浅析氢氧化镁的阻燃机理
资源型矿物简介 氢氧化镁
2、阻燃剂
定义:阻燃剂是用以提高材料抗燃性,即阻止材料被 引燃及抑制火焰传播的助剂。 分类:添加型和反应型 按阻燃元素的种类,阻燃剂常分为卤系、有机磷 系及卤-磷系、氮系、磷-氮系、锑系、铝-镁系、无机 磷系、硼系、钼系等。 用途:阻燃剂主要用于阻燃合成和天然高分子材料(包 括塑料、橡胶、纤维、木材、纸张、涂料等)中,在 材料中添加阻燃剂,有助于材料减低可燃性、防止火 势蔓延、减少烟雾发生、缩小毒性。
一个理想的阻燃剂须满足以下条件: (1) 阻燃效率高,获得单位阻燃效能所需的用量少; (2) 本身低毒或无毒,燃烧时生成的有毒和腐蚀性气体 量及烟量尽可能少; (3) 与被阻燃基材的相容性好,不易迁移和渗出; (4) 具有足够高的热稳定性,在被阻燃基材加工温度下 不分解,但分解温度也不宜过高,在250℃~400℃为宜; (5) 不致过多恶化被阻燃基材的加工性能和最后产品的 机械性能及电气性能; (6) 具有可接受的紫外线稳定性和光稳定性; (7) 原料来源充足,制造工艺简便,价格低廉。
2MgCl2 + Ca(OH)2 → CaCl2 + 2Mg(OH)Cl↓
Mg(OH)Cl + H2O → Mg(OH)2↓+ HCl ↑
(2) 卤水的氨水合成法 该方法以卤水为原料,经净化除杂后,在一定温度下加入 氨水进行合成反应,再经水热处理、固液分离、表面处理 、干燥、气流粉碎,即可制成阻燃剂型氢氧化镁。该过程 的化学反应用下式表示: MgCl2 + 2NH3•H2O → Mg(OH)2↓ + 2NH4Cl
的目的。
阻燃剂氢氧化镁要求颗粒表面极性小、粒子不易集 聚或成团结块,在非极性材料中具有很好的相容性和分 散性。阻燃剂氢氧化镁的特性包括: (1) 具有纤维状或片状的晶型构造,这样可以大大改善高 分子材料的挠曲强度和延伸率; (2) 化学纯度高; (3) 比表面积一般小于 20m2/g ;燃烧时不产生有毒或腐蚀 性气体,约在340~430℃范围分解;
氢氧化镁阻燃剂
氢氧化镁阻燃剂简介氢氧化镁简称MH,分子式Mg(OH)2,分子量重58.33.白色粉末,相对密度 2.39.折射率 1.561-1.581.在300℃以下稳固,320℃开端分化,生成氧化镁和水,430℃时分化速度最快,490℃时分化完结.溶于烯酸和铵盐溶液,不溶于水.乙醇.氢氧化镁不但有阻燃感化,还有一眼功效,无毒.无腐化性,多种机能优于氢氧化铝,安然便宜,属于环保型无机阻燃剂.阻燃机理氢氧化镁在受热时(340-490度)产生分化接收燃烧物概况热量到阻燃感化;同时释放出大量水分稀释燃物概况的氧气,分化生成的活性氧化镁附着于可燃物概况又进一步阻拦了燃烧的进行.氢氧化镁在全部阻燃进程中不单没有任何有害物质产生,并且其分化的产品在阻燃的同时还可以或许大量接收橡胶.塑料等高分子燃烧所产生的有害气体和烟雾,活性氧化镁不竭接收未完整燃烧的融化残留物,从使燃烧很快停滞的同时清除烟雾.阻拦熔滴,是一种新兴的环保型无机阻燃剂.分类阻燃剂按化学成份可以分为有机阻燃剂和无机阻燃两大类.有机阻燃剂又分为磷系和卤系两个系列.因为有机阻燃剂消失着分化产品毒性大.烟雾大等缺陷,正慢慢被无机阻燃剂所替代.无机阻燃剂重要品种有氢氧化铝.氢氧化镁.红磷.氧化锑.氧化锡.氧化钼.钼酸铵.硼酸锌等,个中以氢氧化铝和氢氧化镁因分化吸热量大,并产生H2O可起到隔断空气感化,其分化后氧化物又是耐高温物质,故二种阻燃剂不但可起到阻燃感化,并且可以起到填充感化,它所具有不产生腐化性卤气及有害气体.不挥发.后果持久.无毒.无烟.不滴等特色.活性氢氧化镁:活性氢氧化镁阻燃剂,普遍运用于橡胶.化工.建材.塑料(聚丙烯.聚乙烯.聚氯乙烯.三元乙丙橡胶)及电子.不饱和聚酯和油漆.涂料等高分子资估中,特别是对矿用导风筒涂覆布.PVC整芯运输带.阻燃胶板.蓬布.PVC电线电缆料.矿用电缆护套.电缆附件的阻燃.消烟抗静电,可代替氢氧化铝,具有优秀的阻燃后果.种类间比较今朝国内氢氧化铝用量较多,但跟着高聚物加工温度的进步,氢氧化铝易分化,降低阻燃感化,氢氧化镁较氢氧化铝具有如下长处:①氢氧化镁热分化温度达330℃,比氢氧化铝高100℃,故有利于塑料加工温度的进步,加速挤塑速度,缩短模塑时光;②氢氧化镁与酸的中和才能强,可较快地中和塑料燃烧进程产生的酸性气体SO2.NOx.CO2等;③氢氧化镁分化能高,有利于接收燃烧热,进步阻燃效力;④氢氧化镁抑烟才能强.硬度小,对装备摩擦小,有助于延伸临盆装备寿命.氢氧化镁阻燃剂的改性研究氢氧化镁阻燃剂的阻燃后果很低,单独运用时添加量须要在50%以上时才具有较好的阻燃后果,但如许影响了聚合物质料的加工机能和物理力学机能.为此,人们常对氢氧化镁进行概况处理,并与其他阻燃剂混杂运用,构成复合的阻燃系统,削减氢氧化镁用量,进步阻燃后果.1.1 概况改性氢氧化镁是一种极性很强的无机化合物,其晶体在偏向有微不雅内应变,晶体概况带有正电荷.具有亲水性,和亲油性的聚合物分子的亲和力欠,晶粒趋势于二次凝集;同时,氢氧化镁与聚合物的界面产生闲暇,导致疏散性很差.为了改良氢氧化镁与聚合物间的粘结力和界面亲和性,采取概况改性剂对其进行概况处理是最为行之有用的办法之一.氢氧化镁阻燃剂经常运用的概况改性剂是偶联剂和阴离子概况活性剂.1·1·1 偶联剂硅烷偶联剂是一类具有特别构造的低分子有机硅化合物,对改良聚合物质料的强度和耐热性的后果较为凸起,经常运用来处理纤维状或其它纵横比较大的填料;钛酸酯偶联剂能付与聚合物质料较好的分解机能,即加工温度下优越的流淌性和运用温度下兼具高的强度和韧性,个中对改良抗冲击机能较为明显,一般处理氢氧化镁的均为单烷氧基钛酸酯.研究标明,用硅烷偶联剂和钛酸酯偶联剂概况处理的氢氧化镁填充聚丙烯材料,其曲折模量分离比未改性时进步了100%和70%.1·1·2 阴离子概况活性剂主如果高等脂肪酸及其衍生物,活性剂分子的亲水基与亲油基分离与氢氧化镁和聚合物质料产生互相感化,产生化学反响或物理吸附,加强了两者之间的有机接洽,进步了氢氧化镁在聚合物质估中的相容性和疏散性,从而改良材料的力学机能.上述的概况改性剂不但可以单独运用,也可以复配运用.日本曾有专利报导,将硅烷偶联剂与硬酯酸钙.油酸镁混杂在一路,对氢氧化镁进行概况改性处理,既达到改良氢氧化镁概况机能的目标,又能在聚合物质料燃烧时形成优越的碳化构造,进一步进步了材料的阻燃及机械力学机能.1.2 与其他阻燃剂构成复合阻燃系统氢氧化镁除可以单独填充聚合物质料外,还可以和其他阻燃剂如红磷.氢氧化铝.卤系阻燃剂等复合运用.少量增效剂的添加可以降低氢氧化镁的填充量,明显地改良材料的阻燃及机械机能.1.2.1 与氢氧化铝的协同效应氢氧化铝的分化温度比氢氧化镁低100℃,将两者并用可以在235~455℃规模内均消失脱水吸热反响,可以在较宽规模内克制高分子材料的燃烧.是氢氧化镁和氢氧化铝总含量为50份时与高密度聚乙烯共混料的差热剖析数据. Mg(OH)2及Al(OH)3填充HDPE 氧指数变更图标明氢氧化镁和氢氧化铝各自的氧指数OI为26.28,当Mg(OH)2∶Al(OH)3为30∶20和40∶10时,OI可达30,标明两者有明显协同感化.还有一些文献报导,氢氧化镁与氢氧化铝在聚合物中添加量达到1∶1时,阻燃协同效应最佳.1.2.2 与红磷的协同效应红磷可以作为阻燃剂单独运用,燃烧时先被氧化成磷酸非燃性液态膜,进而脱水生成聚偏磷酸,聚偏磷酸是很强的脱水剂,在高温下使聚合物概况形成碳化层,起到阻燃感化.但红磷本身可燃且吸湿性很强,单独运用后果不睬想,限制了其在聚合物中的大量添加.然而它倒是很好的阻燃增效剂,研究发明,在氢氧化镁或氢氧化铝阻燃的聚合物质估中添加少量红磷,可以明显加强聚合物的热稳固性,进步阻燃机能,产生协同效应.郭锡坤等以为,产生协同效应的机理是因为氢氧化镁和氢氧化铝在高温下脱水,有利于促进红磷充分转化为磷酸和聚偏磷酸,而聚偏磷酸的强烈脱水感化又促使氢氧化镁和氢氧化铝的脱水反响进行得更完整.经由过程互相促进,使三者自身的感化能更充分施展,从而加强了脱水吸热.成炭结焦隔氧隔热等阻燃感化,表现出协同效应.1.2.3 与卤系阻燃剂的协同效应卤系阻燃剂具有很强的阻燃机能,但其燃烧时发烟量大一向是难以解决的缺陷.氢氧化镁具有很好的抑烟后果,是以人们对二者的复合运用进行了较多研究.崔永岩等研究了在含溴锑阻燃剂的聚丙烯中添加不合份量的氢氧化镁对材料氧指数的影响,以为在低添加量时产生干扰感化,高添加量时产生协同效应.临盆厂家深圳市宏泰基实业有限公司是一家致力于环保型阻燃剂研发.临盆和发卖为一体的专业厂商.公司成立于2004年,厂房占地面积约3000多平米,车间情况安静卫生,装备先辈齐备,公司现有技巧研发人员12人,一线工人五六十人.宏泰基实业将建立谨小慎微.克意朝上进步的企业精力,一步一个脚印的稳步成长.宏泰基在环保阻燃剂方面已取得了必定成绩,失去自立开辟的改性氢氧化镁.改性氢氧化铝.微胶囊红磷.改性硼酸锌.无卤阻燃剂.高效化学改性阻燃剂等一批环保型阻燃剂.产品在实践中不竭成熟,克意使本身的产品相符国际环保请求:①欧盟ROHS指令②索尼SS-00259尺度. 氢氧化镁.氢氧化铝等阻燃剂产品获得了宽大客户的一致承认.姑苏市博洋化学品有限公司是一家集研发.临盆.发卖为一体的专业化学品企业.公司重要从事光伏太阳能及半导体行业电子化学品.水处理化学品.化工原料.....丹东天赐阻燃材料科技有限公司有关氢氧化镁的产品:高纯氢氧化镁.氢氧化镁氢氧化镁水处理.氢氧化镁脱硫剂.氢氧化镁阻燃剂.深圳市锦龙(昊)辉实业有限公司辽阳富达化公司(南海办)上海城锐工商业公司等公司都是临盆氢氧化镁产品的公司.国外商标有MagShield M,S(美国).FR-20(以色列).价钱氢氧化镁是今朝正推广的无公害无机阻燃剂,它在临盆.运用和放弃进程中均无有害物质排放,不影响是指电断气缘性,并且还能中和燃烧进程中产生的酸性与腐化性气体,是一种情况呵护型绿色阻燃剂.氢氧化镁是无卤阻燃剂系列产品中最便宜的阻燃剂,其道理是在340度时释放出结晶水一向到490度,温度再高消融,氢氧化镁具有消烟阻燃环保等特征,就是单独运用添加量大,如今2500元阁下一吨.汗青与远景瞻望氢氧化镁作为阻燃剂正式投入工业化临盆始于1978年,之后,关于氢氧化镁的基本研究和运用研究日趋繁华.不竭深刻,几乎历次国际阻燃学术研究会上都有这方面的内容.美国事世界上氢氧化镁产量最大的国度,据Walter的剖析,1997年美国氢氧化镁的产量达到37万t,个中作为阻燃剂运用的氢氧化镁总量为 1.5~2.0万t.今朝的年增长率为8%,跟着阻燃剂无卤化趋势的成长,估计到2005年,年增长率会达到10%~15%.日本是氢氧化镁阻燃剂工业化临盆最早的国度,1975年协和公司成功研制了特别大晶粒.低概况积的氢氧化镁阻燃剂,随后三菱公司又将氢氧化镁与聚丙烯制成阻燃复合伙料投放市场.今朝日本氢氧化镁的临盆厂家已超出10家,临盆才能达到50万t,个顶用于阻燃剂的氢氧化镁超出2.4万t,且以10%~12%的年增长率在增长.欧洲阻燃剂的消费量1995年为26万t,无机阻燃剂氢氧化镁和氢氧化铝占统治地位,约占48%.个中氢氧化镁仍呈增长势头,到2000年增长率约为6%~8%.我国氢氧化镁阻燃剂的开辟运用起步较晚,80年月以来,有杭州化工研究所.江苏海水分解运用研究所等对其制作工艺和运用进行了研究.今朝的临盆厂家许多,年现实总产量已达到1000万t.而我国临盆氢氧化镁的资本种类和起源上与日底细比具有无可争议的优势,与美国比拟也八两半斤,在青海盐湖储藏着MgCl232亿t.MgSO416亿t,还有丰硕的卤水资本,山东潍坊也蕴含着大量的卤水资本,并且潍坊作为中国的阻燃基地,在氢氧化镁这个产品中具有较为成熟的技巧资本,尤以潍坊海鲁镁业.潍坊化工场等厂家.这些前提对成长氢氧化镁阻燃剂都是十分有利的.跟着氢氧化镁阻燃剂研究的深刻和运用规模的扩展,氢氧化镁阻燃剂的往后成长趋势应向以下几个方面.1.简化氢氧化镁制备工艺,削减水镁矿破碎摧毁的能耗问题.2.阻燃剂力度超细化:当氢氧化镁阻燃剂的添加量增长时,为了更好施展阻燃后果及削减对力学机能的影响,应之辈超细氢氧化镁,可以像纳米级氢氧化镁阻燃剂成长.3.概况活性处理技巧:针对不合的材料选择适合的概况活性剂及最佳用量,进步氢氧化镁阻燃基于高分子聚合物的相容性.4.协同复合技巧:积极开展复合阻燃剂的研究,选择适合的阻燃剂与氢氧化镁阻燃剂相合营,有用地进步系统的阻燃剂机能,解决氢氧化镁高添加量所带来的聚合物力学机能大幅度降低的问题.。
阻燃型氢氧化镁制备技术评述
阻燃型氢氧化镁制备技术评述摘要:随着社会的不断进步和经济的快速发展,人们的环保意识也逐渐提高。
为了开发出性能更好的阻燃剂,要加强对阻燃剂自身与使用过程中的环保问题的重视程度,正确预测21世纪阻燃剂整体发展的趋势,如阻燃剂的无卤化、低毒化、复合化、抑烟化等。
目前,无机阻燃剂在国外工业发达国家早已被人们广泛应用在各种领域,消费量远远高于有机阻燃剂。
如美国、西欧和日本等工业发达国家和地区无机阻燃剂的消费约占总消费量的60%,而我国不到10%。
因此,我国无机阻燃剂的发展潜力非常巨大。
无机阻燃剂包括氢氧化铝、氢氧化镁、无机磷、硼酸盐、氧化锑、钼化合物等。
本文主要介绍了阻燃型氢氧化镁的制备技术。
关键词:阻燃型;氢氧化镁;制备技术;弊端1、引言随着高分子合成材料的广泛应用,火灾的危险性日益显著,随之阻燃剂的发展就成为必然。
阻燃剂是一种可以阻止材料被引燃及抑制火焰蔓延的助剂,大大提高了可燃性聚合物的难燃性,按组分的不同,可以分为两种,分别是无机阻燃剂和有机阻燃剂。
无机阻燃剂具有无毒、无害、无烟、无卤等优点,主要产品有氢氧化铝、氢氧化镁、硼酸等。
有机阻燃剂有较好的阻燃性,主要产品有卤系、磷酸酯、卤代磷酸酯等,但是其会释放出有毒气体,因此无机阻燃剂被人们广泛应用在各类阻燃领域。
2、阻燃剂的发展现状近20年来,世界阻燃剂的使用量和需求逐年增加,其产量每年也以10~15%的速度递增。
美国是生产和使用阻燃剂最多的国家,也是最早使用阻燃剂的国家。
表1表现了世界三大阻燃剂市场——美国、日本、西欧以及中国阻燃剂产品结构。
通过表1阻燃剂的使用量及各类阻燃剂所占的比例,可以看出在20世纪末,无机阻燃剂应用比较广泛,占有一定的优势,发展前景良好。
但是我国无机阻燃剂所占份额较少,主要还是氯系阻燃剂占了相当大的比重,与发达国家有很大的不同。
由于我国是镁资源大国,再加上逐渐增加的阻燃剂需求,人们越来越重视对无毒、抑烟型的环保无机氢氧化镁阻燃剂的研究。
电缆料阻燃氢氧化镁_概述及解释说明
电缆料阻燃氢氧化镁概述及解释说明1. 引言1.1 概述在电力传输和通信领域的发展中,电缆作为重要的传输介质扮演着关键角色。
然而,由于电缆在使用过程中会产生大量的热量和火灾威胁,因此阻燃材料的应用变得尤为重要。
本文将介绍一种被广泛应用于电缆料中的阻燃剂——氢氧化镁,并解释其特点、作用机制以及比较优势。
1.2 文章结构本文共分为五个部分。
引言部分对文章进行了概括性的描述和概述;接下来第二部分将详细介绍氢氧化镁在电缆料阻燃中的应用;第三部分将解释氢氧化镁的物理性质、作用机制以及与其他阻燃剂的比较优势;第四部分将通过实际案例进行具体应用和评价,同时展望未来创新应用方向;最后一部分总结全文并提出对未来发展的建议。
1.3 目的本文旨在全面了解和解释电缆料阻燃中常用的氢氧化镁的相关知识。
通过介绍其特点、作用机制以及与其他阻燃剂的比较优势,可以更好地认识氢氧化镁在电缆料中的应用价值。
通过案例分析,探索氢氧化镁在电缆行业中的实际应用,并展望未来发展方向和潜力。
2. 电缆料阻燃氢氧化镁概述:2.1 阻燃材料的重要性在电缆制造中,防止火灾事故的发生是至关重要的。
由于电缆在工作过程中会产生大量的热能,若没有采取适当的防火措施,很容易引发火灾事故,对人员和财产安全造成严重威胁。
因此,选择合适的阻燃材料来保护电缆变得至关重要。
2.2 氢氧化镁作为电缆料阻燃剂的特点和应用范围氢氧化镁是一种常见而有效的电缆料阻燃剂。
它具有以下几个主要特点:首先,氢氧化镁具有优异的耐高温特性,能够承受高温环境下电缆所产生的热能,从而降低火灾风险。
其次,氢氧化镁是一种无机物质,不易与其他化学物质发生反应,在使用过程中安全性非常高。
此外,氢氧化镁可以有效吸附空气中的水分,从而减少电缆内部潮湿度,进一步提高阻燃效果。
由于氢氧化镁具有这些独特的性质,因此在电缆行业中广泛应用于阻燃材料的制备。
2.3 当前存在的问题和挑战尽管氢氧化镁作为电缆料阻燃剂具有上述优点,但仍然存在一些问题和挑战需要解决。
氢氧化镁阻燃剂
氢氧化镁阻燃剂姓名:单显朋学号:20130591 班级:材料1305班【摘要】:随着高分子材料日新月异飞速发展,高分子复合材料应用在人类生活的每一个领域,高分子材料的阻燃技术发挥着越来越重要的作用,市场发展的需要,对氢氧化镁的阻燃剂的研发方向也有着改变,更加注重对氢氧化镁的阻燃剂新的性能的研究,励志开发出更加高效的阻燃剂适应市场的进一步的发展。
无论从合成资源还是从天然资源制得的氢氧化镁,用于阻燃剂量与日俱增,利用我国丰富的镁资源,依托技术创新开发高附加值的阻燃性氢氧化镁,是镁盐行业面临地一个共同课题。
氢氧化镁是阻燃性能好的高效无卤阻燃剂,火灾后不会产生二次污染,都具有抑烟性强、无毒、无腐蚀、不挥发、不析出、安全等特点,已经被公认是环保型阻燃剂,正因为氢氧化镁的安全、环保特性,在塑料、电缆、橡胶等行业得到广泛的应用。
我国拥有丰富的含镁矿物、富镁废弃物资源,因此氢氧化镁阻燃填料的前景是十分广阔的。
本文简单介绍了阻燃剂的分类,氢氧化镁阻燃机理。
重点介绍了氢氧化镁阻燃剂的作用、研究现状和发展方向。
并指出氢氧化镁阻燃剂是一种新型的,环境友好型的无机阻燃剂。
【关键词】:氢氧化镁阻燃剂环保发展方向【前言】:随随着高分子材料的发展,高分子材料的易燃性日益受到了人们的重视,对阻燃剂的需求量也随之增加。
然而,随着人们对环境等因素提出了更加严格的要求,阻燃的无卤化、高效性、抑烟性、无毒成为未来的发展趋势。
1.阻燃剂的分类阻燃剂按化学成份可以分为有机阻燃剂和无机阻燃两大类。
有机阻燃剂又分为磷系和卤系两个系列。
由于有机阻燃剂存在着分解产物毒性大、烟雾大等缺点,正逐步被无机阻燃剂所替代。
无机阻燃剂主要品种有氢氧化铝、氢氧化镁、红磷、氧化锑、氧化锡、氧化钼、钼酸铵、硼酸锌等,其中以氢氧化铝和氢氧化镁因分解吸热量大,并产生H2O可起到隔绝空气作用,其分解后氧化物又是耐高温物质,故二种阻燃剂不仅可起到阻燃作用,而且可以起到填充作用,它所具有不产生腐蚀性卤气及有害气体、不挥发、效果持久、无毒、无烟、不滴等特点。
氢氧化镁阻燃剂及其结晶机理的研究进展
氢氧化镁阻燃剂及其结晶机理的研究进展陈敏;刘志启;李丽娟【摘要】我国是镁资源大国,西部的盐湖镁资源尤为丰富,如何合理的利用盐湖镁资源,已成为制约盐湖资源向规模化、产业化深度开发的阻碍.本文综述了近几年氢氧化镁阻燃剂的制备及其结晶理论研究的最新进展;展望了氢氧化镁阻燃领域的发展方向及其工业化过程中急需解决的关键问题.【期刊名称】《广州化工》【年(卷),期】2010(038)007【总页数】3页(P17-19)【关键词】氢氧化镁;阻燃剂;制备;机理【作者】陈敏;刘志启;李丽娟【作者单位】青海省化工设计研究院有限公司工程咨询部,青海,西宁,810008;中国科学院青海盐湖研究所,中国科学院盐湖资源与化学重点实验室,青海,西宁,810008;中国科学院研究生院,北京,100049;中国科学院青海盐湖研究所,中国科学院盐湖资源与化学重点实验室,青海,西宁,810008【正文语种】中文我国是镁资源大国,其中西部的盐湖镁资源尤为丰富[1-2].盐湖镁资源以品位高,储量大著称于世,但是由于技术、气候等因素的制约,镁资源利用率却不足2%,在开发其它盐湖资源过程中大量镁资源被作为废弃物排放,不仅造成镁资源的严重浪费,还在一定程度上破坏了盐湖资源结构,影响盐湖资源的可持续开发和利用[3].如何合理的利用盐湖镁资源,使盐湖镁资源实现大规模产业化开发,这已成为制约盐湖资源向规模化、产业化深度开发发展的"瓶颈".随着国内外塑料、橡胶、纤维、建材等行业的快速发展及消防、环保对阻燃剂安全、无毒、无害、低污染等方面的要求不断提高,阻燃剂工业正朝着环保化、低毒化、高效化、多功能化的方向发展[4-5],阻燃剂已成为仅次于增塑剂的第二大高分子材料助剂.作为重要的无机阻燃剂产品,氢氧化镁由于环境友好、阻燃性能强而备受人们青睐[6-7].氢氧化镁与同类无机阻燃剂相比,具有良好的填充性能、安全无毒、性能稳定、产品生产成本低,在生产、使用和废弃的过程中均不含有毒物质,而且还能中和燃烧过程中产生的酸性与腐蚀性气体等优点[8-9],已在天然和合成高分子材料中以及工业生产和人们的日常生活中得到越来越广泛的应用.因此利用盐湖镁盐生产各种镁系化合物,积极投入研究开发氢氧化镁系列产品生产新工艺,开发出具有高附加值及工业应用前景的功能材料-氢氧化镁阻燃剂,这对发展地方经济,改善盐湖资源的综合利用,提升国产氢氧化镁阻燃剂在国际市场上的竞争力具有深远的意义.2008年国家科技部将氢氧化镁阻燃剂项目列入国家科技支撑计划项目,2009年已正式立项,计划在柴达木循环经济园建成年1万吨高纯超细阻燃剂氢氧化镁生产线.因此,我们在大规模生产氢氧化镁阻燃剂的同时,研究和开发具有我国自主知识产权的超细细氢氧化镁阻燃剂生产技术具有十分重要的意义.氢氧化镁是一种表面极性很强的无机化合物,晶体表面带有正电荷,具有亲水疏油的性质,晶粒间趋于二次团聚[10],作为阻燃剂添加到聚合物中时,在聚合物中的分散性和相容性较差,颗粒表面与聚合物之间的界面形成空隙,影响复合材料的加工性能和机械性能[6,11].为了使氢氧化镁更好地用于高分子材料的阻燃,国内外许多研究机构对其进行了系统研究,并相继开发了许多不同性能的氢氧化镁阻燃剂产品.目前生产氢氧化镁的方法主要有两种[12-13]:一是水镁石直接粉碎法;二是含镁原料反应转化法.后者主要原料为氯化镁、硫酸镁、硝酸镁、氟化镁等[14-19],制备方法包括直接沉淀法[20-21]、溶胶凝胶法[22]、水热法[16,23]、微波法[24-25]、沉淀-共沸蒸馏法[26]等.由于特殊形貌及粒度分布均匀的氢氧化镁添加到高分子材料中可以明显提高复合材料的阻燃性能和机械性能[11,27],所以人们在制备氢氧化镁阻燃剂的同时,研究内容都主要集中在粒子的超细化及制备特殊形貌的氢氧化镁阻燃剂. 在高分子材料的加工温度下,氢氧化镁的都是以颗粒状存在于体系中,一般而言,填充量相当时,氢氧化镁的粒子越细,其分散越均匀,阻燃效果越明显,对材料物理力学性能的负面影响越小,甚至还会起到刚性粒子增塑增强的效果[28].郭笑荣[29]等用螺旋通道型旋转床,考察了加料方式对产品分散性的影响及氨镁摩尔比对产品形貌的影响,采用超重力法制备了分散均匀、平均粒径为0.7μm的片状超细氢氧化镁.许楠[14]等探讨了白云石碳化法制备纳米级氢氧化镁的工艺条件,研究了沉淀剂、反应温度对纳米级氢氧化镁形貌的影响,以及表面活性剂对纳米级氢氧化镁分散性的影响,制备出了粒径为10 ~20nm的氢氧化镁产品.孙永明[30]等以氨水为沉淀剂与氯化镁反应,直接沉淀法制备氢氧化镁,研究了反应温度、反应时间、镁离子初始浓度、原料配比对产品粒径和形貌的影响,制备出了粒径为150nm 的片状氢氧化镁粉体.Xu[31]等以盐卤和氨水为沉淀剂在反应温度为55℃条件下制备出了平均粒径为230nm分散性良好的纳米片状氢氧化镁.Wu[19]在用直接沉淀法制备氢氧化镁,研究发现当对所得产品进行表面改性时,可以降低氢氧化镁的二次团聚,制得单分散氢氧化镁产品.Jiang[18]等用氢氧化钠和氯化镁为原料,研究了乙醇和尿素对氢氧化镁产品纯度的影响,合成了粒径为200nm的片状氢氧化镁.综合上述报道,人们已经利用不同原料,采用不同方法制备出了不同粒度分布的氢氧化镁产品,但是这些工作主要集中在制备方法和工艺条件对氢氧化镁粒度分布的影响上,对氢氧化镁结晶动力学和机理方面则研究较少.由于特殊形貌氢氧化镁有着独特的性质,制备特殊形貌的氢氧化镁一直都是氢氧化镁阻燃剂研究领域最活跃的研究课题之一.研究者为了获取特殊形态的目标产物,通常将常温合成的氢氧化镁进行水热改性,在特定的条件下使氢氧化镁重新结晶来改变晶体的结构和形态[16,32].目前文献报道的实验合成的氢氧化镁形貌主要为六角片状、纤维状、针状、棒状、花状等几种形态.球形氢氧化镁也有报道[33],但是从实验结果来看并不是真正意义上的球形,称为花状最为合适.Lv[34]等研究了以化学纯氯化镁为原料,采用稀氨水为沉淀剂,经低温沉淀、升温陈化,分别制得了片状、棒状和纤维状三种形态的氢氧化镁粉体.胡章文[35]用蛇纹石酸浸滤液提镁利用表面活性剂在固/液界面的双亲性,制备了针状纳米氢氧化镁. Yunliang[36]等在搅拌条件下,将一定量氢氧化钙粉末缓慢加入到氯化镁溶液中,置于45℃水浴中,得到悬浊液,烘干后分别加入一定量、体积比为3:1的乙醇水溶液和氢氧化钠溶液,62℃恒温搅拌3h,得到氢氧化镁晶须.龙旭[37]等利用PVP高分子在溶液中的一维聚集特点,在PVP/乙二醇溶液体系中形成一维纳米胶束结构,并利用该胶束结构作为纳米功能材料的软模板,用低温回流法合成了多晶、长径比较高的一维氢氧化钠纳米丝和纳米棒.虽然许多研究者已经通过不同的方法制备出了不同形态的氢氧化镁阻燃剂,并对如何控制反应沉淀过程的粒度和粒度分布做了一定的研究,但是对影响目标产品的粒径、粒度分布及形貌本质的定量关系还未搞清楚.在反应沉淀法制备氢氧化镁颗粒过程中,化学反应速度很快,产生很高的过饱和度,成核速率极快,其诱导期为毫秒级,而颗粒生长速率相对很慢,最终颗粒的粒度分布和形态取决于成核过程.目前有关阻燃剂氢氧化镁的研究还是集中在形貌及影响粒度分布的工艺参数上,对氢氧化镁结晶机理、结晶动力学以及结晶过程的动态模拟的研究则相对较少.向兰[16,32]从负离子配位多面体模型出发,提出了氢氧化镁的晶体生长基元为Mg(OH)64-八面体的观点,并且Mg(OH) 64-八面体的共棱连接方式决定了氢氧化镁的结晶习性.向兰提出的观点在认识氢氧化镁晶体的生长基元上是一个大的突破,但是并没有解释哪些条件是影响氢氧化镁晶体形态的主要因素以及这些因素是如何让生长基元定向排列的.任庆利[38]等研究了热液环境下氢氧化镁结晶形态形成机理,根据负离子多面体配位生长理论,构造了氢氧化镁的生长基元,计算了相应于不同维数和多重数n的水镁石生长基元稳定能,计算结果发现氢氧化镁的生长基元稳定能在1维方向(nX1X1),随着n值的增大而较快地增长,而二维方向生长基元稳定能为负值,这说明氢氧化镁晶体是在1维方向优先生长,形成氢氧化镁针状或纤维状结晶形态.该结果很好的解释了天然纤维状水镁石的形成原因,但是不能解释其它形态氢氧化镁的稳定存在,因此不具有普适性.王伟[33]等以纯度为99.5%的硫酸镁与氨水反应,在控制反应液pH值的条件下,制备了花球状氢氧化镁粉体,并对该实验条件下氢氧化镁的晶体生长动力学进行了研究,该研究只研究了反应时间对氢氧化镁回收率和晶体平均粒径的影响,得出了氢氧化镁回收率和晶体平均粒径随反应时间的延长表现出指数增长的趋势,该研究相对简单,并没有研究其它因素对氢氧化镁形貌和粒度分布的影响程度,得到的动力学方程具有一定的局限性.我国有着丰富的镁资源,氢氧化镁阻燃剂又有着广阔的市场应用前景,氢氧化镁裸粉的实验室合成已进行了广泛的研究,研究者已经通过不同的方法合成出了不同形状和不同尺寸的氢氧化镁阻燃剂,但是工业化放大研究则还相对较少,目前氢氧化镁阻燃剂产业化过程中还存在一些问题需要解决.对于氢氧化镁合成过程中结晶机理的研究,研究者也开展了研究工作,但是这些研究还不能解决和解释实验过程中的一些现象及工业化生产中的一些关键技术难题.因此,在已有工作基础上以后应深入进行工业化生产过程中的工程技术研究,重点解决产业过程中的一些关键技术难题,简化工艺降低生产成本;深入开展氢氧化镁结晶机理的研究,并对其结晶过程进行动态模拟,实现产-学-研的有力结合,达到用理论指导实践的目的,从而推动该产业的进一步发展.【相关文献】[1] 袁瑞强,程芳琴.我国盐湖资源综合利用的探讨[J].盐湖研究, 2008,16(01):67-72.[2] 郑绵平,卜令忠.盐湖资源的合理开发与综合利用[J].矿产保护与利用,2009(01):17-22.[3] 马培华.科学开发我国的盐湖资源[J].化学进展,2009,21(11): 2349-2357.[4] 王健,于文杰,等.氢氧化镁阻燃剂的研究进展[J].化学推进剂与高分子材,2009,7(04):5-9.[5] Lu,S.-Y,I.Hamerton.Recent developments in the chemistry of halogen-free flame retardant polymers[J].Progress in Polymer Sci2 ence,2002,27(8):1661-1712.[6] Hippi,U.,J.Mattila,et patibilization of polyethylene/alumi2numhydroxide(PE/ATH)and polyethylene/magnesium hydroxide (PE/MH)composites with functionalized polyethylenes.Polymer, 2003,44(4):1193-1201.[7] Haurie,L.,A.I.Fernández,et al.Thermal stability and flame retar2 dancy of LDPE/EVA blends filled with synthetic hydromagnesite/alu2 minium hydroxide/montmorillonite and magnesium hydroxide/alumin2 ium hydroxide/montmorillonite mixtures[J].Polymer Degradation and Stability,2007,92(6):1082-1087.[8] Shehata,A.B.A new cobalt chelate as flame retardant for polypropyl2 ene filled with magnesium hydroxide[J].PolymerDegradation and Sta2 bility,2004,85(1):577-582.[9] 李征征,李三喜,等.氢氧化镁阻燃剂研究进展[J].塑料科技, 2009,37(04):83-87.[10] Wu J.,H.Yan,et al.Magnesium hydroxide nanoparticles synthesized in water-in-oil microemulsions[J].Journal of Colloid and Interface Science,2008,324(1-2):167-171. [11] Shen,H.,Y.Wang,et al.Effectof compatibilizerson thermal stabili2 ty and mechanical properties of magnesium hydroxide filled polypropyl2 ene composites[J].Thermochimica Acta,2009,483(1-2):36-40.[12] 宁志强,翟玉春,等.氢氧化镁分解动力学的研究[J].分子科学学报,2009,25(01):27-30.[13] 许东阳,许丽,等.天然水镁石的综合利用与深加工[J].阻燃材料与技术,2003(1):1-4.[14] 许楠,刘家祥,等.白云石制备的纳米氢氧化镁的性能及其影响因素[J].硅酸盐学报,2009,37(12):2024-2030.[15] 马国宝,李雪,等.硫酸镁氨气法制备氢氧化镁的中试研究[J].过程工程学报,2009(04):717-721.[16] Wu,Q.L.,L.Xiang,et al.Influence of CaCl2on the hydrothermal modificationofMg(OH)2[J].Powder Technology,2006,165(2): 100-104.[17] Lv,X.,B.Hari,et al.In situ synthesis of nanolamellas of hydropho2 bic magnesium hydroxide[J].Colloids and Surfaces A:Physicochemi2 cal and EngineeringAspects,2007,296(1-3):97-103.[18] Jiang,W.,X.Hua,et al.Preparation of lamellarmagnesium hydrox2 ide nanoparticles viaprecipitation method[J].Powder Technology, 2009,191(3):227-230.[19] Wu,X.-F.,G.-S.Hu,et al.Synthesis and characterization of su2 perfine magnesium hydroxide with monodispersity.Journal of Crystal Growth,2008,310(2):457-461.[20] 詹升军,杨保俊,等.由氯化镁一步法制备阻燃氢氧化镁的工艺研究[J].合肥工业大学学报(自然科学版),2009,32(6):833-836.[21] Hsu,J.-P,A.Nacu.Preparation of submicron-sized Mg(OH)2particles through precipitation[J].Colloids and Surfaces A:Physico2 chemical and EngineeringAspects,2005,262(1-3):220-231.[22] Chakrabarti,S.,D.Ganguli,et al.Preparation of hydroxide-free magnesium oxide films by an alkoxide-free sol-gel technique[J]. MaterialsLetters,2003,57(29):4483-4492. [23] Sun,X.,L.Xiang.Hydrothermal conversion ofmagnesium oxysulfate whiskers to magnesium hydroxide nanobelts[J].Materials Chemistry and Physics,2008,109(2-3):381-385.[24] Wu,H.,M.Shao,et al.Microwave-assisted synthesisof fibre-like Mg(OH)2 nanoparticles in aqueous solution at room temperature[J]. MaterialsLetters,2004,58(16):2166-2169. [25] 吴健松,肖应凯,等.丙三醇-变频微波-水热法制备氢氧化镁晶须[J].高等学校化学学报,2009,30(12):2354-2357.[26] 戴焰林,洪玲,等.全返混均质乳化法制备纳米氢氧化镁工艺研究[J].化工矿物与加工,2003(3):8-10.[27] Genovese,A.,R.A.Shanks.Structural and thermal interpretation of the synergy and interactions between the fire retardants magnesium hy2 droxide and zincborate[J].PolymerDegradation and Stability.2007, 92(1):2-13.[28] 吴湘锋,王标兵,等.纳米氢氧化镁阻燃剂的研究进展[J].材料导报,2007(S1):17-19,23.[29] 郭笑荣,周继承,等.螺旋通道型旋转床可控制备超细氢氧化镁[J].硅酸盐学报,2009,37(12):2018-2023.[30] 孙永明,钱运华,等.超细氢氧化镁粉体的制备研究[J].应用化工, 2009,38(02):264-266.[31] Xu,H.,X.-r.Deng.Preparation and properties of superfine Mg (OH)2 flameretardant[J].Transactions of NonferrousMetals Society of China,2006,16(2):488-492.[32] 向兰,金永成,等.氢氧化镁的结晶习性研究[J].无机化学学报, 2003,19(08):837-842.[33] 王伟,顾惠敏,等.球形氢氧化镁的制备及其晶体生长动力学[J].材料研究学报,2008,22(06):585-588.[34] Lv,J.,L.Qiu,et al.Controlled growth of three morphological struc2 tures ofmagnesium hydroxide nanoparticles bywet precipitation method [J].Journal of CrystalGrowth,2004,267(3-4):676-684.[35] 胡章文,王理想,等.蛇纹石酸浸滤液提镁制备针状纳米氢氧化镁[J].非金属矿,2005,28(1):561-565.[36] He,Y.,J.Wang,et parison of different methods to prepare MgOwhiskers[J].Ceramics International,2008,34(6):1399-1403.[37] 龙旭,郭林,等.氢氧化镁纳米丝和纳米棒的合成及表征[J].北京理工大学学报,2008,28(01):81-84.[38] 任庆利,刘斌,等.热液环境下氢氧化镁结晶形态机理研究[J].稀有金属材料与工程,2004(01):47-50.。
氢氧化镁阻燃原理
氢氧化镁阻燃原理氢氧化镁(Mg(OH)2)是一种常用的阻燃剂,具有优良的阻燃性能。
下面将从氢氧化镁的物理和化学性质、阻燃机理以及应用领域等方面,详细介绍氢氧化镁的阻燃原理。
一、氢氧化镁的物理和化学性质氢氧化镁是一种白色结晶固体,具有高度的吸湿性。
它的化学式为Mg(OH)2,相对分子质量为58.32。
在常温下,氢氧化镁难溶于水,溶解度很小。
但当温度升高时,氢氧化镁的溶解度会增大。
氢氧化镁的热分解温度约为330℃。
二、氢氧化镁的阻燃机理氢氧化镁作为一种阻燃剂,其阻燃原理主要有以下几个方面:1. 吸热作用:当氢氧化镁受到热源加热时,它会发生脱水反应,生成水蒸气(H2O)和氧化镁(MgO)。
这个反应过程是一个吸热反应,吸收了大量的热量。
由于吸热作用,氢氧化镁能够有效地降低燃烧物表面的温度,从而起到阻燃的作用。
2. 稳定炭化物层:氢氧化镁的热分解产物氧化镁具有良好的抗热性能。
当氢氧化镁受热分解后生成氧化镁,氧化镁会与燃烧物表面的碳化物反应生成稳定的炭化物层。
这层炭化物层具有良好的隔热性能,能够阻止燃烧物与外界氧气接触,从而阻燃燃烧过程。
3. 抑制燃烧反应:氢氧化镁的热分解产物氧化镁中的氧化镁颗粒能够与燃烧物的燃烧过程中产生的自由基发生反应,从而抑制燃烧反应。
这种反应能够有效地减缓燃烧速率,并降低燃烧物的火焰温度,起到阻燃的效果。
三、氢氧化镁的应用领域氢氧化镁作为一种优良的阻燃剂,广泛应用于各个领域。
以下是一些主要的应用领域:1. 塑料工业:氢氧化镁常用于聚烯烃塑料(如聚乙烯、聚丙烯等)和聚氨酯等塑料中,能够显著提高塑料的阻燃性能。
2. 橡胶工业:氢氧化镁可以作为橡胶制品的阻燃剂,如阻燃橡胶板、阻燃胶管等。
3. 纺织工业:氢氧化镁可以用于纺织品的阻燃处理,提高纺织品的阻燃性能。
4. 建材工业:氢氧化镁可以用于阻燃涂料、阻燃木材等建材制品,提高建材的阻燃性能。
5. 电子电器工业:氢氧化镁可以用于电线电缆、电子元器件等电子电器产品的阻燃处理,提高其安全性能。
氢氧化镁
氢氧化镁氢氧化镁在340℃~490℃之间分解,吸热量为187cal/g。
氢氧化镁的起始分解温度比水合氧化铝高得多,热稳定性好,具有良好的阻燃及消烟效果,特别适宜于加工温度较高的聚烯烃塑料。
Mg(OH)2用于PP时(添加量大于50%)具有良好的阻燃效果,将Mg(OH)2用于PE时,其阻燃效果优于Al(OH)3。
这是因为氢氧化镁在燃烧时不仅仅进行脱水反应,还对聚合物有一定的碳化作用16],形成一个保护层,起到阻燃作用。
在相同的填充量下,不同的氢氧化铝、氢氧化镁配{TodayHot}比其阻燃效果差别不明显,但两种复合使用比单独使用效果要好,因为虽都是脱水反应,但在分解温度和吸热量上有差别。
氢氧化镁需在更高的温度下才脱水,并同时有碳化效果。
而氢氧化镁的吸热量相对小些,因其抑制材料温度上升的效果不如氢氧化铝,两者复合使用则能相互补充,其阻燃性能比单独使用效果要好。
氢氧化镁具有较好的抑烟效果,含Mg(OH)2的PP试样的发烟开始时间明显延迟,其最大发烟量及4分钟后的发烟量要比卤化物/Sb2O3的PP试样低得多。
因此,在适当添加量的条件下,Mg(OH)2是PP的高效消烟填料。
Mg(OH)2的耐酸性差,在酸中会急速溶解,也容易受乳酸所影响而使制品表面留下指纹。
为克服Mg(OH)2分散性、相容性差的缺点,需开发相容性好的新品种。
可采用改善结晶粒径及凝集性能的方法,也可采用不饱和高级脂肪酸、饱和脂肪酸及热传导性优异的组分进行表面处理的方法。
氢氧化镁阻燃机理如下:氢氧化镁在受热时(340-490度)发生分解吸收燃烧物表面热量起到阻燃作用;同时释放出大量水分稀释燃物表面的氧气,分解生成的活性氧化镁附着于可燃物表面又进一步阻止了燃烧的进行。
氢氧化镁在整个阻燃过程中不但没有任何有害物质产生,而且其分解的产物在阻燃的同时还能够大量吸收橡胶、塑料等高分子燃烧所产生的有害气体和烟雾,活性氧化镁不断吸收未完全燃烧的熔化残留物,从使燃烧很快停止的同时消除烟雾、阻止熔滴,是一种新兴的环保型无机阻燃剂。
氢氧化镁阻燃剂
氢氧化镁阻燃剂简介氢氧化镁简称MH分子式Mg(0H)2分子量重58.33.白色粉末,相对密度2.39。
折射率1.561-1.581。
在300C以下稳定,320C幵始分解,生成氧化镁和水,430 C 时分解速度最快,490 C时分解完结。
溶于烯酸和铵盐溶液,不溶于水、乙醇。
氢氧化镁不仅有阻燃作用,还有一眼功能,无毒、无腐蚀性,多种性能优于氢氧化铝,安全廉价,属于环保型无机阻燃剂。
阻燃机理氢氧化镁在受热时(340-490度)发生分解吸收燃烧物表面热量到阻燃作用;同时释放出大量水分稀释燃物表面的氧气,分解生成的活性氧化镁附着于可燃物表面又进一步阻止了燃烧的进行。
氢氧化镁在整个阻燃过程中不但没有任何有害物质产生,而且其分解的产物在阻燃的同时还能够大量吸收橡胶、塑料等高分子燃烧所产生的有害气体和烟雾,活性氧化镁不断吸收未完全燃烧的熔化残留物,从使燃烧很快停止的同时消除烟雾、阻止熔滴,是一种新兴的环保型无机阻燃剂。
分类阻燃剂按化学成份可以分为有机阻燃剂和无机阻燃两大类。
有机阻燃剂又分为磷系和卤系两个系列。
由于有机阻燃剂存在着分解产物毒性大、烟雾大等缺点,正逐步被无机阻燃剂所替代。
无机阻燃剂主要品种有氢氧化铝、氢氧化镁、红磷、氧化锑、氧化锡、氧化钼、钼酸铵、硼酸锌等,其中以氢氧化铝和氢氧化镁因分解吸热量大,并产生H20可起到隔绝空气作用,其分解后氧化物又是耐高温物质,故二种阻燃剂不仅可起到阻燃作用,而且可以起到填充作用,它所具有不产生腐蚀性卤气及有害气体、不挥发、效果持久、无毒、无烟、不滴等特点。
活性氢氧化镁:活性氢氧化镁阻燃剂,广泛应用于橡胶、化工、建材、塑料(聚丙烯、聚乙烯、聚氯乙烯、三元乙丙橡胶)及电子、不饱和聚酯和油漆、涂料等高分子材料中,特别是对矿用导风筒涂覆布、PVC整芯运输带、阻燃胶板、蓬布、PVC电线电缆料、矿用电缆护套、电缆附件的阻燃、消烟抗静电,可代替氢氧化铝,具有优良的阻燃效果。
种类间比较目前国内氢氧化铝用量较多,但随着高聚物加工温度的提高,氢氧化铝易分解,降低阻燃作用,氢氧化镁较氢氧化铝具有如下优点:①氢氧化镁热分解温度达330 °C,比氢氧化铝高100 °C,故有利于塑料加工温度的提高,加快挤塑速度,缩短模塑时间;②氢氧化镁与酸的中和能力强,可较快地中和塑料燃烧过程产生的酸性气体SO2 NOx、CO2等;③氢氧化镁分解能高,有利于吸收燃烧热,提高阻燃效率;④氢氧化镁抑烟能力强、硬度小,对设备摩擦小,有助于延长生产设备寿命氢氧化镁阻燃剂的改性研究氢氧化镁阻燃剂的阻燃效果很低, 单独使用时添加量需要在50%以上时才具有较好的阻燃效果,但这样影响了聚合物材料的加工性能和物理力学性能。
基于氢氧化镁的沥青阻燃机理研究
了 越 来 越 多 的 关 注 。东 南 大 学 许 涛 、 黄 晓 明 采 用 TG— DS C —F TI R技术 详 细研 究 了氢 氧 化 镁 阻燃 剂 的性 能 。 武汉 理 工 大 学 从 培 良 、 吴 少 鹏 研 究 了三 氧 化 锑 、 十 溴 二 苯
℃, 随后 的胶 质 分 解 阶 段 和 沥 青 质 残 炭 燃 烧 阶段 也 均 被 延 迟 ;
通 过 Gu a s s分 峰 验 证 了 Mg ( OH) z的 阻 燃 机 理 为 其 分 解 反 应
产生的吸热 、 稀 释和阻隔等物理作用 。 关键词 : 沥青 ; Mg ( OH) 。 ; 阻燃 ; 热重分析 ; 燃 烧 特 性 中图分类号 : X9 2 4 . 4 ,T U5 4 5 文献标志码 : B
燃烧特性 , 寻求 合 理 的 沥 青 阻 燃 剂 , 对 减 少 公 路 隧 道 火 灾 的 危 害起 着 至关 重 要 的 作 用 。 传 统 常 用 的 卤系 阻 燃 剂 虽 然 具 有 其 他 阻 燃 剂 无 可 比 拟 的 高效 性 , 但 是 它对 环 境 和 人 体 的 危 害 是 不 可 忽 视 的 。 金 属氢氧化物 , 由于无毒 、 无烟 、 阻滴 、 填 充 阻 燃 效 果 好 等 多种优点 , 已成 为 减 烟 、 抑 烟 的 重 要 无 机 阻燃 剂 , 其 中, 氢 氧化镁 ( MH) 和氢 氧化铝 ( ATH) 可用 作沥青 填料 , 受 到
‘ ’ ¨ ¨ ¨ ‘ 。 ¨ 。 0 I h l ・。 。 0 I h l t ・ 一 。 “ ・ " l l I 。 。 I l l p p 。 , I l l | 。 l I I
无机阻燃剂阻燃机理
无机阻燃剂阻燃机理为提高沥青材料的阻燃性能,最初的尝试是采用高分子材料常用的卤系阻燃剂,尽管卤系阻燃剂具有无可比拟的高效性,但因其但其在燃烧过程中会生成大量的烟和有毒且具腐蚀性的气体,对环境和人体不可忽视的危害,而逐渐被束之高阁。
因此,研制无卤、无毒、低烟、高效的环境友好型无机阻燃剂就成为我国当前阻燃研究的热点之一。
无机阻燃剂一般都是靠气相或凝聚相阻燃机理发挥阻燃作用,其阻燃机理可以归纳为以下几个效应。
(1)无机阻燃剂的“冷却效应”某些无机阻燃剂,如氢氧化铝、氢氧化镁、氢氧化钙及层状双氢氧化物等,在受热时会发生分解,这类分解反应会产生一定量的水并在分解过程中吸收部分燃烧释放的热量,因此可以有效降低燃烧材料的表面温度而使聚合物的降解速率减慢,减少可燃物的产生并有效降低燃烧进程。
(2)无机阻燃剂的“稀释效应”首先由于无机阻燃剂一般填充量较大,稳定性好,不易挥发,可对固相聚合物进行包裹和稀释,提高了混合体的阻燃性能;其次多数无机阻燃剂在燃烧过程中由于分解反应等都可释放出H2O、N2、CO2、NH3等非可燃性气体,这些气体可以起到稀释聚合物表面可燃性挥发分和氧气浓度的作用而使得燃烧进程无法进行,起到气相阻燃效果;(3)无机阻燃剂的“隔断效应”隔断效应属于凝聚相阻燃机理的范畴,凝聚相包括两种:一种是促进聚合物表面的炭化,形成固态的耐热阻隔层,另一类是分解生成不挥发的黏稠液体或耐热的固体粉末对沥青进行裹附。
无机阻燃剂的阻燃过程这两类均包括在内。
无机阻燃剂的热解产物可促进聚合物表面的炭化,使聚合物表面迅速脱水炭化形成碳化层阻隔层隔断聚合物与空气间的气体与热量的交换;另一方面无机阻燃剂在燃烧温度下会分解生成耐热的固体氧化物粉末或不挥发的黏稠液体包覆在聚合物表面,这种致密保护层也起到了隔断热和气体交换的作用。
(4)无机阻燃剂的“抑烟效应”无机阻燃剂除在抑制点燃及控制燃烧过程的效果外还具有极佳的抑烟效应,这是由于金属氢氧化物等无机阻燃剂阻燃作用在燃烧发生后主要以吸收或隔离空气控制燃烧进程为主,燃烧进程进行缓慢且阻燃剂分解所释放的水汽可以稀释或吸收大量烟气,故具有较好的消烟作用;而目前常用作消烟剂的无机钼类化合物的抑烟是通过Lewis酸机理的催化原理,使聚合物在燃烧时不能通过环化反应生成芳香族环状结构,而此环状结构化合物是烟的主要组成部分。
浅析氢氧化镁阻燃剂的制备与应用前景
压 力 。 随 着 环 保 意 识 的深 入 人 心 , 由于 新 型 无 卤 阻 燃 剂 的环 境 友 好 , 因 而 逐 渐 成 为 了 阻燃 剂研 究 领 域 的热 点 。 氢 氧 化 镁 具 有 很 强 缓 冲 性 能 , 以及 无 腐 蚀 、 无 毒 、无 害 , 是 一 种 集 阻 燃 、消 烟 、 降温 性 能于 一 体 的新 型 阻燃 剂 。
二、氢 氧化镁 阻燃剂 的制 备方法
氢氧 化 镁 的 制 备 方 法 主 要 有物 理 法 和 化 学法 两 大 类 。物 理 法 是 指 使 用 天 然 水 镁 石 ,通 过 对 其 研 磨 得 到 。 化 学 法 是 指 通 过 化 学 反 映 的 方 法 ,通 过 溶 液 发 生 沉 淀 而 得 到 。 常 见 的 化 学 法 有 : ( )氢 氧 化 钙 法 。这 种 方 法 是 指 以 卤 水 或 其 他 可 1 溶 性 镁 盐 为 原 料 ,使 之 与 石 灰 乳 发 生 反 应 ,从 而 得 : M (H  ̄ gO) U 沉 淀 剂 的方 法 。 这 种 方 法 的优 点在 于 , 原 材 料 廉 价 , 原 料 比 较 容 易 得 到 , 工业 价 值 高 ;缺 点在 于此 原 料 粒 度 很 小 , 很 难 过 滤 ,并 且 还 容 易 吸 附 到 铁 ,钙 之 类 的 杂 质 离 子 上 , 产 品 纯 度 很 低 ,用 途 狭 窄 , 常 用 于 制 造 氧 化 镁 耐 火 材 料 的 中 间 体 , 制 备 高 纯 度 氢 氧 化 镁 一 般 不 采 用 这 种 方 法 。 ( ) 氨 法 。 这 2 种 方 法 的原 材 料 与 氢 氧 化 钙 法 基 本 相 同 , 但 是 以氨 水 做 沉 淀 剂 的 方 法 。这 种 方 法 得 到 的 氢 氧 化 镁 产 品 纯 度 相 对 较 高 , 但 其 产 物 的 粒 径 分 布 一 般 较 宽 ,而 且 反应 比较 容 易 控 制 。但 是 由于 氨 水 的挥 发 性 比较 强 ,操 作 环 境 比 较 恶 劣 , 因而 环 保 问 题 十 分 突 出 。 ( ) 可 以用 卤水 或 者 其 他 可 溶 性 镁 盐 与 氢 氧 3 化 钠 反 应 制 得 氢 氧 化 镁 。 这 种 方 法 的优 点 在 于 ,操 作 简 单 , 产 品 的 形 貌 、结 构 、粒 径 以及 纯 度 都 比 较 容 易 控 制 , 附加 值 较 大 。缺 点 在 于 N 0 是 强 碱 ,如 果 条 件 不 当 ,会 使 生 成 的 氢 aH 氧 化 镁 粒 径 偏 小 ,产 品 的 性 能 不 好 控 制 , 粒 度 较 小 , 且用 这 种方法得 到的氢氧化镁 的纯度 相对于氨 水法要低 。 用 以上 化 学 方 法 制 备 氢 氧 化 镁 时 , 应 考 虑 颗 粒 粒度 不 均 匀 、 团聚 问 题和 过滤 性 能 差等 方 面 的 问 题 料 的广泛应用 ,其 可燃、易燃性逐渐
氢氧化镁
氢氧化镁氢氧化镁在340℃~490℃之间分解,吸热量为187cal/g。
氢氧化镁的起始分解温度比水合氧化铝高得多,热稳定性好,具有良好的阻燃及消烟效果,特别适宜于加工温度较高的聚烯烃塑料。
Mg(OH)2用于PP时(添加量大于50%)具有良好的阻燃效果,将Mg(OH)2用于PE时,其阻燃效果优于Al(OH)3。
这是因为氢氧化镁在燃烧时不仅仅进行脱水反应,还对聚合物有一定的碳化作用16],形成一个保护层,起到阻燃作用。
在相同的填充量下,不同的氢氧化铝、氢氧化镁配{TodayHot}比其阻燃效果差别不明显,但两种复合使用比单独使用效果要好,因为虽都是脱水反应,但在分解温度和吸热量上有差别。
氢氧化镁需在更高的温度下才脱水,并同时有碳化效果。
而氢氧化镁的吸热量相对小些,因其抑制材料温度上升的效果不如氢氧化铝,两者复合使用则能相互补充,其阻燃性能比单独使用效果要好。
氢氧化镁具有较好的抑烟效果,含Mg(OH)2的PP试样的发烟开始时间明显延迟,其最大发烟量及4分钟后的发烟量要比卤化物/Sb2O3的PP试样低得多。
因此,在适当添加量的条件下,Mg(OH)2是PP的高效消烟填料。
Mg(OH)2的耐酸性差,在酸中会急速溶解,也容易受乳酸所影响而使制品表面留下指纹。
为克服Mg(OH)2分散性、相容性差的缺点,需开发相容性好的新品种。
可采用改善结晶粒径及凝集性能的方法,也可采用不饱和高级脂肪酸、饱和脂肪酸及热传导性优异的组分进行表面处理的方法。
氢氧化镁阻燃机理如下:氢氧化镁在受热时(340-490度)发生分解吸收燃烧物表面热量起到阻燃作用;同时释放出大量水分稀释燃物表面的氧气,分解生成的活性氧化镁附着于可燃物表面又进一步阻止了燃烧的进行。
氢氧化镁在整个阻燃过程中不但没有任何有害物质产生,而且其分解的产物在阻燃的同时还能够大量吸收橡胶、塑料等高分子燃烧所产生的有害气体和烟雾,活性氧化镁不断吸收未完全燃烧的熔化残留物,从使燃烧很快停止的同时消除烟雾、阻止熔滴,是一种新兴的环保型无机阻燃剂。
硬脂酸镁改性氢氧化镁阻燃剂的实验研究
21 0 0年 5月
化 工 科 技 市 场
CHEMI CAL TECHNOL OGY MARKET 1 7
硬 脂 酸 镁 改 性 氢 氧 化 镁 阻燃 剂 的 实 验 研 究
刘 立华
( 山师范学 院化 学系 , 唐 河北唐 山 0 3 0 ) 6 0 0
e e fd s g fma n su se r t , dfe e e au e a d t n mo i c t n ef c a t d e . dfe f c s n e o o a e o g e i m ta ae mo i d tmp r t r , n i i me o d f ai fe t w s su id Mo i d ef t i o i e w r v la e y s r c r p r e u h a a u e n fa t ain i d x, i a s r i t a d vs o i ft e s s tm. e e e au td b u f e p o e t ss c sme s r me to ci t n e o l b o b l y- n i st o y ye a i v o i c y h T e b s o dt n fmo i c t n w r ee mi e y t e e p o e t s Me n h l mo i c t n me h n s fma n s m h e t n i o so d f ai e e d tr n d b h s r p ri . a w i c i i o e e, d f ai c a im o g e i i o u h d o i e w s r s r h d b a so E p rme t l e u t h w d ta h r d cswi x el n d f ain efc s y rx d a e e c e y me n fI R. x e i n a s l s o e h tt e p o u t t e c l tmo i c t f ta r s h e i o e
阻燃剂氢氧化镁改性技术研究进展
惰性溶剂可以选 用甲苯、二甲苯 、溶剂型
性 能 ,一般通 过各种 表面改性 剂与H 颗 H
粒 的表 面 发 生 反 应 ( 理 或 化 学 反 应 ,形 物 成 较 强 的 分 子 间作 用 力 或化 学 键 ) 表 面 和
3 ,改性温度为9 c ,改性时间为4 m n % Oc 0 i 的条件下制备 的产品性能优 良,活化指数 达 #9 . J  ̄94 ,吸油值 由改性前的7 .% 86 下降  ̄4 % J0 ,黏度较 改性 前明显降低 ,硬脂酸
燥 的氢氧化镁 中加入适量的惰性溶剂 ,并 使其和表面改性剂混合进行表面有机化 , 混合充分后经过 干煤或者其他处理得到改
性 的 氢氧 化 镁 。 常 用 的改 性 剂为 偶 联 剂 ,
最佳改性条件。将改性前后的氢氧化镁分 别 以4: : 7: 5 质量比和聚氯 乙烯(V 6n 3 ] # PC
层 ,阻止氧气和热量的进入 ;分解生成的 M O 良好的耐火材料 ,隔绝空气阻止燃 g是 烧。由于氢氧化镁受热分解能使燃烧三要 素即温度、氧气和可燃物同时得到缓解 ,
添加量大 ,对材料的物理一 机械性能及加
氢氧化镁阻燃剂的特 陛
氢氧化 镁阻燃 剂具有特 殊 的层状结 构及组成 ,具有优 异的触 变性 、低表面
镁 分 子 在 氢 氧 化 镁 表 面发 生 化 学 吸 附 键 合。 新 疆 大学 闫海 妮 等 采 用硬 脂 酸 对 氢 氧 化 镁 进 行 表 面 改 性 处 理 , 析 了改 性 分 剂 的 用量 、 反应 时间 、反 应 温 度 对改 性 效 果 的影 响 ,通过 单 因素 条件 改 变 实验 确 定
氢氧化镁阻燃剂
氢氧化镁阻燃剂简介氢氧化镁简称MH,分子式Mg(OH)2,分子量重.白色粉末,相对密度。
折射率。
在300℃以下稳定,320℃开始分解,生成氧化镁和水,430℃时分解速度最快,490℃时分解完结。
溶于烯酸和铵盐溶液,不溶于水、乙醇。
氢氧化镁不仅有阻燃作用,还有一眼功能,无毒、无腐蚀性,多种性能优于氢氧化铝,安全廉价,属于环保型无机阻燃剂。
阻燃机理氢氧化镁在受热时(340-490度)发生分解吸收燃烧物表面热量到阻燃作用;同时释放出大量水分稀释燃物表面的氧气,分解生成的活性氧化镁附着于可燃物表面又进一步阻止了燃烧的进行。
氢氧化镁在整个阻燃过程中不但没有任何有害物质产生,而且其分解的产物在阻燃的同时还能够大量吸收橡胶、塑料等高分子燃烧所产生的有害气体和烟雾,活性氧化镁不断吸收未完全燃烧的熔化残留物,从使燃烧很快停止的同时消除烟雾、阻止熔滴,是一种新兴的环保型无机阻燃剂。
分类阻燃剂按化学成份可以分为有机阻燃剂和无机阻燃两大类。
有机阻燃剂又分为磷系和卤系两个系列。
由于有机阻燃剂存在着分解产物毒性大、烟雾大等缺点,正逐步被无机阻燃剂所替代。
无机阻燃剂主要品种有氢氧化铝、氢氧化镁、红磷、氧化锑、氧化锡、氧化钼、钼酸铵、硼酸锌等,其中以氢氧化铝和氢氧化镁因分解吸热量大,并产生H2O可起到隔绝空气作用,其分解后氧化物又是耐高温物质,故二种阻燃剂不仅可起到阻燃作用,而且可以起到填充作用,它所具有不产生腐蚀性卤气及有害气体、不挥发、效果持久、无毒、无烟、不滴等特点。
和聚酯和油漆、涂料等高分子材料中,特别是对矿用导风筒涂覆布、PVC 整芯运输带、阻燃胶板、蓬布、PVC电线电缆料、矿用电缆护套、电缆附件的阻燃、消烟抗静电,可代替氢氧化铝,具有优良的阻燃效果。
种类间比较目前国内氢氧化铝用量较多,但随着高聚物加工温度的提高,氢氧化铝易分解,降低阻燃作用,氢氧化镁较氢氧化铝具有如下优点:①氢氧化镁热分解温度达330℃,比氢氧化铝高100℃,故有利于塑料加工温度的提高,加快挤塑速度,缩短模塑时间;②氢氧化镁与酸的中和能力强,可较快地中和塑料燃烧过程产生的酸性气体SO2、NOx、CO2等;③氢氧化镁分解能高,有利于吸收燃烧热,提高阻燃效率;④氢氧化镁抑烟能力强、硬度小,对设备摩擦小,有助于延长生产设备寿命。
常见阻燃剂及其阻燃机理总结
常见阻燃剂及其阻燃机理总结1、无机阻燃剂(1)水合金属氧化物主要品种有氢氧化铝、氢氧化镁、氢氧化锡等,其中以氢氧化铝的吸热效应最大,阻燃效果好。
其阻燃作用主要是吸热效应,生成的水蒸气还能起隔绝效应。
这类阻燃剂的最大优点是无毒,不会生成有害气体,还可减少燃烧过程中CO的生成量,起消烟剂作用。
最大缺点是分解温度低,应用时使用量大,只能用于加工温度较低、物理机械性能要求不高的高聚物材料的阻燃。
此外,氢氧化镁易吸收空气中的CO2,生成碳酸镁,使制品产生白点。
(2)硼化合物与钼化合物这类阻燃剂中主要有硼酸、水合硼酸锌、钼酸锌、钼酸钙、钼酸铵等。
其中水合硼酸锌的阻燃效果最好。
该类阻燃剂在较低温度下熔融,释放出水并生成玻璃状覆盖层,在燃烧过程中起隔绝、吸热及稀释效应。
硼类阻燃剂与卤系阻燃剂有协同效应。
由于分解温度低,不能用于加工温度高的高聚物阻燃(3)硅类化合物这类阻燃剂在燃烧时能生成玻璃状的无机层(Si0)并接枝到高聚物上,产生不燃的含碳化合物,形成隔氧膜而抑制燃烧,同时还能防止高聚物受热后的流滴。
其燃烧时不产生火焰、CO及烟,而且还具有补强作用。
因此,这是一类极有开发前景的非卤素阻燃剂。
(4)膨胀型石墨这是一类新开发的无机阻燃剂美国已商品化。
它能起隔绝效应,与红磷有良好的协同效应,两者常同时使用(5)三氧化二锑三氧化二锑在不含卤高聚物中阻燃作用很小,一般不单独用作阻燃剂,在含卤高聚物中有较好的阻燃作用,与卤系阻燃剂并用有较好的协同效应2、有机阻燃剂(1)有机卤系阻燃剂有机卤系阻燃剂是目前用量最大的有机阻燃剂,主要是溴、氯化合物。
溴化物虽然有毒,但其阻燃效果比氯化物好,用量少,很受用户欢迎。
同一卤素不同类型的化合物,其阻燃能力不同,其大小顺序为:脂肪族>脂环族>芳香族脂肪族与高聚物的相容性好,但热稳定性差;芳香族热稳定好,但相容性差。
含有醚基的芳香族卤化合物与高聚物的相容性好,热稳定性高,用量急剧增加。
氢氧化镁的阻燃机理
氢氧化镁的阻燃机理1. 引言氢氧化镁是一种常见的无机化合物,具有良好的阻燃性能。
在许多应用领域,如建筑材料、电子设备和汽车等,氢氧化镁的阻燃性能得到了广泛的应用。
本文将详细介绍氢氧化镁的阻燃机理,包括其化学结构、热分解过程和阻燃效果等方面。
2. 氢氧化镁的化学结构氢氧化镁的化学式为Mg(OH)2,其结构由镁离子(Mg2+)和氢氧根离子(OH-)组成。
镁离子与氢氧根离子通过离子键相连,形成了稳定的晶体结构。
氢氧化镁的晶体结构具有层状排列的特点,镁离子和氢氧根离子交替排列形成层状结构。
这种层状结构使得氢氧化镁具有较高的比表面积和吸附能力,有利于其阻燃性能的提升。
3. 氢氧化镁的热分解过程氢氧化镁在高温下会发生热分解反应,生成氧化镁(MgO)和水(H2O)。
热分解反应的化学方程式如下:2Mg(OH)2 → 2MgO + 2H2O在热分解过程中,氢氧化镁会吸收大量的热量,使其周围环境温度降低,起到阻燃的效果。
此外,生成的氧化镁(MgO)具有良好的隔热性能,能够有效地阻止火焰的蔓延。
4. 氢氧化镁的阻燃效果氢氧化镁的阻燃效果主要体现在以下几个方面:4.1 吸热效应在热分解过程中,氢氧化镁会吸收大量的热量,使其周围环境温度降低。
这种吸热效应可以有效地减缓火焰的传播速度,提高材料的阻燃性能。
4.2 隔热效应生成的氧化镁(MgO)具有良好的隔热性能,能够有效地阻止火焰的蔓延。
氧化镁在高温下具有较高的熔点和热导率,可以吸收和传导热量,阻碍火焰的传播。
4.3 生成水蒸气热分解过程中生成的水(H2O)能够吸收大量的热量,并转化为水蒸气。
水蒸气具有较高的比热容和蒸发潜热,能够吸收更多的热量,从而减缓火焰的传播速度。
4.4 阻燃气体释放热分解过程中,氢氧化镁还会释放出一些阻燃气体,如氧气(O2)和氢气(H2)。
这些阻燃气体能够稀释火焰周围的氧气浓度,降低火灾的燃烧速度,起到阻燃的效果。
5. 氢氧化镁的应用氢氧化镁的阻燃性能使其在许多应用领域得到了广泛的应用,包括建筑材料、电子设备和汽车等。
Mg(OH)2、Al(OH)3的阻燃机理与性能研究
M g O H (
. —
兰卫
÷ g H Ot 3 8。 啦热放 () M O (} 。 ( ) 1
面组 成 : 受 热 分 ① 解 释 放 结 晶 水 , 同时 吸 收 大 量 的 热 量 ,从 而 抑 制 爆 炸 系 统温 度上 升 , 延 缓 反 应 物 热 分 解 并 降 低燃 烧速 度 ; ② 温 度 /C 分 解 产 物 任 爆 炸 气 图 4 A H差 失热 分析 曲线 T 图 3AT (P级) HC 的 氛 中形 成 的 稳 定 的 D A Q GD曲线 图 T-E 温速 率 4 nn %h i ) 氧 化镁 保护 层 , 分 散 在气体 中 , 起着 传 热传 质 屏 障层 的作 用 ; ③ 抑爆 作 用主要 由第一 步来决 定 。 由以上 分 析可 知 A H的 阻燃 、 T 抑爆 机 理 产 生大 量 水蒸气 降低 了气 相 燃烧 区中可 燃 物 3 :① A H在 3 0 , 4 T 0— 的 浓 度 ; 水 蒸 气 不参 与 增强 C ④ O释 放 的水 主 要有 以 下几 个方 面 fJ 30 5 ℃吸 收 大量 热能 脱去 结 晶水 , 从 火焰 中 并 气 反应 。 吸 收辐 射 能 , 摩 尔 A H吸收 热 能 1 K , 每 T . J起 9 2氢 氧化 铝 的阻燃 机 理 这 存 阻 燃 剂 中 , 氧 化 铝 f 水 合 氧 化 铝 , 冷却 作 用 , 使燃 烧爆 炸 系统 升温 速度 变慢 , 氢 三 这是 A H具 有 阻燃作 用 的 主要 原 T 简 称 A H 作 为重 要 的无 机 阻燃 剂 , 问世 最 降 解减 缓 , T ) 是 ② T e i酸碱 中 早 的无 机阻 燃剂 之 一 ,也是 无机 阻燃 剂 消 费 因 ; A H失 水后 能 形成 具 有 L ws 促进 脱 氢反 应 , 生成 保护 炭 量最 大 ( 机 阻燃 剂总 量的 7 %) 占无 O 的阻燃 剂 。 心 的活性 氧化 铝 , , 广 泛 应用 于 各种 塑料 、 涂料 、 氨 酯 、 聚 弹性 体 层 炭 量增 加)同 时也 能够催 化 炭的 沉积 及 和 橡胶制 品中 。它也 是 阻燃 剂 和阻燃 材 料 的 相 应炭 的氧 化反 应 ,因此 有助 于 降低 其烟雾 T 非 卤化 的解决 办 法之 一 。 目前 , 氢氧 化铝 阻燃 生 成 量 ,这 是 A H 具 有较 好 抑 烟 性 能 的原 T 刺 主要 用 于 E A、 D E L D E电缆料 ( 覆 因 ;③ A H 脱水 形 成 的水 蒸 气 能够 稀 释燃 V L P 、L P 包 烧、 爆炸 系统 可燃 性气 体 以及 氧气 的浓 度 , 特 层 和绝缘 层) 阻燃 。 的 对 A H 的热 分 析 结 果 如 图 3和 如 图 4 别 是稀 释火 焰 区 可燃 气体 的浓度 ,减 慢燃 烧 T 速度 或者 阻 止燃 烧 的继续 进行 ,同时水 蒸 气 所示 .表 1 、 为热 分 析结果 。 也 是 冷却 剂 ; A H脱 水 后 , 成 的三 氧 化 ④ T 生 表 1AT H热 分析 结果 l式 样 l 矢 l 始势 度 l T 峰 ℃l S 峰 ℃I 铝 可 以抑制 可燃 性气 体 、燃烧 热 、氧气 的传 重 营 起 解温 / D G 温, C 温, D l l H 3 12 I bl 0 0 I AO 20 1 I 25 9 l 25 7 l 递 , 能吸 附部 分 烟雾 和 可燃 物 ( 免 烟灰 的 9 4 也 避 ,使燃 烧 时 释放 出的 C 量 降低 ; O输 ⑤ 由 图 3可 知 , T 曲线 上 两 个 吸 热 峰 形 成) DA T 终 其 30 50 分 别 为 A H受 热脱 去 其结 构水 A H可 作 为电子 给予 体 , 止 自由基 反应 , 1%、3 %, T 的 吸热效 应 。E D 曲线上 的两 个峰 面积 分别 本身 则生 成 活性 较低 的无 机 自由基 ,由于 活 G 不 是 A H 释放 的气 体 中不 同 含量 H O的 响应 性 较低 , 足以引 发 自由基 反应 。 T 3结 论 值 。按 E D H O峰 标定 线 , 用 Q G G — 采 E D法 可 聚 合物 材料 容 易燃烧 ,燃 烧 中常 产生 有 知 含 水 量 分 别 为 O 9 g和 0】r 式 样 量 .r 8a .a f 2g 2 1 g,通 过 计 算 可 得 失 水 量 为 2 . %和 毒 和腐蚀 烟气 。这些 烟气 不仅 危 及到 人的 生 .m) 4 67 9 而且 还严 重 腐蚀 设备 和建 筑物 , 时 同 36 %, 以总足 水量 为 3 l 4 所 06 %。实 测失 水量 命安 全 , 给 消防救 援 带来 很大 困难 ,因此 人们 不断 的 为 3 .2 。 反 应 式 为 : 18 % !J f J— sⅢ f q ‘ .H ’ 2 H 。 2 05 + f 8%), 、 开发 和研 究新 型 阻燃 材料 。本 文从 热 分析 着 5 2 8 2 手 ,研究 了氢 氧 化镁 和氢 氧化 铝 两种 无机 阻 吸热 效应 反应 式 : , ・0 5 H 口— 三二 ‘ _ , , 。 ‘ 为 。 + H 。 57%)f1 燃材 料 的阻燃 机 理 , 阻 燃材 料 向着超 细化 、 0 ( 7 5 3 由图 4和表 1 还可 以看 出 ,T 失水 分 表 面处理 和 微胶 囊化 等 发展 ,提供 了一定 的 AH 两步进 行 : 一 , 20 30 第 步 在 1%一 7%快速 失去约 理 论依据 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全文完!谢谢观看!
广州陶粒 咯庀缂
烧的熔化残留物,进而使燃烧很快停止,并消除烟雾与 阻止熔滴,是一种新兴的环保型无机阻燃剂。按照化学 成分可以将阻燃剂分成有机阻燃剂与无机阻
燃剂两大类。有机阻燃剂又分为卤系和磷系两个系列。 由于有机阻燃剂存在烟雾大、分解产物毒性大等缺陷, 正逐步被无机阻燃剂所替代。无机阻燃剂的
主要品种有氢氧化镁、氢氧化铝、氧化锡、氧化锑、氧 化钼、红磷、硼酸锌、钼酸铵等。其中,氢氧化镁与氢 氧化铝因分解吸热量大,且生成的H2O可
以起到隔绝空气的作用,分解后生成的氧化物又是耐高 温物质,所以氢氧化镁和氢氧化铝这两种阻燃剂除了可 以起到阻燃的作用,还可以起到体、无烟、无毒、 不滴、不挥发、效果持久等特点。目前,国内氢氧化铝 的用量比较多,但随着高聚物加工温度的提
高,氢氧化铝容易发生分解,降低阻燃效果。因此,氢 氧化镁证逐步取代氢氧化铝。相比于氢氧化铝,氢氧化 镁具有以下的优势:1、氢氧化镁的分解温
氢氧化镁在340℃-490℃的条件下受热时,会发生分解吸 收燃烧物表面的热量,从而起到阻燃的作用。同时,还 会释放出大量的水分稀释燃烧物表
面的氧气,分解生成的活性氧化镁会附着在可燃物的表 面,进一步地阻止燃烧的进行。其次,氢氧化镁在整个 阻燃的过程中不仅不会产生任何的有害物质
,而且氢氧化镁分解的产物在起到阻燃效果的同时,还 可以大量吸收塑料、橡胶等高分子燃烧产生的烟雾及有 害气体,活性氧化镁可以不断吸收未完全燃
度比氢氧化铝高出100℃,达到330℃,更有助于提高塑 料的加工温度、加快挤塑速度、缩短模塑时间;2、氢氧 化镁的分解能高,有助于吸收燃烧
热,提高阻燃效率;3、氢氧化镁和酸的中和能力强,可 以较快地中和塑料在燃烧过程中产生的酸性气体CO2、 SO2、NOX等;4、氢氧化镁的硬
度小、抑烟能力强,对设备的摩擦小,有利于延长生产 设备的使用寿命。