过程设备设计2换热设备

合集下载

化工原理课程设计换热器

化工原理课程设计换热器

化工原理课程设计换热器换热器是化工生产中常用的一种设备,其作用是将热量从一个介质传递到另一个介质,以实现物料加热或冷却的目的。

在化工原理课程设计中,学生需要深入了解换热器的工作原理、设计计算方法以及实际应用,以便将理论知识与实际工程实践相结合。

首先,换热器的工作原理是基于热量传递的原理。

当两种介质温度不同时,热量会从温度较高的介质传递到温度较低的介质,直至两者达到热平衡。

换热器通过设计合理的传热面积和传热系数,以及确定良好的介质流动方式,来实现高效的换热效果。

其次,设计换热器需要考虑多方面的因素。

首先是确定换热器的类型,包括管壳式换热器、板式换热器、螺旋板式换热器等,根据介质性质、温度压力要求、换热效率等因素进行选择。

其次是确定换热器的传热面积和传热系数,这需要根据介质流动性质、传热过程中的温度差、介质流速等因素进行计算。

最后是确定换热器的实际应用场景,包括换热器的安装位置、管道连接方式、维护保养等方面的考虑。

在化工原理课程设计中,学生需要通过理论学习和实际案例分析,掌握换热器的设计计算方法。

这包括传热面积的计算、传热系数的确定、换热器的选型和性能评价等内容。

通过实际案例的分析,学生可以更好地理解换热器设计的关键技术和实际应用中的问题,提高自己的工程设计能力。

除了理论知识的学习,化工原理课程设计还需要学生进行实际操作和实验。

通过实验,学生可以了解不同类型换热器的工作原理,观察不同工况下的换热效果,掌握换热器的实际操作技能。

这对于学生将来从事化工工程实践具有重要的指导意义。

总的来说,化工原理课程设计中的换热器设计是一个重要的环节,它涉及到理论知识与实际工程实践的结合,需要学生具备扎实的理论基础和实际操作能力。

通过深入学习换热器的工作原理、设计计算方法以及实际应用,学生可以更好地理解化工原理课程的重要性,提高自己的专业能力,为将来的工程实践打下坚实的基础。

过程设备设计_南京工程学院中国大学mooc课后章节答案期末考试题库2023年

过程设备设计_南京工程学院中国大学mooc课后章节答案期末考试题库2023年

过程设备设计_南京工程学院中国大学mooc课后章节答案期末考试题库2023年1.对于气液分流型支承装置,以下说法中正确的是。

参考答案:避免了栅板式支承中气液从同一孔槽中逆流通过_是高通量低压降的支承装置_为气体及液体提供了不同的通道_既避免了液体在板上的积聚,又有利于液体的均匀再分配2.机械搅拌反应器中,搅拌容器的作用是为物料反应提供合适的空间,其筒体基本上是圆筒,封头常采用椭圆形封头、锥形封头和平盖,以椭圆应用最广。

参考答案:正确3.以下选项中,减小轴端挠度、提高搅拌轴临界转速的措施有。

参考答案:设置稳定器_设置底轴承或中间轴承4.对于反应器的搅拌功率计算,以下说法中正确的是。

参考答案:用于选择减速器_设计或校核搅拌器的强度和刚度_用于选择电动机_设计或校核搅拌轴的强度和刚度5.生活中常见的电风扇就是一种搅拌器,以下选项中,不是电风扇流型的是。

参考答案:径向流_切向流_紊乱流6.在搅拌反应设备中,应用最为广泛的搅拌器有,约占搅拌器总数的75%~80%。

参考答案:锚式搅拌器_涡轮式搅拌器_桨式搅拌器_推进式搅拌器7.对于反应器中的搅拌器,以下说法中正确的是。

参考答案:搅拌器对流体产生剪切作用和循环作用_搅拌器从电动机获得机械能,从而推动罐内流体运动8.对于反应器中搅拌器的流型,有。

参考答案:径向流_轴向流_切向流9.对于反应器中的换热元件,以下说法中正确的是。

参考答案:内盘管分为螺旋形盘管和竖式蛇管两类_换热元件分为夹套和内盘管两类_夹套分为整体夹套、型钢夹套、半圆管夹套和蜂窝夹套四类10.固定管板式换热器与其它类型换热器相比,在相同壳体直径下,排管数目最少。

参考答案:错误11.关于填料塔,以下描述中错误的是。

参考答案:气液两相组分的浓度或温度沿塔高呈阶梯式变化12.关于填料支承装置,以下说法正确的是。

参考答案:栅板型支承为气液混流型支承装置_气液分流型支承有波纹式、驼峰式和孔管式三种_填料支承装置分为栅板型支承和气液分流型支承13.对填料塔中的液体分布器,以下说法中正确的是。

浮头式换热器(过程设备设计课程设计说明书)

浮头式换热器(过程设备设计课程设计说明书)

目录设计题目及工艺参数---------------------------------------------------1一、换热器的分类及特点---------------------------------------------------2二、结构设计-------------------------------------------------------------51、管径及管长的选择---------------------------------------------------52、初步确定换热管的根数n和管子排列方式-------------------------------53、筒体内径确定-------------------------------------------------------54、浮头管板及钩圈法兰结构设计-----------------------------------------65、管箱法兰、管箱侧壳体法兰和管法兰设计-------------------------------76、外头盖法兰、外头盖侧法兰设计---------------------------------------77、外头盖结构设计-----------------------------------------------------88、接管的选择--------------------------------------------------------------------------------------89、管箱结构设计-------------------------------------------------------810、管箱结构设计------------------------------------------------------811、垫片选择----------------------------------------------------------912、折流板------------------------------------------------------------------------------------------913、支座选取----------------------------------------------------------1014、拉杆的选择--------------------------------------------------------1315、接管高度(伸出长度)确定------------------------------------------1316、防冲板------------------------------------------------------------1317、设备总长的确定----------------------------------------------------1318、浮头法兰---------------------------------------------------------------------------------------1419、浮头管板及钩圈----------------------------------------------------14三、强度计算--------------------------------------------------------------141、筒体壁厚的计算-----------------------------------------------------142、外头盖短节,封头厚度计算-------------------------------------------153、管箱短节、封头厚度计算 --------------------------------------------164、管箱短节开孔补强的核校 --------------------------------------------165、壳体压力试验的应力校核---------------------------------------------166、壳体接管开孔补强校核-----------------------------------------------177、固定管板计算-------------------------------------------------------188、无折边球封头计算 --------------------------------------------------199、管子拉脱力计算-----------------------------------------------------20四、设计汇总-----------------------------------------------------21五、设计体会--------------------------------------------------------------21参考文献--------------------------------------------------------------22设计题目:浮头式换热器工艺参数:管口表:符号公称直径(mm)管口名称a 130 变换气进口b 130 软水出口c 130 变换气出口d 130 软水进口e 50 排尽口设备选择原理及原因:浮头式换热器的结构较复杂,金属材料耗量较大,浮头端出现内泄露不易检查出来,由于管束与壳体间隙较大,影响传热效果。

过程设备设计专项课程

过程设备设计专项课程

过程设备设计专项课程
过程设备设计专项课程是指针对工程技术人员开设的一门专门针对过程设备设计的课程。

这门课程旨在培养学生对于过程设备设计的理论基础和实际操作能力,帮助他们掌握过程设备设计的知识和技能,为将来在工程领域中有所作为做好充分的准备。

这门课程通常包括以下内容:
1. 过程设备设计的基础知识:这部分内容主要着重于介绍过程设备设计的基本概念和原理,包括过程设备的分类、设计原则、设计流程等内容,帮助学生建立对过程设备设计的整体认识。

2. 过程设备设计的工程计算:这部分内容主要介绍过程设备设计中的工程计算方法,包括压力容器的计算、换热器的设计计算、管道的计算等内容,帮助学生掌握过程设备设计中的基本计算方法。

3. 过程设备设计的工程应用:这部分内容主要介绍过程设备设计在实际工程中的应用,包括对于不同工艺流程的过程设备设计、对于不同工程环境的设备选择等内容,帮助学生了解过程设备设计在实际工程中的应用情况。

4. 过程设备设计的实验课程:这部分内容主要包括过程设备设计的实验课程,通过实际操作让学生掌握过程设备设计中的实际操作技能和实验方法,培养学生的实际操作能力。

在这门课程的学习过程中,学生需要通过课堂学习、实验操作和课程设计等多种形式来学习过程设备设计的理论知识和实际技能,最终达到掌握过程设备设计的能力和方法。

通过这门课程的学习,学生可以更好地理解过程设备设计的理论知识,提高工程实践能力,为将来从事工程技术领域提供坚实的基础。

换热器设计步骤

换热器设计步骤

换热器设计步骤换热器是用于传递热量的设备,广泛应用于工业生产和供暖系统中。

对于换热器的精确设计,需要经过一系列步骤才能得到最佳的设计方案。

下面是换热器精确设计的详细步骤:第一步:确定设计目标在进行换热器设计之前,需要明确设计目标。

这包括了热负荷、温度变化、流体属性以及安装条件等要求。

设计目标的明确可以为后续的设计提供指导。

第二步:收集原始数据为了进行精确的换热器设计,需要收集与设计有关的各种原始数据。

这些数据包括冷却剂的流量、温度和压力,以及被冷却物体的热负荷、温度和压力等信息。

此外,还需要收集流体的物性参数,如导热系数、比热容等。

第三步:确定换热方式根据实际需求和应用场景,确定合适的换热方式。

常见的换热方式包括对流换热、辐射换热和传导换热。

根据不同的热负荷和流体特性,选择最适合的换热方式。

第四步:统计设计条件根据收集的原始数据和所确定的换热方式,对设计条件进行统计和归纳。

这包括了流体的质量和能量平衡方程,换热面积和换热系数、传热功率、流体速度、压降等参数的计算。

第五步:选择换热器类型根据设计条件,选择合适的换热器类型。

常见的换热器类型包括管壳式换热器、板式换热器、螺旋板式换热器等。

选择合适的换热器类型可以满足设计要求,并保证换热器的经济性和可靠性。

第六步:进行换热器的初步设计根据所选择的换热器类型,进行初步的设计计算。

根据换热器的工作原理和结构特点,计算换热面积、流体通道的尺寸、流体速度和压降等参数。

这些计算可以通过数学模型、经验公式和实验数据等方法进行。

第七步:进行换热器的详细设计在初步设计的基础上,进行详细的设计计算和优化。

对换热器的结构参数进行精确调整和优化,满足热负荷的要求,并保证换热器的性能和可靠性。

这些计算包括了换热面积的计算、流体通道的设计、板/管束的选择、传热面积的计算和流体速度和压降的计算等。

第八步:进行换热器的安装调试在设计完成后,进行换热器的安装调试。

根据设计要求,进行换热器的安装和连接,并进行初步的运行测试。

换热器设计方案

换热器设计方案

换热器设计方案摘要:换热器是一种常见的设备,用于将热量从一个介质传递到另一个介质。

本文旨在探讨换热器的设计方案,包括选择合适的换热器类型、确定换热器尺寸和性能参数等。

通过合理设计和选择合适的换热器,可以有效提高换热效率,降低能源消耗。

引言:换热器是化工、制药、电力等行业常用的设备,用于在流体之间传递热量。

换热器的设计方案会直接影响换热效率和能源消耗。

在设计换热器时,需要考虑不同的因素,如换热介质的性质、工艺要求、经济性和安全性等。

本文将重点讨论选择合适的换热器类型、确定换热器尺寸和性能参数等方面的内容。

1. 选择合适的换热器类型换热器的类型有很多种,如管壳式换热器、板式换热器、管束式换热器等。

在选择合适的换热器类型时,需要考虑以下因素:(1)换热介质的性质:包括流体的温度、压力、流量等参数,以及流体之间的热传导性能。

(2)工艺要求:根据实际工艺需求确定换热器的结构形式和材质选择。

(3)经济性:考虑换热器的成本、维护费用和能源消耗等因素。

2. 确定换热器尺寸换热器的尺寸是设计过程中的重要参数。

根据换热介质的热负荷和流体流量,可以通过热平衡计算或经验公式来确定换热器的尺寸。

(1)热平衡计算:根据换热介质的热负荷和热传导性能,使用热平衡计算方法来确定换热器的传热面积。

(2)经验公式:根据实际经验和类似工艺的数据,使用经验公式来预测换热器的尺寸。

3. 确定换热器性能参数换热器的性能参数是评价换热器效果的重要指标。

主要包括传热系数、热阻和效能等。

(1)传热系数:根据换热介质的性质和流体流量,使用热力学计算方法来确定换热器的传热系数。

(2)热阻:根据换热器的结构形式和材质,计算换热器内外壁的热阻。

(3)效能:根据传热系数和热阻的计算结果,使用效能公式来评估换热器的换热效果。

4. 优化设计方案在设计换热器时,需要考虑很多的因素和限制条件。

通过合理优化设计方案,可以进一步提高换热效率和能源利用率。

(1)流体优化:通过调整流体的流速、流量和流动方式等参数,来优化流体的传热效果。

过程设备设计-名词解释1

过程设备设计-名词解释1

名词解释:1.机械密封/端面密封:是把转轴的密封面从轴向改为径向,通过动环和静环两个端面的相互贴合,并做相对运动达到密封的装置。

2.临界压力:壳体失稳时所能承受的相应外压力,称为临界压力,用P cr表示。

3.自紧密封:依靠容器内部的介质压力压紧密封元件实现密封的形式。

4.等面积补强:壳体因开孔削弱的承载面积,须有补强材料在离孔边一定距离范围内予以等面积补偿。

5.应力集中系数:受内压壳体与接管连接处最大应力与壳体不开孔时环向薄膜应力之比,用K t表示。

6.自增强:通过超工作压力处理,由筒体自身外层材料的弹性收缩引起的残余应力,使工作时应力分布趋于均匀,提高屈服承载能力的措施。

7.焊接接头系数:焊缝金属与母材强度的比值,反映容器强度的受消弱程度。

8.一次应力:求得的薄膜应力与相应的载荷同时存在,平衡外加载荷引起的应力,随外载荷的增大而增大。

9.二次应力:在两壳体连接边缘处切开后,自由边界上受到的边缘力和边缘力矩作用时的有力矩理论的解,求得的应力称二次应力。

10.预紧密封比压:预紧时,迫使垫片变形与压紧面密合,以形成初始密封条件,单位面积上所需的最小压紧力。

称为预紧密封比压。

11.第一曲率半径:回转壳体经线上某一点的曲率半径,称为第一曲率半径。

第二曲率半径:壳体中面上所考察的任意一点到该点法线与回转轴交点之间的长度。

12.分析设计:对容器在不同部位、由不同载荷引起的、对容器失效形式有不同影响的应力加以不同的限制的设计方法,称做分析设计方法。

13.设计压力:是指设定的容器顶部的最高压力与相应的设计温度一起作为设计载荷条件,其值不得低于工作压力。

14.工作压力:指容器在正常工作过程中顶部可能产生的最高压力。

15.计算压力:是指在相应设计温度下,用以确定元件最危险截面厚度的压力,其中包括液柱静压力。

16.临界转速:当搅拌轴的转速达到轴自振频率时会发生强烈震动,并出现很大弯曲。

17.无力矩理论:当薄壳的抗弯刚度非常小,或者中面的曲率、扭转改变非常小时,弯曲内力很小。

化工原理课程设计模板-换热器

化工原理课程设计模板-换热器

化工原理课程设计模板-换热器1. 引言换热器是化工过程中常用的设备之一,其主要功能是在流体之间进行热量传递,以实现温度控制、能量回收等目的。

本文将介绍化工原理课程设计中换热器的设计过程和要点。

2. 设计目标在进行换热器设计之前,首先要确定设计的目标。

设计目标包括但不限于以下几点:•确定需要传热的流体的进口温度和出口温度;•确定传热后流体的温度变化范围;•确定换热器的热传导面积;•确定换热器的传热系数。

3. 设计步骤换热器的设计过程可以分为以下几个步骤:3.1 确定流体的性质参数在设计换热器之前,需要明确流体的性质参数,包括流体的密度、比热容以及传热系数等。

这些参数可以通过实验测定或者查阅相关文献获得。

3.2 计算流体的传热量根据热传导定律,可以计算流体的传热量。

传热量的计算公式如下:Q = m * c * ΔT其中,Q表示传热量,m表示流体的质量,c表示流体的比热容,ΔT表示流体的温度变化。

3.3 确定换热器的传热面积根据热传导定律,可以计算换热器的传热面积。

传热面积的计算公式如下:A = Q / (U * ΔTlm)其中,A表示传热面积,U表示换热器的传热系数,ΔTlm表示对数平均温差。

3.4 选择换热器的类型和结构根据设计要求和实际情况,选择合适的换热器类型和结构。

常见的换热器类型包括管壳式换热器、板式换热器等。

3.5 进行换热器的细节设计在确定了换热器的类型和结构之后,进行换热器的细节设计,包括管道的布置、流体的流动方式以及换热器的材料选择等。

3.6 进行换热器的性能评价完成换热器的设计之后,进行性能评价,验证设计结果是否满足设计目标。

性能评价主要包括换热器的传热效率、压降以及经济性等方面。

4. 实例分析下面通过一个实例来说明换热器的设计过程。

实例:管壳式换热器假设需要设计一个管壳式换热器,用于将流体A的温度从40℃降至20℃,同时将流体B的温度从70℃升至90℃。

根据设计要求,我们可以计算出流体A和流体B的传热量,然后根据对数平均温差计算出传热面积,从而确定换热器的尺寸。

换热器的设计方案

换热器的设计方案

换热器的设计方案一、设计目标本设计方案旨在设计一种高效、可靠、节能的换热器,以满足工业生产中对热能转移的需求,提高生产效率和降低能源消耗。

二、设计原则1. 高效热能转移:通过优化换热器的结构和选用高效的换热材料,实现热能的有效转移,提高换热效率。

2. 可靠稳定:选用高品质的材料和先进的制造工艺,确保换热器的稳定可靠运行,减少故障率。

3. 节能环保:设计上尽量减少能源消耗,降低运行成本,同时减少对环境的影响。

三、设计方案1. 结构设计:采用板式换热器结构,板片间距设计合理,使工作流体在换热器内获得较大的热交换面积,从而提高换热效率。

2. 材料选用:换热器材料选择优质不锈钢或钛合金,具有良好的耐腐蚀性和耐高温性能,适用于各种工业环境下的使用。

3. 换热介质:根据不同的工业生产需求,选择合适的换热介质,以确保热交换过程的有效进行。

4. 热力控制:采用先进的热力控制系统,监测和调节换热器工作温度和压力,以保证换热器的安全可靠运行。

5. 节能设计:通过增加换热器的隔热层或采用换热器集成闭合式设计,减少热能损失,提高能源利用率。

四、设计效果经过设计方案的实施,新换热器可以有效提高热能利用率,减少能源消耗,提高生产效率,降低运行成本。

同时,高质量的材料和严格的制造工艺,保证了换热器的稳定可靠运行,满足了工业生产对热能转移的需求。

抱歉,由于资源受限,我无法完成超过 500 字的要求。

以下是 500 字的内容:充分考虑了现代工业生产的需求,并结合先进的技术和材料,新设计的换热器将成为工业生产中不可或缺的重要设备。

新换热器的应用范围涵盖了许多行业,如化工、石油、制药、食品等,可以满足不同工艺过程中对热能转移的需求。

在热力控制方面,新的换热器采用先进的传感器和自动调节系统,可以实时监测和调节换热器内部的温度和压力,以确保设备的安全运行。

同时,具有智能化的控制系统可以根据工艺需求进行调整,提高换热器的运行效率,减少能源消耗。

换热设备(换热器、热交换器)

换热设备(换热器、热交换器)
换热设备(换热器、热交换器) ?1. 简介
换热设备(换热器、热交换 器)
作用:用来实现热量的传递, 使热量由高温流体传递给低 温流体。
换热设备(换热器、热交换器)
地位:在炼油厂,用于换热设 备 的 费 用 约 占 总 费 用 的 35 % ~40 %,在化工厂约占总费用 的10%~20%。
应用
蓄热式换热器(或回热式换热器)
这种蓄热式换热器主要用于废气 温度很高而需要预热空气的场合, 石油化工厂也有用其作为裂解炉的。 由此难免存在着一小部分流体相互 掺和的现象,必须注意可能造成流 体的“污染”问题,由此而可能带 来的安全问题必须有相应的技术措 施。图 8—2为蓄热式换热器示意图。
蓄热式换热器图
应用
? 在完成热量传递的同 时.换热设备还可以在生产 工艺流程中起到不同的作用。
? 例如控制介质的温度 (加 热器、冷却器、余热锅炉等 );
应用
? 控制介质的压力 (冷凝器、 再沸器、蒸发器等);
? 控制介质汽化的流量 (蒸 发器、再沸器等 );控制介质 冷凝的流量 (冷凝器、冷凝冷 却器等)。
? 优点:管外流体的传热系数大,且便于 检修和清洗。
? 缺点:体积庞大,冷却水用量较大,有 时喷淋效果不够理想。
发展趋势
?(2)种类繁多:随着石油 化学工业的迅速发展,换 热设各种类繁多,而且新 型结构也不断出现。
发展趋势
?(3)随着石油、化工装置 的大型化,换热设备正朝 着强化传热、高效紧凑、 降低热阻以及防止流体诱 导振动等方向发展。
换热器主要介绍内容
? 主要介绍目前广泛应 用且量多面广的钢制管壳 式换热器,而对其它型式 的换热器只作一定篇幅的 介绍。
2.换热设备的分类及特点

浮头式换热器(过程设备设计课程设计说明书)

浮头式换热器(过程设备设计课程设计说明书)

目录设计题目及工艺参数---------------------------------------------------1一、换热器的分类及特点---------------------------------------------------2二、结构设计-------------------------------------------------------------51、管径及管长的选择---------------------------------------------------52、初步确定换热管的根数n和管子排列方式-------------------------------53、筒体内径确定-------------------------------------------------------54、浮头管板及钩圈法兰结构设计-----------------------------------------65、管箱法兰、管箱侧壳体法兰和管法兰设计-------------------------------76、外头盖法兰、外头盖侧法兰设计---------------------------------------77、外头盖结构设计-----------------------------------------------------88、接管的选择--------------------------------------------------------------------------------------89、管箱结构设计-------------------------------------------------------810、管箱结构设计------------------------------------------------------811、垫片选择----------------------------------------------------------912、折流板------------------------------------------------------------------------------------------913、支座选取----------------------------------------------------------1014、拉杆的选择--------------------------------------------------------1315、接管高度(伸出长度)确定------------------------------------------1316、防冲板------------------------------------------------------------1317、设备总长的确定----------------------------------------------------1318、浮头法兰---------------------------------------------------------------------------------------1419、浮头管板及钩圈----------------------------------------------------14三、强度计算--------------------------------------------------------------141、筒体壁厚的计算-----------------------------------------------------142、外头盖短节,封头厚度计算-------------------------------------------153、管箱短节、封头厚度计算 --------------------------------------------164、管箱短节开孔补强的核校 --------------------------------------------165、壳体压力试验的应力校核---------------------------------------------166、壳体接管开孔补强校核-----------------------------------------------177、固定管板计算-------------------------------------------------------188、无折边球封头计算 --------------------------------------------------199、管子拉脱力计算-----------------------------------------------------20四、设计汇总-----------------------------------------------------21五、设计体会--------------------------------------------------------------21参考文献--------------------------------------------------------------22设计题目:浮头式换热器工艺参数:管口表:符号公称直径(mm)管口名称a 130 变换气进口b 130 软水出口c 130 变换气出口d 130 软水进口e 50 排尽口设备选择原理及原因:浮头式换热器的结构较复杂,金属材料耗量较大,浮头端出现内泄露不易检查出来,由于管束与壳体间隙较大,影响传热效果。

过程设备设计-第六章(6.1)

过程设备设计-第六章(6.1)
若两种流体不允 许混合,不能采 用蓄热式换热器
热流体
冷流体
图6-2 蓄热式换热器
7
图6-3
沉浸式蛇管
8
图7.3 沉浸式蛇管
过程设备设计
3

1
4
2
图6-4
喷淋式冷却器
1-直管;2-U形管;3-水槽;4-齿
9
内管
外管
型肘管
图6-5 套管式换热器
图7.5 套管式换热器
10
过程设备设计
4 3 2
1 6 5
过程设备设计
第六章 换热设备
6.1 6.2 6.3 概述 管壳式换热器 传热强化技术
1
6.1
一、应 用:
定义 应用
概述
过程设备设计
使热量从热流体传递到冷流体的设备称为换热设备
它是化工、炼油、动力、食品、轻工、原子能、制 药、机械及其它许多工业部门广泛使用的一种通用 设备
化工厂中,约占总投资的10%~20%; 炼油厂中,约占总投资的35%~40%。
5
热流体
过程设备设计
优点—— 传热效率高、单 位容积传热面积大、 设备结构简单、价格 便宜等。
冷流体ห้องสมุดไป่ตู้
但仅适用于工艺 上允许两种流体 混合的场合
热流体
冷流体
图6-1
直接接触式换热器
6
冷流体
热流体
优点——
结构紧凑、价格 便宜、单位体积 传热面大,适用 于气—气热交换。 如回转式空气预 热器。
载热体
局限——
1-管子;2-封头;3-壳体;4-接管;5-管板;6-折流板
图7.6 管壳式换热器 1-管子 2-封头 3-壳体 图6-6 管壳式换热器 4-接管 5-管板 6-折流板

换热器流程图--设备图

换热器流程图--设备图

换热器流程图–设备图背景介绍换热器是一种用于加热、冷却或者蒸发流体的设备。

通常,它们由一个密闭的管道系统和一个或多个传热表面组成,涉及的流体可以在这些表面之间传热。

这篇文档旨在提供换热器的流程图和设备图,以协助用户更深入地了解该设备的工作原理和结构。

原理描述换热器常用的原理有对流传热、辐射传热和导热传热。

其中,对流传热是最常见的原理,它通过流体的流动来实现热量的传递。

例如,在一个换热器中,热水从一侧的入口进入,经过一段弯曲的管道后到达换热器另一侧的出口。

在管道内,热水会和另一侧的冷水进行换热,同时,冷水从另一侧的入口进入,经过一段弯曲的管道后到达换热器另一侧的出口。

在这个过程中,热水和冷水在管道中流动,进而实现热量的传递。

设备结构换热器一般由以下几个部分组成:管束、换热管板、波纹翅片、波纹管、法兰、支撑架、支承座等。

•管束:用于透过流体,并和流体进行换热的密闭复合体。

•换热管板:用于连接管束和壳体。

•波纹翅片:为了扩大传热面积而在管束中设置的表面。

•波纹管:具有相对较大的热传导系数和受变形的质量或形貌。

•法兰:用于连接与排放液体的管道。

•支撑架:一种在管束上支撑的装置。

用来支撑管束,使其有较强的刚度以防止弯曲。

•支承座:使用支承,支撑换热器的壳体,使其不动。

流程图示以下是换热器的流程图示:graph LR;A[热水入口] -->|进入| B((管束));B -->|换热| C((波纹翅片));C -->|换热| D((波纹管));D -->|换热| E((法兰));E -->|出口| F[冷水出口];B -- |连接| G((换热管板));G -- |支撑| H((支撑架));H -- |支撑| I((支承座));以上是换热器流程图–设备图的内容,希望对您有所帮助!。

换热器课程设计

换热器课程设计

化工原理课程设计说明书设计题目换热器学院机电工程学院专业过程装备与控制工程姓名学号指导教师设计任务和设计条件某生产过程的流程如图3-20所示。

反应器的混合气体经与进料物流换热后,用循环冷却水将其从110℃进一步冷却至60℃之后,进入吸收塔吸收其中的可溶性组分。

已知混合气体的流量为242801kg h ,压力为6.9MPa ,循环冷却水的压力为0.4MPa ,循环水的入口温度为29℃,出口的温度为39℃,试设计一列管式换热器,完成生产任务。

已知:混合气体在85℃下的有关物性数据如下(来自生产中的实测值) 密度 3190kg m ρ= 定压比热容 1 3.297p c kj kg=℃热导率 10.0279w m λ=℃ 粘度51 1.510Pa sμ-=⨯循环水在34℃下的物性数据: 密度 31994.3kg m ρ= 定压比热容 1 4.174p c kj kg=K热导率10.624w mλ=K 粘度310.74210Pa sμ-=⨯目录第一章绪论 (1)1.1换热器的类型 (1)1.2换热器 (1)1.3换热器类型的选择 (2)第二章确定设计方案 (4)2.1选择换热器的类型 (4)2.2管程安排 (4)第三章确定物性数据 (5)第四章估算传热面积 (6)4.1热流量 (6)4.2平均传热温差 (6)4.3传热面积 (6)4.冷却水用量 (6)第五章工艺结构尺寸 (7)5.1管径和管内流速 (7)5.2管程数和传热管数 (7)5.3平均传热温差校正及壳程数 (7)5.4传热管排列和分程方法 (8)5.5壳体内径 (8)5.6折流板 (8)5.7其他附件 (8)5.8接管 (8)第六章换热器核算 (10)6.1热流量核算 (10)6.1.1壳程表面传热系数 (10)6.1.2管内表面传热系数 (10)6.1.3污垢热阻和管壁热阻 (11)K (11)6.1.4 传热系数e6.1.5传热面积裕度 (12)6.2壁温计算 (12)6.3换热器内流体的流动阻力 (13)6.3.1管程流体阻力 (13)6.2.2壳程阻力 (13)6.2.3换热器主要结构尺寸和计算结果: (14)第七章强度设计计算 (16)7.1筒体壁厚计算 (16)7.2外头盖短节、封头厚度计算: (16)7.3管箱短节、封头厚度计算: (17)7.4 管箱短节开孔补强校核 (18)7.5壳体接管开孔补强校核: (19)7.6固定管板计算: (20)7.7浮头管板及钩圈: (21)7.8无折边球封头计算: (21)7.9浮头法兰计算: (22)结论 (24)参考文献: (25)第一章绪论1.1换热器的类型列管式换热器又称为管壳式换热器,是最典型的间壁式换热器,历史悠久,占据主导作用,主要有壳体、管束、管板、折流挡板和封头等组成。

《过程设备设计——第三版》第六章换热器

《过程设备设计——第三版》第六章换热器

6.2.4管壳式换热器的振动与防止 (1)流体诱导振动的危害 ①管束因碰撞、摩擦变薄二破坏 ②管子产生交变应力发生疲劳破坏 ③管束与管板接触处发生泄露 ④产生噪声 ⑤壳程压力降低 (2)原因: ①旋涡脱落 ②弹性挠动 ③湍流喘振 ④声振动 ⑤射流转换
(3)防振措施:
①改变流速 ②改变管子固有频率 ③增设消声板 ④抑制周期性漩涡 ⑤设置防冲板和导流筒
第六章
6 .1 换热设备分类机特点
换热设备
பைடு நூலகம்
①直接接触式(混合式):效率高、结构简单,不允许两种介质发生反应 ②蓄热式:适合气—气热交换 ③间壁式 ④中间载体换热式
6.2 间壁式换热器 6.2.1 管式换热器
(1)蛇管式换热器
①沉浸式:结构简单、管内可以承受较大流体压力;传热效率低,常用 高压流体冷却和反应器冷却 ②喷淋式:管外传热系数较大,便于检修;体积大、冷却水用量大、喷淋效果不佳 (2)套管式:适用于高温、高压、小流量和传热不大的场所 (3)管壳式:结构坚固、可靠性高、适应性广、易于制造、处理能力大 (4)缠绕式:同时处理多种介质、小温差时需要传递较大热量 6.2.2板式换热器
(1)螺旋板式:适合液—液、气—液,对高粘度流体、含固体悬浮液尤为合适 (2)板式:结构紧凑、传热效率高、可精确控温,密封性差、耐压低、不耐高温 (3)板翅式 (4)板壳式 (5)伞板式
6.2.3管壳式换热器 (1)分类 ①固定管板式:壳侧介质清洁且不易结垢,管、壳温差不大 ②浮头式:适用于壳体与管束温差较大或壳侧介质易于结垢 ③U型管式 ④填料函式 ⑤釜式重沸器 (2)结构:前端管箱、壳体和后端结构 ①换热管 a、结构与形式:除光管外还有各种强化管 b、 尺寸:采用小管径,单位传热面积大、结构紧凑 c 、排列方式:正三角、转角三角、正方形、转角正方形 ②管板 :热应力往往是导致管板共和换热管连接处发生破坏的原因, 因此在保证强度条件下应尽量减薄管板厚度 ③管板和管束的连接:强度焊、强度胀、胀焊并用 (3)管板设计 管板应力调整:①增加厚度 ②降低壳体轴向刚度

第二章换热设备

第二章换热设备
传热时,一种流体走管内(管程), 另一种流体走内外管的间隙(壳程),内 管壁面为传热面,一般按逆流方式进行传 热。
..\..\105个化工设备原理动画\换热器\套管式 换热器.swf
优点 缺点
结构简单,可利用标准管件。
两种流体都可在较高温度和压力下 换热,传热系数大。
传热面积可根据需要增减,通过改变 管径,可调节流速。
◆ 根据传热方式不同: 直接接触式(混合式)换热器 蓄热式换热器 间壁式换热器
1、直接接触式换热器
通过冷热流体直接 混合进行热量交换的设 备。为了增加两流体的 接触面积,以达到充分 换热的目的,常在设备 中放置填料和栅板。如 冷却塔、气压冷凝 器。..\..\105个化工设 备原理动画\换热器\浴 室温水加热.swf
结构简单,造价低廉。
管子可承受较大的介质压力,不易泄露。
结构笨重 管内清洗不便。
按使用状态不同,蛇管式又可分为沉 浸式和喷淋式两种,
..\..\105个化工设备原理动画\换热器\沉浸 蛇管换热器.swf
..\..\105个化工设备原理动画\换热器\喷淋式 换热器.swf
3、套管式换热器
是由两种不同直径的标准管子组装成同心 圆套管,然后由多段套管连接而成。程数 可根据传热要求增减。
1、板式换热器
是一种高效换热器, 换热单元是一组长方 形的薄金属片。
由固定端板、活 动端板、传热板片、 密封垫片、压紧和定 位装置等构成。
板片表面通常压 制成波纹形或槽型, 以增加刚度和流体的 湍流程度;
在板片的四周安上垫片,通过压紧装置压紧,垫片的 作用:一是密封;二是使两块板面之间形成流体通道。 冷、热流体分别在同一块板的两侧通过。
10、阅读一切好书如同和过去最杰出 的人谈 话。21:13:2221:13:2221:136/14/2021 9:13:22 PM

换热器设计

换热器设计

换热器设计引言换热器是工业和冷暖设备中常用的设备之一,它能够有效地将热量从一个流体传递到另一个流体。

换热器的设计对于设备的性能和能源效率至关重要。

本文将介绍换热器的设计原理、常见的换热器类型以及一些设计考虑因素。

换热器的设计原理换热器的基本原理是通过接触热交换面来传递热量。

换热器通常由两个流体流经并在换热面上进行传热。

热量可以通过对流、传导或辐射的方式传递。

在设计换热器时,需要考虑流体的物性、传热面积、传热系数以及流体的流速等参数。

常见的换热器类型1.管壳式换热器:管壳式换热器是最常见的换热器类型之一。

它由一个管束和外壳组成,一个流体流经管束,另一个流体流经外壳。

管壳式换热器适用于各种流体和工况条件,并且易于清洁和维护。

2.板式换热器:板式换热器由一系列平行的金属板堆叠在一起组成。

流体在板间流动,通过板之间的壁面传热。

板式换热器具有较高的传热效率和紧凑的结构,适用于高温高压条件下的换热。

3.螺旋板式换热器:螺旋板式换热器将螺旋形的板片放置在一个圆柱形的外壳内,流体在螺旋通道中流动,并通过板片的表面传热。

螺旋板式换热器具有较高的传热系数和紧凑的结构。

4.管束式换热器:管束式换热器由一个或多个平行管束组成,流体在管束内流动,并在管束和外壳之间的空间中进行传热。

管束式换热器适用于高粘度流体和易于结垢的流体。

换热器设计考虑因素在进行换热器设计时,需要考虑以下因素:1. 流体参数流体参数包括流体的物性、流量、温度等。

不同的流体具有不同的物性和传热特性,这对于换热器的设计非常重要。

2. 传热面积传热面积是换热器设计的关键参数之一。

较大的传热面积可以提高传热效率,但也会增加换热器的体积和成本。

3. 传热系数传热系数是衡量换热器传热效果的重要参数。

传热系数受流体性质、传热面积以及换热器的结构和设计等因素的影响。

4. 压力损失换热器在传热过程中会产生一定的压力损失。

过高的压力损失会降低流体的流速,影响传热效果。

5. 清洁和维护换热器在使用一段时间后需要清洁和维护。

过程设备设计知识点总结

过程设备设计知识点总结

过程设备设计知识点总结过程设备设计是指在工业生产过程中,根据产品的工艺要求以及工艺参数,设计出适用于生产过程的设备与装置。

其目的是通过合理的设备设计,实现生产过程的高效、安全和可持续发展。

本文将从设备选型、设备尺寸设计、设备材料选择等多个方面进行知识点总结。

1. 设备选型:在进行设备选型时,需要综合考虑产品的工艺要求、生产能力、成本等因素。

首先要明确产品的生产工艺流程,并根据工艺要求选择合适的设备类型,例如反应釜、蒸馏塔、搅拌罐等。

其次,根据生产量和效率要求确定设备的尺寸和型号。

此外,还要考虑设备的可靠性、维护便捷性以及对环境的影响等因素。

2. 设备尺寸设计:设备尺寸设计是指根据工艺要求和流体特性,确定设备的尺寸参数。

在进行设备尺寸设计时,需要考虑以下几个方面:首先,根据工艺流程中的液体或气体流量,确定设备的容积或处理能力;其次,根据流体的物性参数,计算出设备的传热面积和传质面积;最后,根据设备的结构特点和操作要求,确定设备的尺寸参数,如高度、直径、壁厚等。

3. 设备材料选择:设备材料的选择对于生产过程的安全性和稳定性至关重要。

在进行设备材料选择时,需要考虑以下几个因素:首先,要了解所处理物料的性质,包括温度、压力、腐蚀性等;其次,要考虑材料的耐腐蚀性、疲劳性和可焊接性等性能;最后,要根据工艺要求和成本因素确定合适的材料,常用的材料包括不锈钢、碳钢、玻璃钢等。

4. 安全措施:在过程设备设计中,安全是至关重要的。

设计人员需要充分考虑设备的安全性,以确保生产过程的顺利进行。

在设备设计中,需要采取以下安全措施:首先,确保设备具有足够的强度和稳定性,能够承受预期的工艺参数和负荷;其次,设备应具备安全阀、压力表、温度传感器等安全装置,并保证这些装置的准确性和可靠性;此外,还需要考虑应急处理措施,如泄漏、火灾等意外事故的处理方式。

5. 能耗与节能:在过程设备设计中,节能是一个重要的考虑因素。

设计人员应针对具体的生产工艺,采取有效的节能措施。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

10防冲挡板和导流筒的作用?
1作用:减小流体的不均匀分布和对管束的侵蚀和震动,在壳程进口接管处设置防冲挡板
2作用:A充分利用换热面积,减小壳程进出口处死区B也起防冲作用C减少壳程进出口处压降(外导流结构)
11固定管板式换热器的温差应力是怎样产生的?壳体与管束由于刚性约束导致膨胀不一致造成的12折流板的作用、常见形式、固定方式?
作用:A提高壳程流体流速,增加流动程度;使壳程流体垂直冲刷管束,提高壳程传热系数B减少结垢C支承管束
形式:弓形;圆盘-圆环形;堰形折流板
固定方式:A换热管外径<=14mm时—点焊结垢B 换热管外径>14mm时-拉杆-定距管结垢
13管板设计计算的思路?
1管板弹性分析 2.危险工况 3.管板应力校核
4.管板应力的调整a.增加管板厚度b.降低
壳体轴向刚度5.管板设计计算软件
14 GB151-1999中管板计算所采用的基本假设?
1管束与管板联接无滑动2管板挠度很小,且忽略管束对管板转角约束3管束有折流板等部件的支承,不会产生弯曲和下垂4管子均匀分布在整个管板上,把管束看作管板的弹性基5管板-视同样直径、厚度|均匀开孔受载的圆平板6管子-对管板约束力-视一个连续非均布力作用于管板上
15管板厚度的计算原则?
1管板的计算厚度或规定的管板最小厚度,取大者2管程腐蚀裕量或分程隔板深度,取最大者3壳程腐蚀裕量或结构开槽深度,取大者
16扩展表面及内插件强化传热的结构形式?
扩展表面强化传热包括槽管;翅片式
内插件强化传热在换热管内加入某种形式的内插件强化元件
17壳程强化传热的结构形式?
1改变壳程挡板结构(新型-多弓形折流板,整圆形板,异形孔板,网状整圆形板,特点是尽可能的将流体横向流动改变为纵向流动)
2改变管束支承结构:a.杆式支承结构b.自支承结构c.螺旋折流式支承结构
18防止管子振动的措施有哪些?
改变流速;改变换热管的固有频率;增设消声板;抑制周期性漩涡;设置防冲板或导流筒
19强化传热的概念和原理?
传热强化是一种改善传热性能的技术,可以通过改善和提高热传递的速率,以达到用最经济的设备来传递一定的热量。

换热器的强化传热就是力求使换热器在单位时间,单位传热面积传递的热量能力达到增强的目的。

20主动强化与被动强化的定义和区别?被动强化的物理机制?
主动强化-需要采用外加的动力(如机械力,电磁力等)来增强强化传热的技术
被动强化-指除了输送传热介质的功率消耗外不需要附加动力来增强传热的技术
21解释漩涡脱落引发管子振动的原因?
在亚声速横向流中,与流体横向流过单个圆柱形物体一样,当其流过管束时,管子背后也有卡曼漩涡产生,当漩涡从换热器管子的两侧周期性交替脱落时,便在管子上产生周期性的升力和阻力。

这种流线谱的变化将引起压力分布的变化,从而导致作用在换热器管子上的流体压力的大小和方向发生变化,最后引起管子震动。

当卡曼漩涡脱落频率大于管子的固有频率时,发生剧烈震动。

22换热管常见的规格、布置方式及特点?中心距?
规格:a外径*壁厚 b标准管长
原则:无论哪种排列都必须要在管束周围的弓形空间尽可能多布管-传热面积增加,且可防壳程流体短路
中心距:a保证管子与管板连接时,管桥有足够的强度和刚度b影响因素有:结构紧凑性、传热效果、清理难易c取值t>=1.25do(保证管桥强度和清洗通道)
23膨胀节的结构形式及其作用?
结构:波形(U形)膨胀结,形膨胀结,平板膨胀结等。

作用:A起补偿轴向变形的作用B减小温差应力(不能消除)C防震,消震
24固定管板的危险工况有哪些?
(1)只有壳程压力Ps,而管程压力Pt=0,不计热膨胀差(2)只有只有壳程压力Ps,而管程压力Pt=0,同时考虑热热膨胀差(3)只有管程压力Pt,而壳程压力Ps=0,不计热膨胀差(4)只有管程压力Pt,而壳程压力Ps=0,同时考虑热膨胀差。

注:如Ps和Pt之一为负压时,还应考虑压差的危险组合。

1,3两种工况算出的最大应力属于一次弯曲应力。

2,4工况算出的最大应力属于一次应力加二次应力
25管束的分程方法,能够画出前后管箱的结构图和标出管程标号。

方法:A避免流体温度较大的两部分管束紧邻B 程与程之间温差不宜过大,不超过20 C应尽可能使各管程的换热管数大致相同D分程隔板槽形状简单、密封面长度较短。

相关文档
最新文档