活性炭吸附原理与设计参数
活性炭吸附箱工作原理及参数
活性炭吸附箱工作原理及参数首先是吸附过程。
当污染的空气通过活性炭吸附箱时,其中的污染物质会被活性炭吸附剂表面的孔道吸附。
活性炭具有非常大的内表面积,因此可以有效地吸附空气中的污染物质。
吸附的原理主要是物质间的吸附力。
有机物质通常是极性分子,而活性炭表面是非极性的,所以有机物质会以物理吸附的方式吸附在活性炭表面上。
然后是再生过程。
当活性炭表面吸附饱和后,需要进行再生,使其恢复吸附能力。
再生通常使用热解或蒸汽吹扫法。
热解是指通过加热活性炭,将吸附在其上的污染物质分解释放出来,从而使活性炭再次变得可用。
蒸汽吹扫法则是通过注入高温水蒸汽,使吸附在活性炭上的污染物质被挥发出来,从而实现再生。
1.吸附剂种类和质量:不同种类的活性炭具有不同的吸附性能,所以在选择活性炭吸附箱时需要根据具体污染物质的种类和浓度来选择合适的吸附剂。
2.空气流量:空气流量是指单位时间内通过活性炭吸附箱的空气体积。
空气流量越大,吸附箱的处理能力就越大,但同时也会增加系统的能耗。
3.压力损失:活性炭吸附箱对空气流通的阻力称为压力损失。
压力损失越大,系统的运行效率越低,所以需要在设计吸附箱时要考虑减小压力损失。
4.吸附箱的体积:吸附箱的体积决定了它的吸附能力。
体积越大,吸附能力越大。
5.装置的再生方式和再生周期:不同的再生方式和再生周期会对活性炭吸附箱的使用寿命和维护成本产生影响。
综上所述,活性炭吸附箱主要通过活性炭的吸附作用来去除空气中的污染物质。
在选择和设计活性炭吸附箱时,需要考虑吸附剂种类和质量、空气流量、压力损失、吸附箱的体积和再生方式等参数。
活性炭手册
活性炭手册一、活性炭过滤原理活性炭的吸附能力与水温的高低、水质的好坏等有一定关系。
水温越高,活性炭的吸附能力就越强;若水温高达3 0 C以上时,吸附能力达到极限,并有逐渐降低的可能。
当水质呈酸性时,活性炭对阴离子物质的吸附能力便相对减弱;当水质呈碱性时,活性炭对阳离子物质的吸附能力减弱。
所以,水质的P H不稳定,也会影响到活性炭的吸附能力。
活性炭的吸附原理是:在其颗粒表面形成一层平衡的表面浓度,再把有机物质杂质吸附到活性炭颗粒内,使用初期的吸附效果很高。
但时间一长,活性炭的吸附能力会不同程度地减弱,吸附效果也随之下降。
如果水族箱中水质混浊,水中有机物含量高,活性炭很快就会丧失过滤功能。
所以,活性炭应定期清洗或更换。
活性炭颗粒的大小对吸附能力也有影响。
一般来说,活性炭颗粒越小,过滤面积就越大。
所以,粉末状的活性炭总面积最大,吸附效果最佳,但粉末状的活性炭很容易随水流入水族箱中,难以控制,很少采用。
颗粒状的活性炭因颗粒成形不易流动,水中有机物等杂质在活性炭过滤层中也不易阻塞,其吸附能力强,携带更换方便。
活性炭的吸附能力和与水接触的时间成正比,接触时间越长,过滤后的水质越佳。
注意:过滤的水应缓慢地流出过滤层。
新的活性炭在第一次使用前应洗涤洁净,否则有墨黑色水流出。
活性炭在装入过滤器前,应在底部和顶部加铺2〜3厘米厚的海绵,作用是阻止藻类等大颗粒杂质渗透进去,活性炭使用2〜3个月后,如果过滤效果下降就应调换新的活性炭,海绵层也要定期更换。
二、影响粒状活性炭应用的主要性质应用粒状活性炭,尤其大量应用,最影响效果和成本的活性炭主要性质是:吸附量;压降或床层膨胀;抗磨性;大小、水分、灰分、pH值和可溶物。
应用较为大量的粒状活性炭都装在柱型设备中,就要讲究压降(压头损失)或床层膨胀,是设计炭柱的必要因素。
压降由微粒大小和大小分布所决定。
床层膨胀由微粒大小、形状和大小分布以及微粒密度所决定。
大量使用粒状活性炭时,常加水以泵输送和以运输带脱水,因此要重视活性炭的损失量,讲求活性炭的抗磨性。
活性炭的吸附原理
活性炭得吸附原理活性炭得吸附可分为物理吸附与化学吸附。
一、物理吸附主要发生在活性炭去除液相与气相中杂质得过程中。
活性炭得多孔结构提供了大量得表面积,从而使其非常容易达到吸收收集杂质得目得。
就象磁力一样,所有得分子之间都具有相互引力。
正因为如此,活性炭孔壁上得大量得分子可以产生强大得引力,从而达到将介质中得杂质吸引到孔径中得目得。
必须指出得就是,这些被吸附得杂质得分子直径必须就是要小于活性炭得孔径,这样才可可能保证杂质被吸收到孔径中。
这也就就是为什么我们通过不断地改变原材料与活化条件来创造具有不同得孔径结构得活性炭,从而适用于各种杂质吸收得应用。
二、物理吸附除了物理吸附之外,化学反应也经常发生在活性炭得表面。
活性炭不仅含碳,而且在其表面含有少量得化学结合、功能团形式得氧与氢,例如羧基、羟基、酚类、内脂类、醌类、醚类等。
这些表面上含有地氧化物或络合物可以与被吸附得物质发生化学反应,从而与被吸附物质结合聚集到活性炭得表面。
活性炭得吸附正就是上述二种吸附综合作用得结果。
当活性炭在溶液中得吸附速度与解吸速度相等时,即单位时间内活性炭吸附得数量等于解吸得数量时,此时被吸附物质在溶液中得浓度与在活性炭表面得浓度均不再变化,而达到了平衡,则此时得动平衡称为活性炭吸附平衡,此时被吸附物质在溶液中得浓度称为平衡浓度。
三、影响活性炭吸附性能得因素选择得活性炭质量达不到要求标准活性炭中得酸碱度、氯化物、硫酸盐不合格或炭粒过细使溶液染色不易滤清,影响制剂得质量。
活性炭中锌盐、铁盐不合格,如铁盐含量较高,可使输液中某些药物如维生素c、对氨基水杨酸钠等变色。
脱色力差或不合格,导致制剂杂质含量增加。
活性炭质量差,本身所含杂质较多能污染药液,往往导致制剂澄明度与微粒不合格,而且还影响制剂得稳定性,所以在配制大输液时,一定要选用一级针用活性炭。
四、活性炭得用法对制剂质量得影响活性炭分次加入比一次加入吸附效果好,这就是因为活性炭吸附杂质到一定程度后吸附与脱吸附处于平衡状态时,吸附效力已减弱所致。
活性炭的吸附原理
活性炭的吸附原理活性炭是一种具有高吸附性能的材料,主要用于水和空气中有机物的吸附。
其吸附原理主要涉及物理吸附和化学吸附两个方面。
1. 物理吸附:活性炭的吸附是基于物理吸附原理进行的。
物理吸附是通过分子间的范德华力吸附或者是电荷相互作用力吸附来实现的。
活性炭具有高度发达的孔隙结构,孔隙大小分布范围广且孔体积大。
这使得活性炭具有大量的微孔和介孔,具有较大的比表面积。
这种结构特点为物理吸附提供了很好的条件。
有机物分子通过扩散进入孔隙中,由于孔内表面吸附作用力的存在,分子会被捕获并停留在孔隙壁上。
物理吸附的过程包括三个主要阶段:传递(transport)、扩散(diffusion)和平衡(equilibrium)。
在传递阶段,有机物分子通过气相或液相传递进入活性炭内部;在扩散阶段,有机物分子沿着孔道扩散到孔壁上,通过范德华力或电荷作用力与活性炭表面相互作用;最终,在平衡阶段,吸附达到动态平衡,吸附物质的吸附量不再随时间的变化而变化。
2. 化学吸附:活性炭的吸附还涉及到化学吸附。
化学吸附是指通过化学键或离子键与吸附剂发生化学反应,从而吸附有机物质。
活性炭上具有丰富的活性官能团,例如羟基、酮基、醛基、羧基等。
这些官能团可以与有机物质中含有的活性基团发生化学键的形式作用,通过化学反应吸附有机物质。
化学吸附的过程涉及到化学键的形成和断裂。
吸附剂表面的活性官能团与有机物分子之间发生化学反应,形成强化学键。
这种吸附方式具有较强的选择性,可以根据有机物分子的特性进行吸附。
总结来说,活性炭的吸附原理主要包括物理吸附和化学吸附。
物理吸附是通过范德华力或电荷作用力实现的,通过活性炭具有的孔隙结构和大比表面积来提供较好的吸附条件。
化学吸附是通过化学键或离子键的形式与有机物质发生化学反应来实现的,借助活性炭上的活性官能团来与有机物质发生作用。
这些吸附机制共同作用,使活性炭具有高效的吸附性能。
活性炭吸附原理与设计参数
活性炭吸附原理与设计参数1、介绍活性炭吸附过滤塔是一种废气过滤吸附异味的环保设备产品,活性炭吸附塔具有吸附效率高、适用面广、维护方便、能同时处理多种混合废气等优点,活性炭具有去除甲醛、苯、TVOC等有害气体和消毒除臭等作用,活性炭吸附塔现广泛用于电子原件生产、电池(电瓶)生产、酸洗作业、实验室排风、冶金、化工、医药、涂装、食品、酿造等废气处理,其中最适用于喷漆废气处理的净化。
2、工作原理含尘气体由风机提供动力,负压进入活性炭吸附塔体,由于活性炭固体表面上存在着未平衡和未饱和的分子引力或化学健力,因此当此固体表面与气体接触时,就能吸引气体分子,使其浓聚并保持在固体表面,污染物质从而被吸附,废气经过滤器后,进入设备排尘系统,净化气体高空达标排放。
3、技术介绍活性炭是一种黑色粉状、粒状或丸状的无定形具有多孔的炭。
主要成份为炭,还含有少量氧、氢、硫、氮、氯。
也具有石墨那样的精细结构,只是晶粒较小,层层不规则堆积。
具有较大的表面积(500~1000 m2/克)。
有很强的吸附能力,能在它的表面上吸附气体,液体或胶态固体。
对于气、液的吸附可接近于活性炭本身的质量的。
其吸附作用是具有选择性,非极性物质比极性物质更易于吸附。
在同一系列物质中,沸点越高的物质越容易被吸附,压越大、温度越低,浓度越高,吸附量越大,反之,减压、升温有利气体的解吸。
活性炭常用于气体的吸附、分离和提纯、溶剂的回收、糖液、油脂、甘油、药物的脱色剂,饮用水或冰箱的除臭剂,防毒面具的滤毒剂,还可用作催化剂或金属盐催化剂的截体。
活性炭吸附器设备型号及参数处理风(m3/h)活性炭(吨)设备阻(pa)重量(Kg)外型尺寸(mm)5000 0.1-0.2 800 420 600×1250×125010000 0.2-0.3 800 550 1500×1250×125015000 0.3-0.4 800 750 2000×1250×125020000 0.4-0.5 800 900 2500×1250×125025000 0.5-0.6 800 1080 2500×1250×150030000 0.6-0.7 800 1200 3000×1250×180035000 0.7-0.8 800 1450 3500×1250×220040000 0.8-0.9 800 1750 3500×1500×220060000 1.0-1.1 800 1800 3500×1700×2200[此文档可自行编辑修改,如有侵权请告知删除,感谢您的支持,我们会努力把内容做得更好]。
活性炭吸附净化设备设计方案
活性炭吸附净化设备设计方案一、设计原理活性炭是一种具有高度多孔性的材料,具有极大的比表面积,通过吸附作用可以有效地去除空气中的有害气体和异味。
活性炭吸附净化设备的设计原理基于以下几点:1.活性炭材料选择:选择具有大孔径和高比表面积的活性炭材料,以增加吸附容量和效果。
2.吸附介质的设计:活性炭吸附剂通常以颗粒状或块状存在,需要设计合适的吸附介质来保持活性炭的稳定性,并提供通气性。
3.空气处理系统:包括风机、过滤器和管道等组成,用于将空气输送到活性炭吸附装置中,并将处理后的空气排放出去。
4.吸附效果检测:设计合适的监测仪器,用于监测活性炭吸附装置的吸附效果,以确保其正常运行。
二、设备组成1.活性炭吸附装置:包括活性炭吸附层、吸附介质和支撑结构等。
活性炭吸附层通常由多层活性炭组成,以增加吸附效果。
2.风机:用于将空气送入活性炭吸附装置中,通常选择低噪音、高效率的离心风机。
3.空气过滤器:用于去除空气中的颗粒物和杂质,保护活性炭吸附层的稳定性和使用寿命。
4.管道系统:用于连接各个组件,保证空气的流动畅通。
5.监测仪器:包括空气质量检测仪器和吸附效果监测仪器,用于监测活性炭吸附装置的工作状态和吸附效果。
三、设计要点针对活性炭吸附净化设备的设计,需要注意以下几个要点:1.活性炭选择:根据空气中的污染物种类和浓度选择合适的活性炭材料,以及适当的装填方式和厚度,以提高吸附效果。
2.吸附介质设计:设计合适的吸附介质,保持活性炭的稳定性和通气性,同时考虑吸附剂的更换周期和维护成本。
3.空气流速:控制空气的流速,避免过高或过低,以提高吸附效果和系统的运行效率。
4.过滤器选择:选择合适的过滤器,去除空气中的颗粒物和杂质,保护活性炭吸附层的使用寿命。
5.排放处理:对处理后的空气进行适当的处理,保证排放的气体符合环境要求。
四、应用领域1.家用空气净化:如净化室内空气中的甲醛、苯等有害气体和异味。
2.工业废气处理:如处理化工厂、印染厂等工作场所的废气中的有机物和挥发性有机物。
活性炭的吸附原理
活性炭的吸附原理
首先,活性炭的吸附原理之一是物理吸附。
物理吸附是指分子
之间的范德华力作用力使气体或液体分子附着在固体表面上的现象。
活性炭具有丰富的微孔结构,这些微孔能够提供大量的吸附位点,
使得活性炭具有较大的比表面积,从而增加了物理吸附的可能性。
此外,活性炭的微孔结构还能够提供较长的扩散路径,使得被吸附
物质在活性炭内部停留的时间更长,从而增加了吸附效果。
其次,活性炭的吸附原理还包括化学吸附。
化学吸附是指在固
体表面上发生的化学反应,被吸附物质与固体表面形成化学键。
活
性炭表面含有大量的官能团,如羟基、羰基等,这些官能团能够与
被吸附物质发生化学反应,形成化学键,从而实现化学吸附。
化学
吸附相对于物理吸附来说,具有更强的选择性和更高的吸附能力。
除了物理吸附和化学吸附外,活性炭的吸附原理还与被吸附物
质的性质有关。
一般来说,极性物质更容易被活性炭吸附,因为活
性炭表面的官能团能够与极性物质形成较强的相互作用。
而非极性
物质则相对不易被活性炭吸附。
此外,被吸附物质的分子大小、形状、表面活性等因素也会影响活性炭的吸附效果。
总的来说,活性炭的吸附原理是一个复杂的过程,涉及到物理吸附、化学吸附以及被吸附物质的性质等多个方面。
通过理解活性炭的吸附原理,我们可以更好地应用活性炭进行气体、液体和溶液中杂质的去除,从而达到净化和提纯的目的。
活性炭在环境保护、水处理、空气净化等领域具有广泛的应用前景,深入研究其吸附原理对于提高活性炭的吸附效率和降低成本具有重要意义。
活性炭吸附原理
(1)硫酸奎宁吸附力:药用炭吸附了硫酸奎宁液,剩余的硫酸奎宁在酸性条件下与碘化汞钾不足以形成沉淀了,该样品硫酸奎宁的吸附力为0.12%*100/1=120mg/g=12%
(2)亚甲基蓝吸附力:一个有加入药用炭进行处理,一个没有加入药用炭处理,亚甲基蓝与碘在酸性条件下发生了氧化还原反应,剩余的碘液用硫代硫酸酸钠来滴定.亚甲基蓝的吸附力:0.1%/0.25=0.4%,反应原理与硫酸奎宁是一样的,亚甲基蓝被药用炭吸附量,量减少了,碘与硫代硫酸钠反应的量就多了,其要满足与差数不得少于1.2mL.
亚甲基蓝的吸附力计算:(35*0.05-C硫代硫酸钠*V)*M亚甲基蓝毫克当量*(50/25)*(25+35+50)/100/0.25=毫克/克,换算为%则再乘以0.1就好了,其中亚甲基蓝的毫克当量为319.6
计算时与1.2mL是没有关系的,其主要是看药用炭对亚甲基蓝的吸附力是否符合0.4%的要求的,如果是0.5%,则按标准操作时,最后的毫升数为不少于1.5mL
V样12.51 V空白10.73。
活性炭吸附
五、成果整理 1. 记录实验基本参数 2. 各三角烧杯中水样过滤后 各三角烧杯中水样过滤后ABSi测定结果 测定结果
3. 计算吸附量 计算吸附量q
4.以 以 Fruendlich吸附等温线,求出 ,n值。 吸附等温线, 吸附等温线 求出K, 值
C0 − C lg 为纵坐标, 为纵坐标,lgC为横坐标绘出 为横坐标绘出 m
实验2 静态活性炭吸附实验
一、目的 通过实验进一步了解活性炭的吸附工艺及 性能,并熟悉整个实验过程的操作。 性能,并熟悉整个实验过程的操作。掌握 间歇” 用“间歇”法确定活性炭处理污水的设计 参数的方法。 参数的方法。
二、原理 活性炭吸附, 活性炭吸附,就是利用活性炭的固体表面对水中一种 或多种物质的吸附作用,以达到净化水质的作用。 或多种物质的吸附作用,以达到净化水质的作用。 活性炭的吸附作用产生于两个方面. 活性炭的吸附作用产生于两个方面.一是由于活性炭 内部分子在各个方向都受着同等大小的力而在表面的分子 则受到不平衡的力.这就使其他分于吸附于其表面上, 则受到不平衡的力.这就使其他分于吸附于其表面上,此 为物理吸附;另一个是由于活性炭与被吸附物质之间的化 为物理吸附; 学作用,此为化学吸附。 学作用,此为化学吸附。 活性炭的吸附是上述两种吸附综合作用的结果。 活性炭的吸附是上述两种吸附综合作用的结果。当活 性炭在溶液中的吸附速度和解吸速度相等时, 性炭在溶液中的吸附速度和解吸速度相等时,即单位时问 内活性炭吸附的数量等于解吸的数量时, 内活性炭吸附的数量等于解吸的数量时,被吸附物质在溶 液中的浓度和在活性炭表面的浓度均不再交化, 液中的浓度和在活性炭表面的浓度均不再交化,即达到了 平衡,此时的动态平衡称为活性炭吸附平衡。 平衡,此时的动态平衡称为活性炭吸附平衡。而此时被吸 附物质在溶液中的浓度称为平衡浓度。 附物质在溶液中的浓度称为平衡浓度。
活性炭吸附原理
活性炭吸附原理
活性炭是一种多孔性吸附材料,具有很大的吸附表面积和丰富的孔隙结构。
它通过吸附物质分子与活性炭表面之间的相互作用,将有害物质从气体或溶液中去除。
活性炭吸附的原理主要包括物理吸附和化学吸附。
1. 物理吸附:活性炭的孔隙结构提供了很大的吸附表面积,使其能够吸附大量的物质分子。
物理吸附是一种凡斯德华力(van der Waals力)的吸附方式,是一个非常普遍的现象。
当有害物质分子与活性炭表面接触时,由于分子间的吸引力,物质分子会进入活性炭孔隙中,并停留在其表面上。
这种吸附力不太强,有害物质分子在一定条件下可以被再次释放,例如加热或降低吸附剂的压力。
2. 化学吸附:与物理吸附不同,化学吸附是指吸附物质分子与活性炭表面发生化学反应,形成化学键。
这种吸附方式更加牢固稳定,吸附剂与有害物质分子之间形成的键强度较高。
化学吸附是由于吸附剂表面的活性位点能够与有害物质分子发生化学反应,形成化合物。
这种化学反应可以是物理吸附的补充或替代。
在活性炭吸附过程中,吸附剂的孔隙结构对吸附性能起着至关重要的作用。
孔隙的大小和形状决定了吸附剂能够吸附的物质分子的大小,而孔隙的分布和连通性则影响了吸附速率和吸附容量。
此外,吸附剂的表面性质也会直接影响物质分子与其之间的相互作用。
综上所述,活性炭吸附原理是通过物理吸附和化学吸附作用,将有害物质分子从气体或溶液中去除。
活性炭的多孔结构和吸附剂表面性质起着重要的作用,使其具有优异的吸附性能和广泛的应用前景。
活性炭吸附设计方案
活性炭吸附设计方案活性炭吸附是一种常见且有效的污染物去除方法。
它通过活性炭对污染物的物理吸附和化学吸附作用,将有害物质从气体或液体中去除。
本文将重点介绍活性炭吸附的设计方案,以保证其最佳效果。
一、活性炭选型活性炭的选型是设计方案中至关重要的一环。
根据待处理的污染物类型和浓度,选择合适的活性炭种类和规格。
常见的活性炭种类有煤基活性炭、木质活性炭和壳聚糖基活性炭等。
在选择时,考虑活性炭的孔径大小、比表面积、吸附容量等参数,以满足处理需求。
二、吸附塔设计吸附塔是活性炭吸附系统的核心组成部分。
在设计吸附塔时,需充分考虑以下因素:1. 塔型选择:常见的吸附塔型有固定床吸附塔、液体吸附塔和流动床吸附塔。
根据待处理气体或液体的流量、浓度和处理要求选择合适的塔型。
2. 塔高和塔径:根据设计需要和实际操作要求,确定吸附塔的高度和直径。
通常情况下,较高的塔高和较大的塔径有助于提高吸附效果。
3. 气液分布器:在吸附塔中设置合适的气液分布器,以确保气体或液体流经活性炭床层时能够均匀分布,提高吸附效率。
4. 活性炭填充层高度:根据活性炭的吸附容量和工作周期,确定活性炭填充层的高度。
保证足够的填充层高度,可以延长活性炭的使用寿命。
三、流程控制在活性炭吸附系统中,流程控制起到关键作用。
以下是常见的流程控制措施:1. 气体或液体进出口控制:根据处理要求和流量,设置合适的进出口阀门,以控制气体或液体的流入和流出,并确保吸附系统的稳定工作。
2. 温度和湿度控制:根据待处理气体或液体的温度和湿度范围,设置合适的控制参数,以保证活性炭吸附的效果。
3. 压力控制:通过调整进出口阀门或加装压力控制设备,控制吸附塔内外的压力差,以确保活性炭吸附系统的正常工作。
四、运行与维护活性炭吸附设计方案的实施并不是一次性的任务,系统的运行与维护同样重要。
1. 运行监测:定期对吸附系统进行监测,检测活性炭的吸附性能和饱和度。
根据监测结果,及时调整吸附塔的操作参数,以保证吸附效果。
活性炭手册簿(包括原理性质吸附能力吸附容量注意事项等)
活性炭手册(包括原理、性质、吸附能力、吸附容量、注意事项等)活性炭手册一、活性炭过滤原理活性炭的吸附能力与水温的高低、水质的好坏等有一定关系。
水温越高,活性炭的吸附能力就越强;若水温高达30℃以上时,吸附能力达到极限,并有逐渐降低的可能。
当水质呈酸性时,活性炭对阴离子物质的吸附能力便相对减弱;当水质呈碱性时,活性炭对阳离子物质的吸附能力减弱。
所以,水质的PH不稳定,也会影响到活性炭的吸附能力。
活性炭的吸附原理是:在其颗粒表面形成一层平衡的表面浓度,再把有机物质杂质吸附到活性炭颗粒内,使用初期的吸附效果很高。
但时间一长,活性炭的吸附能力会不同程度地减弱,吸附效果也随之下降。
如果水族箱中水质混浊,水中有机物含量高,活性炭很快就会丧失过滤功能。
所以,活性炭应定期清洗或更换。
活性炭颗粒的大小对吸附能力也有影响。
一般来说,活性炭颗粒越小,过滤面积就越大。
所以,粉末状的活性炭总面积最大,吸附效果最佳,但粉末状的活性炭很容易随水流入水族箱中,难以控制,很少采用。
颗粒状的活性炭因颗粒成形不易流动,水中有机物等杂质在活性炭过滤层中也不易阻塞,其吸附能力强,携带更换方便。
活性炭的吸附能力和与水接触的时间成正比,接触时间越长,过滤后的水质越佳。
注意:过滤的水应缓慢地流出过滤层。
新的活性炭在第一次使用前应洗涤洁净,否则有墨黑色水流出。
活性炭在装入过滤器前,应在底部和顶部加铺2~3厘米厚的海绵,作用是阻止藻类等大颗粒杂质渗透进去,活性炭使用2~3个月后,如果过滤效果下降就应调换新的活性炭,海绵层也要定期更换。
二、影响粒状活性炭应用的主要性质应用粒状活性炭,尤其大量应用,最影响效果和成本的活性炭主要性质是:吸附量;压降或床层膨胀;抗磨性;大小、水分、灰分、pH值和可溶物。
应用较为大量的粒状活性炭都装在柱型设备中,就要讲究压降(压头损失)或床层膨胀,是设计炭柱的必要因素。
压降由微粒大小和大小分布所决定。
床层膨胀由微粒大小、形状和大小分布以及微粒密度所决定。
活性炭吸附装置主要技术参数
活性炭吸附装置主要技术参数首先,活性炭吸附装置需要选择适合的吸附剂种类。
常见的有机废气处理中使用的吸附剂主要包括活性炭和活性氧化铝等。
活性炭具有优异的吸附性能,能够广泛地吸附多种有机物质,因此在实际应用中被广泛采用。
其次,吸附器的设计是活性炭吸附装置非常重要的技术参数之一、吸附器的设计要考虑到废气的流量、温度、湿度以及有机物质的浓度等因素。
合理的吸附器设计能够提高吸附效率和废气处理能力,降低设备维护成本。
吸附塔压降也是活性炭吸附装置的重要技术参数之一、吸附塔压降指的是废气流过吸附塔时产生的阻力。
较大的吸附塔压降会导致废气处理设备能耗的增加,因此需要合理设计和调节吸附塔的结构和操作参数,以减小吸附塔压降。
吸附性能是活性炭吸附装置的核心技术参数之一、吸附性能包括吸附剂的吸附容量、吸附速度、吸附选择性以及吸附剂的再生性能等。
吸附容量是指吸附剂单位质量或单位体积的吸附物质最大负荷量。
吸附速度是指吸附剂吸附废气中有机物质的速度,较快的吸附速度可以提高废气处理效率。
吸附选择性是指吸附剂对不同有机物质的吸附能力,较高的吸附选择性能够提高净化效果。
吸附剂的再生性能是指吸附剂经过再生处理后的性能恢复情况,合理的再生方法和调控使得吸附剂能够循环使用,降低成本。
最后,活性炭吸附装置的废气处理能力也是重要的技术参数之一、废气处理能力指的是装置处理废气的能力,通常以废气处理量或废气处理效率表示。
废气处理能力需要根据实际应用需求来确定,合理的废气处理能力将能够满足工业生产的要求。
总之,活性炭吸附装置的主要技术参数包括吸附剂种类、吸附器设计、吸附塔压降、吸附性能以及废气处理能力等。
这些参数的设计和调节能够影响活性炭吸附装置的净化效果和废气处理能力,因此需要根据实际应用需求进行合理的设计和优化。
活性炭吸附箱工作原理及参数
活性炭吸附箱工作原理及参数文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]活性炭吸附箱工作原理及参数一、活性炭吸附箱简介活性炭是一种很细小的炭粒,有很大的表面积,而且炭粒中还有更细小的孔——毛细管.这种毛细管具有很强的吸附能力,由于炭粒的表面积很大,所以能与气体(杂质)充分接触,当这些气体(杂质)碰到毛细管就被吸附,起净化作用。
活性炭吸附的实质是利用活性炭吸附的特性把低浓度大风量废气中的有机溶剂吸附到活性炭中。
活性炭吸附法主要用于低浓度气态污染物的脱除。
二、活性炭吸附箱原理当废气由风机提供动力,负压进入吸附箱后进入活性炭吸附层,由于活性炭吸附剂表面上存在着未平衡和未饱和的分子引力或化学键力,因此当活性炭吸附剂的表面与气体接触时,就能吸引气体分子,使其浓聚并保持在活性炭表面,此现象称为吸附。
利用活性炭吸附剂表面的吸附能力,使废气与大表面的多孔性活性炭吸附剂相接触,废气中的污染物被吸附在活性炭表面上,使其与气体混合物分离,净化后的气体高空排放。
活性炭吸附箱是一种干式废气处理设备,由箱体和填装在箱体内的吸附单元组成。
三、活性炭吸附箱的使用范围活性炭吸附箱主要用于大风量低浓度的有机废气处理;活性炭吸附剂可处理净化多种有机和无机污染物:苯类、酮类、醇类、醚类、烷类及其混合类有机废气、酸性废气、碱性废气;主要用于制药、冶炼、化工、机械、电子、电器、涂装、制鞋、橡胶、塑料、印刷及环保脱硫、除臭和各种工业生产车间产生的有害废气的净化处理。
四、性能特点1、吸附效率高,能力强;2、能够同时处理多种混合有机废气;净化效率≥95%;3、设备构造紧凑,占地面积小,维护管理简单,运转成本低廉;4、采用自动化控制运转设计,操作简易、安全;5、全密闭型,室内外皆可使用。
五、设备的选用吸附塔从性能上分:高效型、标准型和经济型。
吸附塔从材质上分:PVC、FRP/PVC、镀锌钢板和304不锈钢。
活性炭吸附工作原理
活性炭吸附工作原理
活性炭吸附是一种通过活性炭材料吸附气体或溶质的过程。
活性炭是一种多孔材料,具有大量的微小孔道和表面积,这使得其具有很高的吸附能力。
活性炭吸附的工作原理可以分为物理吸附和化学吸附两个方面。
1. 物理吸附:活性炭的多孔结构使其具有很高的孔隙率和比表面积,从而提供了大量的表面吸附位置。
气体分子或溶质可以通过范德华力或静电作用与活性炭表面相互作用,从而被吸附。
这种吸附通常是可逆的,并且在不需要任何化学反应的情况下发生。
物理吸附受温度、压力和分子大小等因素的影响。
2. 化学吸附:除了物理吸附,活性炭还可以通过发生化学反应与气体或溶质发生化学吸附。
这种吸附通常是不可逆的,并且需要相应的化学反应条件。
化学吸附通常涉及活性炭表面上的功能基团(如羟基、胺基等)与溶质之间的化学键形成。
活性炭吸附的具体过程受多种因素的影响,包括溶液或气体中的浓度、温度、湿度、压力、溶质的分子大小和活性炭的特性等。
通过优化这些条件,可以提高活性炭的吸附效率和容量。
活性炭吸附广泛应用于废气处理、水处理、食品工业、制药工业等领域,通过吸附和去除有害物质,净化环境或提取目标物质。
活性炭的吸附作用原理
活性炭的吸附作用原理
活性炭的吸附作用原理解析:
活性炭是一种具有极大比表面积和孔隙结构的多孔性材料,其吸附作用原理主要取决于物理吸附和化学吸附两种机制。
1. 物理吸附:也称为范德华吸附,是活性炭吸附作用的主要机制之一。
物理吸附是由于活性炭材料的大量微孔和介孔结构,能够吸附分子在其表面上,形成表面积分子与吸附物分子之间的范德华力。
这种吸附主要发生在低温下,在物理吸附过程中,吸附的分子主要受到范德华力的作用,而吸附热较小,分子间的相互作用弱。
2. 化学吸附:也称为化学键吸附,是活性炭吸附作用的另一种机制。
化学吸附是指活性炭表面与吸附物分子之间发生化学反应,形成化学键,从而将吸附物牢固地固定在活性炭表面上。
化学吸附是一个吸热反应,需要较高的温度条件。
除了以上两种主要的吸附机制外,活性炭的孔隙结构也起到了重要的作用。
活性炭的孔隙结构可以分为微孔、介孔和宏孔。
微孔是指孔径小于2nm的孔隙,介孔是指孔径在2nm到50nm 之间的孔隙,而宏孔是指孔径大于50nm的孔隙。
由于活性炭
的孔隙结构可以提供更大的比表面积,因此也可以提供更多的吸附位点,增加吸附效果。
总结起来,活性炭的吸附作用主要是通过物理吸附和化学吸附两种机制发生的。
物理吸附是靠活性炭材料的大量微孔和介孔
结构来吸附分子,而化学吸附则是活性炭表面与吸附物分子之间发生化学反应形成化学键。
此外,活性炭的孔隙结构也起到了重要的作用,提供更多的吸附位点。
这些特性使得活性炭成为广泛应用于各种领域的高效吸附材料。
活性炭的吸附原理
活性炭的吸附原理
活性炭是一种多孔性固体材料,具有广泛的应用领域,其中之一就是吸附。
活性炭的吸附原理是通过其丰富的微孔和介孔结构来吸附气体、液体或溶液中的有机物、无机物及其他杂质。
活性炭的吸附原理可以归结为两个主要机制:物理吸附和化学吸附。
物理吸附是指当气体或溶液中的分子通过物理力与活性炭表面发生相互作用,形成分子-表面吸附力时,发生的吸附现象。
这种吸附通常是可逆的,分子在表面上的吸附行为受到温度、压力和分子之间的相互作用力等因素的影响。
物理吸附通常容易发生在小分子、低分子量的物质上。
化学吸附是指当分子中的原子或基团与活性炭表面的功能基团发生化学反应,形成化学键或离子键时,发生的吸附现象。
与物理吸附相比,化学吸附是一个不可逆的过程,吸附剂上的功能基团起到了化学反应的催化剂的作用。
化学吸附通常发生在大分子、高分子量的有机物质上。
活性炭的微孔和介孔结构赋予了其较大的表面积和孔容,使其具有较强的吸附能力。
活性炭表面的微孔和介孔可以提供大量的吸附位点,吸附物质的分子可以通过物理吸附或化学吸附与这些位点相互作用。
此外,活性炭的表面通常还存在一些活性位点,如氧化还原位点、酸碱位点等,这些位点能够提供额外的吸附能力,增强吸附效果。
需要注意的是,活性炭的吸附性能与其孔结构特征、表面化学性质、原料选用以及制备工艺等因素密切相关。
通过调控这些因素,可以得到具有不同吸附能力和选择性的活性炭材料,以满足不同应用领域的需求。
活性炭的工作原理
活性炭的工作原理活性炭作为一种优良的吸附剂,它是利用木炭、各种果壳和优质煤等作为原料,通过物理和化学方法对原料进行破碎、过筛、催化剂活化、漂洗、烘干和筛选等一系列工序加工制造而成。
活性炭具有物理吸附和化学吸附的双重特性,可以有选择的吸附气相、液相中的各种物质,以达到脱色精制、消毒除臭和去污提纯等目的。
活性炭吸附,是一种常见的废气处理工艺。
活性炭吸附利用多孔性的活性炭,将有机气体分子吸附到其表面,从而使废气得到净化治理。
工艺流程(1)工艺流程简介废气——风管——干式过滤器——活性炭吸附——引风机——达标高空排放(2)工艺说明工厂车间有机废气通过吸气罩收集,在排风机作用下,经过管道输送进入干式过滤器,再进入活性炭吸附装置,有机污染物被活性炭吸附,净化后的气体经风机增压后达标排放。
原理活性炭吸附现象是发生在两个不同的相界面的现象,吸附过程就是在界面上的扩散过程,是发生在固体表面的吸附,这是由于固体表面存在着剩余的吸引而引起的。
吸附可分为物理吸附和化学吸附;物理吸附亦称范德华吸附,是由于吸附剂与吸附质分子之间的静电力或范德华引力导致物理吸附引起的,当固体和气体之间的分子引力大于气体分子之间的引力时,即使气体的压力低于与操作温度相对应和饱和蒸气压,气体分子也会冷凝在固体表面上,物理吸附是一种吸热过程。
化学吸附亦称活性吸附,是由于吸附剂表面与吸附质分子间的化学反应力导致化学吸附,它涉及分子中化学键的破坏和重新结合,因此,化学吸附过程的吸附热较物理吸附过程大。
在吸附过程中,物理吸附和化学吸附之间没有严格的界限,同一物质在较低温度下往往是化学吸附。
活性炭纤维吸附以物理吸附为主,但由于表面活性剂的存在,也有一定的化学吸附作用。
特点(1)对于芳香族化合物的吸附优于对非芳香族化合物的吸附。
(2)对带有支键的烃类物理优于对直链烃类物质的吸附。
(3)对有机物中含有无机基团物质的吸附总是低于不含无机基团物质的吸附。
(4)对分子量大和沸点高的化合物的吸附总是高于分子量小和沸点低的化合物的吸附。
活性炭甲醛原理
活性炭甲醛原理
活性炭是一种能够吸附甲醛的材料,其甲醛去除原理如下:
1. 物理吸附:活性炭具有大量的微孔结构,微孔表面积大,表面有丰富的吸附位点。
甲醛分子通过物理作用力(范德华力)与活性炭微孔表面相互作用,吸附在活性炭表面。
2. 化学反应:活性炭表面的某些活性位点可与甲醛分子发生化学反应,如羰基氧化反应。
活性炭上的活性氧、羟基等官能团与甲醛分子发生反应,使甲醛被转化成无毒的物质。
当空气中的甲醛通过活性炭吸附层时,上述物理吸附和化学反应会同时进行。
活性炭对甲醛的去除效果取决于其孔径尺寸、表面积、吸附位点数量和活性程度等因素。
需要注意的是,活性炭只是一种辅助去除甲醛的方法,并不能完全消除甲醛。
同时,活性炭吸附一定的甲醛量后会饱和,需要定期更换或进行再生。
有效利用活性炭去除甲醛,还需配合良好的通风和其他净化设备。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
活性炭吸附原理与设计参数
1、介绍
活性炭吸附过滤塔是一种废气过滤吸附异味的环保设备产品,活性炭吸附塔具有吸附效率高、适用面广、维护方便、能同时处理多种混合废
气等优点,活性炭具有去除甲醛、苯、TVOC等有害气体和消毒除臭等
作用,活性炭吸附塔现广泛用于电子原件生产、电池(电瓶)生产、
酸洗作业、实验室排风、冶金、化工、医药、涂装、食品、酿造等废
气处理,其中最适用于喷漆废气处理的净化。
2、工作原理
含尘气体由风机提供动力,负压进入活性炭吸附塔体,由于活性炭固体表面上存在着未平衡和未饱和的分子引力或化学健力,因此当此固体表面与气体接触时,就能吸引气体分子,使其浓聚并保持在固体表面,污染物质从而被吸附,废气经过滤器后,进入设备排尘系统,净化气体高空达标排放。
3、技术介绍
活性炭是一种黑色粉状、粒状或丸状的无定形具有多孔的炭。
主要成份为炭,还含有少量氧、氢、硫、氮、氯。
也具有石墨那样的精细结构,只是晶粒较小,层层不规则堆积。
具有较大的表面积(500~
1000 m2/克)。
有很强的吸附能力,能在它的表面上吸附气体,液体
或胶态固体。
对于气、液的吸附可接近于活性炭本身的质量的。
其吸附作用是具有选择性,非极性物质比极性物质更易于吸附。
在同一系列物质中,沸点越高的物质越容易被吸附,压越大、温度越低,浓度越高,吸附量越大,反之,减压、升温有利气体的解吸。
活性炭常用于气体的吸附、分离和提纯、溶剂的回收、糖液、油脂、甘油、药物的脱色剂,饮用水或冰箱的除臭剂,防毒面具的滤毒剂,还可用作催化剂或金属盐催化剂的截体。
活性炭吸附器设备型号及参数
处理风(m3/h)活性炭(吨)设备阻(pa)重量(Kg)外型尺寸(mm)
5000 0.1-0.2 800 420 600×1250×1250
10000 0.2-0.3 800 550 1500×1250×1250
15000 0.3-0.4 800 750 2000×1250×1250
20000 0.4-0.5 800 900 2500×1250×1250
25000 0.5-0.6 800 1080 2500×1250×1500
30000 0.6-0.7 800 1200 3000×1250×1800
35000 0.7-0.8 800 1450 3500×1250×2200
40000 0.8-0.9 800 1750 3500×1500×2200
60000 1.0-1.1 800 1800 3500×1700×2200。