高考文科极坐标和参数方程

合集下载

高中数学极坐标与参数方程公式大全

高中数学极坐标与参数方程公式大全

高中数学极坐标与参数方程公式大全极坐标公式极坐标是一种用极径和极角来确定平面上点位置的坐标系统。

在高中数学中,我们常常会遇到极坐标与直角坐标之间的转换和相关公式。

点的极坐标表示在极坐标系统中,一个点的位置由极径和极角确定。

极径表示点到极点的距离,通常用字母 r 表示;极角表示点与极轴的夹角,通常用字母θ表示。

通过将直角坐标系中的点 (x, y) 转换成极坐标系下的点(r, θ),可以使用以下公式:•极径 r:r = √(x^2 + y^2)•极角θ:θ = arctan(y / x)极坐标到直角坐标的转换假设在极坐标系统中,有一个点(r, θ),我们可以通过以下公式将其转换为直角坐标系统下的点:•x 坐标:x = r * cos(θ)•y 坐标:y = r * sin(θ)参数方程公式参数方程是一种用参数表示自变量和因变量之间关系的方式。

在高中数学中,我们常常使用参数方程来描述曲线或者路径。

曲线的参数方程表示对于一个给定的曲线,我们可以使用参数方程来表示。

通常,我们用参数 t 来表示自变量,然后通过指定 x 和 y 的表达式,将参数 t 和 (x, y) 一一对应。

例如,一个曲线的参数方程可以表示为:•x = f(t)•y = g(t)参数方程与直角坐标系的关系通常情况下,参数方程与直角坐标系下的方程之间存在关系。

我们可以通过参数方程将曲线在直角坐标系下表示出来。

在参数方程中,将参数 t 的取值范围确定在一定的区间上,可以画出曲线的一部分或者整条曲线。

极坐标与参数方程之间的转换在一些数学问题中,我们需要在极坐标和参数方程之间进行转换。

下面是一些常见的极坐标与参数方程之间的转换公式:极坐标到参数方程的转换•x = r * cos(θ)•y = r * sin(θ)上述公式可以表示为参数方程:•x = f(θ) = r * cos(θ)•y = g(θ) = r * sin(θ)参数方程到极坐标的转换给定参数方程 x = f(t) 和 y = g(t),我们可以通过以下步骤将其转换为极坐标:1.计算 r 的表达式:r = √(f(t)^2 + g(t)^2)2.计算极角θ 的表达式:θ = arctan(g(t) / f(t))可以注意到,在将参数方程转换为极坐标时,需要考虑函数 f(t) 和 g(t) 的符号,以确保角度θ 的取值范围正确。

高考极坐标与参数方程大题题型汇总(附详细答案)

高考极坐标与参数方程大题题型汇总(附详细答案)

高考极坐标与参数方程大题题型汇总(附详细答案)本文介绍了高考极坐标与参数方程大题题型,并给出了三个例子进行解答。

例1:在直角坐标系xoy中,圆C的参数方程为(x-1)^2+y^2=1,求圆C的极坐标方程。

解析:将x和y用极坐标表示,得到ρ=2cosθ。

例2:已知直线l的参数方程为x=-4t+a,y=3t-1,在直角坐标系xoy中,以O点为极轴建立极坐标系,设圆M的方程为ρ^2-6ρsinθ=-8.求圆M的直角坐标方程和实数a的值。

解析:将ρ和θ用x和y表示,得到x+(y-3)=1,然后将直线l的参数方程化为普通方程,得到3x+4y-3a+4=0.根据圆心到直线的距离和直线截圆所得弦长的关系,解得a=12或a=22/3.例3:已知曲线C的参数方程为x=2+5cosα,y=1+5sinα,以直角坐标系原点为极点,Ox轴正半轴为极轴建立极坐标系。

求曲线C的极坐标方程和直线l被曲线C截得的弦长。

解析:将x和y用极坐标表示,得到ρ=5.将直线l的极坐标方程化为普通方程,得到ρ(sinθ+cosθ)=1.由于曲线C是一个圆,因此直线l与曲线C的交点分别为A(7π/4.3+2√2)和B(3π/4.3-2√2),弦AB的长度为4√2.1) 曲线C的参数方程为:x=9\cos^3\theta,\ y=3\sin^3\theta$,直线$l$的直角坐标方程为$x+y-1=0$。

2) 设$P(9\cos^3\alpha,3\sin^3\alpha)$,则$P$到直线$l$的距离为$d=\frac{|9\cos^3\alpha+3\sin^3\alpha-1|}{\sqrt{2}}$。

为求$d$的最大值,我们可以将$d$表示为$10\cos(\alpha+\theta)+\frac{1}{\sqrt{2}}$的形式,其中$\theta$为一个与$\alpha$无关的常数,且$\tan\theta=\frac{1}{3}$。

高中数学极坐标与参数方程知识点

高中数学极坐标与参数方程知识点

高中数学极坐标与参数方程知识点知识点参数方程的定义:如果曲线上任意一点的坐标x、y都是某个变数t的函数,且对于每个允许值的t,由方程组所确定的点M(x,y)都在这条曲线上,那么方程组就叫做曲线的参数方程,联系x、y之间关系的变数叫做参变数,简称参数.常见曲线的参数方程:1.过定点(x,y),倾角为α的直线:x = x + tcosαy = y + tsinα其中参数t是以定点P(x,y)为起点,对应于t点M(x,y)为终点的有向线段PM的数量,又称为点P与点M间的有向距离.2.中心在(x,y),半径等于r的圆:x = x + rcosθy = y + rsinθθ为参数)3.中心在原点,焦点在x轴(或y轴)上的椭圆:x = acosθ 或x = bcosθθ为参数)(或)y = bsinθ 或y = asinθ4.中心在原点,焦点在x轴(或y轴)上的双曲线:x = asecθ 或x = btanθθ为参数)(或)y = btanθ 或y = asecθ5.顶点在原点,焦点在x轴正半轴上的抛物线:x = 2pt^2t为参数,p>0)y = 2pt直线的参数方程和参数的几何意义:过定点P(x,y),倾斜角为α的直线的参数方程是x = x + tcosαy = y + tsinα其中参数t是以定点P(x,y)为起点,对应于t点M(x,y)为终点的有向线段PM的数量。

根据t的几何意义,可以得出结论:设AB是直线上任意两点,它们对应的参数分别为t_A和t_B,则AB = t_B - t_A = (t_B - t_A)^2 - 4t_A*t_B。

极坐标系是在平面内取一个定点O作为极点,引一条射线Ox作为极轴,再选一个长度单位和角度的正方向。

对于平面内的任意一点M,用ρ表示线段OM的长度,θ表示从Ox 到OM的角,ρ叫做点M的极径,θ叫做点M的极角,有序数对(ρ,θ)就叫做点M的极坐标。

这样建立的坐标系叫做极坐标系。

(完整版)高考文科数学复习专题极坐标与参数方程

(完整版)高考文科数学复习专题极坐标与参数方程

1.曲线的极坐标方程.(1) 极坐标系:一般地,在平面上取一个定点O,自点 O引一条射线Ox,同时确立一个长度单位和计算角度的正方向( 往常取逆时针方向为正方向) ,这样就成立了一个极坐标系.此中,点O称为极点,射线 Ox 称为极轴.(2)极坐标 ( ρ,θ ) 的含义:设 M 是平面上任一点,ρ表示OM的长度,θ表示以射线Ox 为始边,射线OM为终边所成的角.那么,有序数对( ρ,θ) 称为点 M的极坐标.明显,每一个有序实数对 ( ρ,θ) ,决定一个点的地点.此中ρ 称为点M的极径,θ称为点M的极角.极坐标系和直角坐标系的最大差别在于:在直角坐标系中,平面上的点与有序数对之间的对应关系是一一对应的,而在极坐标系中,关于给定的有序数对 ( ρ,θ) ,能够确立平面上的一点,可是平面内的一点的极坐标却不是独一的.(3) 曲线的极坐标方程:一般地,在极坐标系中,假如平面曲线 C 上的随意一点的极坐标知足方程f( ρ,θ ) = 0,而且坐标合适方程f( ρ,θ ) = 0 的点都在曲线 C 上,那么方程f ( ρ,θ ) = 0 叫做曲线 C 的极坐标方程.2.直线的极坐标方程.(1) 过极点且与极轴成φ 0角的直线方程是θ=φ 0和θ=π-φ 0,以下列图所示.(2) 与极轴垂直且与极轴交于点(a , 0) 的直线的极坐标方程是ρ cosθ=a,以下列图所示.(3) 与极轴平行且在x 轴的上方,与 x 轴的距离为 a 的直线的极坐标方程为ρsinθ=a,以下列图所示.3.圆的极坐标方程.(1)以极点为圆心,半径为 r 的圆的方程为ρ= r ,如图 1 所示.(2)圆心在极轴上且过极点,半径为r 的圆的方程为ρ= 2rcos_ θ,如图 2 所示.(3) 圆心在过极点且与极轴成πr 的圆的方程为ρ 2rsin_ θ,2的射线上,过极点且半径为如图 3 所示.若极点在原点且极轴为x 轴的正半轴,则平面内随意一点M 的极坐标 M(ρ,θ ) 化为平面直角坐标 M(x , y) 的公式以下:x =ρ cos θ, 2+ y 2, tan θ= y,或许 ρ= xy =ρ sin θx 此中要联合点所在的象限确立角 θ 的值.1.曲线的参数方程的定义.在平面直角坐标系中,假如曲线上随意一点的坐标 x , y 都是某个变数 t 的函数,即x = f ( t ),M(x , y) 都在这条曲线上,而且关于 t 的每一个同意值,由方程组所确立的点y = g ( t ),那么方程组就叫做这条曲线的参数方程,联系 x , y 之间关系的变数 t 叫做参变数,简称参数.2.常有曲线的参数方程.(1) 过定点 P(x 0, y 0) ,倾斜角为 α 的直线:x =x 0 + tcos α,y =y 0 + tsin(t 为参数 ) ,α此中参数 t 是以定点 P(x , y ) 为起点,点 M(x , y) 为终点的有向线段PM 的数目,又称为点 P 与点 M 间的有向距离.依据 t 的几何意义,有以下结论:①设 A , B 是直线上随意两点,它们对应的参数分别为t A 和 t B ,则 |AB| = |t B - t A | =( t B + t A ) 2-4t A · t B ;t A + t B②线段 AB 的中点所对应的参数值等于.2(2) 中心在 P(x 0, y 0) ,半径等于 r 的圆:x =x 0+ rcos θ, ( θ 为参数 )y =y 0+ rsinθ(3) 中心在原点,焦点在 x 轴 ( 或 y 轴 ) 上的椭圆:x =acos θ,x = bcos θ, y =bsin( θ 为参数 ) 或.θy = asin θx = x 0+ acos α, 中心在点 P(x 0,y 0) ,焦点在平行于x 轴的直线上的椭圆的参数方程为y = y 0+ bsin α( α 为参数 ) .(4) 中心在原点,焦点在 x 轴 ( 或 y 轴 ) 上的双曲线:x =asec θ,x = btan θ, y =btan ( θ 为参数 ) 或.θy = asec θ(5) 极点在原点,焦点在 x 轴的正半轴上的抛物线:x =2p ,(t 为参数, p>0) .y =2p1注: sec θ= cos θ .3.参数方程化为一般方程.由参数方程化为一般方程就是要消去参数,消参数时经常采纳代入消元法、加减消元法、乘除消元法、三角代换法,消参数时要注意参数的取值范围对x , y 的限制.1.已知点 A 的极坐标为5π,则点 A 的直角坐标是 (2 ,- 2 3) .4,3π2.把点 P 的直角坐标 ( 6,- 2) 化为极坐标,结果为2 2,-6 .3.曲线的极坐标方程ρ= 4sin θ化为直角坐标方程为x 2+ (y -2) 2= 4.ππ4.以极坐标系中的点 1, 6 为圆心、1 为半径的圆的极坐标方程是 ρ= 2cos θ- 6 .5.在平面直角坐标系xOy 中,若直线 l :x = t ,为参数 ) 过椭圆 C :x = 3cos θ, (t y = 2sin θy = t -a( θ 为参数 ) 的右极点,则常数a 的值为 3.x = t ,x = 3cos θ, x 2 y 2分析: 由直线 l : y = t -a , 得 y = x - a. 由椭圆 C :y = 2sin θ, 得 9 = 4 = 1. 因此椭圆 C 的右极点为 (3 ,0) .由于直线 l过椭圆的右极点,因此0= 3- a ,即 a =3.一、选择题1.在平面直角坐标系xOy 中,点 P 的直角坐标为 (1 ,-3) .若以原点 O 为极点, x轴正半轴为极轴成立极坐标系,则点P 的极坐标能够是 ( C)A. 1,- πB. 2, 4π3 3π4πC. 2,- 3D. 2,- 32.若圆的方程为x = 2cos θ, x = t +1, y = 2sin ( θ 为参数 ) ,直线的方程为(t 为参数 ) ,则θ y = t -1直线与圆的地点关系是( B)A .相离B .订交C .相切D.不可以确立3.以平面直角坐标系的原点为极点,x 轴的正半轴为极轴,成立极坐标系,两种坐标x = t +1,系中取同样的长度单位,已知直线l 的参数方程是 (t 为参数 ) ,圆 C 的极坐标方y = t -3程是 ρ= 4cos θ,则直线 l 被圆 C 截得的弦长为 ( D)A. 14B .2 14C. 2D.2 2分析: 由题意可得直线和圆的方程分别为x -y - 4= 0,x 2+y 2= 4x ,因此圆心 C(2,0) ,半径 r = 2,圆心 (2 ,0) 到直线 l 的距离 d = 2,由半径,圆心距,半弦长组成直角三角形,解得弦长为 2 2.l 均分圆 C :(x - 2) 2+ (y - 1) 2=1,则直线 l 与圆 O : x =3cosθ,( θy = 3sin θ为参数 ) 的地点关系是 ( A)A .订交B .相切C .相离D.过圆心分析: 动直线 l 均分圆 C :(x - 2) 2+ (y - 1) 2= 1,即圆心 (2 ,1) 在直线 l 上,又圆 O :x = 3cosθ,的一般方程为 x 2+ y 2= 9 且 22+ 12<9,故点 (2 , 1) 在圆 O 内,则直线 l 与圆 Oy = 3sin θ的地点关系是订交.二、填空题5.在平面直角坐标系 xOy 中,已知曲线y=sinθ- 2,C 的参数方程是( θ是参数 ) ,x= cosθ若以 O为极点,x 轴的正半轴为极轴,则曲线 C的极坐标方程可写为ρ2+4ρ sin_ θ+ 3= 0.分析:在平面直角坐标系y= sinθ- 2,y+2= sin θ,xOy 中,( θ是参数 ) ,∴根x= cos θx=cos θ .据 sin 2θ+ cos 2θ= 1,可得 x2+(y + 2) 2=1,即 x2+ y2+ 4y+3=0. ∴曲线 C 的极坐标方程为ρ2+4ρ sin θ+ 3=0.x= 2cos θ,6.在平面直角坐标系中圆 C 的参数方程为 ( θ为参数 ) ,以原点 O为极y= 2+ 2sin θπ点,以 x 轴的正半轴为极轴成立极坐标系,则圆C的圆心的极坐标为2,2.三、解答题17.求极点到直线2ρ=π ( ρ∈ R)的距离.sinθ+4分析:由 2 ρ=1sinπ ? ρ sin θ+ρ cos θ= 1? x+ y=1,θ+4|0 +0-1|2故d=12+12=2.8.极坐标系中, A 为曲线ρ2+2ρ cos θ- 3=0 上的动点, B 为直线ρ cos θ+ρ sinθ- 7= 0 上的动点,求|AB| 的最小值.x= cos θ,9.(2015 ·大连模拟) 曲线 C1的参数方程为( θ为参数 ) ,将曲线 C1上全部y= sinθ点的横坐标伸长为本来的 2 倍,纵坐标伸长为本来的3倍,获得曲线C2. 以平面直角坐标系xOy 的原点 O为极点, x 轴的正半轴为极轴,取同样的单位长度成立极坐标系,已知直线l :ρ(cos θ- 2sinθ)= 6.(1)求曲线 C2和直线 l 的一般方程;(2)P 为曲线 C2上随意一点,求点P 到直线 l 的距离的最值.分析: (1)由题意可得 C 的参数方程为x= 2cosθ,x2y2y= 3sinθ(θ为参数 ) ,即 C :4+3= 1,22直线 l :ρ(cosθ- 2sin θ ) = 6 化为直角坐标方程为x- 2y- 6= 0.(2) 设点 P(2cosθ, 3sin θ ) ,由点到直线的距离公式得点P 到直线 l的距离为|2cosθ- 23sinθ- 6|d=56+ 43sin1θ- cos θ=2256+ 4sin θ-π=655π=56+ 4sin θ-6.2525因此5≤ d≤ 25,故点 P 到直线 l的距离的最大值为25,最小值为 5.10.已知在直角坐标系xOy 中,曲线 C 的参数方程为x= 1+4cosθ,y= 2+4sin ( θ为参数 ) ,θπ直线 l 经过定点P(3, 5) ,倾斜角为 3 .(1)写出直线 l 的参数方程和曲线 C 的标准方程.(2)设直线 l 与曲线 C 订交于 A, B 两点,求 |PA| ·|PB| 的值.x= 1+4cos θ,2分析: (1) 由曲线 C 的参数方程( θ为参数 ) ,得一般方程为 (x - 1)y= 2+ 4sin θ+(y - 2) 2= 16,即 x2+ y2- 2x- 4y =11= 0.1x= 3+ t ,π2直线 l 经过定点 P(3 , 5) ,倾斜角为3,直线的参数方程为3(t 是参数 ) .y= 5+2 t(2)将直线的参数方程代入 x2+ y2- 2x-4y - 11=0,整理,得 t 2+ (2 +3 3)t - 3= 0,设方程的两根分别为 t 1, t 2,则 t 1t 2=- 3,由于直线 l 与曲线 C 订交于 A, B 两点,因此 |PA| · |PB| = |t 1t 2| =3.。

高考数学笔记 极坐标与参数方程

高考数学笔记 极坐标与参数方程



∴ C1 与 C2 的交点的极坐标分别为(
2, ), (2, ) .
4
2
才哥数学
题型四:距离问题
例 1:已知曲线 C 的极坐标方程是 6 cos ,以极点为平面直角坐标系的原点,极轴为 x 轴的正半
x 1 t cos
轴,建立平面直角坐标系,直线 l 的参数方程是
y t sin
x

y

4 5
5cos t 5sin t
消去参数 t
,化为普通方程
(x

4)2

(y
5)2

25


C1

x2

y2

8x
10 y
16

0
,将
x

y


cos sin
代入
x2

y2

8x
10 y
16

0
得,
2 8 cos 10 sin 16 0 ,
方法二,直线方程为 y x 4 ,圆心到直线 y x 4 的距离为 d 1 | AB | 2 1 1 2
2,
2
例 3 已知曲线 C 的极坐标方程是 2 cos ,若以极点为平面直角坐标系的原点,极轴为 x 轴的正半

轴且取相同的单位长度,建立平面直角坐标系,则直线
x 2 cos t

2:已知曲线
C1
:

y

1

sin
t
x 4 cos
(t
为参数),
C2

高考数学十年真题专题解析—极坐标系与参数方程

高考数学十年真题专题解析—极坐标系与参数方程

极坐标系与参数方程考点116平面直角坐标系中的伸缩变换考点117极坐标和直角坐标的互化1.(2020全国Ⅱ文理21)已知曲线12,C C 的参数方程分别为2124cos ,:4sin x C y θθ⎧=⎪⎨=⎪⎩(θ为参数),21,:1x t tC y t t ⎧=+⎪⎪⎨⎪=-⎪⎩(t 为参数).(1)将12,C C 的参数方程化为普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.设12,C C 的交点为P ,求圆心在极轴上,且经过极点和P 的圆的极坐标方程.【解析】(1)由22cos sin 1θθ+=得1C 的普通方程为:4x y +=,由11x t t y t t ⎧=+⎪⎪⎨⎪=-⎪⎩得:2222221212x t t y t t ⎧=++⎪⎪⎨⎪=+-⎪⎩,两式作差可得2C 的普通方程为:224x y -=.(2)由2244x y x y +=⎧⎨-=⎩得:5232x y ⎧=⎪⎪⎨⎪=⎪⎩,即53,22P ⎛⎫ ⎪⎝⎭.设所求圆圆心的直角坐标为(),0a ,其中0a >,则22253022a a ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭,解得:1710a =,∴所求圆的半径1710r =,∴所求圆的直角坐标方程为:22217171010x y ⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭,即22175x y x +=,∴所求圆的极坐标方程为17cos 5ρθ=.2.(2020全国Ⅲ文理22)在直角坐标系xOy 中,曲线C 的参数方程为222,23x t t y t t⎧=--⎪⎨=-+⎪⎩(t 为参数且1t ≠),C 与坐标轴交于,A B 两点.(1)求AB ;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求直线AB 的极坐标方程.【解析】(1)令0x =,则220t t +-=,解得2t =-或1t =(舍),则26412y =++=,即(0,12)A .令0y =,则2320t t -+=,解得2t =或1t =(舍),则2244x =--=-,即(4,0)B -.AB ∴==.(2)由(1)可知12030(4)AB k -==--,则直线AB 的方程为3(4)y x =+,即3120x y -+=.由cos ,sin x y ρθρθ==可得,直线AB 的极坐标方程为3cos sin 120ρθρθ-+=.3.(2020江苏22)在极坐标系中,已知点1π(,)3A ρ在直线:cos 2l ρθ=上,点2π(,6B ρ在圆:4sinC ρθ=上(其中0ρ≥,02θπ≤<).(1)求1ρ,2ρ的值(2)求出直线l 与圆C 的公共点的极坐标.【解析】(1)1122cos24;4sin 236ππρρρρ=∴==∴=Q Q .(2)5cos 2,4sin 4sin cos 2,sin 21[0,2),44ππρθρθθθθθπθ==∴=∴=∈∴=Q Q ,当4πθ=时ρ=;当54πθ=时0ρ=-<(舍);即所求交点坐标为当)4π.4.(2019全国II 文理22)在极坐标系中,O 为极点,点000(,)(0)M ρθρ>在曲线:4sin C ρθ=上,直线l过点(4,0)A 且与OM 垂直,垂足为P .(1)当0=3θπ时,求0ρ及l 的极坐标方程;(2)当M 在C 上运动且P 在线段OM 上时,求P 点轨迹的极坐标方程.【解析】(1)因为()00,M ρθ在C 上,当03θπ=时,04sin 3ρπ==由已知得||||cos23OP OA π==.设(,)Q ρθ为l 上除P 的任意一点.在Rt OPQ △中cos ||23OP ρθπ⎛⎫-== ⎪⎝⎭,经检验,点(2,)3P π在曲线cos 23ρθπ⎛⎫-= ⎪⎝⎭上.所以,l 的极坐标方程为cos 23ρθπ⎛⎫-= ⎪⎝⎭.(2)设(,)P ρθ,在Rt OAP △中,||||cos 4cos ,OP OA θθ==即 4cos ρθ=..因为P 在线段OM 上,且AP OM ⊥,故θ的取值范围是,42ππ⎡⎤⎢⎥⎣⎦.所以,P 点轨迹的极坐标方程为4cos ,,42ρθθπ⎡⎤=∈⎢⎥⎣⎦π.5.(2019全国III 文理22)如图,在极坐标系Ox 中,(2,0)A ,)4B π,4C 3π,(2,)D π,弧 AB , BC , CD 所在圆的圆心分别是(1,0),(1,)2π,(1,)π,曲线1M 是弧 AB ,曲线2M 是弧 BC ,曲线3M 是弧 CD.(1)分别写出1M ,2M ,3M 的极坐标方程;(2)曲线M 由1M ,2M ,3M 构成,若点P 在M 上,且||OP =P 的极坐标.【解析】(1)由题设可得,弧 ,,AB BCCD 所在圆的极坐标方程分别为2cos ρθ=,2sin ρθ=,2cos ρθ=-,所以1M 的极坐标方程为π2cos 04ρθθ⎛⎫= ⎪⎝⎭ ,2M 的极坐标方程为π3π2sin 44ρθθ⎛⎫= ⎪⎝⎭ ,3M 的极坐标方程为3π2cos π4ρθθ⎛⎫=- ⎪⎝⎭.(2)设(,)P ρθ,由题设及(1)知若π04θ,则2cos θ=,解得π6θ=;若π3π44θ ,则2sin θ=π3θ=或2π3θ=;若3ππ4θ ,则2cos θ-=,解得5π6θ=.综上,P 的极坐标为π6⎫⎪⎭或π3⎫⎪⎭或2π3⎫⎪⎭或5π6⎫⎪⎭.考点118参数方程与普通方程的互化6.(2020上海14)已知直线方程3410x y ++=的一个参数方程可以是()A .1314x ty t=+⎧⎨=-+⎩B .1413x t y t=-⎧⎨=--⎩C .1314x t y t=-⎧⎨=-+⎩D .1413x t y t=+⎧⎨=--⎩【答案】D【解析】A .参数方程可化简为4370x y --=,故A 不正确;B .参数方程可化简为3470x y --=,故B 不正确;C .参数方程可化简为4310x y +-=,故C 不正确;D .参数方程可化简为3410x y ++=,故D 正确.故选D .7.(2018全国Ⅲ)[选修4—4:坐标系与参数方程](10分)在平面直角坐标系xOy 中,O 的参数方程为cos sin x y θθ=⎧⎨=⎩,(θ为参数),过点(0,且倾斜角为α的直线l 与O 交于A ,B 两点.(1)求α的取值范围;(2)求AB 中点P 的轨迹的参数方程.【解析】(1)O 的直角坐标方程为221x y +=.当2απ=时,l 与O 交于两点.当2απ≠时,记tan k α=,则l 的方程为y kx =-.l 与O 交于两点当且仅当1<,解得1k <-或1k >,即(,)42αππ∈或(,)24απ3π∈.综上,α的取值范围是(,44π3π.(2)l的参数方程为cos ,(sin x t t y t αα=⎧⎪⎨=+⎪⎩为参数,44απ3π<<).设A ,B ,P 对应的参数分别为A t ,B t ,P t ,则2A BP t t t +=,且A t ,B t满足2sin 10t α-+=.于是A B t t α+=,P t α=.又点P 的坐标(,)x y满足cos ,sin .P P x t y t αα=⎧⎪⎨=+⎪⎩所以点P的轨迹的参数方程是22,2cos 222x y αα⎧=⎪⎪⎨⎪=-⎪⎩(α为参数,44απ3π<<).考点119极坐标方程与参数方程的综合应用8.(2018北京文理)在极坐标系中,直线cos sin (0)a a ρθρθ+=>与圆=2cos ρθ相切,则a =___.【答案】1【解析】利用cos x ρθ=,sin y ρθ=,可得直线的方程为0x y a +-=,圆的方程为22(1)1x y -+=,所以圆心(1,0),半径1r =,由于直线与圆相切,故圆心到直线的距离等于半径,即1=,∴1a =或1,又0a >,∴1a =+.9.(2017北京文理)在极坐标系中,点A 在圆22cos 4sin 40ρρθρθ--+=上,点P 的坐标为(1,0)),则||AP 的最小值为___________.【答案】1【解析】圆的普通方程为222440x y x y +--+=,即22(1)(2)1x y -+-=.设圆心为(1,2)C ,所以min ||||211AP PC r =-=-=.10.(2017天津文理)在极坐标系中,直线4cos(106ρθπ-+=与圆2sin ρθ=的公共点的个数为_____.【答案】2【解析】直线的普通方程为210y ++=,圆的普通方程为22(1)1x y +-=,因为圆心到直线的距离314d =<,所以有两个交点.11.(2016北京文理)在极坐标系中,直线cos sin 10ρθθ-=与圆2cos ρθ=交于,A B 两点,则||AB =.【答案】2【解析】将cos sin 10ρθθ-=化为直角坐标方程为10x --=,将ρ=2cos θ化为直角坐标方程为22(1)1x y -+=,圆心坐标为(1,0),半径r=1,又(1,0)在直线10x -=上,所以|AB|=2r=2.12.(2015广东文理)已知直线l 的极坐标方程为2sin()24πρθ-=,点Α的极坐标为722,)4πA (,则点Α到直线l 的距离为.【答案】522【解析】由2sin()24πρθ-=得22(sin cos )22ρθθ´-=,所以1y x -=,故直线l 的直角坐标方程为10x y -+=,而点7(22,)4A π对应的直角坐标为(2,2)A -,所以点(2,2)A -到直线l :10x y -+=的距离为|221|5222++=.13.(2015安徽文理)在极坐标系中,圆8sin ρθ=上的点到直线()3R πθρ=∈距离的最大值是.【答案】6【解析】圆8sin ρθ=即28sin ρρθ=,化为直角坐标方程为22(4)16x y +-=,直线3πθ=,则tan 3θ=,化为直角坐标方程为30x y -=,圆心(0,4)到直线的距离为|4|24-=,所以圆上的点到直线距离的最大值为6.14.(2020全国Ⅰ文理21)在直角坐标系xOy 中,曲线1C 的参数方程为cos ,sin k kx t y t⎧=⎨=⎩(t 为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为4cos 16sin 30ρθρθ-+=.(1)当1k =时,1C 是什么曲线?(2)当4k =时,求1C 与2C 的公共点的直角坐标.【解析】(1)当1k =时,曲线1C 的参数方程为cos ,sin x t y t=⎧⎨=⎩(t 为参数),两式平方相加得221x y +=,∴曲线1C 表示以坐标原点为圆心,半径为1的圆.(2)当4k =时,曲线1C 的参数方程为44cos ,sin x t y t⎧=⎨=⎩(t 为参数),∴0,0x y ≥≥,曲线1C 的参数方程化为22cos (sin x tt y t==为参数),两式相加得曲线1C 方程为1x y +=,得1y x =-,平方得1,01,01y x x y=-+≤≤≤≤,曲线2C的极坐标方程为4cos16sin30ρθρθ-+=,曲线2C直角坐标方程为41630x y-+=,联立12,C C方程1,41630y xx y⎧=-+⎪⎨-+=⎪⎩,整理得12130x-=12=136=(舍去),11,44x y∴==,12,C C∴公共点的直角坐标为11(,)44.15.(2019全国1文理22)在直角坐标系xOy中,曲线C的参数方程为2221141txttyt⎧-=⎪⎪+⎨⎪=⎪+⎩,(t为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为2cos sin110ρθθ+=.(1)求C和l的直角坐标方程;(2)求C上的点到l距离的最小值.【解析】(1)因为221111tt--<≤+,且()22222222141211y t txt t⎛⎫-⎛⎫+=+=⎪⎪+⎝⎭⎝⎭+,所以C的直角坐标方程为221(1)4yx x+=≠-.l的直角坐标方程为2110x++=.(2)由(1)可设C的参数方程为cos,2sinxyαα=⎧⎨=⎩(α为参数,ππα-<<).C上的点到lπ4cos113α⎛⎫-+⎪=.当2π3α=-时,π4cos113α⎛⎫-+⎪⎝⎭取得最小值7,故C上的点到l.16.(2018全国Ⅰ文理)在直角坐标系xOy中,曲线1C的方程为||2y k x=+.以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线2C的极坐标方程为22cos30ρρθ+-=.(1)求2C的直角坐标方程;(2)若1C 与2C 有且仅有三个公共点,求1C 的方程.【解析】(1)由cos x ρθ=,sin y ρθ=得2C 的直角坐标方程为22(1)4x y ++=.(2)由(1)知2C 是圆心为(1,0)A -,半径为2的圆.由题设知,1C 是过点(0,2)B 且关于y 轴对称的两条射线.记y 轴右边的射线为1l ,y 轴左边的射线为2l .由于B 在圆2C 的外面,故1C 与2C 有且仅有三个公共点等价于1l 与2C 只有一个公共点且2l 与2C 有两个公共点,或2l 与2C 只有一个公共点且1l 与2C 有两个公共点.当1l 与2C 只有一个公共点时,A 到1l 所在直线的距离为22=,故43k =-或0k =.经检验,当0k =时,1l 与2C 没有公共点;当43k =-时,1l 与2C 只有一个公共点,2l 与2C 有两个公共点.当2l 与2C 只有一个公共点时,A 到2l 所在直线的距离为22=,故0k =或43k =.经检验,当0k =时,1l 与2C 没有公共点;当43k =时,2l 与2C 没有公共点.综上,所求1C 的方程为4||23y x =-+.17.(2018全国Ⅱ文理)在直角坐标系xOy 中,曲线C 的参数方程为2cos ,4sin ,=⎧⎨=⎩x θy θ(θ为参数),直线l 的参数方程为1cos 2sin =+⎧⎨=+⎩x t αy t α(t 为参数).(1)求C 和l 的直角坐标方程;(2)若曲线C 截直线l 所得线段的中点坐标为(1,2),求l 的斜率.【解析】(1)曲线C 的直角坐标方程为221416+=x y .当cos 0α≠时,l 的直角坐标方程为tan 2tan αα=⋅+-y x ;当cos 0α=时,l 的直角坐标方程为1=x .(2)将l 的参数方程代入C 的直角坐标方程,整理得关于t 的方程22(13cos )4(2cos sin )80ααα+++-=t t .①因为曲线C 截直线l 所得线段的中点(1,2)在C 内,所以①有两个解,设为1t ,2t ,则120+=t t .又由①得1224(2cos sin )13cos ααα++=-+t t ,故2cos sin 0αα+=,于是直线l 的斜率tan 2α==-k .18.(2018江苏)在极坐标系中,直线l 的方程为πsin()26ρθ-=,曲线C 的方程为4cos ρθ=,求直线l 被曲线C 截得的弦长.【解析】因为曲线C 的极坐标方程为=4cos ρθ,所以曲线C 的圆心为(2,0),直径为4的圆.因为直线l 的极坐标方程为πsin()26ρθ-=,则直线l 过(4,0)A ,倾斜角为π6,所以A 为直线l 与圆C 的一个交点.设另一个交点为B ,则∠OAB=π6,连结OB ,因为OA 为直径,从而∠OBA=π2,所以π4cos 6AB ==.因此,直线l 被曲线C截得的弦长为.19.(2017全国Ⅰ文理)在直角坐标系xOy 中,曲线C 的参数方程为3cos sin x y θθ=⎧⎨=⎩,(θ为参数),直线l 的参数方程为41x a ty t=+⎧⎨=-⎩(t 为参数).(1)若1a =-,求C 与l 的交点坐标;(2)若C 上的点到l,求a .【解析】(1)曲线C 的普通方程为2219x y +=.当1a =-时,直线l 的普通方程为430x y +-=.由2243019x y x y +-=⎧⎪⎨+=⎪⎩解得30x y =⎧⎨=⎩或21252425x y ⎧=-⎪⎪⎨⎪=⎪⎩,从而C 与l 的交点坐标为(3,0),2124(,2525-.(2)直线l 的普通方程为440x y a +--=,故C 上的点(3cos ,sin )θθ到l的距离为d =.当4a -≥时,d=,所以8a =;当4a <-时,d=16a =-.综上,8a =或16a =-.20.(2017全国Ⅱ文理)在直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线1C 的极坐标方程为cos 4ρθ=.(1)M 为曲线1C 上的动点,点P 在线段OM 上,且满足||||16OM OP ⋅=,求点P 的轨迹2C 的直角坐标方程;(2)设点A 的极坐标为(2,3π,点B 在曲线2C 上,求OAB ∆面积的最大值.【解析】(1)设P 的极坐标为(,)ρθ(0)ρ>,M 的极坐标为1(,)ρθ1(0)ρ>.由椭圆知||OP ρ=,14||cos OM ρθ==.由||||16OM OP ⋅=得2C 的极坐标方程4cos ρθ=(0)ρ>,因此2C 的直角坐标方程为22(2)4(0)x y x -+=≠.(2)设点B 的极坐标为(,)B ρα(0)B ρ>.由题设知||2OA =,4cos B ρα=,于是OAB ∆面积1||sin 2B S OA AOB ρ=⋅⋅∠4cos |sin()|3παα=-32|sin(2|32πα=--2+≤当12πα=-时,S取得最大值2+OAB ∆面积的最大值为2+.21.(2017全国Ⅲ文理)在直角坐标系xOy 中,直线1l 的参数方程为2x ty kt =+⎧⎨=⎩(t 为参数),直线2l 的参数方程为2x mm y k =-+⎧⎪⎨=⎪⎩(m 为参数).设1l 与2l 的交点为P ,当k 变化时,P 的轨迹为曲线C .(1)写出C 的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设3l :(cos sin )ρθθ+-0=,M 为3l 与C 的交点,求M 的极径.【解析】(1)消去参数t 得1l 的普通方程():l y k x =-12,消去参数m 得2l 的普通方程():l y x k=+212.设(,)P x y ,由题设得()()y k x y x k ⎧=-⎪⎨=+⎪⎩212,消去k 得()x y y -=≠2240,所以C 的普通方程为()x y y -=≠2240.(2)C 的极坐标方程为()cos sin ρθθ-=2224(),θπθπ≠0<<2,联立()()cos sin cos sin ρθθρθθ⎧-=⎪⎨⎪⎩2224+得()cos sin cos sin θθθθ-=2+,故tan θ=-13,从而cos sin θθ2291=,=1010,代入()cos sin ρθθ222-=4得ρ2=5,所以交点M22.(2017江苏)在平面坐标系中xOy 中,已知直线l 的参考方程为82x tty =-+⎧⎪⎨=⎪⎩(t 为参数),曲线C 的参数方程为22x s y ⎧=⎪⎨=⎪⎩(s 为参数).设P 为曲线C 上的动点,求点P 到直线l 的距离的最小值.【解析】直线l 的普通方程为280x y -+=.因为点P 在曲线C上,设2(2,)P s ,从而点P 到直线l的的距离22d ==s =min 455d =.因此当点P 的坐标为(4,4)时,曲线C 上点P 到直线l的距离取到最小值5.23.(2016全国I 文理)在直角坐标系xOy 中,曲线1C 的参数方程为cos 1sin x a ty a t =⎧⎨=+⎩(t 为参数,a >0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线2C :4cos ρθ=.(I)说明1C 是哪种曲线,并将1C 的方程化为极坐标方程;(II)直线3C 的极坐标方程为0=a θ,其中0a 满足0tan =2a ,若曲线1C 与2C 的公共点都在3C 上,求a .【解析】(1)cos 1sin x a t y a t=⎧⎨=+⎩(t 均为参数),∴()2221x y a +-=①∴1C 为以()01,为圆心,a 为半径的圆.方程为222210x y y a +-+-=.∵222sin x y y ρρθ+==,,∴222sin 10a ρρθ-+-=,即为1C 的极坐标方程.(2)24cos C ρθ=:,两边同乘ρ得22224cos cos x y x ρρθρρθ==+= ,,224x y x ∴+=,即()2224x y -+=②3C :化为普通方程为2y x =,由题意:1C 和2C 的公共方程所在直线即为3C ,①—②得:24210x y a -+-=,即为3C ,∴210a -=,∴1a =.24.(2016全国II 文理)在直角坐标系xOy 中,圆C 的方程为()22625x y ++=.(I)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(II)直线l 的参数方程是cos sin x t y t αα=⎧⎨=⎩(t 为参数),l 与C 交于A 、B 两点,10AB =,求l 的斜率.【解析】(Ⅰ)整理圆的方程得2212110x y +++=,由222cos sin x y x y ρρθρθ⎧=+⎪=⎨⎪=⎩可知圆C 的极坐标方程为212cos 110ρρθ++=.(Ⅱ)记直线的斜率为k ,则直线的方程为0kx y -=,由垂径定理及点到直线距离公式知:226102521kk ⎛⎫-=- ⎪ ⎪+⎝⎭,即22369014k k =+,整理得253k =,则153k =±.25.(2016全国III 文理)在直角坐标系xOy 中,曲线1C 的参数方程为3cos sin x y αα⎧=⎪⎨=⎪⎩(α为参数),以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系,曲线2C 的极坐标方程为sin()224ρθπ+=.(Ⅰ)写出1C 的普通方程和2C 的直角坐标方程;(Ⅱ)设点P 在1C 上,点Q 在2C 上,求||PQ 的最小值及此时P 的直角坐标.【解析】(Ⅰ)1C 的普通方程为2213x y +=,2C 的直角坐标方程为40x y +-=.(Ⅱ)由题意,可设点P 的直角坐标为3,sin )αα,因为2C 是直线,所以||PQ 的最小值,即为P 到2C的距离()d α的最小值,|3cos sin 4|()2|sin()2|32d ααπαα+-==+-.当且仅当2()6k k Z παπ=+∈时,()d α2,此时P 的直角坐标为31(,)22.26.(2016江苏)在平面直角坐标系xOy 中,已知直线l 的参数方程为()11,23,2x t t y ⎧=+⎪⎪⎨⎪=⎪⎩为参数,椭圆C 的参数方程为()cos ,2sin ,x y θθθ=⎧⎨=⎩为参数,设直线l 与椭圆C 相交于,A B 两点,求线段AB 的长.【解析】椭圆C 的普通方程为2214y x +=,将直线l 的参数方程11232x t y t⎧=+⎪⎪⎨⎪=⎪⎩,代入2214y x +=,得223()12(1)124t ++=,即27160t t +=,解得10t =,2167t =-,所以1216||7AB t t =-=.27.(2015全国Ⅰ文理)在直角坐标系xOy 中,直线1C :2x =-,圆2C :22(1)(2)1x y -+-=,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.(Ⅰ)求1C ,2C 的极坐标方程;(Ⅱ)若直线3C 的极坐标方程为()4R πθρ=∈,设2C 与3C 的交点为M ,N ,求2C MN ∆的面积.【解析】(Ⅰ)因为cos ,sin x y ρθρθ==,∴1C 的极坐标方程为cos 2ρθ=-,2C 的极坐标方程为22cos 4sin 40ρρθρθ--+=.(Ⅱ)将=4πθ代入22cos 4sin 40ρρθρθ--+=,得23240ρρ-+=,解得1ρ=222ρ2,|MN|=1ρ-2ρ2,因为2C 的半径为1,则2C MN 的面积o121sin 452⨯=12.28.(2015全国Ⅱ文理)在直角坐标系xOy 中,曲线1C :cos ,sin ,x t y t αα=⎧⎨=⎩(t 为参数,t ≠0)其中0απ<≤,在以O 为极点,x 轴正半轴为极轴的极坐标系中,曲线2C :2sin ρθ=,3C :23ρθ=.(Ⅰ)求2C 与3C 交点的直角坐标;(Ⅱ)若1C 与2C 相交于点A ,1C 与3C 相交于点B ,求||AB 的最大值.【解析】(Ⅰ)曲线2C 的直角坐标方程为2220x y y +-=,曲线3C的直角坐标方程为220x y +-=.联立222220,0,x y y x y ⎧+-=⎪⎨+-=⎪⎩解得0,0,x y =⎧⎨=⎩或3,23,2x y ⎧=⎪⎪⎨⎪=⎪⎩所以2C 与1C 交点的直角坐标为(0,0)和33,22.(Ⅱ)曲线1C 的极坐标方程为(,0)R θαρρ=∈≠,其中0απ≤<.因此A 得到极坐标为(2sin ,)αα,B的极坐标为,)αα.所以2sin AB αα=-4in(3s πα=-,当56πα=时,AB 取得最大值,最大值为4.29.(2015江苏)已知圆C的极坐标方程为2sin(404πρθ+--=,求圆C 的半径.【解析】以极坐标系的极点为平面直角坐标系的原点O ,以极轴为x 轴的正半轴,建立直角坐标系xoy .圆C的极坐标方程为2sin cos 4022ρθθ⎛⎫+--= ⎪ ⎪⎝⎭,化简,得22sin 2cos 40ρρθρθ+--=.则圆C 的直角坐标方程为222240x y x y +-+-=,即()()22116x y -++=,所以圆C.30.(2015陕西文理)在直角坐标系xOy 中,直线l 的参数方程为13232x t y ⎧=+⎪⎪⎨⎪=⎪⎩(t 为参数).以原点为极点,x轴正半轴为极轴建立极坐标系,⊙C的极坐标方程为ρθ=.(Ⅰ)写出⊙C 的直角坐标方程;(Ⅱ)P 为直线l 上一动点,当P 到圆心C 的距离最小时,求P 的直角坐标.【解析】(Ⅰ)由2,sin ρθρθ==得,从而有(2222+,+3x y x y =-=所以.(Ⅱ)设13(3t,t),22P +又,则|PC |==,故当t =0时,|PC |取最小值,此时P 点的直角坐标为(3,0).31.(2014全国Ⅰ文理)已知曲线C :22149x y +=,直线l :222x t y t=+⎧⎨=-⎩(t 为参数).(Ⅰ)写出曲线C 的参数方程,直线l 的普通方程;(Ⅱ)过曲线C 上任一点P 作与l 夹角为o30的直线,交l 于点A ,求||PA 的最大值与最小值.【解析】2cos .().3sin .x y θθθ=⎧⎨=⎩(I)曲线C的参数方程为为参数60.l x y +-=直线的普通方程为2……5分(Ⅱ)cos sin l θθ曲线C上任意一点P(2.3)到的距离为3sin 6.d θθ=+-4)6,tan .sin 303d PA θααα==+-=︒则其中为锐角,且sin 5PA θα当(+)=-1时,取得最大值,最大值为25sin()1.5PA θα+=当时,取得最小值,最小值为32.(2014全国Ⅱ文理)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,半圆C 的极坐标方程为2cos ρθ=,0,2πθ⎡⎤∈⎢⎥⎣⎦.(Ⅰ)求C 的参数方程;(Ⅱ)设点D 在C 上,C 在D 处的切线与直线:2l y =+垂直,根据(Ⅰ)中你得到的参数方程,确定D 的坐标.【解析】(I)C 的普通方程为22(1)1(01)x y y -+=≤≤,可得C 的参数方程为1cos ,sin ,x t y t =+⎧⎨=⎩(t 为参数,0t x ≤≤).(Ⅱ)设D (1cos ,sin )t t +.由(I)知C 是以G(1,0)为圆心,1为半径的上半圆.因为C 在点D 处的切线与t 垂直,所以直线GD 与t 的斜率相同,tan 3t t π==.故D 的直角坐标为(1cos,sin 33ππ+,即33(,22.33.(2013全国Ⅰ文理)已知曲线1C 的参数方程为45cos 55sin x ty t=+⎧⎨=+⎩(t 为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为2sin ρθ=.(Ⅰ)把1C 的参数方程化为极坐标方程;(Ⅱ)求1C 与2C 交点的极坐标(0ρ≥,02θπ≤≤).【解析】将45cos 55sin x t y t =+⎧⎨=+⎩消去参数t ,化为普通方程22(4)(5)25x y -+-=,即1C :22810160x y x y +--+=,将cos sin x y ρθρθ=⎧⎨=⎩代入22810160x y x y +--+=得,28cos 10sin 160ρρθρθ--+=,∴1C 的极坐标方程为28cos 10sin 160ρρθρθ--+=.(Ⅱ)2C 的普通方程为2220x y y +-=,由222281016020x y x y x y y ⎧+--+=⎪⎨+-=⎪⎩解得11x y =⎧⎨=⎩或02x y =⎧⎨=⎩,∴1C 与2C 的交点的极坐标分别为4π),(2,2π.34.(2013全国Ⅱ文理)已知动点P ,Q 都在曲线C :()2cos 2sin x y βββ=⎧⎨=⎩为参数上,对应参数分别为βα=与2βα=(02απ<<)M 为PQ 的中点.(Ⅰ)求M 的轨迹的参数方程(Ⅱ)将M 到坐标原点的距离d 表示为α的函数,并判断M 的轨迹是否过坐标原点.【解析】(Ⅰ)由题意有()()2cos ,2sin ,2cos 2,2sin 2,P Q αααα因此()cos cos 2,sin sin 2M αααα++,M 的轨迹的参数方程为cos cos 2,sin sin 2,x y αααα=+⎧⎨=+⎩(02απ<<).(Ⅱ)M 点到坐标原点的距离d ==(02απ<<),当απ=时,0d =,故M 的轨迹过坐标原点.35.(2012全国文理)已知曲线1C 的参数方程是⎩⎨⎧==ϕϕsin 3cos 2y x (ϕ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程是2=ρ.正方形ABCD 的顶点都在2C 上,且A 、B 、C 、D 依逆时针次序排列,点A 的极坐标为)3,2(π.(Ⅰ)求点A 、B 、C 、D 的直角坐标;(Ⅱ)设P 为1C 上任意一点,求2222||||||||PD PC PB P A +++的取值范围.【解析】(1)点,,,A B C D 的极坐标为5411(2,),(2,),(2,),(2,)3636ππππ,点,,,A B C D 的直角坐标为(1,3),(3,1),(1,3),(3,1)----.(2)设00(,)P x y ;则002cos ()3sin x y ϕϕϕ=⎧⎨=⎩为参数,222222004416t PA PB PC PD x y =+++=++23220sin [32,52]ϕ=+∈.36.(2011全国文理)在直角坐标系xOy 中,曲线1C 的参数方程为2cos 22sin x y αα=⎧⎨=+⎩(α为参数),M 是1C 上的动点,P 点满足2OP OM =uuu v uuuv,P 点的轨迹为曲线2C (Ⅰ)求2C 的方程(Ⅱ)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线3πθ=与1C 的异于极点的交点为A ,与2C 的异于极点的交点为B ,求AB .【解析】(I)设(,)P x y ,则由条件知M(,22x y).由于M 点在1C 上,所以2cos 222sin 2xy αα⎧=⎪⎪⎨⎪=+⎪⎩,即4cos 44sin x y αα=⎧⎨=+⎩,从而2C 的参数方程为4cos 44sin x y αα=⎧⎨=+⎩(α为参数),(Ⅱ)曲线1C 的极坐标方程为4sin ρθ=,曲线2C 的极坐标方程为8sin ρθ=.射线3πθ=与1C 的交点A 的极径为14sin 3πρ=,射线3πθ=与2C 的交点B 的极径为28sin 3πρ=.所以21||||23AB ρρ-==。

高考极坐标与参数方程大题题型汇总

高考极坐标与参数方程大题题型汇总

高考极坐标与参数方程大题题型汇总本文是一篇数学题型汇总,主要涉及极坐标和参数方程。

第一题给出了一个圆的参数方程,要求求出其极坐标方程,并求出与一条直线的交点的线段长度。

第二题给出了一条直线的参数方程和一个圆的极坐标方程,要求求出该直线和圆的交点,并求出弦长。

第三题给出了一个曲线的参数方程和一条直线的极坐标方程,要求求出直线和曲线的交点,并求出弦长。

具体来说,第一题中,圆C的普通方程是$(x-1)^2+y^2=1$,转化为极坐标方程为$\rho=2\cos\theta$。

设点P的极坐标为$(\rho_1,\theta_1)$,则解得$\theta_1=\pi/3$,设点Q的极坐标为$(\rho_2,\theta_2)$,则解得$\theta_2=\pi/3$,$\rho_2=3$。

因此,线段PQ的长度为2.第二题中,圆M的直角坐标方程为$x+(y-3)=1$,直线$l$的普通方程为$3x+4y-3a+4=0$,将其转化为极坐标方程为$\rho(\sin\theta+\cos\theta)=1$。

设直线$l$和圆$M$的交点分别为$P$和$Q$,则由题意可知线段PQ的长度为3.因此,代入弦长公式,解得$a=12\pm\sqrt{22}$。

第三题中,曲线C的极坐标方程为$\rho=5$,直线$l$的普通方程为$x+y=\frac{1}{\sqrt{2}}$,将其转化为极坐标方程为$\rho(\sin\theta+\cos\theta)=1/\sqrt{2}$。

设直线$l$和曲线$C$的交点分别为$P$和$Q$,则由题意可知线段PQ的长度为$\sqrt{50}$。

1) 曲线C的参数方程为:x=9\cos^3\theta。

y=3\sin^3\theta$,直线$l$的直角坐标方程为:$x+y-1=0$。

2) 设$P(9\cos^3\alpha。

3\sin^3\alpha)$,则$P$到直线$l$的距离$d$为:d=\frac{|9\cos^3\alpha+3\sin^3\alpha-1|}{\sqrt{2}}$$为求$d$的最大值,对$d$求导得:frac{d}{d\alpha}d=-\frac{27\cos^2\alpha\sin\alpha+9\sin^2\alpha\cos\alpha}{2\sqrt{2} }$$令其等于0,解得$\tan\alpha=\frac{1}{3}$。

新高考数学极坐标与参数方程题目

新高考数学极坐标与参数方程题目

新高考数学极坐标与参数方程题目
在新高考数学考试中,极坐标与参数方程是相对新的考点,但却十分重要。

通过极坐标和参数方程,我们可以更灵活地描述平面上的图形,使数学问题更具有普适性和解题的高效性。

下面我们来看几个与极坐标和参数方程相关的数学题目。

第一题
已知曲线方程 $r = 2 + \\cos(\\theta)$,求曲线与极轴正向夹角终值。

第二题
已知曲线方程 $x = \\cos(t)$,$y = \\sin(t)$,$0 \\leq t < 2\\pi$,求曲线的周期性和对称性。

第三题
已知曲线方程 $r = 3\\sin(2\\theta)$,求曲线的极点和渐近线方程。

第四题
已知曲线方程 $\\begin{cases} x = t^2 \\\\ y = t^3 \\end{cases}$,求曲线的凹凸性。

第五题
已知曲线方程 $\\begin{cases} x = 2\\cos(t) \\\\ y = 3\\sin(t) \\end{cases}$,求曲线在 $t = \\frac{\\pi}{4}$ 时的切线方程。

第六题
已知曲线方程 $r = 1 + \\sin(\\theta)$,求曲线的弧长。

第七题
已知曲线方程 $r = \\frac{1}{2\\cos(\\theta)-\\sin(\\theta)}$,求曲线的极化方程。

这几道题目涉及到了对极坐标与参数方程的综合运用和理解,希望同学们在解答这些题目的过程中,能够加深对这一部分知识的理解和掌握。

祝大家在高考中取得优异的成绩!。

2019年高考文科数学知识点总结:极坐标与参数方程

2019年高考文科数学知识点总结:极坐标与参数方程

高中数学知识点总结 第 1 页 共 1 页 2019年高考文科数学知识点总结:极坐标与参数方程
极坐标与参数方程
116.点的极坐标
对于平面上任意一点M ,用ρ表示线段OM 的长度,用θ表示从OX 到OM 的角度,ρ叫做点M 的极径, θ叫做点M 的极角,有序数对(ρ,θ)就叫做M 的极坐标。

117. 极坐标与直角坐标的互化公式
{cos sin x y ρθ
ρθ== 222tan x y y
x ρθ=+=⎧⎨⎩
118、参数方程的概念
在平面直角坐标系中,曲线上任意一点的坐标,x y 都是第三个变量t 的函数()()x f t y g t =⎧⎪⎨=⎪⎩
(1),并且对于t 的每一个值,由(1)式所确定的点(),M x y 都在这条曲线上,那么(1)式叫做这条曲线的参数方程,其中变量t 叫做参数。

119、过定点),(00y x P 倾斜角为α的直线的参数方程⎩
⎨⎧+=+=ααsin cos 00t y y t x x (t 为参数) 参数|t|的几何意义是直线上由参数t 确定的点到定点P 的距离
120. (1)圆心在原点O ,半径为R 的圆的参数方程{
cos sin x R y R θθ== (2)圆心在(a ,b),半径为R 的圆的参数方程{cos sin x a R y b R θ
θ=+=+
(3)焦点在x 轴上的椭圆x 2a 2+y 2b 2=1(a >b >0) ⇔{
cos sin x a y b ϕϕ==(参数方程,其中ϕ为参数)。

文科高考参数方程知识点

文科高考参数方程知识点

文科高考参数方程知识点一、引言在文科高考中,参数方程是数学中的一个重要知识点。

它不仅在数学领域有广泛的应用,还在物理、经济等领域中发挥着重要作用。

本文将从概念、表示形式、性质和应用等方面,对文科高考中的参数方程知识点进行探讨。

二、概念参数方程是指用含参数的方程组来描述曲线或曲面的方程。

一般形式为x=f(t),y=g(t),其中x、y为变量,t为参数。

参数方程的出现减少了几何图形的限制,并可以描述复杂的几何问题。

三、表示形式参数方程可以通过函数关系、极坐标等方式来表示。

以函数关系为例,若已知函数y=f(x)的图形为曲线C,可以通过参数方程x=t,y=f(t)来表示C。

这种表示形式可以将曲线表示成一个点的运动轨迹,更加灵活。

四、性质1. 连续性:参数方程在参数变化的过程中,曲线上的点也在不断变化。

因此,参数方程可以描述曲线上的连续运动。

2. 奇点与极值:参数方程中的奇点是指参数取某些值时,曲线上出现的特殊点。

而极值则是指曲线上某一段的局部最高点或最低点。

参数方程可以通过求导等方法来确定奇点和极值。

五、应用参数方程在文科高考中有着广泛的应用,以下为几个常见的应用场景:1. 几何图形:参数方程可以描述出各种几何图形,如曲线、曲面等。

通过掌握参数方程的表示形式和性质,可以准确描述和分析几何图形的特点。

2. 物理问题:在物理学中,往往需要描述物体的运动轨迹。

通过使用参数方程,可以更准确地描述出物体的运动情况,如抛体运动、弹性碰撞等。

3. 经济学模型:参数方程在经济学中的应用也非常广泛。

经济学模型中往往包含多个变量,通过使用参数方程,可以更好地描述经济活动的复杂性和变化规律。

六、总结参数方程是文科高考中的重要知识点,它不仅扩展了几何图形的表示形式,还在物理学和经济学等领域中有广泛的应用。

通过掌握参数方程的概念、表示形式、性质和应用,可以更好地理解和应用数学知识,提高在文科高考中的成绩。

希望本文对读者在参数方程知识点的学习中有所帮助。

高中数学极坐标与参数方程知识点

高中数学极坐标与参数方程知识点

极坐标与参数方程知识点(一)曲线的参数方程的定义:在取定的坐标系中,如果曲线上任意一点的坐标x 、y 都是某个变数t 的函数,即 ⎩⎨⎧==)()(t f y t f x 并且对于t 每一个允许值,由方程组所确定的点M (x ,y )都在这条曲线上,那么方程组就叫做这条曲线的参数方程,联系x 、y 之间关系的变数叫做参变数,简称参数.(二)常见曲线的参数方程如下:1.过定点(x 0,y 0),倾角为α的直线:ααsin cos 00t y y t x x +=+= (t 为参数)其中参数t 是以定点P (x 0,y 0)为起点,对应于t 点M (x ,y )为终点的有向线段PM 的数量,又称为点P 与点M 间的有向距离.根据t 的几何意义,有以下结论.○1.设A 、B 是直线上任意两点,它们对应的参数分别为t A 和t B ,则AB =A B t t -=B A A B t t t t ⋅--4)(2.○2.线段AB 的中点所对应的参数值等于2B A t t +. 2.中心在(x 0,y 0),半径等于r 的圆:θθsin cos 00r y y r x x +=+= (θ为参数)3.中心在原点,焦点在x 轴(或y 轴)上的椭圆:θθsin cos b y a x == (θ为参数) (或 θθsin cos a y b x ==) 中心在点(x0,y0)焦点在平行于x 轴的直线上的椭圆的参数方程为参数)ααα(.sin ,cos 00⎩⎨⎧+=+=b y y a x x 4.中心在原点,焦点在x 轴(或y 轴)上的双曲线:θθtg sec b y a x == (θ为参数) (或 θθec a y b x s tg ==) 5.顶点在原点,焦点在x 轴正半轴上的抛物线:pty pt x 222== (t 为参数,p >0) 直线的参数方程和参数的几何意义过定点P (x 0,y 0),倾斜角为α的直线的参数方程是 ⎩⎨⎧+=+=ααsin cos 00t y y t x x (t 为参数). (三)极坐标系1、定义:在平面内取一个定点O ,叫做极点,引一条射线Ox ,叫做极轴,再选一个长度单位和角度的正方向(通常取逆时针方向)。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档