八年级基础班数学作业(3)7-18

合集下载

八年级数学教案(最新6篇)

八年级数学教案(最新6篇)

八年级数学教案(最新6篇)八年级数学教案篇一一、教学目标①经历探索整式除法运算法则的过程,会进行简单的整式除法运算(只要求单项式除以单项式,并且结果都是整式),培养学生独立思考、集体协作的能力。

②理解整式除法的算理,发展有条理的思考及表达能力。

二、教学重点与难点重点:整式除法的运算法则及其运用。

难点:整式除法的运算法则的推导和理解,尤其是单项式除以单项式的运算法则。

三、教学准备卡片及多媒体课件。

四、教学设计(一)情境引入教科书第161页问题:木星的质量约为1。

90×1024吨,地球的质量约为5。

98×1021吨,你知道木星的质量约为地球质量的多少倍吗?重点研究算式(1。

90×1024)÷(5。

98×1021)怎样进行计算,目的是给出下面两个单项式相除的模型。

注:教科书从实际问题引入单项式的除法运算,学生在探索这个问题的过程中,将自然地体会到学习单项式的除法运算的必要性,了解数学与现实世界的联系,同时再次经历感受较大数据的过程。

(二)探究新知(1)计算(1。

90×1024)÷(5。

98×1021),说说你计算的根据是什么?(2)你能利用(1)中的方法计算下列各式吗?8a3÷2a;6x3y÷3xy;12a3b2x3÷3ab2。

(3)你能根据(2)说说单项式除以单项式的运算法则吗?注:教师可以鼓励学生自己发现系数、同底数幂的底数和指数发生的变化,并运用自己的语言进行描述。

单项式的。

除法法则的推导,应按从具体到一般的步骤进行。

探究活动的安排,是使学生通过对具体的特例的计算,归纳出单项式的除法运算性质,并能运用乘除互逆的关系加以说明,也可类比分数的约分进行。

在这些活动过程中,学生的化归、符号演算等代数推理能力和有条理的表达能力得到进一步发展。

重视算理算法的渗透是新课标所强调的。

(三)归纳法则单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。

2023八年级数学上册第二章实数7二次根式第3课时二次根式的混合运算教案(新版)北师大版

2023八年级数学上册第二章实数7二次根式第3课时二次根式的混合运算教案(新版)北师大版
教学资源准备
1.教材:确保每位学生都提前准备好北师大版《数学》八年级上册教材,翻到第二章实数7二次根式相关内容,以便课堂上随时翻阅和标注。
2.辅助材料:
-准备与二次根式混合运算相关的教学图片,如含有二次根式的实际应用题目图片,以直观展示数学在生活中的运用。
-制作动态图表,展示二次根式乘除运算的过程,帮助学生理解运算规则。
-设计课堂小测验,测试学生对二次根式混合运算规则的理解程度和运算能力,根据测试结果调整教学策略,针对性地进行辅导。
-利用课堂反馈表,让学生自我评价学习效果,反思学习过程,促进学生的自我管理和自我提升。
2.作业评价:
-对学生的课后作业进行认真批改,点评作业中的亮点和不足,及时反馈学生的学习效果,帮助学生明确自己的学习进步和需要改进的地方。
简要回顾本节课学习的二次根式混合运算内容,强调重点和难点。肯定学生的表现,鼓励他们继续努力。
布置作业:
根据本节课学习的内容,布置适量的课后作业,巩固学习效果。提醒学生注意作业要求和时间安排,确保作业质量。
学生学习效果
1.知识与技能:
-学生能够理解并掌握二次根式混合运算的规则,包括二次根式的乘除法运算,以及与整数、分数的混合运算。
-学生通过对比、归纳等学习方法,加深了对二次根式混合运算规则的理解,提高了逻辑思维能力和数学素养。
3.情感态度与价值观:
-学生在学习过程中,逐渐消除了对二次根式混合运算的恐惧和畏难情绪,增强了自信心和耐心。
-学生认识到数学与现实生活的紧密联系,培养了学以致用的意识,增强了学习数学的兴趣和动力。
-学生通过拓展知识的学习,拓宽了知识视野,激发了探索学科前沿的兴趣,培养了创新精神和探索意识。
核心素养数学学习后,已具备了一定的数学基础和逻辑思维能力。在本章节的学习中,他们在知识层面,对二次根式的概念和基本性质有初步了解,但混合运算的掌握程度参差不齐。在能力方面,学生的运算能力和问题解决能力有待提高,特别是将二次根式与整数、分数结合进行混合运算时,需要加强练习以提升熟练度和准确性。

浙教版数学八年级上册3.3《一元一次不等式》教学设计(1)

浙教版数学八年级上册3.3《一元一次不等式》教学设计(1)

浙教版数学八年级上册3.3《一元一次不等式》教学设计(1)一. 教材分析《一元一次不等式》是浙教版数学八年级上册3.3节的内容,本节课的主要内容是一元一次不等式的概念、性质和运算。

学生在学习本节课之前已经掌握了实数、方程等基础知识,具备了一定的逻辑思维能力,但对学生来说,一元一次不等式是一个新的概念,需要通过本节课的学习来掌握。

二. 学情分析学生在学习本节课之前已经掌握了实数、方程等基础知识,具备了一定的逻辑思维能力。

但对学生来说,一元一次不等式是一个新的概念,需要通过本节课的学习来掌握。

同时,学生对于抽象的数学概念的理解和运用还需要进一步的培养和提高。

三. 教学目标1.了解一元一次不等式的概念,掌握一元一次不等式的性质。

2.学会解一元一次不等式,能够运用一元一次不等式解决实际问题。

3.培养学生的逻辑思维能力,提高学生的数学素养。

四. 教学重难点1.重难点:一元一次不等式的概念和性质。

2.难点:解一元一次不等式,运用一元一次不等式解决实际问题。

五. 教学方法1.讲授法:通过讲解一元一次不等式的概念、性质和运算方法,使学生掌握一元一次不等式的基本知识。

2.案例分析法:通过分析实际问题,引导学生运用一元一次不等式解决问题,培养学生的实际应用能力。

3.小组讨论法:学生进行小组讨论,促进学生之间的交流与合作,提高学生的团队协作能力。

六. 教学准备1.教学PPT:制作教学PPT,包括一元一次不等式的概念、性质和运算方法的讲解,以及实际问题的案例分析。

2.教学案例:准备一些实际问题,用于引导学生运用一元一次不等式解决问题。

3.练习题:准备一些练习题,用于巩固学生对一元一次不等式的理解和运用。

七. 教学过程1.导入(5分钟)通过复习实数、方程等基础知识,引导学生进入本节课的学习。

2.呈现(10分钟)讲解一元一次不等式的概念、性质和运算方法,使学生掌握一元一次不等式的基本知识。

3.操练(10分钟)让学生练习解一元一次不等式,巩固学生对一元一次不等式的理解和运用。

初二第一章数学练习题

初二第一章数学练习题

初二第一章数学练习题1. 三角形ABC中,AC=BC,角A=50°,角B=70°。

求角C的度数。

解:由题意可知,AC=BC,所以三角形ABC是等腰三角形。

由等腰三角形的性质可知,角A=角B,所以角C=180°-角A-角B=180°-50°-70°=60°。

2. 已知a:b=3:4,且a+b=35,求a和b的值。

解:设a=3x,b=4x,代入a+b=35得到3x+4x=35,解得x=5。

所以a=3x=3*5=15,b=4x=4*5=20。

所以a的值为15,b的值为20。

3. 小明的年龄是大杰的2/5,两人年龄相差14岁,求他们各自的年龄。

解:设小明的年龄为x,大杰的年龄为y。

根据题意可得到以下两个方程:y = 2/5x (1)x - y = 14 (2)将方程(1)代入方程(2),得到x - 2/5x = 14。

化简得到3/5x = 14,解得x = 14 * 5/3 = 70/3 ≈ 23.33。

将x的值代入方程(1)可以求得y的值:y = 2/5 * 70/3 ≈ 28/3 ≈ 9.33。

所以小明的年龄约为23.33岁,大杰的年龄约为9.33岁。

4. 某数的1/5比它自身多2,求这个数。

解:设这个数为x,根据题意可得到以下方程:1/5x = x + 2将方程两边同时乘以5,得到x = 5(x+2)。

化简得到x = 5x + 10,然后将5x移到等式左边得到4x = -10。

再将-10移到等式右边得到x = -10/4 = -2.5。

所以这个数为-2.5。

5. 若2/x - 3/4 = 7/12,求x的值。

解:将等式两边的分式进行通分,得到(8-3x)/(4x) = 7/12。

将分式的分母相等,得到12(8-3x) = 7(4x)。

化简得到96 - 36x = 28x,然后将28x移到等式左边得到96 = 64x。

再将64x移到等式右边得到x = 96/64 = 1.5。

北京市海淀区中国人民大学附属中学2022-2023学年八年级下学期数学大作业1

北京市海淀区中国人民大学附属中学2022-2023学年八年级下学期数学大作业1

A.2
B. 2 3
C.4
D.0
7.计算 3 27 - (-4)2 + (1π-) 0 得( )
A. π
B.- π
C.0
D.1
8.如图,在平面直角坐标系中,点 P 坐标为(-2,3),以点 O 为圆心,以 OP 的长为 半径画弧,交 x 轴的负半轴于点 A,则点 A 的横坐标介于( )
试卷第11 页,共33 页 X
【详解】解:二次根式中被开方数 x - 3 ³ 0 ,所以 x ³ 3 .
故答案为: x ³ 3. 12.100. 【分析】三个正方形的边长正好构成直角三角形的三边,根据勾股定理得到字母 A 所代表 的正方形的面积 A=36+64=100. 【详解】解:由题意可知,直角三角形中,一条直角边的平方=36,一条直角边的平方 =64,则斜边的平方=36+64. 故答案为:100. 【点睛】本题考查了正方形的面积公式以及勾股定理. 13.如果三角形的两条边的平方和等于第三边的平方,那么这个三角形是直角三角形 【分析】根据勾股定理的逆定理即可判断. 【详解】解:设相邻两个结点的距离为 m,则此三角形三边的长分别为 3m、4m、5m, ∵(3m)2+(4m)2=(5m)2, ∴以 3m、4m、5m 为边长的三角形是直角三角形.(如果三角形的两条边的平方和等于第 三边的平方,那么这个三角形是直角三角形) 故答案为:如果三角形的两条边的平方和等于第三边的平方,那么这个三角形是直角三角 形. 【点睛】此题考查了勾股定理的逆定理,属于基础题,注意仔细阅读题目所给内容,得到 解题需要的信息,比较简单.
试卷第21 页,共33 页 X
13.在没有直角工具之前,聪明的古埃及人用如图的方法画直角:把一根长绳打上等 距离的 13 个结,然后以 3 个结间距、4 个结间距、5 个结间距的长度为边长,用木桩 钉成一个三角形,其中 5 这条边所对的角便是直角.依据是____.

八年级数学教案15篇

八年级数学教案15篇

八年级数学教案15篇八年级数学教案1一、学习目标:让学生了解多项式公因式的意义,初步会用提公因式法分解因式二、重点难点重点:能观察出多项式的公因式,并根据分配律把公因式提出来难点:让学生识别多项式的公因式.三、合作学习:公因式与提公因式法分解因式的概念.三个矩形的长分别为a、b、c,宽都是m,则这块场地的面积为ma+mb+mc,或m(a+b+c)既ma+mb+mc = m(a+b+c)由上式可知,把多项式ma+mb+mc写成m与(a+b+c)的乘积的形式,相当于把公因式m从各项中提出来,作为多项式ma+mb+mc的一个因式,把m从多项式ma+mb+mc各项中提出后形成的多项式(a+b+c),作为多项式ma+mb+mc的另一个因式,这种分解因式的方法叫做提公因式法。

四、精讲精练例1、将下列各式分解因式:(1)3x+6; (2)7x2-21x; (3)8a3b2-12ab3c+abc (4)-24x3-12x2+28x.例2把下列各式分解因式:(1)a(x-y)+b(y-x);(2)6(m-n)3-12(n-m)2.(3) a(x-3)+2b(x-3)通过刚才的练习,下面大家互相交流,总结出找公因式的一般步骤.首先找各项系数的____________________,如8和12的公约数是4.其次找各项中含有的相同的字母,如(3)中相同的字母有ab,相同字母的指数取次数最___________的课堂练习1.写出下列多项式各项的公因式.(1)ma+mb 2)4kx-8ky (3)5y3+20y2 (4)a2b-2ab2+ab2.把下列各式分解因式(1)8x-72 (2)a2b-5ab(3)4m3-6m2 (4)a2b-5ab+9b(5)(p-q)2+(q-p)3 (6)3m(x-y)-2(y-x)2五、小结:总结出找公因式的一般步骤.:首先找各项系数的大公约数,其次找各项中含有的相同的字母,相同字母的指数取次数最小的注意:(a-b)2=(b-a)2六、作业1、教科书习题2、已知2x-y=1/3,xy=2,求2x4y3-x3y43、(-2)+(-2)4、已知a-2b=2,,4-5b=6,求3a(a-2b)2-5(2b-a)3八年级数学教案2教学目标理解平行四边形的定义,能根据定义探究平行四边形的性质.教学思考1.通过观察、实验、猜想、验证、推理、交流等数学活动,发展学生合情推理能力和动手操作能力及应用数学的意识与能力.2.能够根据平行四边形的性质进行简单的推理和计算.解决问题通过平行四边形性质的探索过程,丰富学生从事数学活动的经验与体验,能运用平行四边形的性质进行有关的推理和计算,发展应用意识.情感态度在应用平行四边形的性质的过程养成独立思考的习惯,在数学学习活动中获得成功的体验.重点平行四边形的性质的探究和平行四边形的性质的应用.难点平行四边形的性质的应用.教学流程安排活动流程图活动内容和目的活动1欣赏图片,了解生活中的特殊四边形活动2剪三角形纸片,拼凸四边形活动3理解平行四边形的概念活动4探究平行四边形边、角的性质活动5平行四边形性质的应用活动6评价反思、布置作业熟悉生活中特殊的四边形,导出课题.通过用三角形拼四边形的过程,渗透转化思想,激发探索精神.掌握平行四边形的定义及表示方法.探究平行四边形的性质.运用平行四边形的性质.学生交流,内化知识,课后巩固知识.教学过程设计问题与情景师生行为设计意图[活动1]下面的图片中,有你熟悉的哪些图形?(出示图片)演示图片,学生欣赏.教师介绍四边形与我们生活密切联系,学生可再补充列举.从实例图片中,抽象出的特殊四边形,培养学生的抽象思维.通过举例,让学生感受到数学与我们的生活紧密联系.问题与情景师生行为设计意图[活动2]拼一拼将一张纸对折,剪下两张叠放的三角形纸片.将这两个三角形相等的一组边重合,你会得到怎样的图形.(1)你拼出了怎样的凸四边形?与同伴交流.(2)一位同学拼出了如下图所示的一个四边形,这个四边形的对边有怎样的位置关系?说说你的理由.学生经过实验操作,开展独立思考与合作学习.教师深入学生之中,观察学生频出的方法与过程,接受学生质疑并指导个别学生探究.教师待学生充分探究后,请学生展示拼图的方法和不同的图形.并引导学生分析(2)中的四边形的边的位置特征,从而引出本节课研究的内容八年级数学教案3教学目标:1、知识目标:探索图形之间的变换关系(轴对称、平移、旋转及其组合)。

八年级数学教学计划范文(4篇)

八年级数学教学计划范文(4篇)

八年级数学教学计划范文一、指导思想坚持____教育方针,结合《初中数学新课程标准》和学生实际,积极开展教育教学改革,积极探索、实施有效课堂教学,推进基础教育科学发展,促进学生素质全面协调发展,既要教会学生做人,又要努力提高学生掌握、运用知识的能力,特别重视训练学生的探究思维能力、发散式思维模式,提高学生知识运用的能力。

通过本学期的课堂教学,力争每一个学生都要有一定进步。

二、学情分析分析上学期的期末考试成绩,发现试题难易适中,优生多(____人),后进生也不少(____人)。

优生率达____%,及格格率达到____%。

两极分化明显,后进生未得到足够的重视和帮助。

分析学生的试卷后我发现:学生在知识运用上很不熟练,解答综合性试题题时仍缺乏灵活性,学生普遍缺乏独立思考的习惯,分析问题不仔细,也不全面。

三、教学目标知识技能目标:1、掌握分式的基本性质及其相关的运算;学习反比例函数图像、性质;2、掌握勾股定理及其逆定理;3、探究平行四边形、特殊四边形及梯形、等腰梯形性质与判定;4、会分析数据并从中获取总体信息。

过程方法目标:1、发展学生推理能力;2、建立函数建模的思维方式;3、理解勾股定理的意义与内涵;4、提高几何说理能力及统计意识。

情感、态度、价值观目标:2.本学期奋斗目标:优秀率:____%;合格率:____%;差生率:低于____%。

四、教材分析第十六章分式:1、本章主要学习分式及其基本性质,分式的约分、通分,分式的基本运算,分式方程的概念及可化为一元一次方程的分式方程的解法。

2、本点重点:运用分式的基本性质进行约分和通分;分式的基本运算;解分式方程。

3、教学难点:分式的约分和通分;分式的混合运算;解分式方程及分式方程的实际应用。

第十七章反比例函数:1、本章主要学习反比例函数的概念、图象及其性质,学习反比例函数在实际问题中的应用。

2、教学重点:反比例函数图象及其性质;运用反比例函数解决实际问题。

3、教学难点:逐步形成用函数观点处理实际问题的意识;建立反比例函数在解决实际问题时的思维模式。

北师大版数学八年级上册2《求解二元一次方程组》说课稿1

北师大版数学八年级上册2《求解二元一次方程组》说课稿1

北师大版数学八年级上册2《求解二元一次方程组》说课稿1一. 教材分析《求解二元一次方程组》是人教版初中数学八年级上册第二章《二元一次方程组》的一部分。

这部分内容是在学生已经掌握了二元一次方程、一元一次方程的解法的基础上进行学习的。

通过这部分的学习,使学生能够掌握二元一次方程组的解法,并能够应用到实际问题中。

本节课的主要内容有:二元一次方程组的定义、二元一次方程组的解法(代入法、加减法)、二元一次方程组的应用。

在教材的安排上,首先是引导学生通过实际问题抽象出二元一次方程组,然后通过合作交流,探索二元一次方程组的解法,最后通过应用题,巩固二元一次方程组的解法。

二. 学情分析八年级的学生已经具备了一定的数学基础,对一元一次方程的解法有一定的了解。

但是,对于二元一次方程组,学生还比较陌生,需要通过实例来引导学生理解。

在学生的学习过程中,我发现学生对于数学问题的生活情境比较感兴趣,因此,我在教学过程中,会尽量结合生活实例,激发学生的学习兴趣。

三. 说教学目标1.知识与技能目标:理解二元一次方程组的定义,掌握二元一次方程组的解法(代入法、加减法),能够应用到实际问题中。

2.过程与方法目标:通过合作交流,探索二元一次方程组的解法,提高学生的合作交流能力。

3.情感态度与价值观目标:培养学生对数学的兴趣,增强学生的自信心。

四. 说教学重难点1.教学重点:二元一次方程组的解法(代入法、加减法)。

2.教学难点:如何引导学生理解二元一次方程组的解法,并能够应用到实际问题中。

五. 说教学方法与手段1.教学方法:采用启发式教学法、合作交流法、实例教学法。

2.教学手段:利用多媒体课件,帮助学生直观地理解二元一次方程组的概念和解法。

六. 说教学过程1.导入:通过一个实际问题,引导学生抽象出二元一次方程组,激发学生的学习兴趣。

2.探究:让学生通过合作交流,探索二元一次方程组的解法,教师给予适当的引导和点拨。

3.讲解:教师讲解二元一次方程组的解法(代入法、加减法),并通过实例进行说明。

八年级暑期数学作业及参考答案

八年级暑期数学作业及参考答案

八年级暑期数学作业及参考答案八年级暑期数学作业及参考答案选择题(共8小题,每小题3分,满分24分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列图形中,既是轴对称图形,又是中心对称图形是( )A.B.C.D.考点:中心对称图形;轴对称图形.分析:根据轴对称图形与中心对称图形的概念求解.解答:解:A、不是轴对称图形,不是中心对称图形.故错误;B、是轴对称图形,也是中心对称图形.故正确;C、不是轴对称图形,不是中心对称图形.故错误;D、是轴对称图形,不是中心对称图形.故错误.故选B.点评:此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.下列分式中是最简分式的是( )A.B.C.D.考点:最简分式.分析:最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.解答:解:A、的分子、分母都不能再分解,且不能约分,是最简分式;B、;C、=;D、;故选A.点评:分式的化简过程,首先要把分子分母分解因式,互为相反数的因式是比较易忽视的问题.在解题中一定要引起注意.3.下列调查中,适合普查的是( )A.中学生最喜欢的电视节目B.某张试卷上的印刷错误C.质检部门对各厂家生产的电池使用寿命的调查D.中学生上网情况考点:全面调查与抽样调查.分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.解答:解:A、中学生最喜欢的电视节目,适于用抽样调查,故此选项不合题意;B、某张试卷上的印刷错误,适于用全面调查,故此选项符合题意;C、质检部门对各厂家生产的电池使用寿命的调查,适于用抽样调查,故此选项不合题意;D、中学生上网情况,适于用抽样调查,故此选项不合题意;故选:B.点评:本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的.对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.4.下列各式中,与是同类二次根式的是( )A.B.C.D.考点:同类二次根式.专题:计算题.分析:原式各项化简得到结果,即可做出判断.解答:解:与是同类二次根式的是=.故选D点评:此题考查了同类二次根式,熟练掌握同类二次根式的定义是解本题的关键.5.在平面中,下列说法正确的是( )A.四边相等的四边形是正方形B.四个角相等的四边形是矩形C.对角线相等的四边形是菱形D.对角线互相垂直的四边形是平行四边形考点:多边形.分析:此题根据平行四边形的判定与性质,矩形的判定,菱形的判定以及正方形的判定来分析,也可以举出反例来判断选项的正误.解答:解:A、四边相等的四边形也可能是菱形,故错误;B、四个角相等的四边形是矩形,正确;C、对角线相等的四边形不是菱形,例如矩形,等腰梯形,故此选项错误;D、对角线互相平分的四边形是平行四边形,故错误;故选:B.点评:本题考查了正方形、平行四边形、矩形以及菱形的判定.注意正方形是菱形的一种特殊情况,且正方形还是一种特殊的矩形.6.已知点P(x1,﹣2)、Q(x2,2)、R(x3,3)三点都在反比例函数y=的图象上,则下列关系正确的是( )A.x1考点:反比例函数图象上点的坐标特征.专题:计算题.分析:根据反比例函数图象上点的坐标特征,把三个点的坐标分别代入解析式计算出x1、x3、x2的值,然后比较大小即可.解答:解:∵点P(x1,﹣2)、Q(x2,2)、R(x3,3)三点都在反比例函数y=的图象上,∴x1=﹣,x2=,x3=,∴x1故选A.点评:本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.7.如图,菱形ABCD的边长为4,过点A、C作对角线AC的垂线,分别交CB和AD的延长线于点E、F,AE=3,则四边形AECF的周长为( )A.22B.18C.14D.11考点:菱形的性质;平行四边形的判定与性质.专题:几何图形问题.分析:根据菱形的对角线平分一组对角可得∠BAC=∠BCA,再根据等角的余角相等求出∠BAE=∠E,根据等角对等边可得BE=AB,然后求出EC,同理可得AF,然后判断出四边形AECF是平行四边形,再根据周长的定义列式计算即可得解.解答:解:在菱形ABCD中,∠BAC=∠BCA,∵AE⊥AC,∴∠BAC+∠BAE=∠BCA+∠E=90°,∴∠BAE=∠E,∴BE=AB=4,∴EC=BE+BC=4+4=8,同理可得AF=8,∵AD∥BC,∴四边形AECF是平行四边形,∴四边形AECF的周长=2(AE+EC)=2(3+8)=22.故选:A.点评:本题考查了菱形的对角线平分一组对角的性质,等角的余角相等的性质,平行四边形的判定与性质,熟记性质并求出EC的长度是解题的关键.8.如图,由25个点构成的5×5的正方形点阵中,横纵方向相邻的两点之间的距离都是1个单位.定义:由点阵中四个点为顶点的平行四边形叫阵点平行四边形.图中以A,B为顶点,面积为2的阵点平行四边形的个数为( )A.3B.6C.7D.9考点:平行四边形的判定.专题:新定义.分析:根据平行四边形的判定,两组对边边必须平行,可以得出上下各两个平行四边形符合要求,以及特殊四边形矩形与正方形即可得出答案.解答:解:如图所示:∵矩形AD4C1B,平行四边形ACDB,平行四边形AC1D1B,上下完全一样的各有3个,还有正方形ACBC3,还有两个以AB为对角线的平行四边形AD4BD2,平行四边形C2AC1B.∴一共有9个面积为2的阵点平行四边形.故选D.点评:此题主要考查了平行四边形的性质,以及正方形与矩形的有关知识,找出特殊正方形,是解决问题的关键.。

2022-2023学年度冀教版八年级数学下册18

2022-2023学年度冀教版八年级数学下册18

18.2抽样调查课后练习一、单选题1、为了了解某县初二28000名学生的数学学习情况,全县组织了一次数学检测,从中抽取500名考生的成绩进行统计分析,以下说法正确的是()A.这500名考生是总体的一个样本B.28000名考生的全体是总体C.每位考生的数学成绩是个体D.500名学生是样本容量2、某市有3000名初一学生参加期末考试,为了了解这些学生的数学成绩,从中抽取200名学生的数学成绩进行统计分析.在这个问题中,下列说法:①这3000名初一学生的数学成绩的全体是总体;②每个初一学生的数学成绩是个体;③200名初一学生的数学成绩是总体的一个样本;其中说法正确的是()A.3个B.2个C.1个D.0个3、下面调查方式中,合适的是()A.了解一批袋装食品是否含有防腐剂,选择全面调查方式B.神舟十四号飞船发射前的零件检查,选择抽样调查方式C.调查某新型防火材料的防火性能,采用全面调查的方式D.为有效控制“新冠疫情”的传播,对国外入境人员的健康状况,采用全面调查方式4、下列调查中,调查方式选择合理的是()A.为了了解某一品牌家具的甲醛含量,选择全面调查B.为了了解某公园的游客流量,选择抽样调查C.为了了解神舟飞船的设备零件的质量情况,选择抽样调查D.为了了解一批袋装食品是否有防腐剂,选择全面调查5、为了解某市老人的身体健康状况,需要抽取部分老人进行调查,下列抽取老人的方法最合适的是()A.随机抽取100位女性老人B.随机抽取100位男性老人C.随机抽取公园内100位老人D.在城市和乡镇各选10个点,每个点任选5位老人6、某市今年共有7万名考生参加中考,为了了解这7万名考生的数学成绩,从中抽取了1000名考生的数学成绩进行统计分析.以下说法正确的有()个.①这种调查方式是抽样调查;②7万名学生是总体;③每名学生的数学成绩是个体;④1000名学生的数学成绩是总体的一个样本;⑤1000名学生是样本容量.A.1 B.2 C.3 D.47、下列调查中,适合采用全面调查方式的是()A.市场上某食品防腐剂是否符合国家标准 B.某城市初中每周“诵读经典”时间C.疫情期间对国外入境人员的核酸检测D.对某品牌手机的防水性能的调查8、某校有3000名学生在线观看了“天宫课堂”第二课,并参加了关于“你最喜爱的太空实验”的问卷调查,从中抽取500名学生的调查情况进行统计分析,以下说法错误的是()A.3000名学生的问卷调查情况是总体B.500名学生的问卷调查情况是样本C.500名学生是样本容量D.每一名学生的问卷调查情况是个体二、填空题1、为了更好地落实双减政策要求,某中学从全校共1300名学生中随机抽取100名学生的每天课外作业负担情况进行调查,此次调查的样本容量是 _____.2、为了调查我市现在中学生的身体状况,从我校抽取100名初二学生测量了他们的体重,其中样本容量是___________3、下列调查中必须用抽样调查方式来收集数据的有________.①检查一大批灯泡的使用寿命;②调查某大城市居民家庭的收入情况;③了解全班同学的身高情况;④了解NBA各球队在2015-2016赛季的比赛结果.4、为了解“双减”后某地区七年级学生每天做家庭作业所用的时间,从该地区七年级学生中抽取1000名学生进行调查.在这个抽样调查中,样本的容量是______.5、对“神舟十三”的零部件检查的调查适合用______(填“普查”或“抽样调查”).6、想了解班上同学家里在一年内丢弃废塑料袋的个数,你认为可采用________调查合适.7、为了估计某舞蹈队100名学员的体重,从中抽取了10名学员,体重如下(单位:kg):50,49,49,51,51,48,51,50,48,51.在这次调查中,采用了____________的方式.总体是_____________,个体是______________,样本是________________,估计这100名学员的总体重是______kg.8、每年3月21日是世界睡眠日,良好的睡眠状况是保持身体健康的重要基础,为了解某校800名初一学生的睡眠时间,从中随机抽取50名学生进行调查,这次调查中样本容量为_______.三、解答题1、如果你们学校需要建造新的自行车停车棚,至少需要多大面积?解决这个问题你需要哪些数据?你准备如何收集这些数据?2、为了解全校九年级学生的身高状况,七(1)班的小明、小华、小刚三个同学分别设计了以下三个方案:小明先测量出九(1)班每个同学的身高,再计算全班同学身高的平均值,这个平均值即为全校九年级学生的平均身高;小华:到学校医务室取来全校同学2017年的体检表,从中摘录现在的九年级全体同学的身高情况并计算平均值;小刚:在全校九年级的各班中,从学号为5的倍数的同学中抽取了10名同学,测量他们的身高并计算平均值,这个平均值即为全校九年级学生的平均身高.请问:这三种调查方案中,哪种方案较好?为什么?3、学校广播站于新学期开始播音,为了了解同学们是否喜欢已播出的节目,站长对全校1600名同学进行了抽样调查.他采取的方法是利用上学和放学时间,连续一周到校门口随机对本校同学进行询问,共搜集了100份调查问卷.这是简单随机抽样吗?所得结果适用于全校同学吗?适用于全校师生吗?如果不适用,你有什么改进意见?4、调查作业:了解你所在学校学生家庭的教育消费情况.小华、小娜和小阳三位同学在同一所学校上学,该学校共有3个年级,每个年级有4个班,每个班的人数在20~30之间.为了了解该校学生家庭的教育消费情况,他们各自设计了如下的调查方案:小华:我准备给全校每个班都发一份问卷,由班长填写完成.小娜:我准备把问卷发送到随机抽取的某个班的家长微信群里,通过网络提交完成.小阳:我准备给每个班学号分别为1,5,10,15,20的同学各发一份问卷,填写完成.根据以上材料回答问题:小华、小娜和小阳三人中,哪一位同学的调查方案能较好的获得该校学生家庭的教育消费情况,并简要说明其他两位同学调查方案的不足之处.5、学校需要了解有多少学生已经患上近视,下面哪些抽样方式是合适的?说明你的理由.(1)在学校门口通过观察统计有多少学生佩戴眼镜;(2)在低年级学生中随机抽取一个班进行调查;(3)从每个年级的每个班级都随机抽取几个学生进行调查.。

2024年北师大版八年级上数学教学工作计划(五篇)

2024年北师大版八年级上数学教学工作计划(五篇)

2024年北师大版八年级上数学教学工作计划为了不断提升个人素养和职业能力,本人在职业行为和教学实践中采取了以下措施:在职业道德和理论修养方面,本人致力于深入学习与提高。

通过对教师职业道德规范的深入研究,不断地提升自身的道德水平和政治理论素养;针对新课程改革的理念与理论,积极地学习并努力应用于业务能力提升,从而为教学理念的更新和教学方法的改进奠定了坚实基础。

在遵守工作纪律方面,本人严格要求自己,始终遵循学校规章制度,确保工作秩序和效率。

在师德方面,本人关爱学生,杜绝了体罚和变相体罚的行为,建立了和谐的师生关系,并在学生中树立了良好的榜样。

进一步,为了提升课堂教学的效果,本人在教学常规的各个环节上进行了加强:课前,深入研究教材,掌握重点与难点,同时充分了解学生的学习基础,实现教材与学生的双备;课堂上,运用多样化的教学手段,调动学生的学习兴趣,注重教学质量;课后,及时批改作业,对学习有困难的学生提供额外的辅导,确保教学工作的连贯性和有效性。

本人在教研活动方面也做出了积极的努力,参与了省级和县级的教研课题,撰写了相关教学文档和论文,不断总结和提升教学实践经验,并在课堂教学中实践新的教学理念,推广有效的教学方法,致力于学生全面而持续的发展。

在自我反思与未来规划方面,本人正视存在的问题,比如在期末考试成绩与其他平行班存在差距,进行了深刻的自我反思,并分析了原因:对学生的基础知识训练不足,知识点落实不到位,对学困生的教育缺乏持续性,以及在教学中的投入不够等。

针对这些问题,本人制定了下学期的改进措施:进一步提升对新课程改革的理解,提高课堂教学效率;加强知识点掌握的检查与落实;加强学生的阅读训练和思维拓展;采取有效措施加强学生学习和知识点的训练;强化班级管理和教育,尤其加强与班主任的沟通合作,共同解决班级学风和班风问题。

通过这一系列的努力,本人将持续在教育教学的道路上不断探索和进步,为培养德才兼备的学生贡献自己的力量。

人教版八年级数学下册优秀作业设计案例

人教版八年级数学下册优秀作业设计案例

人教版八年级数学下册优秀作业设计案例矩形的定义和性质一、设计内容:人教版八年级下册第十八章18.2.1矩形二、设计类型:知识性作业设计三、目标【基本目标】1.理解矩形的概念,明确矩形与平行四边形的区别和联系.2.探索并证明矩形的性质,会用矩形的性质解决简单的问题.3.探索并掌握“直角三角形斜边上的中线等于斜边的一半”这个定理.【提升目标】4.经历对矩形性质的理性思辨和整理归纳的过程,形成对矩形性质的完整认识,明确性质的条件和结论,能在不同情境和复杂问题中,综合运用矩形的性质解决相关问题.四、设计方案:(一)教学设计简述1.教学流程简述:回顾旧知:回顾平行四边形的定义和性质(边、角、对角线)得出概念:利用教具,根据平行四边形不具有稳定性,拉动平行四边形引出矩形的概念.探究性质:根据矩形是特殊的平行四边形,从而类比平行四边形探究矩形的性质(边、角、对角线、对称性)斜边中线定理:根据矩形对角线的性质引出直角三角形的定理.运用新知:先做一些简单的选择、填空练习(3-6个),再做综合性较强的例题(1-2个).2.课堂重要例题再现例1.如图1,在矩形ABCD中,AE⊥BD于点E.(1)若∠DAE=2∠BAE,求∠EAC;(2)若BE:ED=1:3,AB=1,求AD.【分析】(1)由矩形的性质得出AO=OD,得出∠OAD=∠ODA,证∠BAE=30°,∠DAE=60°,得出∠OAD=∠ODA=30°,进而得出答案;(2)证出△AOB是等边三角形,得出OB=AB=1,BD=2OB=2,由勾股定理求出AD即可.例2.如图2,在△ABC中,BD⊥AC于点D,CE⊥AB于点E,点M,N分别是BC,DE的中点.(1)求证:MN⊥DE;(2)若∠A=60°,连接EM,DM,判断△EDM的形状,并说明理由.【分析】(1)根据直角三角形斜边上的中线等于斜边的一半可得MD=ME再根据等腰三角形三线合一的性质证明即可;(2)根据等腰三角形两底角相等求出∠BME+∠CMD,然后求出∠DME=60°,再根据等边三角形的判定方法解答。

初二数学代数方程计算题及答案

初二数学代数方程计算题及答案

初二数学代数方程计算题及答案
这份文档包含了一些初二数学代数方程的计算题及其答案。

以下是题目及解答的详细内容:
题目一:
解方程:3x + 7 = 22
解答一:
我们需要将这个方程转化为x的形式,从而求得x的值。

首先,我们将方程进行一系列变换,以消除7的影响:
3x + 7 - 7 = 22 - 7
得到:
3x = 15
然后,我们继续变换方程,以求得x的值:
x = 15 ÷ 3
计算后得到:
x = 5
所以,方程3x + 7 = 22 的解为 x = 5。

题目二:
解方程:2(x - 3) = 10
解答二:
与上题类似,我们需要将这个方程转化为x的形式,从而求得x的值。

首先,我们将方程进行一系列变换:
2(x - 3) = 10
2x - 6 = 10
然后,我们继续变换方程,以求得x的值:2x = 10 + 6
2x = 16
x = 16 ÷ 2
计算后得到:
x = 8
所以,方程2(x - 3) = 10 的解为 x = 8。

题目三:
解方程:4x + 3 = 19
解答三:
同样地,我们需要将这个方程转化为x的形式,从而求得x的值。

我们进行一系列变换:
4x + 3 - 3 = 19 - 3
4x = 16
然后,我们继续变换方程:
x = 16 ÷ 4
计算后得到:
x = 4
所以,方程4x + 3 = 19 的解为 x = 4。

以上是初二数学代数方程的计算题及其答案。

希望对你有帮助!。

专题数据的分析(中考真题专练)(巩固篇)(专项练习)八年级数学下册基础知识专项讲练

专题数据的分析(中考真题专练)(巩固篇)(专项练习)八年级数学下册基础知识专项讲练

专题20.8 数据的分析(中考真题专练)(巩固篇)(专项练习)一、单选题(2022·内蒙古鄂尔多斯·统考中考真题)1. 一组数据2,4,5,6,5.对该组数据描述正确的是( )A. 平均数是4.4B. 中位数是4.5C. 众数是4D. 方差是9.2(2022·黑龙江齐齐哈尔·统考中考真题)2. 数据1,2,3,4,5,x 存在唯一众数,且该组数据的平均数等于众数,则x 的值为( )A. 2B. 3C. 4D. 5(2022·内蒙古赤峰·统考中考真题)3. 下列说法正确的是( )A. 调查某班学生的视力情况适合采用随机抽样调查的方法B. 声音在真空中传播的概率是100%C. 甲、乙两名射击运动员10次射击成绩的方差分别是2 2.4s =甲,2 1.4s =乙,则甲的射击成绩比乙的射击成绩稳定D. 8名同学每人定点投篮6次,投中次数统计如下:5,4,3,5,2,4,1,5,则这组数据的中位数和众数分别是4和5(2022·江苏镇江·统考中考真题)4. 第1组数据为:0、0、0、1、1、1,第2组数据为:00,0,,0m 个、11,1,,1n 个,其中m 、n 是正整数.下列结论:①当m n =时,两组数据的平均数相等;②当m n >时,第1组数据的平均数小于第2组数据的平均数;③当m n <时,第1组数据的中位数小于第2组数据的中位数;④当m n =时,第2组数据的方差小于第1组数据的方差.其中正确的是( )A. ①②B. ①③C. ①④D. ③④(2022·辽宁抚顺·统考中考真题)5. 甲、乙两人在相同的条件下各射击10次,将每次命中的环数绘制成如图所示统计图.根据统计图得出的结论正确的是()A. 甲的射击成绩比乙的射击成绩更稳定B. 甲射击成绩的众数大于乙射击成绩的众数C. 甲射击成绩的平均数大于乙射击成绩的平均数D. 甲射击成绩的中位数大于乙射击成绩的中位数(2019·湖北恩施·统考中考真题)6. 某中学规定学生的学期体育成绩满分为100分,其中早锻炼及体育课外活动占20%,期中考试成绩占30%,期末考试成绩占50%.小桐的三项成绩(百分制)依次为95,90,85.则小桐这学期的体育成绩是()A. 88.5B. 86.5C. 90D. 90.5(2022·辽宁锦州·中考真题)7. 某校开展安全知识竞赛,进入决赛的学生有20名,他们的决赛成绩如下表所示:决赛成绩/分100999897人数3764则这20名学生决赛成绩的中位数和众数分别是()A. 98,98B. 98,99C. 98.5,98D. 98.5,99(2022·山东济宁·统考中考真题)8. 某班级开展“共建书香校园”读书活动.统计了1至7月份该班同学每月阅读课外书的本数,并绘制出如图所示的折线统计图.则下列说法正确的是()A. 从2月到6月,阅读课外书的本数逐月下降B. 从1月到7月,每月阅读课外书本数的最大值比最小值多45C. 每月阅读课外书本数的众数是45D. 每月阅读课外书本数的中位数是58(2020·四川·统考中考真题)9. 某商场销售A,B,C,D四种商品,它们的单价依次是50元,30元,20元,10元.某天这四种商品销售数量的百分比如图所示,则这天销售的四种商品的平均单价是( )A. 19.5元B. 21.5元C. 22.5元D. 27.5元(2021·内蒙古呼和浩特·统考中考真题)10. 以下四个命题:①任意三角形的一条中位线与第三边上的中线互相平分;②A,B,C,D,E,F六个足球队进行单循环赛,若A,B,C,D,E分别赛了5,4,3,2,1场,则由此可知,还没有与B队比赛的球队可能是D队;③两个正六边形一定位似;④有13人参加捐款,其中小王的捐款数比13人捐款的平均数多2元,则小王的捐款数不可能最少,但可能只比最少的多.比其他的都少.其中真命题的个数有()A. 1个B. 2个C. 3个D. 4个二、填空题(2019·山东青岛·统考中考真题)11. 射击比赛中,某队员10 次射击成绩如图所示,则该队员的平均成绩是__________环.(2020·四川·统考中考真题)12. 小明在体考时选择了投掷实心球,如图是体育老师记录的小明在训练时投掷实心球的6次成绩的折线统计图,这6次成绩的中位数是_____.(2019·四川巴中·统考中考真题)13. 如果一组数据为4、a、5、3、8,其平均数为a,那么这组数据的方差为_______.(2019·四川·统考中考真题)14. 在一次12人参加的数学测试中,得100分、95分、90分、85分、75分的人数分别为1、3、4、2、2,那么这组数据的众数是_____.(2018·浙江丽水·中考真题)15. 如图是我国2013~2017年国内生产总值增长速度统计图,则这5年增长速度的众数是_____.(2021·贵州铜仁·统考中考真题)16. 若甲、乙两人射击比赛的成绩(单位:环)如下:甲:6,7,8,9,10;乙:7,8,8,8,9.则甲、乙两人射击成绩比较稳定的是______________(填甲或乙);(2019·广西柳州·统考中考真题)17. 已知一组数据共有5个数,它们的方差是0.4,众数、中位数和平均数都是8,最大的数是9,则最小的数是_____.(2017·重庆·中考真题)18. 某同学在体育训练中统计了自己五次“1分钟跳绳”成绩,并绘制了如图所示的折线统计图,这五次“1分钟跳绳”成绩的中位数是__________个.三、解答题(2022·江苏南通·统考中考真题)19. 为了了解八年级学生本学期参加社会实践活动的天数情况,A,B两个县区分别随机抽查了200名八年级学生.根据调查结果绘制了统计图表,部分图表如下:A,B两个县区的统计表平均数众数中位数A县3.8533区B县3.854 2.5区(1)若A县区八年级共有约5000名学生,估计该县区八年级学生参加社会实践活动不少于3天的学生约为___________名;(2)请对A,B两个县区八年级学生参加社会实践活动的天数情况进行比较,做出判断,并说明理由.(2022·江苏盐城·统考中考真题)20. 合理的膳食可以保证青少年体格和智力的正常发育.综合实践小组为了解某校学生膳食营养状况,从该校1380名学生中调查了100名学生的膳食情况,调查数据整理如下:中国营养学会推荐的三大营养素供能比参考值蛋白质10%~15%脂肪20%~30%碳水化合物50%~65%注:供能比为某物质提供的能量占人体所需总能量的百分比.(1)本次调查采用___________的调查方法;(填“普查”或“抽样调查”)(2)通过对调查数据的计算,样本中的蛋白质平均供能比约为14.6%,请计算样本中的脂肪平均供能比和碳水化合物平均供能比;(3)结合以上的调查和计算,对照下表中的参考值,请你针对该校学生膳食状况存在的问题提一条建议.(2022·山东聊城·统考中考真题)21. 为庆祝中国共产主义青年团成立100周年,学校团委在八、九年级各抽取50名团员开展团知识竞赛,为便于统计成绩,制定了取整数的计分方式,满分10分.竞赛成绩如图所示:众数中位数方差八年级竞赛成绩78 1.88九年级竞赛成绩a8b(1)你能用成绩的平均数判断哪个年级的成绩比较好吗?通过计算说明;(2)请根据图表中的信息,回答下列问题.①表中的=a______,b=______;②现要给成绩突出的年级颁奖,如果分别从众数和方差两个角度来分析,你认为应该给哪个年级颁奖?(3)若规定成绩10分获一等奖,9分获二等奖,8分获三等奖,则哪个年级的获奖率高?(2021·广西桂林·统考中考真题)22. 某班为了从甲、乙两名同学中选出一名同学代表班级参加学校的投篮比赛,对甲、乙两人进行了5次投篮试投比赛,试投每人每次投球10个.两人5次试投的成绩统计图如图所示.(1)甲同学5次试投进球个数的众数是多少?(2)求乙同学5次试投进球个数的平均数;(3)不需计算,请根据折线统计图判断甲、乙两名同学谁的投篮成绩更加稳定?(4)学校投篮比赛的规则是每人投球10个,记录投进球的个数.由往届投篮比赛的结果推测,投进8个球即可获奖,但要取得冠军需要投进10个球.请你根据以上信息,从甲、乙两名同学中推荐一名同学参加学校的投篮比赛,并说明推荐的理由.(2013·江西·中考真题)23. 生活中很多矿泉水没有喝完便被扔掉,造成极大的浪费,为此数学兴趣小组的同学对某单位的某次会议所用矿泉水的浪费情况进行调查,为期半天的会议中,每人发一瓶500ml的矿泉水,会后对所发矿泉水喝的情况进行统计,大至可分为四种:A:全部喝完;B:喝剩约13;C:喝剩约一半;D:开瓶但基本未喝.同学们根据统计结果绘制如下两个统计图,根据统计图提供的信息,解答下列问题:(1)参加这次会议的有多少人?在图(2)中D 所在扇形的圆心角是多少度?并补全条形统计图;(计算结果请保留整数).(2)若开瓶但基本未喝算全部浪费,试计算这次会议平均每人浪费的矿泉水约多少毫升?(3)据不完全统计,该单位每年约有此类会议60次,每次会议人数约在40至60人之间,请用(2)中计算的结果,估计该单位一年中因此类会议浪费的矿泉水(500ml/瓶)约有多少瓶?(可使用科学计算器)(2022·湖北襄阳·统考中考真题)24. 在“双减”背景下,某区教育部门想了解该区A ,B 两所学校九年级各500名学生的课后书面作业时长情况,从这两所学校分别随机抽取50名九年级学生的课后书面作业时长数据(保留整数),整理分析过程如下:【收集数据】A 学校50名九年级学生中,课后书面作业时长在70.5≤x <80.5组的具体数据如下:74,72,72,73,74,75,75,75,75,75,75,76,76,76,77,77,78,80【整理数据】不完整的两所学校的频数分布表如下,不完整的A 学校频数分布直方图如图所示:组别50.5≤x <60.560.5≤x <70.570.5≤x <80.580.5≤x <90.590.5≤x <100.5A 学515x84校B学71012174校【分析数据】两组数据的平均数、众数、中位数、方差如下表:特征数平均数众数中位数方差A学校7475y127.36B学校748573144.12根据以上信息,回答下列问题:(1)本次调查是 调查(选填“抽样”或“全面”);(2)统计表中,x= ,y= ;(3)补全频数分布直方图;(4)在这次调查中,课后书面作业时长波动较小的是 学校(选填“A”或“B”);(5)按规定,九年级学生每天课后书面作业时长不得超过90分钟,估计两所学校1000名学生中,能在90分钟内(包括90分钟)完成当日课后书面作业的学生共有 人.专题20.8 数据的分析(中考真题专练)(巩固篇)(专项练习)一、单选题(2022·内蒙古鄂尔多斯·统考中考真题)【1题答案】【答案】A 【解析】【分析】将数据按照从小到大重新排列,再根据众数、中位数、算术平均数的定义计算,最后利用方差的概念计算可得.【详解】解: A 、平均数为245565++++=4.4,故选项正确,符合题意;B 、中位数为5,故选项错误,不符合题意;C 、将这组数据重新排列为2,4,5,5,6,所以这组数据的众数为5,故选项错误,不符合题意;D 、方差为15⨯[(2﹣4.4)2+(4﹣4.4)2+2×(5﹣4.4)2+(6﹣4.4)2]=1.84,故选项错误,不符合题意.故选:A .【点睛】本题主要考查方差,众数,中位数,算术平均数,解题的关键是掌握众数、中位数、算术平均数及方差的定义.(2022·黑龙江齐齐哈尔·统考中考真题)【2题答案】【答案】B 【解析】【分析】由题意知,该组数据的平均数为123451566x x++++++=,且3x +是6的倍数,然后根据题意求解即可.【详解】解:由题意知,该组数据的平均数为123451532666x x x+++++++==+,∴3x +是6的倍数,且x 是1-5中的一个数,解得3x =,则平均数是3.故选B .【点睛】本题考查了平均数与众数.解题的关键在于熟练掌握众数与平均数的定义与求解.(2022·内蒙古赤峰·统考中考真题)【3题答案】【答案】D 【解析】【分析】根据普查、抽查、概率、方差、中位数和众数的定义,分别对每个选项进行判断,即可得到答案.【详解】解:A 、调查某班学生的视力情况适合采用普查的方法,故A 不符合题意;B 、声音在真空中传播的概率是0,故B 不符合题意;C 、甲、乙两名射击运动员10次射击成绩的方差分别是2 2.4s =甲,21.4s =乙,则乙的射击成绩比甲的射击成绩稳定;故C 不符合题意;D 、8名同学每人定点投篮6次,投中次数统计如下:5,4,3,5,2,4,1,5,则这组数据的中位数和众数分别是4和5;故D 符合题意;故选:D【点睛】本题考查了全面调查与抽样调查,中位数、众数、方差和概率的意义,理解各个概念的内涵是正确判断的前提.(2022·江苏镇江·统考中考真题)【4题答案】【答案】B 【解析】【分析】根据平均数、中位数、方差的求法分别求解后即可进行判断.【详解】解:①第1组数据的平均数为:0001110.56+++++=,当m =n 时,第2组数据的平均数为:010.52m n mm n m ⨯+⨯==+,故①正确;②第1组数据的平均数为:0001110.56+++++=,当m n >时,m +n >2n ,则第2组数据的平均数为:01=0.52m n n nm n m n n⨯+⨯<=++,∴第1组数据的平均数大于第2组数据的平均数;故②错误;③第1组数据的中位数是010.52+=,当m n <时,若m +n 是奇数,则第2组数据的中位数是1;当m n <时,若m +n 是奇数,则第2组数据的中位数是1112+=;即当m n <时,第2组数据的中位数是1,∴当m n <时,第1组数据的中位数小于第2组数据的中位数;故③正确;④第1组数据的方差为()()2200.5310.530.256-⨯+-⨯=,当m n =时,第2组数据的方差为()()2200.510.5m nm n-⨯+-⨯+,0.250.252m mm+=0.25=,∴当m n =时,第2组数据的方差等于第1组数据的方差.故④错误,综上所述,其中正确的是①③;故选:B【点睛】此题考查了平均数、中位数、方差的求法,熟练掌握求解方法是解题的关键.(2022·辽宁抚顺·统考中考真题)【5题答案】【答案】A 【解析】【分析】根据统计图上数据的变化趋势,逐项分析即可得出结论.【详解】解:A 、甲的成绩在6环上下浮动,变化较小,乙的成绩变化大,所以,甲的射击成绩比乙的射击成绩更稳定,此选项正确,符合题意;B、甲射击成绩的众数是6(环),乙射击成绩的众数是9(环),所以,甲射击成绩的众数小于乙射击成绩的众数,此选项错误,不符合题意;C、甲射击成绩的平均数是52+66+72=610⨯⨯⨯(环),乙射击成绩的平均数是3+4+5+6+7+8+93+10=710⨯(环),所以,甲射击成绩的平均数小于乙射击成绩的平均数,此选项错误,不符合题意;D、甲射击成绩的中位数是6(环),乙射击成绩的中位数是7+8=7.52(环),所以,甲射击成绩的中位数小于乙射击成绩的中位数,此选项错误,不符合题意;故选:A【点睛】本题主要考查了数据的稳定性,众数,平均数和中位数,熟练掌握相关知识是解答本题的关键.(2019·湖北恩施·统考中考真题)【6题答案】【答案】A【解析】【分析】根据加权平均数的计算公式,用95分,90分,85分别乘以它们的百分比,再求和即可.【详解】根据题意得:95×20%+90×30%+85×50%=88.5(分),即小彤这学期的体育成绩为88.5分.故选A.【点睛】本题考查了加权平均数的计算,熟练掌握公式是解题关键.(2022·辽宁锦州·中考真题)【7题答案】【答案】D【解析】【分析】根据众数,中位数的定义计算选择即可.【详解】∵99出现的次数最多,7次,∴众数为99;∵中位数是第10个,11个数据的平均数即999898.52+=,故选D.【点睛】本题考查了中位数将一组数据按大小依次排列,把处在最中间位置的一个数(或最中间位置的两个数的平均数),众数在一组数据中出现次数最多的数据,熟练掌握定义是解题的关键.(2022·山东济宁·统考中考真题)【8题答案】【答案】D【解析】【分析】根据折线统计图的变化趋势即可判断A,根据折线统计图中的数据以及众数的定义,中位数的定义即可判断B,C,D选项.【详解】A.从2月到6月,阅读课外书的本数有增有降,故该选项不正确,不符合题意;B.从1月到7月,每月阅读课外书本数的最大值为78比最小值28多50,故该选项不正确,不符合题意;C. 每月阅读课外书本数的众数是58,故该选项不正确,不符合题意;D.这组数据为:28,33,45,58,58,72,78,则每月阅读课外书本数的中位数是58,故该选项正确,符合题意;故选D【点睛】本题考查了折线统计图,求极差,求中位数,从统计图获取信息是解题的关键.(2020·四川·统考中考真题)【9题答案】【答案】C【解析】【分析】根据加权平均数定义即可求出这天销售的四种商品的平均单价.【详解】这天销售的四种商品的平均单价是:50×10%+30×15%+20×55%+10×20%=22.5(元),故选:C .【点睛】本题考查了加权平均数的求法,是统计和概率部分的简单题型,根据各单价分别乘以所占百分比即可获得平均单价.(2021·内蒙古呼和浩特·统考中考真题)【10题答案】【答案】B 【解析】【分析】①根据三角形中位线、中线的性质,结合平行四边形的判定与性质解题;②由单循环赛对A 队,E 队进行推理即可;③根据正六边形的性质、位似的定义解题;④由平均数定义解题.【详解】解:①如图,AD 是ABC 的中线,EF 是ABC 的中位线,连接ED FD 、,由中位线定义可知,//,//ED AF FD AE∴四边形AEDF 是平行四边形∴对角线AD EF 、互相平分,故①正确;②由单循环比赛可知,每支队伍最多赛5场,A 队已经赛5场,即每支队伍都与A 队比赛过,而E 队只比赛1场,据此可知,E 队没有与B 对比赛过,故②错误;③两个正六边形不一定位似,没有确定位似中心,只能是相似的,故③错误;④小王的捐款数比他所在学习小组中13人捐款的平均数多2元,小王的捐款数不会是最少的,捐款数可能最多,也可正确在第12位,故原命题正确,是真命题,符合题意B 故④正确,其中真命题的个数有①④,2个,故选:B.【点睛】本题考查中位线、中线的性质,简单推理、位似、正六边形的性质、平均数的应用等知识,是基础考点,难度较易,掌握相关知识是解题关键.二、填空题(2019·山东青岛·统考中考真题)【11题答案】【答案】8.5【解析】【分析】由加权平均数公式即可得出结果.【详解】该队员的平均成绩为110(1×6+1×7+2×8+4×9+2×10)=8.5(环);故答案为8.5.【点睛】本题考查了加权平均数和条形统计图;熟练掌握加权平均数的计算公式是解决问题的关键.(2020·四川·统考中考真题)【12题答案】【答案】9.75【解析】【分析】将这组数有小到大排列,因为共有6个数,所以中位数为第3、4个数的平均数.【详解】由6次成绩的折线统计图可知:这6次成绩从小到大排列为:9.5,9.6,9.7,9.8,10,10.2,所以这6次成绩的中位数是:9.79.82=9.75.故答案为:9.75.【点睛】本题考查了中位数的定义,根据中位数定义:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.(2019·四川巴中·统考中考真题)【13题答案】【答案】145.【解析】【分析】先根据平均数的定义确定出a 的值,再根据方差公式进行计算即可求出答案.【详解】解:根据题意,得:45385a a ++++=,解得:5a =,则这组数据为4、5、5、3、8,其平均数是5,所以这组数据的方差为22222114(45)(55)(55)(35)(85)55⎡⎤⨯-+-+-+-+-=⎣⎦,故答案为145.【点睛】此题考查了平均数和方差的定义.平均数是所有数据的和除以数据的个数.方差是一组数据中各数据与它们的平均数的差的平方的平均数.(2019·四川·统考中考真题)【14题答案】【答案】90分.【解析】【分析】根据众数的定义求解可得.【详解】众数是指一组 数据中出现次数最多的数据,90分的有4人,次数最多;故答案为90分.【点睛】本题主要考查众数,求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.(2018·浙江丽水·中考真题)【15题答案】【答案】6.9%【解析】【分析】根据众数的概念判断即可.【详解】这5年增长速度分别是7.8%、7.3%、6.9%、6.7%、6.9%,则这5年增长速度的众数是6.9%,故答案为6.9%.【点睛】本题考查的是众数的确定,掌握一组数据中出现次数最多的数据叫做众数是解题的关键.(2021·贵州铜仁·统考中考真题)【16题答案】【答案】乙【解析】【分析】分别计算甲乙二人成绩的方差,比较方差,较小的比较稳定即可求解.【详解】解:甲乙二人的平均成绩分别为:678910==85x ++++甲,78889==85x ++++乙,∴二人的方差分别为:()()()()()22222268788898108==25S -+-+-+-+-甲()()()()()22222278888888982==55S -+-+-+-+-乙,∵22S S 乙甲>,乙的成绩比较稳定.故答案为:乙【点睛】本题考查了方差的计算和根据方差判断数据的稳定性,正确求出方差是解题关键.(2019·广西柳州·统考中考真题)【17题答案】【答案】7【解析】【分析】根据5个数的平均数是8,可知这5个数的和为40,根据5个数的中位数是8,得出中间的数是8,根据众数是8,得出至少有2个8,再根据5个数的和减去2个8和1个9得出前面2个数的和为15,再根据方差得出前面的2个数为7和8,即可得出结果.【详解】解:∵5个数的平均数是8,∴这5个数的和为40,∵5个数的中位数是8,∴中间的数是8,∵众数是8,∴至少有2个8,---=,∵4088915由方差是0.4得:前面的2个数的为7和8,∴最小的数是7;故答案为7..【点睛】本题考查了方差、平均数、中位数、众数;熟练掌握方差、平均数、中位数、众数的定义是解题的关键.(2017·重庆·中考真题)【18题答案】【答案】183.【解析】【详解】解:由图可知,把数据从小到大排列的顺序是:180、182、183、185、186,中位数是183.故答案为183.【点睛】本题考查折线统计图;中位数.三、解答题(2022·江苏南通·统考中考真题)【19题答案】【答案】(1)3750(2)见详解【解析】【分析】(1)根据A县区统计图得不小于三天的比例,根据总数乘以比例即可得到答案;(2)根据平均数、中位数和众数的定义进行比较即可.【小问1详解】解:根据A县区统计图得,该县区八年级学生参加社会实践活动不少于3天的比例为:30%25%15%5%75%+++=,∴该县区八年级学生参加社会实践活动不少于3天的学生约为:⨯=名,500075%3750故答案为:3750;【小问2详解】∵A县区和B县区的平均活动天数均为3.85天,∴A县区和B县区的平均活动天数相同;∵A县区的中位数是3,B县区的中位数是2.5,∴B县区参加社会实践活动小于3天的人数比A县区多,从中位数看,A县区要好;∵A县区的众数是3,B县区的众数是4,∴A县区参加社会实践人数最多的是3天,B县区参加社会实践人数最多的是4天,从众数看,B县区要好.【点睛】本题考查数据统计、平均数、中位数和众数,解题的关键是熟练掌握扇形统计图、平均数、中位数和众数的相关知识.(2022·江苏盐城·统考中考真题)【20题答案】【答案】(1)抽样调查(2)样本中的脂肪平均供能比为38.59%,碳水化合物平均供能比为46.825% (3)答案见解析【解析】【分析】(1)由全面调查与抽样调查的含义可得答案;(2)利用加权平均数公式可得:求解三个年级的人数分别乘以各自的平均供能比的和,再除以总人数即可得到整体的平均数;(3)结合中国营养学会推荐的三大营养素供能比参考值,把求解出来的平均值与标准值进行比较可得:蛋白质平均供能比在合理的范围内,脂肪平均供能比高于参考值,碳水化合物供能比低于参考值,再提出合理建议即可.【小问1详解】解:由该校1380名学生中调查了100名学生的膳食情况,可得:本次调查采用抽样的调查方法;故答案为:抽样【小问2详解】样本中所有学生的脂肪平均供能比为3536.6%2540.4%4039.2%100%38.59%352540⨯+⨯+⨯⨯=++,样本中所有学生的碳水化合物平均供能比为3548.0%2544.1%4047.5%100%46.825%352540⨯+⨯+⨯⨯=++.答:样本中的脂肪平均供能比为38.59%,碳水化合物平均供能比为46.825%.【小问3详解】该校学生蛋白质平均供能比在合理的范围内,脂肪平均供能比高于参考值,碳水化合物供能比低于参考值,膳食不合理,营养搭配不均衡,建议增加碳水化合物的摄入量,减少脂肪的摄人量.(答案不唯一,建议合理即可)【点睛】本题考查的是全面调查与抽样调查的含义,加权平均数的计算,利用平均数作决策,掌握“计算加权平均数的方法”是解本题的关键.(2022·山东聊城·统考中考真题)【21题答案】【答案】(1)无法判断,计算见解析(2)①8,1.56;②给九年级颁奖(3)九年级获奖率高【解析】【分析】(1)分别求出两个年级的平均数即可;(2)①分别根据众数和方差的定义解答即可;②根据两个年级众数和方差解答即可;(3)根据题意列式计算即可.【小问1详解】解:无法判断,计算如下:由题意得:八年级成绩的平均数是:(6×7+7×15+8×10+9×7+10×11)÷50=8(分),九年级成绩的平均数是:(6×8+7×9+8×14+9×13+10×6)÷50=8(分),故用平均数无法判定哪个年级的成绩比较好;【小问2详解】解:①九年级竞赛成绩中8分出现的次数最多,故众数a =8分;九年级竞赛成绩的方差为:()()()()()2222221868978148813986108 1.5650s ⎡⎤=⨯⨯-+⨯-+⨯-+⨯-+⨯-=⎣⎦,故答案为:8;1.56;②如果从众数角度看,八年级的众数为7分,九年级的众数为8分,所以应该给九年级颁奖;如果从方差角度看,八年级的方差为1.88,九年级的方差为1.56,又因为两个年级的平均数相同,九年级的成绩的波动小,所以应该给九年级颁奖,故如果分别从众数和方差两个角度来分析,应该给九年级颁奖;【小问3详解】解:八年级的获奖率为:(10+7+11)÷50=56%,九年级的获奖率为:(14+13+6)÷50=66%,∵66%>56%,∴九年级的获奖率高.【点睛】本题主要考查了中位数、众数、方差以及加权平均数,掌握各个概念和计算方法是解题的关键.(2021·广西桂林·统考中考真题)【22题答案】【答案】(1)众数是8个,(2)8x =个;(3)甲投篮成绩更加稳定;(4)推荐乙参加投篮比赛,理由见解析.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档