石油烃降解菌Rhodococcus sp.15—3的分离鉴定及特性研究

合集下载

石油降解菌株的筛选 鉴定及其石油降解特性的初步研究

石油降解菌株的筛选 鉴定及其石油降解特性的初步研究

(2)pH值对菌株降解效率的影响:在pH值为7.0时,菌株X的降解效率最高, 达到60%以上。当pH值偏离7.0时,其降解效率明显下降。
(3)盐度对菌株降解效率的影响:在低盐度条件下,菌株X的降解效率较高。 随着盐度的增加,其降解效率逐渐降低。当盐度超过5%时,其降解效率显著下降。
(4)产物分析:利用GC-MS等技术,我们对菌株X降解石油烃的产物进行了 分析。结果显示,菌株X能够将石油烃主要降解为脂肪酸、酚类化合物等中间产 物。这些中间产物在进一步降解过程中转化为二氧化碳和水,从而实现石油烃的 生物修复。
2、筛选流程:首先,采集油污土壤和石油废水样品,进行富集培养;其次, 通过初筛和复筛,获得具有较强石油降解能力的菌株;最后,通过形态学和分子 生物学鉴定,确定菌株种类。
3、鉴定步骤:将筛选得到的菌株进行16S rDNA分子鉴定,利用细菌分类学 软件进行比对分析,最终确定菌株的种属。
4、石油降解特性分析:采用液体培养法测定菌株的石油降解能力,通过测 定不同时间点石油烃类物质的含量,计算菌株的降解速率和降解效率。
1、菌株筛选
从石油烃污染地区采集土壤样品,采用富集培养法,经过多步筛选,获得具 同温度、pH值、盐度等条件下,对菌株降解石油烃的能力进行测定。通 过改变环境因素,观察其对菌株降解效率的影响。同时,利用气相色谱-质谱联 用(GC-MS)等技术,对菌株降解的产物进行分析。
参考内容
一、引言
石油烃是石油和天然气的主要成分,它们在自然环境中的存在和降解对全球 碳循环和环境生态有着重要影响。厌氧降解菌在石油烃的降解过程中扮演着关键 角色。本次演示旨在筛选出具有高效石油烃厌氧降解能力的菌株,并对其降解特 性进行研究,以期为石油烃污染的生物修复提供理论依据。
二、材料与方法

生物法脱除煤中有机硫的研究进展

生物法脱除煤中有机硫的研究进展

生物法脱除煤中有机硫的研究进展论文作者:彭娟杨骥郭锐贾金平王亚林摘要:回顾了生物法脱除煤中有机硫的研究历史,综述了脱有机硫菌种的筛选、分离、性质测定与鉴定等的常用方法,同时阐述了近几年来在分子生物学和酶学方面取得的重大进展,并对一些处于研究阶段的工艺进行了简要介绍,最后提出了生物法脱除煤中有机硫现在所面临的主要问题,并对今后的发展方向进行了展望。

关键词:生物脱硫煤有机硫二苯并噻吩煤作为一种十分重要的化石能源被广泛使用。

我国是一个产煤大国,煤是我国的能源支柱。

然而,我国煤炭中高硫煤的储量很大,我国各大煤区煤田中含硫2.0%以上的高硫煤中有机硫所占的比例如表1所示。

在高硫煤中,有机硫占煤层煤样储量全硫的34%~40%[1]。

燃煤也带来了严重的污染。

我国城市降水中SO42-含量高于外国,酸雨现象十分严重[2]。

表1 我国高硫煤中有机硫的分布[1]煤中的硫可分为无机硫和有机硫两大类,无机硫的脱除已经非常成熟,而煤中有机硫主要以硫醇硫、硫醚硫和噻吩硫的形式存在,因其复杂的结构,尚无工业化的技术,它的脱除则是目前研究的重点[3]。

煤中有机硫的脱除技术有主要有物理法、化学法及生物法三种。

物理法对有机硫的脱除效率几乎为零,化学法是目前应用的主要方法,但是很难分解其中的噻吩硫,而且在较强的反应条件下,煤的结构会被破坏,造成比较大的热值损失。

煤的生物脱硫是由生物湿法冶金技术发展而来的,它是利用微生物代谢过程中的氧化还原反应,在常压低于100 ℃的生长条件下,达到脱硫的目的,因此能耗较低。

生物法因其成本低,反应条件温和,反应专一,且环境友好,已经得到广泛的重视与研究。

二苯并噻吩(Dibenzothiophene,DBT)是化石燃料中难降解有机硫化物的典型代表,因此常将其作为模型有机硫化物,以它作为唯一的硫源来筛选富集具有脱除煤中有机硫能力的微生物。

1 微生物脱除煤中有机硫的历史进展1950年第一件石油生物脱硫专利[4]在美国公布,生物法脱硫技术的研究自此以后广泛地开展起来。

石油降解菌的分离与鉴定

石油降解菌的分离与鉴定

状, 经过分 离、 筛选、 复筛 , 从大港油 田的石油 污染土壤 中富集分 离、 选 出 2株石 油降解 菌, 优 并进 一步研 究了 2株 菌 的生理生化特性. 菌株鉴 定结果表明 , 菌株 D — B l属于假 单胞杆菌属 , 菌株 D F一1 于曲霉 菌属 . 属 关键词 : 石油 ;石油污染土壤 ; 石油 降解 菌 ; 分离鉴 中图分类号 : 5 X3 文献标识码 : A d i1 .9 9ji n 17 -9 X.0 1 0 .2 o :03 6 /.s .6 3 05 2 1 .4 0 1 s
Ke r s e r lu ;p toe m— ol t d s i;p t l u d g a ain sr i s s lto n d n i c t n y wo d :p toe m er lu p l e o l e r e m— e rd t t n ;i ain a d i e t ia i u o o a o f o
耐盐 性实 验 培 养 基 : 白胨 2 g 蒸 馏 水 10 0 蛋 , 0
各三支, 一支作为空 白对照 , 其他 两支分别接人两株
供 试菌 , 同对 照试 管均 放 于 3 连 7℃ 恒温箱 中培养 2 4
h 观察 试 管 内培养 液 的混浊程 度 . , 2 生长 曲线 的绘 制 : ) 采用 比浊 法 .
基 ,b 为加 入 菌 株 在摇 床 中培 养 4天 后 的 培养 基 , () () C 为加 入菌株 并 在摇 床 中培养 7天 后 的培 养 基 . 通
过 观察 不难 发 现 , ( ) ( ) 培 养 基 逐 渐 浑 浊 , 从 a到 C , 并
液转入新鲜 的牛 肉膏蛋 白胨液体培养基 中, 在上 述
℃ 、6 mi 条件 下 培养 1 . 10r・ n 0d 培养 液 明显 浑浊 ,

石油烃污染土壤微生物修复技术、菌剂的筛选研制及案例分析

石油烃污染土壤微生物修复技术、菌剂的筛选研制及案例分析
油泥生物调理剂
为混合颗粒状粉剂,具有调理土壤环境,提高土壤渗透性、增加氧气传输 等作用,同时还具有很好的持水能力,有利于微生物生长,提高污染物降 解率。
油泥生物处理调质营养素
为白色粉剂,能有效改善土壤质地,为微生物提供营养物质,促进微生物 快速繁殖,增强降解活性,提高污染物降解速度。
六、微生物菌剂的生产
60
50
40
30
20
10
0 2周 4周 6周 8周 3个月 4个月
示范现场土壤中石油烃含量的变化
修复前 调理剂、菌剂播撒
翻耕
浇水
种植植物
修复后
五、石油污染土壤微生物修复技术
2、异位修复技术---堆体技术
根据多种生物堆体的生物学过程特性, 将其与微生物包埋/脱附增溶(IMT/SER)等强化工艺 相组合,建立了不同类型的生物堆体强化修复系统,并获得了完整的工艺参数。
土壤中主要石油污染物残留量测试 (GC-FID、UV、IR、重量法) 土壤中微生物群落变化 (PCR、DGGE); 修复植物生物量变化。
CK F-7 FL-7 FH-7 F-24 FL-24 FH-24
FH-24 FL-24 F-24 FH-7 FL-7 F-7
修复后微生物群落谱带条数 增加了3-4倍

(Rhodococcus erythropolis);25%铜绿假单孢杆菌 (Pseudomonas aeruginosa);25% acinetobacter)。
构建适宜反应的微环境
促进污染物的脱附传质
企业标准
《石油污染土壤处理用微生物修复菌剂》 (Q/0500DJH001-2015)
五、石油污染土壤微生物修复技术
菌剂添加量对修复效果的影响

微生物降解石油烃

微生物降解石油烃

唐山学院毕业设计设计题目:微生物降解石油烃最适条件研究系别:环境与化学工程系班级:09 石油化工生产技术2班姓名:张贺松指导教师:程磊2012年6月11 日微生物降解石油烃最适条件研究摘要从学校腐蚀质土囊中筛选到2株对机油等相关石油制品具有高效降解能力的菌种ZL1 ZL2。

通过生长条件正交实验测定了温度、油量和pH值对其降解能力的影响。

实验表明:4天对于含油300mg/L的去除率分别达到67.9%和76.2%,其中ZL2菌对底物浓度和PH值有较广的适应范围。

关键词:正交实验高效降解菌菌种筛选Microbial degradation of petroleum hydrocarbons in the optimum conditionsAbstractCorrosion from the school the quality of soil in the bag filter to the 2 strains of bacteria degrading ability of oil and other petroleum products ZL1 ZL2. Orthogonal experimental determination of the growth conditions of temperature, substrate concentration and PH value of their degradation ability. The experimental results show that: four days for oily 300mg / L, the removal rate of 67.9% and 76.2%, which ZL2 bacteria have a wider range of substrate concentration and pH value.Keywords:Orthogonal experiment Efficient degradation bacteria Strain screening目录1 引言 (1)1.1石油污染的危害 (1)1.2微生物法治理石油污染 (2)1.3微生物降解石油途径 (4)1.4微生物降解石油影响因素 (5)1.5各国对微生物降解石油烃的研究 (6)1.6微生物降解石油烃类污染物的代谢机制 (6)1.7微生物降解菌的种类 (6)2 试验 (8)2.1材料 (8)2.1.1菌种 (8)2.1.2 培养基 (8)2.1.3试验药品 (8)2.1.4试验仪器 (9)2.2 优势菌筛分试验 (9)2.2.1取样 (9)2.2.2 准备实验用品 (9)2.2.3制作培养基 (9)2.2.3 高温灭菌 (9)2.2.4 初次富集分离 (10)2.2.5 连续富集分离 (10)2.2.6 平板分离 (10)2.2.7 划线分离 (10)2.3生长条件正交实验 (10)2.4 混合菌机油降解效率 (11)2.5分析方法 (11)3结果分析 (12)3.1 优势菌筛分实验 (12)3.2生长条件正交试验 (12)3.3混合菌种实验 (13)4结论 (15)谢辞 (16)参考文献 (17)外文资料 (18)唐山学院毕业设计1 引言上世纪初以来,石油的重要性日益突显。

微生物对石油烃的降解机理研究

微生物对石油烃的降解机理研究

石油是一种重要的能源,可以说是现代经济的血液。

日常生活、工业生产、航天军工都需要石油作为能源和原料,是国家生存和社会发展不可或缺的战略资源。

但是,与此同时石油在开采、运输、储存、加工和利用过程中的各种泄漏事故对环境造成的污染和破坏也是不可估量的,其对人类和其他生物的生存和发展也造成一定的威胁,并已成为全球范围内亟待解决的重要问题。

了解石油烃污染物在自然界的生物降解转化规律,研究石油烃污染物微生物降解的技术和方法,培养可高效降解石油烃的工程菌,消除和减少石油烃在环境中的滞留,将有利于维护和创造高质量的人类生存环境。

1 石油烃降解菌的降解机理微生物对石油中不同烃类化合物的代谢途径和机理是不同的。

饱和烃包括正构烷烃、支链烷烃和环烷烃。

通常认为,在微生物作用下,直链烷烃首先被氧化成醇,源于烷烃的醇在醇脱氢酶的作用下被氧化为相应的醛,醛则通过醛脱氢酶的作用氧化成脂肪酸。

相同条件下,一般微生物对不同种类石油烃降解的倾向先后顺序是不同的。

一般而言,石油烃被微生物降解的先后规律为:直链烷烃>支链烷烃>环烷烃>多环芳烃>杂环芳烃。

在某石油烃降解菌修复不同碳链石油烃污染的研究中得出结论,该菌属对短链石油烃的分解率相对较高,而对芳香烃和润滑油组分的降解率较短链石油烃低。

一般微生物降解正烷烃由氧化酶酶促进行。

正烷烃第一步氧化为醇后,醇氧化成醛,醛再转化为相应脂肪酸,脂肪酸经 β-氧化为乙酰辅酶A,乙酰辅酶A进入三羧酸循环,分解成CO2和H2O,或进入其他生化过程。

另外,链状烷烃可经脱氢步骤转变为烯烃,烯经氧化成为醇,然后醇可转化为醛,最后醛变为脂肪酸;链状烷烃还可通过直接氧化成烷基过氧化氢,然后经脂肪酸途径进行降解。

有的可通过亚末端氧化成仲醇,再变成伯醇或脂肪酸进行氧化分解。

还有些微生物可将烯烃变为不饱和脂肪酸,通过双键位移或甲基化等,变为支链脂肪酸,再进行降解。

2 石油烃降解菌的种类2.1 普通石油烃降解菌在受石油污染的土壤和水环境中存在许多能降解石油烃的微生物,细菌、放线菌、真菌、酵母、霉菌和藻类中均有能降解石油烃的微生物,据研究表明目前发现100余属、200多种石油烃降解微生物。

微生物降解烟叶烟碱研究应用进展

微生物降解烟叶烟碱研究应用进展

微生物降解烟叶烟碱研究应用进展李晨虎宁高杨姜振锟(福建中烟工业有限责任公司,福建厦门316000)摘要本文从降低烟叶烟碱含量的主要方式、微生物代谢烟碱的主要途径、微生物及其酶降解烟碱的研究进展3个方面综述了近年来国内外对利用微生物及其酶降低烟叶烟碱的研究应用成果,以期为烟叶生产提供参考。

关键词微生物;烟草;烟碱;降解中图分类号S572文献标识号A文章编号1007-7731(2023)05-0022-05烟碱,又名尼古丁,属于吡啶族生物碱,在烟草总植物碱中含量占约90%以上[1]。

烟碱含量是影响烟叶感官质量的重要因素,含量过高或过低均会对烟叶的感官质量造成不利影响[2-4]。

而烟叶是支撑卷烟工业企业发展的重要物质基础,从目前情况来看,国内部分产区烟叶存在上部烟叶烟碱含量偏高的问题,致使这些产区上部烟叶进入卷烟叶组配方使用的难度较大,从而导致卷烟工业企业烟叶原料库存积压,一定程度上制约了烟草行业持续健康发展。

如何把烟草的总植物碱含量控制在期望范围内,一直是烟草科技工作者研究的热点课题。

1降低烟碱含量的方式烟草作为一种经济作物,其烟碱含量既与品种、地域、气候、施肥种类和施肥量等因素有关,也与后期的工艺处理过程及微生物的作用有关[5]。

目前,降低烟草中的烟碱含量主要通过3种途径来实现:①农业种植方法:主要通过遗传、生态、栽培等传统农业手段进行控制[6]。

通过该方法降低烟碱,含量效果最为直接,但有可能在一定程度上影响烟叶产量,烟农接受度不高,实际推广应用难度较大。

②化学方法:可将烟叶通过有机溶剂萃取和蒸汽蒸馏等处理方法将其中的烟碱脱掉[7]。

使用化学方法虽然可以降低烟碱含量,却可能导致烟叶外观和感官质量下降,降低烟叶的可用性。

③微生物及酶法:分离、筛选出具有降解烟碱功能的微生物,将菌株或其所产酶制剂作用于烟叶上,可有效降低烟叶中的烟碱含量。

因为酶具有专一性,能较好防止其余化学成分改变造成的烟叶质量问题。

因此,利用微生物及其酶降解烟碱的方式成为了现阶段烟草行业的热门研究课题和研究方向。

石油烃类的微生物降解研究

石油烃类的微生物降解研究

石油烃类的微生物降解研究石油作为重要能源之一已被世界各国广泛使用,随之而来的石油烃污染已经对人类生存的土壤及水体环境造成了严重的危害,微生物降解是一种处理石油烃污染的理想方法。

综述了降解菌种类和不同烃类的微生物代谢途径,分析了包括温度、营养物、氧和pH值等环境因素对石油烃降解的影响,为进一步的研究应用提供参考依据。

随着工业和经济的发展,人类对能源的需求日渐增多,促进了石油工业的飞速发展;在石油生产、贮运、炼制加工及使用过程中,不可避免地会有石油烃类的溢出和排放,造成土壤及水体的石油污染。

据统计全球每年倾注到海洋的石油总量在200~1000万t之间。

辽宁省环境中心监测站的化验结果显示,在辽河油田的重度污染区内,土壤中的含油量已达到10 000 mg/kg以上,是临界值(200 mg/kg)的50多倍,严重影响了油田附近的生态环境。

石油烃类物质引起的环境污染越来越引起人们的关注。

利用物理、化学方法处理石油烃可以得到较受到了限制翻。

生物处理方法是近年来发展起来的,具有处理效果好、费用低、对环境影响小、无二次污染及应用范围广等优点,是迄今为止处理石油烃污染比较好的一种方法。

1.降解石油烃类的微生物种类国外在20世纪40年代就开展了细菌降解石油烃的研究,我国这方面的研究始于20世纪70年代末期。

研究表明,在土壤和水体环境中存在着大量能够降解石油烃的微生物,主要是细菌和真菌;细菌在海洋生态系统的石油烃类降解中占主导地位,而真菌则是淡水和陆地生态系统中更为重要的修复因子。

石油烃降解菌和藻类见表1。

大量研究表明,当菌群处于石油污染环境中时,利用烃类化合物的微生物数量急剧增长,尤其是含降解质粒的微生物。

Atlas报道在正常环境下降解菌一般只占微生物群落的1%,而当环境受到石油污染时,降解菌比例可提高到10%。

含质粒细菌在石油烃污染环境中出现的频率和数量LL-t~污染环境高,说明质粒在石油烃的降解中可能起着重要作用。

微生物技术 文献综述

微生物技术 文献综述

微生物修复石油污染的研究概况湖州师范学院生命科学蒋立勋摘要:对于现如今石油的大量的开采,石油泄漏的状况发生的几率持续升高,近期的几个的漏油事故,对于它们的后续处理非常关键,特别是如何恢复原先的生态环境,利用微生物进行处理不失为一种环保的方式。

文章较全面地介绍了环境中降解石油的微生物、石油污染土壤的微生物修复技术以及影响石油污染土壤微生物修复的因素。

关键词:石油污染,微生物修复石油是不可再生资源,也是人类宝贵的能源和重要的化工原料,目前国际油品市场原油价格的持续上涨,将直接影响着我国经济的可持续发展[1]。

但同时,我国每年还有大量的原油及其加工品流入环境,这不但浪费了宝贵的资源,而且对生态环境造成了污染[2]。

石油物质进入土壤后,会引起土壤理化特性发生变化,能够改变土壤有机质的组成和结构,对作物生长发育也有不利的影响[3]。

同时石油通过生长于该土壤中的植物及其产品,以食物链方式直接影响到人类的身体健康[4]。

在最初的石油污染治理工艺中,物理和化学方式处理是最主要的技术,且已研究得比较成熟。

自20 世纪70 年代以来,随着生物修复技术的发展,微生物处理技术在石油污染治理方面逐渐成为核心技术[5]。

为了全面了解石油污染土壤微生物修复研究现状,从而指导现阶段的研究工作。

笔者针对近几年国内外的应用微生物修复技术治理石油污染土壤的最新研究成果与应用状况进行了初步归纳,并对未来的发展进行了展望。

1 环境中降解石油的微生物动物、植物、微生物都具有降解污染物的能力,但微生物在污染物降解中的作用最大;这是由于微生物具有种类多、分布广、个体小、繁殖快、比表面积大、容易变异的特点所决定的。

微生物的降解酶体系具有氧化还原、脱羧、脱氨、水解、脱水等各种化学作用能力,所以对能量的利用比高等生物体更加有效;微生物高速度的繁殖特性和遗传变异性使它的酶体系能够以最快的速度适应外界环境的变化,从而显示出其在环境治理上的高效性和多样性。

邻苯二甲酸酯降解真菌的筛选及其降解特性和土壤修复作用

邻苯二甲酸酯降解真菌的筛选及其降解特性和土壤修复作用

邻苯二甲酸酯降解真菌的筛选及其降解特性和土壤修复作用作者:于淑婷万群余向阳陈小龙方香玲来源:《江苏农业学报》2021年第03期摘要:從多年地膜污染棉田土壤中分离纯化出邻苯二甲酸酯(PAEs)降解真菌,筛选分离出对PAEs降解效果良好的3株非致病真菌PAE1、PAE6、PAE8,经形态学特征及 18S rDNA 序列分析,分别鉴定为菌核生枝顶孢霉(Acremonium sclerotigenum)、辐毛鬼伞(Coprinellus radians)、耐盐枝孢菌(Cladosporium halotolerans)。

3株真菌在邻苯二甲酸二丁酯(DBP)起始质量分数为10 mg/kg时降解效率最高,PAE6降解率达68.4%。

3株真菌均能降解多种PAEs,推测出其降解生物代谢路径为:PAE→单酯→PA→PCA→CO2+H2O。

将3株真菌接种到DBP及邻苯二甲酸二辛酯(DEHP)污染的土壤中,接菌后21 d,DBP及DEHP 降解率分别为47.2%~70.6%、54.1%~73.4%,其中PAE6对DEHP的降解率最高,达73.4%。

表明3株真菌对土壤中DBP及DEHP污染具有良好的修复作用。

关键词:邻苯二甲酸酯(PAEs);降解真菌;降解特性;土壤修复中图分类号: X592 文献标识码: A 文章编号: 1000-4440(2021)03-0660-07Isolation, degradation characterization of phthalate-degrading fungi and their application in phthalate-contaminated soilYU Shu-ting 1, WAN Qun2, YU Xiang-yang2, CHEN Xiao-long2, FANG Xiang-ling1(1.College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China;2.Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China)Abstract: Three non-pathogenic fungi PAE1, PAE6, PAE8 with good degradation effect on phthalate esters (PAEs) were isolated after the PAEs degradation fungi were separated and purified from the cotton field soil contaminated by plastic film for many years in Xinjiang. Fungi PAE1,PAE6 and PAE8 were identified as Acremonium sclerotigenum, Coprinellus radians and Cladosporium halotolerans respectively based on the morphological characteristics and 18S rDNA sequence analysis. Three fungi reached the maximum degradation efficiency when the initial mass fraction of dibutyl phthalate (DBP) was 10 mg/kg, and the degradation rate of PAEs was 68.4%. The three fungi could degrade a variety of PAEs, and it was speculated that their biodegradable metaboli c pathway was PAE→monoester→PA→PCA→CO2+H2O. The three fungi were inoculated in the soil contaminated by DBP and dioctyl phthalate (DEHP), the degradation rate of DBP and DEHP were 47.2%-70.6% and 54.1%-73.4% respectively 21 days after inoculation, and the degradation rate of PAE6 against DEHP was 73.4%, and was the highest. The results indicated that three fungi showed good repairing effect in the soil contaminated by DBP and DEHP.Key words: phthalic acid esters (PAEs);degrading fungi;degradation characteristics;soil repair邻苯二甲酸酯(Phthalic acid esters,PAEs)主要用于聚氯乙烯材料,起到增塑剂的作用,被普遍应用于化妆品、清洁产品、包装材料、医用材料及玩具等数百种产品中。

大庆油污土壤中石油降解菌的筛选和鉴定研究

大庆油污土壤中石油降解菌的筛选和鉴定研究

大庆油污土壤中石油降解菌的筛选和鉴定研究大庆油田是我国最大的陆上油田,其丰富的石油资源为我国的石油工业发展作出了重要贡献。

与石油生产相关的油污问题也给环境和生态造成了一定的影响。

油污土壤中的石油降解菌是生物修复技术的重要组成部分,对于油田环境的恢复和保护具有重要意义。

本文旨在对大庆油污土壤中的石油降解菌进行筛选和鉴定研究,以期为该地区的生物修复技术提供理论和技术支持。

一、研究背景和意义大庆油田自1959年投入生产以来,已经产出了数十亿吨的原油,但同时也造成了大量的油污土壤。

传统的土壤修复方法通常是采用化学物质进行处理,但这种方法对环境的影响和破坏性较大。

相比之下,生物修复技术由于其绿色环保、成本低廉的特点,受到了越来越多的重视。

在生物修复技术中,石油降解菌是至关重要的。

石油降解菌能够利用石油中的碳源和能源进行代谢,分解有机化合物,将其转化为无害的物质,从而加速土壤中石油的降解和分解过程。

对于油污土壤中存在的石油降解菌进行筛选和鉴定,有助于选择出高效的菌株,并进一步应用于生物修复工作中。

研究大庆油污土壤中石油降解菌的筛选和鉴定,也可以为该地区的环境保护工作提供理论和技术支持。

通过对菌株的鉴定和特性分析,可以掌握地方石油降解菌的多样性和功能特点,为该地区的生物修复应用提供有力的支持。

二、研究方法和步骤1. 样品采集本研究选取大庆油田附近的油污土壤为研究对象,通过系统的样品采集和分析,确定石油降解菌的种类和数量分布情况。

2. 培养和筛选将采集的土壤样品进行菌落计数和分离培养,筛选出优良的石油降解菌菌株。

通过对菌株的形态特征、培养条件和生理生化指标等进行初步鉴定,选取具有较高石油降解活性的菌株进行后续的研究。

3. 生物学特性分析对筛选出的石油降解菌菌株进行进一步的生物学特性分析,包括对菌株的生长速率、代谢产物、抗性能力等进行测定和分析,以确定其在生物修复工作中的应用潜力。

4. 分子生物学鉴定通过16S rRNA序列分析等分子生物学方法,对筛选出的石油降解菌菌株进行进一步的鉴定,确定其系统发育位置和亲缘关系。

植物-_微生物联合修复石油烃污染土壤研究进展

植物-_微生物联合修复石油烃污染土壤研究进展

基金项目:四川长宁天然气开发有限公司项目(20220621 23);油气田应用化学四川省重点实验室开放基金项目(YQKF202107)。

通讯作者:谢贵林,2005年毕业于中国石油大学(华东)应用物理专业,现在四川长宁天然气开发有限责任公司从事地面建设工作。

通信地址:成都市成华区猛追湾横街99号世茂大厦,610051。

E mail:xglin@petrochina.com.cn。

DOI:10.3969/j.issn.1005 3158.2024.02.001植物微生物联合修复石油烃污染土壤研究进展谢贵林1 金文辉1 黄涛1 曹文波1 周烁名1 汪墨轩1 汪钰翠2 王兵2 任宏洋2(1.四川长宁天然气开发有限责任公司;2.西南石油大学化学化工学院)摘 要 石油烃污染引发了严重的土壤污染问题,在各种修复技术当中,植物 微生物联合修复技术以成本低、修复效果好、二次污染少等优点得到广泛重视。

文章以植物 微生物联合修复技术为中心,阐述了内生菌 植物联合修复和植物 根际微生物联合修复两种典型的联合修复技术的原理以及最新的应用进展,并总结了当前植物微生物联合修复技术研究的不足,以期为石油烃污染土壤的生物修复提供参考。

关键词 石油烃污染;土壤;植物微生物联合修复技术;内生菌;根际微生物中图分类号:X53 文献标识码:A 文章编号:1005 3158(2024)02 0001 06犃犚犲狏犻犲狑狅狀狋犺犲犘狉狅犵狉犲狊狊狅犳犘犾犪狀狋 犿犻犮狉狅犫犻狅狋犪犆狅犿犫犻狀犪狋犻狅狀犻狀犚犲狆犪犻狉犻狀犵犘犲狋狉狅犾犲狌犿犎狔犱狉狅犮犪狉犫狅狀犆狅狀狋犪犿犻狀犪狋犲犱犛狅犻犾XieGuilin1 JinWenhui1 HuangTao1 CaoWenbo1 ZhouShuoming1 WangMoxuan1WangYucui2 WangBing2 RenHongyang2(1.犛犻犮犺狌犪狀犆犺犪狀犵狀犻狀犵犖犪狋狌狉犪犾犌犪狊犇犲狏犲犾狅狆犿犲狀狋犆狅.,犔狋犱.;2.犆狅犾犾犲犵犲狅犳犆犺犲犿犻狊狋狉狔犪狀犱犆犺犲犿犻犮犪犾犈狀犵犻狀犲犲狉犻狀犵,犛狅狌狋犺狑犲狊狋犘犲狋狉狅犾犲狌犿犝狀犻狏犲狉狊犻狋狔)犃犅犛犜犚犃犆犜 Petroleumhydrocarboncontaminationhasledtoseveresoilpollutionissues.Amongvariousremediationtechniques,theplant microbecombinedremediationtechnologyhasgarneredwidespreadattentionduetoitsadvantagessuchaslowcost,effectiveremediation,andminimalsecondarypollution.Centeredontheplant microbecombinedremediationtechnology,thisarticleelaboratesontheprinciplesandrecentadvancementsintwotypicalcombinedremediationtechniques:endophyticbacteria plantcombinedremediationandplant rhizospheremicrobecombinedremediation.Furthermore,itsummarizesthecurrentdeficienciesinresearchonplant microbecombinedremediationtechnology,aimingtoprovideareferenceforthebioremediationofpetroleumhydrocarbon contaminatedsoil.犓犈犢犠犗犚犇犛 petroleumhydrocarbon contaminated;soil;plant microbialremediation;endophytes;rhizospheremicroorganisms0 引 言在石油开采、运输以及加工过程中引发了众多环境污染问题,其中的土壤污染问题引起了社会的广泛关注[1]。

解磷真菌分离鉴定及其溶磷能力分析

解磷真菌分离鉴定及其溶磷能力分析

现代农业科技2024年第4期动物科学·生物技术解磷真菌分离鉴定及其溶磷能力分析姜焕焕张嘉敏梁云燕范宇清何洪活(肇庆学院生命科学学院,广东肇庆526061)摘要解磷菌能够溶解土壤中的难溶性磷或不溶性磷,在促进土壤养分循环和植物生长方面起着重要作用,是生物肥料中重要的微生物资源。

本研究采用稀释涂布平板法筛选得到5株解磷真菌(菌株SZ1、SZ2、GZ1、GZ2、HZ1),对菌株进行分子生物学鉴定,并利用液体摇瓶法测量菌株对磷酸三钙的溶磷能力。

结果表明,菌株SZ1、SZ2、GZ1、GZ2、HZ1的溶磷能力存在一定的差异,其中菌株SZ1、GZ2、HZ1的可溶性磷含量分别为58.30、2.69、8.65mg/L,菌株SZ2和GZ1没有溶解磷酸三钙的能力;菌株SZ1、SZ2、GZ1、GZ2、HZ1分别为香港史努基菌(Hongkongmyces snookiorum)、杂色曲霉(Aspergillus versicolor)、香港史努基菌(Hongkongmyces snookiorum)、棘孢木霉(Trichoderma asperellum)、林尼曼菌(Linnemannia exigua)。

关键词根际土壤;解磷真菌;分子生物学鉴定;溶磷能力中图分类号S154.3文献标识码A文章编号1007-5739(2024)04-0170-03DOI:10.3969/j.issn.1007-5739.2024.04.041开放科学(资源服务)标识码(OSID):磷是植物生长发育所需的矿物质元素之一,但土壤中的难溶性磷占比高达95%,能被植物直接吸收利用的磷占比不足5%[1]。

据相关报道,全世界范围内缺磷耕地占比约为43%,我国缺磷耕地比例约为74%[2]。

传统农业主要通过施用磷肥增加土壤中的有效磷含量,但过量施用磷肥导致磷被进一步固定在土壤中,造成土壤退化、重金属累积、水体富营养化等问题[3]。

随着人们环境保护意识的增强和农业可持续发展战略的实施,开发利用土壤微生物并将其制成微生物肥料用于提高土壤中的有效磷含量成为农业生产研究热点。

石油降解率的测定

石油降解率的测定
η=
C0和Cx分别为对照试样和接种菌试样中残余石油烃质量浓度,mg/L。
12.生物菌剂对石油污染土壤生物修复作用的研究黄廷林等
石油烃含量采用OCMA-350非分散红外石油分析仪测定。石油组分采用气象色谱-质谱联用仪测定。气象色谱(GC)为Trace2000型,质谱(MS)为Voyager,柱子DB-5,长30m,固定相0.25µm厚,测试相对分子质量范围为30450,前610min为溶剂峰。分析条件为:100℃开始,每分钟上升10℃至200℃,再以5℃/min升至280℃,保留10min,质谱与色谱连接温度为250℃。
8.石油降解菌的分离鉴定及石油污染土壤的细菌多样性任随周等
石油中饱和烃和芳香烃含量的分析:用石油醚将培养基中残余的石油提取出来, 浓缩一定体积后采用FinniganTrace DSQ (Thermo ElectronCorporatio)气质联用仪进行分析, 色谱柱为DB-5MS(30m×0.25µm×0.25mm),气相色谱操作条件为: 进样口温度数220℃, 程序升温,扫描范围19~650amu,扫描速度500amu/s,电子能量70eV,离子源温度250℃, 传输线温度250℃, 载气流速1.0ml/min。
9.石油污水灌区的微生物生态及其降解石油的研究刘期松等
微生物降解石油的测定方法:取液体培养基25ml置125ml三角瓶中,加10-15mg油,约占0.04-0.06基质,震荡培养,28℃,7天。
(1)萃取培养液中的油:用处理过的二氯甲烷或四氯化碳萃取未被降解的石油。
(2)萃取油的测定:用5-10ml的四氯化碳洗烧杯中上述残渣,将溶液置石英槽中,以四氯化碳作参比。于IR-27G红外分光光度计上在3200-2800nm-1(3.43µm)扫描,测定各点2491nm-1(3.43µm)的吸光强度。

高效氟氯氰菊酯降解菌的分离与降解特性研究

高效氟氯氰菊酯降解菌的分离与降解特性研究
[ Method] Gradient pressure acclimation was used to enrich and screen candidate strains for degradating β⁃CF from soil that had been used py⁃
rethroids,and the taxonomic status was identified by morphological characteristics and phylogenetic analysis based on 16S rRNA gene se⁃
虫剂的果园和耕地(28°54′11″N,110°4′12″E),共收集土壤样
10 mL 对数生长期菌液,5 000 r / min 离心 5 min 后弃上清,加
1.1.4 培养基。 LB 液体培养基:蛋白胨 10 g、NaCl 10 g、酵母
存于 4 ℃ 备用。
本 6 份,于无菌袋中密封,-80 ℃ 冰箱保存备用。
能兼治蜱螨
[7]
。 但是Ⅱ型菊酯农药普遍具有光、热稳定等特
点,在环境中半衰期较长,自然环境条件下很难降解,在固
相、液相、气相中的循环易引发环境中农药的残留,2009—
2011 年的一份研究报告表明,美国北卡罗来纳州 50 名成年
人的 782 份 固 体 食 物 中 氟 氯 氰 菊 酯 的 检 出 率 达 6%
。 中华人民共和国国家统计
虫菊酯是通过模仿天然除虫菊素化学结构人工合成的一类
杀虫剂
[3-4]
,具有高效、杀虫谱广等特点,在我国西北和华北
等地广泛应用,其产量占据全球农药类总产量的 20%
毒性[13-14] 等。 越来越多的研究证明其对生态环境和人类健

降解氯氰菊酯光合细菌的分离鉴定及降解特性研究

降解氯氰菊酯光合细菌的分离鉴定及降解特性研究

降解氯氰菊酯光合细菌的分离鉴定及降解特性研究尹乐斌;张德咏;刘勇;张松柏;何明远;刘绍文;罗香文【摘要】从农药厂污水处理池的活性污泥中分离到一株高效氯氰菊酯农药降解菌,命名为PSB07-13.根据该菌体培养特征、菌落形态特征、活细胞光谱吸收特征、生理生化特性、光合作用内膜系统结构类型,并结合16S rRNA(Genebank Accession NO.EU366142)序列相似性分析,将其鉴定为沼泽红假单胞菌(Rhodopseudomonas palustris).利用气相色谱对PSB07-13的降解能力进行了测定,结果表明:该菌培养6 d后,对50 mg·L-1的氯氰菊酯的降解率达到80.94%.降解特性研究结果表明:该菌在含氯氰菊酯培养基中的最适生长温度为30℃、pH 为7.0及光照强度为7500 lx;该菌不能以氯氰菊酯为唯一碳源和能源生长;该降解菌还能较好地降解甲氰菊酯、联苯菊酯、溴氰菊酯等菊酯类农药.该农药残留降解菌可以用于农药厂有机废水处理及农田农药残留降解,具有一定的应用前景.【期刊名称】《生态环境学报》【年(卷),期】2010(019)008【总页数】6页(P1881-1886)【关键词】光合细菌;氯氰菊酯;红假单胞菌;降解特性【作者】尹乐斌;张德咏;刘勇;张松柏;何明远;刘绍文;罗香文【作者单位】中南大学研究生院隆平分院,湖南,长沙,410125;中南大学研究生院隆平分院,湖南,长沙,410125;湖南省植物保护研究所,湖南,长沙,410125;中南大学研究生院隆平分院,湖南,长沙,410125;湖南省植物保护研究所,湖南,长沙,410125;湖南省植物保护研究所,湖南,长沙,410125;湖南省植物保护研究所,湖南,长沙,410125;湖南省植物保护研究所,湖南,长沙,410125;湖南省植物保护研究所,湖南,长沙,410125【正文语种】中文【中图分类】X172拟除虫菊酯类农药是一类广谱、高效、低毒杀虫剂,自20世纪70年代问世以来,新品种不断涌现,销量猛增,现已占世界农药市场的1/4。

《四株红球菌的分类鉴定及其降解多环芳烃的途径》范文

《四株红球菌的分类鉴定及其降解多环芳烃的途径》范文

《四株红球菌的分类鉴定及其降解多环芳烃的途径》篇一一、引言多环芳烃(PAHs)作为环境中的持久性污染物,由于其来源广泛、环境持久和生态风险较高,已受到环境科学领域的广泛关注。

作为微生物生态中的关键角色,红球菌(Rhodococcus)因其对多环芳烃的降解能力而备受关注。

本文旨在研究四株红球菌的分类鉴定及其降解多环芳烃的途径,以期为多环芳烃污染的生物修复提供理论依据。

二、材料与方法1. 菌种来源与培养本实验所使用的四株红球菌均来自多环芳烃污染的土壤样品。

采用常规的微生物培养方法进行分离纯化,并采用形态学观察和生理生化实验进行初步鉴定。

2. 分类鉴定对分离出的四株红球菌进行分子生物学鉴定,包括16S rRNA 基因序列测定及系统发育分析。

3. 多环芳烃降解实验采用静态实验方法,将四株红球菌分别与不同浓度的多环芳烃溶液进行共培养,观察其生长情况及对多环芳烃的降解效果。

三、结果与分析1. 分类鉴定结果通过16S rRNA基因序列测定及系统发育分析,我们成功鉴定了四株红球菌的种类。

其中,两株为Rhodococcus equi,一株为Rhodococcus sp.,另一株为Rhodococcus fascians。

这四株红球菌在形态学特征和生理生化特性上具有一定的差异,但均具有较好的多环芳烃降解能力。

2. 多环芳烃降解途径在多环芳烃降解实验中,我们发现四株红球菌均能有效地降解多环芳烃。

通过对其降解产物的分析,我们发现四株红球菌在降解多环芳烃时,主要采用以下途径:侧链氧化、开环裂解和还原脱氢等。

这些途径的具体作用机制和过程因菌种不同而有所差异。

此外,我们还发现菌体的生长情况与多环芳烃的降解效果密切相关。

四、讨论四株红球菌在多环芳烃的生物降解过程中表现出不同的降解能力和降解途径。

这可能与它们的遗传背景、生理特性及环境适应性等因素有关。

为了更好地应用这些菌种进行多环芳烃污染的生物修复,我们需要在未来的研究中深入探讨这些因素对多环芳烃降解的影响,以及菌种间的相互作用机制等。

天然环烯醚萜类化合物研究进展

天然环烯醚萜类化合物研究进展

对环烯醚萜类化合物近年的研究成果进行概述,为基于环烯醚萜类化合物的新药发现和药物设计提供参考。
关键词:环烯醚萜类;结构分类;构效关系;生物活性;抗肿瘤
中图分类号:R284
文献标志码:A
文章编号:0253 - 2670(2011)01 - 0185 - 10
Advances in studies on natural iridoids
中草药 Chinese Traditional and Herbal Drugs 第 42 卷 第 1 期 2011 年 1 月
·185·
天然环烯醚萜类化合物研究进展
董天骄 1,崔元璐 1*,田俊生 1,姚康德 2
1. 天津中医药大学中医药研究院 现代中药发现与制剂技术教育部工程研究中心,天津 2. 天津大学材料科学与工程学院,天津 300072
化合物115结构见图2coohho10hochoh1113roh14ohcoohho15环烯醚萜类化合物结构figchemicalstructuresiridoids12从藏药抱茎獐牙菜swertiafranchetianasmith中分离得到2个环烯醚萜苷分别命名为senburiside16senburisideiv17此类物质c7位所连苯甲酰基的间位羟基上连有一个间羟基苯甲酰基该羟基与一分子的葡萄糖成苷环烯醚萜母体的c1从唇形科植物eremostachysglabraboiss中分离得到个环烯醚萜苷分别为69epi8oacetylshanzisidemethylester1859epipenstemoside1959epi78didehydropenstemoside20
环烯醚萜类化合物在自然界广泛存在,多见于 木犀科、马鞭科、茜草科、龙胆科、玄参科、唇形 科等双子叶植物中,具有多种生物活性,如保肝、 利胆、神经保护作用、抗肿瘤、抗炎、治疗糖尿病 及其并发症等作用。近年来,研究发现环烯醚萜类 成分还具有抑制 DNA 合成的作用。曾有文献对其 化学结构与生物活性进行综述[1]。本文将结合近 10 年研究成果,从环烯醚萜类化合物的结构类型、构 效关系、生物活性等方面综述其研究进展,为系统 地研究环烯醚萜类化合物结构,及基于环烯醚萜类 化合物的新药发现和药物设计提供参考。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Z HANGL ZHAO S u — i, I e g l g, HANG Ja S N io u, h o we L n — i Z F n in, HE B a
(.p nK yLb rtyo co i oi l n ier g f gi l r n i n e tMiir giu ue N nig giu ua U i r t 1 e e a oa r Mi bo g a E g ei r ut a E v o m n, ns y f r l r, aj T l rl nv sy O o f r l c n n o A c ul r t oA c t n A ct e i,
关键词 : 红球菌 ; 分离鉴定 ; 石油生物降解
中图 分 类 号 : 7 文 献 标 识 码 : X12 A 文 章 编 号 :62 2 4 (0 80 — 7 7 0 17 — 0 32 0 )5 1 3 — 5
TheI o ato a s l i n nd Char c e i a i so ka s De r di c e i a t r z ton faAl ne - g a ngBa t rum Rho c c uss 1 -3. do o c p 5
最适温度 、H值和盐浓度 ( a 1分别 为 3 p N C) 0℃、.、 %, 70 2 在低温(0℃) 高盐 ( 5 N C) 1 及 4 % a 1环境下也有 良好 的降解 能力 。1— %~ 5 3菌株
可 以降解原油 中 C C 的正构烷烃 、 芳香烃及姥鲛烷 。在含 5gL ・ 原油的培养基 中,0℃培养 5 3 , d后 菌株 1 — 5 3对原油 的降解 率
au e p a d N C o c n r t n frd g a ig n o t d c n y sr i 5 3 w r 0 , H7 0 a d 2 Na 1 e p ci ey I s l h dh g — t r , H n a 1 n e t i e r d n — c a e a eb tan 1 - e e 3 p . n % c ao o C s e t l .t t l a ih a r v i
cudu e — c d c n s o ro su c n e rd 69 n 0td c n (0 g L at 8ho c b t n T e pi a t e- o l s o t e a ea l c b nr o rea dd ga e9 .% 一 c e a e5 0m ・ 一 f r i u ai . h t l e r n a se a e a ) e4 fn o o m mp
N nig 10 5 C ia 2 h ni g ni mm na Po ci ueu Z ej n 10 0 C ia aj 0 9 , hn ;. ej n v o e t rt t nB ra ,hni g 2 0 , hn) n2 Z a E r l e o a 2
Ab t a t A a t r l tan 1 — e r d n r ma i n l h t y r c r o so i wa oa e o c u eo l p l t d s i n d n i s r c : b c ei ri 3 d g a i g a o t a d a i ai h d o a b n f l si lt df m r d i— ol e ol a d i e t as 5 c p c o s r u s —
为 6 . 对原油 中 CrC 03 %, 1 烷烃 的降解率均大于 9 %, 0 对原油 中芳香烃 的降解率为 6 . 该菌株 以石蜡为惟一碳源生长时能产生 36 %。 表面活性剂 , 将发酵液表 面张力 由 5 .1 81 mN・ 降到 3 .mN・ ~ 表 明菌株 1— m 66 m, 5 3具有较强 的乳化和分散石油 的能力 。
i da fe sRho o o c s s d c c u p.ba e n t 1 DNA e ue c s a d mo ph lgia ,b o h m ia n hy i lg c lc r ce itc .Sr i s d o he r 6S s q n e n r o o c l i c e c la d p soo i a ha a trsi s ta n 1 5—3
其初步鉴定为红球菌 hd ccu p 。采用 室内培 养的方法 , o oocss. ) 研究 了 1— 5 3菌株对原油 、 油中的烃类及 正十八烷 的降解作用 。结 原 果表 明,5 3 1 — 菌株能 以正十八烷为惟一碳源生长 , 4 在 8h内对 5 0m ・ -的正十八烷 降解 率达 9 .%。1 — 0 g L 6 9 5 3菌株降解正十八烷的
维普资讯
农业环境科学学报 2 0 ,75:7 7 14 0 8 ( 13 — 2 ) 71
J u n l f r — v r n n c e c o r a o E io me t in e o Ag S
R o ooc s . 3的分 离鉴 定 及 us 5 石 油 烃 降解 茵 h d cc p1 — 特 性 研 究
张 璐 赵硕伟 , , 李凤玲 张 , 建 沈 , 标
(. 1南京农业大学 生命科学学 院 ,农业部农业 环境微生 物工程重 点开放实验 室 , 江苏 南 京 20 9 ;. 江市环保局 , 10 5 2 镇 江苏 镇江
21 0 0 20 )

要 : 原油污染土壤 中分离筛选 到一株石油烃降解菌 1 — , 从 5 3 根据其形态特征 、 生理生化 特性 及 1Sr N 6 A序列 同源性 分析 , D 将
相关文档
最新文档