先导型电磁换向阀
电磁换向阀
电磁换向阀分为交流和直流电磁换向阀,交流电磁换向阀吸力大,换向时间短,但冲击较大,噪声大,过载时易烧毁,可靠性不如直流电磁换向阀;直流电磁换向阀启动力小,换向时间较长,换向冲击小,使用安全,寿命长。
电液换向阀换向平稳,换向时间较长,主要是由电磁换向阀和液动换向阀组成,电磁换向阀起先导阀作用,而液动换向阀起主阀作用。
比较简单的液压系统用电磁换向阀就行简单来说吧?一般电磁换向阀用于小流量,电液换向阀用于大流量液压系统什么是平衡阀,有何作用?平衡阀也称限速锁,是一种外控内泄式单向顺序阀,由一个单向阀和一个顺序阀并在一起使用,液压回路中,可以闭锁液压缸或马达油路中的油液,使液压缸或马达不会因负载自重下滑,此时起闭锁作用。
当液压缸或马达需要运动时,通过向另一油路通液,同时通过平衡阀内部油路控制顺序阀打开使回路接通,实现其运动。
由于顺序阀本身与双向液压锁的结构不同,在工作时通称在工作回路中建立一定的背压,不至于因自重超速下滑而使液压缸或马达的主工作产生负压,因此不会发生向双向液压锁那样的冲击和振动。
因此,平衡阀一般应用于高速重载,且对速度稳定性有一定要求的回路中。
液压锁,液控单向阀,这两种在液压系统起了什么作用?还有减压阀和溢流阀有什么区别?调速阀又是干什么用的?调节流量?是调节泵的流量快慢吗?溢流阀的作用:溢出液压系统中的多余液压油,并使液压系统中的油液保持一定的压力,还可以用来防止系统过载,起安全保护作用。
减压阀的作用:用来减低液压系统中某一部分压力,使这一部分得到较低的稳定压力。
液压锁,经常是两个液控单向阀组合使用,分别在进出油路,控制方向相反,一般在系统中严格锁定液压缸的位置。
液控单向阀只能单向控制油路;溢流阀控制的是进口压力,减压阀控制出口压力求液控单向阀工作原理和单向阀的区别单向阀分成两类:有普通单向阀和液控单向阀.普通单向阀只允许液流向一个方向通过.液控单向阀既有普通单向阀的功能,并且只要在远程控制口通以一定压力的控制油液,液流反向也能通过.在工程应用中常用两个液控单向阀组成液压锁.用液压力控制阀的开启,主要是在反向的时候起作用。
液压阀的种类
液压阀的种类(所有的)溢流阀﹑减压阀、顺序阀、节流阀、集流阀、分流阀、调速阀、单向阀、换向阀、电磁阀、反向控制阀压力控制阀:溢流阀﹑减压阀和顺序阀流量控制阀:节流阀,集流阀,分流阀,调速阀方向控制阀:单向阀和换向阀压力控制阀按用途分为溢流阀﹑减压阀和顺序阀。
(1)溢流阀:能控制液压系统在达到调定压力时保持恆定状态。
用於过载保护的溢流阀称为安全阀。
当系统发生故障,压力昇高到可能造成破坏的限定值时,阀口会打开而溢流,以保证系统的安全。
(2)减压阀:能控制分支迴路得到比主迴路油压低的稳定压力。
减压阀按它所控制的压力功能不同,又可分为定值减压阀(输出压力为恆定值)﹑定差减压阀(输入与输出压力差为定值)和定比减压阀(输入与输出压力间保持一定的比例)。
(3)顺序阀:能使一个执行元件(如液压缸﹑液压马达等)动作以后,再按顺序使其他执行元件动作。
油泵產生的压力先推动液压缸1运动,同时通过顺序阀的进油口作用在面积A 上,当液压缸1运动完全成后,压力昇高,作用在面积A 的向上推力大於弹簧的调定值后,阀芯上昇使进油口与出油口相通,使液压缸2运动。
流量控制阀利用调节阀芯和阀体间的节流口面积和它所產生的局部阻力对流量进行调节,从而控制执行元件的运动速度。
流量控制阀按用途分为5种。
(1)节流阀:在调定节流口面积后,能使载荷压力变化不大和运动均匀性要求不高的执行元件的运动速度基本上保持稳定。
(2)调速阀:在载荷压力变化时能保持节流阀的进出口压差为定值。
这样,在节流口面积调定以后,不论载荷压力如何变化,调速阀都能保持通过节流阀的流量不变,从而使执行元件的运动速度稳定。
(3)分流阀:不论载荷大小,能使同一油源的两个执行元件得到相等流量的为等量分流阀或同步阀;得到按比例分配流量的为比例分流阀。
(4)集流阀:作用与分流阀相反,使流入集流阀的流量按比例分配。
(5)分流集流阀:兼具分流阀和集流阀两种功能。
方向控制阀按用途分为单向阀和换向阀。
JBT 7352-1994 工业过程控制系统用电磁阀
中华人民共和国机械行业标准工业过程控制系统用电磁阀JB/T 7352—1994代替 ZBN 16002-1986机械工业部1994-08-23发布 1995-05-01实施1 主题内容与适用范围本标准规定了工业过程控制系统用电磁阀的产品分类、技术要求、试验方法、检验规则等。
本标准适用于以清洁的液体、气体、蒸汽为工作介质,在管路中实现开闭控制功能的电磁阀。
本标准不适用于以液压、气体作动力传动控制用的电磁换向阀。
2 引用标准GB 3836 爆炸性环境用防爆电气设备GB 9223 执行器术语GB 4208 外壳防护等级的分类GB 2423.4 电工电子产品基本试验规程,试验Db:交变湿热试验方法GB 8355 船舶用电动测量和控制仪表通用技术条件ZBY 002 仪器仪表运输、运输贮存基本环境条件及试验方法ZBY 003 仪器仪表包装通用技术条件3 术语本标准除采用GB 9223中有关术语外,下列术语适用于本标准。
3.1反冲型电磁阀 kick pilot solenoid valve电磁力驱动动铁芯由空程运动冲击力直接提拉阀芯,或驱动先导阀以建立阀芯上下部的压差,从而使主阀开闭的阀,是直动型和先导型的组合。
3.2手动复位式电磁阀 manual operating reset solenoid valve当激磁线圈通电(或断电)时,阀门变位。
一旦变位后的电磁阀,不随断电(或通电)状态而变化,依旧保持原位。
由此,电磁阀必须重新手动操作将之锁住再定位,是一种半自动的安全阀。
4 产品分类4.1型式4.1.1按动作方式分类:a.直动型;b.先导型;c.反冲型。
4.1.2按控制方式分类:a.常关式;b.常开式;c.自保持式;d.手动复位式。
4.1.3按外壳防护型式分类:a.普通型;b.防尘型;c.防水型;d.防爆型;e.船用型;f.防腐型。
注:根据需要允许采用组合防护型式或其他防护型式。
4.1.4按接管连接型式分类:a.扩管式;b.螺纹式;c.法兰式;d.焊接式。
液压与气动技术(第二版)—按知识点课件-气动换向阀
气动换向阀
气动换向阀的功用是通过改变阀芯相对阀体的位置,使气体流动方向 发生变化,从而改变气动执行元件的运动方向。根据其控制方式可分为 气压控制阀、电磁控制阀、机械控制阀、手动控制阀等。换向型方向控 制阀的结构和工作原理与液压阀中对应的方向控制阀基本相似,职能符 号基本相同。
一、气压控制换向阀
电磁控制换向阀是利用电磁力的作用推动阀芯换向,从而改变气 流的流动方向。按照电磁控制部分对换向阀的推动方式,可分为直 动式和先导式两大类。
1.直动式电磁换向阀
图1-3 直动式电磁换向阀
左位接通
右位接通
图形符号
二、电磁控制换向阀
2.先导式电磁换向阀
图1-4 先导式电磁换向阀
电磁先导阀线圈通电
图形符号
三时间控制换向阀
时间控制换向阀是使气流通过气阻(如小孔、缝隙等)节流后到气容(储 气空间)中,经一定时间容器内建立起一定压力后,再使阀芯换向的阀。
1.延时换向阀
图1-5 延时换向阀
结构图
图形符号
三、时间控制换向阀
2.脉冲阀
图1-6 脉冲阀
结构图
图形符号
气压控制换向阀是利用空气压力推动阀芯运动,使得换向 阀换向,从而改变气体的流动方向的换向阀。
1.单气控截止式换向阀
图1-1 单气控截止换向阀
12口无压缩空气
12口有压缩空气
图形符号
一、气压控制换向阀
2.双气控滑阀式换向阀
图1-2 双气控滑阀式换向阀
12口有压缩空气
14口有压缩空气
图形符号
二、电磁控制换向阀
第十三章气动控制元件
13.1 方向控制阀
延时换向阀:若压缩空气是洁净的,且压力稳 定,则可获得精确的延时时间。通常,延时阀的 时间调节范围为 0~30秒,通过增大气室,可以 使延时时间加长。
13.1 方向控制阀
脉冲阀:压缩空气流经气阻、启容时,阀芯动 作产生延时,使压力输入长信号变为短暂的脉冲 信号输出。
当气压从P口输入时,A口有输出。同时经阻尼 孔向右端气容充气,达到调定压力时,阀芯向左 移动,A口无输出。
13.1 方向控制阀
快速排气阀:装在换向阀与气缸之间,用来提高 气缸运动速度,对于大缸径气缸及缸与阀之间管路 长的回路,尤为需要。
13.1 方向控制阀
换向型阀:换向阀按工作位置和通口数可以有多 种形式和用途;按控制方式可分为气压控制、电磁 控制、机械控制、手动控制和时间控制等。
13.1 方向控制阀
第十三章 气动控制元件
控制元件按功能和用途可分为: 方向阀:改变和控制压缩空气的流动方向。 压力阀:控制和调节压缩空气的压力。 流量阀:控制和调节压缩空气的流量。 逻辑元件:通过改变气流方向和通断实现各种
逻辑功能。 近年来,随着气动元件的小型化以及PLC控制
在气动系统中的大量应用,气动逻辑元件的应 用范围正在逐渐减小。
13.1 方向控制阀
通过改变压缩空气的流动方向和控制其通断,来 控制执行元件启动、停止及运动方向的气动元件。
单向型阀 换向型阀
单向阀、梭阀、双压阀、 快速排气阀、截止阀
阀芯结构
柱塞式、截止Байду номын сангаас、滑块式、 旋塞式、膜片式
操作方式
电磁式、气动式、 机动式、手动式
口和位数
二位二通、二位三通、 三位四通、三位五通
13.1 方向控制阀
液压与气动技术
完成理论任务
任务实践
压力机的工作过程是启动按钮开关,液压缸驱动的压头缓慢 伸出,将工件Ⅱ压入工件Ⅰ的凹槽中,此时液压缸处于位置B1处, 保压3 min(此时的压力可维持在120~130 bar之间),液压缸带 动压头自动返回。由于压力机利用液压缸带动压头向下运动进行工
件的压装,因此需要固定的压紧力,系统选用了双作用液压缸。对
图4-12 机械互锁电路
学习单元一 电气液压系统装调
6.通过接触器/继电器的触点进行电气互锁
如图4-13所示的交 叉互锁电路中使用了继 电器的常闭触点,这样 会出现重叠的可能性。 当同时按动所属的按钮 开关时,两个继电器会 同时带电并吸引保护衔 铁。所有的触点会出现 短时接通(重叠)。
图4-13 电气交叉互锁电路
学习单元一 电气液压系统装调
、
四、 电气控制原理介绍
1.继电器的接线说明
如图4-7所示, +24 V与继电器K1和 两个按钮开关S1、S2 串联后与0 V相连。 理论上继电器与正极 相连也是可行的,然 而,这样做会发生危 险,但由于绝缘缺陷 或者其他的原因会导 致负极接线柱接地, 形成错误导通连接而 发生危险。
图4-7 继电器与正极相连的接线图
学习单元一 电气液压系统装调
2.绘制电路图说明
如图4-8所示继 电器控制电路图可 以清楚地看出控制 情况。但它没有表 示出单个元件的接 线情况,而表示的 只是理论的过程。 实际上接触器K1的
图4-8 继电器控制电路图
学习单元一 电气液压系统装调
绘制电路图时,要遵循以下规则。 (1)开关和继电器被清晰地标注出来,且不考虑元件的机械 关系。 (2)电路图中表示的是不带电状态。 (3)画出的元件为不操纵的状态。 (4)图形符号的运动方向应该平行于图面,并且总是成一体 地从左向右动作。
液压与气压传动--第13章 气动控制元件
图13-19所示为柔性节流 阀的原理图,其节流作用主要 是依靠上下阀杆夹紧柔韧的橡 胶管而产生的。当然,也可以 利用气体压力来代替阀杆压缩 橡胶管。柔性节流阀结构简单, 压力降小,动作可靠性高,对 污染不敏感,通常工作压力范 围为0.3~0.63MPa。
图13-19 柔性节流阀
1—上阀杆 2—橡胶管 3—下阀杆
三、单向节流阀
单向节流阀常用于气缸的调速和延时回路。
图12-29 单向节流阀的工作原理
13.4气动逻辑元件
原理:通过元件内部的可动部件的动作改变气流方向来实现一 定逻辑功能的气动控制元件。 特点:抗污染能力强,无功耗气量低,带负载能力强。 一、气动逻辑元件的分类:
按工作压力分 按逻辑功能分
高压元件(工作压力0.2~0.8MPa) 低压元件(工作压力0.02~0.2MPa) 微压元件(工作压力0.02MPa以下)
由于信号的传输有一定的延时,信号的发出点与接受点之间, 不能相距太远。一般来说,最好不要超过几十米。
当逻辑元件要相互串联时,一定要有足够的流量,否则可能无 力推动下一级元件。
阀 4—换向阀 5—钻孔缸
4、快速排气阀
快速排气阀主要用于气缸 排气,以加快气缸动作速度。 通常,气缸的排气是从气缸 的腔室经管路及换向阀而排 出的,若气缸到换向阀的距 离较长,排气时间亦较长, 气缸的动作缓慢。采用快速 排气阀后,则气缸内的气体 就直接从快速排气阀排向大 气。快速排气阀的应用回路 如图13-7所示。
图13-7 快速排气阀应用回路
图13-6所示为快速排 气阀。当P腔进气后,活 塞上移,阀口2开启,阀 口1关闭,P口和A口接 通,A有输出。当P腔排 气时,活塞在两侧压差 作用下迅速向下运动, 将阀口2关闭,阀口1开 启,A口和排气口接通, 管路中的气体经A通过 排气口快速排出。
各种电磁阀
两位三通和两位五通电磁阀的特点两位三通电磁阀通常与单作用气动执行机构配套使用,两位是两个位置可控:开-关,三通是有三个通道通气,一般情况下1个通道与气源连接,另外两个通道1个与执行机构的进气口连接,1个与执行机构排气口连接,具体的工作原理可以参照单作用气动执行机构的工作原理图。
两位五通电磁阀通常与双作用气动执行机构配套使用,两位是两个位置可控:开-关,五通是有五个通道通气,其中1个与气源连接,两个与双作用气缸的外部气室的进出气口连接,两个与内部气室的进出气口接连,具体的工作原理可参照双作用气动执行机构工作原理。
在气路(或液路)上来说,两位三通电磁阀具有1个进气孔(接进气气源)、1个出气孔(提供给目标设备气源)、1个排气孔(一般安装一个消声器,如果不怕噪音的话也可以不装@_@)。
两位五通电磁阀具有1个进气孔(接进气气源)、1个正动作出气孔和1个反动作出气孔(分别提供给目标设备的一正一反动作的气源)、1个正动作排气孔和1个反动作排气孔(安装消声器)。
对于小型自动控制设备,气管一般选用8~12mm的工业胶气管。
电磁阀一般选用日本SMC(高档一点,不过是小日本的产品)、台湾亚德客(实惠,质量也不错)或其它国产品牌等等。
在电气上来说,两位三通电磁阀一般为单电控(即单线圈),两位五通电磁阀一般为双电控(即双线圈)。
线圈电压等级一般采用DC24V、AC220V等。
两位三通电磁阀分为常闭型和常开型两种,常闭型指线圈没通电时气路是断的,常开型指线圈没通电时气路是通的。
常闭型两位三通电磁阀动作原理:给线圈通电,气路接通,线圈一旦断电,气路就会断开,这相当于“点动”。
常开型两位三通单电控电磁阀动作原理:给线圈通电,气路断开,线圈一旦断电,气路就会接通,这也是“点动”。
两位五通双电控电磁阀动作原理:给正动作线圈通电,则正动作气路接通(正动作出气孔有气),即使给正动作线圈断电后正动作气路仍然是接通的,将会一直维持到给反动作线圈通电为止。
如何看懂液压阀的型号?液压阀解释_20150917_214655
液压与气压传动答案
一、填空题1.液压系统中的压力取决于(负载),执行元件的运动速度取决于(流量)。
2.液压传动装置由(动力元件)、(执行元件)、(控制元件)和(辅助元件)四部分组成,其中(动力元件)和(执行元件)为能量转换装置。
3.液体在管道中存在两种流动状态,(层流)时粘性力起主导作用,(紊流)时惯性力起主导作用,液体的流动状态可用(雷诺数)来判断。
4.在研究流动液体时,把假设既(无粘性)又(不可压缩)的液体称为理想流体。
5.由于流体具有(粘性),液流在管道中流动需要损耗一部分能量,它由(沿程压力)损失和(局部压力)损失两部分组成。
6.液流流经薄壁小孔的流量与(小孔通流面积)的一次方成正比,与(压力差)的1/2次方成正比。
通过小孔的流量对(温度)不敏感,因此薄壁小孔常用作用调节流阀。
7.通过固定平行平板缝隙的流量与(压力差)一次方成正比,与(缝隙值)的三次方成正比,这说明液压元件内的(间隙)的大小对其泄漏量的影响非常大。
8.变量泵是指(排量)可以改变的液压泵,常见的变量泵有(单作用叶片泵)、(径向柱塞泵)、(轴向柱塞泵),其中(单作用柱塞泵)和(径向柱塞泵)是通过改变转子和定子的偏心距来实现变量,(轴向柱塞泵)是通过改变斜盘倾角来实现变量。
9.液压泵的实际流量比理论流量(大);而液压马达实际流量比理论流量(小)。
10.斜盘式轴向柱塞泵构成吸、压油密闭工作腔的三对运动摩擦副为(柱塞)与(缸体)、(缸体)与(配流盘)、(滑履)与(斜盘)。
11.外啮合齿轮泵的排量与(模数)的平方成正比,与的(齿数)一次方成正比。
因此,在齿轮节圆直径一定时,增大(模数),减少(齿数)以增大泵的排量。
12.外啮合齿轮泵位于轮齿逐渐脱开啮合的一侧是(吸油)腔,位于轮齿逐渐进入啮合的一侧是(压油)腔。
13.为了消除齿轮泵的困油现象,通常在两侧盖板上开(卸荷槽),使闭死容积由大变小时与(压油)腔相通,闭列容积由小变大时与(吸油)腔相通。
14.齿轮泵产生泄漏的间隙为(端面)间隙和(径向)间隙,此外还存在(啮合)间隙。
先导式电液换向阀的两种对中形式
先导式电液换向阀的两种对中形式为了对大功率的液压系统进行控制,应使用先导换向阀,其原因在于移动滑芯需要的作用力较大。
这就是为什么先导式控制只针对公称通径10以上的电液换向阀。
当然,还有更大尺寸的先导式控制阀。
先导式方向控制阀包括主阀和先导阀,先导阀一般为电控直动式(电磁阀),我们也可以叫做一级阀,当先导阀收到信号后,就可将控制信号放大成液压力,从而推动主阀芯产生运动,并最终形成流量、压力的输出。
总而言之:小阀是为了驱动大阀,小功率是为了驱动大功率的“撬杠”作用。
对于二级电液换向阀的主阀芯的对中形式主要有两种:弹簧对中式和压力对中式。
一、弹簧对中式下图所示,先导阀为电控直动式三位四通换向阀。
对于弹簧对中型,主阀芯(3)靠弹簧(4.1和4.2)保持在中位。
因此两边的弹簧腔内液压油在初始位置都经先导阀与油箱零压相通。
先导液流通过控制油路(5)供给先导阀,并有内部供油(通过端口P)或外部供油(通过端口X)两种方式。
举例,如果电磁阀a得电,将先导阀芯推向左侧。
左侧弹簧腔(6)因而作用有先导压力,而右侧弹簧腔(7)维持原先的无压力状态。
先导压力作用于主阀芯的左端,并推动阀芯克服弹簧力(4.2),直到压在端盖上。
因此,主阀的端口P与B,A 与T都得以连通。
当电磁阀失电后,先导阀回到中间位置,且弹簧腔(6)没有了压力。
弹簧(4.2)可推动阀芯相左,直到碰到弹簧挡(4.1)。
这样,阀芯再次回到中位(中间位置)。
来自弹簧腔(6)的先导液流,经先导阀Y通道卸荷。
电磁阀“b”的开关过程与上述相同。
根据阀芯和阀的类型,需要有对主阀起作用的某一最低先导压力。
图:弹簧对中符号图图:弹簧对中的结构示意图二、压力对中式下图所示,在压力对中型阀中,两侧的控制腔(6)和(7)均通压力油。
靠作用于阀芯(3)横截面,对中阀套(8)和对中顶杆(9)上液压力的相互作用,主阀芯保持在中间位置。
如果先导阀的电磁铁“a”得电,就将先导阀芯推向左侧。
液压阀的种类
液压阀的种类(所有的)溢流阀﹑减压阀、顺序阀、节流阀、集流阀、分流阀、调速阀、单向阀、换向阀、电磁阀、反向控制阀压力控制阀:溢流阀﹑减压阀和顺序阀流量控制阀:节流阀,集流阀,分流阀,调速阀方向控制阀:单向阀和换向阀压力控制阀按用途分为溢流阀﹑减压阀和顺序阀。
(1)溢流阀:能控制液压系统在达到调定压力时保持恆定状态。
用於过载保护的溢流阀称为安全阀。
当系统发生故障,压力昇高到可能造成破坏的限定值时,阀口会打开而溢流,以保证系统的安全。
(2)减压阀:能控制分支迴路得到比主迴路油压低的稳定压力。
减压阀按它所控制的压力功能不同,又可分为定值减压阀(输出压力为恆定值)﹑定差减压阀(输入与输出压力差为定值)和定比减压阀(输入与输出压力间保持一定的比例)。
(3)顺序阀:能使一个执行元件(如液压缸﹑液压马达等)动作以后,再按顺序使其他执行元件动作。
油泵產生的压力先推动液压缸1运动,同时通过顺序阀的进油口作用在面积A 上,当液压缸1运动完全成后,压力昇高,作用在面积A 的向上推力大於弹簧的调定值后,阀芯上昇使进油口与出油口相通,使液压缸2运动。
流量控制阀利用调节阀芯和阀体间的节流口面积和它所產生的局部阻力对流量进行调节,从而控制执行元件的运动速度。
流量控制阀按用途分为5种。
(1)节流阀:在调定节流口面积后,能使载荷压力变化不大和运动均匀性要求不高的执行元件的运动速度基本上保持稳定。
(2)调速阀:在载荷压力变化时能保持节流阀的进出口压差为定值。
这样,在节流口面积调定以后,不论载荷压力如何变化,调速阀都能保持通过节流阀的流量不变,从而使执行元件的运动速度稳定。
(3)分流阀:不论载荷大小,能使同一油源的两个执行元件得到相等流量的为等量分流阀或同步阀;得到按比例分配流量的为比例分流阀。
(4)集流阀:作用与分流阀相反,使流入集流阀的流量按比例分配。
(5)分流集流阀:兼具分流阀和集流阀两种功能。
方向控制阀按用途分为单向阀和换向阀。
(完整版)电磁阀使用说明书
电磁换向阀使用说明
电磁换向阀是用电磁铁推动阀芯,从而变换流体流动方向的控制阀.在DEH系统中,它主要用于控制油路的通断和切换,或作为先导阀,控制卸荷阀。
体连接处为内螺纹,导磁套上为外螺纹并可直接拧到阀体上。
导磁套和阀体之间靠O形密封圈密封,其密封结构采用了液压元件螺纹连接油口的密封型式(锥面密封),提高了背压密封性.另外该种电磁铁的导磁套和线圈是相对独立的,更换线圈时无需拧下导磁套,因而使得维修变得很方便。
2工作原理:
在未操纵(电磁铁断电)状态下,阀芯由复位弹簧保持在初始位置,油口P与A相通,B与T相通。
当电磁铁通电时,电磁铁的力径推杆作用在控制阀芯上,将推到末端的换向位置。
此时,油口P与B相通,A与T相通.当电磁铁断电时,控制阀芯靠复位弹簧返回初始位置.
3技术参数;
流量:最大80 l/min
工作压力:油口P、A和B最高压力350bar,油口T最高压力140 bar 工作介质:磷酸酯抗燃油
密封材料:氟橡胶
工作油温范围:30~+70℃
保持功率:28W。
北京华德液压多种款式比例阀产品选型参数介绍
注:对E1、W1机能 P→A :qV
B→T : qV /2
P→B : qV /2 A→T : qV
4WRE\4WREE比例换向阀
4WRE\4WREE型阀是由比例电磁铁控制的带反馈的直动式比例换向阀 ,用于控制油液的流量和流动方向。
该阀由阀体(1)、一个或两个比例电磁铁(2)、位置传感器(3)、阀芯 (4)及一个或两个复位弹簧(5)组成。
2、5X系列电磁铁靠四条内六角螺栓与阀体连接,拆装较繁琐。维修时必须 在液压系统停机的情况下更换电磁铁。
B、电磁铁背压密封性好、耐压程度高(见下页图): 由于密封结构进行了改进,6X系列电磁铁比5X系列电磁铁背压密封性
好 、耐压程度高(见下页图) ,最高压力21MPa ;5X系列交流电磁铁最高 压力只能到10MPa ,直流电磁铁最高压力只能到16MPa 。
直推式电磁球阀
HD-M-SED6…10/
M-SED型方向阀是直动截止式电磁方向阀,用于控制油液的流动、 停止和方向。该型阀主要由阀体(1)、电磁铁(2)、以及钢球(4 )等组成。
基本功能:
弹簧(5)的设置确定阀的初始位置。在断电时,“u”型阀处于开 启状态,而“C”型阀处于关闭状态。位于关闭件(4)后面的阀腔(3 )和油口P连接,与油口T之间有密封隔离。因此相对于操纵力(电磁铁 和弹簧)阀处于压力平衡状态。由于特殊的关闭件(4),这种阀可在P ,A和T口的工作压力高达35MPa时使用,且可在两个方向通过流量。
对E3、W3机能 P→A :qV/2 B→T : 不通 P→B : qV A→T : 不通
4WRZ先导式比例换向阀
4WRZ型阀是由比例电磁铁控制的先导式比例换向阀,将电气信号 转化为液体压力信号,用于控制油压系统的流量和流动方向。该阀由先 导阀(3)、主阀芯(8)、主阀(7)、复位弹簧(9)等组成。
换向阀介绍
4.3.2.4 液动换向阀
液动换向阀是利用控制压力油来改变阀芯位置的换向 阀。对三位阀而言,按阀芯的对中形式,分为弹簧对中型 和液压对中型两种。
阀芯两端分别接通控制油口K1和K2。当对液动滑阀换向平 稳性要求较高时,还应在滑阀两端K1、K2控制油路中加装阻尼 调节器。调节阻尼调节器节流口大小即可调整阀芯的动作时间。
电液换向 阀用在大 流量的液 压系统中。
图4.23内部控制、外部回油的弹簧对中电液换向阀
电液换向阀有弹簧对中和液压对中两种型式。若按控制压力油及 其回油方式进行分类则有:外部控制、外部回油;外部控制、内部回 油;内部控制、外部回油;内部控制、内部回油等四种类型。
图4.23 内部控制、外部回油的弹簧对中电液换向阀
固定在运动的活塞杆上,当挡块触压阀推杆2的滚滚轮1时 , 推杆2即推动阀芯3换向。挡块和推杆2端部的滚轮脱离接触 后,阀芯即可靠弹簧复位。此种阀的控制方式因和缸的行程 有关,也有管此类阀叫“行程阀”。
1—滚轮 2—推杆 3—阀芯
图5.18 机动换向阀
4.3.2.3 电磁换向阀
电磁换向阀是利用电磁铁吸力推动阀芯来改变阀的工 作位置。
图4.22 弹簧对中型三位四通液动换向阀
1
p2
1、5—对中弹簧;2、4—定位套筒;3—阀芯;k1、k2—控制油口 图4.22 弹簧对中型三位四通液动换向阀
电磁换向阀起先导作用,控制液动换
4.3.2.5
电液动换向阀
向阀的动作;液动换向阀作为主阀, 用于控制液压系统中的执行元件。
电液换向阀是电磁换向阀和液动换向阀的组合。
4)P型机能
阀芯处于中位时,P、A、B油口互通,油口T被封闭。
AB
P型机能
PT
电磁换向阀
(2)电磁换向阀。
电磁换向阀是利用电磁吸引力操纵阀芯换位的方向控制阀。
图2-3-2 8所示为三位四通电磁换向阀的结构原理和符号。
阀的两端各有一个电磁铁和一个对中弹簧,阀芯在常态时处于中位。
当右端电磁铁通电吸合时,衔铁通过推杆将阀芯推至左端,换向阀就在右位工作;反之,左端电磁铁通电吸合时,换向阀就在左位工作。
图2-3-29所示为二位四通电磁阀的符号,图2-3-29a为单电磁铁弹簧复位式,图2-3 -30b为电磁铁钢球定位式。
二位电磁阀一般都是单电磁铁控制的,但无复位弹簧的双电磁铁二位阀由于电磁铁断电后仍能保留通电时的状态,从而减少了电磁铁的通电时间,延长了电磁铁的寿命,节约了能源;此外,当电源因故中断时,电磁阀的工作状态仍能保留下来,可以避免系统失灵或出现事故,这种“记忆”功能,对于一些连续作业的自动化机械和自动线来说,往往是十分需要的。
图2-3-29二位四通电磁阀图形符号(a)单电磁铁弹簧复位式;(b)电磁铁钢球定位式电磁铁按所接电源的不同,分交流和直流两种基本类型。
交流电磁铁使用方便,启动力大,但换向时间短(约0.01~0.07s),换向冲击大,噪声大,换向频率低(约30次/min),而且当阀芯被卡住或由于电压低等原因吸合不上时,线圈易烧坏。
直流电磁铁需直流电源或整流装置,但换向时间长(约0.1~0.15s),换向冲击小,换向频率允许较高(最高可达24 0次/min),而且有恒电流特性,当电磁铁吸合不上时,线圈不会烧坏,故工作可靠性高。
还有一种本整型(本机整流型)电磁铁,其上附有二极管整流线路和冲击电压吸收装置,能把接入的交流电整流后自用,因而兼有前述两者的优点。
上述电磁阀的阀芯皆为滑动式圆柱阀芯,故这种电磁阀又称电磁滑阀。
近年来出现了一种电磁球阀,它以电磁力为动力,推动钢球来实现油路的通断和切换。
与电磁滑阀相比较,电磁球阀具有密封性好,反应速度快,使用压力高和适应能力强等优点,是一种颇具特色的换向阀。
换向阀的结构
(3)换向阀的结构。
在液压传动系统中广泛采用的是滑阀式换向阀,在这里主要介绍这种换向阀的几种典型结构。
①手动换向阀。
图5-5(b)为自动复位式手动换向阀,放开手柄1、阀芯2在弹簧3的作用下自动回复中位,该阀适用于动作频繁、工作持续时间短的场合,操作比较完全,常用于工程机械的液压传动系统中。
如果将该阀阀芯右端弹簧3的部位改为可自动定位的结构形式,即成为可在三个位置定位的手动换向阀。
图5-5(a)为职能符号图。
图5-5(a)职能符号图(b)1—手柄2—阀芯3—弹簧〖JZ〗〗②机动换向阀。
机动换向阀又称行程阀,它主要用来控制机械运动部件的行程,它是借助于安装在工作台上的挡铁或凸轮来迫使阀芯移动,从而控制油液的流动方向,机动换向阀通常是二位的,有二通、三通、四通和五通几种,其中二位二通机动阀又分常闭和常开两种。
图5-6(a)为滚轮式二位三通常闭式机动换向阀,在图示位置阀芯2被弹簧1P和A通,B口关闭。
当挡铁或凸轮压住滚轮4,使阀芯2移动到下端时,就使油腔P和A断开,P和B接通,A口关闭。
图5-6(b)图5-6机动换向阀③方向的。
它是电气系统与液压系统之件发出,从间的信号转换元件,它的电气信号由液压设备结构图(b)职能符号图中的按钮开关、限位开关、行程开关等电气元1—滚轮2—阀芯3—弹簧而可以使液压系统方便地实现各种操作及自动顺序动作。
电磁铁按使用电源的不同,可分为交流和直流两种。
按衔铁工作腔是否有油液又可分为“干式”和“湿式”。
交流电磁铁起动力较大,不需要专门的电源,吸合、释放快,动作时间约为0.01~0.03s,其缺点是若电源电压下降15%以上,则电磁铁吸力明显减小,若衔铁不动作,干式电磁铁会在10~15min后烧坏线圈(湿式电磁铁为1~1.5h),且冲击及噪声较大,寿命低,因而在实际使用中交流电磁铁允许的切换频率一般为10次/min,不得超过30次/min。
直流电磁铁工作较可靠,吸合、释放动作时间约为0.05~0.08s,允许使用的切换频率较高,一般可达120次/min,最高可达300次/min,且冲击小、体积小、寿命长。
气动门电磁阀结构示意图
第13页/共14页
感谢您的观看。
13
第14页/共14页
主阀阀芯向左移动。此时P与B、A与O1相通。先导式双电控 电磁阀具有记忆功能,即通电换向,断电保持原状态。
图11.32 先导式双电控换向阀的工作原理图 11 第12页/共14页
行程开关
NC 2
NO 3
COM 1
当机器的某一部分或一个工件到达一特定位置时行程开关被启 动,通常行程开关的启动是由开关上的凸轮完成的。多数情况下, 行程开关被设计成转换开关。根据具体要求,它可能作为常开或常 闭或转换开关被连接到电路中。
1
接触元件
常开开关 对于常开开关来说,当按钮处于静止位置时电路处于待接通状态。 也就是说,当常开开关静止时电路是断开的。通过启动开关按钮电 路接通,电流流向用电器。松开按钮开关在弹簧弹力作用下复位, 电路断开。
操作模式(按钮) 11c 11a
控制元件
接点
第2页/共14页
常闭开关
对于常闭开关来说,当按钮处于静止位置时电路处于接通状态。当 启动开关,电路断开。
先导式电磁阀是由电磁铁首先控制气路,产生先导压 力,在由先导压力推动主阀阀芯,使其换向。
9
第10页/共14页
先导式电磁换向阀
当电磁先导阀1的线圈通电,主阀
3的K1腔进气,K2腔排气,使主阀阀芯 向右移动。此时P与A、B与O2相通。
图11.32 先导式双电控换向阀的工作原理图
10
第11页/共14页
先导式电磁换向阀 当电磁先导阀2通电,主阀的K2腔进气,K1腔排气,使
5
第6页/共14页
电磁控制换向阀 常用的电磁换向阀有直动式和先导式两种。 ①直动式电磁换向阀
直动式单电控电磁阀的工作原理图
先导式电磁换向阀工作原理
先导式电磁换向阀工作原理
先导式电磁换向阀是一种电磁阀,它可以通过电磁控制来改变阀门的
方向,从而控制液体或气体的流向。
该阀门采用先导式的设计原理,
可以使其工作更加灵敏和稳定。
下面,我们来详细了解先导式电磁换
向阀的工作原理。
工作原理
先导式电磁换向阀的内部结构主要包括电磁铁、阀门体、阀芯和导向
阀等部件。
当电磁铁通电时,产生的磁场会吸引阀门体上的阀芯,使
其从离合位置移动到开启位置。
随着阀芯的移动,导向阀的位置也会
随之改变。
当导向阀位置改变时,会使得阀门体上的液口和气口发生
切换,从而改变介质的流向。
特点
1. 先导式电磁换向阀拥有较高的工作效率和稳定性,可以快速控制介
质的流向,满足不同工作场合的要求。
2. 先导式电磁换向阀具有先导式设计原理,可以使得其反应速度更快,输出精度更高,可以广泛应用于高精度的工业领域。
3. 先导式电磁换向阀的结构设计较为简单,易于维护和保养,同时具
有较长的使用寿命。
应用场合
先导式电磁换向阀可以广泛应用于液压、气压、流量调节、液位控制
等领域。
例如,可用于制造具有仪表面板和复合仪表表盘的仪表,还
可用于风力涡轮机、水泥厂、石油化工等工业领域。
总之,先导式电磁换向阀工作原理简单、灵敏且稳定,适用于多种工业领域,具有较高的应用价值。