新人教版八年级数学下册《十七章 勾股定理 小结 构建知识体系》教案_2

合集下载

新人教版八年级数学下册《十七章 勾股定理 小结 构建知识体系》教案_21

新人教版八年级数学下册《十七章 勾股定理  小结  构建知识体系》教案_21
我国对勾股定理的研究和其他国家相比是比较早的,在国际上得到肯定。要通过我国古代研究勾股定理的成就介绍,培养学生的民族自豪感;要通过对勾股的探究和发现,培养学生学好数学的自信心。
学情分析:
八年级的学生已具备了一定的动手能力,分析归纳能力,而且勾股定理是在学生已经掌握了直角三角形有关性质的基础上学习的,所以只要教师能通过有效的教学手段调动学生的学习积极性,并进行适当的引导,他们能够就勾股定理这一主题展开探索,在探索中理解并掌握勾股定理。
如图,每个小方格的面积均为1,以格点为顶点,①②中分别有一个直角边分别是2,3和3,5的直角三角形.仿照上一活动,我们以这两个直角三角形的三边为边向外作正方形.
(1) 想一想,怎样利用小方格计算正方形 面积?
(2)正方形 面积之间的关系是什么?
(3)直角三角形三边之间的关系用命题形式怎样表述?
学生独立观察并计算各图中正方形 的面积并完成填表.
学生利用表格有条理地呈现数据,归纳得到:正方形
的面积之三边关系”的基础上,学生类比迁移,得到:两直角边的平方和等于斜边的
1.鼓励学生勇于面对数学活动中的困难,尝试从不同角度寻求解决问题的有效方法,并通过对方法的反思,获得解决问题的经验.
2.让学生在轻松的氛围中积极参与对数学问题的讨论,敢于发表自己的观点,并尊重与理解他人的见解,能从交流中获益.
教师展示图片并提出问题.
学生观察图片,分组交流讨论.
学生通过直接数等腰直角三角形的个数,或者用割补的方法将正方形 中小等腰直角三角形补成一个大正方形得到:正方形 的面积之和等于大正方形 的面积.
教师引导学生,由正方形的面积等于边长的平方归纳出:等腰直角三角形两条直角边的平方和等于斜边的平方.
1.问题是思维的起点,通过问题激发学生好奇、探究和主动学习的欲望.

人教版八年级数学下册第17章勾股定理小结和复习说课稿

人教版八年级数学下册第17章勾股定理小结和复习说课稿
(二)教学反思
在教学过程中,我预见到以下可能出现的问题或挑战:
1.部分学生对勾股定理的理解不够深入,可能在应用时出现错误。
2.学生在小组合作过程中可能出现分工不均、讨论效率低下等问题。
应对策略:
1.针对学生理解不足的问题,及时进行个别辅导,强化勾股定理的知识点。
2.在小组合作中,加强组织和引导,确保每个学生都能积极参与。
(三)学习动机
为了激发学生的学习兴趣和动机,我将在教学中采取以下策略或活动:
1.创设生活情境,让学生感受勾股定理在实际生活中的应用,提高学生的学习兴趣。
2.设计有趣的数学游戏和小组竞赛,激发学生的学习积极性,培养学生的合作意识。
3.鼓励学生主动参与课堂讨论,引导学生发现勾股定理的规律,提高学生的自主学习能力。
(二)学习障碍
学生在学习本节课之前,具备的前置知识有:勾股定理的基本概念、证明方法以及一些简单的应用。可能存在的学习障碍有:
1.对勾股定理的理解不够深入,无法灵活运用勾股定理解决问题。
2.勾股数的辨识能力较弱,容易与其他三角形的三边关系混淆。
3.在解决实际问题时,不能将问题转化为数学模型,运用勾股定理进行求解。
4.创设问题情境,引导学生通过探究、合作交流等方式解决问题,让学生在解决问题中体验成功,增强学习信心。
5.结合学生的年龄特点和兴趣,运用多媒体教学手段,直观展示勾股定理的图形和实例,提高学生的学习兴趣和动机。
三、教学方法与手段
(一)教学策略
我将采用的主要教学方法包括:启发式教学法、探究式教学法和小组合作学习法。
(三)互动方式
我计划设计以下师生互动和生生互动环节,以促进学生的参与和合作:
1.师生互动:教师提问,学生回答;教师引导学生进行探究,给予指导和反馈。

最新人教版八年级下册数学十七章17.1勾股定理(第二课时)教学设计

最新人教版八年级下册数学十七章17.1勾股定理(第二课时)教学设计

17.1勾股定理(第二课时)【教学目标】1.进一步理解巩固勾股定理联系二次根式的计算2.运用勾股定理进行简单的计算【重点难点】重点:勾股定理的简单应用难点:勾股定理的应用【教学过程设计】【活动一】(一)介绍勾股定理与第一次数学危机:“一切数均可表成整数或整数之比”则是这一学派的数学信仰。

然而,具有戏剧性的是由毕达哥拉斯建立的毕达哥拉斯定理却成了毕达哥拉斯学派数学信仰的“掘墓人”。

毕达哥拉斯定理提出后,其学派中的一个成员希帕索斯考虑了一个问题:边长为1的正方形其对角线长度是多少呢?他发现这一长度既不能用整数,也不能用分数表示,而只能用一个新数来表示。

希帕索斯的发现导致了数学史上第一个无理数的诞生。

天真的希帕索斯无意中向别人谈到了他的发现,结果被杀害。

但根2很快就引起了数学思想的大革命。

科学史上把这件事称为“第一次数学危机”,也让数学向前大大发展了一步。

引入斜边长为无理数时勾股定理的应用。

【活动二】讲解例1一个门框的尺寸如图所示,一块长3m,宽2.2m的长方形薄木板能否从门框内通过?为什么?分析:可以看出,木板横着和竖着都不能通过,只能试着斜着通过师生活动:教师和学生共同完成练习:一个门框的尺寸如图所示,一块长4m,宽3m的薄木板(能或不能)从门框内通过.1m2m师生活动:学生板演,教师进行点评【活动三】例2 如图,一架2.6m长的梯子AB斜靠在一竖直的墙AO上,这时AO为2.4m,如果梯子的顶端A沿墙下滑0.5m,那么梯子底端B也外移动0.5m吗?师生活动:学生先思考如何解决这个问题教师讲解例题规范解题步骤【活动四】巩固提高完成书上26页练习题练习1 如图,池塘边有两点A,B,点C是与BA方向成直角的AC方向上一点,测得BC=60m,AC=20m,求A,B两点间的距离(结果取整数)2.在平面直角坐标系中有两点A(5,0)和B(0,4),求这两点之间的距离课堂小结1.本节课主要学习了哪些内容2.勾股定理如何应用到简单问题的解决中?作业1.复习本节课的内容2.完成练习册上的相关内容3.预习下节课内容板书设计课后反思。

人教版八年级数学下册第十七章勾股定理复习课程教学设计

人教版八年级数学下册第十七章勾股定理复习课程教学设计

《勾股定理小结》教案一、教学目标【知识与技能】1.掌握勾股定理,能应用勾股定理进行简单的计算和实际应用.2.掌握勾股定理的逆定理(直角三角形的判定方法),会运用勾股定理逆定理解决相关问题.【过程与方法】体验勾股定理的探索过程,经历观察——猜想——归纳——验证的数学发现过程,发展合情推理的能力,体会数形结合和由特殊到一般的数学思想.【情感态度与价值观】1.经历由情境引出问题,探索掌握有关数学知识,再运用于实践的过程,培养学数学、用数学的意识与能力.2.感受数学文化的价值和中国传统数学的成就,激发学生热爱祖国悠久文化的思想感情.二、教学分析【教材分析】本章的主要内容是勾股定理及勾股定理的应用,教材从实践探索入手,给学生创设学习情境,接着研究直角三角形的勾股定理,介绍勾股定理的逆定理(直角三角形的判定方法),最后介绍勾股定理及勾股定理逆定理的广泛应用.勾股定理是安排在学生学习了三角形、全等三角形、等腰三角形等有关知识之后,它反映了直角三角形三边之间一种美妙的数量关系,将数与形密切联系起来,是数形结合的典范,在几何学中占有非常重要的位置,在理论和实践上都有广泛的应用.勾股定理逆定理是判定一个三角形是不是直角三角形的一种古老而实用的方法.在“四边形”和“解直角三角形”相关章节中,勾股定理知识将得到更重要的应用.勾股定理及其逆定理是初中数学的重点内容之一。

【学生分析】学生刚刚学习完勾股定理这一章,对勾股定理及其逆定理有个大概的认识,但是,还没有综合运用。

学生分析问题、解决问题的能力还不是太理想。

许多学生不会审题、不会分析已知和未知条件,更不要说严密的推理。

三、教学重难点【重点】会灵活运用勾股定理进行计算及解决一些实际问题,掌握勾股定理的逆定理的内容及其证明过程,并会应用其解决一些实际问题.【难点】 掌握勾股定理的探索过程及适用范围,理解勾股定理及其逆定理.四、教学过程【概念复习】提问勾股定理及其逆定理(分别说出文字表达及几何表达形式)【知识点复习】知识点一 勾股定理的应用勾股定理:如果直角三角形的两条直角边长分别为a,b,斜边长为c,那么a 2+b 2=c 2要点解析:勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用:(1)已知直角三角形的两边求第三边(在ABC ∆中,90C ∠=︒,则c,b,a )(2)已知直角三角形的一边与另两边的关系,求直角三角形的另两边(3)利用勾股定理可以证明线段平方关系的问题典型例题 (1)在Rt △ABC ,∠C=90°,a=8,b=15,则c= .(2)在Rt △ABC ,∠B=90°,a=3,b=4,则c= .(3)如图,两个正方形的面积分别是64,49,则AC 的长为 .解析:(1)可根据题意画出图,c 为斜边,根据勾股定理(2)根据题意画出图,b 为斜边,c 为直角边,根据勾股定理此题,在牢记勾股定理公式的基础上,使学生更为清晰地认识到c 不仅仅代表斜边,必须根据题意具体分析。

第十七章-人教版勾股定理教案

第十七章-人教版勾股定理教案

第十七章勾股定理(一)教材所处的地位1、教材分析:本章是人教版《数学》八年级下册第17章,本章的主要内容是勾股定理及勾股定理的应用,教材从实践探索入手,给学生创设学习情境,接着研究直角三角形的勾股定理,介绍勾股定理的逆定理(直角三角形的判定方法),最后介绍勾股定理及勾股定理逆定理的广泛应用。

勾股定理是直角三角形的一个很重要的性质,反映了直角三角形三边之间的数量关系。

在理论和实践上都有广泛的应用。

勾股定理逆定理是判定一个三角形是不是直角三角形的一种古老而实用的方法。

在“四边形”和“解直角三角形”相关章节中,勾股定理知识将得到更重要的应用。

2、教材特点:①在呈现方式上,突出实践性与研究性。

(对勾股定理是通过问题引出加以探索认识的。

②突出学数学、用数学的意识与过程,勾股定理的应用尽量和实际问题联系起来。

③对实际问题的选取,注意联系学生的实际生活。

④注意扩大学生的知识面。

(本章安排了两个阅读材料和一个课题学习)⑤注意训练系统的科学性,减少操作性习题,增加探索性问题的比重。

(二)单元教学目标(包括情感目标)知识与技能目标:1、经历由情境引出问题,探索掌握有关数学知识,再运用于实践的过程,培养学数学、用数学的意识与能力。

2、体验勾股定理的探索过程,掌握勾股定理,会运用勾股定理解决相关问题。

3、掌握勾股定理的逆定理(直角三角形的判定方法),会运用勾股定理逆定理解决相关问题。

4、运用勾股定理及其逆宣解决简单的实际问题。

情感与态度目标:5、感受数学文化的价值和中国传统数学的成就,激发学生热爱祖国与热爱祖国悠久文化的思想感情。

(三)单元教学重难点教学重点:1、探索勾股定理并掌握勾股定理;2、直角三角形的判定方法(勾股定理的逆定理);3、勾股定理及其逆定理的应用;教学难点:1、从多个角度(代数、几何)探究勾股定理;2、勾股定理逆定理的应用;3、在勾股定理的应用过程中构造适用勾股定理的几何模型。

(四)单元教学策略1、教学步骤:①整个章节的教学可分四步:探索结论——验证结论——初步应用结论——应用结论解决实际问题。

新人教版八年级下数学精品教案:第十七章 勾股定理

新人教版八年级下数学精品教案:第十七章  勾股定理

17.1 勾股定理第1课时 勾股定1.经历探索及验证勾股定理的过程,体会数形结合的思想;(重点)2.掌握勾股定理,并运用它解决简单的计算题;(重点)3.了解利用拼图验证勾股定理的方法.(难点)一、情境导入如图所示的图形像一棵枝叶茂盛、姿态优美的树,这就是著名的毕达哥拉斯树,它由若干个图形组成,而每个图形的基本元素是三个正方形和一个直角三角形.各组图形大小不一,但形状一致,结构奇巧.你能说说其中的奥秘吗?二、合作探究探究点一:勾股定理【类型一】 直接运用勾股定理如图,在△ABC 中,∠ACB =90°,AB =13cm ,BC =5cm ,CD ⊥AB 于D ,求:(1)AC 的长;(2)S △ABC ;(3)CD 的长.解析:(1)由于在△ABC 中,∠ACB =90°,AB =13cm ,BC =5cm ,根据勾股定理即可求出AC 的长;(2)直接利用三角形的面积公式即可求出S △ABC ;(3)根据面积公式得到CD ·AB =BC ·AC 即可求出CD .解:(1)∵在△ABC 中,∠ACB =90°,AB =13cm ,BC =5cm ,∴AC =AB 2-BC 2=12cm ;(2)S △ABC =12CB ·AC =12×5×12=30(cm 2); (3)∵S △ABC =12AC ·BC =12CD ·AB ,∴CD =AC ·BC AB =6013cm. 方法总结:解答此类问题,一般是先利用勾股定理求出第三边,然后利用两种方法表示出同一个直角三角形的面积,然后根据面积相等得出一个方程,再解这个方程即可.【类型二】 分类讨论思想在勾股定理中的应用在△ABC 中,AB =15,AC =13,BC 边上的高AD =12,试求△ABC 的周长.解析:本题应分△ABC 为锐角三角形和钝角三角形两种情况进行讨论.解:此题应分两种情况说明:(1)当△ABC 为锐角三角形时,如图①所示.在Rt △ABD 中,BD =AB 2-AD 2=152-122=9.在Rt △ACD 中,CD =AC 2-AD 2=132-122=5,∴BC =5+9=14,∴△ABC 的周长为15+13+14=42;(2)当△ABC 为钝角三角形时,如图②所示.在Rt △ABD 中,BD =AB 2-AD 2=152-122=9.在Rt △ACD 中,CD =AC 2-AD 2=132-122=5,∴BC =9-5=4,∴△ABC 的周长为15+13+4=32.∴当△ABC 为锐角三角形时,△ABC 的周长为42;当△ABC 为钝角三角形时,△ABC 的周长为32.方法总结:解题时要考虑全面,对于存在的可能情况,可作出相应的图形,判断是否符合题意.【类型三】 勾股定理的证明探索与研究:方法1:如图:对任意的符合条件的直角三角形ABC 绕其顶点A 旋转90°得直角三角形AED ,所以∠BAE =90°,且四边形ACFD 是一个正方形,它的面积和四边形ABFE 的面积相等,而四边形ABFE 的面积等于Rt △BAE 和Rt △BFE 的面积之和.根据图示写出证明勾股定理的过程;方法2:如图:该图形是由任意的符合条件的两个全等的Rt △BEA 和Rt △ACD 拼成的,你能根据图示再写出一种证明勾股定理的方法吗?解析:方法1:根据四边形ABFE 面积等于Rt △BAE 和Rt △BFE 的面积之和进行解答;方法2:根据△ABC 和Rt △ACD 的面积之和等于Rt △ABD 和△BCD 的面积之和解答.解:方法1:S 正方形ACFD =S 四边形ABFE =S △BAE +S △BFE ,即b 2=12c 2+12(b +a )(b -a ),整理得2b 2=c 2+b 2-a 2,∴a 2+b 2=c 2;方法2:此图也可以看成Rt △BEA 绕其直角顶点E 顺时针旋转90°,再向下平移得到.∵S四边形ABCD =S △ABC +S △ACD ,S 四边形ABCD =S △ABD +S △BCD ,∴S △ABC +S △ACD =S △ABD +S △BCD ,即12b 2+12ab =12c 2+12a (b -a ),整理得b 2+ab =c 2+a (b -a ),b 2+ab =c 2+ab -a 2,∴a 2+b 2=c 2. 方法总结:证明勾股定理时,用几个全等的直角三角形拼成一个规则的图形,然后利用大图形的面积等于几个小图形的面积和化简整理证明勾股定理.探究点二:勾股定理与图形的面积如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A 、B 、C 、D 的面积分别为2,5,1,2.则最大的正方形E 的面积是________.解析:根据勾股定理的几何意义,可得正方形A 、B 的面积和为S 1,正方形C 、D 的面积和为S 2,S 1+S 2=S 3,即S 3=2+5+1+2=10.故答案为10.方法总结:能够发现正方形A 、B 、C 、D 的边长正好是两个直角三角形的四条直角边,根据勾股定理最终能够证明正方形A 、B 、C 、D 的面积和即是最大正方形的面积.三、板书设计1.勾股定理如果直角三角形的两条直角边长分别为a ,b ,斜边长为c ,那么a 2+b 2=c 2.2.勾股定理的证明“赵爽弦图”、“刘徽青朱出入图”、“詹姆斯·加菲尔德拼图”、“毕达哥拉斯图”.3.勾股定理与图形的面积课堂教学中,要注意调动学生的积极性.让学生满怀激情地投入到学习中,提高课堂效率.勾股定理的验证既是本节课的重点,也是本节课的难点,为了突破这一难点,设计一些拼图活动,并自制精巧的课件让学生从形上感知,再层层设问,从面积(数)入手,师生共同探究突破本节课的难点.第2课时 勾股定理的应用1.熟练运用勾股定理解决实际问题;(重点)2.掌握勾股定理的简单应用,探究最短距离问题.(难点)一、情境导入如图,在一个圆柱石凳上,若小明在吃东西时留下了一点食物在B 处,恰好一只在A 处的蚂蚁捕捉到这一信息,于是它想从A 处爬向B 处,你们想一想,蚂蚁怎么走最近?二、合作探究探究点一:勾股定理的实际应用【类型一】 勾股定理在实际问题中的应用如图,在离水面高度为5米的岸上,有人用绳子拉船靠岸,开始时绳子BC 的长为13米,此人以0.5米每秒的速度收绳.问6秒后船向岸边移动了多少米(假设绳子始终是直的,结果保留根号)?解析:开始时,AC =5米,BC =13米,即可求得AB 的值,6秒后根据BC ,AC 长度即可求得AB 的值,然后解答即可.解:在Rt △ABC 中,BC =13米,AC =5米,则AB =BC 2-AC 2=12米.6秒后,B ′C =13-0.5×6=10米,则AB ′=B ′C 2-AC 2=53(米),则船向岸边移动的距离为(12-53)米.方法总结:本题直接考查勾股定理在实际生活中的运用,可建立合理的数学模型,将已知条件转化到同一直角三角形中求解.【类型二】 利用勾股定理解决方位角问题如图所示,在一次夏令营活动中,小明坐车从营地A 点出发,沿北偏东60°方向走了1003km 到达B 点,然后再沿北偏西30°方向走了100km 到达目的地C 点,求出A 、C 两点之间的距离.解析:根据所走的方向可判断出△ABC 是直角三角形,根据勾股定理可求出解.解:∵AD ∥BE ,∴∠ABE =∠DAB =60°.∵∠CBF =30°,∴∠ABC =180°-∠ABE -∠CBF =180°-60°-30°=90°.在Rt △ABC 中,AB =1003km ,BC =100km ,∴AC =AB 2+BC 2=(1003)2+1002=200(km),∴A 、C 两点之间的距离为200km.方法总结:先确定△ABC 是直角三角形,再根据各边长,用勾股定理可求出AC 的长.【类型三】 利用勾股定理解决立体图形最短距离问题如图,长方体的长BE =15cm ,宽AB =10cm ,高AD =20cm ,点M 在CH 上,且CM =5cm ,一只蚂蚁如果要沿着长方体的表面从点A 爬到点M ,需要爬行的最短距离是多少?解:分两种情况比较最短距离:如图①所示,蚂蚁爬行最短路线为AM ,AM =102+(20+5)2=529(cm),如图②所示,蚂蚁爬行最短路线为AM ,AM =202+(10+5)2=25(cm).∵529>25,∴第二种短些,此时最短距离为25cm.答:需要爬行的最短距离是25cm.方法总结:因为长方体的展开图不止一种情况,故对长方体相邻的两个面展开时,考虑要全面,不要有所遗漏.不过要留意展开时的多种情况,虽然看似很多,但由于长方体的对面是相同的,所以归纳起来只需讨论三种情况:前面和右面展开,前面和上面展开,左面和上面展开,从而比较取其最小值即可.【类型四】 运用勾股定理解决折叠中的有关计算如图,四边形ABCD 是边长为9的正方形纸片,将其沿MN 折叠,使点B 落在CD 边上的B ′处,点A 的对应点为A ′,且B ′C =3,则AM 的长是( )A .1.5B .2C .2.25D .2.5解析:连接BM ,MB ′.设AM =x ,在Rt △ABM 中,AB 2+AM 2=BM 2.在Rt △MDB ′中,MD 2+DB ′2.∵MB =MB ′,∴AB 2+AM 2=BM 2=B ′M 2=MD 2+DB ′2,即92+x 2=(9-x )2+(9-3)2,解得x=2,即AM =2.故选B.方法总结:解题的关键是设出适当的线段的长度为x ,然后用含有x 的式子表示其他线段,然后在直角三角形中利用勾股定理列方程解答.【类型五】 勾股定理与方程思想、数形结合思想的应用如图,在树上距地面10m的D处有两只猴子,它们同时发现地面上C处有一筐水果,一只猴子从D处向上爬到树顶A处,然后利用拉在A处的滑绳AC滑到C处,另一只猴子从D处先滑到地面B,再由B跑到C,已知两猴子所经过的路程都是15m,求树高AB.解析:在Rt△ABC中,∠B=90°,则满足AB2+BC2=AC2.设BC=a m,AC=b m,AD =x m,根据两只猴子经过的路程一样可列方程组,从而求出x的值,即可计算树高.解:在Rt△ABC中,∠B=90°,设BC=a m,AC=b m,AD=x m.∵两猴子所经过的路程都是15m,则10+a=x+b=15m.∴a=5,b=15-x.又∵在Rt△ABC中,由勾股定理得(10+x)2+a2=b2,∴(10+x)2+52=(15-x)2,解得x=2,即AD=2米.∴AB=AD+DB=2+10=12(米).答:树高AB为12米.方法总结:勾股定理表达式中有三个量,如果条件中只有一个己知量,通常需要巧设未知数,灵活地寻找题中的等量关系,然后利用勾股定理列方程求解.探究点二:勾股定理与数轴如图所示,数轴上点A所表示的数为a,则a的值是()A.5+1 B.-5+1C.5-1D. 5解析:先根据勾股定理求出三角形的斜边长,再根据两点间的距离公式即可求出A点的坐标.图中的直角三角形的两直角边为1和2,∴斜边长为12+22=5,∴-1到A的距离是 5.那么点A所表示的数为5-1.故选C.方法总结:本题考查的是勾股定理及两点间的距离公式,解答此题时要注意,确定点A 的位置,再根据A的位置来确定a的值.三、板书设计1.勾股定理的应用方位角问题;路程最短问题;折叠问题;数形结合思想.2.勾股定理与数轴本节课充分锻炼了学生动手操作能力、分类比较能力、讨论交流能力和空间想象能力,让学生充分体验到了数学思想的魅力和知识创新的乐趣,突现教学过程中的师生互动,使学生真正成为主动学习者.17.2 勾股定理的逆定理第1课时 勾股定理的逆定理1.能利用勾股定理的逆定理判定一个三角形是否为直角三角形;(重点)2.灵活运用勾股定理及其逆定理解决问题;(难点)3.理解原命题、逆命题、逆定理的概念及关系.(重点)一、情境导入古埃及人曾经用下面的方法画直角:将一根长绳打上等距离的13个结,然后用桩钉成一个三角形(如图),他们认为其中一个角便是直角.你知道这是什么道理吗?二、合作探究探究点一:勾股定理的逆定理【类型一】 判断三角形的形状如图,正方形网格中的△ABC ,若小方格边长为1,则△ABC 的形状为( )A .直角三角形B .锐角三角形C .钝角三角形D .以上答案都不对解析:∵正方形小方格边长为1,∴BC =52+52=52,AC =32+32=32,AB =22+82=68.在△ABC 中,∵BC 2+AC 2=50+18=68,AB 2=68,∴BC 2+AC 2=AB 2,∴△ABC 是直角三角形.故选A.方法总结:要判断一个角是不是直角,可构造出三角形,然后求出三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.【类型二】 利用勾股定理的逆定理证明垂直关系如图,已知在正方形ABCD 中,AE =EB ,AF=14AD .求证:CE ⊥EF .解析:根据题设提供的信息,可将需证明垂直关系的两条线段转化到同一直角三角形中,运用勾股定理的逆定理进行证明.证明:连接CF .设正方形的边长为4,∵四边形ABCD 为正方形,∴AB =BC =CD =DA=4.∵点E 为AB 中点,AF =14AD ,∴AE =BE =2,AF =1,DF =3.由勾股定理得EF 2=12+22=5,EC 2=22+42=20,FC 2=42+32=25.∵EF 2+EC 2=FC 2,∴△CFE 是直角三角形,且∠FEC =90°,即EF ⊥CE .方法总结:利用勾股定理的逆定理可以判断一个三角形是否为直角三角形,所以此定理也是判定垂直关系的一个主要的方法.【类型三】 勾股数判断下列几组数中,一定是勾股数的是( )A .1,2,3B .8,15,17C .7,14,15 D.35,45,1 解析:选项A 不是,因为2和3不是正整数;选项B 是,因为82+152=172,且8、15、17是正整数;选项C 不是,因为72+142≠152;选项D 不是,因为35与45不是正整数.故选B.方法总结:勾股数必须满足:①三个数必须是正整数,例如:2.5、6、6.5满足a 2+b 2=c 2,但是它们不是正整数,所以它们不是勾股数;②一组勾股数扩大相同的整数倍得到三个数仍是一组勾股数.【类型四】 运用勾股定理的逆定理解决面积问题如图,在四边形ABCD 中,∠B =90°,AB =8,BC =6,CD =24,AD =26,求四边形ABCD 的面积.解析:连接AC ,根据已知条件可求出AC ,再运用勾股定理可证△ACD 为直角三角形,然后可分别求出两个直角三角形的面积,两者面积相加即为四边形ABCD 的面积.解:连接AC .∵∠B =90°,∴△ABC 为直角三角形,∴AC 2=AB 2+BC 2=82+62=102,∴AC =10.在△ACD 中,∵AC 2+CD 2=100+576=676,AD 2=262=676,∴AC 2+CD 2=AD 2,∴△ACD 为直角三角形,且∠ACD =90°.∴S 四边形ABCD =S △ABC +S △ACD =12×6×8+12×10×24=144.方法总结:将求四边形面积的问题可转化为求两个直角三角形面积和的问题,解题时要利用题目信息构造出直角三角形,如角度,三边长度等.探究点二:互逆命题与互逆定理写出下列各命题的逆命题,并判断其逆命题是真命题还是假命题.(1)两直线平行,同旁内角互补;(2)在同一平面内,垂直于同一条直线的两直线平行;(3)相等的角是内错角;(4)有一个角是60°的三角形是等边三角形.解析:求一个命题的逆命题时,分别找出各命题的题设和结论将其互换即可得原命题的逆命题.解:(1)同旁内角互补,两直线平行,真命题;(2)如果两条直线平行,那么这两条直线垂直于同一条直线(在同一平面内),真命题;(3)内错角相等,假命题;(4)等边三角形有一个角是60°,真命题.方法总结:判断一个命题是真命题需要进行逻辑推理,判断一个命题是假命题只需要举出反例即可.三、板书设计1.勾股定理的逆定理及勾股数如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.2.互逆命题与互逆定理在本课时教学过程中,应以师生共同探讨为主.激励学生回答问题,激发学生的求知欲.课堂上师生互动频繁,既保证课堂教学进度,又提高课堂学习效率.学生在探讨过程中也加深了对知识的理解和记忆.第2课时勾股定理的逆定理的应用1.进一步理解勾股定理的逆定理;(重点)2.灵活运用勾股定理及逆定理解决实际问题.(难点)一、情境导入某港口位于东西方向的海岸线上,“远望号”“海天号”两艘轮船同时离开港口,各自沿一固定的方向航行,“远望号”每小时航行16海里,“海天号”每小时航行12海里,它们离开港口1个半小时后相距30海里,如果知道“远望号”沿东北方向航行,能知道“海天号”沿哪个方向航行吗?二、合作探究探究点:勾股定理的逆定理的应用【类型一】运用勾股定理的逆定理求角度如图,已知点P是等边△ABC内一点,P A=3,PB=4,PC=5,求∠APB的度数.解析:将△BPC绕点B逆时针旋转60°得△BEA,连接EP,判断△APE为直角三角形,且∠APE=90°,即可得到∠APB的度数.解:∵△ABC为等边三角形,∴BA=BC.可将△BPC绕点B逆时针旋转60°得△BEA,连EP,∴BE=BP=4,AE=PC=5,∠PBE=60°,∴△BPE为等边三角形,∴PE=PB=4,∠BPE=60°.在△AEP中,AE=5,AP=3,PE=4,∴AE2=PE2+P A2,∴△APE为直角三角形,且∠APE=90°,∴∠APB=90°+60°=150°.方法总结:本题考查了等边三角形的判定与性质以及勾股定理的逆定理.解决问题的关键是根据题意构造△APE为直角三角形.【类型二】运用勾股定理的逆定理求边长在△ABC中,D为BC边上的点,AB=13,AD=12,CD=9,AC=15,求BD的长.解析:根据勾股定理的逆定理可判断出△ACD为直角三角形,即∠ADC=∠ADB=90°.在Rt△ABD中利用勾股定理可得出BD的长度.解:∵在△ADC中,AD=12,CD=9,AC=15,∴AC2=AD2+CD2,∴△ADC是直角三角形,∠ADC=∠ADB=90°,∴△ADB是直角三角形.在Rt△ADB中,∵AD=12,AB =13,∴BD=AB2-AD2=5,∴BD的长为5.方法总结:解题时可先通过勾股定理的逆定理证明一个三角形是直角三角形,然后再进行转化,最后求解,这种方法常用在解有公共直角或两直角互为邻补角的两个直角三角形的图形中.【类型三】勾股定理逆定理的实际应用如图,是一农民建房时挖地基的平面图,按标准应为长方形,他在挖完后测量了一下,发现AB=DC=8m,AD=BC=6m,AC=9m,请你运用所学知识帮他检验一下挖的是否合格?解析:把实际问题转化成数学问题来解决,运用直角三角形的判别条件,验证它是否为直角三角形.解:∵AB=DC=8m,AD=BC=6m,∴AB2+BC2=82+62=64+36=100.又∵AC2=92=81,∴AB2+BC2≠AC2,∴∠ABC≠90°,∴该农民挖的不合格.方法总结:解答此类问题,一般是根据已知的数据先运用勾股定理的逆定理判断一个三角形是否是直角三角形,然后再作进一步解答.【类型四】运用勾股定理的逆定理解决方位角问题第 11 页 共 11 页如图,南北向MN 为我国领海线,即MN 以西为我国领海,以东为公海,上午9时50分,我国反走私A 艇发现正东方有一走私艇以13海里/时的速度偷偷向我领海开来,便立即通知正在MN 线上巡逻的我国反走私艇B 密切注意.反走私艇A 和走私艇C 的距离是13海里,A 、B 两艇的距离是5海里;反走私艇B 测得距离C 艇12海里,若走私艇C 的速度不变,最早会在什么时候进入我国领海?解析:已知走私船的速度,求出走私船所走的路程即可得出走私船所用的时间,即可得出走私船何时能进入我国领海.解题的关键是得出走私船所走的路程,根据题意,CE 即为走私船所走的路程.由题意可知,△ABE 和△ABC 均为直角三角形,可分别解这两个直角三角形即可得出.解:设MN 与AC 相交于E ,则∠BEC =90°.∵AB 2+BC 2=52+122=132=AC 2,∴△ABC 为直角三角形,且∠ABC =90°.∵MN ⊥CE ,∴走私艇C 进入我国领海的最短距离是CE .由S △ABC =12AB ·BC =12AC ·BE ,得BE =6013海里.由CE 2+BE 2=122,得CE =14413海里,∴14413÷13=144169≈0.85(小时)=51(分钟),9时50分+51分=10时41分. 答:走私艇C 最早在10时41分进入我国领海.方法总结:用数学几何知识解决实际问题的关键是建立合适的数学模型,注意提炼题干中的有效信息,并转化成数学语言.三、板书设计1.利用勾股定理逆定理求角的度数2.利用勾股定理逆定理求线段的长3.利用勾股定理逆定理解决实际问题在本节课的教学活动中,尽量给学生充足的时间和空间,让学生以平等的身份参与到学习活动中去,教师要帮助、指导学生进行实践活动,这样既锻炼了学生的实践、观察能力,又在教学中渗透了人文和探究精神,体现了“数学源于生活、寓于生活、用于生活”的教育思想.。

(新人教版)数学八年级下册 第十七章 勾股定理 单元复习讲义学案

(新人教版)数学八年级下册 第十七章 勾股定理 单元复习讲义学案

人教版初中数学八年级下册第十七章句股定理章节复习教学设计一、教学目标z1.复习与回顾本擎的重要知识点;2.勾股定理及其逆定理的用途和相互关系;3.总结本章的重要思想方法及其应用;4.勾股定理及逆定理的综合运用.二、教学过程z 知识网络如果直角三角形的两条直角边长分别为a,b ,斜边长为c ,那么①a 2+bi=ι,l .句股定理的变式:(l)c=乓亏V;(2)a 2=c 2-旷;(3)b 2=C 2-a 2; ( 4 )a =正亡,T;(5)b=lc 亡歹.实际问题| ||二二二二|勾股定理(直角三角形边长的计算)'逆命题实际问题||勾股定理(判定直角三角形)|←一一一一|的逆定理知识梳理一、勾股定理已知直角三角形中的任意两边,均可求出第三边长;已知直角三角形的一边,可确定另两边的数量关系;证明含平方关系的问题等.如果三角形的三边长α,b,c 满足②α2+b 2=/,那么这个三角形是直角三角形.勾股定理:如果直角三角形的两条直角边长分别为a,b,斜边长为c,那么a 2+b 2=c 2.两直角边的平方和等于斜边的平方.a:勾般因因回回a i +b i =c 2 c =U 工b2a 2=c 2-b 2 a =♂习Tb 2=c 2-a 2b =Jcf"习二、句股定理的实际应用利用勾股定理解决实际问题的一般步骤:(l)读懂题意,分析己知、未知间的关系;(2)构造直角三角形;(3)利用勾股定理等列方程;(4)解决实际问题.转T也题进臼川构’学l l l E ’我旬欣纯理利用三、利用句股定理表示无理数的方法:(1)利用勾股定理把一个无理数表示成直角边是两个正整数的直角三角形的斜边.(2)以原点为圆心,以无理数斜边长为半径画弧与数轴存在交点,在原点左边的点表示是负无理数,在原点右边的点表示是正无理数.l i-2-1IA2--1 o 1 2s : 4类似地,利用勾股定理,可以作出长为-./2,飞/言,-./5,…的线段按照同样方法,可以在数轴上画出表示飞斤,d ,飞/言,{'ii,-./5,…的点A一-··四、折叠问题中结合勾股定理求线段长的方法:(I)设一条未知线段的长为x(一般设所求线段的长为x); (2)用已失I]线数或含x的代数式表示出其他线段长;(3)在一个直角三角形中应用勾股定理列出一个关于x的方程;(4)解这个方程,从而求出所求线段长.c AB五、原命题与逆命题'-l唾晦哩,也DEc题设和结论正好相反的两个命题,叫做互逆命题,其中一个叫做原命题,另一个叫做原命题的逆命题.一般地,原命题成立时,它的逆命题既可能成立,也可能不成立.如果一个定理的逆命题经过证明是正确的,那么它也是一个定理,我们称这两个定理互为逆定理勾股定理与勾股定理的逆定理为互逆定理.六、勾股定理的逆定理勾股定理的逆定理:如果三角形的三边长a,b, c满足矿+b2=c2,那么这个三角形是直角三角形AbB c七、句股数如果三角形的三边长a,b, c满足a2+b2=c2那么这个三角形是直角三角形.满足a2+b2=c2的三个正整数,称为勾股数固回回因因常见勾股数:3.4, 5; 6, 8, 10; 5, l2, l3; 8, 15, l7; 7, 24, 25等等.回国团团团回因一组勾股数,都扩大相同倍数k(k为正整数),得到一组新数,这组数同样是勾股数.如:3, 4, 5; 6, 8, 10: 9, 12, 15; 12, 16, 20…考点梳理考点解析考点1:句股定理的简单应用例1.在Rt.6.ABC中,LC=90。

八年级数学下册 第十七章 勾股定理说课稿 (新版)新人教版 教案

八年级数学下册 第十七章 勾股定理说课稿 (新版)新人教版 教案

勾股定理17.1勾股定理说课稿(模版一)一、教材分析(一)教材所处的地位及作用:勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系,它可以解决直角三角形中的计算问题,是解直角三角形的主要根据之一,在实际生活中用途也很大。

它在数学的发展中起过重要的作用。

学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。

(二)学情分析:前面,学生已具备一些平面几何的知识,能够进行一般的推理和论证,但如何通过面积法(拼图法)证明勾股定理,学生对这种解决问题的途径还比较陌生,存在一定的难度,因此,我采用多媒体等手段进行直观教学,让学生动手、动口、动脑,化难为易,深入浅出,让学生感受学习知识的乐趣。

(三)教学目标:1、知识与能力:了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理;2、过程与方法:经历“观察—猜想—归纳—验证”的数学发现过程,发展合情合理的推理能力,沟通数学知识之间的内在联系,体会“数形结合”和“特殊到一般”的思想方法。

3、情感态度与价值观:通过介绍中国古代研究勾股定理的成就,激发学生的爱国热情,感受数学文化,激发学生学习的热情。

(三)教学重点、难点:教学重点:探索和掌握勾股定理;教学难点:用面积法(拼图法)证明勾股定理二、教法分析:针对八年级学生的知识结构和心理特征,本节课可选择引导探索法,由浅入深,由特殊到一般地提出问题。

引导学生自主探索,合作交流,这种教学理念反映了时代精神,有利于提高学生的思维能力,能有效地激发学生的思维积极性。

三、学法分析:在教师的组织引导下,学生采用自主探究、合作交流的研讨式学习方式,获取知识,掌握方法,借此培养学生动手、动脑、动口的能力,使学生真正成为学习的主人.四、教学过程设计:(一)回顾交流:通过回顾交流让学生复习直角三角形的相关性质,设疑其三边有何关系,为引入勾股定理奠定基础。

(二)图片欣赏:通过图片欣赏,感受数学美,感受勾股定理的文化价值.以激发学生的学习欲望。

人教版数学八年级下册第十七章勾股定理说课稿

人教版数学八年级下册第十七章勾股定理说课稿
(2)将勾股定理应用于实际问题,需要学生能够灵活运用所学知识,建立数学模型。
(3)在解决直角三角形问题时,如何引导学生发现并运用勾股定理,是教学中的难点。
二、学情分析
(一)学生特点
本节课所面向的学生为八年级学生,他们正处于青春期,具有以下特点:首先,年龄特征上,他们好奇心强,思维活跃,具有一定的抽象思维能力,但仍然需要具体形象的支撑。其次,在认知水平上,学生已经掌握了平面几何的基本知识,具备了一定的逻辑推理和空间想象能力。在学习兴趣上,学生对新知识充满好奇,但可能对理论性较强的内容感到枯燥。在学习习惯上,学生可能习惯于机械记忆,缺乏深度思考和探究的习惯。
(二)新知讲授
在新知讲授阶段,我将按照以下步骤逐步呈现知识点:
1.首先介绍勾股定理的定义,通过直观的图形展示,让学生理解直角三角形两条直角边与斜边之间的关系。
2.接着,通过几何画板的动态演示,让学生观察直角三角形的变化,并引导学生发现无论三角形大小如何变化,勾股定理始终成立。
3.然后,我会提供几种不同的证明方法,包括几何拼贴法、代数法等,让学生在理解定理的同时,也了解不同的证明思路。
主要知识点包括:
1.勾股定理的定义及表述。
2.勾股定理的证明方法。
3.勾股定理的应用,包括解决直角三角形中的问题以及实际生活中的应用。
(二)教学目标
1.知识与技能目标:
(1)使学生掌握勾股定理的定义、表述及证明方法。
(2)培养学生运用勾股定理解决直角三角形中的问题,能够熟练运用勾股定理进行计算和证明。
板书的主要内容包括勾股定理的表述、证明步骤、应用案例以及相关的数学公式。风格上,我会使用简洁明了的文字和图表,以及不同颜色的粉笔来区分不同类别的内容,增强视觉效果。
板书在教学过程中的作用是提供结构化的信息,帮助学生理解和记忆。为确保板书清晰简洁,我会提前规划板书内容,避免过度拥挤,并在教学过程中适时擦拭不必要的部分,保持板书的整洁。同时,我会用箭头和编号来指示逻辑关系,帮助学生把握知识结构。

新人教版八年级数学下册《十七章 勾股定理 小结 构建知识体系》教案_5

新人教版八年级数学下册《十七章 勾股定理  小结  构建知识体系》教案_5

4.判断三边分别是下列各数的 ΔABC 是否为直角三角形,若是请指出斜边的长。
(1) 5 , 3 , 4.
(2) 3, 4, 5
5. 勾股定理与逆定理互为互逆定理。那么“对顶角相等”的逆命题是: 。是真命题吗?
三、中考 考点
考点一、已知两边求第三边
(1)已知:直角三角形的三边长分别是 3,4,X,则 X=
互逆命题: 两个命题中, 如果第一个命题的题设是第二个命题的结论, 而第一个命题的
结论又是第二个命题的题设,那么这两个命题叫做互逆命题. 如果把其中一个叫做原命题, 那么另一个叫做它的逆命题.
互逆定理: 如果一个定理的逆命题经过证明是真命题, 那么它也是一个定理, 这两 个定理叫做互逆定理, 其中一个叫做另一个的逆定理.
布置
五、板书 设计
第 18 章小结与复习
Rt△ 直角边 a、b, 斜边 c

Rt△
a2+b2=c2



a2+b2=c2

题 三边 a、b、c
五、课后 反思
成功之处: 1. 让学生自己绘制知识网络图,进一步体会本章所学知识之间的前后联系,并培 养了学生这方面的能力。 3. 设计的题目既考察了对基本知识的掌握情况,又注重了综合课的特点,注重对 所学知识的综合利用。 不足之处: 1. 设计题目多,不够精,时间紧,没能按时完成。 2、贪大求全,没有练习重点题型,应该分层复习。基础差的从基础复习,基础好 的做难度较大的题型.
5
B
C
20
A 10 15
课后探究: 1.图示是一种“羊头”形图案,其作法是,从正方形 1 开始,以它的一边为
斜边,向外作等腰直角三角形,然后再以其直角边为边,分别向外作正方形 2, 和 2′,…,依次类推,若正方形 7 的边长为 1cm,则正方形 1 的边长为__________cm.

人教版数学八年级下册第十七章《数学活动——勾股定理的应用及其证明方法的探究》教学设计

人教版数学八年级下册第十七章《数学活动——勾股定理的应用及其证明方法的探究》教学设计

人教版数学八年级下册第十七章《数学活动——勾股定理的应用及其证明方法的探究》教学设计一. 教材分析人教版数学八年级下册第十七章《数学活动——勾股定理的应用及其证明方法的探究》主要包括勾股定理的发现、证明及应用。

本章通过探究勾股定理的证明方法,让学生加深对勾股定理的理解,提高运用勾股定理解决实际问题的能力。

教材内容丰富,既有理论探究,又有实践操作,旨在培养学生的动手操作能力、观察能力及创新能力。

二. 学情分析学生在之前的学习中已经掌握了勾股定理的基本知识,但对勾股定理的证明方法了解不多。

本章内容有利于拓展学生对数学知识的理解,提高学生解决实际问题的能力。

在学习过程中,学生需要动手操作,观察分析,合作交流,从而更好地理解勾股定理的证明方法及其应用。

三. 教学目标1.理解勾股定理的证明方法,提高运用勾股定理解决实际问题的能力。

2.培养学生的动手操作能力、观察能力及创新能力。

3.增强学生对数学知识的兴趣,提高学生的数学素养。

四. 教学重难点1.教学重点:勾股定理的证明方法及其应用。

2.教学难点:不同证明方法的推导过程及运用。

五. 教学方法1.情境教学法:通过设置具体情境,激发学生的学习兴趣,提高学生运用勾股定理解决实际问题的能力。

2.探究式教学法:引导学生动手操作,观察分析,合作交流,从而掌握勾股定理的证明方法。

3.案例教学法:分析实际问题,让学生学会将理论知识应用于实际情境中。

六. 教学准备1.准备相关教学素材,如图片、视频、PPT等。

2.准备实验器材,如直尺、三角板、绳子等。

3.提前布置学生预习本章内容,了解勾股定理的证明方法。

七. 教学过程1.导入(5分钟)利用PPT展示勾股定理的实例,如古代建筑、现代科技等,引导学生思考勾股定理在实际生活中的应用。

2.呈现(10分钟)介绍勾股定理的证明方法,如几何画板、三角板等,让学生直观地了解证明过程。

3.操练(10分钟)分组进行实验,让学生动手操作,验证勾股定理。

人教版八年级数学下册第十七章勾股定理小结(教案)

人教版八年级数学下册第十七章勾股定理小结(教案)
人教版八年级数学下册第十七章勾股定理小结(教案)
一、教学内容
人教版八年级数学下册第十七章勾股定理小结:
1.勾股定理的概念及表述;
2.勾股定理的证明方法(几何法和代数法);
3.勾股数及其性质;
4.勾股定理在实际问题中的应用;
5.勾股定理与相似三角形、锐角三角函数的联系。
二、核心素养目标
1.培养学生运用勾股定理解决实际问题的能力,提高数学应用意识;
在小组讨论中,我努力扮演好引导者的角色,尽量提出一些启发性的问题,引导学生发现问题、分析问题并解决问题。但从学生的反馈来看,部分学生在解决问题的过程中仍然显得有些迷茫,这让我认识到,在今后的教学中,我要更加关注学生的个体差异,针对性地给予指导。
-对于勾股数的识别,学生可能会局限于整数勾股数的认识,难以推广到分数或小数勾股数,教师需要提供更多例子,拓展学生的认知范围;
-在实际问题中应用勾股定理时,学生可能难以将问题转化为数学模型,教师应引导学生分析问题,明确已知和未知量,建立方程;
-对于勾股定理与其他数学知识的联系,学生可能难以自主发现,教师需要设计相关练习和讨论活动,帮助学生建立知识网络。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《勾股定理小结》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算直角三角形斜边长度的情况?”(如测量国旗杆的高度等)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索勾股定理的奥秘。
3.重点难点解析:在讲授过程中,我会特别强调勾股定理的表述和证明这两个重点。对于难点部分,如几何法和代数法的证明过程,我会通过举例和比较来帮助大家理解。

人教版数学八年级下册第十七章《勾股定理》【教案】勾股定理

人教版数学八年级下册第十七章《勾股定理》【教案】勾股定理
意图:练习第1题是勾股定理的直接运用,意在巩固基础知识.
效果:例题和练习第2题是实际应用问题,体现了数学来源于生活,又服务于生活,意在培养学生“用数学”的意识.运用数学知识解决实际问题是数学教学的重要内容.
第四环节:课堂小结
内容:
教师提问:
1.这一节课我们一起学习了哪些知识和思想方法?
2.对这些内容你有什么体会?与同伴进行交流.
方法二:
如图2,在正方形C外补四个全等的直角三角形,形成大正方形,用大正方形的面积减去四个直角三角形的面积, .
方法三:
如图3,正方形C中除去中间5个小正方形外,将周围部分适当拼接可成为正方形,如图3中两块红色(或两块绿色)部分可拼成一个小正方形,按此拼法, .
(4)分析填表的数据,你发现了什么?
学生通过分析数据,归纳出:
勾股定理
一、学生起点分析
八年级学生已经具备一定的观察、归纳、探索和推理的能力.在小学,他们已学习了一些几何图形面积的计算方法(包括割补法),但运用面积法和割补思想解决问题的意识和能力还远远不够.部分学生听说过“勾三股四弦五”,但并没有真正认识什么是“勾股定理”.此外,学生普遍学习积极性较高,探究意识较强,课堂活动参与较主动,但合作交流能力和探究能力有待加强.
4.在探索勾股定理的过程中,体验获得成功的快乐;通过介绍勾股定理在中国古代的研究,激发学生热爱祖国,热爱祖国悠久文化历史,激励学生发奋学习.
三、教学过程设计
本节课设计了五个教学环节:第一环节:创设情境,引入新课;第二环节:探索发现勾股定理;第三环节:勾股定理的简单应用;第四环节:课堂小结;第五环节:布置作业.
效果:学生进一步加强对本课知识的理解和掌握.
五、教学设计反思
(一)设计理念
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十七章勾股定理
教学目标:
知识与技能:掌握直角三角形的边角之间分别存在着的关系,熟练运用直角三角形的勾股定理和其他性质解决实际问题.过程与方法:经历复习勾股定理的过程,体会勾股定理的内涵,掌握勾股定理及逆定理的应用.
情感态度与价值观:培养学生数形结合、化归的数学思想,体会勾股定理的应用价值.
重点、难点、关键:
重点:熟练运用勾股定理及其逆定理.
难点:正确运用勾股定理及其逆定理.
关键:运用数形结合的思想,将问题化归到能够应用勾股定理(逆定理)的路上来.
教学准备:
教师准备:投影仪,补充资料.
学生准备:写一份单元复习小结.
教学过程:
一、勾股定理的应用
勾股定理:Rt△ABC中,∠C=90°,a2+b2=c2.
勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用有:
题型一、勾股定理的直接应用
(一)已知直角三角形的两边求第三边;已知一边一角,求另两边。

练习:
1.已知在△ABC 中,∠B =90°,一直角边为a,斜边为b,则另一直角边c满足c2 = ()
2.在Rt△ABC中,∠C=90°.
(1)如果a=3,b=4,则c=();
(2)如果a=6,c=10,则b=();
(3)如果c=13,b=12,则a=();
(4)已知b=3,∠A=30°,求a,c.
(二)已知直角三角形的一边与另两边的关系。

求直角三角形的另两边
练习:
1.如图,已知在△ABC 中,∠B =90°,若BC=4 , AB=x ,AC=8-x,则AB=(),AC=() .
2.在Rt△ABC 中,∠B=90°,b=34,a:c=8:15,则a=(),c=()
3.(选做题)在Rt△ABC中,∠C=90°,若a=12,c-b=8,求b,c.
题型二、会用勾股定理解决较综合的问题
1.证明线段相等.
已知:如图,AD是△ABC的高,AB=10,AD=8,BC=12 .求证:△
ABC是等腰三角形.
分析:利用勾股定理求出线段BD的长,也能求出线段AC的长,最后得出AB=AC,即可.
2.解决折叠的问题.
已知:如图,将长方形的一边BC沿CE折叠,使得点B落在AD 边的点F处,已知AB=8,BC=10, 求BE的长.
【思考1】由AB=8,BC=10,你可以知道哪些线段长?请在图中标出来
【思考2】在Rt△DFC中,你可以求出DF的长吗?请在图中标出来
【思考3】由DF的长,你还可以求出哪条线段长?请在图中标出来
【思考4】设BE = x,你可以用含有x的式子表示出哪些线段长?请在图中标出来.
【思考5】你在哪个直角三角形中,应用勾股定理建立方程?你建立的方程是
【思考6】图中共有几个直角三角形?每一个直角三角形的作用是什么?折叠的作用是什么?
四个,两个用来折叠,将线段和角等量转化,一个用来知二求一,最后一个建立方程.
【思考7】请把你的解答过程写下来.
3.做高线,构造直角三角形.
已知:如图,在△ABC中,∠B=45°,∠C=60°,AB=2.求(1)
BC 的长;(2)S△ABC .
分析:由于本题中的△ABC不是直角三角形,所以添加BC边上的高这条辅助线,就可以求得BC及S△ABC .
思考:在不是直角三角形中如何求线段长和面积?
解一般三角形的问题常常通过作高转化成直角三角形,利用勾股定理解决问题.
二、勾股逆定理的应用
勾股定理逆用的作用是判定某一个三角形是否是直角三角形,判定一个三角形是否是直角三角形的步骤:
(1)先确定最大边(如c);
(2)验证c2与a2+b2是否相等,若c2=a2+b2,则∠C=90°;若c2≠a2+b2,则△ABC不是直角三角形.
此时情况有两种:
(1)当a2+b2>c2时,三角形为锐角三角形;
(2)当a2+b2<c2时,三角形为钝角三角形.
题型三、勾股定理逆定理的应用
1.下列线段不能组成直角三角形的是()
A.a=8,b=15,c=17 B.a=9,b=12,c=15
C.a=7,b=24,c=25 D.a:b:c=2:3:4
2、已知:如图,四边形ABCD,AB=1,BC=2,CD=2,AD=3,且
AB⊥BC.求四边形 ABCD的面积.
分析:本题解题的关键是恰当的添加辅助线,利用勾股定理的逆定理判定△ADC的形状为直角三角形,再利用勾股定理解题.
二、归纳小结
本节课学习了什么?
三、布置作业
复习题1第1-10题。

相关文档
最新文档