生物化学思考题

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《生物化学》思考题

蛋白质

一、名词:

氨基酸及蛋白质等电点;蛋白质一级、二级、三级及四级结构;电泳;蛋白质分子病;别构效应;蛋白质变性作用;肽与肽键;N-端与-端;AA殘基;

二、简答题

1、中性、酸性及碱性氨基酸有哪些?

答:20种氨基酸中的精氨酸、赖氨酸和组氨酸为3种碱性氨基酸;酸性氨基酸为天冬氨酸和谷氨酸2种;其他15种为中性氨基酸。

2、稳定蛋白质空间结构的作用力有哪些?

答:氢键、盐键、疏水作用、范德华引力等是稳定空间结构的作用力;一级结构中的化学键有肽键和二硫键。

3、蛋白质在非等电点时不易形成凝集沉淀的的原理;

答:一是水化层,蛋白质表面带有亲水基团,形成水化层,使蛋白质颗粒相互隔开,不易碰撞成大颗粒;二是蛋白质在非等电时带有同种电荷,使蛋白质之间相互排斥,保持一定距离,不致相互凝集沉淀

4、指出下面pH条件下,各蛋白质在电场中向哪个方向移动,即正极,负极,还是保持原点?(1)胃蛋白酶(pI 1.0),在pH 5.0;(2)血清清蛋白(pI 4.9),在pH 6.0;(3)α-脂蛋白(pI 5.8),在pH 5.0和pH 9.0;

答:(1)胃蛋白酶pI 1.0<环境pH 5.0,带负电荷,向正极移动;

(2)血清清蛋白pI 4.9<环境pH 6.0,带负电荷,向正极移动;

(3)α-脂蛋白pI 5.8>环境pH 5.0,带正电荷,向负极移动;

α-脂蛋白pI 5.8<环境pH 9.0,带负电荷,向正极移动。

三、何谓蛋白质的变性与沉淀?二者在本质上有何区别?

答:蛋白质变性的概念:天然蛋白质受物理或化学因素的影响后,使其失去原有的生物活性,并伴随着物理化学性质的改变,这种作用称为蛋白质的变性。

变性的本质:分子中各种次级键断裂,使其空间构象从紧密有序的状态变成松散无序的状态,一级结构不破坏。

蛋白质变性后的表现:① 生物学活性消失;② 理化性质改变:溶解度下降,黏度增加,紫外吸收增加,侧链反应增强,对酶的作用敏感,易被水解。

蛋白质由于带有电荷和水膜,因此在水溶液中形成稳定的胶体。如果在蛋白质溶液中加入适当的试剂,破坏了蛋白质的水膜或中和了蛋白质的电荷,则蛋白质胶体溶液就不稳定而出现沉淀现象。沉淀机理:破坏蛋白质的水化膜,中和表面的净电荷。

蛋白质的沉淀可以分为两类:

(1)可逆的沉淀:蛋白质的结构未发生显著的变化,除去引起沉淀的因素,蛋白质仍能溶于原来的溶剂中,并保持天然性质。如盐析或低温下的乙醇(或丙酮)短时间作用蛋白质。

(2)不可逆沉淀:蛋白质分子内部结构发生重大改变,蛋白质变性而沉淀,不再能溶于原溶剂。如加热引起蛋白质沉淀,与重金属或某些酸类的反应都属于此类。

蛋白质变性后,有时由于维持溶液稳定的条件仍然存在,并不析出。因此变性蛋白质

并不一定都表现为沉淀,而沉淀的蛋白质也未必都已经变性。

核酸思考题

一、名词解释

核酸的一级结构;二级结构;基因和基因组;核酸的增色效应和减色效应;双链核酸的变性与复性及熔解温度Tm;

二、简述题

1、核酸DNA和RNA的存在与生物学意义;

答:

2、核苷酸的生物功能;

答:

3、核酸中核苷酸的连接键;

答:3’,5’-磷酸二脂键

4、真核生物和原核生物核糖体的分子量;

答:原核生物核糖体分子量为70S,大亚基50S,小亚基30S;

真核生物核糖体的分子量为80S,大亚基为60S,小亚基40S。

5、核酸结构的稳定因素;

答:碱基对间的氢键、碱基堆积力、环境中的正离子

6、DNA变性后理化性质有何变化?

答:DNA双链转化成单链的过程称变性。引起DNA变性的因素很多,如高温、超声波、强酸、强碱、有机溶剂和某些化学试剂(如尿素,酰胺)等都能引起变性。DNA变性后的理化性质变化主要有:①天然DNA分子的双螺旋结构解链变成单链的无规则线团,生物学活性丧失;②天然的线型DNA分子水溶液具有很大的黏度。变性后,黏度显著降低;③变性后的DNA浮力密度大大增加,故沉降系数S增加;④ DNA变性后,碱基的有序堆积被破坏,碱基

被暴露出来,因此,紫外吸收值明显增加,产生所谓增色效应。

酶思考题

1、作为生物催化剂,酶最要的特点是什么?

答:具有很高的催化效率以及高度专一性。

2、什么是诱导契合学说?该学说如何释酶的专一性

答:“诱导契合”学说认为酶分子的结构并非与底物分子正好互补,当酶分子结合底物分子时,在底物分子诱导下,酶的构象发生变化,成为能与底物分子密切契合的构象,从而催化底物的反应。根据诱导契合学说,经过诱导之后,酶与底物在结构上的互补性是酶催化底物反应的前提,酶只能与互补的化合物契合,排斥那些形状、大小等不适合的化合物,故酶对底物具有严格的选择性(高度专一性)。

3、阐述酶活性部位的概念、组成与特点。

答:酶的活性部位(活性中心)是指酶分子中直接和底物结合并和酶催化作用直接有关的区域。①酶的结合部位,是指酶分子中与结合底物有关的部位。每种酶具有一个或一个以上的结合部位,即每一结合部位至少结合一种底物,结合部位决定酶的专一性。②酶的催化部位,是指酶分子中促使底物发生化学变化的部位。催化部位决定酶的催化能力以及酶促反应的性质。

酶的活性部位共同特点:

①酶的活性部位在酶分子整体结构中只占很小的部分。②酶的活性位具有三维立体结构;在形状、大小、电荷性等方面与底物分子具有很好的互补性。③酶的活性部位含有特定的催化基团。主要包括氨基酸侧链基团的化学功能团以及辅因子的化学功能团。如羟基、羧基等、TPP、磷酸吡哆醛、铁卟啉等,④酶的活性部位具有柔性。酶的活性部位比整个酶

相关文档
最新文档