备战高考物理临界状态的假设解决物理试题的推断题综合热点考点难点
高考物理压轴题专题复习—临界状态的假设解决物理试题的推断题综合含详细答案
高考物理压轴题专题复习—临界状态的假设解决物理试题的推断题综合含详细答案一、临界状态的假设解决物理试题1.如图所示,M 、N 为两块带等量异种电荷的平行金属板,两板间电压可取从零到某一最大值之间的各种数值。
静止的带电粒子带电荷量为+q ,质量为m (不计重力),从点P 经电场加速后,从小孔Q 进入N 板右侧的匀强磁场区域,磁感应强度大小为B ,方向垂直于纸面向外,CD 为磁场边界上的一绝缘板,它与N 板的夹角θ=45°,孔Q 到板的下端C 的距离为L ,当M 、N 两板间电压取最大值时,粒子恰垂直打在CD 板上,求:(1)两板间电压的最大值U m ;(2)CD 板上可能被粒子打中区域的长度s ; (3)粒子在磁场中运动的最长时间t m 。
【答案】(1)两板间电压的最大值m U 为222qB L m;(2)CD 板上可能被粒子打中的区域的长度x 为(22)L ; (3)粒子在磁场中运动的最长时间m t 为mqBπ。
【解析】 【分析】(1)粒子恰好垂直打在CD 板上,根据粒子的运动的轨迹,可以求得粒子运动的半径,由半径公式可以求得电压的大小;(2)当粒子的运动的轨迹恰好与CD 板相切时,这是粒子能达到的最下边的边缘,在由几何关系可以求得被粒子打中的区域的长度.(3)打在QE 间的粒子在磁场中运动的时间最长,均为半周期,根据周期公式即可求解。
【详解】(1)M 、N 两板间电压取最大值时,粒子恰垂直打在CD 板上,所以圆心在C 点,CH=QC=L ,故半径R 1=L ,又因211v qvB m R =2m 112qU mv =所以22m 2qB L U m=(2)设轨迹与CD 板相切于K 点,半径为R 2,在△AKC 中:22sin 45R R L ︒=- 所以2(21)R L =-即KC 长等于2(21)R L =-所以CD 板上可能被粒子打中的区域即为HK 的长度12(21)(22)x HK R R LL L -===-=﹣﹣ (3)打在QE 间的粒子在磁场中运动的时间最长,均为半周期:2mT qBπ=所以m 12m t T qBπ==【点睛】本题考查带电粒子在匀强磁场中的运动,要掌握住半径公式、周期公式,画出粒子的运动轨迹后,几何关系就比较明显了。
高考物理—临界状态的假设解决物理试题的推断题综合压轴题专题复习附详细答案
高考物理—临界状态的假设解决物理试题的推断题综合压轴题专题复习附详细答案一、临界状态的假设解决物理试题1.中国已进入动车时代,在某轨道拐弯处,动车向右拐弯,左侧的路面比右侧的路面高一些,如图所示,动车的运动可看作是做半径为R的圆周运动,设内外路面高度差为h,路基的水平宽度为d,路面的宽度为L,已知重力加速度为g,要使动车轮缘与内、外侧轨道无挤压,则动车拐弯时的速度应为()A.gRhLB.gRhdC.2gRD.gRdh【答案】B【解析】【详解】把路基看做斜面,设其倾角为θ,如图所示当动车轮缘与内、外侧轨道无挤压时,动车在斜面上受到自身重力mg和斜面支持力N,二者的合力提供向心力,即指向水平方向,根据几何关系可得合力F=mg tanθ,合力提供向心力,根据牛顿第二定律,有mg tanθ=2 v mR计算得v tangRtanθ=h d带入解得v gRhdgRhd压,故B正确,ACD错误。
故选B。
2.用一根细线一端系一小球(可视为质点),另一端固定在一光滑锥顶上,如图所示。
设小球在水平:面内做匀速圆周运动的角速度为ω,线所受拉力为T ,则下列T 随2ω变化的图像可能正确的是( )A .B .C .D .【答案】C 【解析】 【分析】 【详解】对小球受力分析如图当角速度较小时,小球在光滑锥面上做匀速圆周运动,根据向心力公式可得2sin cos sin T N mL θθθω-=⋅cos sin T N mg θθ+=联立解得22cos sin T mg mL θθω=+⋅当角速度较大时,小球离开光滑锥面做匀速圆周运动,根据向心力公式可得2sin sin T mL ααω=⋅则2T mL ω=综上所述,ABD 错误,C 正确。
故选C 。
3.火车以某一速度v 通过某弯道时,内、外轨道均不受侧压力作用,下面分析正确的是( )A .轨道半径2v R g=B .若火车速度大于v 时,外轨将受到侧压力作用,其方向平行轨道平面向外C .若火车速度小于v 时,外轨将受到侧压力作用,其方向平行轨道平面向内D .当火车质量改变时,安全速率也将改变 【答案】B 【解析】 【详解】AD .火车以某一速度v 通过某弯道时,内、外轨道均不受侧压力作用,其所受的重力和支持力的合力提供向心力由图可以得出(θ为轨道平面与水平面的夹角)tan F mg θ=合合力等于向心力,故2tan v mg m Rθ=解得tan v gR θ=与火车质量无关,AD 错误;B .当转弯的实际速度大于规定速度时,火车所受的重力和支持力的合力不足以提供所需的向心力,火车有离心趋势,故其外侧车轮轮缘会与铁轨相互挤压,外轨受到侧压力作用方向平行轨道平面向外,B 正确;C .当转弯的实际速度小于规定速度时,火车所受的重力和支持力的合力大于所需的向心力,火车有向心趋势,故其内侧车轮轮缘会与铁轨相互挤压,内轨受到侧压力作用方向平行轨道平面向内,C 错误。
高考物理——临界状态的假设解决物理试题的推断题综合压轴题专题复习含答案解析
高考物理——临界状态的假设解决物理试题的推断题综合压轴题专题复习含答案解析一、临界状态的假设解决物理试题1.质量为m 2=2Kg 的长木板A 放在水平面上,与水平面之间的动摩擦系数为0.4;物块B (可看作质点)的质量为m 1=1Kg ,放在木板A 的左端,物块B 与木板A 之间的摩擦系数为0.2.现用一水平向右的拉力F 作用在木板A 的右端,让木板A 和物块B 一起向右做匀加速运动.当木板A 和物块B 的速度达到2 m/s 时,撤去拉力,物块B 恰好滑到木板A 的右端而停止滑动,最大静摩擦力等于动摩擦力,g=10m/s 2,求:(1)要使木板A 和物块B 不发生相对滑动,求拉力F 的最大值; (2)撤去拉力后木板A 的滑动时间; (3)木板A 的长度。
【答案】(1)18N (2)0.4s (3)0.6m 【解析】 【详解】(1)当木板A 和物块B 刚要发生相对滑动时,拉力达到最大 以B 为研究对象,由牛顿第二定律得1111m g m a μ=可得2112m/s a g μ==.再以整体为研究对象,由牛顿第二定律得212121 ))F m m g m m a μ-+=+(( 故得最大拉力18F N =;(2)撤去F 后A 、B 均做匀减速运动,B 的加速度大小仍为1a ,A 的加速度大小为2a ,则 2121122)m m g m g m a μμ+-=(解得225m/s a =故A 滑动的时间220.45v t s s a === (3)撤去F 后A 滑动的距离22122m=0.4m 225v x a ==⨯B 滑动的距离22212m=1m 222v x a ==⨯故木板A 的长度210.6m L x x =-=.【点睛】解题的关键是正确对滑块和木板进行受力分析,清楚滑块和木板的运动情况,根据牛顿第二定律及运动学基本公式求解。
2.一根细线一端系一小球(可视为质点),另一端固定在光滑圆锥顶上,如图所示,设小球在水平面内做匀速圆周运动的角速度为ω,细线的张力为F T ,则F T 随ω2变化的图象是( )A .B .C .D .【答案】C 【解析】 【分析】 【详解】由题知小球未离开圆锥表面时细线与竖直方向的夹角为θ,用L 表示细线长度,小球离开圆锥表面前,细线的张力为F T ,圆锥对小球的支持力为F N ,根据牛顿第二定律有F T sin θ-F N cos θ=mω2L sin θ F T cos θ+F N sin θ=mg联立解得F T =mg cos θ+ω2mL sin2θ小球离开圆锥表面后,设细线与竖直方向的夹角为α,根据牛顿第二定律有F T sinα=mω2L sinα解得F T=mLω2故C正确。
高考物理临界状态的假设解决物理试题的推断题综合复习含答案解析
高考物理临界状态的假设解决物理试题的推断题综合复习含答案解析一、临界状态的假设解决物理试题1.一带电量为+q 、质量为m 的小球从倾角为θ的光滑的斜面上由静止开始下滑.斜面处于磁感应强度为B 的匀强磁场中,磁场方向如图所示,求小球在斜面上滑行的速度范围和滑行的最大距离.【答案】m gcosθ/Bq , m 2gcos 2θ/(2B 2q 2sinθ) 【解析】 【分析】 【详解】带正电小球从光滑斜面下滑过程中受到重力m g 、斜面的支持力N 和洛伦兹力f 的作用于小球下滑速度越来越大,所受的洛伦兹力越来越大,斜面的支持力越来越小,当支持力为零时,小球运动达到临界状态,此时小球的速度最大,在斜面上滑行的距离最大 故cos mg qvB θ= 解得:cos mg v qBθ=,为小球在斜面上运动的最大速度 此时小球移动距离为:22222cos 2(2sin )v m g s a B q θθ==.2.一足够长的矩形区域abcd 内充满磁感应强度为B,方向垂直纸而向里的匀强磁场,矩形区域的左边界ad 宽为L,现从ad 中点O 垂直于磁场射入一带电粒亍,速度大小为v 方向与ad 边夹角为30°,如图所示.已知粒子的电荷量为q,质量为m(重力不计). 求:(1)若拉子带负电,且恰能从d 点射出磁场,求v 的大小;(2)若粒子带正电,使粒子能从ab 边射出磁场,求拉子从ab 边穿出的最短时间.【答案】(1)2BqLm ;(2)56m qBπ 【解析】 【分析】(1)根据牛顿第二定律,由洛伦兹力提供向心力,结合几何关系可确定半径的范围,即可求解;(2)根据题意确定运动轨迹,再由圆心角与周期公式,即可确定最短运动的时间;【详解】(1)由图可知:R=2L据洛伦兹力提供向心力,得:2vqvB mR=则02qBR qBLvm m==(2)若粒子带正电,粒子的运动轨迹如图,当粒子的速度大于与R1相对应的速度v1时,粒子从cd边射出,由几何关系可知R1=L;由洛伦兹力等于向心力可知:2111vqv B mR=从图中看出,当轨迹的半径对应R1时从ab边上射出时用时间最短,此时对应的圆心角为000=18030=150θ-由公式可得:22R mTv qBππ==;由1=360tTθ解得156π=mtqB【点睛】考查牛顿第二定律的应用,掌握几何关系在题中的运用,理解在磁场中运动时间与圆心角的关系.注意本题关键是画出正确的运动轨迹.3.如图所示,圆心为O、半径为r的圆形区域外存在匀强磁场,磁场方向垂直于纸面向外,磁感应强度大小为B。
备战高考物理临界状态的假设解决物理试题的推断题综合热点考点难点附答案解析
备战高考物理临界状态的假设解决物理试题的推断题综合热点考点难点附答案解析一、临界状态的假设解决物理试题1.一带电量为+q 、质量为m 的小球从倾角为θ的光滑的斜面上由静止开始下滑.斜面处于磁感应强度为B 的匀强磁场中,磁场方向如图所示,求小球在斜面上滑行的速度范围和滑行的最大距离.【答案】m gcosθ/Bq , m 2gcos 2θ/(2B 2q 2sinθ) 【解析】 【分析】 【详解】带正电小球从光滑斜面下滑过程中受到重力m g 、斜面的支持力N 和洛伦兹力f 的作用于小球下滑速度越来越大,所受的洛伦兹力越来越大,斜面的支持力越来越小,当支持力为零时,小球运动达到临界状态,此时小球的速度最大,在斜面上滑行的距离最大 故cos mg qvB θ= 解得:cos mg v qBθ=,为小球在斜面上运动的最大速度 此时小球移动距离为:22222cos 2(2sin )v m g s a B q θθ==.2.如图所示,在光滑的圆锥顶用长为L 的细线悬挂一质量为m 的小球,圆锥顶角为2θ,当圆锥和球一起以角速度ω匀速转动时,球压紧锥面.()1此时绳的张力是多少?()2若要小球离开锥面,则小球的角速度至少为多少?【答案】(1)()22cos sin T mg m l θωθ=+(2)cos gl ωθ=【解析】(1)小球此时受到竖直向下的重力mg ,绳子的拉力T ,锥面对小球的支持力N ,三个力作用,合力充当向心力,即合力2sin F m l ωθ= 在水平方向上有,sin cos T N ma F ma θθ-==,, 在竖直方向上:cos sin T N mg θθ+= 联立四个式子可得()22cos sin T mg m l θωθ=+(2)重力和拉力完全充当向心力时,小球对锥面的压力为零, 故有向心力tan F mg θ=,2sin F m l ωθ=,联立可得cos gl ωθ=,即小球的角速度至少为cos gl ωθ=;3.如图所示,带电荷量为+q 、质量为m 的物块从倾角为θ=37°的光滑绝缘斜面顶端由静止开始下滑,磁感应强度为B 的匀强磁场垂直纸面向外,重力加速度为g ,求物块在斜面上滑行的最大速度和在斜面上运动的最大位移.(斜面足够长,取sin 37°=0.6,cos 37° =0.8)【答案】最大速度为:4mg 5qB ;最大位移为:222815m gq B【解析】 【分析】 【详解】经分析,物块沿斜面运动过程中加速度不变,但随速度增大,物块所受支持力逐渐减小,最后离开斜面.所以,当物块对斜面的压力刚好为零时,物块沿斜面的速度达到最大,同时位移达到最大,即qv m B =mgcos θ 物块沿斜面下滑过程中,由动能定理得21sin 2mgs mv θ=联立解得:22m m 22cos 48,52sin 15m v mg mg m gv s qB qB g q B θθ====4.如图所示,C ﹑D 两水平带电平行金属板间的电压为U ,A ﹑B 为一对竖直放置的带电平行金属板,B 板上有一个小孔,小孔在C ﹑D 两板间的中心线上,一质量为m ﹑带电量为+q 的粒子(不计重力)在A 板边缘的P 点从静止开始运动,恰好从D 板下边缘离开,离开时速度度大小为v 0,则A ﹑B 两板间的电压为A .20v 2m qU q-B .2022mv qU q -C .20mv qU q -D .202mv qU q-【答案】A 【解析】 【分析】 【详解】在AB 两板间做直线加速,由动能定理得:2112AB qU mv =;而粒子在CD 间做类平抛运动,从中心线进入恰好从D 板下边缘离开,根据动能定理:220111222qU mv mv =-;联立两式可得:202AB mv qU U q-=;故选A.【点睛】根据题意分析清楚粒子运动过程是解题的前提与关键,应用动能定理、牛顿第二定律与运动学公式即可解题.5.如图所示,在竖直平面内的光滑管形圆轨道的半径为R (管径远小于R ),小球a 、b 大小相同,质量均为m ,直径均略小于管径,均能在管中无摩擦运动。
备战高考物理专题复习临界状态的假设解决物理试题的推断题综合题含详细答案
备战高考物理专题复习临界状态的假设解决物理试题的推断题综合题含详细答案一、临界状态的假设解决物理试题1.如图甲所示,小车B 紧靠平台的边缘静止在光滑水平面上,物体A (可视为质点)以初速度v 0从光滑的平台水平滑到与平台等高的小车上,物体和小车的v -t 图像如图乙所示,取重力加速度g =10m /s 2,求:(1)物体A 与小车上表面间的动摩擦因数; (2)物体A 与小车B 的质量之比; (3)小车的最小长度。
【答案】(1)0.3;(2)13;(3)2m 【解析】 【分析】 【详解】(1)根据v t -图像可知,A 在小车上做减速运动,加速度的大小21241m /s 3m /s 1v a t ==∆-∆=若物体A 的质量为m 与小车上表面间的动摩擦因数为μ,则1mg ma μ=联立可得0.3μ=(2)设小车B 的质量为M ,加速度大小为2a ,根据牛顿第二定律2mg Ma μ=得13m M = (3)设小车的最小长度为L ,整个过程系统损失的动能,全部转化为内能22011()22mgL mv M m v μ=-+解得L =2m2.壁厚不计的圆筒形薄壁玻璃容器的侧视图如图所示。
圆形底面的直径为2R ,圆筒的高度为R 。
(1)若容器内盛满甲液体,在容器中心放置一个点光源,在侧壁以外所有位置均能看到该点光源,求甲液体的折射率;(2)若容器内装满乙液体,在容器下底面以外有若干个光源,却不能通过侧壁在筒外看到所有的光源,求乙液体的折射率。
【答案】(1)5n ≥甲;(2)2n >乙【解析】 【详解】(1)盛满甲液体,如图甲所示,P 点刚好全反射时为最小折射率,有1sin n C=由几何关系知222sin 2R C R R =⎛⎫+ ⎪⎝⎭解得5n =则甲液体的折射率应为5n ≥甲(2)盛满乙液体,如图乙所示,与底边平行的光线刚好射入液体时对应液体的最小折射率,A 点1sin n C ='乙 由几何关系得90C α'=︒-B 点恰好全反射有C α'=解各式得2n =乙则乙液体的折射率应为2n >乙3.如图所示,圆心为O 、半径为r 的圆形区域外存在匀强磁场,磁场方向垂直于纸面向外,磁感应强度大小为B 。
备战高考物理 临界状态的假设解决物理试题 推断题综合题
备战高考物理 临界状态的假设解决物理试题 推断题综合题一、临界状态的假设解决物理试题1.如图所示,M 、N 为两块带等量异种电荷的平行金属板,两板间电压可取从零到某一最大值之间的各种数值。
静止的带电粒子带电荷量为+q ,质量为m (不计重力),从点P 经电场加速后,从小孔Q 进入N 板右侧的匀强磁场区域,磁感应强度大小为B ,方向垂直于纸面向外,CD 为磁场边界上的一绝缘板,它与N 板的夹角θ=45°,孔Q 到板的下端C 的距离为L ,当M 、N 两板间电压取最大值时,粒子恰垂直打在CD 板上,求:(1)两板间电压的最大值U m ;(2)CD 板上可能被粒子打中区域的长度s ; (3)粒子在磁场中运动的最长时间t m 。
【答案】(1)两板间电压的最大值m U 为222qB L m;(2)CD 板上可能被粒子打中的区域的长度x 为(22)L ; (3)粒子在磁场中运动的最长时间m t 为mqBπ。
【解析】 【分析】(1)粒子恰好垂直打在CD 板上,根据粒子的运动的轨迹,可以求得粒子运动的半径,由半径公式可以求得电压的大小;(2)当粒子的运动的轨迹恰好与CD 板相切时,这是粒子能达到的最下边的边缘,在由几何关系可以求得被粒子打中的区域的长度.(3)打在QE 间的粒子在磁场中运动的时间最长,均为半周期,根据周期公式即可求解。
【详解】(1)M 、N 两板间电压取最大值时,粒子恰垂直打在CD 板上,所以圆心在C 点,CH=QC=L ,故半径R 1=L ,又因211v qvB m R =2m 112qU mv =所以22m 2qB L U m=(2)设轨迹与CD 板相切于K 点,半径为R 2,在△AKC 中:22sin 45R R L ︒=- 所以2(21)R L =-即KC 长等于2(21)R L =-所以CD 板上可能被粒子打中的区域即为HK 的长度12(21)(22)x HK R R LL L -===-=﹣﹣ (3)打在QE 间的粒子在磁场中运动的时间最长,均为半周期:2mT qBπ=所以m 12m t T qBπ==【点睛】本题考查带电粒子在匀强磁场中的运动,要掌握住半径公式、周期公式,画出粒子的运动轨迹后,几何关系就比较明显了。
高考物理 临界状态的假设解决物理试题 推断题综合题含答案
高考物理 临界状态的假设解决物理试题 推断题综合题含答案一、临界状态的假设解决物理试题1.如图所示,M 、N 为两块带等量异种电荷的平行金属板,两板间电压可取从零到某一最大值之间的各种数值。
静止的带电粒子带电荷量为+q ,质量为m (不计重力),从点P 经电场加速后,从小孔Q 进入N 板右侧的匀强磁场区域,磁感应强度大小为B ,方向垂直于纸面向外,CD 为磁场边界上的一绝缘板,它与N 板的夹角θ=45°,孔Q 到板的下端C 的距离为L ,当M 、N 两板间电压取最大值时,粒子恰垂直打在CD 板上,求:(1)两板间电压的最大值U m ;(2)CD 板上可能被粒子打中区域的长度s ; (3)粒子在磁场中运动的最长时间t m 。
【答案】(1)两板间电压的最大值m U 为222qB L m;(2)CD 板上可能被粒子打中的区域的长度x 为(22)L ; (3)粒子在磁场中运动的最长时间m t 为mqBπ。
【解析】 【分析】(1)粒子恰好垂直打在CD 板上,根据粒子的运动的轨迹,可以求得粒子运动的半径,由半径公式可以求得电压的大小;(2)当粒子的运动的轨迹恰好与CD 板相切时,这是粒子能达到的最下边的边缘,在由几何关系可以求得被粒子打中的区域的长度.(3)打在QE 间的粒子在磁场中运动的时间最长,均为半周期,根据周期公式即可求解。
【详解】(1)M 、N 两板间电压取最大值时,粒子恰垂直打在CD 板上,所以圆心在C 点,CH=QC=L ,故半径R 1=L ,又因211v qvB m R =2m 112qU mv =所以22m 2qB L U m=(2)设轨迹与CD 板相切于K 点,半径为R 2,在△AKC 中:22sin 45R R L ︒=- 所以2(21)R L =-即KC 长等于2(21)R L =-所以CD 板上可能被粒子打中的区域即为HK 的长度12(21)(22)x HK R R LL L -===-=﹣﹣ (3)打在QE 间的粒子在磁场中运动的时间最长,均为半周期:2mT qBπ=所以m 12m t T qBπ==【点睛】本题考查带电粒子在匀强磁场中的运动,要掌握住半径公式、周期公式,画出粒子的运动轨迹后,几何关系就比较明显了。
青岛备战高考物理临界状态的假设解决物理试题的推断题综合热点考点难点
青岛备战高考物理临界状态的假设解决物理试题的推断题综合热点考点难点一、临界状态的假设解决物理试题1.一倾角为α的光滑绝缘斜面体固定在水平面上,整个装置处于垂直纸面向里的磁场中,如图所示.一质量为m ,电荷量为q 的带正电小球从斜面上由静止释放.已知磁感应强度为B ,重力加速度为g .求:(1)小球离开斜面时的速率; (2)小球在斜面上滑行的位移大小.【答案】(1)cos mg v qB α=(2)2222cos 2sin m g x q B αα= 【解析】(1)小球在斜面上运动,当F N =0时,离开斜面 mg cos α=qvBcos mg v qBα=(2)小球在斜面上做匀加速直线运动 mg sin α=ma v 2=2ax解得2222cos 2sin m g x q B αα=2.壁厚不计的圆筒形薄壁玻璃容器的侧视图如图所示。
圆形底面的直径为2R ,圆筒的高度为R 。
(1)若容器内盛满甲液体,在容器中心放置一个点光源,在侧壁以外所有位置均能看到该点光源,求甲液体的折射率;(2)若容器内装满乙液体,在容器下底面以外有若干个光源,却不能通过侧壁在筒外看到所有的光源,求乙液体的折射率。
【答案】(1)5n ≥甲(2)2n >乙【解析】【详解】(1)盛满甲液体,如图甲所示,P点刚好全反射时为最小折射率,有1sinnC=由几何关系知222sin2RCRR=⎛⎫+ ⎪⎝⎭解得5n=则甲液体的折射率应为5n≥甲(2)盛满乙液体,如图乙所示,与底边平行的光线刚好射入液体时对应液体的最小折射率,A点1sinnC='乙由几何关系得90Cα'=︒-B点恰好全反射有Cα'=解各式得2n=乙则乙液体的折射率应为2n >乙3.平面OM 和平面ON 之间的夹角为30°,其横截面(纸面)如图所示,平面OM 上方存在匀强磁场,磁感应强度大小为B ,方向垂直于纸面向外。
一带电粒子的质量为m ,电荷量为q (q >0)。
高考物理临界状态的假设解决物理试题的推断题综合热点考点难点附详细答案
高考物理临界状态的假设解决物理试题的推断题综合热点考点难点附详细答案一、临界状态的假设解决物理试题1.质量为m 2=2Kg 的长木板A 放在水平面上,与水平面之间的动摩擦系数为0.4;物块B (可看作质点)的质量为m 1=1Kg ,放在木板A 的左端,物块B 与木板A 之间的摩擦系数为0.2.现用一水平向右的拉力F 作用在木板A 的右端,让木板A 和物块B 一起向右做匀加速运动.当木板A 和物块B 的速度达到2 m/s 时,撤去拉力,物块B 恰好滑到木板A 的右端而停止滑动,最大静摩擦力等于动摩擦力,g=10m/s 2,求:(1)要使木板A 和物块B 不发生相对滑动,求拉力F 的最大值; (2)撤去拉力后木板A 的滑动时间; (3)木板A 的长度。
【答案】(1)18N (2)0.4s (3)0.6m 【解析】 【详解】(1)当木板A 和物块B 刚要发生相对滑动时,拉力达到最大 以B 为研究对象,由牛顿第二定律得1111m g m a μ=可得2112m/s a g μ==.再以整体为研究对象,由牛顿第二定律得212121 ))F m m g m m a μ-+=+(( 故得最大拉力18F N =;(2)撤去F 后A 、B 均做匀减速运动,B 的加速度大小仍为1a ,A 的加速度大小为2a ,则 2121122)m m g m g m a μμ+-=(解得225m/s a =故A 滑动的时间220.45v t s s a === (3)撤去F 后A 滑动的距离22122m=0.4m 225v x a ==⨯B 滑动的距离22212m=1m 222v x a ==⨯故木板A 的长度210.6m L x x =-=.【点睛】解题的关键是正确对滑块和木板进行受力分析,清楚滑块和木板的运动情况,根据牛顿第二定律及运动学基本公式求解。
2.如图所示,用长为L =0.8m 的轻质细绳将一质量为1kg 的小球悬挂在距离水平面高为H =2.05m 的O 点,将细绳拉直至水平状态无初速度释放小球,小球摆动至细绳处于竖直位置时细绳恰好断裂,小球落在距离O 点水平距离为2m 的水平面上的B 点,不计空气阻力,取g =10m/s 2求:(1)绳子断裂后小球落到地面所用的时间; (2)小球落地的速度的大小; (3)绳子能承受的最大拉力。
备战高考物理压轴题专题复习—临界状态的假设解决物理试题的推断题综合附详细答案
备战高考物理压轴题专题复习—临界状态的假设解决物理试题的推断题综合附详细答案一、临界状态的假设解决物理试题1.如图所示,M 、N 为两块带等量异种电荷的平行金属板,两板间电压可取从零到某一最大值之间的各种数值。
静止的带电粒子带电荷量为+q ,质量为m (不计重力),从点P 经电场加速后,从小孔Q 进入N 板右侧的匀强磁场区域,磁感应强度大小为B ,方向垂直于纸面向外,CD 为磁场边界上的一绝缘板,它与N 板的夹角θ=45°,孔Q 到板的下端C 的距离为L ,当M 、N 两板间电压取最大值时,粒子恰垂直打在CD 板上,求:(1)两板间电压的最大值U m ;(2)CD 板上可能被粒子打中区域的长度s ; (3)粒子在磁场中运动的最长时间t m 。
【答案】(1)两板间电压的最大值m U 为222qB L m;(2)CD 板上可能被粒子打中的区域的长度x 为(22)L ; (3)粒子在磁场中运动的最长时间m t 为mqBπ。
【解析】 【分析】(1)粒子恰好垂直打在CD 板上,根据粒子的运动的轨迹,可以求得粒子运动的半径,由半径公式可以求得电压的大小;(2)当粒子的运动的轨迹恰好与CD 板相切时,这是粒子能达到的最下边的边缘,在由几何关系可以求得被粒子打中的区域的长度.(3)打在QE 间的粒子在磁场中运动的时间最长,均为半周期,根据周期公式即可求解。
【详解】(1)M 、N 两板间电压取最大值时,粒子恰垂直打在CD 板上,所以圆心在C 点,CH=QC=L ,故半径R 1=L ,又因211v qvB m R =2m 112qU mv =所以22m 2qB L U m=(2)设轨迹与CD 板相切于K 点,半径为R 2,在△AKC 中:22sin 45R R L ︒=- 所以2(21)R L =-即KC 长等于2(21)R L =-所以CD 板上可能被粒子打中的区域即为HK 的长度12(21)(22)x HK R R LL L -===-=﹣﹣ (3)打在QE 间的粒子在磁场中运动的时间最长,均为半周期:2mT qBπ=所以m 12m t T qBπ==【点睛】本题考查带电粒子在匀强磁场中的运动,要掌握住半径公式、周期公式,画出粒子的运动轨迹后,几何关系就比较明显了。
备战高考物理——临界状态的假设解决物理试题的推断题综合压轴题专题复习及答案
备战高考物理——临界状态的假设解决物理试题的推断题综合压轴题专题复习及答案一、临界状态的假设解决物理试题1.如图所示,M 、N 为两块带等量异种电荷的平行金属板,两板间电压可取从零到某一最大值之间的各种数值。
静止的带电粒子带电荷量为+q ,质量为m (不计重力),从点P 经电场加速后,从小孔Q 进入N 板右侧的匀强磁场区域,磁感应强度大小为B ,方向垂直于纸面向外,CD 为磁场边界上的一绝缘板,它与N 板的夹角θ=45°,孔Q 到板的下端C 的距离为L ,当M 、N 两板间电压取最大值时,粒子恰垂直打在CD 板上,求:(1)两板间电压的最大值U m ;(2)CD 板上可能被粒子打中区域的长度s ; (3)粒子在磁场中运动的最长时间t m 。
【答案】(1)两板间电压的最大值m U 为222qB L m;(2)CD 板上可能被粒子打中的区域的长度x 为(22)L ; (3)粒子在磁场中运动的最长时间m t 为mqBπ。
【解析】 【分析】(1)粒子恰好垂直打在CD 板上,根据粒子的运动的轨迹,可以求得粒子运动的半径,由半径公式可以求得电压的大小;(2)当粒子的运动的轨迹恰好与CD 板相切时,这是粒子能达到的最下边的边缘,在由几何关系可以求得被粒子打中的区域的长度.(3)打在QE 间的粒子在磁场中运动的时间最长,均为半周期,根据周期公式即可求解。
【详解】(1)M 、N 两板间电压取最大值时,粒子恰垂直打在CD 板上,所以圆心在C 点,CH=QC=L ,故半径R 1=L ,又因211v qvB m R =2m 112qU mv =所以22m 2qB L U m=(2)设轨迹与CD 板相切于K 点,半径为R 2,在△AKC 中:22sin 45R R L ︒=- 所以2(21)R L =-即KC 长等于2(21)R L =-所以CD 板上可能被粒子打中的区域即为HK 的长度12(21)(22)x HK R R LL L -===-=﹣﹣ (3)打在QE 间的粒子在磁场中运动的时间最长,均为半周期:2mT qBπ=所以m 12m t T qBπ==【点睛】本题考查带电粒子在匀强磁场中的运动,要掌握住半径公式、周期公式,画出粒子的运动轨迹后,几何关系就比较明显了。
高考物理压轴题专题复习——临界状态的假设解决物理试题的推断题综合附详细答案
高考物理压轴题专题复习——临界状态的假设解决物理试题的推断题综合附详细答案一、临界状态的假设解决物理试题1.一足够长的矩形区域abcd 内充满磁感应强度为B,方向垂直纸而向里的匀强磁场,矩形区域的左边界ad 宽为L,现从ad 中点O 垂直于磁场射入一带电粒亍,速度大小为v 方向与ad 边夹角为30°,如图所示.已知粒子的电荷量为q,质量为m(重力不计). 求:(1)若拉子带负电,且恰能从d 点射出磁场,求v 的大小;(2)若粒子带正电,使粒子能从ab 边射出磁场,求拉子从ab 边穿出的最短时间.【答案】(1)2BqLm ;(2)56m qB【解析】 【分析】(1)根据牛顿第二定律,由洛伦兹力提供向心力,结合几何关系可确定半径的范围,即可求解;(2)根据题意确定运动轨迹,再由圆心角与周期公式,即可确定最短运动的时间; 【详解】(1)由图可知:R = 2L据洛伦兹力提供向心力,得:20v qvB m R= 则02qBR qBLv m m== (2)若粒子带正电,粒子的运动轨迹如图,当粒子的速度大于与R 1相对应的速度v 1时,粒子从cd 边射出,由几何关系可知R 1=L ;由洛伦兹力等于向心力可知:2111v qv B m R =从图中看出,当轨迹的半径对应R 1时从ab 边上射出时用时间最短,此时对应的圆心角为=18030=150θ- 由公式可得:22R mT v qBππ== ; 由1=360t Tθ解得156π=mt qB【点睛】考查牛顿第二定律的应用,掌握几何关系在题中的运用,理解在磁场中运动时间与圆心角的关系.注意本题关键是画出正确的运动轨迹.2.如图所示,带电荷量为+q 、质量为m 的物块从倾角为θ=37°的光滑绝缘斜面顶端由静止开始下滑,磁感应强度为B 的匀强磁场垂直纸面向外,重力加速度为g ,求物块在斜面上滑行的最大速度和在斜面上运动的最大位移.(斜面足够长,取sin 37°=0.6,cos 37° =0.8)【答案】最大速度为:4mg 5qB ;最大位移为:222815m gq B 【解析】 【分析】 【详解】经分析,物块沿斜面运动过程中加速度不变,但随速度增大,物块所受支持力逐渐减小,最后离开斜面.所以,当物块对斜面的压力刚好为零时,物块沿斜面的速度达到最大,同时位移达到最大,即qv m B =mgcos θ 物块沿斜面下滑过程中,由动能定理得21sin 2mgs mv θ=联立解得:22m m 22cos 48,52sin 15m v mg mg m gv s qB qB g q B θθ====3.今年入冬以来,我国多地出现了雾霾天气,给交通安全带来了很大的危害.某地雾霾天气中高速公司上的能见度只有72m ,要保证行驶前方突发紧急情况下汽车的安全,汽车行驶的速度不能太大.已知汽车刹车时的加速度大小为5m/s 2.(1)若前方紧急情况出现的同时汽车开始制动,汽车行驶的速度不能超过多大?(结果可以带根号)(2)若驾驶员从感知前方紧急情况到汽车开始制动的反应时间为0.6s ,汽车行驶的速度不能超过多大?【答案】(1)125m/s;(2)24m/s.【解析】试题分析:(1)根据速度位移公式求出求出汽车行驶的最大速度;(2)汽车在反应时间内的做匀速直线运动,结合匀速直线运动的位移和匀减速直线运动的位移之和等于72m,运用运动学公式求出汽车行驶的最大速度.解:(1)设汽车刹车的加速度a=﹣5m/s2,要在s=72m内停下,行驶的速度不超过v1,由运动学方程有:0﹣v12=﹣2as ①代入题中数据可得:v1=12m/s(2)设有汽车行驶的速度不超过v2,在驾驶员的反应时间t0内汽车作匀速运动的位移s1:s1=v2t0 ②刹车减速位移s2=③s=s1+s2 ④由②~④式并代入数据可得:v2=24m/s答:(1)汽车行驶的速度不能超过m/s;(2)汽车行驶的速度不能超过24m/s.【点评】解决本题的关键知道在反应时间内汽车做匀速直线运动,刹车后做匀减速直线运动,抓住总位移,结合运动学公式灵活求解.4.如图甲,小球用不可伸长的轻绳连接绕定点O在竖直面内圆周运动,小球经过最高点的速度大小为v,此时绳子拉力大小为F,拉力F与速度的平方的关系如图乙所示,图象中的数据a和b以及重力加速度g都为已知量,以下说法正确的是()A.数据a与小球的质量有关B.数据b与小球的质量无关C.比值只与小球的质量有关,与圆周轨道半径无关D.利用数据a、b和g能够求出小球的质量和圆周轨道半径【答案】D【解析】【分析】【详解】A.当时,此时绳子的拉力为零,物体的重力提供向心力,则有:解得:解得:与物体的质量无关,A错误;B.当时,对物体受力分析,则有:解得:b=mg与小球的质量有关,B错误;C.根据AB可知:与小球的质量有关,与圆周轨道半径有关,C错误;D. 若F=0,由图知:,则有:解得:当时,则有:解得:D正确.5.如图所示,在竖直平面内的光滑管形圆轨道的半径为R(管径远小于R),小球a、b大小相同,质量均为m,直径均略小于管径,均能在管中无摩擦运动。
高考物理——临界状态的假设解决物理试题的推断题综合压轴题专题复习附详细答案
高考物理——临界状态的假设解决物理试题的推断题综合压轴题专题复习附详细答案一、临界状态的假设解决物理试题1.今年入冬以来,我国多地出现了雾霾天气,给交通安全带来了很大的危害.某地雾霾天气中高速公司上的能见度只有72m,要保证行驶前方突发紧急情况下汽车的安全,汽车行驶的速度不能太大.已知汽车刹车时的加速度大小为5m/s2.(1)若前方紧急情况出现的同时汽车开始制动,汽车行驶的速度不能超过多大?(结果可以带根号)(2)若驾驶员从感知前方紧急情况到汽车开始制动的反应时间为0.6s,汽车行驶的速度不能超过多大?【答案】(1)125m/s;(2)24m/s.【解析】试题分析:(1)根据速度位移公式求出求出汽车行驶的最大速度;(2)汽车在反应时间内的做匀速直线运动,结合匀速直线运动的位移和匀减速直线运动的位移之和等于72m,运用运动学公式求出汽车行驶的最大速度.解:(1)设汽车刹车的加速度a=﹣5m/s2,要在s=72m内停下,行驶的速度不超过v1,由运动学方程有:0﹣v12=﹣2as ①代入题中数据可得:v1=12m/s(2)设有汽车行驶的速度不超过v2,在驾驶员的反应时间t0内汽车作匀速运动的位移s1:s1=v2t0 ②刹车减速位移s2=③s=s1+s2 ④由②~④式并代入数据可得:v2=24m/s答:(1)汽车行驶的速度不能超过m/s;(2)汽车行驶的速度不能超过24m/s.【点评】解决本题的关键知道在反应时间内汽车做匀速直线运动,刹车后做匀减速直线运动,抓住总位移,结合运动学公式灵活求解.2.水平传送带上A、B两端点间距L=4m,半径R=1m的光滑半圆形轨道固于竖直平面内,下端与传送带B相切。
传送带以v0=4m/s的速度沿图示方向匀速运动,m=lkg的小滑块由静止放到传送带的A端,经一段时间运动到B端,滑块与传送带间的动摩擦因数μ=0.5,g=10m/s2。
(1)求滑块到达B 端的速度;(2)求滑块由A 运动到B 的过程中,滑块与传送带间摩擦产生的热量;(3)仅改变传送带的速度,其他条件不变,计算说明滑块能否通过圆轨道最高点C 。
备战高考物理压轴题专题临界状态的假设解决物理试题的经典推断题综合题及答案解析
备战高考物理压轴题专题临界状态的假设解决物理试题的经典推断题综合题及答案解析一、临界状态的假设解决物理试题1.如图甲所示,小车B 紧靠平台的边缘静止在光滑水平面上,物体A (可视为质点)以初速度v 0从光滑的平台水平滑到与平台等高的小车上,物体和小车的v -t 图像如图乙所示,取重力加速度g =10m /s 2,求:(1)物体A 与小车上表面间的动摩擦因数; (2)物体A 与小车B 的质量之比; (3)小车的最小长度。
【答案】(1)0.3;(2)13;(3)2m 【解析】 【分析】 【详解】(1)根据v t -图像可知,A 在小车上做减速运动,加速度的大小21241m /s 3m /s 1v a t ==∆-∆=若物体A 的质量为m 与小车上表面间的动摩擦因数为μ,则1mg ma μ=联立可得0.3μ=(2)设小车B 的质量为M ,加速度大小为2a ,根据牛顿第二定律2mg Ma μ=得13m M = (3)设小车的最小长度为L ,整个过程系统损失的动能,全部转化为内能22011()22mgL mv M m v μ=-+解得L =2m2.火车转弯时,如果铁路弯道内外轨一样高,外轨对轮绝(如图a 所示)挤压的弹力F 提供了火车转弯的向心力(如图b 所示),但是靠这种办法得到向心力,铁轨和车轮极易受损.在修筑铁路时,弯道处的外轨会略高于内轨(如图c 所示),当火车以规定的行驶速度转弯时,内、外轨均不会受到轮缘的挤压,设此时的速度小为,以下说法中正确的是A .该弯道的半径B .当火车质量改变时,规定的行驶速度也将改变C .当火车速率大于时,外轨将受到轮缘的挤压D .当火车速率小于时,外轨将受到轮缘的挤压 【答案】C 【解析】 【详解】火车拐弯时不侧向挤压车轮轮缘,靠重力和支持力的合力提供向心力,设转弯处斜面的倾角为θ,根据牛顿第二定律得:mgtanθ=mv 2/R ,解得:R= v 2/ g tanθ,故A 错误;根据牛顿第二定律得:mgtan θ=mv 2/R, 解得:v= gRtan θ,与质量无关,故B 错误;若速度大于规定速度,重力和支持力的合力不够提供,此时外轨对火车有侧压力,轮缘挤压外轨.故C 正确;若速度小于规定速度,重力和支持力的合力提供偏大,此时内轨对火车有侧压力,轮缘挤压内轨.故D 错误.故选C .点睛:火车拐弯时以规定速度行驶,此时火车的重力和支持力的合力提供圆周运动所需的向心力.若速度大于规定速度,重力和支持力的合力不够提供,此时外轨对火车有侧压力;若速度小于规定速度,重力和支持力的合力提供偏大,此时内轨对火车有侧压力.3.如图甲,小球用不可伸长的轻绳连接绕定点O 在竖直面内圆周运动,小球经过最高点的速度大小为v ,此时绳子拉力大小为F ,拉力F 与速度的平方的关系如图乙所示,图象中的数据a 和b 以及重力加速度g 都为已知量,以下说法正确的是( )A.数据a与小球的质量有关B.数据b与小球的质量无关C.比值只与小球的质量有关,与圆周轨道半径无关D.利用数据a、b和g能够求出小球的质量和圆周轨道半径【答案】D【解析】【分析】【详解】A.当时,此时绳子的拉力为零,物体的重力提供向心力,则有:解得:解得:与物体的质量无关,A错误;B.当时,对物体受力分析,则有:解得:b=mg与小球的质量有关,B错误;C.根据AB可知:与小球的质量有关,与圆周轨道半径有关,C错误;D. 若F=0,由图知:,则有:解得:当时,则有:解得:D 正确.4.在平直的公路上A 车正以4/A v m s =的速度向右匀速运动,在A 车的正前方7m 处B 车此时正以10/B v m s =的初速度向右匀减速运动,加速度大小为22/m s ,则A 追上B 所经历的时间是( ) A .7 s B .8 sC .9 sD .10 s【答案】B 【解析】试题分析:B 车速度减为零的时间为:001052B vt s s a --===-,此时A 车的位移为:04520A A x v t m m ==⨯=,B 车的位移为:21002524B B v x m m a --===-,因为7A B x x m <+,可知B 停止时,A 还未追上,则追及的时间为:725784B A x t s s v ++===,故B 正确. 考点:考查了追击相遇问题【名师点睛】两物体在同一直线上运动,往往涉及到追击、相遇或避免碰撞等问题,解答此类问题的关键条件是:①分别对两个物体进行研究;②画出运动过程示意图;③列出位移方程;④找出时间关系、速度关系、位移关系;⑤解出结果,必要时要进行讨论.5.如图所示,轻质杆的一端连接一个小球,绕套在固定光滑水平转轴O 上的另一端在竖直平面内做圆周运动。
高考物理 临界状态的假设解决物理试题 推断题综合题附详细答案
高考物理 临界状态的假设解决物理试题 推断题综合题附详细答案一、临界状态的假设解决物理试题1.一足够长的矩形区域abcd 内充满磁感应强度为B,方向垂直纸而向里的匀强磁场,矩形区域的左边界ad 宽为L,现从ad 中点O 垂直于磁场射入一带电粒亍,速度大小为v 方向与ad 边夹角为30°,如图所示.已知粒子的电荷量为q,质量为m(重力不计). 求:(1)若拉子带负电,且恰能从d 点射出磁场,求v 的大小;(2)若粒子带正电,使粒子能从ab 边射出磁场,求拉子从ab 边穿出的最短时间.【答案】(1)2BqLm ;(2)56m qB【解析】 【分析】(1)根据牛顿第二定律,由洛伦兹力提供向心力,结合几何关系可确定半径的范围,即可求解;(2)根据题意确定运动轨迹,再由圆心角与周期公式,即可确定最短运动的时间; 【详解】(1)由图可知:R = 2L据洛伦兹力提供向心力,得:20v qvB m R= 则02qBR qBLv m m== (2)若粒子带正电,粒子的运动轨迹如图,当粒子的速度大于与R 1相对应的速度v 1时,粒子从cd 边射出,由几何关系可知R 1=L ;由洛伦兹力等于向心力可知:2111v qv B m R =从图中看出,当轨迹的半径对应R 1时从ab 边上射出时用时间最短,此时对应的圆心角为=18030=150θ- 由公式可得:22R mT v qBππ== ; 由1=360t Tθ解得156π=mt qB【点睛】考查牛顿第二定律的应用,掌握几何关系在题中的运用,理解在磁场中运动时间与圆心角的关系.注意本题关键是画出正确的运动轨迹.2.如图所示,AB 为竖直转轴,细绳AC 和BC 的结点C 系一质量为m 的小球,两绳能承担的最大拉力均为2mg 。
当AC 和BC 均拉直时∠ABC =90°,∠ACB =53°,BC =1m .ABC 能绕竖直轴AB 匀速转动,因而C 球在水平面内做匀速圆周运动.当小球的线速度增大时,两绳均会被拉断,则最先被拉断那根绳及另一根绳被拉断时的速度分别为(已知g =10m/s 2,sin53°=0.8,cos53°=0.6)( )A .AC 绳 5m/sB .BC 绳 5m/s C .AC 绳 5.24m/sD .BC 绳 5.24m/s【答案】B 【解析】 【分析】当小球线速度增大时,BC 逐渐被拉直,小球线速度增至BC 刚被拉直时,对小球进行受力分析,合外力提供向心力,求出A 绳的拉力,线速度再增大些,T A 不变而T B 增大,所以BC 绳先断;当BC 绳断之后,小球线速度继续增大,小球m 作离心运动,AC 绳与竖直方向的夹角α增大,对球进行受力分析,根据合外力提供向心力列式求解。
备战高考物理临界状态的假设解决物理试题推断题综合经典题含答案
备战高考物理临界状态的假设解决物理试题推断题综合经典题含答案一、临界状态的假设解决物理试题1.一辆货车运载着圆柱形光滑的空油桶。
在车厢底,一层油桶平整排列,相互紧贴并被牢牢固定。
上一层只有一只桶C ,自由地摆放在A 、B 之间,和汽车一起保持静止,如图所示,当C 与车共同向左加速时A .A 对C 的支持力变大B .B 对C 的支持力不变 C .当向左的加速度达到32g 时,C 将脱离A D .当向左的加速度达到33g 时,C 将脱离A 【答案】D 【解析】 【详解】对C 进行受力分析,如图所示,设B 对C 的支持力与竖直方向的夹角为θ,根据几何关系可得:122R sin R θ==,所以θ=30°;同理可得,A 对C 的支持力与竖直方向的夹角也为30°; AB .原来C 处于静止状态,根据平衡条件可得:N B sin30°=N A sin30°;令C 的加速度为a ,根据正交分解以及牛顿第二定律有:N ′B sin30°-N ′A sin30°=ma可见A 对C 的支持力减小、B 对C 的支持力增大,故AB 错误; CD .当A 对C 的支持力为零时,根据牛顿第二定律可得:mg tan30°=ma解得:33a g =则C 错误,D 正确; 故选D 。
2.如图所示,轻质杆的一端连接一个小球,绕套在固定光滑水平转轴O 上的另一端在竖直平面内做圆周运动。
小球经过最高点时的速度大小为v ,杆对球的作用力大小为F ,其2F v -图像如图所示。
若图中的a 、b 及重力加速度g 均为已知量,规定竖直向上的方向为力的正方向。
不计空气阻力,由此可求得( )A .小球做圆周运动的半径为g bB .0F =时,小球在最高点的动能为abgC .22v b =时,小球对杆作用力的方向向下D .22v b =时,杆对小球作用力的大小为a 【答案】D 【解析】 【详解】A .由图象知,当2v b =时,0F =,杆对小球无弹力,此时重力提供小球做圆周运动的向心力,有2v mg m r=解得b r g=故A 错误;B .由图象知,当20v =时,故有F mg a ==解得a m g=当2v b =时,小球的动能为2122k ab E mv g== 故B 错误;C .由图象可知,当22v b =时,有0F <则杆对小球的作用力方向向下,根据牛顿第三定律可知,小球对杆的弹力方向向上,故C 错误;D .由图象可知,当22v b =时,则有22v F mg m mg r+==解得F mg a ==故D 正确。
高考物理——临界状态的假设解决物理试题的推断题综合压轴题专题复习及详细答案
高考物理——临界状态的假设解决物理试题的推断题综合压轴题专题复习及详细答案一、临界状态的假设解决物理试题1.一带电量为+q 、质量为m 的小球从倾角为θ的光滑的斜面上由静止开始下滑.斜面处于磁感应强度为B 的匀强磁场中,磁场方向如图所示,求小球在斜面上滑行的速度范围和滑行的最大距离.【答案】m gcosθ/Bq , m 2gcos 2θ/(2B 2q 2sinθ) 【解析】 【分析】 【详解】带正电小球从光滑斜面下滑过程中受到重力m g 、斜面的支持力N 和洛伦兹力f 的作用于小球下滑速度越来越大,所受的洛伦兹力越来越大,斜面的支持力越来越小,当支持力为零时,小球运动达到临界状态,此时小球的速度最大,在斜面上滑行的距离最大 故cos mg qvB θ= 解得:cos mg v qBθ=,为小球在斜面上运动的最大速度 此时小球移动距离为:22222cos 2(2sin )v m g s a B q θθ==.2.如图所示,轻质杆的一端连接一个小球,绕套在固定光滑水平转轴O 上的另一端在竖直平面内做圆周运动。
小球经过最高点时的速度大小为v ,杆对球的作用力大小为F ,其2F v -图像如图所示。
若图中的a 、b 及重力加速度g 均为已知量,规定竖直向上的方向为力的正方向。
不计空气阻力,由此可求得( )A .小球做圆周运动的半径为g bB .0F =时,小球在最高点的动能为ab gC .22v b =时,小球对杆作用力的方向向下D .22v b =时,杆对小球作用力的大小为a 【答案】D 【解析】 【详解】A .由图象知,当2v b =时,0F =,杆对小球无弹力,此时重力提供小球做圆周运动的向心力,有2v mg m r=解得b r g=故A 错误;B .由图象知,当20v =时,故有F mg a ==解得a m g=当2v b =时,小球的动能为2122k ab E mv g== 故B 错误;C .由图象可知,当22v b =时,有0F <则杆对小球的作用力方向向下,根据牛顿第三定律可知,小球对杆的弹力方向向上,故C 错误;D .由图象可知,当22v b =时,则有22v F mg m mg r+==解得F mg a ==故D 正确。
高考物理 临界状态的假设解决物理试题 推断题综合题及答案解析
高考物理 临界状态的假设解决物理试题 推断题综合题及答案解析一、临界状态的假设解决物理试题1.一带电量为+q 、质量为m 的小球从倾角为θ的光滑的斜面上由静止开始下滑.斜面处于磁感应强度为B 的匀强磁场中,磁场方向如图所示,求小球在斜面上滑行的速度范围和滑行的最大距离.【答案】m gcosθ/Bq , m 2gcos 2θ/(2B 2q 2sinθ) 【解析】 【分析】 【详解】带正电小球从光滑斜面下滑过程中受到重力m g 、斜面的支持力N 和洛伦兹力f 的作用于小球下滑速度越来越大,所受的洛伦兹力越来越大,斜面的支持力越来越小,当支持力为零时,小球运动达到临界状态,此时小球的速度最大,在斜面上滑行的距离最大 故cos mg qvB θ= 解得:cos mg v qBθ=,为小球在斜面上运动的最大速度 此时小球移动距离为:22222cos 2(2sin )v m g s a B q θθ==.2.如图所示,用长为L =0.8m 的轻质细绳将一质量为1kg 的小球悬挂在距离水平面高为H =2.05m 的O 点,将细绳拉直至水平状态无初速度释放小球,小球摆动至细绳处于竖直位置时细绳恰好断裂,小球落在距离O 点水平距离为2m 的水平面上的B 点,不计空气阻力,取g =10m/s 2求:(1)绳子断裂后小球落到地面所用的时间; (2)小球落地的速度的大小; (3)绳子能承受的最大拉力。
【答案】(1)0.5s(2)6.4m/s(3)30N【解析】 【分析】 【详解】(1)细绳断裂后,小球做平抛运动,竖直方向自由落体运动,则竖直方向有212AB h gt =,解得2(2.050.8)s 0.5s 10t ⨯-==(2)水平方向匀速运动,则有02m/s 4m/s 0.5x v t === 竖直方向的速度为5m/s y v gt ==则2222045m/s=41m/s 6.4m/s y v v v =+=+≈(3)在A 点根据向心力公式得2v T mg m L-=代入数据解得24(1101)N=30N 0.8T =⨯+⨯3.如图所示,圆心为O 、半径为r 的圆形区域外存在匀强磁场,磁场方向垂直于纸面向外,磁感应强度大小为B 。
高考物理—临界状态的假设解决物理试题的推断题综合压轴题专题复习附详细答案
高考物理—临界状态的假设解决物理试题的推断题综合压轴题专题复习附详细答案一、临界状态的假设解决物理试题1.如图所示,带电荷量为+q 、质量为m 的物块从倾角为θ=37°的光滑绝缘斜面顶端由静止开始下滑,磁感应强度为B 的匀强磁场垂直纸面向外,重力加速度为g ,求物块在斜面上滑行的最大速度和在斜面上运动的最大位移.(斜面足够长,取sin 37°=0.6,cos 37° =0.8)【答案】最大速度为:4mg 5qB ;最大位移为:222815m gq B 【解析】 【分析】 【详解】经分析,物块沿斜面运动过程中加速度不变,但随速度增大,物块所受支持力逐渐减小,最后离开斜面.所以,当物块对斜面的压力刚好为零时,物块沿斜面的速度达到最大,同时位移达到最大,即qv m B =mgcos θ 物块沿斜面下滑过程中,由动能定理得21sin 2mgs mv θ=联立解得:22m m 22cos 48,52sin 15m v mg mg m gv s qB qB g q Bθθ====2.如图甲,小球用不可伸长的轻绳连接绕定点O 在竖直面内圆周运动,小球经过最高点的速度大小为v ,此时绳子拉力大小为F ,拉力F 与速度的平方的关系如图乙所示,图象中的数据a 和b 以及重力加速度g 都为已知量,以下说法正确的是( )A .数据a 与小球的质量有关B .数据b 与小球的质量无关C .比值只与小球的质量有关,与圆周轨道半径无关D.利用数据a、b和g能够求出小球的质量和圆周轨道半径【答案】D【解析】【分析】【详解】A.当时,此时绳子的拉力为零,物体的重力提供向心力,则有:解得:解得:与物体的质量无关,A错误;B.当时,对物体受力分析,则有:解得:b=mg与小球的质量有关,B错误;C.根据AB可知:与小球的质量有关,与圆周轨道半径有关,C错误;D. 若F=0,由图知:,则有:解得:当时,则有:解得:D正确.3.用一根细线一端系一小球(可视为质点),另一端固定在一光滑锥顶上,如图所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
备战高考物理临界状态的假设解决物理试题的推断题综合热点考点难点一、临界状态的假设解决物理试题1.如图所示,M 、N 为两块带等量异种电荷的平行金属板,两板间电压可取从零到某一最大值之间的各种数值。
静止的带电粒子带电荷量为+q ,质量为m (不计重力),从点P 经电场加速后,从小孔Q 进入N 板右侧的匀强磁场区域,磁感应强度大小为B ,方向垂直于纸面向外,CD 为磁场边界上的一绝缘板,它与N 板的夹角θ=45°,孔Q 到板的下端C 的距离为L ,当M 、N 两板间电压取最大值时,粒子恰垂直打在CD 板上,求:(1)两板间电压的最大值U m ;(2)CD 板上可能被粒子打中区域的长度s ; (3)粒子在磁场中运动的最长时间t m 。
【答案】(1)两板间电压的最大值m U 为222qB L m;(2)CD 板上可能被粒子打中的区域的长度x 为(22)L ; (3)粒子在磁场中运动的最长时间m t 为mqBπ。
【解析】 【分析】(1)粒子恰好垂直打在CD 板上,根据粒子的运动的轨迹,可以求得粒子运动的半径,由半径公式可以求得电压的大小;(2)当粒子的运动的轨迹恰好与CD 板相切时,这是粒子能达到的最下边的边缘,在由几何关系可以求得被粒子打中的区域的长度.(3)打在QE 间的粒子在磁场中运动的时间最长,均为半周期,根据周期公式即可求解。
【详解】(1)M 、N 两板间电压取最大值时,粒子恰垂直打在CD 板上,所以圆心在C 点,CH=QC=L ,故半径R 1=L ,又因211v qvB m R =2m 112qU mv =所以22m 2qB L U m=(2)设轨迹与CD 板相切于K 点,半径为R 2,在△AKC 中:22sin 45R R L ︒=- 所以2(21)R L =-即KC 长等于2(21)R L =-所以CD 板上可能被粒子打中的区域即为HK 的长度12(21)(22)x HK R R LL L -===-=﹣﹣ (3)打在QE 间的粒子在磁场中运动的时间最长,均为半周期:2mT qBπ=所以m 12m t T qBπ==【点睛】本题考查带电粒子在匀强磁场中的运动,要掌握住半径公式、周期公式,画出粒子的运动轨迹后,几何关系就比较明显了。
2.质量为m 2=2Kg 的长木板A 放在水平面上,与水平面之间的动摩擦系数为0.4;物块B (可看作质点)的质量为m 1=1Kg ,放在木板A 的左端,物块B 与木板A 之间的摩擦系数为0.2.现用一水平向右的拉力F 作用在木板A 的右端,让木板A 和物块B 一起向右做匀加速运动.当木板A 和物块B 的速度达到2 m/s 时,撤去拉力,物块B 恰好滑到木板A 的右端而停止滑动,最大静摩擦力等于动摩擦力,g=10m/s 2,求:(1)要使木板A 和物块B 不发生相对滑动,求拉力F 的最大值; (2)撤去拉力后木板A 的滑动时间; (3)木板A 的长度。
【答案】(1)18N (2)0.4s (3)0.6m 【解析】【详解】(1)当木板A 和物块B 刚要发生相对滑动时,拉力达到最大 以B 为研究对象,由牛顿第二定律得1111m g m a μ=可得2112m/s a g μ==.再以整体为研究对象,由牛顿第二定律得212121 ))F m m g m m a μ-+=+(( 故得最大拉力18F N =;(2)撤去F 后A 、B 均做匀减速运动,B 的加速度大小仍为1a ,A 的加速度大小为2a ,则 2121122)m m g m g m a μμ+-=(解得225m/s a =故A 滑动的时间220.45v t s s a === (3)撤去F 后A 滑动的距离22122m=0.4m 225v x a ==⨯B 滑动的距离22212m=1m 222v x a ==⨯故木板A 的长度210.6m L x x =-=.【点睛】解题的关键是正确对滑块和木板进行受力分析,清楚滑块和木板的运动情况,根据牛顿第二定律及运动学基本公式求解。
3.如图甲所示,小车B 紧靠平台的边缘静止在光滑水平面上,物体A (可视为质点)以初速度v 0从光滑的平台水平滑到与平台等高的小车上,物体和小车的v -t 图像如图乙所示,取重力加速度g =10m /s 2,求:(1)物体A 与小车上表面间的动摩擦因数; (2)物体A 与小车B 的质量之比; (3)小车的最小长度。
【答案】(1)0.3;(2)13;(3)2m 【解析】 【分析】 【详解】(1)根据v t -图像可知,A 在小车上做减速运动,加速度的大小21241m /s 3m /s 1v a t ==∆-∆=若物体A 的质量为m 与小车上表面间的动摩擦因数为μ,则1mg ma μ=联立可得0.3μ=(2)设小车B 的质量为M ,加速度大小为2a ,根据牛顿第二定律2mg Ma μ=得13m M = (3)设小车的最小长度为L ,整个过程系统损失的动能,全部转化为内能22011()22mgL mv M m v μ=-+解得L =2m4.如图所示,C ﹑D 两水平带电平行金属板间的电压为U ,A ﹑B 为一对竖直放置的带电平行金属板,B 板上有一个小孔,小孔在C ﹑D 两板间的中心线上,一质量为m ﹑带电量为+q 的粒子(不计重力)在A 板边缘的P 点从静止开始运动,恰好从D 板下边缘离开,离开时速度度大小为v 0,则A ﹑B 两板间的电压为A .20v 2m qU q-B .2022mv qU q -C .20mv qU q -D .202mv qU q-【答案】A 【解析】 【分析】 【详解】在AB 两板间做直线加速,由动能定理得:2112AB qU mv =;而粒子在CD 间做类平抛运动,从中心线进入恰好从D 板下边缘离开,根据动能定理:220111222qU mv mv =-;联立两式可得:202AB mv qU U q-=;故选A.【点睛】根据题意分析清楚粒子运动过程是解题的前提与关键,应用动能定理、牛顿第二定律与运动学公式即可解题.5.铁路在弯道处的内、外轨道高低是不同的,已知内、外轨道连线与水平面倾角为θ,弯道处的圆弧半径为R ,若质量为m 的火车转弯的时速度小于临界转弯速度tan Rg θ 时,则( )A .内轨受挤压B .外轨受挤压C .这时铁轨对火车的支持力等于cos mgθ D .这时铁轨对火车的支持力小于cos mgθ【答案】AD 【解析】 【详解】AB .当车轮对内外轨道均无作用力时,受力分析:根据牛顿第二定律:2tan v mg m Rθ=解得:tan v Rg θ=,当速度小于tan Rg θ,车轮有向心的趋势,所以对内轨产生压力,A 正确,B 错误;CD .当车轮对内外轨道均无作用力时,轨道对火车的支持力:cos mgN θ=当内轨道对火车施加作用力沿着轨道平面,可以把这个力分解为水平和竖直向上的两个分力,由于竖直向上的分力作用,使支持力变小,C 错误,D 正确。
故选AD 。
6.如图所示,半径为R 的34圆形区域内有垂直于圆平面向里的匀强磁场。
磁感应强度大小为B ,O 为圆心,∠AOC =90︒,D 为AC 的中点,DO 为一块很薄的粒子吸收板。
一束质量为m 、电荷量为e 的电子以相同速度2eBRv m=在AD 间平行于DO 方向垂直射入磁场,不考虑电子的重力及相互作用,电子打在吸收板上即被板吸收。
则电子在磁场中运动的时间可能为( )A .π2mBeB .2π3mBeC .3π2mBeD .8π5mBe【答案】AC 【解析】 【详解】所有电子在磁场中做圆周运动的轨迹半径r 相同,由2vBev mr=得r=2R电子在磁场中做圆周运动的周期2π2πr mTv Be==画出电子在磁场中运动的轨迹如图所示可知从AO边射出磁场的电子在磁场中运动二圆周,其运动时间为11π42mt TBe ==从CO边射出磁场的电子在磁场中运动等于或大于12圆周,其运动时间为21π2mt TBe=其中沿DO方向从O点射人磁场的电子在磁场中运动34圆周,其运动时间最长,最长时间33 4 =t3π2m TBe =综上所述,故选AC。
7.质量为m,带电量为+q的滑块从光滑、绝缘斜面上由静止下滑,如图所示,匀强磁场方向垂直纸面向外,磁感强度为B,则滑块在斜面上滑行过程中(设斜面足够长),滑块()A.在斜面上滑行的最大速度为mgqBB.在斜面上滑行的最大速度为cosmgqBθC .作变加速直线运动D .在斜面上滑动的最大距离为2222sin m gq B θ【答案】BC 【解析】AB. 滑块沿斜面下滑时,受重力、支持力、垂直于斜面向上的洛伦兹力.洛伦兹力F=qvB ,随速度的增大而增大,当F N =0,即qvB=mgcosθ时速度达到最大,滑块开始离开斜面;所以在斜面上滑行的最大速度为cos mg v qBθ=,所以A 错误,B 正确; C D. 由于沿斜面方向的力不变,牛顿第二定律得:mgsinθ=ma ,加速度a=gsinθ,作匀加速直线运动;故C 正确,D 错误. 故选BC.点睛:对物体进行受力分析,当物体对斜面的压力为零时,物体开始离开斜面,由平衡条件求出物体此时的速度;由牛顿第二定律求出物体的加速度.8.现有A 、B 两列火车在同一轨道上同向行驶,A 车在前,其速度v A =10 m/s ,B 车速度v B =30 m/s.因大雾能见度低,B 车在距A 车600 m 时才发现前方有A 车,此时B 车立即刹车,但B 车要减速1 800 m 才能够停止. (1)B 车刹车后减速运动的加速度多大?(2)若B 车刹车8 s 后,A 车以加速度a 1=0.5 m/s 2加速前进,问能否避免事故?若能够避免则两车最近时相距多远?【答案】(1)0.25 m/s 2 (2)可以避免事故 232 m 【解析】 【分析】 【详解】(1)设B 车减速运动的加速度大小为a ,有0-v B 2=-2ax 1,解得: a =0.25 m/s 2.(2)设B 车减速t 秒时两车的速度相同,有v B -at =v A +a 1(t -Δt ) 代入数值解得t =32 s ,在此过程中B 车前进的位移为x B =v B t -212at =832 m A 车前进的位移为x A =v A Δt +v A (t -Δt )+12a 1(t -Δt )2=464 m , 因x A +x >x B ,故不会发生撞车事故,此时Δx =x A +x -x B =232 m.9.如图所示,在y 轴右侧平面内存在方向向里的匀强磁场,磁感应强度大小B =0.5T ,坐标原点O 有一放射源,可以向y 轴右侧平面沿各个方向放射比荷为72.510mq-=⨯ Kg/C 的正离子,这些离子速率分别在从0到最大值v m =2×106 m/s 的范围内,不计离子之间的相互作用(1)求离子打到y 轴上的范围;(2)若在某时刻沿x +方向放射各种速率的离子,求经过-75103s π⨯时这些离子所在位置构成的曲线方程;(3)若从某时刻开始向y 轴右侧各个方向放射各种速率的离子,求经过75103π-⨯s 时已进入磁场的离子可能出现的区域面积; 【答案】(1)范围为0到2m (2)33(0)y x x =≤≤ (3)273()12S m π=-【解析】 【详解】(1)离子进入磁场中做圆周运动的最大半径为R由牛顿第二定律得: 2mv qvB R= 解得:1mvR m Bq== 由几何关系知,离子打到y 轴上的范围为0到2m(2)离子在磁场中运动的周期为T , 则62210R mT s v qBπππ-===⨯ t 时刻时,这些离子轨迹所对应的圆心角为θ则23t t T ππ== 这些离子构成的曲线如图1所示,并令某一离子在此时刻的坐标为(x ,y )3y x =3(0)x ≤≤ (3)将第(2)问中图2中的OA 段从沿y 轴方向顺时针方向旋转,在x 轴上找一点C ,以R 为半径作圆弧,相交于B ,则两圆弧及y 轴所围成的面积即为在0t =向y 轴右侧各个方向不断放射各种速度的离子在71503t s π-=⨯时已进入磁场的离子所在区域. 由几何关系可求得此面积为:2222511373126212S R R R R R R πππ=+-⨯=- 则:273()12S m π=- 【点睛】本题考查运用数学知识分析和解决物理问题的能力,采用参数方程的方法求解轨迹方程,根据几何知识确定出离子可能出现的区域,难度较大.10.一辆大客车正在以30 m/s 的速度匀速行驶.突然,司机看见车的正前方x 0 = 95m 处有一只小狗,如图所示.司机立即采取制动措施,司机从看见小狗到开始制动客车的反应时间为△t=0.5 s ,设客车制动后做匀减速直线运动.试求:(1)为了保证小狗的安全,客车制动的加速度大小至少为多大?(假设这个过程中小狗一直未动)(2)若客车制动时的加速度为5m/s2,在离小狗30m 时,小狗发现危险并立即朝前跑去.假设小狗起跑阶段做匀加速直线运动,加速度a=3m/s2.已知小狗的最大速度为8m/s 且能保持较长一段时间.试判断小狗有没有危险,并说明理由. 【答案】(1)25.625/m s (2)小狗是安全的 【解析】 【分析】 【详解】(1)长途客车运动的速度v =30m/s ,在反应时间内做匀速运动,运动的位移为: x 1=v △t =30×0.5m=15m所以汽车减速位移为:x 2=x 0-x 1=95-15=80m 根据速度位移关系知长途客车加速度大小至少为:22221230/ 5.625/2280v a m s m s x ===⨯. (2)若客车制动时的加速度为a 1=-5m/s 2,在离小狗x =30m 时,客车速度为v 1,则()221122v v a x x -=-,代入数据解得v 1=20m/s设t 时速度相等,即v 1+a 1t =at解得:t =2.5s 此时车的位移231112x v t a t =+代入数据解得x 3=34.375m 狗的位移:2419.5752x at m == 即x 4+x >x 3,所以小狗是安全的.11.如图所示,在边长为L 的正方形区域内存在垂直纸面向里的匀强磁场,其磁感应强度大小为B .在正方形对角线CE 上有一点P ,其到CF ,CD 距离均为4L ,且在P 点处有一个发射正离子的装置,能连续不断地向纸面内的各方向发射出速率不同的正离子.已知离子的质量为m ,电荷量为q ,不计离子重力及离子间相互作用力.(1)速率在什么范围内的所有离子均不可能射出正方形区域?(2)求速率为v =1332qBL m的离子在DE 边的射出点距离D 点的范围. 【答案】(1)8qBL v m ≤(2)(23)48L L d +≤< 【解析】【分析】【详解】因离子以垂直于磁场的速度射入磁场,故其在洛伦兹力作用下必做圆周运动.(1)依题意可知离子在正方形区域内做圆周运动不射出该区域,做圆周运动的半径为r ≤8L . 对离子,由牛顿第二定律有qvB =m 2v r⇒ 8qBL v m ≤ (2)当v =1332qBL m时,设离子在磁场中做圆周运动的半径为R ,则由2v qvB m R =可得.1332L R = 要使离子从DE 射出,则其必不能从CD 射出,其临界状态是离子轨迹与CD 边相切,设切点与C 点距离为x ,其轨迹如图甲所示,由几何关系得:R 2=(x -4L )2+(R -4L )2, 计算可得x =58L , 设此时DE 边出射点与D 点的距离为d 1,则由几何关系有:(L -x )2+(R -d 1)2=R 2, 解得d 1=4L . 而当离子轨迹与DE 边相切时,离子必将从EF 边射出,设此时切点与D 点距离为d 2,其轨迹如图乙所示,由几何关系有:R 2=(34L -R )2+(d 2-4L )2, 解得d 2=(238L 故速率为v =1332qBL m 的离子在DE 边的射出点距离D 点的范围为(2348L L d ≤< 【点睛】 粒子圆周运动的半径mv r Bq= ,速率越大半径越大,越容易射出正方形区域,粒子在正方形区域圆周运动的半径若不超过8L ,则粒子一定不能射出磁场区域,根据牛顿第二定律求出速率即可.12.光滑绝缘的水平轨道AB 与半径为R 的光滑的半圆形轨道BCD 相切于B 点,水平轨道AB 部分存在水平向右的匀强电场,半圆形轨道在竖直平面内,B 为最低点,D 为最高点。