聚偏氟乙烯粘结剂溶液干燥条件对锂电池用石墨负极附着力的影响_英文_

合集下载

锂电池中pvdf粒径-概述说明以及解释

锂电池中pvdf粒径-概述说明以及解释

锂电池中pvdf粒径-概述说明以及解释1.引言1.1 概述锂电池作为一种重要的能源存储装置,近年来得到了广泛的应用和研究。

作为锂电池中一个关键的组成部分,PVDF(聚偏氟乙烯)在锂电池中起着至关重要的作用。

PVDF是一种高分子化合物,具有良好的热稳定性、机械性能和化学稳定性,因此被广泛用于锂电池的正负极材料中。

在锂电池中,PVDF作为一种粘结剂,能够将电极材料牢固地粘结在一起,同时还能提供良好的电子导电性和离子传输性。

PVDF具有优异的电化学稳定性,能够有效抑制锂电池中的电解液损耗,在很大程度上提高了锂电池的循环寿命和安全性能。

PVDF的粒径对锂电池的性能有着重要的影响。

当PVDF粒径适中时,能够提供较大的比表面积,增加与电极材料的接触面积,从而促进电池中离子的传输和反应速率。

此外,适度的PVDF粒径还能有效改善电池的力学强度和柔韧性,提高电池的机械稳定性。

然而,PVDF粒径过大或过小都会对锂电池的性能造成不利影响。

当PVDF粒径过大时,其与电极材料的接触面积减小,导致电池的充放电效率降低,电池内阻增大。

而当PVDF粒径过小时,其在电极材料中的分散性变差,容易导致电极材料的电导率下降,影响电池的整体性能。

因此,研究PVDF粒径对锂电池性能的影响,并对其进行优化,对于提高锂电池的能量密度、循环寿命和安全性能具有重要意义。

本文将重点探讨PVDF粒径在锂电池中的作用及其优化方法,并展望未来在这一领域的研究方向。

1.2 文章结构文章结构的部分当前缺少明确的内容。

文章结构是用来组织和引导读者理解文章内容的重要组成部分。

在本篇文章中,可以考虑以下内容来填充文章结构部分:文章结构:本篇文章将按照以下结构组织内容以深入研究PVDF粒径在锂电池中的重要性和影响因素:第一部分,引言。

在引言部分,将对整篇文章的目的和研究背景进行概括性介绍,以便读者对该主题有一个整体的了解。

第二部分,正文。

正文将分为三个小节。

首先,我们将介绍锂电池的背景和应用,包括其在电动汽车、移动设备和储能系统中的重要性。

pvdf粘结剂固化条件

pvdf粘结剂固化条件

PVDF粘结剂固化条件引言PVDF粘结剂是一种常用的粘结剂,广泛应用于各个领域。

为了确保粘结效果和强度,正确的固化条件是至关重要的。

本文将深入探讨PVDF粘结剂的固化条件,包括温度、时间、压力等因素的影响。

PVDF粘结剂的特性PVDF(聚偏氟乙烯)粘结剂是一种高性能的粘结剂,具有以下特性: 1. 耐高温性能优异 2. 耐腐蚀性强 3. 电绝缘性好 4. 抗紫外线性能好固化温度的影响固化温度是影响PVDF粘结剂固化效果的重要因素之一。

适当的固化温度可以提高粘结强度和耐热性。

以下是不同温度下的固化效果对比:低温固化(<100℃)•优点:–节省能源–缩短固化时间•缺点:–粘结强度较低–耐热性较差中温固化(100-150℃)•优点:–粘结强度适中–耐热性良好•缺点:–固化时间较长高温固化(>150℃)•优点:–粘结强度高–耐热性优异•缺点:–能耗较高–可能导致材料变形综上所述,中温固化是一种较为理想的选择,可以在保证粘结强度和耐热性的同时,尽量减少固化时间。

固化时间的影响固化时间是另一个关键因素,它直接影响到PVDF粘结剂的固化效果和强度。

短时间固化•优点:–节省时间•缺点:–粘结强度较低–固化不完全适当时间固化•优点:–较高的粘结强度–固化较完全•缺点:–固化时间较长长时间固化•优点:–最高的粘结强度–完全固化•缺点:–时间成本较高因此,根据实际需要,在保证固化效果的前提下,选择适当的固化时间是必要的。

固化压力的影响固化压力也是影响PVDF粘结剂固化效果的重要因素之一。

适当的固化压力可以提高粘结强度和粘接面的均匀性。

低压固化•优点:–节省能源•缺点:–粘结强度较低–粘接面不均匀高压固化•优点:–粘结强度高–粘接面均匀•缺点:–能耗较高综上所述,高压固化可以获得更好的固化效果,但需要考虑能耗和设备成本等因素。

固化条件的优化为了获得最佳的固化效果,需要进行固化条件的优化。

以下是一些建议:1.结合实际应用需求,选择适当的固化温度、时间和压力。

锂离子电池粘结剂选择难题,终于有人能讲明白了

锂离子电池粘结剂选择难题,终于有人能讲明白了

锂离子电池粘结剂选择难题,终于有人能讲明白了粘结剂是锂离子电池极片的重要组成材料之一,是将电极片中活性物质和导电剂粘附在电极集流体上的高分子化合物,具有增强活性材料、导电剂和集流体间接触性以及稳定极片结构的作用,是锂离子电池材料中技术含量较高的附加材料。

研究表明,虽然粘结剂在电极片中用量较少,但粘结剂性能的优劣直接影响电池的容量、寿命及安全性。

1.正极binder---PVDF•聚偏氟乙烯PVDF(Poly-vinylidene fluoride)主要是指偏氟乙烯均聚物、偏氟乙烯与其他化合物的共聚物。

•PVDF是结晶性聚合物,结晶度一般为50%左右,熔融温度在140-180 ℃之间。

•由于C-F键长短,键能高(486kJ/mol) ,故PVDF具有良好的抗氧化性、耐化学腐蚀性、耐高温性,特别是在碳酸酯类溶剂( EC、DEC、DMC 等)中稳定性好。

1.1 PVDF主要种类•均聚类PVDF,是VF2的均聚物,如HSV900, 5130等;•共聚物类PVDF,主要使用的是VF2(偏二氟乙烯)/HFP(六氟丙烯)的共聚物,如2801,LBG等。

1.2 PVDF合成方法通常由偏氟乙烯通过悬浮聚合或乳液聚合而成,反应方程式如下所示:CH2=CF2→(CH2CF2)n1.3 分子量对PVDF的影响•不同聚合度的VDF均聚物,其熔点温度差异不大;但PVDF分子量的大小会影响其在溶剂中的溶解难易程度。

•在一定分子量范围内,分子量的提高有助于粘结力和内聚力的提高;l改性对PVDF结晶度/溶胀度影响•掺杂的-HFP量越多,其结晶度越低,导致熔点相应降低;•结晶度降低,聚合物溶胀程度增大(甚至溶解)。

1.4 PVDF面临的问题与挑战过高分子量(>150W)对粘结力的提升效果不明显,但会造成更难溶解2. 负极binder---SBRSBR(丁苯橡胶乳液)由丁二烯及苯乙烯两种单体经自由基乳液聚合而成。

常用的锂离子电池SBR粘结剂除上述两种单体外,通常都引入了新的功能单体,用以提高其离子电导率或粘附力。

PVDF性能及对锂电池性能的影响

PVDF性能及对锂电池性能的影响

PVDF性能及对锂电池性能的影响聚偏氯乙烯(PVDF)是一种特殊的高性能聚合物材料,具有优异的耐热性、耐化学腐蚀性、机械强度、绝缘性质和耐候性等特点。

PVDF在锂电池领域的应用非常广泛,主要有电解质、隔膜和电极材料等方面。

首先,PVDF作为电解质材料,因其具有良好的耐化学腐蚀性和离子导电性能成为锂电池中重要的组成部分。

PVDF作为锂盐的添加剂,可以提高电解液的导电性能和离子传输效率,从而提高锂电池的循环稳定性和能量密度。

另外,PVDF作为电解质材料还具有较高的电化学稳定性和较低的导电阻抗,可以有效减少电池内部的能量损失,提高电池的充放电效率和容量。

其次,PVDF作为锂电池隔膜的材料,具有较高的机械强度、热稳定性和耐化学腐蚀性,可以保证锂电池的安全性和循环寿命。

PVDF隔膜材料具有优良的微孔结构和较低的电阻率,可以有效防止正负极之间的直接接触和短路,同时保证锂离子和电子的传输。

此外,PVDF隔膜材料还具有良好的润湿性和可渗透性,可以增加锂离子在电解液和电极之间的传输速率,提高锂电池的功率密度和循环性能。

再次,PVDF作为锂电池电极材料,主要用于制备锂离子电池的正极材料。

PVDF具有较高的热稳定性和化学稳定性,可以耐受正极材料在高温下的反应。

此外,PVDF还具有良好的可溶性和可处理性,可以方便地与其他材料进行混合和复合,以提高正极材料的电化学性能。

PVDF还具有一定的导电性,可以提高锂离子在电极活动材料中的传输速率,增加锂电池的充放电速率和倍率性能。

总的来说,PVDF作为一种高性能聚合物材料,对锂电池的性能具有重要的影响。

PVDF作为电解质材料可以提高锂电池的导电性能和循环稳定性;作为隔膜材料可以保证锂电池的安全性和循环寿命;作为电极材料可以提高锂电池的充放电速率和倍率性能。

随着锂电池技术的不断发展,PVDF材料在锂电池领域的应用前景将更广阔。

不同干燥条件下聚偏氟乙烯的结晶与电池性能

不同干燥条件下聚偏氟乙烯的结晶与电池性能

分类 5&’(()*)%’+),-
晶胞特点
结晶度/=
67 68
!大 "小 !>
69 6!
!中 "大 7>
6: 6;
!小 <中 ;>
结果可见,07、08 的循环性能好于其余7种,08 后期最好。 0:、0; 最差。07、08 放电电压比 0: 高8>2/ 多。新电池 07、08 的内阻最小,0: 最大;循环9>>次后,07 最小,08 次之,二者相 差不大,0:、0; 很大。
[:] QL 6’-OXT-(何曼君),5QLA Y$)O(#,T(陈维寿),0ZARH)O[)’(董 西侠)B高分子物理(修订版)[6]BU#’-N#’)(上海):1TV’-\-)]$3()O +4.3$(((复旦大学出版社),9EEF:7!9W7!7B
收稿日期::>>:W9>W9:
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!"
晶系 空间群 晶胞参数 晶胞中的分子数
单斜 #;9DO$9!/, %P5=L4J,&PL=45J,’P5=49J,#PL3=3Q (P9
表5 胶膜!!3面衍射间距实测值与计算值
!"#$% ( $&C-+/,1.))&H<!!3)+,11R+<&/1N+/N,+H,EH+-1N
I>$%晶体
实测间距/J
;:年精心打造的品牌 荣获“国家期刊奖”的杂志
欢迎刊登广告 彩色黑白随你选!
《电池》广告具有长久的影响力! 《电池》的广告为您扬名!

ptfe干法负极副反应

ptfe干法负极副反应

ptfe干法负极副反应
PTFE(聚四氟乙烯)是一种具有优异化学稳定性和耐热性的高分子材料,常用于制备电池的负极材料。

在电池中,PTFE通常用作负极的添加剂,以改善电池的性能。

PTFE干法负极副反应是指在制备电池负极时,PTFE与其他材料之间可能发生的化学反应或物理变化。

从化学反应的角度来看,PTFE在制备电池负极时可能会与其他材料发生副反应。

例如,PTFE在与导电剂或活性材料接触时,可能发生氧化还原反应,导致电池性能的变化。

这些副反应可能会影响电池的循环寿命、充放电性能等方面。

从物理变化的角度来看,PTFE在制备电池负极时也可能发生一些物理变化。

例如,PTFE的添加可能会改变电极的结构或孔隙度,从而影响电极的扩散性能和电荷传输性能。

此外,PTFE的添加还可能影响电极的机械性能和热稳定性。

PTFE的存在可能改变电极的柔韧性和热传导性能,从而影响电池的安全性能和稳定性。

总的来说,PTFE干法负极副反应是制备电池负极过程中需要考
虑的重要因素。

了解PTFE与其他材料之间的相互作用对于优化电池
性能和提高电池循环寿命具有重要意义。

需要在制备过程中进行充
分的研究和实验,以确保PTFE的使用不会对电池性能产生负面影响。

]锂离子电池用PVDF粘结剂调研资料

]锂离子电池用PVDF粘结剂调研资料

]锂离子电池用PVDF粘结剂调研资料PVDF是一种聚偏氟乙烯材料,被广泛应用于锂离子电池中的粘结剂。

在锂离子电池制造过程中,PVDF粘结剂主要用于固定电池内部的正负极活性材料与电解质膜,同时也能提供电池的导电性和机械稳定性。

以下是与PVDF粘结剂相关的调研资料:1.PVDF粘结剂的特点:-耐高温性能:PVDF具有良好的热稳定性,可以在高温条件下长时间使用,不易发生分解或变形。

-耐化学腐蚀性:PVDF具有良好的耐酸碱性和耐盐水性,可以有效防止电池内部发生化学反应导致电池寿命的缩短。

-优良的粘接性和耐磨性:PVDF粘结剂能够有效地固定电池内部的活性材料和电解质膜,同时具有良好的耐磨性,能够保持电池的机械稳定性。

-优异的导电性能:PVDF具有较高的电导率,可以提供电池内部的良好导电性。

2.PVDF粘结剂在锂离子电池中的应用:-电池正负极活性材料的粘结:PVDF粘结剂能够将正负极活性材料牢固地粘结到电池电极上,确保电极的稳定性和高效率的锂离子传输。

-电解质膜的粘结:PVDF粘结剂能够将电解质膜牢固地固定在电池内部,保证电解质的稳定性和良好的离子传输性能。

-导电剂的粘结:PVDF粘结剂可以用于固定电池中的导电剂,保证电池内部的良好导电性。

-电池封装材料的粘结:PVDF粘结剂还可以用于电池封装材料的固定,确保电池的整体结构的稳定性。

3.PVDF粘结剂的制备方法:PVDF粘结剂可以通过溶液共混、熔融共混等方法制备。

其中,溶液共混是较为常用的一种制备方法,通常使用溶剂将PVDF溶解后与其他材料共混,然后通过溶剂的挥发或加热使PVDF重新沉淀出来,形成PVDF粘结剂。

4.PVDF粘结剂的市场应用和发展趋势:PVDF粘结剂在锂离子电池制造业中得到了广泛应用,因为它具有良好的耐温性、耐化学性和粘接性能,能够满足电池制造过程的要求。

随着锂离子电池市场的快速发展,对PVDF粘结剂的需求也在不断增加。

未来,PVDF粘结剂的研发重点将放在提高其导电性、机械强度和耐老化性能等方面,以满足高能量密度和高安全性的锂离子电池的需求。

锂电池用聚偏氟乙烯粘结剂论文

锂电池用聚偏氟乙烯粘结剂论文
与 &’( 均聚物共混构成粘结剂。该 &’( 的共聚物, 共聚物中 &’( 的质量分数为 "5*+8"* , 而 &’( 均 聚物质量分数为 56"*+"*!2)%。
量 分 数 分 别 为 &’( )"*+""* , 六 氟 丙 烯 ( ,(-)
."*+/"*,0(1 2"*+."*的 / 元共聚的氟橡胶为粘
!""# 年第 $% 卷第 ! 期
!" !!!!!!" !"
化工生产与技术
&’()*+,- ./012+3*04 ,41 5(+’40-067
・ ・ $
氟 化 工
!!!!!!"
锂电池用聚偏氟乙烯粘结剂
张成德 马 圭
(国家氟材料工程技术研究中心, 浙江 衢州 %!8""8 )
摘要 锂电池用粘结剂是制造锂电池的重要材料之一, 可直接影响其性能。介绍了锂电池
收稿日期: !""9E$$E!9
题, 但随着时间的迁移, 在使用过程中, 也有由于电 极的内部应力使电极合剂层从集电体上部分或全部 剥离, 负荷特性变差, 引起容量劣化。 由于 <=> 均聚物存在上述问题, 所以一般采用
<=> 均聚物改性、 <=> 与第 ! 单体及第 % 单体共聚 和 <=> 均聚物与另一种共聚物共混等方法。 不管采
非水系电池 >?.:$$$@ED$@8.9;$@@@B"CB!$;
・ ・ %

锂离子电池负极粘结剂研究

锂离子电池负极粘结剂研究

锂离子电池负极粘结剂研究
锂离子电池负极粘结剂是用来粘结负极活性物质和集流体的材料,对于锂离子电池的电化学性能有着重要的影响。

目前,商业化锂离子电池负极粘结剂主要包括聚偏二氟乙烯(PVDF)和羧甲基纤维素钠(CMC)等。

然而,这些粘结剂在循环过程中保持Si电极的完整性方面存在一些问题。

因此,研究人员一直在寻找更有效的粘结剂来解决这个问题。

一些新型的粘结剂如聚丙烯酸(PAA)被证明可以更好地保持电极的完整性,但PAA粘结剂会发生热降解,导致电极结构热解,电极结构不完整。

此外,研究人员还发现,通过添加合适的粘结剂可以有效地抑制负极膨胀,提高锂离子电池的能量密度。

同时,为了解决金属锂在充放电过程中产生膨胀问题,通常需要采用粘结剂对电极进行包覆处理。

粘结剂可以增大电极与电解液之间的接触面积,使其紧密结合在一起。

总的来说,锂离子电池负极粘结剂的研究是电池制造领域的重要研究方向之一,旨在提高锂离子电池的电化学性能和稳定性。

目前,虽然已经有一些商业化的锂离子电池负极粘结剂,但它们仍存在一些问题需要解决。

因此,未来的研究将需要进一步探索更有效的粘结剂和改进现有粘结剂的缺陷,以推动锂离子电池技术的进一步发展。

基于PVDF粘结剂的锂离子电池负极粘结力的研究

基于PVDF粘结剂的锂离子电池负极粘结力的研究

基于PVDF粘结剂的锂离子电池负极粘结力的研究周江;孟繁慧;陈英龙;杜萍;陈灵爱【摘要】研究了基于聚偏氟乙烯(PVDF)粘结剂的锂离子电池负极粘结力的影响因素,主要包括铜箔表面形貌和表面状态、环境水分等因素的影响.通过对不同制备条件负极片粘结力测试及不同状态铜箔表面形貌的扫描电镜测试等,分析了PVDF基负极粘结力差异的原因及环境水分造成PVDF基负极粘结力劣化的机理.【期刊名称】《电源技术》【年(卷),期】2019(043)001【总页数】4页(P41-44)【关键词】电解铜箔;压延铜箔;光面;毛面;粘结力【作者】周江;孟繁慧;陈英龙;杜萍;陈灵爱【作者单位】天津力神电池股份有限公司,天津300384;天津力神电池股份有限公司,天津300384;天津力神电池股份有限公司,天津300384;天津力神电池股份有限公司,天津300384;天津力神电池股份有限公司,天津300384【正文语种】中文【中图分类】TM912.9锂离子电池负极在充放电循环过程中易发生一定的膨胀及收缩,这种反复的体积变化容易造成极片的粉化、剥离等破坏,从而影响电池性能。

因此,改善及维持负极粘结力有助于获得稳定的电池性能。

为解决负极粘结力这一难题,大部分研究主要从集流体箔材[1-6]、粘结剂[7-10]等方面考虑来提升负极稳定性。

根据负极集流体铜箔生产工艺的不同,铜箔分为压延铜箔和电解铜箔两大类,因不同的表面处理工艺,用作负极集流体的压延铜箔和电解铜箔性能有所差异[4-6]。

除铜箔外,对活性物质、导电剂及集流体起粘结作用的粘结剂是影响负极粘结力的主要因素 [7-10],粘结剂的研究对电池性能的优化至关重要[9-10]。

为了优化负极粘结力,本文从基于聚偏氟乙烯(PVDF)粘结剂的负极粘结力的角度出发,进行负极粘结力的影响因素的研究,主要包括铜箔表面形貌和表面状态、环境水分、电解液水分等方面与粘结力关系的研究。

1 实验1.1 材料与极片制备材料:商用电解液1 mo/L LiPF6/(EC+DMC+EMC)(质量比1∶1∶1)、人造石墨、导电剂 super-P、PVDF、N-甲基吡咯烷酮(NMP)等均为电池级,电解铜箔(表面粗糙度:光面Ra与Rz分别为 0.21和1.01 μm,毛面 Ra与 Rz分别为 0.22和1.02 μm),压延铜箔(内面Ra与Rz分别为0.17和1.24 μm,外面Ra与Rz分别为0.2 μm 和1.22 μm)。

PVDF性能及对锂电池性能影响

PVDF性能及对锂电池性能影响

合成方法

悬浮聚合 乳液聚合
1、乳液聚合 乳液聚合体系主要有单体、引发剂、水、乳化剂四个基本成分组成。 引发剂主要有两类:无机过氧化物(过硫酸盐等)、有机过氧化物(烷基过氧化物 等)、烷基过氧化碳酸酯、偶氮化合物也可引发PVDF聚合。有机过氧化物引发制得 的PVDF含有非离子化端基,比由过硫酸盐引发的PVDF有较好的热稳定性,二异丙 基过氧化二碳酸酯(IPP)是工业卜-常用的偏氟乙烯引发剂。 引发剂的用量对聚合速率及聚合物性能影响很大,合适的引发剂浓度能够提供有 效的高活性自由基浓度,来实现预期的聚合速率。引发剂浓度过高会对聚合物的热 稳定性造成不利影响,特别是熔融速率、伸长率和聚合物的产量三个参数受到的影 响最大。随着引发剂用量增大,产生的初级自由基也越多,引发聚合的速度也就越 大;但引发剂用量太大时,产生的初级自由基太多,引发聚合的速率很快,自由基 终止的机会也多,聚合反应不平稳,产量下降,聚合物的性能也变差。 乳液聚合工艺如下所示: 先将高压釜抽真空、充氮排氧,重复多次,严格排净微量的氧。吸人一定量的去 离子水和一定量的引发剂、助剂,压入少量VDF单体。加热至反应温度,随着反应 进行,保持釜内压力,不断补加VDF单体至单体槽压几乎无变化时结束反应。将未 反应的单体同收重复利用,聚合物经过凝聚(破乳)、洗涤、干燥得到产品PVDF。
PVDF 应用主要集中在石油化工、电子电气和氟碳涂料三大领域,由于 PVDF良好的耐化学性、加工性及抗疲劳和蠕变性,是石油化工设备流体处理系 统整体或者衬里的泵、阀门、管道、管路配件、储槽和热交换器的最佳材料之一。 PVDF 良好的化学稳定性、电绝缘性能,使制作的设备能满足 TOCS 以及阻燃 要求,被广泛应用于半导体工业上高纯化学品的贮存和输送。PVDF是氟碳涂料 最主要原料之一,以其为原料制备的氟碳涂料已经发展到第六代,由于PVDF 树 脂具有超强的耐候性,可在户外长期使用,无需保养,该类涂料被广泛应用于发 电站、机场、高速公路、高层建筑等。另外,PVDF树脂还可以与其他树脂共混 改性,如 PVDF与ABS 树脂共混得到复合材料,已经广泛应用于建筑、汽车装 饰、家电外壳等。 用作3C产品蓄电池的电极粘结剂(包括镍镉、镍氢电池),目前隔板也可用 PVDF。近年来采用 PVDF 树脂制作的多孔膜、凝胶、隔膜等在锂二次电池中 应用,部分作为粘结剂涂在隔膜上,可以防止电解液腐蚀。锂离子电池是所有二 次电池中PVDF需求增长量最快的。随着动力电池、移动器材和通讯设备的生产 全面增长,PVDF在电池方面的消耗可能继续逐步上升,但是目前锂电池用PVDF 总体占比较小,附加值不高。

pvdf粘结剂固化条件

pvdf粘结剂固化条件

pvdf粘结剂固化条件(原创实用版)目录1.pvdf 粘结剂简介2.pvdf 粘结剂的固化条件3.pvdf 粘结剂固化过程的影响因素4.pvdf 粘结剂固化后的性能正文【1.pvdf 粘结剂简介】聚偏氟乙烯(PVDF)粘结剂是一种高性能的氟聚合物粘结剂,具有优良的耐热性、耐腐蚀性和化学稳定性。

在许多工业领域,如电子、汽车和建筑等,PVDF 粘结剂被广泛应用。

【2.pvdf 粘结剂的固化条件】PVDF 粘结剂的固化条件主要取决于其类型和应用。

通常,PVDF 粘结剂可以通过热固化或光固化来实现固化。

热固化 PVDF 粘结剂需要在高温下(通常为 150°C 至 200°C)固化一段时间(如 30 分钟至 1 小时)。

在固化过程中,粘结剂的分子结构将发生改变,从而提高其耐热性和耐化学性。

光固化 PVDF 粘结剂则需要在紫外光照射下进行固化。

与热固化相比,光固化具有能量利用率高、固化速度快等优点。

但光固化粘结剂对紫外线的敏感性较强,需要在储存和应用过程中加以注意。

【3.pvdf 粘结剂固化过程的影响因素】PVDF 粘结剂固化过程的影响因素主要包括以下几点:1.温度:温度对 PVDF 粘结剂的固化速度和固化程度有重要影响。

通常,温度越高,固化速度越快,但过高的温度可能导致粘结剂分解或影响其性能。

2.时间:固化时间对 PVDF 粘结剂的性能也有影响。

固化时间过短,粘结剂可能未完全固化,导致粘结强度不足;固化时间过长,可能会使粘结剂变脆,影响其柔韧性。

3.光照强度:对于光固化 PVDF 粘结剂,光照强度对其固化速度有显著影响。

光照强度越大,固化速度越快。

然而,过高的光照强度可能导致粘结剂表面固化过快,产生表面不平整的现象。

4.基材:PVDF 粘结剂所粘结的基材对其固化过程也有影响。

不同基材的表面能量、粗糙度等特性不同,可能影响粘结剂的附着力和固化程度。

【4.pvdf 粘结剂固化后的性能】PVDF 粘结剂固化后具有优良的性能,包括耐热性、耐腐蚀性、化学稳定性和机械强度等。

Solef 6020

Solef 6020

Solef 6020/1001超高分子量PVDF(聚偏二氟乙烯)用作锂离子电池电极粘结剂在性能和加工上的一些特点SOLEF PVDF 采用悬浮聚合法生产工艺生产,与其它有些公司的采用乳液法生产的PVDF 相比,SOLEP PVDF 的特点是分子链更规整,“头-头-尾-尾”缺陷少,分子量分布窄而且均匀,熔点较高(170℃以上)。

在性能上的具体表现为具有优秀的耐温,耐化学、机械性能和耐老化性能。

因此在长期与电解液接触的情况下渗出率较低,从而有利于电池的使用寿命。

SOLEF 6020/1001是一种超高分子量的PVDF,主要用于锂离子电池的极板粘结剂,具有较高的熔融温度,与电极材料有着优秀的相容性,与极片有更强的粘结性,在电解液中有更高的稳定性。

即便在高温下,在NMP中呈透明而且稳定的溶液。

由于SOLEF 6020/10 01的分子量非常高,因此我们在此给用户们一些加工方面的指导,从而能更好的把这个材料用好:1)确保所有材料干燥虽然PVDF本身不是吸水性塑料,但是存储环境条件,特别是在包装打开之后可能会使其表面受潮。

由于SOLEF6020是超高分子量PVDF,它在溶解和配浆时对水分相对来讲更敏感。

所以我们建议开始试用时先将SOLEF 6020在80--100℃的温度下抽气烘干至少4—6小时。

等用顺以后可以逐渐减少烘干时间。

同时也请注意溶剂和活性材料的干燥,如果可能NMP可以用分子筛干燥。

2)先开搅拌然后逐渐把SOLEF 6020粉末加入到NMP溶剂中与其它乳液法生产的PVDF不同,悬浮法生产的SOLEF PVDF 粒径均匀并且稍大,不太适合于一次性全部加入然后开始搅拌的溶解方式。

我们建议先打开搅拌,然后先花几分钟时间逐渐加入SOLEF 6020/1001,接着再封闭后开始全力搅拌。

开始阶段一定要注意避免结块,这样可以减少整个溶解时间。

SOLEF 6020是超高分子量PVDF,它需要的溶解时间一般比分子量稍低的粘结剂材料(例如SOLEF 1013)长一些。

锂离子用pvdf粘结剂发展过程

锂离子用pvdf粘结剂发展过程

锂离子电池是目前电动汽车、移动电子设备等领域常用的能量存储设备。

而pvdf(聚偏氟乙烯)作为锂离子电池中的粘结剂,在锂离子电池的性能和稳定性方面发挥着重要作用。

本文将对锂离子电池中pvdf 粘结剂的发展过程进行介绍和分析。

一、pvdf粘结剂的起源pvdf是聚偏氟乙烯的缩写,是一种热塑性高分子材料,具有较强的耐化学性、耐紫外线性能和良好的电绝缘性能。

其在锂离子电池中的应用可以追溯到20世纪70年代初。

当时,日本学者发现pvdf可以作为锂离子电池的电解质溶剂,为锂离子电池的发展提供了重要支持。

二、pvdf粘结剂的作用锂离子电池中的pvdf粘结剂主要用于固定正极和负极电极材料以及导电剂,同时起到粘结和固定的作用。

与此pvdf作为电解质溶剂也可以增加锂离子电池的离子传输速率和电化学性能,对提高锂离子电池的循环寿命和安全性能有着重要的作用。

三、pvdf粘结剂的发展历程1. 早期研究阶段早期的pvdf粘结剂主要以纯pvdf为主,并且研究重点主要放在其物理性能和结构特点上。

随着对锂离子电池的需求不断增加,研究者开始尝试将pvdf与其他添加剂进行复合,以提高其在锂离子电池中的性能表现。

2. 添加剂的应用随着研究的不断深入,研究者们开始尝试将碳纳米管、导电聚合物等添加剂与pvdf进行复合,以提高其在锂离子电池中的导电性能和循环寿命。

这一阶段的研究取得了一定的成果,为后续的研究奠定了基础。

3. 纳米材料的应用近年来,随着纳米材料的发展,研究者们开始将纳米粒子引入到pvdf 粘结剂中。

通过纳米材料的表面修饰和功能化处理,可以显著提高pvdf粘结剂的导电性能和化学稳定性,从而进一步提高锂离子电池的性能。

四、pvdf粘结剂的未来发展方向1. 绿色环保随着社会对环境保护意识的不断提高,绿色环保的材料已成为未来研究的重点。

在未来的研究中,研究者们将不断探索替代pvdf的材料,以减少对环境的影响。

2. 新型添加剂的应用随着材料科学的不断发展,研究者们将不断探索新型的添加剂,以改善pvdf粘结剂在锂离子电池中的性能表现。

锂离子电池用PVDF粘结剂的改性与性能研究

锂离子电池用PVDF粘结剂的改性与性能研究

锂离子电池用PVDF粘结剂的改性与性能探究关键词:锂离子电池,PVDF,粘结剂,改性,性能1.引言锂离子电池在绿色能源领域具有广泛的应用前景。

其中,PVDF 作为一种重要的粘结剂,可在电池的电极材料、电解液和电池隔膜等多个部位发挥其粘结作用。

但是,PVDF的应用受到其本身的结晶度低、分子链易断裂等因素的限制,因此需要通过改性提高PVDF在锂离子电池中的性能,提高电池的储能性能、高温稳定性和安全性。

2.试验方法2.1 PVDF颗粒的制备接受氯化钙和乙醇作为沉淀剂和溶剂,将PVDF溶液在70℃下亚沉淀,制备出纳米级PVDF颗粒。

2.2 PVDF的改性将硫醇和丙烯酸分别与改性PVDF进行共聚合反应,接受三氧化二铁为引发剂,合成出一种新型的改性PVDF。

2.3 电池材料的粘结试验将改性PVDF与电解液、电池隔膜、电极材料等进行粘结试验,并对其粘结性能、储能性能、高温稳定性等进行评判。

3.结果与谈论试验结果表明,经过改性的PVDF在锂离子电池中表现出了优异的性能。

其储能性能表现出了更高的比容量和循环稳定性,与传统PVDF相比有所提高。

此外,改性PVDF在高温下的稳定性也得到了提高,其热稳定性、氧化稳定性和机械强度均优于传统PVDF。

最重要的是,改性PVDF对于锂离子电池的安全性也有了显著的改善。

4.结论通过以上试验结果,我们得出了一个结论,即接受自由基共聚合反应将硫醇、丙烯酸和PVDF颗粒共聚合成为一种新型的改性PVDF,可以有效提高其在锂离子电池中的性能。

改性PVDF具有更好的粘结性能、储能性能、高温稳定性和安全性。

这样的探究效果对于提高锂离子电池的性能和推广其应用具有重要的意义5.进一步探究展望虽然本试验中得出的改性PVDF在锂离子电池中表现出了优异的性能,但仍有一些问题需要进一步探究解决。

起首,本试验中只对一种改性PVDF进行了试验探究,还需要对不同配比比例、各种共聚物进行更详尽的性能评判。

其次,改性PVDF在实际生产中可能会遇到一些挑战,例如制备过程中的溶液稳定性、工业化生产的成本等问题,需要进一步优化改进。

粘结剂对锂电负极浆料流变特性和微观结构的影响机理

粘结剂对锂电负极浆料流变特性和微观结构的影响机理

粘结剂对锂电负极浆料流变特性和微观结构的影响机理锂离子电池浆料是一种典型的微颗粒系统,其中包含石墨,炭黑,PVDF,CMC,SBR,和溶剂(油性或水性)。

由于其他颗粒和聚合物粘结剂之间力的相互作用(如桥接、吸引力或静电斥力)在颗粒系统中会形成各种微观结构。

负极浆料的微观结构依赖于CMC和石墨的比例,当CMC与石墨的比例适中时,由于CMC在石墨表面的吸附和CMC的空间位阻斥力使石墨颗粒分散。

然而当CMC与石墨的比例很高时,由于多余的没有吸附在石墨表面的CMC结合导致引力大于斥力,最终会形成的石墨颗粒团聚。

我们知道极片在干燥期间,由于SBR的迁移形成了不同的浆料微观结构和极片微观结构,浆料和极片的微观结构会直接影响到电池的性能:当炭黑和活性物质均匀分散在浆料和电极中时,电池就会有表现出较好的性能。

因此,为了提高电池的性能我们必须了解浆料以及极片的微观结构形成的机理。

石墨和炭黑颗粒由于其非极性和表面疏水性导致聚集在水中不能分散。

了解负极浆料中的CMC和SBR的对石墨颗粒的分散以及对浆料的微观结构形成的影响非常重要。

然而,很少有关于水性负极粘结剂浆料的微观结构形成的机理的研究。

在本研究中,探讨了CMC和SBR对三种负极浆料的微观结构形成的影响:石墨-SBR,石墨-CMC,石墨-CMC-SBR。

其中SBR和CMC分别有不同的添加量。

实验通过流变测试和低温扫描电镜表征(-140℃测试图像)结果。

实验材料:1,石墨:粒径=8.11 mm,密度=2.23 g/cm3,比表=12.12 m2/g2,SBR:直径=140nm3,CMC:分子量330,000 g/mol 取代度DS=0.74,流变仪第一种:石墨-SBR体系当只有石墨颗粒没有SBR的时候,如图1a粘度随剪切应力的变化:,在低剪切力下粘度保持不变,表明体系类似于固相的表现。

在过了某一临界点后,粘度就会急剧下降。

这个点就把它定义为屈服应力。

此时存储模量G’大于损失模量G’’。

黏结剂对锂离子电池负极膨胀的影响

黏结剂对锂离子电池负极膨胀的影响

黏结剂对锂离子电池负极膨胀的影响贺雨雨;陈炜;冯德圣;张宏立【摘要】以LiNi05Co02Mn0.3O2软包锂离子电池为平台,研究不同黏结剂丁苯橡胶(SBR)及含量对负极膨胀、循环寿命的影响.不同处理对SBR机械性能、负极极片膨胀率以及循环性能有重要影响,经羟基化处理的SBR弹性模量和机械强度均增大;负极膨胀率降低,循环100次后满电态膨胀率由30.5%(未经处理SBR)降至24.0%,卷芯变形量变小,使得电池的循环寿命得到提升.SBR含量减少,极片辊压时所受压力越小,负极极片前期的物理搁置、循环前电化学膨胀率均降低(满电态膨胀率由21.0%降至17.5%),但循环100次的满电态膨胀率不变.%Using LiNi0.5 Co0.2 Mn0.3 O2 soft package Li-ion battery,the influence of different binders styrene butadiene rubber(SBR) and its content on anode swelling and cycle life was investigated.After different treatment of SBR,it had an important impact on mechanical property,anode swelling rate and cycle performance.Elastic modulus and mechanical strength of SBR were enlarged by hydroxylation processing.Anode swelling rate was decreased,after 100 cycles,the full charging swelling rate was decreased from 30.5% (without treatment SBR)to 24.0%,the roll winding deformation was small,which improved the cycle life of the battery.Research showed that the content of SBR was decreased,the smaller pressure lowered the physical swelling and electrochemical swelling before cycle (the full charging swelling roll lowering from 21.0% to 17.5%),but the full charging swelling rate was constant after 100 cycles.【期刊名称】《电池》【年(卷),期】2017(047)003【总页数】4页(P169-172)【关键词】黏结剂;负极膨胀;循环寿命;锂离子电池;丁苯橡胶(SBR)【作者】贺雨雨;陈炜;冯德圣;张宏立【作者单位】合肥国轩高科动力能源有限公司,安徽合肥230001;合肥国轩高科动力能源有限公司,安徽合肥230001;合肥国轩高科动力能源有限公司,安徽合肥230001;合肥国轩高科动力能源有限公司,安徽合肥230001【正文语种】中文【中图分类】TM912.9高能量密度锂离子电池存在鼓胀、安全性能不理想及循环寿命短的问题。

什么是PVDF?PVDF在锂离子电池中的应用介绍【钜大锂电】

什么是PVDF?PVDF在锂离子电池中的应用介绍【钜大锂电】

什么是PVDF?PVDF在锂离子电池中的应用介绍【钜大锂
电】
聚偏氟乙烯(PVDF)是半结晶性含氟聚合物,因为具有好的机械强度、化学稳定性、电化学稳定性、热稳定性和对电解液良好的亲和性,一直以来倍受人们的关注。

PVDF在石油化工和建筑涂料领域需求稳定上升,随着锂离子电池的技术和市场的快速发展,PVDF在锂离子电池行业呈现快速上升趋势,年需求上升率超过20%。

PVDF重要作为粘结剂、隔膜和隔膜涂层应用于锂离子电池行业。

锂离子电池的组成结构包括正极、负极、电解质、隔膜、外壳等五大部分。

锂离子电池粘结剂应用
商业化锂离子电池电极一般由集流体、活性物质、导电剂和粘结剂组成。

PVDF用于制备锂离子电池的粘结剂具备以下特点:聚偏氟乙稀为半结晶性聚合物,结晶度比较高,结晶溶融温度高,因此在电池通常的使用温度下,PVDF的结晶性使存在电解液体的分子很难流通,充放电负荷增大;在制备电池时的干燥速度等不合适时,PVDF的收缩率与集电体的收缩率差异比较大,含活性物质的涂膜会从集电体上脱离;在使用过程中,随着时间的迁移,有由于电极的内部应力使电极合剂层从集电体上部分或全部剥离情况,导致负荷特性变差,引起容量劣化。

PVDF均聚物存在上述的问题,通过深入研究试验,推出了PVDF共聚物,通过在聚合过程中引入少量极性单体与VDF共聚制备的。

引入极性基团的PVDF共聚物可以极大提高了粘结剂粘结性能,防止电极脱落,显著降低粘结剂含量,赋予电池更高的能量密度、更小的内阻,带来更高的能量密度,更好的功率性能和更长的循环时间。

《ElectrochimicaActa》:粘结剂增强硅负极的电化学性能!

《ElectrochimicaActa》:粘结剂增强硅负极的电化学性能!

《ElectrochimicaActa》:粘结剂增强硅负极的电化学性能!水溶性粘结剂如聚(丙烯酸)(PAA)由于成本低、环境友好,在浆料和电极制备中具有许多优势。

然而,由于这些粘结剂的线性性质,它们在循环过程中容易在含硅负极的连续体积变化下滑动。

因此,需要一个三维(3D)互连的聚合物网络来提供与Si颗粒的强大机械粘附,以保持电极的完整性,从而获得优异的循环稳定性。

德国卡尔斯鲁厄理工学院的学者采用季戊四醇(PER)用作交联剂来连接线性PAA粘结剂,以增强其对硅负极的粘附强度。

与纯PAA 基硅电极相比,带有交联PAA-PER粘结剂的硅电极显示出增强的附着力和弹性,表现出更坚固的电极完整性。

循环性能表明,含微米硅和纳米硅的Si-PAA-5%PER的电极的放电容量分别为514.3mAh g-1(10次循环后)和1502.1mAh g-1(105次循环后);而对Si-PAA 电极,微米硅和纳米Si容量分别为257.6mAh g-1和1413.9 mAh g-1。

这项工作为探索新型粘结剂及其对SEI形成和功能性的影响提供了有意义的见解,尤其是对于高容量合金型负极材料。

相关成果以《Crosslinked poly(acrylic acid) enhances adhesion and electrochemical performance of Si anodes in Li-ion batteries》发表在《Electrochimica Acta》上。

原文链接:/10.1016/j.electacta.2022.140038锂离子电池(LIB)的高能量密度和稳定循环性能是消费电子和电动汽车等依靠电化学储能的设备所必需的。

硅(Si)是最有前途的合金化负极候选材料之一,由于其较高的理论比容量(Li4.4Si,4200mAhg-1)和较低的放电电位,近年来得到了广泛的研究。

然而,在循环过程中,由于体积变化大(高达300%),硅负极受到内应力的影响,容量迅速衰减,伴随着电接触损失、新暴露的硅表面上过度形成固态电解质界面(SEI),甚至硅活性材料从集流体上分离。

锂离子电池负极极片的力学性能及其影响因素

锂离子电池负极极片的力学性能及其影响因素

锂离子电池负极极片的力学性能及其影响因素蒋茂林;余伟;张泽宇【摘要】锂离子电池极片的柔性和强度直接影响其寿命,极片的力学性能受集流体和粘接剂的影响.通过小型拉伸机、扫描电子显微镜(SEM)、X射线衍射(XRD)和激光共聚焦显微镜等手段,对集流体和负极极片的力学性能、表面形貌、铜箔的表面粗糙度等进行了研究.结果表明,集流体的抗拉强度为121 MPa、断后伸长率为1.9%;负极极片的抗拉强度为15 MPa、断后伸长率为1.7%.极片涂覆层的弹性模量为1 GPa,说明粘结剂的柔性较差.极片涂覆层形貌呈片状,结构均匀且空隙少.铜箔表面粗糙度较大,其光面和毛面粗糙度差异明显.降低粘接剂的弹性模量是提高负极极片柔性、减小集流体辊压变形的关键.【期刊名称】《上海金属》【年(卷),期】2019(041)002【总页数】6页(P43-48)【关键词】锂离子电池;负极极片;铜箔;力学性能;粗糙度【作者】蒋茂林;余伟;张泽宇【作者单位】北京科技大学工程技术研究院,北京100083;北京科技大学工程技术研究院,北京100083;北京科技大学工程技术研究院,北京100083【正文语种】中文发展清洁能源,对于解决能源危机和缓和环境保护压力具有重要意义[1]。

可再生能源虽优点很多,但能量供应受气候制约严重,这就需要储能系统来解决这一问题,化学能源具有重要作用[2]。

化学电池是使化学能转变为直流电能的装置[3]。

锂离子电池(lithium ion battery, LIB)是目前综合性能最好的电池体系,具有高电压、高能量、循环寿命长、无记忆效应等优点,在电动工具、医疗器械、轨道交通和航空航天等领域广泛应用[4]。

锂离子电池主要由正极、负极、电解液和隔膜等材料组成,其发展主要得益于电极材料特别是炭负极材料的进步。

据估计,目前市售的锂离子电池中有75%以上采用的是石墨类炭负极材料[5]。

其中天然石墨、人造石墨和中间相炭微球是当前主要的商品化负极材料。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第38卷第6期Vol.38,No.62008年6月JOU RNAL OF UNIVE RSITY OF SCIENCE AND TECHNOLOGY OF CHINAJun.2008A rt icle ID:0253 2778(2008)06 0623 05Received:2008 01 18;Revised :2008 05 05Foundation item:Supported by Nation al Natu ral Science Foundation of Chin a (50372064).Biography:SH UI J iang lan,male,born in 1979,PhD.Res earch field:Lithium batteries.E mail:shu ijl@ Corresponding author:CH EN Chun hua,Ph D/Prof.E mail:cchchen @Effect of drying condition of poly (vinylidene fluoride)binder solution on film adhesion of graphiteelectrode for lithium batteriesSH U I Jiang lan,DIN G Chu x iong,Y U Yan,CH EN Chun hua(L abor atory of A d v anced F unctional M aterials and Dev ic es,Dep artment of M ater ials Sc ienc e and Eng ine ering ,Univ ersity of S cience and T ec hnology of China ,H e f ei 230026,China)Abstract:T he dr ying conditions of a poly (v inylidene fluoride)(PVDF)solution hav e a great influence on its crystalinity and binding streng th during the preparatio n o f electro de laminates for lithium ion batteries.A peeling experiment w as desig ned to evaluate the m echanical strength o f the PVDF adhering to g raphite.X r ay diffractio n and g alvanostatic cell cycling w ere used to evaluate the influence of PVDF binder treated under different thermal co nditions.T he results indicate that for the PVDF binder that is dried and crystallized at a temperature slig htly hig her than its m elting temperature,it has hig her cr ystallinity and adhesion strength to the g raphite par ticles,w hether it is so aked in electrolyte or not.This binder related mechanical pr operty o f the electr ode can improve the cy cling performance o f the g raphite electro de altho ug h the capacity m ay under go a gr adual rising process during the first 150or so cy cles due to the partial blocking of the electrical conduction path by PV DF initially.Key words:poly (viny lidene fluoride);gr aphite;cry stallinity;adhesion;lithium batteries CLC number:O646 Document code:A聚偏氟乙烯粘结剂溶液干燥条件对锂电池用石墨负极附着力的影响水江澜,丁楚雄,余 彦,陈春华(中国科学技术大学材料科学与工程系先进功能材料与器件实验室,安徽合肥230026)摘要:聚偏氟乙烯(PVDF)溶液的干燥条件对其结晶性、粘结强度有很大影响,对制备锂离子电池的电极材料亦有影响.为此,设计了一种薄膜剥皮试验来评估PVDF 附着于石墨的机械强度;以XRD 和电池循环来测量不同热处理条件下PVDF 粘结剂的影响.结果表明,在高于PVDF 熔点的温度处理的样品,PVDF 具有更高的结晶性和附着力,从而改善了石墨电极的循环性能,还观察到前150次循环过程中的容量逐步上升现象.PVDF 的逐渐溶胀被认为是出现该现象的原因.关键词:聚偏氟乙烯;石墨;结晶性;附着力;锂电池0 IntroductionGraphite is a widely used ano de material in the lithium ion battery.In order to improv e its capacity r etention ability,various attem pts have been made to r ealize surface m odification of the g raphite particles w hich w ill influence the form ation of SEI(so lid electr olyte interphase) film.Such a treatment usually reduces the initial capacity loss(ICL)and impr oves the cycling per for mance of the battery[1~3].In addition,the m icrostr ucture o f the po rous electrode can also be eng ineered dur ing the slur ry preparation by means of apply ing pr essure to the com posite electrode to tailor the poro sity of the electr ode.Pr oper porosity is necessary for the electr ode to have g ood capacity retention ability[4~7].Som e studies m entioned that the dr ying temperature of the composite electrode film has a g reat im pact on the adhesio n streng th of the w hole electrode to the current co llector,and that crystallinity of the PVDF binder plays an important r ole in this streng th.A detailed investigatio n on the effect of elevated dr ying temperature o n the adhesion streng th of the PVDF binding g raphite particles and the corresponding electro chem ical character ization has not been r eported in literature.In this paper,w e investigated this binding str ength betw een the binder PVDF and the g raphite particles,and com pared the cycling per for mance of the co mposite electro de m anufactured w ith different dry ing conditions.It is understo od that the crystallinity of PVDF sho uld differ greatly w hen it is o btained by dry ing its solution at a tem perature either far below or higher than its melting point(about170 ).M or eov er, the cry stallinity of PVDF binder has a gr eat influence o n the adhesion str ength as mentioned above.Therefor e,we selected70 (our usually used dry ing temperature)and200 as the dr ying temperatures to perform a comparative study.We have found that the crystallinity and adhesion strength of PVDF binder to the g raphite in the sample dried at200 are much hig her than that dried at70 ,and this kind o f adhesio n streng th has a crucial influence on the cy cling performance of the graphite electrode.H igher adhesion streng th results in better capacity retention ability.1 ExperimentalThe gr aphite electrodes w ere manufactured by mix ing a graphite pow der(about1 m particle size)(90w t%)w ith10w t%of PVDF binder into a NMP dispersed slurry,follow ed by spreading the slurry using the doctor blade m ethod on a sheet o f copper foil.T he natur ally dried laminate w as further dried in an oven at70 fo r5h or200 fo r20minutes.T he dried electrode films w er e taken out fro m the oven directly to the ro om tem perature about10 .Cycling test w as carried out on coin type cells(2032)w ith the config uration o f Li/1M LiPF6in ethylene car bonate and diethy l carbonate(EC DEC,11v/v)/ graphite film,w hich w ere assem bled in an arg on filled g love box(M BRAUN LABMAST ER130) w here bo th mo isture and oxy gen levels w ere less than1ppm.A Celgard2400microporous polypropylene membrane was used as the separator.To evaluate adhesio n str ength of PVDF binder to the gr aphite par ticles,a peeling exper im ent w as desig ned to simulate the adhesio n betw een g raphite particles and binder PVDF.A12w t%PVDF so lution w as prepar ed by dissolv ing PVDF pow der into NMP(1 m ethyl 2 py rrolido ne,C5H9NO).It w as coated onto the sur face o f tw o pieces o f graphite bars(8m m wide and50mm lo ng)and then dr ied in an oven in air at70 for5h(LT film)and200 for20m inutes(H T film), respectiv ely,in order to simulate the drying conditions of the graphite electrode laminates.We peeled these tw o PVDF film s fro m the g raphite bars at roughly the same peeling strength and velocity w ith a sm all clip and spring balance. Sim ilar ly,tw o PVDF coated g raphite bars w er e made and soaked in the electro lyte solution for18624中国科学技术大学学报第38卷hours at ambient temperature.T he PVDF adhesion o n these soaked bars w ere also measur ed by the peeling method.The thermal stability of the PVDF w as measured by a thermogravimetric analyzer (TGA50,Shimadzu)in the temperatur e range betw een 20and 700 w ith a heating rate of 5 /min.T he cry stal str ucture w as analyzed w ith X r ay diffr actio n (Cu K radiation,Philips X Pert PRO SU PER).Graphite electrode lam inates w er e prepared by casting onto a copper foil a slurr y consisting of g raphite pow der (90w t%)and po ly (v iny lidene fluoride )(PVDF )(10w t%)dispersed in 1 m ethyl 2 pyrr olidinone (NM P ).The lam inatesw ere then dr ied at either 70 o r 200 for 2hours and calendar ed to o btain po rosity betw een 60%~70%.Gr aphite/Li coin cells (2032size)w ere made w ith 1M LiPF 6in ethylene carbonate (EC):diethyl carbo nate (DEC)(1 1by w eig ht)as the electrolyte.Cycling tests on these cells w ere per for med under a constant current density of 0 20mA /cm 2in the vo ltag e rang e betw een 0and 3V.2 Results and discussionT he melting po int o f PVDF is around 170 .Accor ding to the thermo gravimetric analysis (T GA )o f the PVDF pow der used in this study (Fig.1),PVDF do es not deco mpose until 450 .Fig.2show s the X ray diffraction patterns o f the PVDF co atings after drying at 200 (H T film)and 70(LT film ).T he diffraction peakobserv ed at 2 !20.8∀is assigned to the unr esolved (110)and (200)diffractions of ! phase of PVDF,and phase o f PVDF show s diffraction peaks at 2 !18.5∀and 26∀,and are assigned to (020)/(110)and (120)diffractions,respectively [8].Co mparing the XRD patterns of the H T film and the LT film,the peaks of the LT film are broader than tho se of the H T film,w hich indicates that crystallinity of the film dried at 200 is higher than that dried at 70 .In addition,some ! phase has transferred to phase w hen the dryingcondition chang es from 70 /5h to 200 /20min.Different from som e resear ches to evaluate the adhesion strength o f co mposite film to substrates,w e solely w ant to know the adhesion streng th betw een the binder and g raphite because w e believ e that the interaction of the binder to the activ e materials is ver y im po rtant for the electrode stability and electro chem ical perform ance.Thus,a peeling ex periment w as desig ned to ev aluate this streng th and rectang ular g raphite bar s w er e used as substr ates to simulate the true adhesio n of the binder to the graphite particles.Tab.1sho ws the peeling strength for the H T film and the LT film before and after being soaked in the electr olyte.It can be seen that the peeling of the H T film needs fo ur times more for ce than the peeling of the LT film.Besides,w hen w e peel the binder films from the g raphite bar so me graphite particles ar e removed off the bar so that the peeled PVDF film ex hibits a fuscous co lor (Fig.3).The H T film625第6期E ffect of drying cond ition of poly (vi nylid en e flu orid e)bind er solu tion on film adhesion of graphite electrode for lithi um batteri espresents m ore fusco us than the LT film.Because of the higher adhesion strength of the H T film,m ore g raphite particles can be r em oved off from the gr aphite bar.After being soaked in the po lar or ganic electro lyte for 18hours at ambient temperature of about 20 ,the adhesion str ength of both the H T film and the LT film all decreased a little,but the sequence is still H T >LT.The decrease in the adhesion strength after soaking in the electroly te may be due to the sw elling of the amo rphous portion of PVDF w hen the electr olyte solvent is absor bed by the film.As repor ted by Yoo and Despotopoulou et.al [9,10],the crystallinity is an important factor in determ ining the adhesion strength:the higher crystallinity the higher adhesion str ength betw een com posite film and cur rent collector.H ence abov e r esults,combined w ith XRD results,clearly indicate that PVDF m ay crystallize at a tem perature slightly hig her than its m elting point.Co nsequently ,thus r esulted higher crystallinity leads to much higher adhesion strength of PVDF binder to the surface of graphite particles.Tab.1 Peel strength of dried PVDF film from graphite barspeel strength /(N #mm -1)70 /5hpeel stren gth /(N #mm -1)200 /20minbefore electrolyte soakin g 0.110.49after soaking in electrolytefor 18hours0.080.45Th e PVDF film s w ere dried at 70 /4h (a)and 200 /20min (b),respectivelyFig.3 Photo of the peeled PVDF film from graphite barsFig.4sho w s the capacity retention ability oftw o Li/graphite cells w ith the graphite electrodesmentioned above.T he cell w ith electro de dr ied at 70 /5h show s some capacity loss during the first 100cy cles fr om 365to 330m Ah/g,and the capacity fading accelerates after 125cycles.On the other hand,the cell w ith electro de dried at 200 /20min show s very g ood capacity retention ability.The capacity no t only keeps stable but also increases somew hat from 336to 367m Ah/g during the first 165cy cles,about 0 19mAh/g per cy cle.Though the capacity increases initially ,it finally decreases after r eaching the peak value (367mAh/g),that is still below the theo retical capacity o f graphite (372mAh/g ),dur ing a pr olongedcy cling.Li/com posite graphite (drying condition:70 /4h (a)and 200 /20min (b)).Th e pas sing current w as 0.2m A/cm 2Fig.4 Cycling performance of cellsThe lithium insertion extraction in a g raphite electr ode involv es several pro cesses including ∃periodic volume changing in the g raphite flakes,w ith the amo unt of activ e m aterial not decreasing [11],%surface film fo rmation o n the graphite par ticles [1~3,11],and &the sw elling o f po lymer binder PVDF [9,10].It should be mentio ned here that coulo mbic efficiencies o f these tw o kinds of cells are alm ost the same,abo ut 80%.Thus,the reaso n for the cycling performance change in Fig.4sho uld not be only due to the for mation o f SEI,w hich has been intensively investigated [1~4],although some gro ups repo rted that the br eaking o f SEI film can cause the capacity bining the abo ve facto rs ∃,%and &,w e speculate that the contact among gr aphite particles may be deteriorated w ith the incom pact electrode626中国科学技术大学学报第38卷upo n pr olonged cy cling.The loose particle contact can lead to a poor electrical conduction among the par ticles,and to the form ation of surface films w hich are m ore resistiv e.This may certainly cause the capacity loss of the battery.H ig her adhesion str ength betw een the PVDF binder and graphite can alleviate the po ssible detachm ent betw een the PVDF binder and the sur face of the graphite par ticles during the periodic vo lum e chang es o f the g raphite particles.On the other hand,some g raphite particles in the H T electrode may not be utilized fully initially because so me particles are covered closely by the PVDF binder w ith higher crystallinity so that the electronic conduction path is blocked and only a fraction(<100%)o f the g raphite surface is accessible to the electro lyte.H ence the w hole capacity can not be utilized fully at first,but the capacity can rise during prolo ng ed cycling due to the g radual binder swelling by the electroly te solution,as observed in the case of H T electrode(Fig.4).3 ConclusionWe have co mpared lam inated graphite electrodes and pure PVDF films m anufactured by different dry ing pro cesses,i.e.heating at either 70 /5h o r200 /20min.The cell w ith the 200 dried electr ode show s much better capacity retention ability,and the capacity ev en underg oes a little rise fo r the first165cy cles.PV DF dr ied at temperature slightly higher than its m elting po int w ill cause higher crystallinity w hich co nsequently enhances its adhesion strength as a binder w ith the g raphite particles and the stability of the electro de str ucture.Better adhesion o f the electrode can alleviate the issue of the detachment of PVDF binder to the g raphite and prevent loose contact betw een g raphite particles,and thus impr ove the capacity retention ability.A partial sw elling o f the binder can block the contact between the electroly te and the active m aterials,leading to an increase in capacity upon prolonged cycling.The internal interaction betw een the binder and the graphite particles has a crucial effect on the capacity retention ability of the composite g raphite electr ode.References[1]Zhang S S,Xu K,Jow T R.Effect of Li2CO3 co atingon the perfo rmance of natural g raphite in L i ion batter y [J].Electro chem Commun,2003,5:979 982.[2]Zhang S S,Xu K,Jo w T R.Enhanced per for mance ofnatura l g raphite in Li ion battery by o xalatobor ate coat [J].J P ow er Sour ces,2004,129:275 279.[3]Ko maba S,Itabashi T,K aplan B,et al.Enhancementof L i io n batt ery perfor mance of gr aphite anode by so dium ion as an electro ly te addit ive[J].Electro chem Co mmun,2003,5:962 966.[4]Gnanar aj J S,Cohen Y S,L evi M D,et al.T he effectof pressur e o n the elect roanalytical r esponse o f g ra phite ano des and L iCoO2cat ho des for L i io n batter ies[J].J Electro anal Chem,2001,516:89 102.[5]M anev V,N aidenov I,P ur esheva B,et al.Effect ofelectro de po rosity on the perfo rmance of nat ur al Br azilian g r aphite electr odes[J].J P ower Sources, 1995,57:133 136.[6]Buqa H,Goer s D,H o lzapfel M,et al.H ig h ratecapability of g raphite negat ive electro des for lithium io n batter ies[J].J Electro chem Soc,2005,152:A474 A481.[7]Shim J,Str iebel K A.Effect of electro de densit y o ncy cle perfo rmance and irr ev ersible capacity loss fo r natura l gr aphite anode in lithium io n batter ies[J].J Pow er So ur ces,2003,119 121:934 937.[8]Cho y K L,Bai W.P reparation o f o riented poly(viny lidene f luor ide)thin films by a cost effect ive electro st at ic spr ay assisted vapour depo sitio n based met ho d[J].T hin So lid F ilms,2000,372:6 9.[9]Yo o M,Fr anka C W,M o ri S,et al.Effect of poly(v iny lidene fluo ride)binder cry st allinity and g ra phite st ruct ur e o n the mechanical streng th o f the composite ano de in a lithium ion batter y[J].Po lymer,2003,44: 4197 4204.[10]D espoto po ulou M,Burchill M T.Coat ings fo relectro chemical applications[J].P ro gr ess in Or ganic Co atings,2002,45:119 126.[11]K o lty pin M,Cohen Y S,M ar ko vsky B,et al.T hestudy o f lithium insertion deinsertion pr ocesses into co mpo site g raphite electro des by in sit u atomic for ce micro sco py(A FM)[J].Electro chem Commun,2002, 4,17 23.627第6期E ffect of drying cond ition of poly(vi nylid en e flu orid e)bind er solu tion on film adhesion of graphite electrode for lithi um batteri es。

相关文档
最新文档