△ABC≌△ADC,∴∠DAC=∠BAC,∴PM=PN,在R t△PME于R t△PNF中,,∴R t△PME≌R t△PNF,∴FN=EM,在R t△PMA中,∠PMA=90°,∠PAM=∠DAB=30°,∴AM=AP?cos30°=3,同理AN=3,∴AE+AF=(AM﹣EM)+(AN+NF)=6;(3)如图3,当EF⊥AC,点P在EF的右侧时,AP有最大值,当EF⊥AC,点P在EF的左侧时,AP有最小值,设AC与EF交于点O,∵PE=PF,∴OF=EF=2,∵∠FPA=60°,∴OP=2,∵∠BAD=60°,∴∠FAO=30°,∴AO=6,∴AP=AO+PO=8,同理AP′=AO﹣OP=4,∴AP的最大值是8,最小值是4.点评:本题考查了菱形的性质,解直角三角形,全等三角形的判定和性质,最值问题,等腰三角形的性质,作辅助线构造直角三角形是解题的关键.27.(12分)(2015?盐城)知识迁移我们知道,函数y=a(x﹣m)2+n(a≠0,m>0,n>0)的图象是由二次函数y=ax2的图象向右平移m个单位,再向上平移n个单位得到;类似地,函数y=+n(k≠0,m>0,n>0)的图象是由反比例函数y=的图象向右平移m个单位,再向上平移n个单位得到,其对称中心坐标为(m,n).理解应用函数y=+1的图象可由函数y=的图象向右平移1个单位,再向上平移1个单位得到,其对称中心坐标为(1,1).灵活应用如图,在平面直角坐标系xOy中,请根据所给的y=的图象画出函数y=﹣2的图象,并根据该图象指出,当x在什么范围内变化时,y≥﹣1?实际应用某老师对一位学生的学习情况进行跟踪研究,假设刚学完新知识时的记忆存留量为1,新知识学习后经过的时间为x,发现该生的记忆存留量随x变化的函数关系为y1=;若在。

江苏省盐城市初级中学2015届九年级上期中考试数学试题

江苏省盐城市初级中学2015届九年级上期中考试数学试题

(考试时间:120分钟卷面总分:150分)一、选择题:1.二次函数y =2(x ﹣1)2+3的图象的顶点坐标是 ( ) A .(1,3) B .(﹣1,3)C .(1,﹣3)D .(﹣1,﹣3)2.若⊙O 的半径为5cm ,点A 到圆心O 的距离为4cm ,那么点A 与⊙O 的位置关系是 ( )A.点A 在圆外B.点A 在圆上C.点A 在圆内D.不能确定3.如图,AB 为⊙O 的直径,点C 在⊙O 上,∠A =40°,则∠B 的度数为 ( ) A .20° B. 40° C. 50° D. 60°4.在二次函数y =-x 2+2x +1的图象中,若y 随x 的增大而增大,则x 的取值范围是 ( ) A. x<1 B. x>1 C. x<-1 D. x >-15.将抛物线23y x =向左平移2个单位,再向下平移1个单位,所得抛物线为 ( ) A.()2321y x =-- B.()2321y x =+-C.()2321y x =-+ D.1)2(32++=x y6. 下列语句中,正确的是 ( ) A.长度相等的弧是等弧. B.同一平面上的三点确定一个圆.C.三角形的内心是三角形三边垂直平分线的交点.D.三角形的外心到三角形三个顶点的距离相等.7. 如图,AB 是⊙O 的直径,弧BC=弧CD=弧DE ,∠COD=34°,则∠AEO 的度数是 ( ) A .51° B. 56° C. 68° D. 78°8. 设a 、b 是任意两个实数,且a ﹤b .我们规定:满足不等式a ≤x ≤b 的实数x 的所有取值的全体叫做闭区间,表示为[a ,b ].对于一个函数,如果它的自变量x 与函数值y 满足:当a ≤x ≤b 时,有a ≤y ≤b ,我们就称此函数是闭区间[a ,b ]上的“闭函数”.若二次函数x x y 2212-=是区间[m ,n ]上的“闭函数”,则实数m 、n 值分别为 ( )A.51,51+=-=n mB.2,1=-=n m 或51,51+=-=n mC.6,2=-=n mD.6,2=-=n m 或51,51+=-=n m二、填空题:9.当x = 时,二次函数x x y 22-=有最小值.10.已知⊙O 的半径为3cm ,圆心O 到直线l 的距离是4cm ,则直线l 与⊙O 的位置关系是_____________.11.已知三角形的三边分别为3cm 、4cm 、5cm ,则这个三角形内切圆的半径是 . 12.如果二次函数y=(2k-1)x 2-3x+1的图象开口向上,那么常数k 的取值范围是 . 13.如果关于x 的二次函数y=ax 2-2x+a2的图象经过点(1,-2),则a 的值为 . 14.若抛物线m x x y --=22的顶点在x 轴上,则m 的值为 .15.将抛物线2)1(22--=x y 绕原点旋转180°,所得抛物线的解析式是 . 16.已知点A (x1,y1),B (x2,y2)在二次函数y=x 2-6x+4的图象上,若x 1<x 2<3,则y 1 y 2(填“>”、“=”或“<”).17.在△ABC 中,AB =AC =5,BC =6,点D 为BC 边上一动点(不与点B 重合),以D 为圆心,DC 的长为半径作⊙D . 当⊙D 与AB 边相切时,半径DC 的长为_________.18.若把边长为1的正方形纸片OABC 放在直线l 上,OA 边与直线l 重合,然后将正方形纸片绕着顶点A 按顺时针方向旋转90°,此时点O 运动到了点O 1处(即点B 处),点C 运动到了点C 1处,点B 运动到了点B 1处;接着,又将正方形纸片AO 1C 1B 1绕顶点B 1按顺时针方向旋转90°,……,按上述方法经过若干次旋转.当顶点O 经过的路程是π)21020(+时,正方形纸片OABC 按上述方法旋转次数为 . 三、解答题:19.如图,在⊙O 中,D 、E 分别为半径OA 、OB 上的点,且AD=BE .点C 为弧AB 中点,连接CD 、CE .求证:CD=CE .第3题图 l第18题图第7题图C第17题图20.已知二次函数23212--=x x y . (1)求它的顶点坐标;(2)在平面直角坐标系中画出它的图象.21. 如图,一个圆锥的侧面展开图是90°的扇形. (1)求圆锥的母线长l 与底面半径r 之比;(2)若底面半径r =2,求圆锥的侧面积(结果保留π).23. 如图,⊙O 是△ACD 的外接圆,AB 是直径,过点D 作直线DE ∥AB ,过点B 作直线BE ∥AD ,两直线交于点E ,如果∠ACD=45°,⊙O 的半径是3cm. (1)请判断DE 与⊙O 的位置关系,并说明理由; (2)求图中阴影部分的面积(结果用π表示).24. 如图,抛物线y =a (x ﹣1)2+4与x 轴交于点A 、B ,与y 轴交于点C ,抛物线的顶点为D ,连接BD 、BC ,已知点A 的坐标为(﹣1,0). (1)求该抛物线的解析式; (2)求△BCD 的面积.25. 如图,已知二次函数y=ax 2+bx+c 的图象过A (2,0),B (0,﹣1)和C (-3,5)三点. (1)求二次函数的关系式;(2)设二次函数的图象与x 轴的另一个交点为D ,求点D 的坐标;(3)在同一坐标系中画出直线y =﹣x +2,并写出当x 在什么范围内时,一次函数的值小于二次函数的值.26. 已知:OA 、OB 是⊙O 的半径,且OA ⊥OB ,P 是射线OA 上一点(点A 除外),直线BP 交⊙O 于点Q ,过Q 作⊙O 的切线交直线OA 于点E .(1)如图1,若点P 在线段OA 上,试说明:∠OBP +∠AQE =45°;(2)若点P 在线段OA 的延长线上,其它条件不变,∠OBP 与∠AQE 之间是否存在某种确定的等量关系?请你完成图2,并写出结论(不需要证明).CA BOP图2AB OP EQ图1A27.在平面直角坐标系中,已知抛物线c bx ax y ++=2经过点A 3(-,0)、B (0,3)、C (1,0)三点.(1) 求抛物线的解析式和它的顶点坐标;(2) 若在该抛物线的对称轴l 上存在一点M ,使MB+MC 的值最小,求点M 的坐标以及MB+MC 的最小值;(3) 若点P 、Q 分别是抛物线的对称轴上l 两动点,且纵坐标分别为m,m+2,当四边形CBQP 周长最小时,求出此时点P 、Q 的坐标以及四边形CBQP 周长的最小值.28.某数学活动小组在一次活动中,对一个数学问题作如下探究:【问题发现】如图1,正方形ABCD 的四个顶点都在⊙O 上,若点E 在弧AB 上,F 是DE 上的一点,且DF=BE .试说明:△ADF ≌△ABE ;【变式探究】如图2,若点E 在弧AD 上,过点A 作AM ⊥BE,请说明线段BE 、DE 、AM 之间满足等量关系:BE-DE=2AM ;【解决问题】如图3,在正方形ABCD 中,CD=22,若点P 满足PD=2,且∠BPD=90°,请直接写出点A 到BP 的距离.图 3图1图2M。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

盐城市二○一五年初中毕业与升学考试数学试题
一、选择题:选择题(本大题8小题,每小题3分,共24分) 1.
2
1
的倒数为 A . 2- B .21-
C .2
1
D . 2 2.下列四个图形中,是中心对称图形的为
C. D.
B.A.
3.下列运算正确的是
A .333)(ab b a =⋅
B .632a b a =⋅
C .236a b a =÷
D .5
32)(a a =
4.在下列四个几何体中,主视图与俯视图都是圆的为
C. D.
B.A.
5.下列事件中,是必然事件的为
A .3天内会下雨
B .打开电视,正在播放广告
C .367人中至少有2人公历生日相同
D .某妇产医院里,下一个出生的婴儿是女孩
6.将一块等腰直角三角板与一把直尺如图放置,若∠1=60°,则∠2的度数为 A .85° B .75° C . 60° D .45°
7.若一个等腰三角形的两边长分别是2和5,则它的周长为 A .12 B .9 C .12或9 D .9或7
8.如图,在边长为2的正方形ABCD 中剪去一个边长为1的小正方形CEFG ,动点P 从点A 出发,沿A →D →E →F →G →B 的路线绕多边形的边匀速运动到点B 时停止(不含点A 和点B ),则△ABP 的面积S 随着时间t 变化的函数图像大致为
二、填空题(本大题共有10小题,每小题3分,共30分)
9.若二次根式1-x 有意义,则x 的取值范围是 . 10.分解因式:=-a a 22
.
11.火星与地球的距离约为00000056千米,这个数据用科学记数法表示为 千
第6题图21
米.
12.一组数据866878,,,,,的众数是 .
13.如图,在△ABC 与△ADC 中,已知AD =AB ,在不添加任何辅助线的前提下,要使△ABC ≌△ADC ,只需要再添加的一个条件可以是 .
14.如图,点D 、E 、F 分别是△ABC 各边的中点,连接DE 、EF 、DF ,若△ABC 的周长为10,则△DEF 的周长为 .
A
第17题图
第16题图
A
B
C
D
A
B
C
D
第14题图
第13题图
E F
D
C
B
A
15.若422
=-n m ,则代数式2
2410n m -+的值为 .
16.如图,在矩形ABCD 中,AB =4,AD =3,以顶点D 为圆心作半径为r 的圆,若要求另外三个顶点A 、B 、C 中至少有一个点在圆内,且至少有一个点在圆外,则r 的取值范围是 . 17.如图,在矩形ABCD 中,AB =4,AD =2,以点A 为圆心,AB 长为半径画圆弧交边DC 于点E ,则弧BE 的长度为 . 18.设△ABC 的面积为1,如图①将边BC 、AC 分别2等份,1BE 、1AD 相交于点O ,△AOB 的面
积记为1S ;如图②将边BC 、AC 分别3等份,1BE 、1AD 相交于点O ,
△AOB 的面积记为2S
;……,
依此类推,则n S 可表示为 .(
用含n 的代数式表示,其中n 为正整数)
第18题图
3321
21图③
图②图①
D 1
三、解答题(本大题共10小题,共96分)
19.(本题满分8分) (1)计算()
︒+--602310
cos (2)解不等式:43
2
3+<-x x )(
20.(本题满分8分) 先化简,再求值:)
()(131112
+÷-+
a a
a ,其中4=a .
21.(本题满分8分)
2015年是中国人民抗日战争暨世界反法西斯胜利70周年,9月3日全国各地将举行有关纪念活动.为了解初中学生对二战历史的知晓情况,某初中课外兴趣小组在本校学生中开展了专题调查活动,随机抽取了部分学生进行问卷调查,根据学生答题情况,将结果分为A 、B 、C 、D 四类,其中A 类表示“非常了解”、B 类表示“比较了解”、C 类表示“基本了解”、D 类表示“不太了解”,调查的数据经整理后形成下列尚未完成的条形统计图(如图①)和扇形统计图(如图②): (1)在这次抽样调查中,一共抽查了 名学生; (2)请把图①中的条形统计图补充完整;
(3)图②的扇形统计图中D 类部分所对应扇形的圆心角的度数为 °; (4)如果这所学校共有初中学生1500名,请你估算该校初中学生中对二战历史“非常了解”和“比
较了解”的学生共有多少名?
O
图②
类型
第21题图
图①
22. (本题满分8分)
有甲、乙两个不透明的布袋,甲袋中有两个完全相同的小球,分别标有数字1和2-;乙袋中有三个完全相同的小球,分别标有数字1-、0和2.小丽先从甲袋中随机取出一个小球,记下小
球上的数字为x ;再从乙袋中随机取出一个小球,记录下小球上的数字为y ,设点P 的坐标为(x ,y ).
(1)请用表格或树状图列出点P 所有可能的坐标; (2)求点P 在一次函数1+=x y 图像上的概率.
23.(本题满分10分)
如图,在△ABC 中,∠CAB =90°,∠CBA =50°,以AB 为直径作⊙O 交BC 于点D ,点E 在边AC
上,且满足ED =EA .(1)求∠DOA 的度数; (2)求证:直线ED 与⊙O 相切.
第23题图
D
O
B
A
E C
24.(本题满分10分)
如图,在平面直角坐标系xOy 中,已知正比例函数x y 4
3
=与一次函数7+-=x y 的图像交于点A .
(1)求点A 的坐标;
(2)设x 轴上一点P (a ,b ),过点P 作x 轴的垂线(垂线位于点A 的右侧),分别交x y 4
3=和7+-=x y 的图像于点B 、C ,连接OC ,若BC =
5
7
OA ,求△OBC 的面积.
25.(本题满分10分)
如图所示,一幢楼房AB 背后有一台阶CD ,台阶每层高2.0米,且AC =2.17米,设太阳光线与水平地面的夹角为α.当︒=60α时,测得楼房在地面上的影长AE =10米,现有一只小猫睡在台阶
的MN 这层上晒太阳.(3取73.1)
(1)求楼房的高度约为多少米?
(2)过了一会儿,当︒=45α时,问小猫能否还晒到太阳?请说明理由
.
第25题图
D
B
A
C
26.(本题满分10分)
如图,把△EFP 按图所示的方式放置在菱形ABCD 中,使得顶点E 、F 、P 分别在线段AB 、AD 、
AC 上.已知EP =FP =4,EF =34,∠BAD =60°,且AB 34>.(1)求∠EPF 的大小;
(2)若AP =6,求AE +AF 的值;
(3)若△EFP 的三个顶点E 、F 、P 分别在线段AB 、AD 、AC 上运动,请直接写出AP 长的最大值和
最小值.
P
第26题图
D F
B
A
E C
27.(本题满分12分) 知识迁移
我们知道,函数)(00,
02
>>≠+-=n ,m a n )m x (a y 的图像是由二次函数2ax y =的图像向右平移m 个单位,再向上平移n 个单位得到.类似地,函数
)n m k (n m x k
y 0,0,0>>≠+-=的图像是由反比例函数x k y =的图像向右平移m 个单位,
再向上平移n 个单位得到,其对称中心坐标为(m ,n ). 理解应用
函数11
3+-=x y 的图像可以由函数x y 3
=的图像向右平移 个单位,再向上平移 个单位得到,其对称中心坐标为 . 灵活运用
如图,在平面直角坐标系xOy 中,请根据所给的x
y 4-=的图像画出函数224
---=x y 的图
像,并根据该图像指出,当x 在什么范围内变化时,y ≥1-?
实际应用 某老师对一位学生的学习情况进行跟踪研究.假设刚学完新知识时的记忆存留量为 1.新知识学习后经过的时间为x ,发现该生的记忆存留量随x 变化的函数关系为4
4
1+=
x y ;若在t x =(t ≥4)时进行一次复习,发现他复习后的记忆存留量是复习前的2倍(复习时间忽略不计),且复习后的记忆存量随x 变化的函数关系为a
x y -=
82.如果记忆存留量为21
时是复习的“最佳时机点”,
且他第一次复习是在“最佳时机点”进行的,那么当x 为何值时,是他第二次复习的“最佳时机点”?
28.(本题满分12分)
如图,在平面直角坐标系xOy 中,将抛物线2x y =的对称轴绕着点P (0,2)顺时针旋转45°后与该抛物线交于A 、B 两点,点Q 是该抛物线上的一点. (1)求直线AB 的函数表达式;
(2)如图①,若点Q 在直线AB 的下方,求点Q 到直线AB
第27题。

相关文档
最新文档