电力系统分析-电力系统潮流的计算机分析方法1
电力系统分析课程设计——电力系统潮流计算
信息工程学院课程设计报告书题目: 电力系统潮流计算专业:电气工程及其自动化班级:0310406学号:031040635学生姓名:陈代才指导教师:钟建伟2013年 4 月15 日信息工程学院课程设计任务书2013年4月15日目录1 任务提出与方案论证 (2)2 总体设计 (3)2.1潮流计算等值电路 (3)2.2建立电力系统模型 (3)2.3模型的调试与运行 (3)3 详细设计 (4)3.1 计算前提 (4)3.2手工计算 (7)4设计图及源程序 (11)4.1MA TLAB仿真 (11)4.2潮流计算源程序 (11)5 总结 (19)参考文献 (20)1 任务提出与方案论证潮流计算是在给定电力系统网络结构、参数和决定系统运行状态的边界条件的情况下确定系统稳态运行状态的一种基本方法,是电力系统规划和运营中不可缺少的一个重要组成部分。
可以说,它是电力系统分析中最基本、最重要的计算,是系统安全、经济分析和实时控制与调度的基础。
常规潮流计算的任务是根据给定的运行条件和网路结构确定整个系统的运行状态,如各母线上的电压(幅值及相角)、网络中的功率分布以及功率损耗等。
潮流计算的结果是电力系统稳定计算和故障分析的基础。
在电力系统运行方式和规划方案的研究中,都需要进行潮流计算以比较运行方式或规划供电方案的可行性、可靠性和经济性。
同时,为了实时监控电力系统的运行状态,也需要进行大量而快速的潮流计算。
因此,潮流计算是电力系统中应用最广泛、最基本和最重要的一种电气运算。
在系统规划设计和安排系统的运行方式时,采用离线潮流计算;在电力系统运行状态的实时监控中,则采用在线潮流计算。
是电力系统研究人员长期研究的一个课题。
它既是对电力系统规划设计和运行方式的合理性、可靠性及经济性进行定量分析的依据,又是电力系统静态和暂态稳定计算的基础。
潮流计算经历了一个由手工到应用数字电子计算机的发展过程,现在的潮流算法都以计算机的应用为前提用计算机进行潮流计算主要步骤在于编制计算机程序,这是一项非常复杂的工作。
电力系统潮流计算
第四章 电力系统潮流分析与计算电力系统潮流计算是电力系统稳态运行分析与控制的基础,同时也是安全性分析、稳定性分析电磁暂态分析的基础(稳定性分析和电磁暂态分析需要首先计算初始状态,而初始状态需要进行潮流计算)。
其根本任务是根据给定的运行参数,例如节点的注入功率,计算电网各个节点的电压、相角以及各个支路的有功功率和无功功率的分布及损耗。
潮流计算的本质是求解节点功率方程,系统的节点功率方程是节点电压方程乘以节点电压构成的。
要想计算各个支路的功率潮流,首先根据节点的注入功率计算节点电压,即求解节点功率方程。
节点功率方程是一组高维的非线性代数方程,需要借助数字迭代的计算方法来完成。
简单辐射型网络和环形网络的潮流估算是以单支路的潮流计算为基础的。
本章主要介绍电力系统的节点功率方程的形成,潮流计算的数值计算方法,包括高斯迭代法、牛顿拉夫逊法以及PQ 解藕法等。
介绍单电源辐射型网络和双端电源环形网络的潮流估算方法。
4-1 潮流计算方程--节点功率方程1. 支路潮流所谓潮流计算就是计算电力系统的功率在各个支路的分布、各个支路的功率损耗以及各个节点的电压和各个支路的电压损耗。
由于电力系统可以用等值电路来模拟,从本质上说,电力系统的潮流计算首先是根据各个节点的注入功率求解电力系统各个节点的电压,当各个节点的电压相量已知时,就很容易计算出各个支路的功率损耗和功率分布。
假设支路的两个节点分别为k 和l ,支路导纳为kl y ,两个节点的电压已知,分别为kV 和l V ,如图4-1所示。
图4-1 支路功率及其分布那么从节点k 流向节点l 的复功率为(变量上面的“-”表示复共扼):)]([lk kl k kl k kl V V y V I V S (4-1) 从节点l 流向节点k 的复功率为:)]([k l kl l lk l lk V V y V I V S (4-2)功率损耗为:2)()(klkl l k kl l k lk kl kl V y V V y V V S S S (4-3)因此,潮流计算的第一步是求解节点的电压和相位,根据电路理论,可以采用节点导纳方程求解各个节点的电压。
电力系统潮流计算
3.2.1 节点电压方程与节点导纳矩阵和阻抗矩阵
将节点电压法应用于电力系统潮流计算,变量为节点电压与节
点注入电流。通常以大地作为电压幅值的参考(U0 = 0),以
系统中某一指定母线的电压角度作为电压相角的参考,以支路
导纳作为电力网的参数进行计算。节点注入电流规定为流向网
络为正,流出为负。
Pmax P
表征年有功负荷曲线特点的两个指标
0
年最大负荷利用小时数 Tmax
t Tmax 8760
根据年负荷曲线,可求得全年所需电能:
8760
A 0
Pdt MWh
定义年最大负荷(最大值 Pmax)利用小时: Tmax
A Pmax
h
Tmax 越大,负荷曲线越平坦
负荷曲线为一水平线时, Tmax 达到最大值8760 (h)
2
1 ZT1
2
Zl
T2
34
3
ZT2 4
YT3
Yl /2
YT2
已知末端功率和电压, 计算网上潮流分布。
1 ZT1 2 Zl
3 ZT2 4
已知始端功率和电压, 计算网上潮流分布。
Y20
Y30
已知末端功率和始端电 压,计算网上的潮流。
不管哪种情况,先作等值电路
3.1.3 辐射形网络的分析计算
1)已知末端功率、电压 利用前面的方法,从末端逐级 往上推算,直至求得各要求的量。
Pm(t)
损耗称年电能损耗,是电网运行经
济性的指标。
Pmi
1)年电能损耗的准确计算方法
已知各负荷的年有功和无功负荷曲线 时,理论上可准确计算年电能损耗。
8760小时分为 n 段,第 i 时段时间为 Dti (h),全网功率损耗为DPi (MW),则 全网年电能损耗为
电力系统潮流计算机算法
电力系统潮流计算机算法电力系统潮流计算是电力系统分析中最基本的一项计算,其目的是确定电力系统中各母线电压的幅值和相角、各元件中的功率以及整个系统的功率损耗等。
随着计算机技术的发展,电力系统潮流计算算法也在不断更新和完善。
以下是电力系统潮流计算的一些常用算法:1. 牛顿-拉夫逊法(Newton-Raphson Method):这是一种求解非线性方程组的方法,应用于电力系统潮流计算中。
该方法在多数情况下没有发散的危险,且收敛性较强,可以大大节约计算时间,因此得到了广泛的应用。
2. 快速迪科法(Fast Decoupled Method):这是一种高效的电力系统潮流计算方法,将电力系统分为几个子系统进行计算,从而提高了计算速度。
3. 最小二乘法(Least Squares Method):这是一种用于求解线性方程组的方法,通过最小化误差平方和来获得最优解。
在电力系统潮流计算中,可用于优化电压幅值和相角。
4. 遗传算法(Genetic Algorithm):这是一种全局优化搜索算法,应用于电力系统潮流计算中,可以解决一些复杂和非线性问题。
5. 粒子群优化算法(Particle Swarm Optimization):这是一种启发式优化算法,通过模拟鸟群觅食行为来寻找最优解。
在电力系统潮流计算中,可用于优化网络参数和运行条件。
6. 模拟退火算法(Simulated Annealing):这是一种全局优化搜索算法,应用于电力系统潮流计算中,可以在较大范围内寻找最优解。
7. 人工神经网络(Artificial Neural Network):这是一种模拟人脑神经网络的计算模型,可用于电力系统潮流计算。
通过训练神经网络,可以实现对电力系统中复杂非线性关系的建模和预测。
以上所述算法在电力系统潮流计算中起着重要作用,为电力系统运行、设计和优化提供了有力支持。
同时,随着计算机技术的不断发展,未来还将出现更多高效、精确的电力系统潮流计算算法。
电力系统潮流计算计算计算法
电力系统潮流计算算法设计及实现潮流计算是电力系统分析中的一种最基本的计算,它的任务是对给定的运行条件确定系统的运行状态,如各母线上的电压(幅值及相角)、网络中的功率分布以及功率损耗等。
建模是用数学的方法建立的数学模型,但它严格依赖于物理系统。
根据电力系统的实际运行条件,按给定的变量不同,一般将节点分为PQ节点,PV节点,平衡节点三种类型。
当这三个节点与潮流计算的约束条件结合起来时,便是潮流计算的数学模型。
PQ节点:有功功率P和无功功率Q是已知的,节点电压(V,δ)是待求量。
通常变电所都是这一类型的节点。
PV节点:有功功率P和电压复制V是已知的,节点的无功功率Q和电压相位δ是待求量。
一般选择有一定无功储备的发电厂和具有可调无功电源设备的变电所作为PV节点。
平衡节点:在潮流分布算出之前,网络中的功率损失是未知的,所以,网络中至少有一个节点的有功功率P不能给定,这个节点承担了系统的有功功率平衡,所以称为平衡节点。
一般选择主调频发电厂为平衡节点。
潮流计算的约束条件是:1、所有的节点电压必须满足:这一约束主要是对PQ节点而言。
2、2、所有电源节点的有功功率和无功功率必须满足:对平衡节点的P和Q以及PV节点的Q按以上条件进行检验。
3、某些节点之间电压的相位差应满足:稳定运行的一个重要条件。
功率方程的非线性雅可比矩阵的特点:●各元素是各节点电压的函数●不是对称矩阵●因为Y =0,所以H =N =J =L =0,另R =S =0,故稀疏两种常见的求解非线性方程的方法:1)高斯-赛德尔迭代法;2)牛顿-拉夫逊迭代法。
高斯-赛德尔迭代法潮流计算1、方程表示:①用高斯-赛德尔计算电力系统潮流首先要将功率方程改写成能收敛的迭代形式;②Q:设系统有n个节点,其中m个PQ节点,n-(m+1)个是PV节点,一个平衡节点,平衡节点不参加迭代;③功率方程改写成:2、求解的步骤:1)上述迭代公式假设n个节点全部为PQ节点。
2)始终等号右边采用第k次迭代结果,当j<i时,采用经(k+1)次迭代后的值,当j>i时,采用第k次迭代结果。
电力系统分析第三章-新
是已知的,每个节点
•3.2 功率方程
•变量的分类: ① 不可控变量(扰动变量):PLi,QLi――由用户决定,无
法由电力系统控制; • ② 控制变量:PGi,QGi――由电力系统控制; ③ 状态变量:Ui,δi――受控制变量控制;其中Ui 主要受 ④ QGi 控制,δi 主要受PGi 控制。 • ☆ 若电力系统有n个节点,则对应共有6n个变量,其中不可 • 控变量、控制变量、状态变量各2n个; • ☆ 每个节点必须已知或给定其中的4个变量,才能求解功率 • 方程。
•
待求的是等值电源无功功率 QGi和节点电压相位角 δi 。
•3.2 功率方程
•选择:通常可以将有一定无功储备的发电厂母线和有一定无
•
功电源的变电所母线看作PV节点。
•3、平衡节点:
• 特点:进行潮流计算时通常只设一个平衡节点。给定平衡节
•
点的是等值负荷功率PLs 、QLs和节点电压的幅值Us 和
。
•⑦ 计算平衡节点功率和线路功率。
•3.3 潮流分布计算的计算机算法
•潮流计算流程 图(极坐标)
•3.3 潮流分布计算的计算机算法
•三、PQ分解法潮流计算:
•
也称牛顿-拉夫逊法快速解耦法潮流计算
•1、问题的提出:牛顿-拉夫逊法分析
•(1) 雅可比矩阵 J 不对称;
•(2) J 是变化的,每一步都要重新计算,重新分析;
;
• ⑤ 利用x (1) 重新计算∆f (1)和雅可比矩阵J (1),进而得到∆x (1)
;
• 如此反复迭代:
;直至解出精确解或
• 得到满足精度要求的解。
•3.3 潮流分布计算的计算机算法
•二、牛顿-拉夫逊法潮流计算:迭代求解非线性功率方程
电力系统稳态分析--潮流计算
电力系统稳态分析--潮流计算(总36页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--电力系统稳态分析摘要电力系统潮流计算是研究电力系统稳态运行情况的一种重要的分析计算,它根据给定的运行条件及系统接线情况确定整个电力系统各部分的运行状态:各母线的电压,各元件中流过的功率,系统的功率损耗。
所以,电力系统潮流计算是进行电力系统故障计算,继电保护整定,安全分析的必要工具。
本文介绍了基于MATLAB软件的牛顿-拉夫逊法和P-Q分解法潮流计算的程序,该程序用于计算中小型电力网络的潮流。
在本文中,采用的是一个5节点的算例进行分析,并对仿真结果进行比较,算例的结果验证了程序的正确性和迭代法的有效性。
关键词:电力系统潮流计算;MATLAB;牛顿-拉夫逊法;P-Q分解法;目次1 绪论 ..................................................................................................... 错误!未定义书签。
背景及意义......................................................................................... 错误!未定义书签。
相关理论 ............................................................................................ 错误!未定义书签。
本文的主要工作 ................................................................................ 错误!未定义书签。
2 潮流计算的基本理论 ......................................................................... 错误!未定义书签。
电力系统潮流计算方法分析
电力系统潮流计算方法分析电力系统潮流计算是电力系统运行中的基础性分析方法之一,它用于求解电力系统中各个节点的电压、相角以及线路的功率、电流等变量。
潮流计算是电力系统规划、运行和控制等方面的重要工具。
本文将对电力系统潮流计算方法进行分析。
电力系统潮流计算方法主要有两种,即直接法和迭代法。
直接法又分为解析法和数值法,迭代法包括高斯赛德尔迭代法、牛顿-拉夫逊迭代法等。
解析法是通过电力系统各个节点之间的网络拓扑关系和节点电压平衡条件的方程式,直接求解节点电压和线路功率等参数。
解析法的优点是计算速度快,但其适用范围较窄,主要适用于小型简单电力系统,对于大型复杂电力系统的潮流计算会出现计算量庞大的问题。
数值法是通过将连续变量离散化,将微分方程转化为差分方程,并利用数值解法求解离散的方程组来得到电力系统潮流计算结果。
数值法的优点是适用范围广,能够处理大型复杂电力系统的潮流计算,但其缺点是计算速度相对较慢。
在迭代法中,高斯赛德尔迭代法是一种经典的迭代法,它通过先假设节点电压的初值,然后利用节点注入功率与节点电压之间的关系不断迭代计算,最终达到收敛条件为止。
高斯赛德尔迭代法的优点是收敛速度快,计算精度高,但其缺点是收敛性有时不易保证,并且计算速度会随着系统规模的增大而变慢。
牛顿-拉夫逊迭代法是一种基于牛顿迭代法的改进方法,它引入雅可比矩阵,通过牛顿迭代法的迭代过程来求解节点电压和线路功率等参数。
牛顿-拉夫逊迭代法的优点是收敛性好,计算速度快,但其缺点是在实际应用中需要预先计算雅可比矩阵,会增加计算的复杂度。
综上所述,电力系统潮流计算方法有直接法和迭代法两种,其中直接法包括解析法和数值法,迭代法包括高斯赛德尔迭代法和牛顿-拉夫逊迭代法。
在实际应用中,根据电力系统的规模和复杂程度选择合适的方法进行潮流计算,以得到准确可靠的计算结果。
此外,随着计算机技术的不断发展,还可以利用并行计算和分布式计算等方法来提高潮流计算的效率。
电力系统潮流分析与计算设计(P Q分解法)
电力系统潮流分析与计算设计(P Q分解法)电力系统潮流分析与计算设计(p-q分解法)摘要潮流排序就是研究电力系统的一种最基本和最重要的排序。
最初,电力系统潮流排序就是通过人工手算的,后来为了适应环境电力系统日益发展的须要,使用了交流排序台。
随着电子数字计算机的发生,1956年ward等人基本建设了实际可取的计算机潮流排序程序。
这样,就为日趋繁杂的大规模电力系统提供更多了极其有力的排序手段。
经过几十年的时间,电力系统潮流排序已经发展得十分明朗。
潮流排序就是研究电力系统稳态运转情况的一种排序,就是根据取值的运转条件及系统接线情况确认整个电力系统各个部分的运转状态,例如各母线的电压、各元件中穿过的功率、系统的功率损耗等等。
电力系统潮流排序就是排序系统动态平衡和静态平衡的基础。
在电力系统规划设计和现有电力系统运转方式的研究中,都须要利用电力系统潮流排序去定量的比较供电方案或运转方式的合理性、可靠性和经济性。
电力系统潮流计算分为离线计算和在线计算,离线计算主要用于系统规划设计、安排系统的运行方式,在线计算则用于运行中系统的实时监测和实时控制。
两种计算的原理在本质上是相同的。
实际电力系统的潮流技术主要使用pq水解法。
1974年,由scottb.在文献(@)中首次提出pq分解法,也叫快速解耦法(fastdecoupledloadflow,简写为fdlf)。
本设计就是使用pq水解法排序电力系统潮流的。
关键词:电力系统潮流排序pq水解法第一章概论1.1详述电力系统潮流计算是研究电力系统稳态运行情况的一种计算,它是根据给定的运行条件及系统接线情况确定整个电力系统各个部分的运行状态,如各母线的电压、各元件中流过的功率、系统的功率损耗等等。
电力系统潮流计算是计算系统动态稳定和静态稳定的基础。
在电力系统规划设计和现有电力系统运行方式的研究中,都需要利用电力系统潮流计算来定量的比较供电方案或运行方式的合理性、可靠性和经济性。
电力系统分析第二章(1)
前言
潮流计算的内容: 根据给定的电网结构、发电计划及负荷分布情况,求出整个电网的运行状态。 (运行状态:节点母线的电压、相角、线路输送的有功和无功功率等。) 潮流计算的意义: (1)潮流计算,对于系统运行方式的分析,对电网规划阶段中设计方案的确定 都是必不可少的。为判别这些运行方式及规划设计方案的合理性、安全性、可靠 性及经济性提供了定量分析的依据。 (2)潮流计算为其它计算的基础,例如短路电流计算、静态及暂态稳定计算。 (3)潮流计算在实时安全监控中也有广泛的应用,根据实时数据库提供的信息, 通过对预想事故进行分析,判断系统当前的运行状态的安全性,这些分析需要重 复进行潮流计算。 结论:潮流计算是系统分析与规划中应用最为广泛、最基本的一种电气计算。 本章主要介绍电力系统潮流计算的数学模型,最常用的潮流计算方法 如无特殊说明,所有变量皆为统一系统基准容量下的标幺值,并认为电力系统是 三相对称的。
j∈i j∈i
对每个PQ节点
j∈i
∆Qi (e , f ) ≡ Qis − fi ∑ (Gij e j − Bij f j ) + ei ∑ (Gij f j + Bij e j ) = 0, (i = 1,L ,m)
j∈i
∆U i2 (e , f ) ≡ U i2 − ei2 − f i 2 = 0 , (i = 1, 2 ,L ,n − m − 1)
对每个PV节点
∆P (e , f ) = 0 ∆Q (e , f ) = 0 ∆U 2 (e , f ) = 0
方程方程个数和待求变量的个数皆为2(n-1),称作电 力网络直角坐标形式的潮流方程。 极坐标形式和直角坐标形式的潮流方程:高维的非 线性代数方程组,可以统一地表示成式(2-17)所示的 非线性代数向量方程的形式 : f ( x ) = 0
电力系统分析潮流计算最终完整版
电力系统分析潮流计算实验报告姓名:XXXXXX 学号:XXXXXXXXXX 班级:XXXXXXXX一、实验目的掌握潮流计算计算机算法的方法,熟悉MATLAB的程序调试方法。
二、实验准备根据课程内容,熟悉MATLAB软件的使用方法,自行学习MATLAB程序的基础语法,并根据所学知识编写潮流计算牛顿拉夫逊法(或PQ分解法) 的计算程序,用相应的算例在MATLAB上进行计算、调试和验证。
三、实验要求每人一组,在实验课时内,调试和修改运行程序,用算例计算输出潮流结果。
四、程序流程五、实验程序%本程序的功能是用牛拉法进行潮流计算%原理介绍详见鞠平著《电气工程》%默认数据为鞠平著《电气工程》例8.4所示数据%B1是支路参数矩阵%第一列和第二列是节点编号。
节点编号由小到大编写%对于含有变压器的支路,第一列为低压侧节点编号,第二列为高压侧节点编号%第三列为支路的串列阻抗参数,含变压器支路此值为变压器短路电抗%第四列为支路的对地导纳参数,含变压器支路此值不代入计算%第五烈为含变压器支路的变压器的变比,变压器非标准电压比%第六列为变压器是否是否含有变压器的参数,其中“1”为含有变压器,“0”为不含有变压器%B2为节点参数矩阵%第一列为节点注入发电功率参数%第二列为节点负荷功率参数%第三列为节点电压参数%第四列%第五列%第六列为节点类型参数,“1”为平衡节点,“2”为PQ节点,“3”为PV节点参数%X为节点号和对地参数矩阵%第一列为节点编号%第二列为节点对地参数%默认算例% n=4;% n1=4;% isb=4;% pr=0.00001;% B1=[1 2 0.1667i 0 0.8864 1;1 3 0.1302+0.2479i 0.0258i 1 0;1 4 0.1736+0.3306i 0.0344i 1 0;3 4 0.2603+0.4959i 0.0518i 1 0];% B2=[0 0 1 0 0 2;0 -0.5-0.3i 1 0 0 2;0.2 0 1.05 0 0 3;0 -0.15-0.1i 1.05 0 0 1];% X=[1 0;2 0.05i;3 0;4 0];clear;clc;num=input('是否采用默认数据?(1-默认数据;2-手动输入)');if num==1n=4;n1=4;isb=4;pr=0.00001;B1=[1 2 0.1667i 0 0.8864 1;1 3 0.1302+0.2479i 0.0258i 1 0;1 4 0.1736+0.3306i 0.0344i 1 0;3 4 0.2603+0.4959i 0.0518i 1 0];B2=[0 0 1 0 0 2;0 -0.5-0.3i 1 0 0 2;0.2 0 1.05 0 0 3;0 -0.15-0.1i 1.05 0 0 1];X=[1 0;2 0.05i;3 0;4 0];elsen=input('请输入节点数:n=');n1=input('请输入支路数:n1=');isb=input('请输入平衡节点号:isb=');pr=input('请输入误差精度:pr=');B1=input('请输入支路参数:B1=');B2=input('请输入节点参数:B2=');X=input('节点号和对地参数:X=');endTimes=1; %迭代次数%创建节点导纳矩阵Y=zeros(n);for i=1:n1if B1(i,6)==0 %不含变压器的支路p=B1(i,1);q=B1(i,2);Y(p,q)=Y(p,q)-1/B1(i,3);Y(q,p)=Y(p,q);Y(p,p)=Y(p,p)+1/B1(i,3)+0.5*B1(i,4);Y(q,q)=Y(q,q)+1/B1(i,3)+0.5*B1(i,4);else %含有变压器的支路p=B1(i,1);q=B1(i,2);Y(p,q)=Y(p,q)-B1(i,5)/B1(i,3);Y(q,p)=Y(p,q);Y(p,p)=Y(p,p)+B1(i,5)/B1(i,3)+(1-B1(i,5))/B1(i,3);Y(q,q)=Y(q,q)+B1(i,5)/B1(i,3)+(B1(i,5)*(B1(i,5)-1))/B1(i,3);endendfor i=1:n1Y(i,i)=Y(i,i)+X(i,2); %计及补偿电容电纳enddisp('导纳矩阵为:');disp(Y); %显示导纳矩阵%初始化OrgS、DetaSOrgS=zeros(2*n-2,1);DetaS=zeros(2*n-2,1);%创建OrgS,用于存储初始功率参数h=0;j=0;for i=1:n %对PQ节点的处理if i~=isb&B2(i,6)==2 %不是平衡点&是PQ点h=h+1;for j=1:n%公式8-74%Pi=ei*(Gij*ej-Bij*fj)+fi*(Gij*fj+Bij*ej)%Qi=fi*(Gij*ej-Bij*fj)-ei*(Gij*fj+Bij*ej)OrgS(2*h-1,1)=OrgS(2*h-1,1)+real(B2(i,3))*(real(Y(i,j))*real(B2(j,3))-imag(Y(i,j))*imag(B2(j,3)))+imag(B2(i,3))*(real (Y(i,j))*imag(B2(j,3))+imag(Y(i,j))*real(B2(j,3)));OrgS(2*h,1)=OrgS(2*h,1)+imag(B2(i,3))*(real(Y(i,j))*real(B2(j,3))-imag(Y(i,j))*imag(B2(j,3)))-real(B2(i,3))*(real(Y(i,j))*imag(B2(j ,3))+imag(Y(i,j))*real(B2(j,3)));endendendfor i=1:n %对PV节点的处理,注意这时不可再将h初始化为0if i~=isb&B2(i,6)==3 %不是平衡点&是PV点h=h+1;for j=1:n%公式8-75-a%Pi=ei*(Gij*ej-Bij*fj)+fi*(Gij*fj+Bij*ej)%Qi=fi*(Gij*ej-Bij*fj)-ei*(Gij*fj+Bij*ej)OrgS(2*h-1,1)=OrgS(2*h-1,1)+real(B2(i,3))*(real(Y(i,j))*real(B2(j,3))-imag(Y(i,j))*imag(B2(j,3)))+imag(B2(i,3))*(real (Y(i,j))*imag(B2(j,3))+imag(Y(i,j))*real(B2(j,3)));OrgS(2*h,1)=OrgS(2*h,1)+imag(B2(i,3))*(real(Y(i,j))*real(B2(j,3))-imag(Y(i,j))*imag(B2(j,3)))-real(B2(i,3))*(real(Y(i,j ))*imag(B2(j,3))+imag(Y(i,j))*real(B2(j,3)));endendend%创建PVU 用于存储PV节点的初始电压PVU=zeros(n-h-1,1);t=0;for i=1:nif B2(i,6)==3t=t+1;PVU(t,1)=B2(i,3);endend%创建DetaS,用于存储有功功率、无功功率和电压幅值的不平衡量h=0;for i=1:n %对PQ节点的处理if i~=isb&B2(i,6)==2h=h+1;DetaS(2*h-1,1)=real(B2(i,2))-OrgS(2*h-1,1); %delPiDetaS(2*h,1)=imag(B2(i,2))-OrgS(2*h,1); %delQiendendt=0;for i=1:n %对PV节点的处理,注意这时不可再将h初始化为0if i~=isb&B2(i,6)==3h=h+1;t=t+1;DetaS(2*h-1,1)=real(B2(i,1))-OrgS(2*h-1,1); %delPiDetaS(2*h,1)=real(PVU(t,1))^2+imag(PVU(t,1))^2-real(B2(i,3))^2-imag(B2(i,3))^2; %delUi endend% DetaS%创建I,用于存储节点电流参数i=zeros(n-1,1);h=0;for i=1:nif i~=isbh=h+1;I(h,1)=(OrgS(2*h-1,1)-OrgS(2*h,1)*sqrt(-1))/conj(B2(i,3));%conj求共轭endend%创建Jacbi(雅可比矩阵)Jacbi=zeros(2*n-2);h=0;k=0;for i=1:n %对PQ节点的处理if B2(i,6)==2h=h+1;for j=1:nif j~=isbk=k+1;if i==j %对角元素的处理Jacbi(2*h-1,2*k-1)=-imag(Y(i,j))*real(B2(i,3))+real(Y(i,j))*imag(B2(i,3))+imag(I(h,1));Jacbi(2*h-1,2*k)=real(Y(i,j))*real(B2(i,3))+imag(Y(i,j))*imag(B2(i,3))+real(I(h,1));Jacbi(2*h,2*k-1)=-Jacbi(2*h-1,2*k)+2*real(I(h,1));Jacbi(2*h,2*k)=Jacbi(2*h-1,2*k-1)-2*imag(I(h,1));else %非对角元素的处理Jacbi(2*h-1,2*k-1)=-imag(Y(i,j))*real(B2(i,3))+real(Y(i,j))*imag(B2(i,3));Jacbi(2*h-1,2*k)=real(Y(i,j))*real(B2(i,3))+imag(Y(i,j))*imag(B2(i,3));Jacbi(2*h,2*k-1)=-Jacbi(2*h-1,2*k);Jacbi(2*h,2*k)=Jacbi(2*h-1,2*k-1);endif k==(n-1) %将用于内循环的指针置于初始值,以确保雅可比矩阵换行k=0;endendendendendk=0;for i=1:n %对PV节点的处理if B2(i,6)==3h=h+1;for j=1:nif j~=isbk=k+1;if i==j %对角元素的处理Jacbi(2*h-1,2*k-1)=-imag(Y(i,j))*real(B2(i,3))+real(Y(i,j))*imag(B2(i,3))+imag(I(h,1));Jacbi(2*h-1,2*k)=real(Y(i,j))*real(B2(i,3))+imag(Y(i,j))*imag(B2(i,3))+real(I(h,1));Jacbi(2*h,2*k-1)=2*imag(B2(i,3));Jacbi(2*h,2*k)=2*real(B2(i,3));else %非对角元素的处理Jacbi(2*h-1,2*k-1)=-imag(Y(i,j))*real(B2(i,3))+real(Y(i,j))*imag(B2(i,3));Jacbi(2*h-1,2*k)=real(Y(i,j))*real(B2(i,3))+imag(Y(i,j))*imag(B2(i,3));Jacbi(2*h,2*k-1)=0;Jacbi(2*h,2*k)=0;endif k==(n-1) %将用于内循环的指针置于初始值,以确保雅可比矩阵换行k=0;endendendendenddisp('初始雅可比矩阵为:');disp(Jacbi);%求解修正方程,获取节点电压的不平衡量DetaU=zeros(2*n-2,1);DetaU=inv(Jacbi)*DetaS; %inv矩阵求逆% DetaU%修正节点电压j=0;for i=1:n %对PQ节点处理if B2(i,6)==2j=j+1;B2(i,3)=B2(i,3)+DetaU(2*j,1)+DetaU(2*j-1,1)*sqrt(-1);endendfor i=1:n %对PV节点的处理if B2(i,6)==3j=j+1;B2(i,3)=B2(i,3)+DetaU(2*j,1)+DetaU(2*j-1,1)*sqrt(-1);endend% B2%开始循环**********************************************************************while abs(max(DetaU))>prOrgS=zeros(2*n-2,1);h=0;j=0;for i=1:nif i~=isb&B2(i,6)==2h=h+1;for j=1:nOrgS(2*h-1,1)=OrgS(2*h-1,1)+real(B2(i,3))*(real(Y(i,j))*real(B2(j,3))-imag(Y(i,j))*imag(B2(j,3)))+imag(B2(i,3))*(real (Y(i,j))*imag(B2(j,3))+imag(Y(i,j))*real(B2(j,3)));OrgS(2*h,1)=OrgS(2*h,1)+imag(B2(i,3))*(real(Y(i,j))*real(B2(j,3))-imag(Y(i,j))*imag(B2(j,3)))-real(B2(i,3))*(real(Y(i,j ))*imag(B2(j,3))+imag(Y(i,j))*real(B2(j,3)));endendendfor i=1:nif i~=isb&B2(i,6)==3h=h+1;for j=1:nOrgS(2*h-1,1)=OrgS(2*h-1,1)+real(B2(i,3))*(real(Y(i,j))*real(B2(j,3))-imag(Y(i,j))*imag(B2(j,3)))+imag(B2(i,3))*(real (Y(i,j))*imag(B2(j,3))+imag(Y(i,j))*real(B2(j,3)));OrgS(2*h,1)=OrgS(2*h,1)+imag(B2(i,3))*(real(Y(i,j))*real(B2(j,3))-imag(Y(i,j))*imag(B2(j,3)))-real(B2(i,3))*(real(Y(i,j ))*imag(B2(j,3))+imag(Y(i,j))*real(B2(j,3)));endendend% OrgS%创建DetaSh=0;for i=1:nif i~=isb&B2(i,6)==2h=h+1;DetaS(2*h-1,1)=real(B2(i,2))-OrgS(2*h-1,1);DetaS(2*h,1)=imag(B2(i,2))-OrgS(2*h,1);endendt=0;for i=1:nif i~=isb&B2(i,6)==3h=h+1;t=t+1;% DetaS(2*h-1,1)=real(B2(i,2))-OrgS(2*h-1,1);DetaS(2*h-1,1)=real(B2(i,1))-OrgS(2*h-1,1);DetaS(2*h,1)=real(PVU(t,1))^2+imag(PVU(t,1))^2-real(B2(i,3))^2-imag(B2(i,3))^2;endend% DetaS%创建Ii=zeros(n-1,1);h=0;for i=1:nif i~=isbh=h+1;I(h,1)=(OrgS(2*h-1,1)-OrgS(2*h,1)*sqrt(-1))/conj(B2(i,3));endend% I%创建JacbiJacbi=zeros(2*n-2);h=0;k=0;for i=1:nif B2(i,6)==2h=h+1;for j=1:nif j~=isbk=k+1;if i==jJacbi(2*h-1,2*k-1)=-imag(Y(i,j))*real(B2(i,3))+real(Y(i,j))*imag(B2(i,3))+imag(I(h,1));Jacbi(2*h-1,2*k)=real(Y(i,j))*real(B2(i,3))+imag(Y(i,j))*imag(B2(i,3))+real(I(h,1));Jacbi(2*h,2*k-1)=-Jacbi(2*h-1,2*k)+2*real(I(h,1));Jacbi(2*h,2*k)=Jacbi(2*h-1,2*k-1)-2*imag(I(h,1));elseJacbi(2*h-1,2*k-1)=-imag(Y(i,j))*real(B2(i,3))+real(Y(i,j))*imag(B2(i,3));Jacbi(2*h-1,2*k)=real(Y(i,j))*real(B2(i,3))+imag(Y(i,j))*imag(B2(i,3));Jacbi(2*h,2*k-1)=-Jacbi(2*h-1,2*k);Jacbi(2*h,2*k)=Jacbi(2*h-1,2*k-1);endif k==(n-1)k=0;endendendendendk=0;for i=1:nif B2(i,6)==3h=h+1;for j=1:nif j~=isbk=k+1;if i==jJacbi(2*h-1,2*k-1)=-imag(Y(i,j))*real(B2(i,3))+real(Y(i,j))*imag(B2(i,3))+imag(I(h,1));Jacbi(2*h-1,2*k)=real(Y(i,j))*real(B2(i,3))+imag(Y(i,j))*imag(B2(i,3))+real(I(h,1));Jacbi(2*h,2*k-1)=2*imag(B2(i,3));Jacbi(2*h,2*k)=2*real(B2(i,3));elseJacbi(2*h-1,2*k-1)=-imag(Y(i,j))*real(B2(i,3))+real(Y(i,j))*imag(B2(i,3));Jacbi(2*h-1,2*k)=real(Y(i,j))*real(B2(i,3))+imag(Y(i,j))*imag(B2(i,3));Jacbi(2*h,2*k-1)=0;Jacbi(2*h,2*k)=0;endif k==(n-1)k=0;endendendend% JacbiDetaU=zeros(2*n-2,1);DetaU=inv(Jacbi)*DetaS;% DetaU%修正节点电压j=0;for i=1:nif B2(i,6)==2j=j+1;B2(i,3)=B2(i,3)+DetaU(2*j,1)+DetaU(2*j-1,1)*sqrt(-1);endendfor i=1:nif B2(i,6)==3j=j+1;B2(i,3)=B2(i,3)+DetaU(2*j,1)+DetaU(2*j-1,1)*sqrt(-1);endend% B2Times=Times+1; %迭代次数加1enddisp('迭代次数为:');disp(Times);disp('收敛时电压修正量为::');disp(DetaU);for k=1:nE(k)=B2(k,3);e(k)=real(E(k));f(k)=imag(E(k));V(k)=sqrt(e(k)^2+f(k)^2);sida(k)=atan(f(k)./e(k))*180./pi;end%=============== 计算各输出量=========================== disp('各节点的实际电压标幺值E为(节点号从小到大排列):'); disp(E); %显示各节点的实际电压标幺值E用复数表示disp('-----------------------------------------------------')disp('各节点的电压大小V为(节点号从小到大排列):');disp(V); %显示各节点的电压大小V的模值disp('-----------------------------------------------------');disp('各节点的电压相角sida为(节点号从小到大排列):');disp(sida); %显示各节点的电压相for p=1:nfor q=1:nC(p)=C(p)+conj(Y(p,q))*conj(E(q)); %计算各节点的注入电流的共轭值endS(p)=E(p)*C(p); %计算各节点的功率S = 电压X 注入电流的共轭值enddisp('各节点的功率S为(节点号从小到大排列):');disp(S); %显示各节点的注入功率Sline=zeros(n1,5);disp('-----------------------------------------------------');disp('各条支路的首端功率Si为(顺序同您输入B1时一致):');for i=1:n1p=B1(i,1);q=B1(i,2);Sline(i,1)=B1(i,1);Sline(i,2)=B1(i,2);if B1(i,6)==0Si(p,q)=E(p)*(conj(E(p))*conj(B1(i,4)./2)+(conj(E(p)*B1(i,5))-conj(E(q)))*conj(1./(B1(i,3)*B1(i,5))));Siz(i)=Si(p,q);elseSi(p,q)=E(p)*(conj(E(p))*((1-B1(i,5))/B1(i,3))+(conj(E(p))-conj(E(q)))*(B1(i,5)/B1(i,3)));Siz(i)=Si(p,q);endSSi(p,q)=Si(p,q);Sline(i,3)=Siz(i);ZF=['S(',num2str(p),',',num2str(q),')=',num2str(SSi(p,q))];disp(ZF);enddisp('-----------------------------------------------------');disp('各条支路的末端功率Sj为(顺序同您输入B1时一致):');for i=1:n1p=B1(i,1);q=B1(i,2);if B1(i,6)==0Sj(q,p)=E(q)*(conj(E(q))*conj(B1(i,4)./2)+(conj(E(q)./B1(i,5))-conj(E(p)))*conj(1./(B1(i,3)*B1(i,5))));Sjy(i)=Sj(q,p);elseSj(q,p)=E(q)*(conj(E(q))*((B1(i,5)*(B1(i,5)-1))/B1(i,3))+(conj(E(q))-conj(E(p)))*(B1(i,5)/B1(i,3)));Sjy(i)=Sj(q,p);endSSj(q,p)=Sj(q,p);Sline(i,4)=Sjy(i);ZF=['S(',num2str(q),',',num2str(p),')=',num2str(SSj(q,p))];disp(ZF);enddisp('-----------------------------------------------------');disp('各条支路的功率损耗DS为(顺序同您输入B1时一致):');for i=1:n1p=B1(i,1);q=B1(i,2);DS(i)=Si(p,q)+Sj(q,p);DDS(i)=DS(i);Sline(i,5)=DS(i);ZF=['DS(',num2str(p),',',num2str(q),')=',num2str(DDS(i))];disp(ZF);enddisp('-----------------------------------------------------');disp('各支路首端编号末端编号首端功率末端功率线路损耗');disp(Sline);六、运行结果及其分析是否采用默认数据?(1-默认数据;2-手动输入)1导纳矩阵为:2.9056 -11.5015i 0.0000 + 5.3173i -1.6606 +3.1617i -1.2450 + 2.3710i0.0000 + 5.3173i 0.0000 - 4.6633i 0.0000 + 0.0000i 0.0000 + 0.0000i-1.6606 + 3.1617i 0.0000 + 0.0000i 2.4904 - 4.7039i -0.8298 + 1.5809i-1.2450 + 2.3710i 0.0000 + 0.0000i -0.8298 + 1.5809i 2.0749 - 3.9089i初始雅可比矩阵为:11.1267 2.7603 -5.3173 0 -3.1617 -1.6606-3.0509 11.8762 0 -5.3173 1.6606 -3.1617-5.3173 0 5.3173 0 0 00 -5.3173 0 4.0092 0 0-3.3198 -1.7436 0 0 4.8217 2.69800 0 0 0 0 2.1000迭代次数为:4收敛时电压修正量为::1.0e-05 *0.0349-0.2445-0.0101-0.5713-0.0931-0.0073各节点的实际电压标幺值E为(节点号从小到大排列):0.9673 - 0.0655i 1.0252 - 0.1666i 1.0495 - 0.0337i 1.0500 + 0.0000i -----------------------------------------------------各节点的电压大小V为(节点号从小到大排列):0.9695 1.0387 1.0500 1.0500-----------------------------------------------------各节点的电压相角sida为(节点号从小到大排列):-3.8734 -9.2315 -1.8419 0各节点的功率S为(节点号从小到大排列):-0.0000 + 0.0000i -0.5000 - 0.3000i 0.2000 + 0.1969i 0.3277 + 0.0443i -----------------------------------------------------各条支路的首端功率Si为(顺序同您输入B1时一致):S(1,2)=-0.5-0.30713iS(1,3)=-0.24266-0.197iS(1,4)=-0.25734-0.11013iS(3,4)=-0.055551+0.0017528i-----------------------------------------------------各条支路的末端功率Sj为(顺序同您输入B1时一致):S(2,1)=0.5+0.24606iS(3,1)=0.25555+0.1952iS(4,1)=0.2712+0.1014iS(4,3)=0.056496-0.057061i-----------------------------------------------------各条支路的功率损耗DS为(顺序同您输入B1时一致):DS(1,2)=0-0.06107iDS(1,3)=0.012892-0.0018014iDS(1,4)=0.013863-0.0087295iDS(3,4)=0.00094545-0.055308i-----------------------------------------------------各支路首端编号末端编号首端功率末端功率线路损耗1.0000 + 0.0000i2.0000 + 0.0000i -0.5000 - 0.3071i 0.5000 + 0.2461i 0.0000 - 0.0611i 1.0000 + 0.0000i3.0000 + 0.0000i -0.2427 - 0.1970i 0.2556 + 0.1952i 0.0129 - 0.0018i 1.0000 + 0.0000i4.0000 + 0.0000i -0.2573 - 0.1101i 0.2712 + 0.1014i 0.0139 - 0.0087i3.0000 + 0.0000i4.0000 + 0.0000i -0.0556 + 0.0018i 0.0565 - 0.0571i 0.0009 - 0.0553i七、实验体会及感悟通过这次实验,首先让我对matlab软件有了初步的了解,对它强大的矩阵运算能力有了更深的体会,同时掌握了设置断点和断点调试的一般方法,结合课本上的程序流程图和参考资料上的例子单步跟踪调试,再一次的熟悉了牛顿拉夫逊法潮流计算的一般方法和步骤,对计算机计算潮流计算有了更进一步的认识,在学习潮流计算时,虽然依次学习了节点导纳矩阵,功率方程、雅可比矩阵,但不能将它们联系起来,更不知道其中的原委,通过程序的编写,知道了其中的联系,也知道了每个方程、矩阵在计算中的作用。
电力系统分析(潮流计算)
电力系统分析(一):电力系统的基本概念No.1电力系统的组成和接线方式1、电力系统的四大主要元件:发电机、变压器、电力线路、负荷。
2、动力系统包括动力部分(火电厂的锅炉和汽轮机、水电厂的水库和水轮机、核电厂的核反应堆和汽轮机)和电力系统。
3、电力网包括变压器和电力线路。
4、用户只能从一回线路获得电能的接线方式称为无备用接线方式。
No.2电力系统的运行特点1、电能的生产、传输、分配和消费具有:①重要性、②快速性、③同时性。
2、电力系统运行的基本要求:①安全可靠持续供电(首要要求)、②优质、③经济3、根据负荷的重要程度(供电可靠性)将负荷分为三级。
4、电压质量分为:①电压允许偏差、②三相电压允许不平衡度、③公网谐波、④电压允许波动与闪变5、衡量电能质量的指标:①电压、②频率、③波形(电压畸变率)6、10kV公用电网电压畸变率不超过4%。
7、抑制谐波的主要措施:①变压器星三角接线、②加装调谐波器、③并联电容/串联电抗、④增加整流器的脉冲次数8、衡量电力系统运行经济性的指标:①燃料损耗率、②厂用电率、③网损率9、线损包括:①管理线损、②理论线损、③不明线损10、线损计算方法:①最大负荷损耗时间法②最大负荷损失因数法③均方根电流法No.3电力系统的额定频率和额定电压1、电力线路的额定电压(也称电力网的额定电压)与用电设备的额定电压相同。
2、正常运行时电力线路首端的运行电压常为用电设备额定电压的105%,末端电压为额定电压。
3、发电机的额定电压比电力网的额定电压高5%。
4、变压器的一次绕组相当于用电设备,其额定电压与电力线路的额定电压相同;但变压器直接与发电机相连时,其额定电压与发电机额定电压相同,即为该电压级额定电压的105%。
5、变压器的二次绕组相当于电源,其输出电压应较额定电压高5%,但因变压器本身漏抗的电压损耗在额定负荷时约为5%,所以变压器二次侧的额定电压规定比额定电压高10%。
6、降压变压器二次侧连接10kV线路,当短路电压百分比小于7.5%(变压器本身漏抗的电压损耗较小)时,比线路额定电压高5%。
电力系统的分析方法
电力系统的分析方法
电力系统的分析方法主要有以下几种:
1. 稳态分析:主要是对电力系统进行静态分析,包括电路分析、负荷流分析、潮流分析、电压稳定分析和功率平衡分析等,用于确定电力系统的运行状态。
2. 动态分析:主要是对电力系统进行动态分析,包括暂态分析、稳定性分析和电磁暂态分析等,用于研究电力系统的动态特性和稳定性等问题。
3. 可靠性分析:主要是对电力系统进行可靠性评估和可靠性优化,包括故障分析、系统备用容量分析、风险评估和可靠性指标优化等。
4. 经济性分析:主要是对电力系统进行经济性评估和优化,包括成本分析、效益分析、优化设计和经济性评估等,用于改善电力系统的经济效益和运行效率。
5. 仿真模拟:主要是通过电力系统的仿真模拟实验来研究系统的运行特性和优化方案,包括数学模型建立、仿真实验设计和结果分析等。
电力系统潮流计算及网络分析方法研究
电力系统潮流计算及网络分析方法研究概述:电力系统潮流计算是电力系统运行和规划中的关键问题之一。
对于确保电力系统的稳定运行和优化调度具有重要意义。
网络分析方法在电力系统潮流计算中发挥着至关重要的作用。
本文将对电力系统潮流计算及网络分析方法进行深入研究,分析研究结果,并探讨未来发展方向。
一、电力系统潮流计算方法1.传统潮流计算方法:传统的潮流计算方法主要是基于大量的代数和微分方程的求解,通过牛顿-拉夫逊法或高斯-赛德尔法进行迭代求解。
这些方法可以在计算精度方面得到很好的结果,但计算速度较慢,尤其对于大规模电力系统来说计算复杂度较高。
2.快速潮流计算方法:为解决传统潮流计算方法的计算速度问题,人们提出了一些快速潮流计算方法。
其中,直流潮流计算方法是最为常见和有效的一种。
直流潮流计算方法将交流潮流计算中的复杂计算转化为了线性方程组的求解,大大提高了计算速度。
此外,还有基于矩阵计算方法、灵敏度法等快速潮流计算方法也受到了广泛应用。
3.蒙特卡洛潮流计算方法:蒙特卡洛潮流计算方法是一种基于随机数的潮流计算方法。
通过引入随机扰动,模拟系统负荷的变化和不确定性,从而评估系统运行状态。
这种方法能够全面考虑电力系统各种不确定因素对系统运行状态的影响,提高潮流计算的可靠性。
二、电力系统网络分析方法1.拓扑分析方法:电力系统网络是由各种设备和线路组成的复杂且多变的网络结构。
拓扑分析方法主要针对系统的结构和连接进行分析,如系统的回路分析、连通分量分析等。
通过拓扑分析方法,可以了解电力系统的整体结构,明确系统中各个节点和线路的关系,为潮流计算提供基础信息。
2.灵敏度分析方法:灵敏度分析方法是通过分析系统响应的变化情况,研究系统各个参数对潮流计算结果的影响程度。
通过计算电力系统潮流计算结果对各个参数的偏导数,可以得到参数的灵敏度指标,进而评估电力系统的稳定性和灵活性。
3.可靠性分析方法:电力系统的可靠性是指系统在正常和异常条件下维持稳定运行的能力。
现代电力系统分析-潮流计算1
具有无功补偿 装置的节点
发电机节点
库
=
G G 110kV G 10kV 热负荷 锅炉 锅炉
G
发电机 调相机 电动机 电灯
汽、水轮机 双绕组变压器 自藕变压器 三绕组变压器
380/220V
35kV
= M X
M
X
X
6kV
G
锅炉
380/220V
M
M
X
潮流计算模型
潮流方程的定解条件
调频电厂
PQ节点:m PV节点:n-m-1 平衡节点:1 已知: Vi ,δi 未知: Pi, Qi 系统潮流未知时, 网损不确定,至少 有一个节点P不能 给定; 需要基准节点:电 压相位参考,一般 幅值给定。
j 1 j 1
节点注入功率与节点电压之间的关系,非线性代数方程;
N节点系统,2n个方程,4n个变量:Pi,Qi,ei,fi
潮流计算模型
节点功率方程式——节点电压用极坐标表示
ji V V cos j sin V e i i i i Pi jQi Vi YijV j Vi Gij jBij V j i
库 水
G 110kV G G G 220kV 110kV 锅炉
=
G G 110kV G 10kV 热负荷 锅炉 锅炉
G
发电机 调相机 电动机 电灯
汽、水轮机 双绕组变压器 自藕变压器 三绕组变压器
380/220V
35kV
= M X
M
X
X
6kV
G
锅炉
380/220V
M
M
X
潮流计算模型
潮流计算的数学模型 节点功率方程式(直角坐标形式)
电力系统潮流的计算机算法
电力系统潮流的计算机算法电力系统潮流计算是电力系统运行分析和规划的基础,其目的是通过计算和模拟电力系统中各个节点和支路的电压、电流和功率等参数,以确定系统的电力分布状态和稳定性。
电力系统潮流计算是一个复杂且精确度要求较高的问题,需要借助计算机算法进行求解。
电力系统潮流计算的算法可以分为直流潮流算法和交流潮流算法。
直流潮流算法是最简单的一种算法,它假设整个电力系统都是直流的,不存在变压器的短路铜损、电感等问题,只考虑电压降和功率损耗的线性关系。
直流潮流算法的基本原理是节点功率方程的线性化求解,通过迭代计算各个节点的电压和功率。
然而,直流潮流算法的精确度有限,不能计算出交流系统的电流相位和系统的稳定性。
因此,交流潮流算法被广泛应用于实际的电力系统潮流计算中。
交流潮流算法通过将电力系统模型转化为一组非线性方程组,通过迭代计算来求解各个节点的电压相位和幅值,从而得到系统的电流和功率分布。
在交流潮流计算中,最常用的算法是牛顿-拉夫逊(Newton-Raphson)算法和快速潮流(Fast Decoupled)算法。
牛顿-拉夫逊算法是一种基于迭代求解的方法,通过不断更新节点电压和相角的估计值,使得节点功率方程组的误差逼近于零。
快速潮流算法是一种改进的牛顿-拉夫逊算法,通过对电力系统模型进行分解和简化,减少了迭代的计算量和复杂度,提高了算法的收敛速度。
除了牛顿-拉夫逊算法和快速潮流算法,还有一些其他的算法被应用于电力系统潮流计算中,如改进的Gaoc-Newton算法、无功优化算法和光滑化算法等。
这些算法都是根据不同的问题和需求进行改进和优化,用于解决电力系统潮流计算中的各种复杂情况和特殊需求。
例如,无功优化算法可以用于优化电力系统的无功功率分配,光滑化算法可以用于减小潮流计算中的震荡和不稳定性。
综上所述,电力系统潮流计算的算法是一个复杂且多样化的领域,涉及到数学、电力系统、计算机科学等多个学科的知识。
通过不断改进和优化算法,可以提高电力系统潮流计算的准确性、效率和稳定性,为电力系统的运行和规划提供重要的参考依据。
电力系统分析房大中答案
i
zij 1:k ji
j j
i
yij = 1 ( k ji zij )
yij 0 =
k ji − 1 k ji zij
y ji 0 =
1 − k ji k2 ji zij
同I 的比值。 阵中的非对角线元素,称作节点 k 与节点 i 间的互阻抗,其值等于 U i k
6、 试列写由节点导纳矩阵计算节点阻抗矩阵第 k 列元素的复系数代数方程。 答: 在电力网络分析中常求解节点阻抗矩阵的某一行(或列)的元素,需要求解以
下复系数代数方程。
0 Y1n Z1k 0 Y2 n k Z 2= 1, 2 , ,n kk= 素, )元 1 ← 第( 0 Ynn Z nk 0
(k ) ∆θ ( k ) = ∆θ1 (k ) (k ) ∆θ 2 ∆θ n −1 T
(2-24)
T
(k ) (k ) (k ) (k ) (k ) (k ) (2-25) ∆U ( k ) U ( k ) = ∆U 2 U2 ∆U m Um ∆U1 U1 H ( k ) , N ( k ) , M ( k ) 和 L( k ) 分别为 ( n − 1 ) × ( n − 1 ) , ( n − 1 ) × m , m × ( n − 1 ) 和 m × m 阶的实
≠0 且 其余节点的注入电流均为零,即 I k
0= = I ,( i 1, 2 , ,n; i ≠ k ) , 则 由 (1-16) 可 得 等 式 i
电力系统潮流分析与计算
摘要潮流计算是电力系统非常重要的分析计算,用以研究系统规划和运行中提出的各种问题。
对规划中的电力系统,通过潮流计算可以检验所提出的电力系统规划方案能否满足各种运行方式的要求;对运行中的电力系统,通过潮流计算可以预知各种负荷变化和网络结构的改变会不会危及系统的安全,系统中所有母线的电压是否在允许的范围以内,系统中各种元件(线路、变压器等)是否会出现过负荷,以及可能出现过负荷时应事先采取哪些预防措施等。
潮流计算是电力系统分析最基本的计算。
除它自身的重要作用之外,在《电力系统分析综合程序》(PSASP)中,潮流计算还是网损计算、静态安全分析、暂态稳定计算、小干扰静态稳定计算、短路计算、静态和动态等值计算的基础。
传统的潮流计算程序缺乏图形用户界面,结果显示不直接难与其他分析功能集成。
网络原始数据输入工作大量且易于出错。
本文采用MATLAB语言运行WINDOWS操作系统的潮流计算软件。
而采用xx界面直观,运行稳定,计算准确。
关键词:电力系统潮流计算;牛顿—拉夫逊法潮流计算;MATLAB目录一、概述1.1设计目的与要求................................................. 1.1.1 设计目的......................................................1.1.2 设计要求..................................................... 1.2 设计题目......................................................1.3 设计内容.....................................................二、电力系统潮流计算概述.....................2.1 电力系统简介..........................................2.2 潮流计算简介..........................................2.3 潮流计算的意义及其发展..................... ..............三、潮流计算设计题目..........................3.1 潮流计算题目........................................3.2 对课题的分析及求解思路........................四、潮流计算算法及手工计算...........................4.1 变压器的∏型等值电路..............................4.2 节点电压方程..............................4.3节点导纳矩阵.............................4.4 导纳矩阵在潮流计算中的应用.......................4.5 潮流计算的手工计算..........................五、潮流计算流程图及源程序................................6.1 潮流计算流程图..............................6.2 潮流计算源程序图...............................6.3 运行计算结果.......................................总结参考文献电力系统叙述电力工业发展初期,电能是直接在用户附近的发电站(或称发电厂)中生产的,各发电站孤立运行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 2 P22 Q2 ~ P22 Q2 S z R j X PZ jQz 2 2 U2 U2
2016/4/2
阻抗支路中始端的功率为
~ ~ ~ S z P S1 S 2 1 jQ1
未知量, 始端导纳支路的功率为 怎么求呢?
2016/4/2
2. 已知一端电压与另一端功率:
设全网为额定电压, 计算功率损耗(不计电压损 耗), 推算全网功率分布、始端功率; 由始端电压、功率向末端推算电压损耗(不再另 算功率耗), 计算各母线电压。 若 U U 结束,否则将 U 作为U 继续回代, 称该方法为 前推回代法
末 N
T
2
1
Z
T
2
变压器的物理模型
GT jBT
型等值电路
2016/4/2
.变压器的功率损耗
~ S1
U 1
~ S yT
~ S1
~ ~ S 2 S2
ZT
YT
U 2
a.变压器阻抗支路中损耗的功率
2 Q22 2 Q22 P2 P2 ~ SzT RT j XT PZT jQzT 2 2 U2 U2
a.提高电压等级; b.增大导线截面积; c.减小线路中流过的无功功率。
2016/4/2
2. 由电压损耗的纵分量、横分量
X P2R Q2 U U2
X Q2 U U2
X P2R Q2 U U2 P2 X U U2
对于高压输电网(R<<X),则
线路(变压器)两端电压幅值差,主要取决于输 送的无功功率; 线路(变压器)两端电压相角差;主要取决于输 送的有功功率。
据。
2016/4/2
主要内容 1 电力线路和变压器运行状况的计算和分析 2 简单电力网的潮流分析 3 复杂电力网络的潮流计算 4 电力网络潮流的调整控制
2016/4/2
第一节
电力线路和变压器运行状况的计算和分析
电力线路的物理模型和等值电路
1
L
2
1
Z
G jB 2
L
2
G jB 2
电力线路的物理模型
dU
U
U 2
U
图3-2电力线路的电压相量图
2016/4/2
则
(U U ) jU U 1 2
X P2R Q2 U U2
X P2R Q2 U U2
2016/4/2
二.变压器的功率损耗、电压降落
电力变压器的物理模型和等值 电路
1
.变压器阻抗支路电压降落 类似电力线路的电压降落,变压器阻抗中电 压降落的纵,横分量分别为:
X P2R Q2 U T U2
变压器始端的电压为:
X P2R Q2 UT U2
U 1 (U 2+U ) (U )
2
2016/4/2
2
讨论:
1. 由电压损耗纵分量 可知降低电压损耗的方法 有: R Q2 X P2 U U2
电力系统潮流的计算机分 析方法
引言 介绍电力网络潮流分析的目的 掌握各种简单电力网络潮流分布的手算方法 熟悉几种电力系统潮流的计算机计算方法
2016/4/2
问题的提出
某一电力网络
220kV 10kV SDN3
SDN4 SDN1 SDN2
有三个集中负荷SDN1, SDN2, SDN3如何分析该系统
B
S Z S B B
T
S D
jBL/2
2016/4/2
jBL/2 S 0
开式网络电压、功率的关系:
非线性迭代解
(1) 已知同一点的电压、功率: 递推计算
S 已知始端电压和功率 U A A
S 已知末端电压和功率 U D D
2016/4/2
已知同一点电压和功率求辐射形网络潮 流
1 1 ~ 2 S y1 GU 1 jBU 12 Py1 jQy1 2 2
始端功率为
~ ~ ~ S1 S1 S y1 P 1 jQ1
2016/4/2
2. 电力线路的电压降落计算
U 或dU . 电压降落:线路始末两端电压的相量差 U 1 2
U 1
2016/4/2
b.变压器励磁支路损耗的功率
~ 2 2 2 SYT GT jBT U1 GTU1 jBTU1 PYT jQYT
始端功率为
~ ~ ~ ~ S1 S2 S ZT SYT
注意: 变压器励磁支路的无功功率与线路支路 的无功功率符号相反。
2016/4/2
是否能正常工作
2016/4/2
(1)若要求SDN1, SDN2, SDN3均能正常工作,电 力网各点电压能否满足要求。 (2)若已知电力网各点电压时,整个网络能否带 SDN1, SDN2, SDN3正常工作。 (3)若系统增加另一负荷SDN4,是否会影响各点 电压和原系统正常工作( SDN1, SDN2, SDN3 正常工作)影响多少。 这就要求进行潮流分析和计算。
P 型等值电路
2016/4/2
一.电力线路的功率损耗和电压降落
1.电力线路的功率损耗计算
2016/4/2
~ 图3-1中,设末端电压为 U 2,末端功率为 S2,则末
端导纳支路的功率为 1 1 ~ 2 2 S y 2 GU 2 jBU 2 2 2
阻抗支路末端的功率为
~ ~ ~ S 2 S y 2 P2 jQ2 S2
2016/4/2
要考虑三点:
潮流分析
潮流计算的内容: 根据给定的电网结构、发电计划及负荷分布 情况,求出整个电网的运行状态。
(运行状态:节点母线的电压、相角、线路输 送的有功和无功功率等。)
2016/4/2
潮流计算的意义:
评定电力网络的安全性和经济性,从而制定系
统合理的运行方式,当系统扩展时,需要以此为依
2016/4/2
第二节 简单电力系统潮流分析
一. 开式网络的潮流计算
开式网络:线路有明确的始端和末端(辐射形网络) 有放射式、干线式、链式
C
T
A
L
B
T
D
S C
S A
S B
S D
简化等 值电路
U D
D
简单辐射形网络接线图
U SA A
A
S A
Z
L
S B U B
末
N
2016/4/2
二. 运算负荷与运算功率 1. 变电所的运算负荷