单管共射放大电路的仿真实验报告

合集下载

共射极单管放大器模拟仿真实验报告

共射极单管放大器模拟仿真实验报告

共射极单管放大器模拟仿真实验报告一、实验目的(1)掌握放大器静态工作点的调试方法,熟悉静态工作点对放大器性能的影响。

(2)掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法。

(3)熟悉低频电子线路实验设备,进一步掌握常用电子仪器的使用方法。

二、实验设备及材料函数信号发生器、双踪示波器、交流毫伏表、万用表、直流稳压电源、实验电路板。

三、实验原理图3.2.1 共射极单管放大器电阻分压式共射极单管放大器电路如图3.2.1所示。

它的偏置电路采用(R W+R1)和R2组成的分压电路,发射极接有电阻R4(R E),稳定放大器的静态工作点。

在放大器的输入端加入输入微小的正弦信号U i ,经过放大在输出端即有与U i 相位相反,幅值被放大了的输出信号U o,从而实现了电压放大。

在图3.2.1电路中,当流过偏置电阻R1和R2的电流远大于晶体管T的基极电流I B 时(一般5~10倍),则它的静态工作点可用下式进行估算(其中U CC为电源电压):CC 21W 2BQ ≈U R R R R U ++ (3-2-1)C 4BEB EQ ≈I R U U I -=(3-2-2) )(43C CC CEQ R R I U U +=- (3-2-3)电压放大倍数 beL3u ||=r R R βA - (3-2-4) 输入电阻 be 21W i ||||)(r R R R R += (3-2-5) 输出电阻 3o ≈R R (3-2-6) 1、放大器静态工作点的测量与调试 (1)静态工作点的测量测量放大器的静态工作点,应在输入信号U i = 0的情况下进行,即将放大器输入端与地端短接,然后选用量程合适的万用表,分别测量晶体管的集电极电流I C 以及各电极对地的电位U B 、U C 和U E 。

一般实验中,为了避免测量集电极电流时断开集电极,所以采用测量电压,然后计算出I C 的方法。

例如,只要测出U E ,即可用EEE C ≈R U I I =计算出I C (也可根据CC CC C R U U I -=,由U C 确定I C ),同时也能计算出U BE = U B -U E ,U CE = U C -U E 。

单管共射放大电路实验总结

单管共射放大电路实验总结

单管共射放大电路实验总结引言本文是对单管共射放大电路实验的总结与分析。

单管共射放大电路是一种常见的放大电路,其具有放大倍数高、输入阻抗低、输出阻抗高等特点,在电子电路中应用广泛。

本文将从实验目的、实验原理、实验步骤和实验结果四个方面进行详细介绍。

实验目的本次实验的主要目的是掌握单管共射放大电路的工作原理和性能特点,熟悉放大电路的设计和调试过程,培养实际动手操作的能力,以及对实验数据的分析能力。

通过本实验,进一步了解电子器件的基本特性和工作原理,为电子电路设计和实际应用打下坚实基础。

实验原理单管共射放大电路是一种三极管作为放大元件的单级放大电路,其工作原理如下:1.输入信号经耦合电容传入三极管的基极,通过输入电阻Ri控制基极电流。

2.当输入信号为正弦波时,基极电流也为正弦波,进而控制三极管的发射极电流。

3.通过放大作用,使得输出信号的幅度得到放大。

4.由于共射放大电路是由共射极输出的,因此输出信号与输入信号之间存在180°的相位差。

5.通过耦合电容Ce将输出信号取出。

实验步骤1. 实验准备准备实验所需要的材料和仪器设备:三极管、耦合电容、负载电阻、信号源、示波器等。

2. 电路搭建按照给定的电路图,将电阻、电容和三极管等元器件按正确的位置连接好,注意接线的准确性和可靠性。

3. 实验参数设定根据实验要求,设置输入信号源的幅度和频率,选择合适的放大倍数。

4. 电源接入将实验电路接入电源,确认电源电压是否符合要求,并注意应用调压电路稳定电源。

5. 信号测量使用示波器测量输入信号源和输出信号的波形,注意设置好示波器的纵横坐标范围和触发模式。

6. 数据记录与分析记录实验测量到的数据,包括电压、电流和波形等信息。

通过对实验数据的分析,得出分析结论,进一步了解单管共射放大电路的性能特点。

7. 电路调试与改进根据实验数据的分析结果,对电路进行调试和改进,以提高电路的性能和稳定性。

8. 实验总结根据实验结果和观察,总结实验过程中遇到的问题和解决办法,总结实验的结果和得到的经验教训。

共射极单管放大电路实验报告

共射极单管放大电路实验报告

共射极单管放大电路实验报告
共射极单管放大电路是一种常见的放大电路,由一个NPN型晶体管组成。

本实验的目的是通过实验验证共射极单管放大电路的放大特性。

一、实验原理:
共射极单管放大电路是一种常用的放大电路,使用一个NPN型晶体管来放大输入信号。

晶体管的三个引脚分别为发射极(E)、基极(B)、集电极(C)。

在共射极单管放大电路中,输入信号通过耦合电容C1输入到基极,集电极通过负载电阻RC与正电源相连。

输出信号由电容C2耦合到负载电阻RL上。

二、实验仪器:
1. 功率放大器实验箱
2. 万用表
3. 音频信号发生器
三、实验步骤:
1. 连接电路:根据实验箱上的电路图,将电路连接好。

2. 调整电源:根据实验箱上的电源电压要求,调整电源电压。

3. 调节发生器:将发生器的频率调节到所需的数值,信号幅度调节适宜值。

4. 测量电压:用万用表分别测量发射极电压、集电极电压和基极电压。

5. 测量电流:用万用表测量发射极电流、集电极电流和基极电流。

6. 测量电容:用万用表测量输入输出电容。

四、实验结果:
将实验测得的数据填入实验报告中,并绘制相应的图表。

五、实验分析:
根据实验结果分析共射极单管放大电路的放大特性、输入输出电容等参数。

六、实验总结:
总结本实验的目的、步骤、结果以及实验中遇到的问题等。

七、思考题:
进一步思考实验中遇到的问题,并提出解决方案。

单管共发射极放大电路实验报告

单管共发射极放大电路实验报告

单管共发射极放大电路实验报告一、实验目的。

本实验旨在通过搭建单管共发射极放大电路,了解其工作原理和特性,掌握其基本性能参数的测量方法,并通过实验验证理论知识的正确性。

二、实验原理。

单管共发射极放大电路是一种常用的放大电路,其基本原理是利用晶体管的放大作用将输入信号放大,输出一个放大后的信号。

在共发射极放大电路中,输入信号通过电容耦合方式输入到晶体管的基极,晶体管的发射极接地,输出信号则从晶体管的集电极获取。

三、实验仪器和器材。

1. 电源,直流稳压电源。

2. 信号源,正弦波信号源。

3. 示波器,示波器。

4. 元器件,晶体管、电容、电阻等。

四、实验步骤。

1. 按照电路图搭建单管共发射极放大电路,注意连接的正确性和稳固性。

2. 调节电源,使其输出电压为所需工作电压。

3. 将正弦波信号源连接到输入端,调节信号源的频率和幅度。

4. 连接示波器,观察输入信号和输出信号的波形。

5. 测量输入信号和输出信号的幅度,并计算电压增益。

6. 调节电路参数,如电容、电阻值,观察对电路工作的影响。

五、实验结果与分析。

通过实验观察和测量,我们得到了单管共发射极放大电路的输入输出波形和幅度,并计算出了电压增益。

通过调节电路参数,我们也观察到了电路工作的变化。

实验结果表明,单管共发射极放大电路能够有效放大输入信号,并且其放大倍数与理论计算值基本吻合。

六、实验总结。

本次实验通过搭建单管共发射极放大电路,对其工作原理和特性有了更深入的了解。

同时,我们也掌握了测量电路性能参数的方法,并通过实验验证了理论知识的正确性。

在实验过程中,我们也发现了一些问题和不足之处,为今后的实验和学习提供了一定的参考和借鉴。

七、实验心得。

通过本次实验,我对单管共发射极放大电路有了更深入的了解,也提高了实验操作和数据处理的能力。

在今后的学习和科研工作中,我将继续努力,不断提升自己的实验技能和理论水平。

以上就是本次单管共发射极放大电路实验的报告内容,希望能对大家有所帮助。

单管共射放大电路仿真分析

单管共射放大电路仿真分析

也。节奏划分思考“山行/六七里”为什么不能划分为“山/行六七里”?
会员免费下载 明确:“山行”意指“沿着山路走”,“山行”是个状中短语,不能将其割裂。“望之/蔚然而深秀者”为什么不能划分为“望之蔚然/而深秀者”?明确:“蔚然而深秀”是两个并列的词,不宜割裂,“望之”是总起词语,故应从其后断句。【教学提示】引导学生在反复朗读的过程中划分朗读节奏,在划分节奏的过程中感知文意。对于部分结构复杂的句子,教师可做适
11 醉翁亭记
1.反复朗读并背诵课文,培养文言语感。
2.结合注释疏通文义,了解文本内容,掌握文本写作思路。
3.把握文章的艺术特色,理解虚词在文中的作用。
4.体会作者的思想感情,理解作者的政治理想。一、导入新课范仲淹因参与改革被贬,于庆历六年写下《岳阳楼记》,寄托自己“先天下之忧而忧,后天下之乐而乐”的政治理想。实际上,这次改革,受到贬谪的除了范仲淹和滕子京之外,还有范仲淹改革的另一位支持者——北宋大文学家、史学家欧阳修。他于庆历五年被贬谪到滁州,也就是今天的安徽省滁州市。也
西)人,因吉州原属庐陵郡,因此他又以“庐陵欧阳修”自居。谥号文忠,世称欧阳文忠公。北宋政治家、文学家、史学家,与韩愈、柳宗元、王安石、苏洵、苏轼、苏辙、曾巩合称“唐宋八大家”。后人又将其与韩愈、柳宗元和苏轼合称“千古文章四大家”。
关于“醉翁”与“六一居士”:初谪滁山,自号醉翁。既老而衰且病,将退休于颍水之上,则又更号六一居士。客有问曰:“六一何谓也?”居士曰:“吾家藏书一万卷,集录三代以来金石遗文一千卷,有琴一张,有棋一局,而常置酒一壶。”客曰:“是为五一尔,奈何?”居士曰:“以吾一翁,老于此五物之间,岂不为六一乎?”写作背景:宋仁宗庆历五年(1045年),
是在此期间,欧阳修在滁州留下了不逊于《岳阳楼记》的千古名篇——《醉翁亭记》。接下来就让我们一起来学习这篇课文吧!【教学提示】结合前文教学,有利于学生把握本文写作背景,进而加深学生对作品含义的理解。二、教学新课目标导学一:认识作者,了解作品背景作者简介:欧阳修(1007—1072),字永叔,自号醉翁,晚年又号“六一居士”。吉州永丰(今属江

单管共射放大电路仿真分析

单管共射放大电路仿真分析

选取节点
在弹出的 对话框中 选择1、4、 5、6、8 作为仿真 分析节点
单击Simluate按钮,显示静态工作点 分析结果
节点1和节点 4值为零,主 要是电容c1 和电容c2有 隔直通交的 作用,故静 态份分析时 为零
单击运行按钮,双击示波器,显示 输入输出波形
共射放大 电路输入 和输出相 位相反
单管共射放大电路仿真分析
1.静态工作点分析 2.电压放大倍数 3.输入输出电阻测量 4.温度对静态工作点的影响
放置元件
单管共射放大电路
1.静态工作点分析
(其中节点标号如电路图中所示)
选择Simluate—Analysis命令, 然后选 择DC Operation Point命令
选择静态工作点分 析
选择温度扫描分 析
温度扫描参数设置
打开温度扫 描参数设置 对话框,设 起始温度为 27℃,终止 温度为90 ℃ ,增量为 63 ℃
温度扫描参数设置
选DC Operation Point,输出 选5、6、8 作为仿真分 析节点,单 击Simluate 显示静态工 作点随温度 变化结果
温度对静态工作点的影响
2.电压放大倍数
电压放大倍数测量(100Ω)
测量Re1=0欧姆时的放大倍数
设置Re1=0Ω
测量Re1=300欧姆时的放大倍数
设置Re1=300Ω
将电阻Rb1换成电位器
输入信号幅度分别达到180mv时
由于输入信号 幅度增大,使 原来正常放大 的信号失真, 相当于静态工 作点升高了, 导致输出信号 正半周超过放 大区进入饱和 区,从而出现 饱和失真。
输入信号幅度分别达到350mv时
如图所示,幅 度为350mv时, 输出波形发生 了双向失真, 其原因是由于 信号源幅度过 大,使放大信 号既经过了饱 和区又经过了 截止区。

共射极单管放大电路实验报告

共射极单管放大电路实验报告

共射极单管放大电路实验报告一、实验目的。

本实验旨在通过搭建共射极单管放大电路,了解其基本工作原理,掌握其特性参数的测试方法,并通过实验验证理论知识。

二、实验原理。

共射极单管放大电路是一种常见的电子放大电路,由一个晶体管和几个无源元件组成。

在该电路中,晶体管的发射极接地,基极通过输入电容与输入信号相连,集电极与负载电阻相连,输出信号由负载电阻取出。

当输入信号加到基极时,晶体管的输出信号将由集电极取出,实现信号的放大。

三、实验器材。

1. 电源。

2. 信号发生器。

3. 示波器。

4. 电阻、电容等无源元件。

5. 直流电压表。

6. 直流电流表。

四、实验步骤。

1. 按照电路图连接好电路,并接通电源。

2. 调节电源电压,使得晶体管工作在正常工作区域。

3. 使用信号发生器输入不同频率的正弦信号,观察输出信号的波形变化。

4. 测量输入输出信号的幅度,并计算电压增益。

5. 测量输入输出信号的相位差。

6. 测量电路的输入、输出阻抗。

五、实验结果与分析。

通过实验,我们得到了不同频率下的输入输出信号波形,并测量了其幅度和相位差。

根据测量数据,我们计算得到了电压增益和输入输出阻抗。

通过对比实验数据和理论值,我们发现实验结果与理论值基本吻合,验证了共射极单管放大电路的基本工作原理。

六、实验总结。

通过本次实验,我们深入了解了共射极单管放大电路的工作原理和特性参数的测试方法,掌握了实际搭建和测试的技能。

通过实验验证了理论知识,加深了对电子放大电路的理解,为今后的学习和研究打下了基础。

七、实验注意事项。

1. 在搭建电路时,注意连接的准确性,避免短路或接反。

2. 调节电源电压时,小心操作,避免电压过高损坏元件。

3. 在测量输入输出信号时,注意示波器的设置和测量方法,确保测量准确。

八、参考文献。

1. 《电子技术基础》。

2. 《电子电路》。

3. 《电子电路设计手册》。

以上就是本次共射极单管放大电路实验的报告内容,希望能对大家的学习和实践有所帮助。

单管共射放大电路实验报告

单管共射放大电路实验报告

表3-2
RL() Vi(mV) VO(V)
Av
2K 5.1K ∞
3、改变RC,观察对放大倍数的影响 取RL=5.1K,按下表改变RC,输入f=1KHz的正弦信号, 幅度以保证 输出波形不失真为准。测量Vi 和V0,计算电压放大倍数:Av=Vo/V1,填 入表3-3 中。
表3-3 RC () Vi (mV) VO (V) AV
实验三 单管共射放大电路
一、实验目的 1、 深入理解放大器的工作原理;学习晶体管放大电路静态工作点 的测试方法,进一步理解电路元件参数对静态工作点的影响,以及调整 静态工作点的方法。 2、学习测量输入电阻、输出电阻及最大不失真输出电压幅值的方 法。 3、观察电路参数对失真的影响。 4、学习毫伏表、示波器及信号发生器的使用方法。 二、实验设备 1、实验箱(台) 2、示波器 3、毫伏表 4、数字万用表 5、信号发 生器 三、预习要求 1、熟悉单管放大电路,掌握不失真放大的条件。 2、了解负载变化对放大倍数的影响。 3、了解饱和失真、截止失真和固有失真的形成及波形;掌握消除 失真方法。 四、实验内容及步骤 1、测量并计算静态工作点 按图3-1接线。
3K 2K
4、观察输入、输出电压相位关系 用示波器观察输入电压和输出电压波形,注意相位关系,画于表34中。 注:为了防止噪声对小信号的干扰,而影响示波器的观测,信号发 生器输出使用三通,用专用连接线(两头带高频插头)将小信号接示波 器输入端。
表3-4 波形
5、观察静态工作点对放大器输出波形的影响
输入信号不变,用示波器观察正常工作时输出电压Vo的波形并描画 下来。
逐渐减小RP2的阻值,观察输出电压的变化,在输出电压波形出现
明显失真时,把失真的波形描画下来,并说明是哪种失。(

单管共射放大电路实验报告

单管共射放大电路实验报告

竭诚为您提供优质文档/双击可除单管共射放大电路实验报告篇一:实验二单管共射放大电路实验实验二单管共射放大电路实验一、实验目的:1.2.3.4.研究交流放大器的工作情况,加深对其工作原理的理解。

学习交流放大器静态调试和动态指标测量方法。

进一步熟悉示波器、实验箱等仪器仪表的使用方法。

掌握放大器电压放大倍数、输入电阻、输出电阻和最大不失真输出电压的测试方法。

二、实验仪器设备:1.实验箱2.示波器3.万用表三、实验内容及要求:1.按电路原理图在试验箱上搭接电路实验原理:如图为电阻分压式共射放大电路,它的偏置电路由Rw、Rb1和Rb2组成,并在发射极接有电阻Re’和Re’’,构成工作点稳定的放大电路。

电路静态工作点合适的情况下,放大器的输入端加入合适的输入信号Vi后,放大器的输出端便可得到一个与Vi 相位相反、幅度被放大了的输出信号V0,从而实现了电压放大。

2.静态工作点的测试打开电源,不接入输入交流信号,调节电位器w2使三极管发射极电位ue=2.8V。

用万用表测量基极电位ub、集电极电位uc和管压降uce,并计算集电极电流Ic。

、3.动态指标测量(1)由信号源输入一频率为1khz,峰峰值为400mv的正弦信号,用示波器观察输入、输出的波形,观察并在同一坐标系下画出输入ui和uo的波形示意图。

(2)按表中的条件,测量us、ui、uo、uo,并记算Au、ri和ro。

4.研究静态工作点与波形失真的关系riuiui??Rsisirouo??ouo?uooRL在以上放大电路动态工作情况下,缓慢调节增大和减小w2观察两种不同失真现象,并记录失真波形。

若调节w2到最大、最小后还不出现失真,可适当增大输入信号。

5.实验数据记录。

(1).静态工作点的测试(2).动态指标测量1.ui和uo的波形uoui(3)测量us、ui、uo、uo,并记算Au、Ri和Ro。

t(4)研究静态工作点与波形失真的关系uouituoui增大Rw2四、思考题(1)总结放大电路静态工作点、负载、旁路电容的变化,对放大电路的电压放大倍数及输出波形的影响。

单管共射放大电路实验报告

单管共射放大电路实验报告

一、实验目的1. 掌握单管共射放大电路的基本原理和组成;2. 学习如何调试和测试单管共射放大电路的静态工作点;3. 熟悉单管共射放大电路的电压放大倍数、输入电阻和输出电阻的测量方法;4. 分析静态工作点对放大电路性能的影响。

二、实验原理单管共射放大电路是一种基本的放大电路,由晶体管、电阻和电容等元件组成。

其工作原理是:输入信号通过晶体管的基极和发射极之间的电流放大作用,使输出信号的幅值得到放大。

单管共射放大电路的静态工作点是指晶体管在无输入信号时的工作状态。

静态工作点的设置对放大电路的性能有重要影响,如静态工作点过高或过低,都可能导致放大电路的失真。

电压放大倍数、输入电阻和输出电阻是衡量放大电路性能的重要参数。

电压放大倍数表示输入信号经过放大后的输出信号幅值与输入信号幅值之比;输入电阻表示放大电路对输入信号的阻抗;输出电阻表示放大电路对负载的阻抗。

三、实验仪器与设备1. 晶体管共射放大电路实验板;2. 函数信号发生器;3. 双踪示波器;4. 交流毫伏表;5. 万用电表;6. 连接线若干。

四、实验内容与步骤1. 调试和测试静态工作点(1)将实验板上的晶体管插入电路,连接好电路图中的电阻和电容元件。

(2)使用万用电表测量晶体管的基极和发射极之间的电压,确定静态工作点。

(3)调整偏置电阻,使静态工作点符合设计要求。

(4)测量静态工作点下的晶体管电流和电压,记录数据。

2. 测量电压放大倍数(1)使用函数信号发生器产生一定频率和幅值的输入信号。

(2)将输入信号接入放大电路的输入端。

(3)使用交流毫伏表测量输入信号和输出信号的幅值。

(4)计算电压放大倍数。

3. 测量输入电阻和输出电阻(1)使用交流毫伏表测量放大电路的输入端和输出端的电压。

(2)计算输入电阻和输出电阻。

五、实验结果与分析1. 静态工作点根据实验数据,晶体管的静态工作点为:Vbe = 0.7V,Ic = 10mA。

2. 电压放大倍数根据实验数据,电压放大倍数为:A = 100。

晶体管单管共射放大器实验报告

晶体管单管共射放大器实验报告

一、实验目的1. 理解晶体管单管共射放大器的工作原理。

2. 掌握晶体管单管共射放大器静态工作点的调试方法。

3. 学习放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的测试方法。

4. 熟悉常用电子仪器及模拟电路实验设备的使用。

二、实验原理晶体管单管共射放大器是一种常用的模拟电子电路,主要用于信号的放大。

本实验采用共射极接法,其基本电路如图1所示。

图1 晶体管单管共射放大器实验电路1. 静态工作点:晶体管单管共射放大器的静态工作点是指在没有输入信号时,晶体管的工作状态。

它决定了放大器的线性范围和输出信号的幅度。

静态工作点通常由偏置电路确定。

2. 电压放大倍数:电压放大倍数是指放大器输出电压与输入电压的比值。

它反映了放大器对信号的放大能力。

3. 输入电阻:输入电阻是指放大器输入端对信号源呈现的电阻。

它反映了放大器对信号源的影响。

4. 输出电阻:输出电阻是指放大器输出端对负载呈现的电阻。

它反映了放大器对负载的影响。

三、实验仪器与设备1. 晶体管(如3DG6)2. 电阻(如10kΩ、2.2kΩ、1kΩ、220Ω、100Ω、10Ω等)3. 电位器(如10kΩ)4. 直流电源(如+12V)5. 函数信号发生器(如AS101E)6. 双踪示波器(如DS1062E-EDU)7. 交流毫伏表(如GB7676-98)8. 直流电压表9. 万用电表四、实验步骤1. 根据实验电路图,搭建晶体管单管共射放大器实验电路。

2. 调节偏置电路,使晶体管工作在合适的静态工作点。

测量静态工作点(Uce、Ic)。

3. 在放大器输入端加入频率为1kHz的正弦信号,调节函数信号发生器的输出幅度,使放大器输入电压在合适的范围内。

4. 测量放大器的输出电压,计算电压放大倍数。

5. 测量放大器的输入电阻和输出电阻。

6. 测量放大器的最大不失真输出电压。

五、实验数据及分析1. 静态工作点:Uce=3V,Ic=2mA。

2. 电压放大倍数:Aυ=20倍。

共射放大电路仿真分析实验报告

共射放大电路仿真分析实验报告

实验名称:共射放大电路仿真分析一、实验目的和要求(必填)二、实验内容和原理(必填)三、主要仪器设备(必填)四、操作方法和实验步骤五、实验数据记录和处理六、实验结果与分析(必填)七、讨论、心得一、实验目的和要求1、熟悉PSPICE软件的使用方法。

2、加深对共射放大电路放大特性的理解。

3、学习共射放大电路的设计方法。

4、学习共射放大电路的仿真分析方法。

二、实验内容和原理1、共射级放大测试电路如图所示。

在PSpice中输入仿真分析电路图,设置合适的分析方法及参数装订线2、仿真分析共射放大电路的静态工作点3、当RL=3 kΩ时,分析输入、输出电压波形4、当RL=3 kΩ时,分析电压放大倍数和频率特性5、当RL=3 kΩ时,仿真分析最大不失真输出电压6、当RL开路时,重新对电路进行分析7、仿真分析共射放大电路的电压传输特性三、主要仪器设备带PSpice仿真软件的PC机四、操作方法和实验步骤1、输入仿真电路图按照电路原理图将相应的元件相连,必须有一个接地元件(AGND),设置实际的直流电源,信号源可选正弦瞬态电压源(VSIN元件),设置合适的元件和信号源参数,如图:信号源设置2、仿真分析静态工作点设置直流扫描分析,以电源电压Vcc为扫描对象,在Probe中查看Q点数据,扫描分析设置如图:直流扫描分析设置3、当RL=3 kΩ时,分析输入、输出电压波形设置瞬态分析,在Probe中查看输入、输出电压波形,注意相位关系,观察失真现象参数设置为Print Step=200ns Final Time=0.3ms Step Ceiling=0.01ms,如图:瞬态分析设置4、当RL=3 kΩ时,分析电压放大倍数和频率特性设置交流分析,在Probe中绘制频率特性曲线,区分输出电压频率特性与电压放大倍数频率特性的不同,频率特性曲线Y轴坐标可以设置为线性坐标或对数坐标交流扫描设置如图:交流扫描分析设置5、当RL=3 kΩ时,仿真分析最大不失真输出电压设置瞬态分析,将输入正弦信号峰值设为100mV,在Probe中查看输出电压波形,判断输出是先出现饱和失真还是先出现截止失真瞬态分析参数设置如图:瞬态分析设置6、当RL开路时,重新对电路进行分析设RL=1MΩ,其它不变,用同样的方法分析电压放大倍数、频率特性和最大不失真输出电压,在Probe 中观察波形7、仿真分析共射放大电路的电压传输特性设置瞬态分析,在Probe中改变输出电压波形的横坐标为输入电压,就可查看放大电路的电压传输特性曲线。

单管共射极放大电路实验报告

单管共射极放大电路实验报告

单管共射极放大电路实验报告单管共射极放大电路实验报告一、引言在电子电路实验中,单管共射极放大电路是一种常见的基础电路。

它具有放大效果好、输入输出阻抗适中等优点,被广泛应用于放大电路设计中。

本实验旨在通过搭建单管共射极放大电路并对其性能进行测试,深入了解该电路的工作原理和特点。

二、实验原理单管共射极放大电路由一个NPN型晶体管、电阻、电容等元器件组成。

其工作原理如下:当输入信号加到基极时,晶体管的集电极电流将随之变化,从而使输出电压发生相应的变化。

通过调整偏置电压和负载电阻,可以使输出信号放大。

三、实验步骤1. 准备实验所需的元器件:NPN型晶体管、电阻、电容等。

2. 按照电路图搭建单管共射极放大电路。

3. 连接信号发生器和示波器,分别将输入信号和输出信号接入示波器。

4. 调整偏置电压和负载电阻,使电路工作在合适的工作点。

5. 通过信号发生器输入不同频率的正弦波信号,观察输出信号的变化情况。

6. 记录实验数据,并进行分析。

四、实验结果与分析通过实验观察和数据记录,我们得到了如下结果和分析:1. 输出电压随输入信号的变化而变化,呈现出放大的效果。

输入信号的幅值越大,输出信号的幅值也越大。

2. 输出信号的相位与输入信号相位一致,没有发生反相变化。

3. 随着输入信号频率的增加,输出信号的幅值逐渐减小,这是由于晶体管的频率响应特性导致的。

4. 在一定范围内,调整偏置电压和负载电阻可以使电路工作在合适的工作点,以获得最佳的放大效果。

五、实验总结通过本次实验,我们深入了解了单管共射极放大电路的工作原理和特点。

该电路具有放大效果好、输入输出阻抗适中等优点,适用于各种放大电路设计。

同时,我们也了解到了电路中各个元器件的作用和调整方法。

通过调整偏置电压和负载电阻,可以使电路工作在合适的工作点,以获得最佳的放大效果。

此外,我们还观察到了输入信号频率对输出信号幅值的影响,这对于电路设计和应用也具有一定的指导意义。

六、展望本次实验只是对单管共射极放大电路进行了初步的实验研究,还有许多其他方面的内容有待进一步探索。

单管共射放大电路的仿真实验报告

单管共射放大电路的仿真实验报告

单管共射放大电路的仿真:学号:班级:仿真电路图介绍及简单理论分析电路图:电路图介绍及分析:上图为电阻分压式共射极单管放大器实验电路图。

它的偏置电路采用RB1和RB2组成的分压电路,并在发射极中接有电阻RE,以稳定放大器的静态工作点。

当在放大器的输入端加入输入信号ui后,在放大器的输出端便可得到一个与ui相位相反,幅值被放大了的输出信号uo,从而实现了电大的放大。

元件的取值如图所示。

静态工作点分析(bias point):显示节点:仿真结果:静态工作点分析:VCEQ=1.6V, ICQ≈1.01mA,I BQ= ICQ/ ß电路的主要性能指标:理论分析:设ß=80,VBQ =2.8vVEQ=VBQ-VBEQ=2.1vrbe≈2.2kΩRi=1.12kΩ,Ro≈8.3 kΩAu=-βRL’/rbe=56.7仿真分析:输入电阻:输出电阻:Ri=0.86kΩRo≈9.56 kΩ输入电压:输出电压:则A u=51.2在测量电压放大倍数时,A u=-βR L’/r be,根据此公式计算出来的理论值与实际值存在一定的误差。

引起误差的原因之一是实际器件的β和r be与理想值80和200Ω有出入。

在测量输入输出阻抗时,输出阻抗的误差较小,而输入阻抗的误差有些大,根据公式R i=R B// r be,理论值与实际值相差较大应该与β和r be实际值有很大关系。

失真现象:1.当Rb1,Rb2,Rc不变时,Re小于等于1.9 kΩ时,会出现饱和失真当Re大于等于25 kΩ时,会出现较为明显的截止失真2.当Rb1,Rb2, Re不变时,Rc大于8.6 kΩ时,会出现饱和失真3.当Rb1, Rc, Re不变时,Rb2大于10.4 kΩ时,会出现饱和失真当Rb1, Rc, Re不变时,Rb2小于5.6 kΩ时,会出现截止失真4.当Rb2, Rc, Re不变时,Rb1小于32 kΩ时,会出现饱和失真动态最大输出电压的幅值:改变静态工作点,我们可以看到有波形出现失真。

单管共射放大电路实验总结

单管共射放大电路实验总结

单管共射放大电路实验总结一、引言单管共射放大电路是基本的电子电路之一,通过该实验可以加深对单管共射放大电路的原理和特性的理解。

本文将对单管共射放大电路实验进行总结和分析,并提出一些实验中的经验和教训。

二、实验准备实验前需要准备的器材和元件包括:电压源、电位器、二极管、电阻、电容等。

在进行实验前要对这些元器件进行检查和测试,确保它们的正常工作。

三、实验步骤1. 将电压源、电位器、电阻等元器件按照电路图连接好。

2. 调节电位器,使得基极电压为0.6V左右。

3. 连接示波器,调节示波器的时间和电压刻度。

4. 打开电源,观察示波器的波形,并调节电位器,使得输出波形达到最佳。

四、实验结果分析通过实验可以观察到示波器上的输出波形,进而分析单管共射放大电路的特性。

1. 放大倍数:可以通过观察输出波形的峰峰值来计算放大倍数。

实验中发现,随着输入信号的幅值增大,输出信号的幅值也随之增大,而且增大的比例大于1,说明单管共射放大电路具有放大效果。

2. 非线性失真:在实验中还观察到输出波形上出现了一些形状不规则的“毛刺”,这是由于单管共射放大电路的非线性特性所导致的。

当输入信号的幅值过大时,输出信号将产生失真,严重影响信号的质量。

3. 频率响应:实验中还可以通过改变输入信号的频率来观察单管共射放大电路的频率响应。

实验结果表明,单管共射放大电路对低频信号具有较好的放大效果,而对高频信号的放大效果则较差。

五、实验经验和教训在进行单管共射放大电路实验时,我们总结出一些经验和教训,供以后的实验参考。

1. 元器件的选用要准确:实验中使用的元器件的参数要与电路图中要求的参数一致,避免由于元器件参数不匹配而导致实验结果的不准确。

2. 注意实验环境:实验室中的环境应保持干燥、无尘,以避免灰尘进入电子元器件,影响电路的正常工作。

3. 调节仪器要小心:在调节电位器、示波器等仪器时要小心操作,防止因操作失误导致仪器的损坏。

六、总结与展望单管共射放大电路是电子电路中的重要一环,通过对该电路的实验,我们加深了对其原理和特性的了解。

实验三 单管共射放大电路的仿真与分析

实验三  单管共射放大电路的仿真与分析

三极管参数设置:Bf=50,即Q2N3940的 50
图3-2 限幅电路
图3-2 限幅电路 其中二极管设置 I S 10nA, n 2
图3-3 二极管反向
ቤተ መጻሕፍቲ ባይዱ 【实验内容】:
一、练习单管共射放大电路(图3-1)的基本 分析方法(静态分析、时域分析)。 分析:改变什么参数可以分别使电路处于截止 状态、放大状态、饱和状态。 二、模电书100页SP3.6.3:如图3-2,3-3:二极管 反接,且 I S 10nA, n 2。试用SPICE分析电路 的电压传输特性 vO f (vI ) 若输入电压 vI vi 10sin t (V ) 求 vO 的波形。
【实验要求】: 1、静态工作点分别工作在截止区、饱和区和放大区 时显示静态工作点,并瞬态分析输出波形(看波 形)。 2、实验内容一须在本次实验课上完成,内容二作为 课后练习。 【实验报告要求】:
实验报告书写要求包括实验内容一、二的:实验 题目、实验目的、实验内容、实验步骤、实验结 果(实验数据、仿真波形及对结果的分析)、实 验过程中遇到的问题及解决方法、实验心得总结。
实验三 单管共射放大电路的仿真与分析
【实验题目】: 一、放大电路有合适静态工作点、电压放大倍数 30左右,输入阻抗大于1K 、输出阻抗小于 5.1K 及通频带大于1MHZ。 二、分析电路的电压传输特性 vO f (vI )
三极管参数设置:Bf=50,即Q2N3940的
图3-1 单级放大电路原理图

晶体管共射级单管放大器仿真实验

晶体管共射级单管放大器仿真实验

实验背景
晶体管共射级单管放大器是电子技术 中最基本的放大器之一,广泛应用于 信号处理、通信、控制等领域。
随着计算机技术和仿真软件的发展, 利用仿真软件进行电路设计和分析已 经成为电子工程领域的重要手段。
实验原理
01
晶体管共射级单管放大器利用晶体管的放大效应,将输入信号 放大后输出。
02
通过调整晶体管的基极、集电极和发射极电压,可以改变放大
输入信号
选择信号源
选择合适的信号源作为输入信号,信号源可以是函数发生器、信号 发生器或计算机等。
调整输入信号幅度
根据实验要求,调整输入信号的幅度,以观察不同幅度对输出信号 的影响。
调整输入信号频率
根据实验要求,调整输入信号的频率,以观察不同频率对输出信号的 影响。
观察输出信号
观察输出波形
通过示波器或频谱分析仪等仪器,观察放大后的输出信号 波形。
检查电路
在接通电源之前,仔细检查电路连接,确保没有 错接或漏接的情况。
调整元件参数
调整输入信号
根据实验要求,选择合适的输入信号源,调整信号源的幅度和频 率,以满足实验条件。
调整偏置电压
根据晶体管的特性,调整偏置电压,使晶体管工作在放大区。
调整负载电阻
通过调整负载电阻的阻值,可以改变放大器的增益和输出信号的幅 度。
探索其他类型的放大器
除了晶体管放大器,还有其他类型的放大器如运算放大器等,建议在后续实验 中探索这些不同类型的放大器,比较它们的性能和应用。
THANKS
感谢观看
晶体管共射级单管放 大器仿真实验
目录
• 实验简介 • 实验设备与材料 • 实验步骤与操作 • 实验结果与分析 • 实验总结与建议

单管共射极放大电路仿真实验报告

单管共射极放大电路仿真实验报告

单管共射极分压式放大电路仿真实验报告班级__________姓名___________学号_________一、实验目的:1.学会放大器静态工作点的调试方法,分析静态工作点对放大器性能的影响。

2.掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的测量法。

3.熟悉简单放大电路的计算及电路调试。

4.能够设计较为简单的对温度稳定的具有一定放大倍数的放大电路。

二、实验要求:输入信号Ai=5 mv, 频率f=20KHz, 输出电阻R0=3kΩ, 放大倍数Au=60,直流电源V cc=6v,负载R L=20 kΩ,Ri≥5k,Ro≤3k,电容C1=C2=C3=10uf。

三、实验原理:(一)双极型三极管放大电路的三种基本组态。

1.单管共射极放大电路。

(1)基本电路组成。

如下图所示:(2)静态分析。

I BQ=(V cc-U BEQ)/R B (V CC为图中RC(1))I CQ =βI BQU CEQ=V CC-I CQ R C(3)动态分析。

A U=-β(R C//R L)/r beR i =r be// R BR o=Rc2.单管共集电极放大电路(射极跟随器)。

(1)基本电路组成。

如下图所示:(2)静态分析。

I BQ=(V cc-U BEQ)/(R b +(1+β)R e)(V CC为图中Q1(C))I CQ=βI BQU CEQ=V CC-I EQ R e≈V CC-I CQ R e(3)动态分析。

A U=(1+β)(R e//RL)/(r be+(1+β)(R e//R L))电压放大倍数恒小于1,而且接近于1。

Ai=-(1+β)电流放大倍数恒大于1。

R i =(r be+(1+β)(R e//R L)//R BR O≈R e3.单管共基极放大电路。

(1)基本电路组成。

如下图所示:(2)静态分析。

I EQ=(U BQ-U BEQ)/R e≈I CQ (V CC为图中RB2(2))I BQ=I EQ/(1+β)U CEQ=V CC-I CQ R C-I EQ R e≈V CC-I QC(R C+R e)(3)动态分析。

单管共射放大电路实验报告

单管共射放大电路实验报告

单管共射放大电路实验报告单管共射放大电路实验报告引言:单管共射放大电路是电子学中常见的一种电路结构,它可以将输入信号放大并输出。

本实验旨在通过搭建单管共射放大电路并进行实验观察,深入理解其工作原理和特性。

实验设备:1. NPN型晶体管2. 直流电源3. 信号发生器4. 电阻、电容等元器件5. 示波器6. 万用表实验步骤:1. 按照实验电路图搭建单管共射放大电路。

2. 将直流电源接入电路,调整电源电压为合适的数值。

3. 连接信号发生器,调节频率和幅度。

4. 使用示波器观察输入和输出信号波形。

5. 测量电路中各个元器件的电压和电流数值。

实验结果:通过实验观察和测量,我们得到了以下结果:1. 输入信号经过放大后,输出信号的幅度明显增大。

2. 输入信号的频率对放大效果有一定影响,不同频率下放大倍数可能有所不同。

3. 输出信号的波形与输入信号的波形基本一致,只是幅度发生了变化。

4. 在特定的输入信号幅度范围内,输出信号的幅度变化基本线性。

讨论与分析:单管共射放大电路的放大效果和特性与电路中的元器件参数有关。

在实验中,我们可以通过调整电源电压、改变电阻和电容的数值来观察其对放大效果的影响。

此外,晶体管的工作状态也会对放大效果产生影响,如静态工作点的选择和偏置电流的设置等。

在实际应用中,单管共射放大电路常用于音频放大、信号处理等领域。

通过调整电路中的元器件参数,可以实现对不同频率和幅度的信号的放大。

然而,单管共射放大电路也存在一些问题,例如频率响应范围有限、输出波形失真等。

因此,在实际应用中需要根据具体需求选择合适的电路结构。

结论:通过本次实验,我们成功搭建了单管共射放大电路,并观察了其放大效果和特性。

实验结果表明,单管共射放大电路能够有效地放大输入信号,并输出相应的放大信号。

通过进一步的实验和研究,可以深入了解电路的工作原理和优化方法,为实际应用提供参考。

总结:单管共射放大电路是电子学中重要的电路结构之一,通过本次实验我们深入理解了其工作原理和特性。

单管共发射极放大电路实验报告

单管共发射极放大电路实验报告

单管共发射极放大电路实验报告单管共发射极放大电路实验报告引言:单管共发射极放大电路是一种常见的电子电路,用于放大信号。

本实验旨在通过实际操作,验证该电路的放大性能,并探究其工作原理和特点。

一、实验目的本实验的主要目的有以下几点:1. 了解单管共发射极放大电路的基本原理和工作方式;2. 掌握实验中所使用的电路元件的特性和使用方法;3. 验证单管共发射极放大电路的放大性能,并分析其特点。

二、实验原理单管共发射极放大电路是一种基于晶体管的放大电路。

其基本原理是利用晶体管的放大特性,将输入信号的小幅变化转化为输出信号的大幅变化。

在单管共发射极放大电路中,晶体管的发射极作为输入端,基极作为输出端,集电极作为共用端。

三、实验器材和元件1. 电源:提供所需的直流电源;2. 晶体管:选择适合的晶体管,如2N3904;3. 电阻:用于构建电路的电阻,如1kΩ、10kΩ等;4. 电容:用于构建电路的电容,如10uF、100uF等;5. 示波器:用于观测电路的输入输出信号。

四、实验步骤1. 按照电路图连接电路,确保连接正确无误;2. 调整电源电压,使其符合晶体管的额定工作电压;3. 接入示波器,观测输入信号和输出信号的波形;4. 调节输入信号的幅度,记录相应的输出信号幅度;5. 改变输入信号频率,观察输出信号的变化;6. 尝试改变电阻和电容的数值,观察电路的放大性能变化。

五、实验结果与分析通过实验观察和记录,我们得到了一系列输入信号和输出信号的数据。

根据这些数据,我们可以计算放大倍数,并绘制输入输出特性曲线和频率响应曲线。

根据计算和实验结果,我们可以得出以下结论:1. 单管共发射极放大电路具有较好的放大性能,输入信号的小幅变化可以得到相应的大幅输出变化;2. 放大倍数与输入信号的幅度呈线性关系,且与电路中的电阻和电容数值有关;3. 频率响应曲线显示出电路对不同频率信号的放大程度不同,存在一定的频率选择性。

六、实验总结通过本次实验,我们深入了解了单管共发射极放大电路的工作原理和特点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单管共射放大电路的仿真
姓名:
学号:
班级:
仿真电路图介绍及简单理论分析
电路图:
电路图介绍及分析:
上图为电阻分压式共射极单管放大器实验电路图。

它的偏置电路采用RB1和RB2组成的分压电路,并在发射极中接有电阻RE,以稳定放大器的静态工作点。

当在放大器的输入端加入输入信号ui后,在放大器的输出端便可得到一个与ui相位相反,幅值被放大了的输出信号uo,从而实现了电大的放大。

元件的取值如图所示。

静态工作点分析(bias point):
显示节点:
仿真结果:
静态工作点分析:
VCEQ=1.6V, ICQ≈1.01mA,I BQ= ICQ/ ß电路的主要性能指标:
* * 理论分析:
设ß=80,VBQ =2.8v
VEQ=VBQ-VBEQ=2.1v
rbe≈2.2kΩ
Ri=1.12kΩ,Ro≈8.3 kΩ
Au=-βRL’/rbe=56.7
仿真分析:
输入电阻:输出电阻:
Ri=0.86kΩRo≈9.56 kΩ
输入电压:输出电压:
则A u=51.2
在测量电压放大倍数时,A u=-βR L’/r be,根据此公式计算出来的理论值与实际值存在一定的误差。

引起误差的原因之一是实际器件的β和r be与理想值80和200Ω有出入。

在测量输入输出阻抗时,输出阻抗的误差较小,而输入阻抗的误差有些大,根据公式R i=R B// r be,理论值与实际值相差较大应该与β和r be实际值有很大关系。

失真现象:
1.当Rb1,Rb2,Rc不变时,Re小于等于1.9 kΩ时,会出现饱和失真
当Re大于等于25 kΩ时,会出现较为明显的截止失真
2.当Rb1,Rb2, Re不变时,Rc大于8.6 kΩ时,会出现饱和失真
3.当Rb1, Rc, Re不变时,Rb2大于10.4 kΩ时,会出现饱和失真当Rb1, Rc, Re不变时,Rb2小于5.6 kΩ时,会出现截止失真
4.当Rb2, Rc, Re不变时,Rb1小于32 kΩ时,会出现饱和失真
动态最大输出电压的幅值:
改变静态工作点,我们可以看到有波形出现失真。

静态工作点偏低,出现截止失真;静态工作点偏高,出现饱和失真。

放大电路的幅频相应和相频相应:
测出温度变化对静态工作点的影响:
第四章结论
通过以上实验可知,仿真所得值与理论计算基本一致。

偏置电路采用RB1和RB2组成的分压电路,并在发射极中接有电阻RE,以稳定放大器的静态工作点。

放大器在线性工作范围内,可以将信号不失真地放大,超过这个线性范围后,其输出信号将产生非线性失真。

要得到不失真的放大效果,必须设置合适的静态工作点。

基极的电压是与直流工作电压成线性关系,V BQ=[R B2/(R B1+R B2)]*Vcc,即V BQ应与Vcc 成线性关系。

在电压频率特性曲线中,可以得到电路的通频带。

通频带的宽度表明放大电路对不同频率信号的放大能力。

在瞬态波形上,可以读出输入和输出电压的峰值,从而求出增益A u。

同时发现,输入输出电压相位相反。

设定R L为全局参数后,R L变大,V O变大。

输出电压变大,电压增益会变大。

即随着负载的增大,输出电压和增益都会增大。

通过以上的仿真结果及分析,我们发现仿真结果和理论结果大体是一致的。

所以仿真是成功的。

理论分析:
由以上结果可知,理论分析的值与仿真分析的值相对误差较小,引起误差的主要原因是在理论分析时,V BE取0.7v,,而在实际电路中,由管的材料性质本身决定的V BE不到0.7v。

另外,三极管的放大倍数也不是理想的150,有一定的误差。

1.直流特性扫描分析(DC sweep)
参数设置:
仿真结果:。

相关文档
最新文档