2016年人教版八年级(上册)期中数学试卷及答案

合集下载

2016人教版八年级上期中数学试卷及答案

2016人教版八年级上期中数学试卷及答案

2016人教版八年级上期中数学模拟试卷及答案一、选择题(每题3分,共30分)1.下列平面图形中,不是轴对称图形的是()2.下列图形中有稳定性的是()A.正方形B.长方形C.直角三角形D.平行四边形3.以下列各组线段为边,能组成三角形的是()A.2cm,3cm,5cm B.3cm,3cm,6cm C.5cm,8cm,2cm D.4cm,5cm,6cm 4.以下是四位同学在钝角三角形ABC中画BC边上的高,其中画法正确的是()5.点P(﹣1,2)关于y轴对称点的坐标是()A.(1,2)B.(﹣1,﹣2)C.(1,﹣2)D.(2,﹣1)6.十二边形的外角和是()A.180°B.360°C.1800°D.2160°7.已知等腰三角形的两边长分别为3和6,则它的周长等于()A.12 B.12或15 C.15 D.15或188.如图,AC和BD相交于O点,若OA=OD,用“SAS”证明△AOB≌△DOC还需()A.AB=DC B.OB=OC C.∠C=∠D D.∠AOB=∠DOC9.如图所示,AC=BD,AB=CD,图中全等的三角形的对数是()A.2 B.3 C.4 D.510.如图,BE、CF是△ABC的角平分线,∠ABC=80°,∠ACB=60°,BE、CF相交于D,则∠BDC的度数是()A.110°B.70° C.80° D.75°二、填空题(每题4分,共24分)11.三角形的两边长分别是3和7,则其第三边x的范围为.12.如果一个正多边形的内角和是720°,则这个正多边形是正边形.13.已知在△ABC中,∠A=40°,∠B﹣∠C=40°,则∠B= ,∠C= .14.如图,Rt△ABC中,∠A=30°,AB=12cm,则BC= cm.15.如图,点P为∠AOB内一点,分别作出P点关于OA、OB的对称点P1,P2,连接P1P2交OA于M,交OB于N,P1P2=20,则△PMN的周长为.16.如图,△ABD、△ACE都是正三角形,BE和CD交于O点,则DC= .(写等于哪条线段)三、解答题(一)(每题6分,共18分)17.利用关于坐标轴对称的点的坐标的特点,在下面坐标系中作出△ABC关于y轴对称的图形△A′B′C′,并写出A′,B′,C′的坐标.18.已知AB=CD,BE=CF,AE=DF.求证:AB∥CD.19.如图,在△ABC中,AB=AD=DC,∠BAD=20°,求∠C的度数?四、解答题(二)(每题7分,共21分)20.如图,△ABC中,DE是AC的垂直平分线,AE=3cm,△ABD的周长为13cm,求△ABC的周长.21.某地有两个村庄M、N和两条相交叉的公路OA,OB,现计划修建一个物资仓库,希望仓库到两个村庄的距离相等,到两条公路的距离也相等,请你用尺规作图的方法确定该点P.(注意保留作图痕迹,不用写作法)22.如图,△ABC中,AD是BC边上的高,AE是∠BAC的平分线,∠EAD=5°,∠B=50°,求∠C的度数.五、解答题(三)(每题9分,共27分)23.如图:已知在△ABC中,AB=AC,D为BC边的中点,过点D作DE⊥AB,DF⊥AC,垂足分别为E,F.(1)求证:DE=DF;(2)若∠A=60°,BE=1,求△ABC的周长.24.如图,点E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别为C、D.求证:(1)∠ECD=∠EDC;(2)OC=OD;(3)OE是线段CD的垂直平分线.25.如图,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,(1)写出图中一对全等的三角形,并写出它们的所有对应角;(2)设∠AED的度数为x,∠ADE的度数为y,那么∠1,∠2的度数分别是多少?(用含有x或y的代数式表示)(3)∠A与∠1+∠2之间有一种数量关系始终保持不变,请找出这个规律.参考答案一、选择题(每题3分,共30分)1.A.解:根据轴对称图形的概念,可知只有A沿任意一条直线折叠直线两旁的部分都不能重合.2.C.解:根据三角形具有稳定性,可得四个选项中只有直角三角形具有稳定性.3.D.解:A、∵2+3=5,∴不能构成三角形,故本选项错误;B、∵3+3=6,∴不能构成三角形,故本选项错误C、∵5+2=7<8,∴不能构成三角形,故本选项错误;D、∵6﹣4<5<6+4,∴能构成三角形,故本选项正确.4.B.解:A、没有经过顶点A,不符合题意;B、高AD交BC的延长线于点D处,符合题意;C、垂足没有在BC上,不符合题意;D、AD不垂直于BC,不符合题意.5.A.解:点P(﹣1,2)关于y轴对称点的坐标为(1,2).6.B.解:十二边形的外角和是360°.7.解:∵等腰三角形的两边长分别是3和6,∴①当腰为6时,三角形的周长为:6+6+3=15;②当腰为3时,3+3=6,三角形不成立;∴此等腰三角形的周长是15.故选C.8.解:A、AB=DC,不能根据SAS证两三角形全等,故本选项错误;B、∵在△AOB和△DOC中,∴△AOB≌△DOC(SAS),故本选项正确;C、两三角形相等的条件只有OA=OD和∠AOB=∠DOC,不能证两三角形全等,故本选项错误;D、根据∠AOB=∠DOC和OA=OD,不能证两三角形全等,故本选项错误;故选B.9.解:∵AC=BD,AB=CD,BC=BC,∴△ABC≌△DCB,∴∠BAC=∠CDB.同理得△ABD≌△DCA.又因为AB=CD,∠AOB=∠COD,∴△ABO≌△DCO.故选B.10.解:∵BE、CF是△ABC的角平分线,∠ABC=80°,∠ACB=60°,∴∠CBE=∠ABC=40°,∠FCB=∠ACB=30°,∴∠BDC=180°﹣70°=110°.故选A.二、填空题(每题4分,共24分)11.解:根据三角形的三边关系定理可得:7﹣3<x<7+3,故4<x<10,故答案为:4<x<10.12.解:设此多边形边数为n,由题意得:180(n﹣2)=720,解得:n=6,故答案为:六.13.解:∵∠A=40°,∴∠B+∠C=180°﹣∠A=140°①,∵∠B﹣∠C=40°②,①+②得:2∠B=180°,∴∠B=90°,①﹣②得:2∠C=100°,∴∠C=50°,故答案为:90°;50°.14解:∵Rt△ABC中,∠A=30°,AB=12cm,∴BC=AB=6cm,故答案为:6.15.解:∵点P关于OA、OB的对称点P1、P2,∴PM=P1M,PN=P2N,∴△PMN的周长=PM+MN+PN=P1M+MN+P2N=P1P2,∵P1P2=20,∴△PMN的周长=20.故答案为:20.16.解:DC=BE,∵△ABD和△ACE都是等边三角形,∴AD=AB,AE=AC,∠BAD=∠EAC=60°,∴∠BAD+∠BAC=∠EAC+∠BAC∴∠DAC=∠BAE,∵在△DAC和△BAE中,,∴△DAC≌△BAE,(SAS)∴BE=CD.故答案为:BE.三、解答题(一)(每题6分,共18分)17.解:如图所示:A′(3,2),B′(4,﹣3),C′(1,﹣1).18.证明:由AB=CD,BE=CF,AE=DF得△ABE≌△DCF;即∠B=∠C,∴AB∥CD.19.解:∵∠BAD=20°,AB=AD=DC,∴∠ABD=∠ADB=80°,由三角形外角与外角性质可得∠ADC=180°﹣∠ADB=100°,又∵AD=DC,∴∠C=∠ADB=40°,∴∠C=40°.四、解答题(二)(每题7分,共21分)20.解:∵DE是AC的垂直平分线,AE=3cm,∴AD=CD,AC=2AE=2×3=6cm,∴△ABD的周长=AB+BD+AD=AB+BD+CD=AB+BC=13cm,∴△ABC的周长=AB+BC+AC=13+6=19cm.21.解:点P为线段MN的垂直平分线与∠AOB的平分线的交点,则点P到点M、N的距离相等,到AO、BO的距离也相等,作图如下:22.解:∵AD是BC边上的高,∠EAD=5°,∴∠AED=85°,∵∠B=50°,∴∠BAE=∠AED﹣∠B=85°﹣50°=35°,∵AE是∠BAC的角平分线,∴∠BAC=2∠BAE=70°,∴∠C=180°﹣∠B﹣∠BAC=180°﹣50°﹣70°=60°.五、解答题(三)(每题9分,共27分)23.(1)证明:∵DE⊥AB,DF⊥AC,∴∠BED=∠CFD=90°,∵AB=AC,∴∠B=∠C(等边对等角).∵D是BC的中点,∴BD=CD.在△BED和△CFD中,,∴△BED≌△CFD(AAS).∴DE=DF(2)解:∵AB=AC,∠A=60°,∴△ABC为等边三角形.∴∠B=60°,∵∠BE D=90°∴∠BDE=30°,∴BE=12 BD,∵BE=1,∴BD=2,∴BC=2BD=4,∴△ABC的周长为12.24.证明:(1)∵OE平分∠AOB,EC⊥OA,ED⊥OB,∴ED=EC,即△CDE为等腰三角形,∴∠ECD=∠EDC;(2)∵点E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,∴∠DOE=∠COE,∠ODE=∠OCE=90°,OE=OE,∴△OED≌△OEC(AAS),∴OC=OD;(3)在△DOE和△COE中,∵,∴△DOE≌△COE,∴DE=CE,∴OE是线段CD的垂直平分线.25.解:(1)△EAD≌△EA'D,其中∠EAD=∠EA'D,∠AED=∠A'ED,∠ADE=∠A'DE;(2)∠1=180°﹣2x,∠2=180°﹣2y;(3)∵∠1+∠2=360°﹣2(x+y)=360°﹣2(180°﹣∠A)=2∠A.规律为:∠1+∠2=2∠A.。

人教版2016-2017年八年级上期中数学试卷含答案

人教版2016-2017年八年级上期中数学试卷含答案

八年级(上)期中数学试卷一、选择题(共12小题,每小题3分,满分36分)1.因式分解x2﹣9的结果是()A.(x+9)(x﹣9)B.(x+3)(x﹣3)C.(3+x)(3﹣x)D.(x﹣3)22.有一组数据如下:3,5,4,6,7,那么这组数据的方差是()A.10 B. C.2 D.3.对与实数,﹣π,,3.1415,0.333…,2.010101…(相邻两个1之间0的个数逐个加1),其中无理数的个数是()A.3个B.4个C.5个D.6个4.对与3+的运算结果的估计正确的是()A.1<3+<2 B.2<3+<3 C.3<3+<4 D.4<3+<55.下列说法正确的是()A.﹣4是16的平方根B.的算术平方根是4C.0没有算术平方根D.2的平方根是6.直角三角形两边长分别是3、4,则这个直角三角形的第三边是()A.5 B.C.5或D.无法确定7.适合下列条件的△ABC的三边a、b、c,不能组成直角三角形的是()A.a=3,b=3,c=3 B.a=7,b=24,c=25C.a=8,b=15,c=17 D.a=,b=,c=8.如图,数轴上A,B两点表示的数分别为﹣1和,点B关于点A的对称点为C,则点C所表示的数为()A.B.C.D.9.若实数x、y满足+(y+3)2=0,则x+y的值为()A.1 B.﹣1 C.7 D.﹣710.如表是某地区某月份的气温数据表,这组数据的中位数和众数分别是()A.21;21 B.21;21.5 C.21;22 D.22;2211.对于a2﹣2ab+b2﹣c2的分组中,分组正确的是()A.(a2﹣c2)+(﹣2ab+b2)B.(a2﹣2ab+b2)﹣c2C.a2+(﹣2ab+b2﹣c2)D.(a2+b2)+(﹣2ab﹣c2)12.在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,且a、b、c满足a4﹣b4=a2c2﹣b2c2,则△ABC一定是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形二、填空题(共6小题,每小题3分,满分18分)13.某同学在对关于x的二次三项式x2+3x﹣10分解因式时,正确的分解成了(x﹣b)(x﹣2),则b= .14.若二次三项式x2+(m﹣2)x+9是关于x的一个完全平方式,则m= .15.如图所示的圆柱体中底面圆的半径是,高为3,若一只小虫从A点出发沿着圆柱体的侧面爬行到C点,则小虫爬行的最短路程是.16.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C、D的面积分别是4、6、3、4,则最大正方形E的面积是.17.在△ABC中,AB=AC=10,BC=12,则△ABC的面积为.18.若a、b、c为△ABC的三边,且a、b、c满足a2+b2+c2+200=12a+16b+20c,则△ABC的最长边的高的长度等于.三、解答题19.(16分)计算化简(1)﹣(2)﹣(﹣2+)(3)×﹣5(4)()2.20.将下列各多项式因式分解(1)15a2+5a(2)x5﹣x3(3)a3b﹣4a2b2+4ab3(4)1﹣x2﹣y2+x2y2.21.已知:x=,y=,①x+y;②xy;③x2+y2;④(x2+x+2)(y2+y﹣2)22.根据平方根、立方根的定义解下列方程①x2=9;②(x﹣2)2=4;③(2x+1)2=12;④(x+1)3=﹣2.23.如图所示,在四边形ABCD中,AB⊥BC,AC⊥CD,以CD为直径作半圆O,AB=4cm,BC=3cm,AD=13cm.求图中阴影部分的面积:24.已知网格中每个小正方形的边长是1,在网格中作△ABC,使得AB=,BC=,CA=,.并求S△ABC25.探究题:.(1)在正△ABC中(图1),AB=2,AD⊥BC于D,求S△ABC(2)在正△AB1C1中(图2),B1C1=2,AB2⊥B1C1于B2,以AB2为边作正△AB2C2,AC1、B2C2交于B3,以AB3为边作正△AB3C3,依此类推.①写出第n个正三角形的周长;(用含n的代数式表示)②写出第n个正三角形的面积.(用含n的代数式表示)26.在正方形ABCD中,AB=4,E为BC的中点,F在CD上,DF=3CF,连结AF、AE、EF.(1)如图1,求出△AEF的三条边的长度;(2)判断△AEF的形状;并说明理由;(3)探究S△ECF +S△ABE与S△AEF的关系,并说明理由;(4)如图2,作EG⊥AF于G,①试求出FG、AG、EG的长度;②试探究EG2与FG×AG的关系?并说明理由.参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分) 1.因式分解x 2﹣9的结果是( )A .(x+9)(x ﹣9)B .(x+3)(x ﹣3)C .(3+x )(3﹣x )D .(x ﹣3)2 【考点】因式分解-运用公式法.【分析】直接利用平方差公式分解因式得出答案. 【解答】解:x 2﹣9=(x+3)(x ﹣3). 故选:B .【点评】此题主要考查了公式法分解因式,正确应用平方差公式是解题关键.2.有一组数据如下:3,5,4,6,7,那么这组数据的方差是( )A .10B .C .2D .【考点】方差.【分析】先由平均数的公式计算出x 的值,再根据方差的公式计算. 【解答】解: =(3+5+4+6=7)=5,S 2= [(3﹣5)2+(5﹣5)2+(4﹣5)2+(6﹣5)2+(7﹣5)2]=2, 故选:C .【点评】本题考查方差的定义:一般地设n 个数据,x 1,x 2,…x n 的平均数为,则方差S 2= [(x 1﹣)2+(x 2﹣)2+…+(x n ﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立. 3.对与实数,﹣π,,3.1415,0.333…,2.010101…(相邻两个1之间0的个数逐个加1),其中无理数的个数是( )A.3个B.4个C.5个D.6个【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:﹣π,,2.010101…(相邻两个1之间0的个数逐个加1)是无理数,故选:A.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.4.对与3+的运算结果的估计正确的是()A.1<3+<2 B.2<3+<3 C.3<3+<4 D.4<3+<5【考点】估算无理数的大小.【分析】根据被开方数越大算术平方根越大,可得的范围,根据不等式的性质1,可得答案.【解答】解:由被开方数越大算术平方根越大,得1<2,3+1<3+<2+3,故选:D.【点评】本题考查了估算无理数的大小,利用被开方数越大算术平方根越大得出的范围是解题关键.5.下列说法正确的是()A.﹣4是16的平方根B.的算术平方根是4C.0没有算术平方根D.2的平方根是【考点】算术平方根;平方根.【分析】依据平方根和算术平方根的性质求解即可.【解答】解:A、﹣4是16的平方根,故A正确;B、=4,4的算术平方根是2,故B错误;C、0的算术平方根是0,故C错误;D、2的平方根是±.故选:A.【点评】本题主要考查的是算术平方根和平方根,掌握相关定义和性质是解题的关键.6.直角三角形两边长分别是3、4,则这个直角三角形的第三边是()A.5 B.C.5或D.无法确定【考点】勾股定理.【分析】已知直角三角形两边的长,但没有明确是直角边还是斜边,因此分两种情况讨论:①3是直角边,4是斜边;②3、4均为直角边;可根据勾股定理求出上述两种情况下,第三边的长.【解答】解:①长为3的边是直角边,长为4的边是斜边时:第三边的长为: =;②长为3、4的边都是直角边时:第三边的长为: =5;综上,第三边的长为:5或.故选C.【点评】此题主要考查的是勾股定理,要注意的是由于已知的两边是直角边还是斜边并不明确,所以一定要分类讨论,以免漏解.7.适合下列条件的△ABC的三边a、b、c,不能组成直角三角形的是()A.a=3,b=3,c=3 B.a=7,b=24,c=25C.a=8,b=15,c=17 D.a=,b=,c=【考点】勾股定理的逆定理.【分析】根据直角三角形的判定,符合a2+b2=c2即可;反之不符合的不能构成直角三角形.【解答】解:A、因为32+32=(3)2,所以能组成直角三角形;B、因为72+242=252,所以能组成直角三角形;C、因为82+152=172,所以能组成直角三角形;D、因为()2+()2≠()2,所以不能组成直角三角形;故选D.【点评】本题考查了直角三角形的判定,运用勾股定理的逆定理判定是解答此题的关键.8.如图,数轴上A,B两点表示的数分别为﹣1和,点B关于点A的对称点为C,则点C所表示的数为()A.B.C.D.【考点】实数与数轴.【分析】设点C表示的数是x,然后根据中点公式列式求解即可.【解答】解:设点C表示的数是x,∵A,B两点表示的数分别为﹣1和,C,B两点关于点A对称,∴=﹣1,解得x=﹣2﹣.故选:A.【点评】本题考查了实数与数轴,根据点B、C关于点A对称列出等式是解题的关键.9.若实数x、y满足+(y+3)2=0,则x+y的值为()A.1 B.﹣1 C.7 D.﹣7【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【分析】根据非负数的性质列方程求出x、y的值,然后相加计算即可得解.【解答】解:∵ +(y+3)2=0,∴=0,(y+3)2=0,∴x+y﹣1=0,y+3=0,解得x=4,y=﹣3,故x+y=4+(﹣3)=1.故选A.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.10.如表是某地区某月份的气温数据表,这组数据的中位数和众数分别是()A.21;21 B.21;21.5 C.21;22 D.22;22【考点】众数;中位数.【分析】根据中位数和众数的定义分别进行解答即可.【解答】解:把这些数从小到大排列为,最中间的数是第15、16个数的平均数,则中位数是: =22;∵22出现了8次,出现的次数最多,∴众数在22.故选D.【点评】此题考查了中位数和众数;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数,众数是一组数据中出现次数最多的数据,注意众数可以不止一个.11.对于a2﹣2ab+b2﹣c2的分组中,分组正确的是()A.(a2﹣c2)+(﹣2ab+b2)B.(a2﹣2ab+b2)﹣c2C.a2+(﹣2ab+b2﹣c2)D.(a2+b2)+(﹣2ab﹣c2)【考点】因式分解-分组分解法.【分析】当被分解的式子是四项时,应考虑运用分组分解法进行分解.本题a2﹣2ab+b2是完全平方,再可利用平方差公式分解.【解答】解:a2﹣2ab+b2﹣c2=(a2﹣2ab+b2)﹣c2=(a﹣b)2﹣c2=(a﹣b+c)(a﹣b﹣c).故选B.【点评】本题考查了分组分解法分解因式.注意难点是采用两两分组还是三一分组.12.在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,且a、b、c满足a4﹣b4=a2c2﹣b2c2,则△ABC一定是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形【考点】因式分解的应用.【分析】将等式右边的移项到方程左边,然后提取公因式将方程左边分解因式,根据两数相乘积为0,两因式中至少有一个数为0转化为两个等式;根据等腰三角形的判定,以及勾股定理的逆定理得出三角形为直角三角形或等腰三角形.【解答】解:∵a4﹣b4=a2c2﹣b2c2,∴a4﹣b4﹣a2c2+b2c2=0,∴(a2+b2)(a2﹣b2)﹣c2(a2﹣b2)=0,∴(a2﹣b2)[(a2+b2)﹣c2]=0,则当a2﹣b2=0时,a=b;当a2﹣b2≠0时,a2+b2=c2;所以△ABC是等腰三角形或直角三角形.故选D.【点评】此题考查因式分解和勾股定理逆定理的实际运用,掌握平方差公式和完全平方公式是关键.二、填空题(共6小题,每小题3分,满分18分)13.某同学在对关于x的二次三项式x2+3x﹣10分解因式时,正确的分解成了(x﹣b)(x﹣2),则b= ﹣5 .【考点】因式分解-十字相乘法等.【分析】由题意二次三项式x2+3x﹣10分解因式的结果为(x﹣2)(x﹣b),将整式(x﹣b)(x﹣2)相乘,然后根据系数相等求出b.【解答】解:∵关于x的二次三项式x2+3x﹣10分解因式的结果为(x﹣b)(x﹣2),∴(x﹣b)(x﹣2)=x2﹣(b+2)x+2b=x2+3x﹣10,∴2b=﹣10,∴b=﹣5.故答案为﹣5.【点评】本题考查了因式分解的意义,紧扣因式分解的定义,是一道基础题.14.若二次三项式x2+(m﹣2)x+9是关于x的一个完全平方式,则m= 8或﹣4 .【考点】完全平方式.【专题】计算题;整式.【分析】利用完全平方公式的结构特征判断即可确定出m的值.【解答】解:∵二次三项式x2+(m﹣2)x+9是关于x的一个完全平方式,∴m﹣2=±6,解得:m=8或﹣4.故答案为:8或﹣4.【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.15.如图所示的圆柱体中底面圆的半径是,高为3,若一只小虫从A点出发沿着圆柱体的侧面爬行到C点,则小虫爬行的最短路程是4.【考点】平面展开-最短路径问题.【分析】先将图形展开,再根据两点之间线段最短,由勾股定理可得出.【解答】解:圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,C是边的中点,矩形的宽即高等于圆柱的母线长.∵AB=π•=4,CB=4.∴AC==4.故答案为:4.【点评】此题主要考查了平面展开图最短路径问题,此矩形的长等于圆柱底面周长,矩形的宽即高等于圆柱的母线长.本题就是把圆柱的侧面展开成矩形,“化曲面为平面”,用勾股定理解决.16.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C、D的面积分别是4、6、3、4,则最大正方形E的面积是17 .【考点】勾股定理.【分析】根据正方形的面积公式,运用勾股定理可以证明:四个小正方形的面积和等于最大正方形的面积,由此即可解决问题.【解答】解:如图记图中两个正方形分别为P、Q.根据勾股定理得到:C与D的面积的和是Q的面积;A与B的面积的和是P的面积;而P,Q的面积的和是E的面积,即A、B、C、D的面积之和为E的面积,∴正方形E的面积=4+6+3+4=17,故答案为:17.【点评】本题考查了勾股定理的应用.能够发现正方形A,B,C,D的边长正好是两个直角三角形的四条直角边,根据勾股定理最终能够证明正方形A,B,C,D的面积和即是最大正方形的面积.17.在△ABC中,AB=AC=10,BC=12,则△ABC的面积为48 .【考点】勾股定理;等腰三角形的性质.【分析】作底边上的高,构造直角三角形.运用等腰三角形性质及三角形的面积公式求解.【解答】解:如图,作AD⊥BC于点D,则BD=BC=6.在Rt△ABD,∵AD2=AB2﹣BD2,∴AD=8,∴△ABC的面积=BC•AD=×12×8=48.故答案为:48.【点评】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.18.若a、b、c为△ABC的三边,且a、b、c满足a2+b2+c2+200=12a+16b+20c,则△ABC的最长边的高的长度等于 4.8 .【考点】因式分解的应用.【分析】根据a2+b2+c2+200=12a+16b+20c,可以求得a、b、c的值,从而可以判断△ABC的形状,从而可以求得最长边上的高.【解答】解:∵a2+b2+c2+200=12a+16b+20c,∴a2+b2+c2+200﹣12a﹣16b﹣20c=0,∴(a﹣6)2+(b﹣8)2+(c﹣10)2=0,∴a﹣6=0,b﹣8=0,c﹣10=0,解得,a=6,b=8,c=10,∵62+82=102,∴△ABC是直角三角形,∴斜边上的高是: =4.8,故答案为:4.8.【点评】本题考查因式分解的应用,解题的关键是明确题意,找出所求问题需要.三、解答题19.计算化简(1)﹣(2)﹣(﹣2+)(3)×﹣5(4)()2.【考点】二次根式的混合运算.【分析】(1)直接利用二次根式的性质化简求出答案;(2)直接利用二次根式的性质化简,进而合并求出答案;(3)直接利用二次根式的乘法运算法则化简,进而求出答案;(4)直接利用二次根式乘法运算法则化简求出答案.【解答】解:(1)﹣=2﹣5=﹣3;(2)﹣(﹣2+)=3﹣(4﹣8+3)=﹣7+11;(3)×﹣5=6﹣5=1;(4)()2==1+.【点评】此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.20.将下列各多项式因式分解(1)15a2+5a(2)x5﹣x3(3)a3b﹣4a2b2+4ab3(4)1﹣x2﹣y2+x2y2.【考点】因式分解-分组分解法;提公因式法与公式法的综合运用.【分析】(1)此多项式有公因式,应提取公因式5a,然后再整理即可.(2)先提取公因式x3,再利用平方差公式继续进行因式分解.(3)先提取公因式ab,再对余下的多项式利用完全平方公式继续分解.(4)用分组分解法,前两项一组,后两项一组,提取公因式,两组之间提取提取公因式,再用平方差公式分解,即可.【解答】解:(1)原式=5a(3a+1);(2)原式=x3(x2﹣1)=x3(x+1)(x﹣1);(3)原式=ab(a2﹣4ab+4b2)=ab(a﹣2b)2.(4)原式=(1﹣x2)﹣(y2﹣x2y2)=(1﹣x2)﹣y2(1﹣x2)=(1﹣x2)(1﹣y2)=(1+x)(1﹣x)(1+y)(1﹣y).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.(4)用分组分解法,分组是解本小题的难点.21.已知:x=,y=,①x+y;②xy;③x2+y2;④(x2+x+2)(y2+y﹣2)【考点】二次根式的化简求值.【分析】①根据二次根式的乘法法则计算;②根据平方差公式计算;③根据完全平方公式把原式变形,代入计算;④把已知数据代入,根据二次根式的混合运算法则计算.【解答】解:①x+y=+=﹣1;②xy=×=﹣2;③x2+y2=(x+y)2﹣2xy=1+4=5;④(x2+x+2)(y2+y﹣2)=(++2)(+﹣2)=3×(﹣1)=﹣3.【点评】本题考查的是二次根式的化简求值,掌握二次根式的混合运算法则是解题的关键.22.根据平方根、立方根的定义解下列方程①x2=9;②(x﹣2)2=4;③(2x+1)2=12;④(x+1)3=﹣2.【考点】立方根;平方根.【分析】根据平方根、立方根,即可解答.【解答】解:①x2=9x=±3,②(x﹣2)2=4x﹣2=±2x=4或0.③(2x+1)2=12(2x+1)2=362x+1=±6x=或﹣.④(x+1)3=﹣2(x+1)3=﹣8x+1=﹣2x=﹣3.【点评】本题考查了平方根、立方根,解决本题的关键是熟记平方根、立方根的定义.23.如图所示,在四边形ABCD中,AB⊥BC,AC⊥CD,以CD为直径作半圆O,AB=4cm,BC=3cm,AD=13cm.求图中阴影部分的面积:【考点】扇形面积的计算.【专题】计算题.【分析】要求阴影部分的面积,只需求CD,由于AD已知,只需求AC即可.【解答】解:∵AB⊥BC,AB=4,BC=3,∴AC=5.∵AC⊥CD,AC=5,AD=13,∴CD=12,=π×()2=18π,∴S阴影∴阴影部分的面积为18πcm2.【点评】本题主要考查了勾股定理、扇形的面积公式等知识,属于基础题.24.已知网格中每个小正方形的边长是1,在网格中作△ABC,使得AB=,BC=,CA=,.并求S△ABC【考点】勾股定理.【专题】作图题.【分析】直接利用勾股定理结合网格得出A,B,C的位置,进而利用△ABC所在矩形减去周围三角形面积求出答案.【解答】解:如图所示:S△ABC=12﹣×1×3﹣×1×4﹣×2×3=5.5.【点评】此题主要考查了勾股定理以及三角形面积求法,正确得出A,B,C的位置是解题关键.25.探究题:(1)在正△ABC中(图1),AB=2,AD⊥BC于D,求S△ABC.(2)在正△AB1C1中(图2),B1C1=2,AB2⊥B1C1于B2,以AB2为边作正△AB2C2,AC1、B2C2交于B3,以AB3为边作正△AB3C3,依此类推.①写出第n个正三角形的周长;(用含n的代数式表示)②写出第n个正三角形的面积.(用含n的代数式表示)【考点】等边三角形的性质.【分析】(1)由AD为边长为2的等边三角形ABC的高,利用三线合一得到D为BC的中点,求出BD的长,利用勾股定理求出AD的长,进而求出S,(2)根据(1)同理求出C2、S2,C3、S3依此类推,得到Cn、Sn.【解答】解:(1)在正△ABC 中,AB=2,AD ⊥BC 于D ,∴BD=1,∴AD==,∴S △ABC =BC •AD=×=; (2)由(1)可知AB 2=,∴C 1=3×2×()0,S 1=×2×2×;∵等边三角形AB 2C 2的边长为,AB 3⊥B 2C 2, ∴AB 3=,∴C 2=2×3×()1,S 2=×2××2××=×22×()3,∵等边三角形AB 3C 3的边长为,AB 4⊥B 3C 3,∴AB 4=,∴C 3=3×2×()2,S 3=×2×××2×××=×22×()5 依此类推,C n =6()n ﹣1S n =2()2n ﹣1.故第n 个正三角形的周长为6()n ﹣1,第n 个正三角形的面积是2()2n ﹣1. 【点评】此题考查了等边三角形的性质,属于规律型试题,熟练掌握等边三角形的性质是解本题的关键.26.在正方形ABCD 中,AB=4,E 为BC 的中点,F 在CD 上,DF=3CF ,连结AF 、AE 、EF .(1)如图1,求出△AEF 的三条边的长度;(2)判断△AEF 的形状;并说明理由;(3)探究S△ECF +S△ABE与S△AEF的关系,并说明理由;(4)如图2,作EG⊥AF于G,①试求出FG、AG、EG的长度;②试探究EG2与FG×AG的关系?并说明理由.【考点】四边形综合题.【分析】(1)先求得EC、FC、DF、BE、AD的长,然后依据勾股定理可求得EF、EB、AE的长;(2)由勾股定理的逆定理可证明△EFA为直角三角形;(3)依据三角形的面积公式分别求得△AEF、△ECF、△ABE的面积,从而可得出问题的答案;(4)①依据三角形的面积公式可知S△AEF=AF•GE=5,从而可求得EG的长,然后再依据勾股定理可求得FG的长,然后可得到AG的长;②求得EG2、GF•AG的结果,从而可得到它们之间的关系.【解答】解:(1)∵ABCD为正方形,AB=4,∴AB=BC=DC=AD=4.∵E是BC的中点,∴BE=CE=2.∵CD=4,DF=3CF,∴FC=1,DF=3.依据勾股定理可知:EF==,AE==2,AF==5.(2)∵AF2=25,EF2=5,AE2=20,∴AF 2=EF 2+AE 2.∴△AEF 为直角三角形.(3)S △AEF =S △ECF +S △ABE .理由:∵S △ECF =FC •CE=×1×2=1,S △ABE =AB •BE=×4×2=4,S △AEF =EF •AE=××2=5,∴S △AEF =S △ECF +S △ABE .(4)①∵S △AEF =AF •GE=5,∴×5×EG=5.∴EG=2.在△EFG 中,由勾股定理可知:FG===1. AG=AF ﹣GF=5﹣1=4.②∵EG 2=22=4,GF •AG=1×4=4,∴EG 2=GF •AG .【点评】本题主要考查的是正方形的性质、勾股定理的应用、勾股定理的逆定理的应用、三角形的面积公式的应用,依据勾股定理的逆定理判断出△AEF 为直角三角形是解题的关键.。

2016-2017学年新人教版第一学期八年级(上册)期中测试卷 有答案

2016-2017学年新人教版第一学期八年级(上册)期中测试卷 有答案

2016-2017学年八年级(上)期中数学试卷一、选择题(每小题3分,共30分)1.下列图形中,不是轴对称图形的是( )A. B.C.D.2.下列运算正确的是( )A.a3•a4=a12 B.(a3)2=a5 C.(﹣3a2)3=﹣9a6D.(﹣a2)3=﹣a63.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是( )A.三角形的稳定性B.两点之间线段最短C.两点确定一条直线 D.垂线段最短4.一个多边形的内角和比它的外角和的3倍少180°,这个多边形的边数是( )A.5 B.6 C.7 D.85.等腰三角形两边长分别为4和8,则这个等腰三角形的周长为( )A.16 B.18 C.20 D.16或206.用尺规作∠AOB的平分线的方法如下:以O为圆心,任意长为半径画弧交OA、OB于D、E,再分别以点D、E为圆心,以大于长为半径画弧,两弧交于点C,作射线OC,则OC为∠AOB的平分线.由作法得△OCD≌△OCE的根据是( )A.SSS B.SAS C.ASA D.AAS7.如图,已知MB=ND,∠MBA=∠NDC,下列条件中不能判定△ABM≌△CDN的是( )A.∠M=∠N B.AM=CN C.AB=CD D.AM∥CN8.将一副直角三角尺如图放置,已知AE∥BC,则∠AFD的度数是( )A.45°B.50°C.60°D.75°9.如图,已知△ABC中,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于( )A.90°B.135°C.270°D.315°10.如图所示,△ABC是等边三角形,AQ=PQ,PR⊥AB于R点,PS⊥AC于S点,PR=PS,则四个结论:①点P在∠A的平分线上;②AS=AR;③QP∥AR;④△BRP≌△QSP,正确的结论是( )A.①②③④B.只有①②,C.只有②③D.只有①③二、填空题(每小题3分,共30分)11.填空:()2014×52015=__________.12.如图所示∠A+∠B+∠C+∠D+∠E+∠F=__________.13.若等腰三角形一腰上的高与另一腰的夹角等于30°,则此三角形的顶角为__________度.14.点M(a,﹣5)与点N(﹣2,b)关于x轴对称,则a+b=__________.15.如图,在△ABC中,∠C=90°,AD平分∠BAC,BC=12cm,BD=8cm,则点D到AB 的距离为__________cm.16.如图,△ABC≌△ADE,若∠BAE=120°,∠BAD=40°,则∠BAC=__________.17.如图是某时刻在镜子中看到准确时钟的情况,则实际时间是__________.18.已知,如图,O是△ABC的∠ABC、∠ACB的角平分线的交点,OD∥AB交BC于D,OE∥AC交BC于E,若BC=10 cm,则△ODE的周长__________cm.19.如图,在△ABC中,∠C=90°,∠ABC=15°,点D、E分别在BC、AB上,且DE垂直平分AB,BD=5cm,则AC=__________cm.20.已知:如图,∠ACB=∠DBC,要使△ABC≌△DCB,只需增加的一个条件是__________(只需填写一个你认为适合的条件).三、解答题(本大题共8个小题,共60分)21.计算(1)(﹣xyz)•x2y2•(﹣yz3)(2)(x+2)(x+3)﹣(x+6)(x﹣1)22.如图:已知BD=CD,BF⊥AC,CE⊥AB,求证:点D在∠BAC的平分线上.23.已知:如图,AB=AE,∠1=∠2,∠B=∠E.求证:BC=ED.24.如图,已知:在△ABC中,D为BC边上一点,AB=AC=CD,BD=AD,求△ABC各角的度数.25.如图,在平面直角坐标系中,A(1,2),B(3,1),C(﹣2,﹣1).(1)在图中作出△ABC关于y轴对称的△A1B1C1.(2)写出A1,B1,C1的坐标(直接写出答案),A1__________;B1__________;C1__________.(3)△A1B1C1的面积为__________.26.如图:已知在△ABC中,AB=AC,D为BC边的中点,过点D作DE⊥AB,DF⊥AC,垂足分别为E,F.(1)求证:DE=DF;(2)若∠A=60°,BE=1,求△ABC的周长.27.如图,一艘轮船从点A向正北方向航行,每小时航行15海里,小岛P在轮船的北偏西15°,2小时后轮船航行到点B,小岛P此时在轮船的北偏西30°方向,在小岛P的周围18海里范围内有暗礁,如果轮船不改变方向继续向前航行,是否会有触礁危险?请说明理由.28.已知,如图△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,H是BC边的中点,连接DH与BE相交于点G.求证:(1)BF=AC;(2)CE=BF.2016-2017学年八年级(上)期中数学试卷一、选择题(每小题3分,共30分)1.下列图形中,不是轴对称图形的是( )A. B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A是中心对称图形,不是轴对称图形,B、C、D都是轴对称图形,故选:A.【点评】此题主要考查了轴对称图形,关键是正确找出对称轴.2.下列运算正确的是( )A.a3•a4=a12 B.(a3)2=a5 C.(﹣3a2)3=﹣9a6D.(﹣a2)3=﹣a6【考点】幂的乘方与积的乘方;同底数幂的乘法.【分析】根据幂的乘方和积的乘方以及同底数幂的乘法法则求解.【解答】解:A、a3•a4=a7,计算错误,故本选项错误;B、(a3)2=a6,计算错误,故本选项错误;C、(﹣3a2)3=﹣27a6,计算错误,故本选项错误;D、(﹣a2)3=﹣a6,计算正确,故本选项正确.故选D.【点评】本题考查了幂的乘方和积的乘方以及同底数幂的乘法,掌握运算法则是解答本题的关键.3.如图,一扇窗户打开后,用窗钩AB可将其固定,这里所运用的几何原理是( )A.三角形的稳定性B.两点之间线段最短C.两点确定一条直线 D.垂线段最短【考点】三角形的稳定性.【分析】根据加上窗钩,可以构成三角形的形状,故可用三角形的稳定性解释.【解答】解:构成△AOB,这里所运用的几何原理是三角形的稳定性.故选:A.【点评】本题考查三角形的稳定性在实际生活中的应用问题.三角形的稳定性在实际生活中有着广泛的应用.4.一个多边形的内角和比它的外角和的3倍少180°,这个多边形的边数是( )A.5 B.6 C.7 D.8【考点】多边形内角与外角.【分析】多边形的内角和可以表示成(n﹣2)•180°,外角和都等于360°,故可列方程求解.【解答】解:设所求多边形边数为n,则(n﹣2)•180°=3×360°﹣180°,解得n=7.故选:C.【点评】本题考查根据多边形的内角和和外角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.5.等腰三角形两边长分别为4和8,则这个等腰三角形的周长为( )A.16 B.18 C.20 D.16或20【考点】等腰三角形的性质;三角形三边关系.【专题】探究型.【分析】由于题中没有指明哪边是底哪边是腰,则应该分两种情况进行分析.【解答】解:①当4为腰时,4+4=8,故此种情况不存在;②当8为腰时,8﹣4<8<8+4,符合题意.故此三角形的周长=8+8+4=20.故选:C.【点评】本题考查的是等腰三角形的性质和三边关系,解答此题时注意分类讨论,不要漏解.6.用尺规作∠AOB的平分线的方法如下:以O为圆心,任意长为半径画弧交OA、OB于D、E,再分别以点D、E为圆心,以大于长为半径画弧,两弧交于点C,作射线OC,则OC为∠AOB的平分线.由作法得△OCD≌△OCE的根据是( )A.SSS B.SAS C.ASA D.AAS【考点】全等三角形的判定;作图—基本作图.【分析】由作法可知:CD=CE,OD=OE,根据全等三角形的判定定理判断即可.【解答】解:由作法可知:CD=CE,OD=OE,又∵OC=OC,∴根据SSS可推出△OCD和△OCE全等,故选A.【点评】本题考查了全等三角形的判定定理的应用,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS.7.如图,已知MB=ND,∠MBA=∠NDC,下列条件中不能判定△ABM≌△CDN的是( )A.∠M=∠N B.AM=CN C.AB=CD D.AM∥CN【考点】全等三角形的判定.【专题】几何图形问题.【分析】根据普通三角形全等的判定定理,有AAS、SSS、ASA、SAS四种.逐条验证.【解答】解:A、∠M=∠N,符合ASA,能判定△ABM≌△CDN,故A选项不符合题意;B、根据条件AM=CN,MB=ND,∠MBA=∠NDC,不能判定△ABM≌△CDN,故B选项符合题意;C、AB=CD,符合SAS,能判定△ABM≌△CDN,故C选项不符合题意;D、AM∥CN,得出∠MAB=∠NCD,符合AAS,能判定△ABM≌△CDN,故D选项不符合题意.故选:B.【点评】本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,本题是一道较为简单的题目.8.将一副直角三角尺如图放置,已知AE∥BC,则∠AFD的度数是( )A.45°B.50°C.60°D.75°【考点】三角形内角和定理;平行线的性质.【专题】计算题.【分析】本题主要根据直角尺各角的度数及三角形内角和定理解答.【解答】解:∵∠C=30°,∠DAE=45°,AE∥BC,∴∠EAC=∠C=30°,∠FAD=45﹣30=15°,在△ADF中根据三角形内角和定理得到:∠AFD=180﹣90﹣15=75°.故选D.【点评】本题主要考查两直线平行,内错角相等,以及三角形的内角和定理.9.如图,已知△ABC中,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于( )A.90°B.135°C.270°D.315°【考点】多边形内角与外角;翻折变换(折叠问题).【分析】本题利用了四边形内角和为360°和直角三角形的性质求解.【解答】解:∵四边形的内角和为360°,直角三角形中两个锐角和为90°,∴∠1+∠2=360°﹣(∠A+∠B)=360°﹣90°=270°.故选:C.【点评】本题是一道根据四边形内角和为360°和直角三角形的性质求解的综合题,有利于锻炼学生综合运用所学知识的能力.10.如图所示,△ABC是等边三角形,AQ=PQ,PR⊥AB于R点,PS⊥AC于S点,PR=PS,则四个结论:①点P在∠A的平分线上;②AS=AR;③QP∥AR;④△BRP≌△QSP,正确的结论是( )A.①②③④B.只有①②,C.只有②③D.只有①③【考点】等边三角形的性质;全等三角形的判定与性质.【分析】考查等边三角形的性质,在等边三角形中,角平分线即为中线,也为垂线,然后再利用全等,角相等进行判断.【解答】解:∵△ABC是等边三角形,PR⊥AB,PS⊥AC,且PR=PS,∴P在∠A的平分线上,∴①正确;由①可知,PB=PC,∠B=∠C,PS=PR,∴△BPR≌△CPS,∴AS=AR,②正确;∵AQ=PQ,∴∠PQC=2∠PAC=60°=∠BAC,∴PQ∥AR,③正确;由③得,△PQC是等边三角形,∴△PQS≌△PCS,又由②可知,④△BRP≌△QSP,④也正确∵①②③④都正确,故选A.【点评】熟练掌握等边三角形的性质.二、填空题(每小题3分,共30分)11.填空:()2014×52015=5.【考点】幂的乘方与积的乘方.【分析】根据幂的乘方和积的乘方的运算法则求解.【解答】解:()2014×52015=(×5)2014×5=5.故答案为:5.【点评】本题考查了幂的乘方和积的乘方,解答本题的关键是掌握幂的乘方和积的乘方的运算法则.12.如图所示∠A+∠B+∠C+∠D+∠E+∠F=360°.【考点】三角形内角和定理.【专题】计算题;三角形.【分析】利用外角性质及外角和定理求出所求即可.【解答】解:由外角性质理得到:∠1=∠A+∠B,∠2=∠C+∠D,∠3=∠E+∠F,∵∠1+∠2+∠3=360°(三角形外角和定理),∴∠A+∠B+∠C+∠D+∠E+∠F=360°,故答案为:360°【点评】此题考查了三角形内角和定理,外角性质,熟练掌握定理及性质是解本题的关键.13.若等腰三角形一腰上的高与另一腰的夹角等于30°,则此三角形的顶角为60或120度.【考点】等腰三角形的性质.【分析】等腰三角形的高相对于三角形有三种位置关系,三角形内部,三角形的外部,三角形的边上.根据条件可知第三种高在三角形的边上这种情况不成了,因而应分两种情况进行讨论.【解答】解:当高在三角形内部时(如图1),顶角是60°;当高在三角形外部时(如图2),顶角是90°+30°=120°.故答案为:60或120.【点评】此题主要考查等腰三角形的性质,熟记三角形的高相对于三角形的三种位置关系是解题的关键,本题易出现的错误是只是求出60°一种情况,把三角形简单的认为是锐角三角形.因此此题属于易错题.14.点M(a,﹣5)与点N(﹣2,b)关于x轴对称,则a+b=3.【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得a、b的值,再计算a+b即可.【解答】解:∵点M(a,﹣5)与点N(﹣2,b)关于x轴对称,∴a=﹣2.b=5,∴a+b=﹣2+5=3.故答案为:3.【点评】本题考查了关于x轴、y轴对称的点的坐标:点P(a,b)关于x轴对称的点的坐标为(a,﹣b),关于y轴对称的点的坐标为(﹣a,b).15.如图,在△ABC中,∠C=90°,AD平分∠BAC,BC=12cm,BD=8cm,则点D到AB 的距离为4cm.【考点】角平分线的性质.【分析】先过点D作DE⊥AB于点E,根据BC=12cm,BD=8cm求出DC的长,由∠C=90°可知,DC⊥AC,再根据AD平分∠BAC可得出DE=DC,故可得出结论.【解答】解:先过点D作DE⊥AB于点E,∵BC=12cm,BD=8cm,∴DC=12﹣8=4cm,∵∠C=90°,∴DC⊥AC,∵AD平分∠BAC,∴DE=DC=4cm.故答案为:4.【点评】本题考查的是角平分线的性质,熟知角的平分线上的点到角的两边的距离相等是解答此题的关键.16.如图,△ABC≌△ADE,若∠BAE=120°,∠BAD=40°,则∠BAC=80°.【考点】全等三角形的性质.【分析】先求出∠DAE,再根据全等三角形对应角相等可得∠BAC=∠DAE.【解答】解:∵∠BAE=120°,∠BAD=40°,∴∠DAE=∠BAE﹣∠BAD=120°﹣40°=80°,∵△ABC≌△ADE,∴∠BAC=∠DAE=80°.故答案为:80°.【点评】本题考查了全等三角形的性质,根据全等三角形对应顶点的字母写在对应位置上准确找出对应角是解题的关键.17.如图是某时刻在镜子中看到准确时钟的情况,则实际时间是4:40.【考点】镜面对称.【分析】根据镜面对称的性质求解,在平面镜中的像与现实中的事物恰好左右或上下顺序颠倒,且关于镜面对称.【解答】解:根据镜面对称的性质,题中所显示的时刻成轴对称,所以此时实际时刻为4:40.故答案为:4:40.【点评】本题考查镜面反射的原理与性质.解决此类题应认真观察,注意技巧.18.已知,如图,O是△ABC的∠ABC、∠ACB的角平分线的交点,OD∥AB交BC于D,OE∥AC交BC于E,若BC=10 cm,则△ODE的周长10cm.【考点】角平分线的性质;平行线的性质;等腰三角形的性质.【专题】计算题.【分析】根据角平分线的性质以及平行线的性质,把△ODE三条边转移到同一条线段BC 上,即可解答.【解答】解:∵OC、OB分别是∠ACB、∠ABC的角平分线,∴∠5=∠6,∠1=∠2,∵OD∥AB,OE∥AC,∴∠4=∠6,∠1=∠3.∴∠4=∠5,∠2=∠3,即OD=BD,OE=CE.∴△ODE的周长=OD+DE+OE=BD+DE+CE=BC=10cm.故答案为:10.【点评】此题比较简单,利用的是角平分线的定义,平行线及等腰三角形的性质.19.如图,在△ABC中,∠C=90°,∠ABC=15°,点D、E分别在BC、AB上,且DE垂直平分AB,BD=5cm,则AC=2.5cm.【考点】含30度角的直角三角形;线段垂直平分线的性质.【分析】连接AD,由DE垂直平分AB,得出△ABD为等腰三角形,根据等腰三角形的性质求AD,根据外角的性质求∠ADC,在Rt△ACD中,利用含30°的直角三角形性质解题.【解答】解:连接AD,∵DE垂直平分AB,∴AD=BD=5cm,∠DAB=∠B=15°,∴∠ADC=∠DAB+∠B=30°,∴在Rt△ACD中,AC=AD=2.5cm,故答案为:2.5.【点评】本题考查了含30°的直角三角形,用到的知识点是含30°的直角三角形、线段垂直平分线的性质,其中含30°的直角三角形中,斜边等于30°角的对边的2倍.20.已知:如图,∠ACB=∠DBC,要使△ABC≌△DCB,只需增加的一个条件是∠A=∠D 或∠ABC=∠DCB或BD=AC(只需填写一个你认为适合的条件).【考点】全等三角形的判定.【专题】开放型.【分析】已知一条公共边和一个角,有角边角或角角边定理,再补充一组对边相等或一组对角相等即可.【解答】解:添加∠A=∠D,∠ABC=∠DCB,BD=AC后可分别根据AAS、SAS、SAS判定△ABC≌△ADC.故填∠A=∠D或∠ABC=∠DCB或BD=AC.【点评】本题考查三角形全等的判定方法;判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加时注意:AAA、SSA不能判定两个三角形全等,不能添加,根据已知结合图形及判定方法选择条件是正确解答本题的关键.三、解答题(本大题共8个小题,共60分)21.计算(1)(﹣xyz)•x2y2•(﹣yz3)(2)(x+2)(x+3)﹣(x+6)(x﹣1)【考点】整式的混合运算.【分析】(1)根据单项式乘以单项式法则进行计算即可;(2)先算乘法,再合并同类项即可.【解答】解:(1)(﹣xyz)•x2y2•(﹣yz3)=x3y4z4;(2)(x+2)(x+3)﹣(x+6)(x﹣1)=x2+3x+2x+6﹣x2﹣6x+x+6=12.【点评】本题考查了整式的混合运算的应用,能正确运用整式的运算法则进行化简是解此题的关键,注意运算顺序.22.如图:已知BD=CD,BF⊥AC,CE⊥AB,求证:点D在∠BAC的平分线上.【考点】角平分线的性质;全等三角形的判定与性质.【专题】证明题.【分析】此题容易根据条件证明△BED≌△CFD,然后利用全等三角形的性质和角平分线的性质就可以证明结论.【解答】证明:∵BF⊥AC,CE⊥AB,∴∠BED=∠CFD=90°,在△BED和△CFD中,,∴△BED≌△CFD(AAS),∴DE=DF,又∵DE⊥AB,DF⊥AC,∴点D在∠BAC的平分线上.【点评】常用主要考查了全等三角形的判定与性质,角平分线的性质.由全等等到DE=DF 是解答本题的关键.23.已知:如图,AB=AE,∠1=∠2,∠B=∠E.求证:BC=ED.【考点】全等三角形的判定与性质.【专题】证明题.【分析】由∠1=∠2可得:∠EAD=∠BAC,再有条件AB=AE,∠B=∠E可利用ASA证明△ABC≌△AED,再根据全等三角形对应边相等可得BC=ED.【解答】证明:∵∠1=∠2,∴∠1+∠BAD=∠2+∠BAD,即:∠EAD=∠BAC,在△EAD和△BAC中,∴△ABC≌△AED(ASA),∴BC=ED.【点评】此题主要考查了全等三角形的判定与性质,关键是掌握全等三角形的判定方法:SSS、SAS、ASA、AAS、HL.全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.24.如图,已知:在△ABC中,D为BC边上一点,AB=AC=CD,BD=AD,求△ABC各角的度数.【考点】等腰三角形的性质.【分析】由AD=BD得∠BAD=∠DBA,由AB=AC=CD得∠CAD=∠CDA=2∠DBA,∠DBA=∠C,从而可推出∠BAC=3∠DBA,根据三角形的内角和定理即可求得∠DBA的度数,从而不难求得各个内角的度数.【解答】解:∵AD=BD∴设∠BAD=∠DBA=x°,∵AB=AC=CD∴∠CAD=∠CDA=∠BAD+∠DBA=2x°,∠DBA=∠C=x°,∴∠BAC=3∠DBA=3x°,∵∠ABC+∠BAC+∠C=180°∴5x=180°,∴∠DBA=36°∴∠BAC=3∠DBA=108°,∠B=∠C=36°.【点评】此题主要考查学生对等腰三角形的性质及三角形内角和定理的综合运用能力;求得角之间的关系利用内角和求解是正确解答本题的关键.25.如图,在平面直角坐标系中,A(1,2),B(3,1),C(﹣2,﹣1).(1)在图中作出△ABC关于y轴对称的△A1B1C1.(2)写出A1,B1,C1的坐标(直接写出答案),A1(﹣1,2);B1(﹣3,1);C1(2,﹣1).(3)△A1B1C1的面积为4.5.【考点】作图-轴对称变换.【专题】作图题.【分析】(1)根据网格结构找出点A、B、C的对应点A1、B1、C1的位置,然后顺次连接即可;(2)根据平面直角坐标系写出各点的坐标;(3)利用三角形所在的矩形的面积减去四周三个小直角三角形的面积列式计算即可得解.【解答】解:(1)△A1B1C1如图所示;(2)△A1(﹣1,2),B1(﹣3,1),C1(2,﹣1);(3)△A1B1C1的面积=5×3﹣×1×2﹣×2×5﹣×3×3,=15﹣1﹣5﹣4.5,=15﹣10.5,=4.5.故答案为:(2)(﹣1,2),(﹣3,1),(2,﹣1);(3)4.5.【点评】本题考查了利用轴对称变换作图,三角形的面积,熟练掌握网格结构准确找出对应点的位置是解题的关键.26.如图:已知在△ABC中,AB=AC,D为BC边的中点,过点D作DE⊥AB,DF⊥AC,垂足分别为E,F.(1)求证:DE=DF;(2)若∠A=60°,BE=1,求△ABC的周长.【考点】等边三角形的判定与性质;全等三角形的判定与性质;直角三角形的性质.【专题】计算题;证明题.【分析】(1)根据DE⊥AB,DF⊥AC,AB=AC,求证∠B=∠C.再利用D是BC的中点,求证△BED≌△CFD即可得出结论.(2)根据AB=AC,∠A=60°,得出△ABC为等边三角形.然后求出∠BDE=30°,再根据题目中给出的已知条件即可算出△ABC的周长.【解答】(1)证明:∵DE⊥AB,DF⊥AC,∴∠BED=∠CFD=90°,∵AB=AC,∴∠B=∠C(等边对等角).∵D是BC的中点,∴BD=CD.在△BED和△CFD中,,∴△BED≌△CFD(AAS).∴DE=DF(2)解:∵AB=AC,∠A=60°,∴△ABC为等边三角形.∴∠B=60°,∵∠BED=90°,∴∠BDE=30°,∴BE=BD,∵BE=1,∴BD=2,∴BC=2BD=4,∴△ABC的周长为12.【点评】此题主要考查学生对等边三角形的判定与性质、全等三角形的判定与性质直角三角形的性质等知识点的理解和掌握.27.如图,一艘轮船从点A向正北方向航行,每小时航行15海里,小岛P在轮船的北偏西15°,2小时后轮船航行到点B,小岛P此时在轮船的北偏西30°方向,在小岛P的周围18海里范围内有暗礁,如果轮船不改变方向继续向前航行,是否会有触礁危险?请说明理由.【考点】等腰三角形的判定与性质;方向角;含30度角的直角三角形.【专题】应用题.【分析】过P作PE⊥AB于E,根据题中所给的∠PAE=15°,∠PBE=30°,及船的航行速度可求出p到AB的距离,继而能判断出有无危险.【解答】解:如图,过P作PE⊥AB于E,由题意得:∠PAE=15°,∠PBE=30°,AB=30海里.∴AB=BP=30,在Rt△BPE中,∵∠PBE=30°,∴PE=BP=×30=15.又∵周围18海里都会有危险,∴轮船继续向北航行,有触礁危险.【点评】本题考查了等腰三角形的判定和性质,直角三角形的性质,方向角,熟练掌握等腰三角形的判定和性质是解题的关键.28.已知,如图△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F,H是BC边的中点,连接DH与BE相交于点G.求证:(1)BF=AC;(2)CE=BF.【考点】全等三角形的判定与性质;三角形内角和定理;等腰三角形的判定与性质.【专题】证明题;压轴题.【分析】(1)根据三角形的内角和定理求出∠A=∠DFB,推出BD=DC,根据AAS证出△BDF≌△CDA即可;(2)推出∠AEB=∠CEB,∠ABE=∠CBE,根据ASA证出△AEB≌△CEB,推出AE=CE 即可.【解答】(1)证明:∵CD⊥AB,BE⊥AC,∴∠BDC=∠ADC=∠AEB=90°,∴∠A+∠ABE=90°,∠ABE+∠DFB=90°,∴∠A=∠DFB,∵∠ABC=45°,∠BDC=90°,∴∠DCB=90°﹣45°=45°=∠DBC,∴BD=DC,在△BDF和△CDA中∵,∴△BDF≌△CDA(AAS),∴BF=AC;(2)证明:∵BE⊥AC,∴∠AEB=∠CEB,∵BE平分∠ABC,∴∠ABE=∠CBE,在△AEB和△CEB中∵,∴△AEB≌△CEB(ASA),∴AE=CE,即CE=AC,∵由(1)知AC=BF,∴CE=BF.【点评】本题考查了三角形的内角和定理,等腰三角形的性质和判定,全等三角形的性质和判定的应用,关键是推出△BDF≌△CDA和△AEB≌△CEB,题目综合性比较强.。

2016-2017学年人教版初二上册数学期中考试试卷含答案

2016-2017学年人教版初二上册数学期中考试试卷含答案

初二数学2016-2017学年度第一学期期中质量检测班级 姓名 学号1. 下列各式中,从左到右的变形是因式分解的是( )A. 224)2)(2(y x y x y x -=-+ B. 1)(122--=--y x xy xy y x C. a 2-4ab+4b 2=(a -2b )2 D. ax+ay+a=a (x+y ) 2.计算24-的结果是( )A .8-B .18-C .116-D .1163. 月球的平均亮度只有太阳的0.00000215倍。

0.00000215用科学记数法可表示为( ) A .52.1510-⨯ B . 62.1510-⨯ C .72.1510-⨯ D .621.510-⨯4.下列各式中,正确的是( ).A . 1a b b ab b ++=B .22x y x y -++=- C.23193x x x -=-- D .222()x y x y x y x y --=++ 5. 如图,已知AB AD =,那么添加下列一个条件后,仍无法判定ABC ADC △≌△的是( )A .CB CD = B .BAC DAC =∠∠ C .BCA DCA =∠∠D .90B D ==︒∠∠6.下列多项式能分解因式的有( )个2249y x +-; 2244b a ab +--; 296x x --; 1196422-+-y xy x A.0 B.1 C.2 D.37.若分式22xx -+的值是零,则x 的值是( )A .0x =B .2±=xC .2-=xD .2=x 8. 到三角形三条边距离相等的点是( )ABCDA.三条高线的交点B.三条中线的交点C.三个内角平分线的交点D.三边垂直平分线的交点 9.如图,在四边形ABCD 中,对角线AC 平分∠BAD ,AB >AC , 下列结论正确的是( )A .CD CB AD AB ->- B .CD CB AD AB -=-C .CD CB AD AB -<- D .AD AB -与CD CB -的大小关系不确定 10.若把一个正方形纸片按下图所示方法三次对折后再沿虚线剪开,则剩余部分展开后得到的图形是( )A B CD二、填空题(本题共20分,每小题2分) 11.当x __________时,分式11x-有意义. 12. 如果7,0-==+xy y x ,则22xy y x += . 13. 若92++mx x 是一个完全平方式,则m = .14. 计算:a aa -+-111的结果是 . 15. 若b a b a -=+111,则 的值是 .16. 如图,△ABC ≌△ADE ,∠CAD=10°,∠B=25°,∠EAB=120°,则∠DFB=____________. 17. 如图,在△ABC 中,∠C =90°,BD 平分∠CBA 交AC 于点D .若AB =a ,CD =b ,则△ADB 的面积为______________ .18. 如图,在正方形方格中,阴影部分是涂黑7个小正方形所形成的图案,再将方格内空白的一个小正方形涂黑,使得到的新图案成为一个轴对称图形的涂法有 种.C D A B ABDC3,111--+=-ba ab b a b a 则右下折沿虚线剪开剩余部分上折右折A(16) (17) (18)19. 已知b a 、满足等式2022++=b a x ,)2(4a b y -=,则y x 、的大小关系是 . 20.在平面直角坐标系中,已知点A (1,2),B (5,5),C (5,2),存在点E ,使△ACE 和△ACB 全等,写出所有满足条件的E 点的坐标 . 三、计算题(共27分,20-21每小题3分,22-23每小题4分)21.分解因式:(1) y xy y x 442+- (2) ()()2233y x y x ---22.计算: (1) 11(1)1a a a a -++⋅- (2) x y x yyx x ⎛⎫+-÷ ⎪⎝⎭(3)()32227812393x x yy x y --⎡⎤⋅÷⎢⎥⎣⎦23.先化简,再求值:21123369m m m m m ⎛⎫+÷ ⎪-+-+⎝⎭,其中(m+3)(m+2)=0. 24.解方程: (1)512552x x x+=-- (2)四、作图题. (本题3分)25.某地区要在区域..S .内. (即∠COD 内部..) 建一个超市M ,如图,按照要求,超市M 到两个新建的居民小区A ,B 的距离相等, 到两条公路OC ,OD 的距离也相等. 这个超市应该建在何处? (要求:尺规作图, 不写作法, 保留作图痕迹)五、解答题(共20分,每小题4分)26. 已知:如图,点B 在线段AD 上,BC DE ∥,AB ED =,BC DB =.求证:A E ∠=∠.27.列方程解应用题八年级学生去距学校10km 的博物馆参观,一部分学生骑自行车先走,过了20min 后,其余学生乘汽车出发,结果他们同时到达。

16年八年级上册数学期中测试卷及答案

16年八年级上册数学期中测试卷及答案

八年级上册数学期中测试卷及答案【考点】全等三角形的应用.【分析】本题就是已知三角形破损部分的边角,得到原来三角形的边角,根据三角形全等的判定方法,即可求解.【解答】解:第一块和第二块只保留了原三角形的一个角和部分边,根据这两块中的任一块均不能配一块与原来完全一样的;第三块不仅保留了原来三角形的两个角还保留了一边,则可以根据ASA来配一块一样的玻璃.应带③去.故选:C.【点评】此题主要考查了全等三角形的判定方法的开放性的题,要求学生将所学的知识运用于实际生活中,要认真观察图形,根据已知选择方法.4.在△ABC和△A′B′C′中,AB=A′B′,∠B=∠B′,补充条件后,仍不一定能保证△ABC≌△A′B′C′,这个补充条件是( ) A.BC=B′C′ B.∠A=∠A′ C.AC=A′C′ D.∠C=∠C′【考点】全等三角形的判定.【分析】全等三角形的判定可用两边夹一角,两角夹一边,三边相等等进行判定,做题时要按判定全等的方法逐个验证.【解答】解:A中两边夹一角,满足条件;B中两角夹一边,也可证全等;C中∠B并不是两条边的夹角,C不对;D中两角及其中一角的对边对应相等,所以D也正确,故答案选C.【点评】本题考查了全等三角形的判定;熟练掌握全等三角形的判定,要认真确定各对应关系.5.下列图案是几种名车的标志,在这几个图案中不是轴对称图形的是( )A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解,如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:根据轴对称图形定义可知:A、不是轴对称图形,符合题意;B、是轴对称图形,不符合题意;C、是轴对称图形,不符合题意;D、是轴对称图形,不符合题意.故选A.【点评】掌握轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.6.如图是一个由四根木条钉成的框架,拉动其中两根木条后,它的形状将会改变,若固定其形状,下列有四种加固木条的方法,不能固定形状的是钉在( )两点上的木条.A.A、F B.C、E C.C、A D.E、F【考点】三角形的稳定性.【分析】根据三角形具有稳定性选择不能构成三角形的即可.【解答】解:A、A、F与D能够组三角形,能固定形状,故本选项错误;B、C、E与B能够组三角形,能固定形状,故本选项错误;C、C、A与B能够组三角形,能固定形状,故本选项错误;D、E、F不能与A、B、C、D中的任意点构成三角形,不能固定形状,故本选项正确.故选D.【点评】本题考查了三角形的稳定性,观察图形并熟记三角形的定义是解题的关键.7.如图,∠B=∠C=90°,M是BC的中点,DM平分∠ADC,∠CMD=35°,则∠MAB的度数是( )A.35° B.45° C.55° D.65°【考点】角平分线的性质.【分析】过点M作MN⊥AD于N,根据角平分线上的点到角的两边的距离相等可得MC=MN,然后求出MB=MN,再根据到角的两边距离相等的点在角的平分线上判断出AM是∠BAD的平分线,然后求出∠AMB,再根据直角三角形两锐角互余求解即可.【解答】解:如图,过点M作MN⊥AD于N,∵∠C=90°,DM平分∠ADC,∴MC=MN,∴∠CMD=∠NMD,∵M是BC的中点,∴MB=MC,∴MB=MN,又∵∠B=90°,∴AM是∠BAD的平分线,∠AMB=∠AMN,∵∠CMD=35°,∴∠AMB= (180°﹣35°×2)=55°,∴∠MAB=90°﹣∠AMB=90°﹣55°=35°.故选A.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质以及到角的两边距离相等的点在角的平分线上,直角三角形两锐角互余的性质,熟记性质并作出辅助线是解题的关键.8.如图,△ABC≌△AEF,AB=AE,∠B=∠E,则对于结论①AC=AF,②∠FAB=∠EAB,③EF=BC,④∠EAB=∠FAC,其中正确结论的个数是( )A.1个B.2个C.3个D.4个【考点】全等三角形的性质.【分析】根据全等三角形对应边相等,全等三角形对应角相等结合图象解答即可.【解答】解:∵△ABC≌△AEF,∴AC=AF,故①正确;∠EAF=∠BAC,∴∠FAC=∠EAB≠∠FAB,故②错误;EF=BC,故③正确;∠EAB=∠FAC,故④正确;综上所述,结论正确的是①③④共3个.故选C.【点评】本题考查了全等三角形的性质,熟记性质并准确识图,准确确定出对应边和对应角是解题的关键.9.将一副三角板按如图所示摆放,图中∠α的度数是( )A.75° B.90° C.105° D.120°【考点】三角形的外角性质;三角形内角和定理.【专题】探究型.【分析】先根据直角三角形的性质得出∠BAE及∠E的度数,再由三角形内角和定理及对顶角的性质即可得出结论.【解答】解:∵图中是一副直角三角板,∴∠BAE=45°,∠E=30°,∴∠AFE=180°﹣∠BAE﹣∠E=105°,∴∠α=105°.故选C.【点评】本题考查的是三角形内角和定理,即三角形内角和是180°.10.有一个多边形,它的内角和恰好等于它的外角和的2倍,则这个多边形的边数是( )A.7 B.6 C.5 D.4【考点】多边形内角与外角.【分析】n边形的内角和可以表示成(n﹣2)&#8226;180°,外角和为360°,根据题意列方程求解.【解答】解:设多边形的边数为n,依题意,得:(n﹣2)&#8226;180°=2×360°,解得n=6.故选B.【点评】本题考查多边形的内角和计算公式,多边形的外角和.关键是根据题意利用多边形的外角和及内角和之间的关系列出方程求边数.11.在△ABC中,AB=8,AC=6,则BC边上的中线AD的取值范围是( )A.6<AD<8 B.2<AD<14 C.1<AD<7 D.无法确定【考点】三角形三边关系;全等三角形的判定与性质.【分析】延长AD至E,使DE=AD,连接CE.根据SAS证明△ABD≌△ECD,得CE=AB,再根据三角形的三边关系即可求解.【解答】解:延长AD至E,使DE=AD,连接CE.在△ABD和△ECD中,,∴△ABD≌△ECD(SAS),∴CE=AB.在△ACE中,CE﹣AC<AE<CE+AC,即2<2AD<14,1<AD<7.故选:C.【点评】此题主要考查了全等三角形的判定和性质、三角形的三边关系.注意:倍长中线是常见的辅助线之一.12.如图,由4个小正方形组成的田字格中,△ABC的顶点都是小正方形的顶点,则田字格上画与△ABC成轴对称的三角形,且顶点都是小正方形的顶点,则这样的三角形(不包含△ABC本身)共有( )A.1个B.3个C.2个D.4个【考点】利用轴对称设计图案.【分析】根据轴对称图形的性质得出符合题意的答案.【解答】解:如图所示:符合题意的有3个三角形.故选:B.【点评】此题主要考查了利用轴对称设计图案,正确把握轴对称图形的性质是解题关键.二、填空题(每小题3分,共24分)13.在△ABC中,∠A=60°,∠C=2∠B,则∠C=80度.【考点】三角形内角和定理.【分析】根据三角形的内角和定理和已知条件求得.【解答】解:∵∠A=60°,∴∠B+∠C=120°,∵∠C=2∠B,∴∠C=80°.【点评】主要考查了三角形的内角和是180度.求角的度数常常要用到“三角形的内角和是180°这一隐含的条件.14.如图,小亮从A点出发,沿直线前进100m后向左转30°,再沿直线前进100m,又向左转30°,…,照这样走下去,他第一次回到出发地A点时,一共走了1200m.【考点】多边形内角与外角.【分析】根据多边形的外角和为360°,照这样走下去,他第一次回到出发地A点时,他需要转动360°,即可求出答案.【解答】解:∵360÷30=12,∴他需要走12次才会回到原来的起点,即一共走了12×100=1200米.故答案为:1200米.【点评】本题主要考查了多边形的外角和定理.任何一个多边形的外角和都是360°.15.如图,将△ABC沿射线AC平移得到△DEF,若AF=17,DC=7,则AD=5.【考点】平移的性质.【分析】根据平移的性质得出AD=CF,再利用AF=17,DC=7,即可求出AD的长.【解答】解:∵将△ABC沿射线AC平移得到△DEF,AF=17,DC=7,∴AD=CF,∴AF﹣CD=AD+CF,∴17﹣7=2AD,∴AD=5,故答案为:5.【点评】此题主要考查了平移的性质,根据题意得出AD=CF,以及AF﹣CD=AD+CF是解决问题的关键.16.如图,在△ABC中,∠B=47°,三角形的外角∠DAC和∠ACF 的平分线交于点E,则∠AEC=66.5°.【考点】三角形内角和定理.【分析】根据三角形的一个外角等于与它不相邻的两个内角的和和角平分线的定义表示出∠CAE+∠ACE,再根据三角形的内角和等于180°列式计算即可得解.【解答】解:∵三角形的外角∠DAC和∠ACF的平分线交于点E,∴∠CAE+∠ACE= (∠B+ ∠ACB)+ (∠B+∠BAC),= (∠BAC+∠B+∠ACB+∠B),= (180°+47°),=113.5°,在△ACE中,∠AEC=180°﹣(∠CAE+∠ACE),=180°﹣113.5°,=66.5°.故答案为:66.5.【点评】本题考查了三角形的内角和定理,角平分线的定义,三角形的一个外角等于与它不相邻的两个内角的和的性质,整体思想的利用是解题的关键.17.如图,在△ABC中,∠C=90°,AD平分∠CAB,BC=8cm,BD=5cm,那么点D到线段AB的距离是3cm.【考点】角平分线的性质.【分析】求D点到线段AB的距离,由于D在∠BAC的平分线上,只要求出D到AC的距离CD即可,由已知可用BC减去BD可得答案.【解答】解:CD=BC﹣BD,=8cm﹣5cm=3cm,∵∠C=90°,∴D到AC的距离为CD=3cm,∵AD平分∠CAB,∴D点到线段AB的距离为3cm.故答案为:3.【点评】本题考查了角平分线的性质;知道并利用CD是D点到线段AB的距离是正确解答本题的关键.18.如图,已知在△ABC中,∠A=90°,AB=AC,CD平分∠ACB,DE⊥BC于E,若BC=15cm,则△DEB的周长为15cm.【考点】全等三角形的判定与性质.【分析】先根据ASA判定△ACD≌△ECD得出AC=EC,AD=ED,再将其代入△DEB的周长中,通过边长之间的转换得到,周长=BD+DE+EB=BD+AD+EB=AB+BE=AC+EB=CE+EB=BC,所以为15cm.【解答】解:∵CD平分∠ACB∴∠ACD=∠ECD∵DE⊥BC于E∴∠DEC=∠A=90°∵CD=CD∴△ACD≌△ECD∴AC=EC,AD=ED∵∠A=90°,AB=AC∴∠B=45°∴BE=DE∴△DEB的周长为:DE+BE+BD=AD+BD+BE=AB+BE=AC+BE=EC+BE=BC=15cm.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.19.如图,已知△ABC的周长是21,OB,OC分别平分∠ABC 和∠ACB,OD⊥BC于D,且OD=3,△ABC的面积是31.5.【考点】角平分线的性质.【分析】连接OA,作OE⊥AC,OF⊥AB,垂足分别为E、F,将△ABC的面积分为:S△ABC=S△OBC+S△OAC+S△OAB,而三个小三角形的高OD=OE=OF,它们的底边和就是△ABC的周长,可计算△ABC的面积.【解答】解:作OE⊥AC,OF⊥AB,垂足分别为E、F,连接OA,∵OB,OC分别平分∠ABC和∠ACB,OD⊥BC,∴OD=OE=OF,∴S△ABC=S△OBC+S△OAC+S△OAB= ×OD×BC+ ×OE×AC+ ×OF×AB= ×OD×(BC+AC+AB)= ×3×21=31.5.故填31.5.【点评】此题主要考查角平分线的性质;利用三角形的三条角平分线交于一点,将三角形面积分为三个小三角形面积求和,发现并利用三个小三角形等高是正确解答本题的关键.20.如图所示,已知AB=AC,∠A=40°,AB=10,DC=3,AB的垂直平分线MN交AC于点D,则∠DBC=30度,AD=7.【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】根据三角形内角和定理求出∠ABC的度数,根据线段的垂直平分线的性质得到∠DBA的度数,计算即可.【解答】解:∵AB=AC,∠A=40°,∴∠ABC=∠C=70°,∵MN是AB的垂直平分线,∴DA=DB,∴∠DBA=∠A=40°,∴∠DBC=30°;∵AB=AC,AB=10,DC=3,∴DA=10﹣3=7,故答案为:30;7.【点评】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.三、解答下列各题21.如图,写出△ABC的各顶点坐标,并画出△ABC关于y轴对称的△A1B1C1,写出ABC关于x轴对称的△A2B2C2的各点坐标.【考点】作图-轴对称变换.【分析】根据直角坐标系的特点写出各点的坐标,并作出各点关于y轴对称的点,然后顺次连接,写出坐标.【解答】解:如图:△ABC各点坐标为:A(﹣2,5),B(﹣6,2),C(﹣3,1);△A2B2C2的各点坐标为:A2(﹣2,﹣5),B2(﹣6,﹣2),C2(﹣3,﹣1).【点评】本题考查了根据轴对称变换作图,解答本题的关键是根据网格结构作出对应点的位置,然后顺次连接.22.已知:如图,AB∥CD,求图形中的x的值.【考点】多边形内角与外角;平行线的性质.【专题】计算题.【分析】根据平行线的性质先求∠B的度数,再根据五边形的内角和公式求x的值.【解答】解:∵AB∥CD,∠C=60°,∴∠B=180°﹣60°=120°,∴(5﹣2)×180°=x+150°+125°+60°+120°,∴x=85°.【点评】本题主要考查了平行线的性质和多边形的内角和,属于基础题.23.已知:如图,AB=DC,AE=BF,CE=DF,∠A=60°.(1)求∠FBD的度数.(2)求证:AE∥BF.【考点】全等三角形的判定与性质.【分析】(1)求出AC=BD,根据SSS推出△AEC≌△BFD,根据全等三角形的性质得出∠A=∠FBD即可;(2)因为∠A=∠FBD,根据平行线的判定推出即可.【解答】解:(1)∵AB=CD,∴AB+BC=CD+BC,∴AC=BD,在△AEC和△BFD中∵△AEC≌△BFD,∴∠A=∠FBD,∴∠A=∠FBD,∵∠A=60°,∴∠FBD=60°;(2)证明:∵∠A=∠FBD,∴AE∥BF.【点评】本题考查了全等三角形的性质和判定,平行线的判定的应用,注意:①全等三角形的判定定理有SAS,ASA,AAS,SSS,②全等三角形的对应边相等,对应角相等.24.已知A村和B村坐落在两相交公路内(如图所示),为繁荣当地经济,A、B两付计划合建一座物流中心,要求所建物流中心必须满足下列条件:①到两条公路的距离相等;②到A、B两村的距离也相等.请你通过作图确定物流中心的位置.(要求:尺规作图,保留作图痕迹,不写作法)【考点】作图—应用与设计作图.【分析】作出两条公路夹角的平分线和张、连接A、B两村之间线段的垂直平分线,交点即是所求物流中心.【解答】解:如图所示:点P即为所求物流中心.【点评】此题考查了作图﹣应用与设计作图,角平分线性质,以及线段垂直平分线性质,熟练掌握性质是解本题的关键.25.(1)如图(1),在△ABC中,∠C>∠B,AD⊥BC于点D,AE平分∠BAC,你能找出∠EAD与∠B、∠C之间的数量关系吗?并说明理由.(2)如图(2),AE平分∠BAC,F为AE上一点,FM⊥BC于点M,这时∠EFM与∠B、∠C之间又有何数量关系?请你直接说出它们的关系,不需要证明.【考点】三角形内角和定理.【专题】探究型.【分析】(1)根据三角形内角和定理以及角平分线的定义求出∠EAC,再根据直角三角形两锐角互余求出∠DAC,然后表示出∠EAD,整理即可得解;(2)过点A作AD⊥BC于D,根据两直线平行,同位角相等可得∠EFM=∠EAD,再根据(1)的结论解答.【解答】解:(1)∵AE平分∠BAC,∴∠EAC= ∠BAC= (180°﹣∠B﹣∠C),又∵AD⊥BC,∴∠DAC=90°﹣∠C,∴∠EAD=∠EAC﹣∠DAC= (180°﹣∠B﹣∠C)﹣(90°﹣∠C)= (∠C﹣∠B),即∠EAD= (∠C﹣∠B);(2)如图,过点A作AD⊥BC于D,∵FM⊥BC,∴AD∥FM,∴∠EFM=∠EAD= (∠C﹣∠B).【点评】本题考查了三角形的内角和定理,角平分线的定义,直角三角形两锐角互余的性质,整体思想的利用是解题的关键.26.(14分)已知,如图1,△ABC和△EDC都是等边三角形,点D,E分别在BC,AC上.(1)填空:∠AED=∠CDE=120度;(2)求证:AD=BE;(3)如图将图1中的△EDC沿BC所在直线翻折(如图2所示),其它条件不变,(2)中结论是否成立?请说明理由.【考点】翻折变换(折叠问题);全等三角形的判定与性质;等边三角形的性质.【分析】(1)由△DCE为等边三角形可知∠CDE=∠CED=60°,然后由邻补角的定义可知∠AED=∠CDE=120°;(2)证明△BDE和△AED全等即可;(3)由等边三角形的性质可知:AC=BC,DC=EC,∠ACB=∠BCE,从而可证明△ACD≌△BCE,从而可得到AD=BE.【解答】(1)解:∵△EDC都是的等边三角形,∴∠CDE=∠CED=60°.∴∠AED=∠CDE=120°.故答案为:∠CDE;120.(2)证明:∵△ABC和△EDC都是等边三角形,∴AC=BC,EC=DC.∴AC﹣EC=BC﹣DC即AE=BD.在△AED和△BDE中,,∴△AED≌△BDE(SAS).∴AD=DE.(3)AD=BE仍成立.理由:∵△ABC和△CDE都是等边三角形,∴AC=BC,EC=DC,∠ACD=∠BCE=60°.在△ACD和△BCE中,,∴△ACD≌△BCE.∴AD=BE.【点评】本题主要考查的是等边三角形的性质、全等三角形的性质和判定,掌握全等三角形的判定定理是解题的关键.。

人教版八年级上册数学期中考试试题含答案

人教版八年级上册数学期中考试试题含答案

人教版八年级上册数学期中考试试卷一、单选题1.以下列各组线段为三角形的边,能组成三角形的是()A .1cm ,2cm ,4cmB .3cm ,3cm ,6cmC .7cm ,7cm ,12cmD .3cm ,6cm ,10cm2.点(3,2)M 关于y 轴对称的点的坐标为()A .(3,2)-B .(3,2)--C .(3,2)-D .(2,3)-3.如图,小明书上的三角形被墨迹污染了一部分,他根据所学的知识很快就画出了一个与书上完全一样的三角形,那么小明画图的依据是()A .SSSB .SASC .AASD .ASA4.已知一个多边形的内角和是外角和的3倍,则这个多边形是()A .五边形B .六边形C .七边形D .八边形5.如果等腰三角形的两边长分别为2和5,则它的周长为()A .9B .7C .12D .9或126.下列运算中正确的是()A .55102a a a +=B .326326a a a ⋅=C .623a a a ÷=D .222(2)4ab a b -=7.如图,∠BAC=110°,若MP 和NQ 分别垂直平分AB 和AC ,则∠PAQ 的度数是()A .20°B .60°C .50°D .40°8.如图,折叠直角三角形纸片的直角,使点C 落在AB 上的点E 处,已知BC=24,∠B=30°,则DE 的长是()A.12B.10C.8D.69.如图,∠DAE=∠ADE=15°,DE∥AB,DF⊥AB.若AE=10,则DF等于()A.5B.4C.3D.2∥交ED的延长线于点10.如图,AD是△ABC的角平分线,DE⊥AC,垂足为E,BF ACF,若BC恰好平分∠ABF,AE=2BF,给出下列四个结论:①DE=DF;②DB=DC;③AD⊥BC;④AC=3BF,其中正确的结论共有()A.4个B.3个C.2个D.1个二、填空题11.等腰三角形的一个角是70°,则它的底角是_____.12.(45)2015×1.252014×(﹣1)2016=_______.13.如图,点D在BC上,AB=AD,∠C=∠E,∠BAD=∠CAE,若∠1+∠2=105°,则∠ABC 的度数是_____.14.计算:﹣3x(2x2+4x﹣3)=_______.15.若29a ka ++是一个完全平方式,则k 的值是________.16.计算:()03.14π-=_____________________.17.在△ABC 中,点P 是边AB,边BC 的垂直平分线的交点,∠A=50°.则∠PBC=______.18.如图,已知点A 、C 、F 、E 在同一直线上,△ABC 是等边三角形,且CD=CE ,EF=EG ,则∠F=_____度.三、解答题19.计算题:(1)(5x+2y )(3x-2y )(2)(4x-3y+2)(4x+3y+2)(3)(12x 4y 6-8x 2y 4-16x 3y 5)÷4x 2y 3(4)19992-2000×199820.如图,点E 、F 在BC 上,BE =CF ,AB =DC ,∠B =∠C .求证:∠A =∠D .21.如图,在长度为1个单位长度的小正方形组成的网格图中,点A 、B 、C 在小正方形的顶点上.(1)在图中画出与△ABC关于直线l成轴对称的△AB′C′;(2)三角形ABC的面积为________;(3)在直线l上找一点P,使PB+PC的长最短.22.如图,已知:△ABC中,AB=AC,D是BC上一点,且AD=DB,DC=CA,求∠BAC 的度数.23.如图,△ABC中,AD为∠BAC的平分线,且DF⊥AC于F,∠B=90°,DE=DC.求证:BE=CF.24.如图,△ABC是等边三角形,BD是中线,过点D作DE⊥AB于E交BC边延长线于F,AE=1.求BF的长.20.如图,AD⊥BC于D,AD=BD,AC=BE.(1)请说明∠1=∠C;(2)猜想并说明DE和DC有何特殊关系.26.已知△ABC是等边三角形,点D是直线BC上一点,以AD为一边在AD的右侧作等边△ADE.(1)如图①,点D在线段BC上移动时,直接写出∠BAD和∠CAE的大小关系;(2)如图①,求∠DCE的度数;(3)如图②,③,点D在线段BC的延长线上移动时,猜想∠DCE的大小是否发生变化.若不变请求出其大小;若变化,请说明理由,并求出∠DCE的度数.参考答案1.C【解析】【分析】根据三角形任意两边之和大于第三边,任意两边之差小于第三边,逐项判断即可.【详解】解:A :1cm 2cm 4cm +<,故不能构成三角形;B :3cm 3cm 6cm +=,故不能构成三角形;C :7cm 7cm 12cm +>,故能构成三角形;D :3cm 6cm 10cm +<,故不能构成三角形.故选:C .【点睛】本题主要考查了三角形三边的关系,熟练掌握相关概念是解题关键.2.A【解析】【分析】根据关于y 轴对称的点的纵坐标相等,横坐标互为相反数进一步求解即可.【详解】∵y 轴对称的点的纵坐标相等,横坐标互为相反数,∴点(3,2)M 关于y 轴对称的点的坐标为(3,2)-,故选:A.【点睛】本题主要考查了关于y 轴对称的点的坐标的性质,熟练掌握相关概念是解题关键.3.D【解析】【分析】图中三角形没被污染的部分有两角及夹边,根据全等三角形的判定方法解答即可.【详解】解:由图可知,三角形两角及夹边可以作出,所以,依据是ASA .故选:D .【点睛】本题考查了全等三角形的应用,熟练掌握三角形全等的判定方法是解题的关键.4.D【解析】【分析】根据多边形的外角和是360°,以及多边形的内角和定理即可求解.【详解】设多边形的边数是n ,则(n−2)⋅180=3×360,解得:n=8.故选D.【点睛】此题考查多边形内角与外角,解题关键在于掌握其定理.5.C【解析】【分析】分类讨论2是腰与底,根据三角形三边关系验证即可.【详解】解:当2为腰时,三角形的三边是2,2,5,因为2+2<5,所以不能组成三角形;当2为底时,三角形的三边是2,5,5,所以三角形的周长=12,故选C .【点睛】本题考查等腰三角形的性质、三角形的三边关系,掌握等腰三角形的性质、三角形的三边关系.6.D【解析】【分析】直接利用合并同类项法则、单项式乘单项式法则、同底数幂的乘法法则以及积的乘方法则运算即可求出答案.【详解】解:(A )5552a a a +=,故A 错误;(B )532326a a a =g ,故B 错误;(C )624a a a ÷=,故C 错误;(D )222(2)4ab a b -=,故D 正确;故选:D .【点睛】本题考查了合并同类项法则、单项式乘单项式法则、同底数幂的乘法法则以及积的乘方法则的应用,熟练运用运算法则是解决本题的关键.7.D【解析】【分析】由∠BAC 的大小可得∠B 与∠C 的和,再由线段垂直平分线,可得∠BAP =∠B ,∠QAC =∠C ,进而可得∠PAQ 的大小.【详解】∵∠BAC =110°,∴∠B+∠C =70°,又MP ,NQ 为AB ,AC 的垂直平分线,∴BP=AP ,AQ=CQ ,∴∠BAP =∠B ,∠QAC =∠C ,∴∠BAP+∠CAQ =70°,∴∠PAQ =∠BAC ﹣∠BAP ﹣∠CAQ =110°﹣70°=40°.故选D .8.C【分析】由折叠的性质可知;DC=DE ,∠DEA=∠C=90°,在Rt △BED 中,∠B=30°,故此BD=2ED ,从而得到BC=3BC ,于是可求得DE=8.【详解】解:由折叠的性质可知;DC=DE ,∠DEA=∠C=90°,∵∠BED+∠DEA=180°,∴∠BED=90°.又∵∠B=30°,∴BD=2DE .∴BC=3ED=24.∴DE=8.故答案为8.【点睛】本题考查的是翻折的性质、含30°锐角的直角三角形的性质,根据题意得出BC=3DE 是解题的关键.9.A【分析】过点D 作DG ⊥AC,由题意得出∠DEC=30°,即可得出DG=5,再证明AD 为角平分线,则DF=DG=5.【详解】过点D 作DG ⊥AC.∵15DAE ADE ∠=∠=︒,AE=10∴∠DEC=30°,DE=AE=10.∴DG=5.∵DE ∥AB,∴∠BAD=∠ADED AE AD E∠=∠∴BAD ∠=∠DAE ,即AD 为∠BAC 的角平分线.,DF AB DG AC⊥⊥ ∴DF=DG=5.故选A【点睛】本题考查角平分线的性质与判定,含30度角的直角三角形的性质,解题的关键在于利用角平分线定理作出辅助线.10.A【解析】【详解】解:∵BF AC ∥,∴∠C=∠CBF ,∵BC 平分∠ABF ,∴∠ABC=∠CBF ,∴∠C=∠ABC ,∴AB=AC ,∵AD 是△ABC 的角平分线,∴BD=CD ,AD ⊥BC ,故②,③正确,在△CDE 与△DBF 中,C CBF CD BD EDC BDF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△CDE ≌△DBF ,∴DE=DF ,CE=BF ,故①正确;∵AE=2BF ,∴AC=3BF ,故④正确.故选A .11.55°或70°.【解析】【分析】由等腰三角形的一个内角为70°,可分别从70°的角为底角与70°的角为顶角去分析求解,即可求得答案.【详解】∵等腰三角形的一个内角为70°,若这个角为顶角,则底角为:(180°﹣70°)÷2=55°;若这个角为底角,则另一个底角也为70°,∴它的底角为55°或70°.故答案为:55°或70°.【点睛】本题考查了等腰三角形的性质.此题比较简单,注意分类讨论思想的应用.12.45【解析】【分析】根据逆用同底数幂的乘法运算和积的乘方运算计算即可【详解】(45)2015×1.252014×(﹣1)2016201420144451554⎛⎫⎛⎫=⨯⨯⨯ ⎪ ⎪⎝⎭⎝⎭20144451554⎛⎫=⨯⨯⨯ ⎪⎝⎭45=故答案为:45【点睛】本题考查了同底数幂的乘法运算和积的乘方运算,正确的计算是解题的关键.13.75°.【解析】【分析】根据平角的定义求出∠ADE=75°,由AAS 证明△ABC ≌△ADE ,根据对应角相等得出即可.【详解】解:∵∠1+∠2=105°,∴∠ADE=75°,∵∠BAD=∠CAE ,∴∠BAC=∠DAE ,在△ABC 和△ADE 中,∵BAC DAE C E AB AD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△ADE (AAS ),∴∠ABC=∠ADE=75°;故答案为75°.【点睛】本题考查了全等三角形的判定与性质,熟练掌握全等三角形判定定理是解题的关键.14.326129x x x --+【解析】【分析】直接利用单项式乘以多项式的计算法则求解即可.【详解】解:()23232436129x x x x x x -+-=--+,故答案为:326129x x x --+.【点睛】本题主要考查了单项式乘以多项式,解题的关键在于能够熟练掌握单项式乘以多项式的计算法则.15.6±【解析】【分析】利用完全平方公式的结构特征判断即可确定出k 的值.【详解】解:29a ka ++是一个完全平方式,即22233a a ±⨯+是一个完全平方式,6k ∴=±故答案为:6±【点睛】本题考查了完全平方式,两数的平方和,再加上或减去他们乘积的2倍,就构成一个完全平方式,熟练掌握完全平方公式的特点是解题关键.16.1【解析】【分析】根据0指数幂的意义解答即可.【详解】解:因为 3.140π-≠,所以()03.141π-=.故答案为:1.【点睛】本题考查了0指数幂的意义,属于应知应会题型,熟知任何非零数的0次幂等于1是解题的关键.17.40︒【分析】连接,,AP BP CP ,根据三角形的内角和定理可得130ABC ACB ∠+∠=︒,根据垂直平分线的性质,等腰三角形的性质计算即可求得PBC ∠的度数.【详解】如图,连接,,AP BP CP ,180130ABC ACB BAC ∠+∠=︒-∠=︒ 点P 是边AB,边BC 的垂直平分线的交点,,PA PB PB PC∴==PA PC∴=,PAB PBA PAC PCA∴∠=∠∠=∠50PBA PCA PAB PAC BAC ∴∠+∠=∠+∠=∠=︒1305080PBC PCB ∴∠+∠=︒-︒=︒PB PC= 40PBC PCB ∴∠=∠=︒故答案为:40︒【点睛】本题考查了垂直平分线的性质、三角形的内角和定理,等边对等角,掌握垂直平分线的性质是解题的关键.18.15【解析】【详解】设∠F=x°,根据等腰三角形和外角的性质可得:∠DEC=2x°,∠ACB=4x°,根据等边三角形的性质可得:4x=60°,则x=15°,即∠F=15°.故答案为:15【点睛】考点:等腰三角形的性质19.(1)221544xxy y --;(2)22161649xx y ++-;(3)232324xy y xy --(4)1【解析】【分析】(1)根据多项式乘以多项式进行计算即可;(2)根据平方差公式、完全平方公式进行计算即可;(3)根据多项式除以单项式的运算法则进行计算即可;(4)根据平方差公式进行简便运算【详解】(1)(5x+2y )(3x-2y )22151064x xy xy y =-+-221544x xy y =--(2)(4x-3y+2)(4x+3y+2)()()423423x y x y =+-++()()22423x y =+-22161649x x y =++-(3)(12x 4y 6-8x 2y 4-16x 3y 5)÷4x 2y 3232324x y y xy =--(4)19992-2000×1998()()219991999119991=-+-()22199919991=--22199919991=-+1=【点睛】本题考查了多项式乘以多项式,多项式除以单项式,乘法公式,正确的计算是解题的关键.20.见解析【解析】【分析】由BE =CF 可得BF =CE ,再结合AB =DC ,∠B =∠C 可证得△ABF ≌△DCE ,问题得证.【详解】解∵BE =CF ,∴BE+EF =CF+EF ,即BF =CE .在△ABF 和△DCE 中,AB DC B C BF CE =⎧⎪∠=∠⎨⎪=⎩∴△ABF ≌△DCE ,∴∠A =∠D .【点睛】本题考查了全等三角形的判定和性质,是中考中比较常见的知识点,一般难度不大,需熟练掌握全等三角形的判定和性质.21.(1)见详解;(2)3;(3)PB+PC【解析】【分析】(1)先分别作出△ABC 的对称点,然后依次连接即为所求;(2)在网格中利用割补法进行求解△ABC 的面积即可;(3)要使PB+PC 的长为最短,只需连接BC′,因为根据轴对称的性质及两点之间线段最短可得,然后利用勾股定理可求最短距离.【详解】解:(1)分别作B 、C 关于直线l的对称点,如图所示:(2)由网格图可得:111242221143222ABC S =⨯-⨯⨯-⨯⨯-⨯⨯= ;故答案为3;(3)由(1)可得:点C 与点C '关于直线l 对称,连接PC 、BC ',如图所示:∴CP PC '=,∵BP PC BP PC BC ''+=+≥,∴要使BP+PC 为最短,则需B 、P 、C '三点共线即可,即为BC '的长,∴222313BC '=+=,即PB+PC 13【点睛】本题主要考查轴对称图形的性质、勾股定理及三角不等关系,熟练掌握轴对称图形的性质、勾股定理及三角不等关系是解题的关键.22.∠BAC=108°.【解析】【分析】由AB=AC ,DC=CA ,得到AB=AC=CD ,且AD=BD ,利用等边对等角得到∠B=∠C=∠BAD ,∠DAC=∠ADC ,设∠B=∠C=∠BAD=x°,由外角性质得到∠ADC=∠DAC=∠B+∠BAD=2x°,在三角形ABC 中,利用三角形的内角和定理列出关于x 的方程,求出方程的解得到x 的值,确定出∠DAC 与∠ADC 的度数,由∠BAD+∠DAC 即可求出∠BAC 的度数.【详解】解:∵AB=AC=DC ,AD=BD ,∴∠B=∠C=∠BAD ,∠DAC=∠ADC ,设∠B=∠C=∠BAD=x°,则∠ADC=∠DAC=∠B+∠BAD=2x°,∵∠B+∠C+∠BAC=180°,即x+x+2x+x=180,解得x=36,∴∠B=∠C=∠BAC=36°,∴∠DAC=∠ADC=72°,∴∠BAC=∠BAD+∠DAC=72°+36°=108°.【点睛】此题考查了等腰三角形的性质,三角形的外角性质,三角形内角和,解一元一次方程,掌握等腰三角形的性质,三角形的外角性质,三角形内角和,解一元一次方程,利用了方程的思想,等边对等角是解题关键.23.见解析【解析】【分析】先由角平分线的性质就可以得出DB DF =,再证明BDE FDC ∆≅∆就可以求出结论.【详解】证明:90B ∠=︒ ,BD AB ∴⊥.AD 为BAC ∠的平分线,且DF AC ⊥,DB DF ∴=.在Rt BDE 和Rt FDC 中,DE DC DB DF =⎧⎨=⎩,()Rt BDE Rt FDC HL ∴ ≌,BE CF ∴=.【点睛】本题考查了角平分线的性质的运用,全等三角形的判定与性质的运用,解题的关键是证明三角形全等.24.6【解析】【分析】根据等边三角形的性质和中线的性质解答即可.【详解】∵△ABC 是等边三角形,BD 是中线,∴∠A=∠ACB=60°,AC=BC ,AD=CD=12AC ,∵DE⊥AB于E,∴∠ADE=90°-∠A=30°,∴CD=AD=2AE=2,∴∠CDF=∠ADE=30°,∴∠F=∠ACB-∠CDF=30°,∴∠CDF=∠F,∴DC=CF,∴BF=BC+CF=2AD+AD=6.25.(1)证明见解析;(2)DE=DC,证明见解析.【解析】【分析】(1)欲证∠1=∠C,只需证明△DBE≌△DAC即可;(2)由△DBE≌△DAC,得到DE=DC.【详解】(1)∵AD⊥BC于D,∴∠BDE=∠ADC=90°.∵AD=BD,AC=BE,∴Rt△BDE≌Rt△ADC(HL),∴∠1=∠C.(2)DE=DC.理由如下:由(1)知△BDE≌△ADC,∴DE=DC.26.(1)∠BAD=∠CAE;(2)∠DCE=120°;(3)∠DCE的大小不变,∠DCE=60°.【分析】(1)由等边三角形的性质得出∠BAC=∠DAE=60°,然后利用等式性质即可得出结论;(2)由△ABC和△ADE是等边三角形可以得出AB=AC,AD=AE,∠ABC=∠ACB=∠BAC=∠DAE=60°,得出∠BAD=∠CAE,再证明△ABD≌△ACE,得出∠ABD=∠ACE=60°,然后利用∠ACD+∠ACE即可得出结论;(3)分两种情况,点D在BC延长线上,与点D在CB延长线上;点D在BC延长线上,根据等边三角形的性质得出∠DAE =∠BAC =∠ABC =∠ACB =60°,AB =AC ,AD =AE ,利用角的和∠BAD =∠CAE ,再证△ABD ≌△ACE(SAS),得出∠ABD =∠ACE =60°,利用∠DCE =∠ACD -∠ACE ;与点D 在CB 延长线上,根据等边三角形性质得出∠DAE =∠BAC =∠ABC =∠ACB =60°,AB =AC ,AD =AE ,利用角差得出∠ABD=180°-∠ABC =120°,∠BAD =∠CAE ,再证△ABD ≌△ACE(SAS),得出∠ABD =∠ACE =120°,利用∠DCE =∠ACE -∠ACB 即可得解.【详解】解:(1)△ABC 与△ADE 都是等边三角形,∴∠BAC=∠DAE=60°,∴∠BAD+∠DAC=∠DAC+∠CAE ,∴∠BAD =∠CAE ;(2)连结CE ,∵△ABC 是等边三角形,△ADE 是等边三角形,∴∠DAE =∠BAC =∠ABC =∠ACB =60°,AB =AC ,AD =AE ,∴∠BAC-∠CAD =∠DAE-∠CAD ,即∠BAD =∠CAE ,在△ABD 和△ACE 中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩,△ABD ≌△ACE(SAS),∴∠ABD =∠ACE =60°,∴∠DCE =∠ACD+∠ACE =60°+60°=120°;(3)∠DCE 的大小不变,∠DCE=60°,分两种情况,点D 在BC 延长线上与点D 在CB 延长线上;点D 在BC 延长线上,如图(2)∵△ABC 是等边三角形,△ADE 是等边三角形,21∴∠DAE =∠BAC =∠ABC =∠ACB =60°,AB =AC ,AD =AE ,∴∠ACD=180°-∠ACB =120°,∠BAC+∠CAD =∠DAE+∠CAD ,即∠BAD =∠CAE ,在△ABD 和△ACE 中,AB ACBAD CAE AD AE=⎧⎪∠=∠⎨⎪=⎩,△ABD ≌△ACE(SAS),∴∠ABD =∠ACE =60°,∴∠DCE =∠ACD -∠ACE =120°-60°=60°;点D 在CB 延长线上;如图(3)∵△ABC 是等边三角形,△ADE 是等边三角形,∴∠DAE =∠BAC =∠ABC =∠ACB =60°,AB =AC ,AD =AE ,∴∠ABD=180°-∠ABC =120°,∠BAC-∠BAE =∠DAE-∠BAE ,即∠BAD =∠CAE ,在△ABD 和△ACE 中,AB ACBAD CAE AD AE=⎧⎪∠=∠⎨⎪=⎩,△ABD ≌△ACE(SAS),∴∠ABD =∠ACE =120°,∴∠DCE =∠ACE -∠ACB =120°-60°=60°.综合得,∠DCE 的大小不变,∠DCE=60°.。

2016年人教版八年级上册期中数学试卷及答案

2016年人教版八年级上册期中数学试卷及答案

2016年人教版八年级上册期中数学试卷及答案2016年秋季学期八年级数学期中考试试卷本试卷共24小题,满分120分,考试时间为120分钟。

考试分为试题卷和答题卡两部分,请将答案写在答题卡上的对应答题区域内,写在试题卷上无效。

考试结束后,请将试题卷和答题卡一并上交。

一、选择题(每小题3分,共计45分)1.下列图形中,是轴对称图形的是()。

A。

锐角三角形B。

钝角三角形C。

直角三角形D。

锐角三角形或钝角三角形2.点P(1,-2)关于x轴对称的点的坐标是()。

A。

(1,2)B。

(1,-2)C。

(-1,2)D。

(-1,-2)3.已知△ABC有一个内角为100°,则△ABC一定是()。

4.已知三角形两边的长分别是4和10,则此三角形第三边的长可能是()。

A。

5B。

6C。

11D。

165.若三角形三个内角度数的比为1∶2∶3,则这个三角形的最小角是()。

A。

30°B。

45°C。

60°D。

90°6.一个多边形的每个内角都等于108°,则这个多边形的边数为()。

A。

5B。

6C。

7D。

87.已知直角三角形中有一个角是30°,它对的直角边长是2厘米,则斜边的长是()。

A。

2厘米B。

4厘米C。

6厘米D。

8厘米8.若等腰三角形的周长为13cm,其中一边长为3cm,则该等腰三角形的底边为()。

A。

7cmB。

3cmC。

7cm或3cmD。

8cm9.若等腰三角形的一个外角是80°,则底角是()。

A。

80°或50°B。

80°或40°C。

100°或50°D。

100°或40°10.如图,△ABC中,点D在BC上,△ACD和△ABD 面积相等,线段AD是三角形的()。

11.如图,一副分别含有30°和45°角的两个直角三角板,拼成如下图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD的度数是()。

2016-2017学年人教版八年级上期中数学试卷含答案解析

2016-2017学年人教版八年级上期中数学试卷含答案解析
4.计算﹣ (﹣ 3a2b3)4 的结果是( )
第 5 页(共 15 页)
2.下面四个图形中,线段 BD 是△ABC 的高的是( )
A.
B.
分线、中线和高. 【分析】根据三角形高的定义进行判断. 【解答】解:线段 BD 是△ABC 的高,则过点 B 作对边 AC 的垂线,则垂线段 BD 为△ ABC 的高. 故选 A.
3.三角形三条边大小之间存在一定的关系,以下列各组线段为边,能组成三角形的是 () A.2 cm,3 cm,5 cm B.5 cm,6 cm,10 cm C.1 cm,1 cm,3 cm D.3 cm,4 cm,9 cm 【考点】三角形三边关系. 【分析】根据三角形的三边关系对各选项进行逐一分析即可. 【解答】解:A、∵2+3=5,∴不能组成三角形,故本选项错误; B、∵10﹣ 5<6<10+5,∴能组成三角形,故本选项正确; C、∵1+1=2<3,∴不能组成三角形,故本选项错误; D、∵3+4=7<9,∴不能组成三角形,故本选项错误. 故选 B.
2016-2017 学年重庆市 XX 中学八年级(上)期中数学试卷
一.选择题(每小题 3 分,共 30 分) 1.计算(﹣ x)2•x3 所得的结果是( ) A.x5 B.﹣ x5 C.x6 D.﹣ x6 2.下面四个图形中,线段 BD 是△ABC 的高的是( )
A.
B.
C.
D.
3.三角形三条边大小之间存在一定的关系,以下列各组线段为边,能组成三角形的是 () A.2 cm,3 cm,5 cm B.5 cm,6 cm,10 cm C.1 cm,1 cm,3 cm D.3 cm,4 cm,9 cm 4.计算﹣ (﹣ 3a2b3)4 的结果是( ) A.81a8b12 B.12a6b7 C.﹣ 12a6b7 D.﹣ 81a8b12 5.如图,将两根钢条 AA′、BB′的中点 O 连在一起,使 AA′、BB′可以绕着点 O 自由转 动,就做成了一个测量工件,由三角形全等得出 A′B′的长等于内槽宽 AB;那么判定△ OAB≌△OA′B′的理由是( )

2015-2016学年新人教版八年级上期中数学试卷5套(含答案)

2015-2016学年新人教版八年级上期中数学试卷5套(含答案)

2015-2016学年八年级(上)期中数学试卷一一、选择题:(每小题3分,共24分)1.下列长度的三条线段能组成三角形的是()A.1,2,4 B.4,9,6 C.5,5,11 D.3,5,82.将几根木条用钉子钉成如下的模型,其中在同一平面内不具有稳定性的是()A.B.C.D.3.如图,C在AB延长线上,CE⊥AF于点E,交BF于点D,∠F=60°,∠C=20°,则∠FBA=()A.50° B.60° C.70° D.80°4.下列说法:①用同一张底片冲洗出来的8张1存相片是全等形;②我国国旗上的四颗小五角星是全等形;③所有的等边三角形是全等形;④全等形的面积一定相等,其中正确的有()A.1个B.2个C.3个D.4个5.如图,∠1=∠2,要证明△ABC≌△ADE,还需补充的条件是()A.AB=AD,AC=AE B.AB=AD,BC=DE C.AB=DE,BC=AE D.AC=AE,BC=DE6.已知一个三角形的周长为18cm,且它的角平分线的交点到一边的距离是2.5cm,则这个三角形的面积是()A.22.5cm2 B.19cm2 C.21cm2 D.23.5cm27.下列“表情图”中,属于轴对称图形的是()A.B.C.D.8.已知一个等腰三角形两内角的度数之比为1:2,则这个等腰三角形顶角的度数为()A.36° B.36°或90° C.90° D.60°二、填空题(共7小题,每小题3分,满分21分)9.在平面直角坐标系中,点A(﹣1,2)和(﹣1,6)的对称轴是直线.10.在△ABC中,∠A=75°,∠B﹣∠C=15°,则∠C的度数是.11.若一个多边形的每一个外角都等于20°,则它的内角和等于.12.如图,已知AC=AD,BC=BD,CE=DE,则全等三角形共有对.13.如图,△ABC≌△DEF,BE=4,AE=1,则DE的长是.14.在△ABC中,∠C=90°,∠B=30°,AB的垂直平分线交BC于D,交AB于E,DB=12cm,则CD=.15.正△ABC的两条角平分线BD和CE交于点I,则∠BIC等于.三、解答题.16.若过m边形的一个顶点有7条对角线,n边形没有对角线,k边形对角线共有k条,你能算出代数式的值吗?17.如图,AF是△ABC的高,AD是△ABC的角平分线,∠B=36°,∠C=76°,求∠DAF 的度数.18.已知:∠AOB和两点C、D,求作一点P,使PC=PD,且点P到∠AOB的两边的距离相等.(要求:用尺规作图,保留作图痕迹,写出作法,不要求证明).19.如图,在正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).(1)在图中作出△ABC关于直线MN对称的△A′B′C′;(2)在(1)的结果下,连接AA′,CC′,求四边形AA′C′C的面积.20.在平面直角坐标系中,M(2a﹣b,a+5),N(2b﹣1,b﹣a)(1)若M、N关于x轴对称,求a、b的值.(2)若M、N关于y轴对称,求a、b的值.21.(10分)(2014秋•禹州市期中)如图,14:00时,一条船从A处出发,以18海里/小时的速度,向正北航行,16:00时,船到达B处,从A处测得灯塔C在北偏西28°,从B 处测得灯塔C在北偏西56°,求B处到灯塔C的距离.22.(10分)(2014秋•禹州市期中)如图,等边△ABC中,点P在△ABC内,点Q在△ABC 外,且∠1=∠2,∠BPA=∠CQA,试判断△APQ的形状,并说明理由.23.(11分)(2014秋•禹州市期中)如图,在△ABC中,D是AB边的中点,PD⊥AB交∠ACB 的平分线与点P,PM⊥AC于点M,PN⊥BC交CB的延长线于点N.求证:CM=CN=(AC+BC)2015-2016学年八年级(上)期中数学试卷参考答案与试题解析一、选择题:(每小题3分,共24分)1.下列长度的三条线段能组成三角形的是()A.1,2,4 B.4,9,6 C.5,5,11 D.3,5,8考点:三角形三边关系.分析:根据三角形的三边关系进行分析判断.解答:解:根据三角形任意两边的和大于第三边,得A中,1+2=3<4,不能组成三角形;B中,4+6>9,能组成三角形;C中,5+5=11,不能够组成三角形;D中,5+3=8,不能组成三角形.故选B.点评:本题考查了能够组成三角形三边的条件:用两条较短的线段相加,如果大于最长的那条线段就能够组成三角形.2.将几根木条用钉子钉成如下的模型,其中在同一平面内不具有稳定性的是()A.B.C.D.考点:三角形的稳定性.分析:根据三角形具有稳定性进行解答.解答:解:根据三角形具有稳定性可得A、B、D都具有稳定性,C未曾构成三角形,因此不稳定,故选:C.点评:此题主要考查了三角形的稳定性,是需要识记的内容.3.如图,C在AB延长线上,CE⊥AF于点E,交BF于点D,∠F=60°,∠C=20°,则∠FBA=()A.50° B.60° C.70° D.80°考点:三角形的外角性质;直角三角形的性质.分析:首先根据三角形内角和定理可得∠FDE=30°,根据对顶角相等可得∠BDC=30°,再根据三角形外角的性质可得∠ABF=30°+20°=50°.解答:解:∵CE⊥AF,∴∠FED=90°,∵∠F=60°,∴∠FDE=30°,∴∠BDC=30°,∴∠C=20°,∴∠ABF=30°+20°=50°,故选:A.点评:此题主要考查了三角形外角的性质,以及三角形内角和,关键是掌握三角形的一个外角等于和它不相邻的两个内角的和.4.下列说法:①用同一张底片冲洗出来的8张1存相片是全等形;②我国国旗上的四颗小五角星是全等形;③所有的等边三角形是全等形;④全等形的面积一定相等,其中正确的有()A.1个B.2个C.3个D.4个考点:全等图形.分析:直接利用全等图形的性质分别分析得出即可.解答:解:①用同一张底片冲洗出来的8张1存相片是全等形,正确;②我国国旗上的四颗小五角星是全等形,正确;③所有的等边三角形是全等形,错误;④全等形的面积一定相等,正确.故选:C.点评:此题主要考查了全等图形,正确利用全等图形的性质分析得出是解题关键.5.如图,∠1=∠2,要证明△ABC≌△ADE,还需补充的条件是()A.AB=AD,AC=AE B.AB=AD,BC=DE C.AB=DE,BC=AE D.AC=AE,BC=DE考点:全等三角形的判定.分析:根据三角形内角和定理,由∠1=∠2,然后根据“SAS”对各选项进行判断.解答:解:∵∠1=∠2,∴∠C=∠E,∴当AE=AC,DE=BC时,可根据“SAS”判断△ABC≌△ADE.故选D.点评:本题考查了全等三角形的判定:全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.6.已知一个三角形的周长为18cm,且它的角平分线的交点到一边的距离是2.5cm,则这个三角形的面积是()A.22.5cm2 B.19cm2 C.21cm2 D.23.5cm2考点:角平分线的性质.分析:根据角平分线的性质得到OD=OE=OF=2.5,根据三角形面积公式得到答案.解答:解:∵点O是角平分线的交点,OD⊥AB,OF⊥AC,OE⊥BC,∴OD=OE=OF=2.5,△ABC的面积为:×AB×OD+×AC×OF+×BC×OE=×18×2.5=22.5,故选:A.点评:本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.7.下列“表情图”中,属于轴对称图形的是()A.B.C.D.考点:轴对称图形.分析:根据轴对称图形的定义:把一个图形沿着某一条直线折叠,如果直线两旁的部分能够互相重合,那么称这个图形是轴对称图形直接回答即可.解答:解:A、不能沿某条直线对折后直线两旁的部分完全重合,故不是轴对称图形;B、不能沿某条直线对折后直线两旁的部分完全重合,故不是轴对称图形;C、不能沿某条直线对折后直线两旁的部分完全重合,故不是轴对称图形;D、是轴对称图形;故选D.点评:本题考查了轴对称图形的定义,牢记轴对称图形的定义是解答本题的关键,属于基础题,比较简单.8.已知一个等腰三角形两内角的度数之比为1:2,则这个等腰三角形顶角的度数为()A.36° B.36°或90° C.90° D.60°考点:等腰三角形的性质.分析:根据已知条件,根据一个等腰三角形两内角的度数之比先设出三角形的两个角,然后进行讨论,即可得出顶角的度数.解答:解:在△ABC中,设∠A=x,∠B=2x,分情况讨论:当∠A=∠C为底角时,x+x+2x=180°解得,x=45°,顶角∠B=2x=90°;当∠B=∠C为底角时,2x+x+2x=180°解得,x=36°,顶角∠A=x=36°.故这个等腰三角形的顶角度数为90°或36°.故选B.点评:本题考查了等腰三角形的性质及三角形内角和定理;若题目中没有明确顶角或底角的度数,做题时要注意分情况进行讨论,这是十分重要的,也是解答问题的关键.二、填空题(共7小题,每小题3分,满分21分)9.在平面直角坐标系中,点A(﹣1,2)和(﹣1,6)的对称轴是直线y=4.考点:坐标与图形变化-对称.专题:数形结合.分析:利用两已知点的坐标特征得这两个点的连线段与y轴平行,且连线段的中点坐标为(﹣1,4),则过点(﹣1,4)且与y轴垂直的直线是它们的对称轴.解答:解:∵(﹣1,2)和(﹣1,6)的横坐标相同,∴这两个点的连线段与y轴平行,且连线段的中点坐标为(﹣1,4),∴点(﹣1,2)与(﹣1,6)关于直线y=4对称.故答案为y=4.点评:本题考查了坐标与图形变化﹣对称:记住关于x轴对称和关于y轴对称的点的坐标特征.通常利用数形结合的思想解决此类问题.10.在△ABC中,∠A=75°,∠B﹣∠C=15°,则∠C的度数是45°.考点:三角形内角和定理.分析:根据三角形内角和等于180°和∠A=75°求得∠B+∠C=105°,由于∠B﹣∠C=15°,解方程组即可得到结果.解答:解:在△ABC中,∠A=75°,根据三角形的内角和定理和已知条件得到∠C+∠B=180°﹣∠A=180°﹣105°=105°,∵∠B﹣∠C=15°,∴∠C=45°.则∠C的度数为45°.故答案为:45°.点评:本题考查三角形的内角和定理,进行角的等量代换是解答本题的关键.11.若一个多边形的每一个外角都等于20°,则它的内角和等于2880°.考点:多边形内角与外角.分析:首先根据外角和与外角的度数可得多边形的边数,再根据多边形内角和公式180(n ﹣2)计算出答案.解答:解:∵多边形的每一个外角都等于20°,∴它的边数为:360°÷20°=18,∴它的内角和:180°(18﹣2)=2880°,故答案为:2880°.点评:此题主要考查了多边形的内角与外角,关键是正确计算出多边形的边数.12.如图,已知AC=AD,BC=BD,CE=DE,则全等三角形共有6对.考点:全等三角形的判定.分析:先根据“SSS”可证明△ABC≌△ABD,△AEC≌△AED,利用全等三角形的性质得∠ABC=∠ABD,则利用”SAS”可判断△BCF≌△BDF,然后再利用“SSS”可分别判断△AFC≌△AFD,△CEF≌△DEF,△BCE≌△BDE.解答:解:在△ABC和△ABD中,,∴△ABC≌△ABD(SSS);同理可得△AEC≌△AED(SSS),由△ABC≌△ABC得∠ABC=∠ABD,在△BCF和△BDF中,,∴△BCF≌△BDF(SAS),∴CF=DF,同理可得△AFC≌△AFD(SSS),△CEF≌△DEF(SSS),△BCE≌△BDE(SSS).故答案为6.点评:本题考查了全等三角形的判定:全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.13.如图,△ABC≌△DEF,BE=4,AE=1,则DE的长是5.考点:全等三角形的性质.分析:先求出AB的长度,再根据全等三角形对应边相等解答即可.解答:解:∵BE=4,AE=1,∴AB=BE+AE=4+1=5,∵△ABC≌△DEF,∴DE=AB=5.故答案为:5.点评:本题考查了全等三角形对应边相等的性质,先求出DE的对应边AB的长度是解题的关键.14.在△ABC中,∠C=90°,∠B=30°,AB的垂直平分线交BC于D,交AB于E,DB=12cm,则CD=6cm.考点:线段垂直平分线的性质.分析:根据直角三角形的性质得到DE=BD,根据线段垂直平分线的性质得到DA=DB,证明∠CAD=∠DAB,根据角平分线的性质得到答案.解答:解:∵DE⊥AB,∠B=30°,∴DE=BD=6,∵DE是AB的垂直平分线,∴DA=DB,∴∠DAB=∠B=30°,又∠C=90°,∴∠CAD=∠DAB,又∠C=90°,DE⊥AB,∴DC=DE=6.故答案为:6cm.点评:本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.15.正△ABC的两条角平分线BD和CE交于点I,则∠BIC等于120°.考点:等边三角形的性质.分析:根据等边三角形性质得出∠ABC=∠ACB=60°,根据角平分线性质求出∠IBC和∠ICB,根据三角形的内角和定理求出即可.解答:解:∵△ABC是等边三角形,∴∠A=∠ABC=∠ACB=60°,∵BI平分∠ABC,CI平分∠ACB,∴∠IBC=∠ABC=30°,∠ICB=∠ACB=30°,∴∠BIC=180°﹣30°﹣30°=120°,故答案为:120°.点评:本题考查了等边三角形的性质,三角形的内角和定理,角平分线定义等知识点的应用,关键是求出∠IBC和∠ICB的度数.三、解答题.16.若过m边形的一个顶点有7条对角线,n边形没有对角线,k边形对角线共有k条,你能算出代数式的值吗?考点:多边形的对角线.分析:根据n边形从一个顶点出发可引出(n﹣3)条对角线.从n个顶点出发引出(n﹣3)条,而每条重复一次,所以n边形对角线的总条数为:(n≥3,且n为整数)可得到m、k、n的值,进而可得答案解答:解:解:由题意得:m﹣3=7,n=3解得m=10,n=3,由题意得:=k,解得k=5,=200.点评:此题主要考查了多边形的对角线,关键是掌握对角线条数的计算公式.17.如图,AF是△ABC的高,AD是△ABC的角平分线,∠B=36°,∠C=76°,求∠DAF 的度数.考点:三角形的外角性质;角平分线的定义;三角形内角和定理.分析:在△ADF中,由三角形的外角性质知:∠ADF=∠B+∠BAC,所以∠B+∠BAC+∠FAD=90°,联立△ABC中,由三角形内角和定理得到的式子,即可推出∠DAF,∠B,∠C的关系,再代值求解即可.解答:解:由三角形的外角性质知:∠ADF=∠B+∠BAC,故∠B+∠BAC+∠DAF=90°;①△ABC中,由三角形内角和定理得:∠C+∠B+∠BAC=180°,即:∠C+∠B+∠BAC=90°,②②﹣①,得:∠DAF=(∠C﹣∠B)=20°.点评:此题主要考查了三角形的外角性质、角平分线的性质以及三角形内角和定理等知识,熟记此题的结论在解选择和填空题时会加快解题效率.18.已知:∠AOB和两点C、D,求作一点P,使PC=PD,且点P到∠AOB的两边的距离相等.(要求:用尺规作图,保留作图痕迹,写出作法,不要求证明).考点:作图—复杂作图;角平分线的性质;线段垂直平分线的性质.专题:作图题.分析:由所求的点P满足PC=PD,利用线段垂直平分线定理得到P点在线段CD的垂直平分线上,再由点P到∠AOB的两边的距离相等,利用角平分线定理得到P在∠AOB的角平分线上,故作出线段CD的垂直平分线,作出∠AOB的角平分线,两线交点即为所求的P 点.解答:解:如图所示:作法:(1)以O为圆心,任意长为半径画弧,与OA、OB分别交于两点;(2)分别以这两交点为圆心,大于两交点距离的一半长为半径,在角内部画弧,两弧交于一点;(3)以O为端点,过角内部的交点画一条射线;(4)连接CD,分别为C、D为圆心,大于CD长为半径画弧,分别交于两点;(5)过两交点画一条直线;(6)此直线与前面画的射线交于点P,∴点P为所求的点.点评:此题考查了作图﹣复杂作图,涉及的知识有:角平分线性质,以及线段垂直平分线性质,熟练掌握性质是解本题的关键.19.如图,在正方形网格中,每个小正方形的边长都为1,网格中有一个格点△ABC(即三角形的顶点都在格点上).(1)在图中作出△ABC关于直线MN对称的△A′B′C′;(2)在(1)的结果下,连接AA′,CC′,求四边形AA′C′C的面积.考点:作图-轴对称变换.分析:(1)根据轴对称的性质作出△ABC关于直线MN对称的△A′B′C′即可;(2)根据梯形的面积公式求出梯形AA′C′C的面积即可.解答:解:(1)如图所示;(2)∵由图得四边形AA′C′C的面积是等腰梯形,CC′=2,AA′=4,高是3,∴S四边形AA′C′C=(AA′+CC′)×3=(4+2)×3=9.点评:本题考查的是作图﹣轴对称变换,熟知轴对称图形的作法是解答此题的关键.20.在平面直角坐标系中,M(2a﹣b,a+5),N(2b﹣1,b﹣a)(1)若M、N关于x轴对称,求a、b的值.(2)若M、N关于y轴对称,求a、b的值.考点:关于x轴、y轴对称的点的坐标.分析:(1)根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”列方程组求解即可;(2)根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”列方程组求解即可.解答:解:(1)∵M、N关于x轴对称,∴,解得;(2)∵M、N关于y轴对称,∴,解得.点评:本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.21.(10分)(2014秋•禹州市期中)如图,14:00时,一条船从A处出发,以18海里/小时的速度,向正北航行,16:00时,船到达B处,从A处测得灯塔C在北偏西28°,从B 处测得灯塔C在北偏西56°,求B处到灯塔C的距离.考点:等腰三角形的判定与性质;方向角.分析:根据所给的角的度数,容易证得△BCA是等腰三角形,而AB的长易求,所以根据等腰三角形的性质,BC的值也可以求出.解答:解:据题意得,∠A=28°,∠DBC=56°,∵∠DBC=∠A+∠C,∴∠A=∠C=28°,∴AB=BC,∵AB=18×2=36,∴BC=36(海里).∴B处到灯塔C的距离36(海里).点评:本题考查了等腰三角形的性质及方向角的问题;由已知得到三角形是等腰三角形是正确解答本题的关键.要学会把实际问题转化为数学问题,用数学知识进行解决实际问题的方法.22.(10分)(2014秋•禹州市期中)如图,等边△ABC中,点P在△ABC内,点Q在△ABC 外,且∠1=∠2,∠BPA=∠CQA,试判断△APQ的形状,并说明理由.考点:全等三角形的判定与性质;等边三角形的判定与性质.分析:先证△ABP≌△ACD得AP=AD,再证∠PAD=60°,从而得出△APD是等边三角形.解答:解:△APQ是等边三角形.理由如下:∵AB=AC,∠1=∠2,∠BPA=∠CQA,∴△ABP≌△ACQ,∴∠BAP=∠CAQ,AP=AQ,∴∠PAQ=∠CAQ+∠PAC=∠BAP+∠PAC=∠BAC=60°,∴△APQ是等边三角形.点评:本题考查了等边三角形的判定与性质及全等三角形的判定方法,注意条件与问题之间的联系.23.(11分)(2014秋•禹州市期中)如图,在△ABC中,D是AB边的中点,PD⊥AB交∠ACB 的平分线与点P,PM⊥AC于点M,PN⊥BC交CB的延长线于点N.求证:CM=CN=(AC+BC)考点:全等三角形的判定与性质;角平分线的性质.专题:证明题.分析:连接AP,BP,易证PM=PN和AP=BP,即可证明RT△APM≌RT△BPN和RT△CPM≌RT△CPN,可得AM=BN和CM=CN,即可解题.解答:证明:连接AP,BP,∵CP是∠ACB平分线,∴PM=PN,∵PD⊥AB,D是AB中点,∴AP=BP,在RT△APM和RT△BPN中,,∴RT△APM≌RT△BPN(HL),∴AM=BN,在RT△CPM和RT△CPN中,,∴RT△CPM≌RT△CPN(HL),∴CM=CN,∵CN=BC+BN,CM=AC﹣AM∴CM=CN=(BC+BN+AC﹣AM)=(BC+AC).点评:本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证RT△APM≌RT△BPN和RT△CPM≌RT△CPN是解题的关键.2015-2016学年八年级(上)期中数学试卷一、选择题(每小题3分,共24分)1.下列说法①任意一个数都有两个平方根;②任意一个数都有立方根;③﹣125的立方根是±5;④是一个分数;⑤两个无理数的积是一个有理数;⑥但0<a<1时,,其中正确的有()A.0个B.1个C.2个D.3个2.如图数轴上有A、B、C、D四点,根据图中各点的位置,判断那一点所表示的数与最接近的是()A.A B.B C.C D.D3.一次课堂练习,小颖同学做了如下4道因式分解题,你认为小颖做的不够完整的一道题是()A.x3﹣4x2+4x=x(x2+4x+4)B.x2y﹣xy2=xy(x﹣y)C.x2﹣y2=(x﹣y)(x+y)D.x2﹣2xy+y2=(x﹣y)24.如果ax2+2x+=(2x+)2+m,则a,m的值分别是()A.2,0 B.4,0 C.2,D.4,5.下列运算正确的是()A.a3+a3=a6 B.a6÷a2=a4 C.a3•a5=a15 D.(a3)4=a76.下列语句好可以称为命题的是()A.延长线段AB到C B.垂线段最短C.过点P作线段AB的垂线D.锐角都相等吗7.平面上有△ACD与△BCE,其中AD与BE相交于P点,如图.若AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,则∠BPD的度数为()A.110° B.125° C.130° D.155°8.如图,在正方形网格中,△ABC的三个顶点及点D、E、F、G、H都在格点上,现以D、E、F、G、H中的三点为顶点画三角形,则下列与△ABC面积相等但不全等的三角形是()A.△EHD B.△EGF C.△EFH D.△HDF二、填空题(每小题3分,共21分)9.观察分析下列数据:0,﹣,,﹣3,2,﹣,3,…,根据数据排列的规律得到第16个数据应是(结果需化简).10.已知x2=16,那么x=;如果(﹣a)2=(﹣5)2,那么a=.11.利用分解因式计算:(1)16.8×+7.6×=;(2)1.222×9﹣1.332×4=.12.如图,边长为(m+3)的正方形纸片剪出一个边长为m的正方形之后,剩余部分又剪拼成一个矩形(不重叠无缝隙),若拼成的矩形一边长为3,则另一边长是.13.将4个数a,b,c,d排成2行、2列,两边各加一条竖直线记成,定义=ad﹣bc,上述记号就叫做2阶行列式,若=12,则x=.14.如图,△ABC中,AB=AC,BD=CE,BE=CF,若∠A=50°,则∠DEF的度数是.15.如图,已知∠1=∠2=90°,AD=AE,那么图中有对全等三角形.三、计算题(本大题共8小题,满分65分)16.(1)÷(π﹣2014)0+|﹣4|(2)|3﹣π|﹣+(π﹣4)0.17.先化简,再求值:(x+2)2+(2x+1)(2x﹣1)﹣4x(x+1),其中x=﹣.18.化简(1)(2x4﹣x3)÷(﹣x)﹣(x﹣x2)•2x(2)[(ab﹣1)(ab+2)﹣2a2b2+2]÷(﹣ab)19.因式分解(1)m2﹣n2+2m﹣2n(2)x2(y2﹣1)+2x(y2﹣1)+(y2﹣1)20.如图,△ABC和△DAE中,∠BAC=∠DAE,AB=AE,AC=AD,连接BD,CE,求证:△ABD≌△AEC.21.如图,在△ABC中,D是BC的中点,DE⊥AB,DF⊥AC,垂足分别是E、F,BE=CF.(1)图中有几对全等的三角形请一一列出;(2)选择一对你认为全等的三角形进行证明.22.(10分)(2014秋•太康县期中)已知:a=2012x+2013,b=2012x+2014,c=2012x+2015,求多项式a2+b2+c2﹣ab﹣bc﹣ac的值.23.(10分)(2007•常州)已知,如图,延长△ABC的各边,使得BF=AC,AE=CD=AB,顺次连接D,E,F,得到△DEF为等边三角形.求证:(1)△AEF≌△CDE;(2)△ABC为等边三角形.2015-2016学年八年级(上)期中数学试卷二参考答案与试题解析一、选择题(每小题3分,共24分)1.下列说法①任意一个数都有两个平方根;②任意一个数都有立方根;③﹣125的立方根是±5;④是一个分数;⑤两个无理数的积是一个有理数;⑥但0<a<1时,,其中正确的有()A.0个B.1个C.2个D.3个考点:实数.分析:根据实数、立方根、平方根,即可解答.解答:解:①任意一个数都有两个平方根,错误,因为负数没有平方根;②任意一个数都有立方根,正确;③﹣125的立方根是﹣5,故错误;④是一个无理数,故错误;⑤两个无理数的积是一个有理数,错误,例如:;⑥当0<a<1时,,正确;其中正确的有2个.故选:C.点评:本题考查了实数,解决本题的关键是熟记平方根、立方根的定义.2.如图数轴上有A、B、C、D四点,根据图中各点的位置,判断那一点所表示的数与最接近的是()A.A B.B C.C D.D考点:实数与数轴.分析:先估算出的取值范围,再找出与之接近的点即可.解答:解:∵≈1.4,∴≈0.7,∴点D与之接近.故选D.点评:本题考查的是实数与数轴,熟知实数与数轴上各点是一一对应关系是解答此题的关键.3.一次课堂练习,小颖同学做了如下4道因式分解题,你认为小颖做的不够完整的一道题是()A.x3﹣4x2+4x=x(x2+4x+4)B.x2y﹣xy2=xy(x﹣y)C.x2﹣y2=(x﹣y)(x+y)D.x2﹣2xy+y2=(x﹣y)2考点:提公因式法与公式法的综合运用.专题:计算题.分析:A、原式提取x,再利用完全平方公式分解得到结果,即可做出判断;B、原式提取xy得到结果,即可做出判断;C、原式利用平方差公式分解得到结果,即可做出判断;D、原式利用完全平方公式分解得到结果,即可做出判断.解答:解:x3﹣4x2+4x=x(x2+4x+4)=x(x+2)2,过程不够完整,故选A.点评:此题考查了提公因式与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.4.如果ax2+2x+=(2x+)2+m,则a,m的值分别是()A.2,0 B.4,0 C.2,D.4,考点:完全平方公式.专题:计算题.分析:运用完全平方公式把等号右边展开,然后根据对应项的系数相等列式求解即可.解答:解:∵ax2+2x+=4x2+2x++m,∴,解得.故选D.点评:本题考查了完全平方公式,利用公式展开,根据对应项系数相等列式是求解的关键.5.下列运算正确的是()A.a3+a3=a6 B.a6÷a2=a4 C.a3•a5=a15 D.(a3)4=a7考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.专题:计算题.分析:根据合并同类项的法则,同底数幂的乘法与除法以及幂的乘方的知识求解即可求得答案.解答:解:A、a3+a3=2a3,故A错误;B、a6÷a2=a4,故B正确;C、a3•a5=a8,故C错误;D、(a3)4=a12,故D错误.故选:B.点评:此题考查了合并同类项的法则,同底数幂的乘法与除法以及幂的乘方等知识,解题要注意细心.6.下列语句好可以称为命题的是()A.延长线段AB到C B.垂线段最短C.过点P作线段AB的垂线D.锐角都相等吗考点:命题与定理.分析:根据命题的定义解答即可.解答:解:A、延长线段AB到C,不是命题;B、垂线段最短,是命题;C、过点P作线段AB的垂线,不是命题;D、锐角都相等吗,不是命题;故选:B.点评:此题考查了命题与定理,判断一件事情的语句是命题,一般有“是”,“不是”等判断词.7.平面上有△ACD与△BCE,其中AD与BE相交于P点,如图.若AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,则∠BPD的度数为()A.110° B.125° C.130° D.155°考点:全等三角形的判定与性质.分析:易证△ACD≌△BCE,由全等三角形的性质可知:∠A=∠B,再根据已知条件和四边形的内角和为360°,即可求出∠BPD的度数.解答:解:在△ACD和△BCE中,,∴△ACD≌△BCE(SSS),∴∠A=∠B,∠BCE=∠ACD,∴∠BCA=∠ECD,∵∠ACE=55°,∠BCD=155°,∴∠BCA+∠ECD=100°,∴∠BCA=∠ECD=50°,∵∠ACE=55°,∴∠ACD=105°∴∠A+∠D=75°,∴∠B+∠D=75°,∵∠BCD=155°,∴∠BPD=360°﹣75°﹣155°=130°,故选:C.点评:本题考查了全等三角形的判定和性质、三角形的内角和定理以及四边形的内角和定理,解题的关键是利用整体的数学思想求出∠B+∠D=75°.8.如图,在正方形网格中,△ABC的三个顶点及点D、E、F、G、H都在格点上,现以D、E、F、G、H中的三点为顶点画三角形,则下列与△ABC面积相等但不全等的三角形是()A.△EHD B.△EGF C.△EFH D.△HDF考点:全等三角形的判定.分析:根据所给三角形结合三角形全等的判定定理可得△EHD与△ABC全等,△EGF与△ABC全等,因此A、B错误;△EFH与△ABC不全等,但是面积也不相等,故C错误;△HDF与△ABC不全等,面积相等,故此选项正确.解答:解:A、△EHD与△ABC全等,故此选项不合题意;B、△EGF与△ABC全等,故此选项不合题意;C、△EFH与△ABC不全等,但是面积也不相等,故此选项不合题意;D、△HDF与△ABC不全等,面积相等,故此选项符合题意;故选:D.点评:此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.二、填空题(每小题3分,共21分)9.观察分析下列数据:0,﹣,,﹣3,2,﹣,3,…,根据数据排列的规律得到第16个数据应是﹣3(结果需化简).考点:算术平方根.专题:规律型.分析:通过观察可知,规律是根号外的符号以及根号下的被开方数依次是:(﹣1)1+1×0,(﹣1)2+1,(﹣1)3+1…(﹣1)n+1),可以得到第16个的答案.解答:解:由题意知道:题目中的数据可以整理为:,(﹣1)2+1,…(﹣1)n+1),∴第16个答案为:.故答案为:.点评:主要考查了学生的分析、总结、归纳能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律.10.已知x2=16,那么x=±4;如果(﹣a)2=(﹣5)2,那么a=±5.考点:平方根.分析:根据平方根的定义,即可解答.解答:解:∵x2=16,∴x=±4,∵(﹣a)2=(﹣5)2,∴a2=25,∴a=±5,故答案为:±4,±5.点评:本题考查了平方根的定义,解决本题的关键是熟记平方根的定义.11.利用分解因式计算:(1)16.8×+7.6×=7;(2)1.222×9﹣1.332×4= 6.32.考点:因式分解的应用.分析:(1)利用提取公因式法分解因式计算即可;(2)利用平方差公式分解因式计算即可.解答:解:(1)原式=(8.4+7.6)×=16×=7;(2)1.222×9﹣1.332×4。

【人教版】2015-2016学年八年级上期中数学试卷(含答案)

【人教版】2015-2016学年八年级上期中数学试卷(含答案)

2015~2016学年度第一学期期中质量检测试卷八年级数学温馨提示:时间120分钟,满分150分。

请仔细审题,细心答题,相信你一定会有出色的表现! 一、选择题(本大题10小题,每小题4分,共40分,请将下列各题中唯一正确的答案代号A、B、C、D填到本题后括号内)1.下列“慢行通过,注意危险,禁止行人通行,禁止非机动车通行”四个交通标志图(黑白阴影图片)中为轴对称图形的是()A.B.C.D.2.如果一个三角形的两边长分别为2和5,则第三边长可能是()A.2 B.3 C.5 D.83.如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是()A.B.C.D.4.在△ABC中,∠A:∠B:∠C=3:4:5,则∠C等于()A.45°B.60°C.75°D.90°5.如图,∠A+ ∠B +∠C +∠D +∠E +∠F的度数为()A.180°B.360°C.270°D.540°6.如图,图中显示的是从镜子中看到背后墙上的电子钟读数,由此你可以推断这时的实际时间是()A.10:05 B.20:01 C.20:10 D.10:027.如图,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC,将仪器上的点A与∠PRQ的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE ,AE 就是∠PRQ 的平分线。

此角平分仪的画图原理是:根据仪器结构,可得△ABC ≌△ADC ,这样就有∠QAE=∠PAE 。

则说明这两个三角形全等的依据是( )A. SASB. ASAC. AASD. SSS8.如图,在△ABC 中,AD 是BC 边上的中线,点E 、F 是AD 的三等分点,若△ABC 的面积为12cm 2,则图中阴影部分的面积为( )A .2cm 2B .4cm 2C .6cm 2D .8cm 29.如图为八个全等的正六边形紧密排列在同一平面上的情形.根据图中标示的各点位置,判断△ACD 与下列哪一个三角形全等?( )A .△ACFB .△ADEC .△ABCD .△BCF10.如图,在四边形ABCD 中,AB=CD ,BA 和CD 的延长线交于点E ,若点P 使得S △PAB =S △PCD ,则满足此条件的点P ( )A .有且只有1个B .有且只有2个C .组成∠E 的角平分线D .组成∠E 的角平分线所在的直线(E 点除外)二、填空题(本题共4小题,每小题5分,共20分)11. 将一副直角三角板如图放置,使含30°角的三角板的直角边和含45°角的三角板的一条直角边重合,则∠1的度数为度.12. 如图,在△ABC 中,D 、E 分别是边AC 、BC 上的点,若△ADB ≌△EDB ≌△EDC ,第7题第12题第11题第8题第9题第10题第13题则∠C的度数为;13. 如图,在△ABC中AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,已知EH=EB=3cm,AE=4cm,则CH的长是;14.在四边形ABCD中,∠A=∠B=∠C,点E在边AB上,若∠AED=60°,∠EDC=100°,则, ∠ADE= .三、解答题(本大题共90分,注意写出解答过程或计算步骤)15. (8分)小红家有一个小口瓶(如图所示),她很想知道它的内径是多少?但是尺子不能伸在里边直接测,于是她想了想,唉!有办法了.她拿来了两根长度相同的细木条,并且把两根长木条的中点固定在一起,木条可以绕中点转动,这样只要量出AB的长,就可以知道玻璃瓶的内径是多少,你知道这是为什么吗?请说明理由.(木条的厚度不计)16.(8分)如图,在△ABD和△ACE中,有下列四个等式:①AB=AC、②AD=AE、③∠1=∠2、④BD=CE.请你以其中三个等式作为题设,余下的作为结论,写出一个真命题(要求写出已知,求证及证明过程).题设:,结论:(写序号)17.(8分)如图,已知点E,F在AC上,AD∥BC,DF=BE,添加的一个条件....(不要在图中增加任何字母和线),使△ADF≌△CBE.你添加的条件是:. 证明:18.(8分)如图,在△ABC 中,∠ACB =90°,AC=BC ,BE ⊥CE 于E ,AD ⊥CE 于点D ,AD =3.1cm ,DE =1.8cm ,求BE 的长。

最新2016-2017人教版八年级上册数学期中考试试卷及答案--正版

最新2016-2017人教版八年级上册数学期中考试试卷及答案--正版

2016-2017 人教版第一學期 八年級數學期中試卷一.用心選一選:(每小題3分,共30分)1.下列各式是因式分解且完全正確の是( )A .ab +ac +d =b a (+c )+dB .)1(23-=-x x x x C .(a +2)(a -2)=2a -4 D .2a -1=(a +1)(a -1) 2.醫學研究發現一種新病毒の直徑約為0.000043毫米,這個數用科學記數法表 示為( )A. 41043.0-⨯ B. 41043.0⨯ C. 5103.4-⨯ D. 5103.4⨯3. 下列各式:()xxx x y x x x 2225,1,2 ,34 ,151+---π其中分式共有( )個。

A .2 B. 3 C. 4 D. 5 4. 多項式 2233449-18-36a x a x a x 各項の公因式是( )A .22a xB .33a xC .229a xD .449a x5. 如圖,用三角尺可按下面方法畫角平分線:在已知の∠AOBの兩邊上分別取點M 、N ,使OM =ON ,再分別過點M 、N 作OA 、OB の垂線,交點為P ,畫射線OP .可證得△POM ≌△PON ,OP 平分∠AOB .以上依畫法證明 △POM ≌△PON 根據の是( ) A .SSS B .HL C .AAS D .SAS6. 甲、乙二人做某種機械零件,已知甲每小時比乙多做6個,甲做90個所用の時間與乙做60個所用の時間相等。

如果設甲每小時做x 個零件,那麼下面所列方程中正確の是( ). A.9060-6x x = B. 90606x x =+ C. 90606x x =+ D. 9060-6x x=7. 如圖,已知△ABC ,則甲、乙、丙三個三角形中和△ABC 全等の是( )baca cc aa丙72︒50︒乙50︒甲50︒CBA50︒72︒58︒A. 只有乙B. 乙和丙C. 只有丙D. 甲和乙8. 下列各式中,正確の是( )A .122b a b a =++ B .2112236d cd cd cd++= C . -a b a bc c++= D .222-4-2(-2)a a a a += 9.如圖,正方形ABCD の邊長為4,將一個足夠大の直角三角板の直角頂點放於點A 處,該三角板の兩條直角邊與CD 交於點F ,與CB 延長線交於點E .四邊形AECF の面積是( )A. 16 B .4 C .8 D. 1210.在數學活動課上,小明提出這樣一個問題:如右圖, ∠B =∠C = 90︒, E 是BC の中點, DE 平分∠ADC, ∠CED = 35︒, 則∠EAB の度數 是 ( )A .65︒B .55︒C .45︒D .35︒二.細心填一填:(每小題3分,共24分) . 11.計算:2220042003-= .ED CBA12. 04= 212-⎛⎫- ⎪⎝⎭= ()312a b -=13. 如果分式 242x x -+ の值是零,那麼x の值是 _________________ .14. 將一張長方形紙片按如圖所示の方式折疊,BC BD ,為折痕, 則CBD ∠の度數為_ _.15. 計算: 2422x x x --- = __________________. 16. 如圖,AC 、BD 相交於點O ,∠A =∠D ,請你再補充一個條件, 使得△AOB ≌△DOC ,你補充の條件是 .17. 如圖,點P 是∠BAC の平分線AD 上一點,PE ⊥AC 於點E . 已知PE =3,則點P 到AB の距離是_________________.18. 在平面直角坐標系中,已知點A (1,2),B (5,5),C (5,2),存在點E , 使△ACE 和△ACB 全等,寫出所有滿足條件のE 點の坐標 .三.用心做一做(19、20題每題3分,21、22、23題每題4分,共26分)19.因式分解: 24a -32a +64 20.計算:3222)()(---⋅a ab (結果寫成分式)21.計算: (1) 22819369269a a a a a a a --+÷⋅++++ (2) (m 1+n1)÷nn m +22.解分式方程:(1)3221+=x x (2)214111x x x +-=--23. 先化簡: 21x +21+x +1x -1⎛⎫÷ ⎪⎝⎭,再選擇一個恰當の數代入求值.四.應用題(本題5分)24. 甲乙兩站相距1200千米,貨車與客車同時從甲站出發開往乙站,已知客車の速度是貨車速度の2倍,結果客車比貨車早6小時到達乙站,求客車與貨車の速度分別是多少?解:DCB五、作圖題(本題2分)25.畫圖 (不用寫作法,要保留作圖痕跡......)尺規作圖:求作AOB∠の角平分線OC.六、解答題:(28題5分,其他每題4分,共17分)26.已知,如圖,在△AFD和△CEB中,點A,E,F,C在同一直線上,AE=CF,DF=BE,AD=CB. 求證:AD∥BC.27.已知:如圖,AB=AD,AC=AE,且BA⊥AC,DA⊥AE.求證:(1)∠B=∠D (2) AM=AN.28.如圖,已知∠1=∠2,P為BN上の一點,PF⊥BC於F,PA=PC,求證:∠PCB+∠BAP=180º.29. 已知:在平面直角坐標系中,△ABCの頂點A、C別在y軸、x軸上,且∠ACB=90°,AC=BC.(1)如圖1,當(0,2),(1,0)A C-,點B則點Bの坐標為;(2)如圖2,當點C在x軸正半軸上運動,點A在y軸正半軸上運動,點B在第四象限時,作BD⊥y軸於點D,試判斷OABDOC+與OABDOC-哪一個是定值,並說明定值是多少?請證明你の結論.F CFDCBAEO附加題1.選擇題:以右圖方格紙中の3個格點為頂點,有多少個不全等の三角形( ) A .6 B .7 C .8 D .92.填空題:考察下列命題:(1)全等三角形の對應邊上の中線、高線、角平分線對應相等;(2)兩邊和其中一邊上の中線對應相等の兩個三角形全等;(3)兩邊和第三邊上の中線對應相等の兩個三角形全等;(4)兩角和其中一角の角平分線對應相等の兩個三角形全等;(5)兩角和第三角の角平分線對應相等の兩個三角形全等;(6)兩邊和其中一邊上の高線對應相等の兩個三角形全等;(7)兩邊和第三邊上の高線對應相等の兩個三角形全等;其中正確の命題是 (填寫序號).3.解答題:我們知道,假分數可以化為帶分數. 例如: 83=223+=223. 在分式中,對於只含有一個字母の分式,當分子の次數大於或等於分母の次數時,我們稱之為“假分式”;當分子の次數小於分母の次數時,我們稱之為“真分式”. 例如:11x x -+,21x x -這樣の分式就是假分式;31x + ,221xx + 這樣の分式就是真分式 . 類似の,假分式也可以化為帶分式(即:整式與真分式和の形式). 例如:1(1)22=1111x x x x x -+-=-+++; 22111(1)1111111x x x )x x x x x x -++-+===++----(. (1)將分式12x x -+化為帶分式; (2)若分式211x x -+の值為整數,求x の整數值;解:參考答案1-5 DCACB 6-10 ABDBD 11 . 4007 12. 1, 4, 338a b - 13. -2 14 . 90︒ 15. 2 16. OC OB ,或CD AB ,或===OD OA17. 3 18.(5,-1),(1,5),(1,-1) 19. 2)4(4-a 20. 48b a21. (1)-2 (2)1m 22. (1) x=1 (2)無解 23. -1 24. x=625.略 26. SSS 證全等 27.(1)SAS 證全等 (2)ASA 證全等 28. 過點P 作PE 垂直BA 於點E ,HL 證全等. 29.(1) (3,-1) (2)OC BDOA-是定值.附加題1.選擇題: C2.填空題: 正確の命題是 1,2,3,4 ,5 3.解答題:解:(1)12331222x x x x x -(+)-==-+++; (2)2121332111x x x x x -(+)-==-+++. 當211x x -+為整數時,31x +也為整數.1x ∴+可取得の整數值為1±、3±.x ∴の可能整數值為0,-2,2,-4.。

2016-2017学年最新人教版八年级(上册)期中数学测试卷及答案

2016-2017学年最新人教版八年级(上册)期中数学测试卷及答案

2016-2017学年八年级(上)期中数学试卷一、选择题(此题只要认真思考并不难,每题只有一个正确选项!8&#215;3=24分)1.若等腰三角形的一边长等于5,另一边长等于3,则它的周长等于( )A.10 B.11 C.13 D.11或132.如图,AB∥CD,AD∥BC,OE=OF,则图中全等三角形的组数是( )A.3 B.4 C.5 D.63.如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是( )A.带①去B.带②去C.带③去D.带①和②去4.如图在△ABD和△ACE都是等边三角形,则△ADC≌△ABE的根据是( )A.SSS B.SAS C.ASA D.AAS5.如图,△ABC中,∠C=90°,AM平分∠CAB,CM=20cm,那么M到AB的距离是( )A.10cm B.15cm C.20cm D.25cm6.下列判定直角三角形全等的方法,错误的是( )A.两条直角边对应相等B.斜边和一锐角对应相等C.斜边和一直角边对应相等D.两锐角相等7.小芳有两根长度为4cm和9cm的木条,她想钉一个三角形木框,桌上有下列长度的几根木条,她应该选择长度为( )的木条.A.5cm B.3cm C.17cm D.12cm8.若一个多边形的内角和与它的外角和相等,则这个多边形是( )A.三角形B.四边形C.五边形D.六边形二、填空题(共8小题,每小题3分,满分24分)9.在①线段、②角、③圆、④长方形、⑤梯形、⑥三角形、⑦等边三角形中,是轴对称图形的有__________ (只填序号)10.如果一个多边形的内角和为1260°,那么这个多边形的一个顶点有__________条对角线.11.如图,小亮从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,…,照这样走下去,他第一次回到出发地A点时,一共走了__________米.12.如图,△ABC≌△DCB,∠DBC=40°,则∠AEB=__________度.13.如图,∠ABC=∠DEF,AB=DE,要证明△ABC≌△DEF,需要添加一个条件为:__________(只添加一个条件即可)14.已知:如图,AC⊥BC于C,DE⊥AC于E,AD⊥AB于A,BC=AE.若AB=5,则AD=__________.15.如图:△ABC中,DE是AC的垂直平分线,AE=3cm,△ABD的周长为13cm,则△ABC 的周长为__________.16.已知A、B两点的坐标分别是(﹣2,3)和(2,3),则下面四个结论:①A、B关于x轴对称;②A、B关于y轴对称;③A、B关于原点对称;④若A、B之间的距离为4.其中正确的有__________个.三、解答题(共3小题,满分30分)17.如图,写出A、B、C关于y轴对称的点坐标,并作出与△ABC关于x轴对称的图形.18.如图,AB=AC,∠A=40°,AB的垂直平分线MN交AC于点D,求∠DBC的度数.19.如图,△ABC的外角∠ACD的平分线CP与内角∠ABC平分线BP交于点P,若∠BPC=40°,求∠CAB的度数.四、证明题(后面的更简单,加油!2&#215;11=22分)20.如图,A、D、F、B在同一直线上,AD=BF,AE=BC,且AE∥BC.求证:EF∥CD.21.如图,AD⊥BC,BD=DC,点C在AE的垂直平分线上,AB+BD与DE的长度有什么关系?并加以证明.2016-2017学年八年级(上)期中数学试卷一、选择题(此题只要认真思考并不难,每题只有一个正确选项!8&#215;3=24分)1.若等腰三角形的一边长等于5,另一边长等于3,则它的周长等于( )A.10 B.11 C.13 D.11或13【考点】等腰三角形的性质.【分析】由若等腰三角形的一边长等于5,另一边长等于3,分别从腰长为5,底边长为3与底边长为3,腰长为5去分析求解即可求得答案.【解答】解:若腰长为5,底边长为3,∵5+3>5,∴5,5,3能组成三角形,则它的周长等于:5+5+3=13,若底边长为3,腰长为5,∵3+3=6>5,∴3,3,5能组成三角形.∴它的周长为11或13.故选D.【点评】此题考查了等腰三角形的性质.此题难度不大,注意掌握分类讨论思想的应用.2.如图,AB∥CD,AD∥BC,OE=OF,则图中全等三角形的组数是( )A.3 B.4 C.5 D.6【考点】全等三角形的判定.【分析】先根据题意AB∥CD,AD∥BC,可得多对角相等,再利用平行四边形的性质可得线段相等,所以有△AFO≌△CEO,△AOD≌△COB,△FOD≌△EOB,△ACB≌△ACD,△ABD≌△DCB,△AOB≌△COD共6对.【解答】解:∵AB∥CD,AD∥BC∴∠ABD=∠CDB,∠ADB=∠CDB又∵BD=DB∴△ABD≌△CDB∴AB=CD,AD=BC∵OA=OC,OB=OD∴△ABO≌△CDO,△BOC≌△DOA∵OB=OD,∠CBD=∠ADB,∠BOF=∠DOE∴△BFO≌△DEO∴OE=OF∵OA=OC,∠COF=∠AOE∴△COF≌△AOE∵AB=DC,BC=AD,AC=AC∴△ABC≌△DCA,共6组;故选D.【点评】本题重点考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,但AAA、SSA,无法证明三角形全等,本题是一道较为简单的题目.考查三角形判定和细心程度.3.如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是( )A.带①去B.带②去C.带③去D.带①和②去【考点】全等三角形的应用.【专题】应用题.【分析】此题可以采用全等三角形的判定方法以及排除法进行分析,从而确定最后的答案.【解答】解:A、带①去,仅保留了原三角形的一个角和部分边,不能得到与原来一样的三角形,故A选项错误;B、带②去,仅保留了原三角形的一部分边,也是不能得到与原来一样的三角形,故B选项错误;C、带③去,不但保留了原三角形的两个角还保留了其中一个边,符合ASA判定,故C选项正确;D、带①和②去,仅保留了原三角形的一个角和部分边,同样不能得到与原来一样的三角形,故D选项错误.故选:C.【点评】主要考查学生对全等三角形的判定方法的灵活运用,要求对常用的几种方法熟练掌握.4.如图在△ABD和△ACE都是等边三角形,则△ADC≌△ABE的根据是( )A.SSS B.SAS C.ASA D.AAS【考点】全等三角形的判定.【分析】因为△ABD和△ACE都是等边三角形,所以有AD=AB,AC=AE,又因为∠DAB+∠BAC=∠EAC+∠BAC,所以∠DAC=∠BAE,故可根据SAS判定△ADC≌△ABE.【解答】解:∵△ABD和△ACE都是等边三角形,∴AD=AB,AC=AE,又∵∠DAB+∠BAC=∠EAC+∠BAC,∴∠DAC=∠BAE,∴△ADC≌△ABE(SAS).故选B.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.5.如图,△ABC中,∠C=90°,AM平分∠CAB,CM=20cm,那么M到AB的距离是( )A.10cm B.15cm C.20cm D.25cm【考点】角平分线的性质.【分析】过点M作MN⊥AB于N,根据角平分线上的点到角的两边的距离相等可得MN=CM,从而得解.【解答】解:如图,过点M作MN⊥AB于N,∵∠C=90°,AM平分∠CAB,∴MN=CM,∵CM=20cm,∴MN=20cm,即M到AB的距离是20cm.故选C.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,点到直线的距离,熟记性质并作出辅助线是解题的关键.6.下列判定直角三角形全等的方法,错误的是( )A.两条直角边对应相等B.斜边和一锐角对应相等C.斜边和一直角边对应相等D.两锐角相等【考点】直角三角形全等的判定.【专题】证明题.【分析】根据全等三角形的判定方法对A、B、C、D选项逐个分析是否可求证两三角形全等,然后即可得出正确选项.【解答】解:如果在两个直角三角形中,两条直角边对应相等,那么根据SAS即可判断两三角形全等,故选项A正确.如果如果在两个直角三角形中,斜边和一锐角对应相等,那么根据AAS也可判断两三角形全等,故选项B正确.如果如果在两个直角三角形中,斜边和一直角边对应相等,那么根据HL也可判断两三角形全等,故选项C正确.故选D.【点评】此题主要考查学生对直角三角形全等得判定的理解和掌握,解得此题的关键是根据A、B、C选项给出的已知条件都可判断出三角形全等,所以答案就很明显了.7.小芳有两根长度为4cm和9cm的木条,她想钉一个三角形木框,桌上有下列长度的几根木条,她应该选择长度为( )的木条.A.5cm B.3cm C.17cm D.12cm【考点】三角形三边关系.【专题】计算题.【分析】根据三角形两边之和大于第三边,三角形的两边差小于第三边用排除法即可得出答案.【解答】解:对A,∵4+5=9,不符合三角形两边之和大于第三边,故错误;对B,∵4+3<9,不符合三角形两边之和大于第三边,故错误;对C,∵4+9<17,不符合三角形两边之和大于第三边,故错误;对D,∵4+9>12,12﹣9<4,符合两边之和大于第三边,三角形的两边差小于第三边,故正确;故选:D.【点评】本题考查了三角形三边关系,属于基础题,关键是掌握三角形两边之和大于第三边,三角形的两边差小于第三边.8.若一个多边形的内角和与它的外角和相等,则这个多边形是( )A.三角形B.四边形C.五边形D.六边形【考点】多边形内角与外角.【分析】根据多边形的内角和公式(n﹣2)•180°与多边形的外角和定理列式进行计算即可得解.【解答】解:设多边形的边数为n,根据题意得(n﹣2)•180°=360°,解得n=4.故这个多边形是四边形.故选B.【点评】本题考查了多边形的内角和公式与外角和定理,熟记公式与定理是解题的关键.二、填空题(共8小题,每小题3分,满分24分)9.在①线段、②角、③圆、④长方形、⑤梯形、⑥三角形、⑦等边三角形中,是轴对称图形的有①②③④⑦(只填序号)【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:①线段是轴对称图形;②角是轴对称图形;③圆是轴对称图形;④长方形是轴对称图形;⑤梯形不一定是轴对称图形;⑥三角形不一定是轴对称图形⑦等边三角形是轴对称图形;综上可得是轴对称图形的有①②③④⑦.故答案为:①②③④⑦.【点评】本题考查了轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.10.如果一个多边形的内角和为1260°,那么这个多边形的一个顶点有6条对角线.【考点】多边形内角与外角;多边形的对角线.【分析】首先根据多边形内角和公式可得多边形的边数,再计算出对角线的条数.【解答】解:设此多边形的边数为x,由题意得:(x﹣2)×180=1260,解得;x=9,从这个多边形的一个顶点出发所画的对角线条数:9﹣3=6,故答案为:6.【点评】此题主要考查了多边形的内角和计算公式求多边形的边数,关键是掌握多边形的内角和公式180(n﹣2).11.如图,小亮从A点出发,沿直线前进10米后向左转30°,再沿直线前进10米,又向左转30°,…,照这样走下去,他第一次回到出发地A点时,一共走了120米.【考点】多边形内角与外角.【专题】应用题.【分析】由题意可知小亮所走的路线为一个正多边形,根据多边形的外角和即可求出答案.【解答】解:∵360÷30=12,∴他需要走12次才会回到原来的起点,即一共走了12×10=120米.故答案为:120.【点评】本题主要考查了多边形的外角和定理.任何一个多边形的外角和都是360°.12.如图,△ABC≌△DCB,∠DBC=40°,则∠AEB=80度.【考点】全等三角形的性质.【分析】根据全等三角形的性质求出∠ACB,根据三角形的外角性质得出∠AEB=∠ACB+∠DBC,代入求出即可.【解答】解:∵△ABC≌△DCB,∠DBC=40°,∴∠ACB=∠DBC=40°,∴∠AEB=∠ACB+∠DBC=40°+40°=80°,故答案为:80.【点评】本题考查了三角形的外角性质,全等三角形的性质的应用,能根据全等三角形的性质求出∠ACB的度数是解此题的关键,注意:全等三角形的对应角相等,对应边相等.13.如图,∠ABC=∠DEF,AB=DE,要证明△ABC≌△DEF,需要添加一个条件为:BC=EF (只添加一个条件即可)【考点】全等三角形的判定.【专题】开放型.【分析】本题是开放题,应先确定题中给出的条件,再对应三角形全等条件求解.【解答】解:所添条件为:BC=EF.∵BC=EF,∠ABC=∠DEF,AB=DE∴△ABC≌△DEF(SAS).【点评】本题考查了全等三角形的判定,三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.14.已知:如图,AC⊥BC于C,DE⊥AC于E,AD⊥AB于A,BC=AE.若AB=5,则AD=5.【考点】全等三角形的判定与性质.【分析】此题可根据已知条件用AAS证明△ABC≌△DAE,则AD=AB=5.【解答】解:∵AC⊥BC于C,DE⊥AC于E,∴∠C=∠AED=90°,∠CAB+∠B=90°,∵AD⊥AB于A,∴∠CAB+∠EAD=90°,∴∠B=∠EAD(同角的余角相等)∵BC=AE,∴△ABC≌△DAE(AAS),∴AD=AB=5.故填5【点评】此题主要利用AAS直角三角形全等,还有同角的余角相等的性质,做题时要注意应用条件.15.如图:△ABC中,DE是AC的垂直平分线,AE=3cm,△ABD的周长为13cm,则△ABC 的周长为19.【考点】线段垂直平分线的性质.【分析】由已知条件,利用线段的垂直平分线的性质,得到AD=CD,AC=2AE,结合周长,进行线段的等量代换可得答案.【解答】解:∵DE是AC的垂直平分线,∴AD=CD,AC=2AE=6cm,又∵△ABD的周长=AB+BD+AD=13cm,∴AB+BD+CD=13cm,即AB+BC=13cm,∴△ABC的周长=AB+BC+AC=13+6=19cm.故答案为19.【点评】此题主要考查了线段垂直平分线的性质(垂直平分线上任意一点,到线段两端点的距离相等),进行线段的等量代换是正确解答本题的关键.16.已知A、B两点的坐标分别是(﹣2,3)和(2,3),则下面四个结论:①A、B关于x轴对称;②A、B关于y轴对称;③A、B关于原点对称;④若A、B之间的距离为4.其中正确的有2个.【考点】关于原点对称的点的坐标;关于x轴、y轴对称的点的坐标.【专题】应用题.【分析】关于横轴的对称点,横坐标相同,纵坐标变成相反数;关于纵轴的对称点,纵坐标相同,横坐标变成相反数;A,B两点的坐标分别是(﹣2,3)和(2,3),纵坐标相同,因而AB平行于x轴,A,B之间的距离为4.【解答】解:根据平面内点对称的特点,①A、B关于x轴对称,错误;②A,B关于y轴对称,正确;③A、B关于原点对称,错误;④若A,B之间的距离为4,正确;正确的只有②④,故答案为2个.【点评】本题考查的是如何利用点的坐标判断两点关于x轴,y轴是否对称.三、解答题(共3小题,满分30分)17.如图,写出A、B、C关于y轴对称的点坐标,并作出与△ABC关于x轴对称的图形.【考点】作图-轴对称变换.【专题】作图题.【分析】根据关于y轴对称的点的坐标,横坐标互为相反数,纵坐标相同解答;先根据平面直角坐标系找出点A、B、C的对应点的位置,然后顺次连接即可得解.【解答】解:A、B、C关于y轴对称的点坐标分别为(4,1),(1,﹣1),(3,2);如图所示△A′B′C′即为所求作的△ABC关于x轴对称的图形.【点评】本题考查了利用轴对称变换作图,根据平面直角坐标系准确找出对应点的位置是解题的关键.18.如图,AB=AC,∠A=40°,AB的垂直平分线MN交AC于点D,求∠DBC的度数.【考点】线段垂直平分线的性质.【专题】探究型.【分析】先根据等腰三角形的性质及三角形内角和定理求出∠ABC及∠ACB的度数,再根据线段垂直平分线的性质求出∠ABD的度数即可进行解答.【解答】解:∵AB=AC,∴∠ABC=∠ACB==70°,∵MN的垂直平分AB,∴DA=DB,∴∠A=∠ABD=40°,∴∠DBC=∠ABC﹣∠ABD=70°﹣40°=30°.故答案为:30°.【点评】本题考查的是线段垂直平分线的性质,即线段垂直平分线上的点到线段两端的距离相等.19.如图,△ABC的外角∠ACD的平分线CP与内角∠ABC平分线BP交于点P,若∠BPC=40°,求∠CAB的度数.【考点】三角形内角和定理;三角形的外角性质.【分析】根据三角形的一个外角等于与它不相邻的两个内角的和可得∠ACD=∠BAC+∠ABC,∠PCD=∠P+∠PCB,根据角平分线的定义可得∠PCD=∠ACD,∠PBC=∠ABC,然后整理得到∠PCD=∠BAC,再代入数据计算即可得解.【解答】解:在△ABC中,∠ACD=∠BAC+∠ABC,在△PBC中,∠PCD=∠BPC+∠PBC,∵PB、PC分别是∠ABC和∠ACD的平分线,∴∠PCD=∠ACD,∠PBC=∠ABC,∴∠BPC+∠PCB=(∠BAC+∠ABC)=∠BAC+∠ABC=∠BAC+∠PCB,∴∠PCD=∠BAC,∴∠BPC=40°,∴∠BAC=2×40°=80°,即∠CAB=80°.【点评】本题考查了三角形内角和定理,三角形的一个外角等于与它不相邻的两个内角的和的性质,角平分线的定义,熟记定理与性质并求出∠PCD=∠BAC是解题的关键.四、证明题(后面的更简单,加油!2&#215;11=22分)20.如图,A、D、F、B在同一直线上,AD=BF,AE=BC,且AE∥BC.求证:EF∥CD.【考点】全等三角形的判定与性质;平行线的判定与性质.【专题】证明题.【分析】由于AE∥BC,根据平行线的性质可得∠A=∠B,又AD=BF,根据等式性质可得AF=BD,再结合AE=BC,利用SAS可证△AEF≌△BCD,于是∠AFE=∠BDC,那么EF∥CD.【解答】证明:∵AE∥BC,∴∠A=∠B,∵AD=BF,∴AD+DF=BF+DF,∴AF=BD,在△AEF和△BCD中,,∴△AEF≌△BCD,∴∠AFE=∠BDC,∴EF∥CD.【点评】本题考查了全等三角形的判定和性质、平行线的判定和性质,解题的关键是找出SAS所需要的三个条件.21.如图,AD⊥BC,BD=DC,点C在AE的垂直平分线上,AB+BD与DE的长度有什么关系?并加以证明.【考点】线段垂直平分线的性质.【专题】探究型.【分析】AB+BD=DE,根据线段的垂直平分线的性质可得AB=AC,AC=EC,∵AC+CD=AB+BD,∴EC+CD=AB+BD,即AB+BD=DE.【解答】解:AB+BD=DE.理由是:∵AD⊥BC,BD=DC,∴AB=AC.又∵点C在AE的垂直平分线上,∴AC=EC.∵AC+CD=AB+BD,∴EC+CD=AB+BD.即AB+BD=EC+CD=DE.【点评】此题主要考查线段的垂直平分线的性质等几何知识.线段的垂直平分线上的点到线段的两个端点的距离相等.。

人教版八年级(上)数学期中试卷(含答案)

人教版八年级(上)数学期中试卷(含答案)

人教版八年级(上)数学期中试卷一、选择题(共10个小题,每小题3分,共30分)1.(3分)下面所给的图形中,不是轴对称图形的是()A.B.C.D.2.(3分)若一个正多边形的内角和小于外角和,则该正多边形的每个内角度数为()A.30°B.60°C.120°D.150°3.(3分)如图,在△ABC和△DEF中,已知AB=DF,BC=EF,根据(SAS)判定△ABC≌△DEF,还需的条件是()A.∠A=∠D B.∠B=∠EC.∠B=∠F D.以上三个均可以4.(3分)下列计算正确的是()A.(﹣a3)3=﹣a9B.(3x3)3=9x9C.2x3•5x3=10x3D.(2a7)÷(4a3)=2a45.(3分)如图,BC=BE,CD=ED,则△BCD≌△BED,其依据是()A.SAS B.AAS C.SSS D.ASA6.(3分)把分式中的x、y的值都扩大2倍,分式的值有什么变化()A.不变B.扩大2倍C.扩大4倍D.缩小一半7.(3分)下列关系式中,正确的是()A.(a﹣b)2=a2﹣b2B.(a+b)(a﹣b)=a2﹣b2C.(a+b)2=a2+b2D.(a+b)2=a2﹣2ab+b28.(3分)下列各式从左到右变形,属于因式分解的是()A.x(x+2)=x2+2x B.x2+3x+1=x(x+3)+1C.(x﹣2)(x+2)=x2﹣4D.4x2+2x=2x(2x+1)9.(3分)如图:△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,且AB =6cm,则△DEB的周长是()A.6cm B.4cm C.10cm D.以上都不对10.(3分)如图,在Rt△ABC中,∠C=90°,以△ABC的一边为边画等腰三角形,使得它的第三个顶点在△ABC的其他边上,则可以画出的不同的等腰三角形的个数最多为()A.4B.5C.6D.7二、填空题(共8个小题,每题2分,共16分)11.(2分)计算:(﹣3xy2)3=.12.(2分)因式分解:x2﹣4=.13.(2分)当x时,分式的值为正数.14.(2分)如图在△ABC中,∠C=90°,AB的垂直平分线MN分别交AC,AB于点D,E.若∠CBD:∠DBA=2:1,则∠A为.15.(2分)如图:DC∥AB,要证△ABD≌△CDB,根据“SAS”可知,需要添加一个条件:.16.(2分)比较大小:2.(填“>”,“<”或“=”)17.(2分)如果等腰三角形的两边长分别是4、8,那么它的周长是.18.(2分)如图,AB=12m,CA⊥AB于A,DB⊥AB于B,且AC=4m,P点从B向A运动,每分钟走1m,Q点从B向D运动,每分钟走2m,P、Q两点同时出发,运动分钟后△CAP与△PQB全等.三、计算:(共5个小题,每题4分,共20分)19.(4分)(﹣1)2018+(﹣)2﹣(3.14﹣π)0.20.(4分)();21.(4分)(﹣4a3+12a3b﹣7a3b2)÷(﹣4a2).22.(4分)(x+2y)2﹣(x﹣2y)2.23.(4分)求x的值:27(8x﹣)3=216.四、解答题(24题5分,25题5分,26题7分,27题7分,28题10分,共34分)24.(5分)先化简,再求值:[(a﹣2b)2+(a﹣2b)(2b+a)﹣2a(2a﹣b)]÷2a.其中a=2,b=.25.(5分)如图:已知AD∥BC,AD⊥DF,BC⊥BE,DF=BE,求证:AE=FC.26.(7分)某部队将在指定山区进行军事演习,为了使道路便于部队重型车辆通过,部队工兵连接到抢修一段长3600米道路的任务,按原计划完成总任务的后,为了让道路尽快投入使用,工兵连将工作效率提高了50%,一共用了10小时完成任务.(1)按原计划完成总任务的时,已抢修道路米;(2)求原计划每小时抢修道路多少米?27.(7分)(1)设A=(x2+ax+5)(﹣2x)2﹣4x4,化简A;(2)若A﹣6x3的结果中不含有x3项,求4a2﹣4a+1的值.28.(10分)在Rt△ABC中,BC=AC,∠ACB=90°,点D为射线AB上一点,连接CD,过点C作线段CD的垂线l,在直线l上,分别在点C的两侧截取与线段CD相等的线段CE和CF,连接AE、BF.(1)当点D在线段AB上时(点D不与点A、B重合),如图1①请你将图形补充完整;②线段BF、AD所在直线的位置关系为,线段BF、AD的数量关系为;(2)当点D在线段AB的延长线上时,如图2①请你将图形补充完整;②在(1)中②问的结论是否仍然成立?如果成立请进行证明,如果不成立,请说明理由.人教版八年级(上)数学期中试卷参考答案与试题解析一、选择题1.【解答】解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:B.2.【解答】解:设这个正多边形为n边形,根据题意,得:(n﹣2)×180°<360°,解得n<4.所以该正多边形为等边三角形,所以该正多边形的每个内角度数为60°.故选:B.3.【解答】解:∵AB=DF,BC=EF,∴添加条件∠B=∠F,则△ABC≌△DFE(SAS),故选:C.4.【解答】解:A、原式=﹣a9,符合题意;B、原式=27x9,不符合题意;C、原式=10x6,不符合题意;D、原式=a4,不符合题意.故选:A.5.【解答】解:在△BCD和△BED中,,∴△BCD≌△BED(SSS),故选:C.6.【解答】解:分别用2x和2y去代换原分式中的x和y,====×.故选:D.7.【解答】解:A、应为(a﹣b)2=a2﹣2ab+b2,本选项错误;B、(a+b)(a﹣b)=a2﹣b2,本选项正确;C、应为(a+b)2=a2+2ab+b2,本选项错误;D、应为(a+b)2=a2+2ab+b2,本选项错误.故选:B.8.【解答】解:A.从左边到右边的变形不属于因式分解,故本选项不符合题意;B.从左边到右边的变形不属于因式分解,故本选项不符合题意;C.从左边到右边的变形不属于因式分解,故本选项不符合题意;D.从左边到右边的变形属于因式分解,故本选项符合题意;故选:D.9.【解答】解:∵∠C=90°,∴DC⊥AC,又AD平分∠CAB交BC于D,DE⊥AB,∴CD=ED,在Rt△ACD和Rt△AED中,,∴Rt△ACD≌Rt△AED(HL),∴AC=AE,又AC=BC,∴AC=AE=BC,又AB=6cm,∴△DEB的周长=DB+BE+ED=DB+CD+BE=BC+BE=AE+EB=AB=6cm.故选:A.10.【解答】解:如图:故选:D.二、填空题11.【解答】解:(﹣3xy2)3=﹣27x3y6;故答案为:﹣27x3y6.12.【解答】解:x2﹣4=(x+2)(x﹣2).故答案为:(x+2)(x﹣2).13.【解答】解:分式的值为正数,则分子分母同号即同时为正或同时为负,∵x2>0,∴同时为负不可能,则同时为正即x﹣1>0,x2>0,x>1,故答案为:x>1.14.【解答】解:∵MN是AB的垂直平分线,∴AD=DB,∴∠A=∠DBA,∵∠CBD:∠DBA=2:1,∠C=90°,∴在△ABC中,∠A+∠ABC=∠A+∠A+2∠A=90°,解得∠A=22.5°.故答案为:22.5°.15.【解答】解:∵DC∥AB,∴∠ABD=∠CDB,又∵BD=DB,∴要证△ABD≌△CDB(SAS),需要添加一个条件AB=CD,故答案为:AB=CD.16.【解答】解:∵2≈2.33,≈2.45,∴2<;故答案为:<.17.【解答】解:∵等腰三角形有两边分别分别是4和8,∴此题有两种情况:①4为底边,那么8就是腰,则等腰三角形的周长为4+8+8=20,②8底边,那么4是腰,4+4=8,所以不能围成三角形应舍去.∴该等腰三角形的周长为20,故答案为:2018.【解答】解:∵CA⊥AB于A,DB⊥AB于B,∴∠A=∠B=90°,设运动x分钟后△CAP与△PQB全等;则BP=xm,BQ=2xm,则AP=(12﹣x)m,分两种情况:①若BP=AC,则x=4,AP=12﹣4=8,BQ=8,AP=BQ,∴△CAP≌△PBQ;②若BP=AP,则12﹣x=x,解得:x=6,BQ=12≠AC,此时△CAP与△PQB不全等;综上所述:运动4分钟后△CAP与△PQB全等;故答案为:4.三、计算:19.【解答】解:原式=1+﹣1=.20.【解答】解:(1)原式=•=•=•=;21.【解答】解:原式=﹣4a3÷(﹣4a2)+12a3b÷(﹣4a2)﹣7a3b2÷(﹣4a2)=a﹣3ab+ab2.22.【解答】解:原式=(x+2y+x﹣2y)(x+2y﹣x+2y)=2x•4y=8xy.23.【解答】方程整理得:(8x﹣)3=8,开立方得:8x﹣=2,解得:x=.四、解答题24.【解答】解:原式=(a2﹣4ab+4b2+a2﹣4b2﹣4a2+2ab)÷2a=(﹣2a2﹣2ab)÷2a=﹣a﹣b,当a=2,b=时,原式=﹣2﹣=.25.【解答】证明:∵AD∥BC,∴∠A=∠C,∵AD⊥DF,BC⊥BE,∴∠D=∠B=90°,在△ADF和△CBE中,,∴△ADF≌△CBE(AAS),∴AE=FC.26.【解答】解:(1)按原计划完成总任务的时,已抢修道路3600×=1200米,故答案为:1200米;(2)设原计划每小时抢修道路x米,根据题意得:,解得:x=280,经检验:x=280是原方程的解.答:原计划每小时抢修道路280米.27.【解答】解:(1)A=(x2+ax+5)×4x2﹣4x4=4x4+4ax3+20x2﹣4x4=4ax3+20x2;(2)A﹣6x3=4ax3+20x2﹣6x3=(4a﹣6)x3+20x2.∵A﹣6x3的结果中不含有x3项,∴4a﹣6=0.∴a=.当a=时,4a2﹣4a+1=4×﹣4×+1=4.28.【解答】解:(1)①见图1所示.②证明:∵CD⊥EF,∴∠DCF=90°,∵∠ACB=90°,∴∠ACB=∠DCF,∴∠ACD=∠BCF∵BC=AC,CD=CF,∴△ACD≌△BCF,∴AD=BF,∠BAC=∠FBC,∴∠ABF=∠ABC+∠FBC=∠ABC+∠BAC=90°,即BF⊥AD.故答案为:垂直、相等.(2)①见图2所示.②成立.理由如下:证明:∵CD⊥EF,∴∠DCF=90°,∵∠ACB=90°,∴∠DCF+∠BCD=∠ACB+∠BCD,即∠ACD=∠BCF,∵BC=AC,CD=CF,∴△ACD≌△BCF,∴AD=BF,∠BAC=∠FBC,∴∠ABF=∠ABC+∠FBC=∠ABC+∠BAC=90°,即BF⊥AD.。

2016-2017学年新人教版八年级(上)期中数学试卷 有答案

2016-2017学年新人教版八年级(上)期中数学试卷 有答案

2016-2017学年八年级(上)期中数学试卷一、选择题(共10小题,每小题3分,共30分)1.下列图形不是轴对称图形的是()A.B.C.D.2.已知三角形两边的长分别是4和10,则此三角形第三边的长可能是()A.5 B.6 C.11 D.163.已知a m=5,a n=6,则a m+n的值为()A.11 B.30 C.D.4.下列计算错误的是()A.(﹣2x)3=﹣2x3B.﹣a2•a=﹣a3C.(﹣x)9+(﹣x)9=﹣2x9D.(﹣2a3)2=4a6 5.如图,将两根钢条AA′、BB′的中点O连在一起,使AA′、BB′能绕着点O自由转动,就做成了一个测量工具,由三角形全等可知A′B′的长等于内槽宽AB,那么判定△OAB≌△OA′B′的理由是()A.SAS B.ASA C.SSS D.AAS6.计算(x+3y)2﹣(3x+y)2的结果是()A.8x2﹣8y2B.8y2﹣8x2C.8(x+y)2D.8(x﹣y)27.如图:DE是△ABC中AC边的垂直平分线,若BC=8厘米,AB=10厘米,则△EBC的周长为()厘米.A.16 B.18 C.26 D.288.计算(﹣2x+1)(﹣3x2)的结果为()A.6x3+1 B.6x3﹣3 C.6x3﹣3x2D.6x3+3x29.分解因式:x2﹣4y2的结果是()A.(x+4y)(x﹣4y)B.(x+2y)(x﹣2y)C.(x﹣4y)2D.(x﹣2y)210.如图,AD是角平分线,E是AB上一点,AE=AC,EF∥BC交AC于F.下列结论①△ADC≌△ADE;②CE平分∠DEF;③AD垂直平分CE.其中正确的是()A.①②③ B.、①C.、②D.、③二、填空题(共6小题,每小题3分,共18分)11.计算:20130﹣2﹣1=.12.化简的结果是.13.如图,这是由边长为1的等边三角形摆出的一系列图形,按这种方式摆下去,则第n个图形的周长是.14.如图,点D在△ABC边BC的延长线上,CE平分∠ACD,∠A=80°,∠B=40°,则∠ACE的大小是度.15.如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E=度.16.已知一个多边形的内角和与外角和的差是1260°,则这个多边形边数是.三、解答题(共8题,共72分)17.计算:(1)(3a﹣2b)(9a+6b);(2)(﹣2m﹣1)2.18.分解因式:4a2﹣9b2.19.解分式方程=.20.已知:如图,AB=CD,AB∥CD,DE⊥AC,BF⊥AC,E、F是垂足,AF=5,求CE的长.21.如图,在平面直角坐标系中,直线l是第一、三象限的角平分线.(1)由图观察易知点A(0,2)关于直线l的对称点A′坐标为(2,0),请在图中分别标明点B(5,3),C(﹣2,﹣5)关于直线l的对称点B′,C′的位置,并写出它们的坐标:B′、C′;(2)结合图形观察以上三组点的坐标,你发现:坐标平面内任一点P(a,b)关于第一、三象限的角平分线l的对称点P′坐标为.22.2014年12月28日“青烟威荣”城际铁路正式开通,从烟台到北京的高铁里程比普快里程缩短了81千米,运行时间减少了9小时,已知烟台到北京的普快列车里程约为1026千米,高铁平均时速为普快平均时速的2.5倍.(1)求高铁列车的平均时速;(2)某日王老师要去距离烟台大约630千米的某市参加14:00召开的会议,如果他买到当日8:40从烟台至城市的高铁票,而且从该市火车站到会议地点最多需要1.5小时,试问在高铁列车准点到达的情况下他能在开会之前到达吗?23.如图,点E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别为C、D.求证:(1)∠ECD=∠EDC;(2)OC=OD;(3)OE是线段CD的垂直平分线.24.如图,已知△ABC中,∠B=∠C,AB=8厘米,BC=6厘米,点D为AB的中点.如果点P在线段BC上以每秒2厘米的速度由B点向C点运动,同时,点Q在线段CA上以每秒a厘米的速度由C点向A点运动,设运动时间为t(秒)(0≤t≤3).(1)用的代数式表示PC的长度;(2)若点P、Q的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;(3)若点P、Q的运动速度不相等,当点Q的运动速度a为多少时,能够使△BPD与△CQP 全等?一、选择题(共10小题,每小题3分,共30分)1.下列图形不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:A、是轴对称图形,故选项错误;B、不是轴对称图形,故选项正确;C、是轴对称图形,故选项错误;D、是轴对称图形,故选项错误.故选:B.2.已知三角形两边的长分别是4和10,则此三角形第三边的长可能是()A.5 B.6 C.11 D.16【考点】三角形三边关系.【分析】设此三角形第三边的长为x,根据三角形的三边关系求出x的取值范围,找出符合条件的x的值即可.【解答】解:设此三角形第三边的长为x,则10﹣4<x<10+4,即6<x<14,四个选项中只有11符合条件.故选:C.3.已知a m=5,a n=6,则a m+n的值为()A.11 B.30 C.D.【考点】同底数幂的乘法.【分析】根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,进行计算即可.【解答】解:a m+n=a m×a n=30.故选B.4.下列计算错误的是()A.(﹣2x)3=﹣2x3B.﹣a2•a=﹣a3C.(﹣x)9+(﹣x)9=﹣2x9D.(﹣2a3)2=4a6【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.【分析】直接利用积的乘方、同底数幂的乘法、合并同类项以及幂的乘方的性质求解即可求得答案,注意排除法在解选择题中的应用.【解答】解:A、(﹣2x)3=﹣8x3,故本选项错误;B、﹣a2•a=﹣a3,故本选项正确;C、(﹣x)9+(﹣x)9=﹣x9+(﹣x9)=﹣2x9,故本选项正确;D、(﹣2a3)2=4a6,故本选项正确.故选A.5.如图,将两根钢条AA′、BB′的中点O连在一起,使AA′、BB′能绕着点O自由转动,就做成了一个测量工具,由三角形全等可知A′B′的长等于内槽宽AB,那么判定△OAB≌△OA′B′的理由是()A.SAS B.ASA C.SSS D.AAS【考点】全等三角形的应用.【分析】由O是AA′、BB′的中点,可得AO=A′O,BO=B′O,再有∠AOA′=∠BOB′,可以根据全等三角形的判定方法SAS,判定△OAB≌△OA′B′.【解答】解:∵O是AA′、BB′的中点,∴AO=A′O,BO=B′O,在△OAB和△OA′B′中,∴△OAB≌△OA′B′(SAS),故选:A.6.计算(x+3y)2﹣(3x+y)2的结果是()A.8x2﹣8y2B.8y2﹣8x2C.8(x+y)2D.8(x﹣y)2【考点】完全平方公式;平方差公式.【分析】由平方差公式a2﹣b2=(a+b)(a﹣b),展开计算即可.【解答】解:原式=(x+3y+3x+y)(x+3y﹣3x﹣y)=(4x+4y)(﹣2x+2y)=8(x+y)(﹣x+y)=8(y2﹣x2)=8y2﹣8x2,故选B.7.如图:DE是△ABC中AC边的垂直平分线,若BC=8厘米,AB=10厘米,则△EBC的周长为()厘米.A.16 B.18 C.26 D.28【考点】线段垂直平分线的性质.【分析】利用线段垂直平分线的性质得AE=CE,再等量代换即可求得三角形的周长.【解答】解:∵DE是△ABC中AC边的垂直平分线,∴AE=CE,∴AE+BE=CE+BE=10,∴△EBC的周长=BC+BE+CE=10厘米+8厘米=18厘米,故选B.8.计算(﹣2x+1)(﹣3x2)的结果为()A.6x3+1 B.6x3﹣3 C.6x3﹣3x2D.6x3+3x2【考点】单项式乘多项式.【分析】依据单项式乘多项式法则进行计算即可.【解答】解:原式=6x3﹣3x2.故选:C.9.分解因式:x2﹣4y2的结果是()A.(x+4y)(x﹣4y)B.(x+2y)(x﹣2y)C.(x﹣4y)2D.(x﹣2y)2【考点】因式分解-运用公式法.【分析】根据平方差公式直接分解即可.【解答】解:x2﹣4y2=(x+2y)(x﹣2y),故选:B.10.如图,AD是角平分线,E是AB上一点,AE=AC,EF∥BC交AC于F.下列结论①△ADC≌△ADE;②CE平分∠DEF;③AD垂直平分CE.其中正确的是()A.①②③ B.、①C.、②D.、③【考点】全等三角形的判定与性质;线段垂直平分线的性质.【分析】根据角平分线的定义可得∠BAD=∠CAD,然后利用“边角边”证明△ADC和△ADE 全等,根据全等三角形对应边相等可得CD=DE,根据等边对等角可得∠CED=∠ECD,再根据两直线平行,内错角相等可得∠ECD=∠CEF,然后求出∠CED=∠CEF,再根据角平分线的定义判断出CE平分∠DEF,然后根据到线段两端点距离相等的点在线段的垂直平分线上判断出AD垂直平分CE.【解答】解:∵AD是角平分线,∴∠BAD=∠CAD,在△ADC和△ADE中,,∴△ADC≌△ADE(SAS),故①正确;∴CD=DE,∴∠CED=∠ECD,∵EF∥BC,∴∠ECD=∠CEF,∴∠CED=∠CEF,∴CE平分∠DEF,故②正确;∵AE=AC,CD=DE,∴AD垂直平分CE,故③正确;综上所述,正确的是①②③.故选A.二、填空题(共6小题,每小题3分,共18分)11.计算:20130﹣2﹣1=.【考点】负整数指数幂;零指数幂.【分析】根据任何数的零次幂等于1,负整数指数次幂等于正整数指数次幂的倒数进行计算即可得解.【解答】解:20130﹣2﹣1,=1﹣,=.故答案为:.12.化简的结果是m.【考点】分式的混合运算.【分析】本题需先把(m+1)与括号里的每一项分别进行相乘,再把所得结果相加即可求出答案.【解答】解:=(m+1)﹣1=m故答案为:m.13.如图,这是由边长为1的等边三角形摆出的一系列图形,按这种方式摆下去,则第n 个图形的周长是2+n.【考点】规律型:图形的变化类.【分析】观察摆放的一系列图形,可得到依次的周长分别是3,4,5,6,7,…,从中得到规律,根据规律写出第n个图形的周长.【解答】解:由已知一系列图形观察图形依次的周长分别是:(1)2+1=3,(2)2+2=4,(3)2+3=5,(4)2+4=6,(5)2+5=7,…,所以第n个图形的周长为:2+n.故答案为:2+n.14.如图,点D在△ABC边BC的延长线上,CE平分∠ACD,∠A=80°,∠B=40°,则∠ACE的大小是60度.【考点】三角形的外角性质.【分析】由∠A=80°,∠B=40°,根据三角形任意一个外角等于与之不相邻的两内角的和得到∠ACD=∠B+∠A,然后利用角平分线的定义计算即可.【解答】解:∵∠ACD=∠B+∠A,而∠A=80°,∠B=40°,∴∠ACD=80°+40°=120°.∵CE平分∠ACD,∴∠ACE=60°,故答案为6015.如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF=DE,则∠E=15度.【考点】等边三角形的性质;三角形的外角性质;等腰三角形的性质.【分析】根据等边三角形三个角相等,可知∠ACB=60°,根据等腰三角形底角相等即可得出∠E的度数.【解答】解:∵△ABC是等边三角形,∴∠ACB=60°,∠ACD=120°,∵CG=CD,∴∠CDG=30°,∠FDE=150°,∵DF=DE,∴∠E=15°.故答案为:15.16.已知一个多边形的内角和与外角和的差是1260°,则这个多边形边数是十一.【考点】多边形内角与外角.【分析】已知一个多边形的内角和与外角和的差为1260°,外角和是360度,因而内角和是1620度.n边形的内角和是(n﹣2)•180°,代入就得到一个关于n的方程,就可以解得边数n.【解答】解:根据题意,得(n﹣2)•180﹣360=1260,解得:n=11.那么这个多边形是十一边形.故答案为十一.三、解答题(共8题,共72分)17.计算:(1)(3a﹣2b)(9a+6b);(2)(﹣2m﹣1)2.【考点】完全平方公式.【分析】(1)利用平方差公式进行解答;(2)利用完全平方和公式进行解答.【解答】解:(1)原式=3(3a﹣2b)(3a+2b)=3(9a2﹣4b2)=27a2﹣12b2;(2)原式=4m2+4m+1.18.分解因式:4a2﹣9b2.【考点】因式分解-运用公式法.【分析】利用平方差公式分解,即可得到结果.【解答】解:4a2﹣9b2=(2a+3b)(2a﹣3b).19.解分式方程=.【考点】解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:3x=2x+2,解得:x=2,经检验x=2是分式方程的解.20.已知:如图,AB=CD,AB∥CD,DE⊥AC,BF⊥AC,E、F是垂足,AF=5,求CE 的长.【考点】全等三角形的判定与性质.【分析】由DE⊥AC,BF⊥AC得到∠DEC=∠AFB=90°,由AB∥CD,得到∠C=∠A,根据三角形全等的判定定理即可证出Rt△DEC≌Rt△BFA,得到CE=AF.【解答】解:∵DE⊥AC,BF⊥AC,∴∠DEC=∠AFB=90°,∵AB∥CD,在△DEC和△BFA中,,∴△DEC≌△BFA,∴CE=AF,CE=5.21.如图,在平面直角坐标系中,直线l是第一、三象限的角平分线.(1)由图观察易知点A(0,2)关于直线l的对称点A′坐标为(2,0),请在图中分别标明点B(5,3),C(﹣2,﹣5)关于直线l的对称点B′,C′的位置,并写出它们的坐标:B′(3,5)、C′(﹣5,﹣2);(2)结合图形观察以上三组点的坐标,你发现:坐标平面内任一点P(a,b)关于第一、三象限的角平分线l的对称点P′坐标为(b,a).【考点】坐标与图形变化-对称.【分析】(1)分别作出点B和C关于直线y=x的对称点B′、C′,然后写出它们的坐标;(2)利用(1)三组对应点的坐标规律得到关于直线y=x对称的点的坐标特征为横纵坐标互换.【解答】解:(1)如图,B′(3,5)、C′(5,﹣2);(2)P′(b,a).故答案为(3,5),(5,﹣2);P′(b,a).22.2014年12月28日“青烟威荣”城际铁路正式开通,从烟台到北京的高铁里程比普快里程缩短了81千米,运行时间减少了9小时,已知烟台到北京的普快列车里程约为1026千米,高铁平均时速为普快平均时速的2.5倍.(1)求高铁列车的平均时速;(2)某日王老师要去距离烟台大约630千米的某市参加14:00召开的会议,如果他买到当日8:40从烟台至城市的高铁票,而且从该市火车站到会议地点最多需要1.5小时,试问在高铁列车准点到达的情况下他能在开会之前到达吗?【考点】分式方程的应用;一元一次不等式的应用.【分析】(1)设普快的平均时速为x千米/小时,高铁列车的平均时速为2.5千米/小时,根据题意可得,高铁走千米比普快走1026千米时间减少了9小时,据此列方程求解;(2)求出王老师所用的时间,然后进行判断.【解答】解:(1)设普快的平均时速为x千米/小时,高铁列车的平均时速为2.5x千米/小时,由题意得,﹣=9,解得:x=72,经检验,x=72是原分式方程的解,且符合题意,则2.5x=180,答:高铁列车的平均时速为180千米/小时;(2)630÷180=3.5,则坐车共需要3.5+1.5=5(小时),王老师到达会议地点的时间为1点40.故他能在开会之前到达.23.如图,点E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别为C、D.求证:(1)∠ECD=∠EDC;(2)OC=OD;(3)OE是线段CD的垂直平分线.【考点】角平分线的性质;全等三角形的判定与性质.【分析】(1)根据角平分线性质可证ED=EC,从而可知△CDE为等腰三角形,可证∠ECD=∠EDC;(2)由OE平分∠AOB,EC⊥OA,ED⊥OB,OE=OE,可证△OED≌△OEC,可得OC=OD;(3)根据SAS证出△DOE≌△COE,得出DE=EC,再根据ED=EC,OC=OD,可证OE是线段CD的垂直平分线.【解答】证明:(1)∵OE平分∠AOB,EC⊥OA,ED⊥OB,∴ED=EC,即△CDE为等腰三角形,∴∠ECD=∠EDC;(2)∵点E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,∴∠DOE=∠COE,∠ODE=∠OCE=90°,OE=OE,∴△OED≌△OEC(AAS),∴OC=OD;(3)在△DOE和△COE中,∵,∴△DOE≌△COE,∴DE=CE,∴OE是线段CD的垂直平分线.24.如图,已知△ABC中,∠B=∠C,AB=8厘米,BC=6厘米,点D为AB的中点.如果点P在线段BC上以每秒2厘米的速度由B点向C点运动,同时,点Q在线段CA上以每秒a厘米的速度由C点向A点运动,设运动时间为t(秒)(0≤t≤3).(1)用的代数式表示PC的长度;(2)若点P、Q的运动速度相等,经过1秒后,△BPD与△CQP是否全等,请说明理由;(3)若点P、Q的运动速度不相等,当点Q的运动速度a为多少时,能够使△BPD与△CQP 全等?【考点】全等三角形的判定与性质;等腰三角形的性质.【分析】(1)先表示出BP,根据PC=BC﹣BP,可得出答案;(2)根据时间和速度分别求得两个三角形中的边的长,根据SAS判定两个三角形全等.(3)根据全等三角形应满足的条件探求边之间的关系,再根据路程=速度×时间公式,先求得点P运动的时间,再求得点Q的运动速度;【解答】解:(1)BP=2t,则PC=BC﹣BP=6﹣2t;(2))△BPD和△CQP全等理由:∵t=1秒∴BP=CQ=2×1=2厘米,∴CP=BC﹣BP=6﹣2=4厘米,∵AB=8厘米,点D为AB的中点,∴BD=4厘米.∴PC=BD,在△BPD和△CQP中,,∴△BPD≌△CQP(SAS);(3)∵点P、Q的运动速度不相等,∴BP≠CQ又∵△BPD≌△CPQ,∠B=∠C,∴BP=PC=3cm,CQ=BD=4cm,∴点P,点Q运动的时间t==秒,∴V Q===厘米/秒.2016年11月1日。

八年级上册数学期中试卷

八年级上册数学期中试卷

八年级上册数学期中试卷2016八年级上册数学期中试卷时间过的飞快,转眼期中考试就要来临了,如何复习才能取得好成绩呢?店铺为大家整理了2016八年级上册数学期中试卷,供大家参考借鉴!一、选择题:本大题共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一个是符合题目要求的.1.下列是我国四大银行的商标,其中不是轴对称图形的是( )A. B. C. D.2.下列实数3.14,,,0.121121112,中,无理数有( )A. 1个B. 2个C. 3个D. 4个3.设三角形的三边长分别等于下列各数,能构成直角三角形的是( )A. 2,4,6B. 4,5,6C. 5,6,10D. 6,8,104.如果等腰直角三角形的两边长为2cm,4cm,那么它的周长为( )A. 8cmB. 10cmC. 11cmD. 8cm或10cm5.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是( )A. CB=CDB. ∠BAC=∠DACC. ∠BCA=∠DCAD. ∠B=∠D=90°6.如图,△ABC中,AB=5,AC=8,BD,CD分别平分∠ABC,∠ACB,过点D作直线平行于BC,交AB,AC于E,F,则△AEF的周长为( )A. 12B. 13C. 14D. 187.在△ABC中,①若AB=BC=CA,则△ABC为等边三角形;②若∠A=∠B=∠C,则△ABC为等边三角形;③有两个角都是60°的三角形是等边三角形;④一个角为60°的等腰三角形是等边三角形.上述结论中正确的有( )A. 1个B. 2个C. 3个D. 4个8.如图是4×4正方形网格,其中已有3个小正方形涂成了黑色,现在要从其余13个白色小方格中选出一个也涂成黑色的图形称为轴对称图形,这样的白色小方格有( )A. 2个B. 3个C. 4个D. 5个二、填空题:本大题共10小题,每小题2分,共20分.请把答案填在题中横线上9.4的平方根是.10.如果等腰三角形的底角是50°,那么这个三角形的顶角的度数是.11.如果△ABC≌△DEF,∠A=40°,∠B=55°,那么∠E=.12.如图,Rt△ABC中,∠C=90°,D是AB的中点,若AB=10,则CD的长等于.13.等腰△ABC中,AB=AC=10cm,BC=12cm,则BC边上的高是cm.14.如图,在△ABC中,AB=AC,∠A=40°,BD⊥AC于D,则∠DBC=度.15.一根新生的芦苇高出水面1尺,一阵风吹过,芦苇向一边倾斜,顶端齐至水面,芦苇移动的距离为5尺,则芦苇的长度是尺.16.如图,在Rt△ABC中,∠ABC=90°,AB=3,AC=5,点E在BC上,将△ABC沿AE折叠,使点B落在AC边上的点B′处,则BE的长为.17.若直角三角形的三边分别为3,4,x,则x= .18.如图,在△ABC中,∠ACB=90°,∠BAC=40°,在直线AC上找点P,使△ABP是等腰三角形,则∠APB的度数为三、解题题:本大题共9小题,共76分.解答应写出文字说明,证明过程或演算步骤19.计算:(1) ﹣(1﹣π)0(2)已知(x﹣1)2=25,求x的值.20.已知:如图,点C为AB中点,CD=BE,CD∥BE.(1)求证:△ACD≌△CBE;(2)若∠D=35°,求∠DCE的度数.21.如图,在长度为1个单位长度的小正方形组成的长方形中,点A,B,C在小正方形的顶点上.(1)在图中画出与△ABC关于直线l成轴对称的△AB′C′;(2)△ABC的面积为;(3)在直线l上找一点P,使PB+PC的长最短,则这个最短长度为.22.如图,在△ABC中,AB=AC,∠A=36°,AB的垂直平分线MN 交AC于点D,交AB于E.(1)求∠DBC的度数;(2)猜想△BCD的形状并证明.23.如图,在等边△ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F,(1)求∠F的度数;(2)若CD=3,求DF的长.24.(10分)(2014秋•盐都区期中)如图,把长方形纸片ABCD沿EF 折叠后,使得点D与点B重合,点C落在点C′的位置上,(1)若∠1=55°,求∠2,∠3的度数;(2)若AB=8,AD=16,求AE的长度.25.(10分)(2011秋•都江堰市校级期末)如图,一架梯子的长度为25米,斜靠在墙上,梯子低部离墙底端为7米.(1)这个梯子顶端离地面有米;(2)如果梯子的顶端下滑了4米,那么梯子的底部在水平方向滑动了几米?26.(10分)(2014秋•盐都区期中)△ABC中,DE,FG分别垂直平分边AB,AC,垂足分别为点D,G.(1)如图,①若∠B=30°,∠C=40°,求∠EAF的度数;②如果BC=10,求△EAF的周长;③若AE⊥AF,则∠BAC=°.(2)若∠BAC=n°,则∠EAF=°(用含n代数式表示)27.(12分)(2015•盘锦四模)已知,点P是Rt△ABC斜边AB上一动点(不与A、B重合),分别过A、B向直线CP作垂线,垂足分别为E、F、Q为斜边AB的中点.(1)如图1,当点P与点Q重合时,AE与BF的位置关系是,QE与QF的数量关系是;(2)如图2,当点P在线段AB上不与点Q重合时,试判断QE与QF的数量关系,并给予证明;(3)如图3,当点P在线段BA(或AB)的延长线上时,此时(2)中的结论是否成立?请画出图形并给予证明.参考答案与试题解析一、选择题:本大题共8小题,每小题3分,共24分,在每小题给出的四个选项中,只有一个是符合题目要求的.1.下列是我国四大银行的商标,其中不是轴对称图形的是( )A. B. C. D.考点:轴对称图形.分析:根据轴对称图形和的.概念和各图形特点解答即可.解答:解:A、不是轴对称图形,故本选项正确;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误;故选A.点评:本题考查了轴对称图形的特点,判断轴对称图形的关键是寻找对称轴,图象沿对称轴折叠后可重合;2.下列实数3.14,,,0.121121112,中,无理数有( )A. 1个B. 2个C. 3个D. 4个考点:无理数.分析:无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.解答:解:,π是无理数,故选:B.点评:此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.3.设三角形的三边长分别等于下列各数,能构成直角三角形的是( )A. 2,4,6B. 4,5,6C. 5,6,10D. 6,8,10考点:勾股定理的逆定理.分析:判断是否可以作为直角三角形的三边长,则判断两小边的平方和是否等于最长边的平方即可.解答:解:A、22+42≠62,不是直角三角形,故此选项错误;B、42+52≠62,不是直角三角形,故此选项错误;C、52+62≠102,不是直角三角形,故此选项错误;D、62+82=102,是直角三角形,故此选项正确.故选:D.点评:此题主要考查了勾股定理逆定理,关键是掌握勾股定理的逆定理:已知△ABC的三边满足a2+b2=c2,则△ABC是直角三角形.4.如果等腰直角三角形的两边长为2cm,4cm,那么它的周长为( )A. 8cmB. 10cmC. 11cmD. 8cm或10cm考点:勾股定理.分析:分两种情况:①底为2cm,腰为4cm时,求出三角形的周长即可;②底为4cm,腰为2cm时;2+2=4,由三角形的三边关系得出不能构成三角形.解答:解:分两种情况:①底为2cm,腰为4cm时,等腰三角形的周长=2+4+4=10(cm);②底为4cm,腰为2cm时,∵2+2=4,∴不能构成三角形;∴等腰三角形的周长为10cm;故选:B.点评:本题考查了等腰三角形的性质、三角形的三边关系定理;熟练掌握等腰三角形的性质,并能进行推理计算是解决问题的关键.5.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是( )A. CB=CDB. ∠BAC=∠DACC. ∠BCA=∠DCAD. ∠B=∠D=90°考点:全等三角形的判定.分析:本题要判定△ABC≌△ADC,已知AB=AD,AC是公共边,具备了两组边对应相等,故添加CB=CD、∠BAC=∠DAC、∠B=∠D=90°后可分别根据SSS、SAS、HL能判定△ABC≌△ADC,而添加∠BCA=∠DCA后则不能.解答:解:A、添加CB=CD,根据SSS,能判定△ABC≌△ADC,故A选项不符合题意;B、添加∠BAC=∠DAC,根据SAS,能判定△ABC≌△ADC,故B选项不符合题意;C、添加∠BCA=∠DCA时,不能判定△ABC≌△ADC,故C选项符合题意;D、添加∠B=∠D=90°,根据HL,能判定△ABC≌△ADC,故D选项不符合题意;故选:C.点评:本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.6.如图,△ABC中,AB=5,AC=8,BD,CD分别平分∠ABC,∠ACB,过点D作直线平行于BC,交AB,AC于E,F,则△AEF的周长为( )A. 12B. 13C. 14D. 18考点:等腰三角形的判定与性质;平行线的性质.分析:根据平行线的性质得到∠EDB=∠DBC,∠FDC=∠DCB,根据角平分线的性质得到∠EBD=∠DBC,∠FCD=∠DCB,等量代换得到∠EDB=∠EBD,∠FDC=∠FCD,于是得到ED=EB,FD=FC,即可得到结果.解答:解:∵EF∥BC,∴∠EDB=∠DBC,∠FDC=∠DCB,∵△ABC中,∠ABC和∠ACB的平分线相交于点D,∴∠EBD=∠DBC,∠FCD=∠DCB,∴∠EDB=∠EBD,∠FDC=∠FCD,∴ED=EB,FD=FC,∵AB=5,AC=8,∴△AEF的周长为:AE+EF+AF=AE+ED+FD+AF=AE+EB+FC+AF=AB+AC=5+8=13.故选B.点评:此题考查了等腰三角形的判定与性质.此题难度适中,注意证得△BDE与△CDF是等腰三角形是解此题的关键.7.在△ABC中,①若AB=BC=CA,则△ABC为等边三角形;②若∠A=∠B=∠C,则△ABC为等边三角形;③有两个角都是60°的三角形是等边三角形;④一个角为60°的等腰三角形是等边三角形.上述结论中正确的有( )A. 1个B. 2个C. 3个D. 4个考点:等边三角形的判定.分析:根据等边三角形的判定判断即可.解答:解:①根据等边三角形的定义可得△ABC为等边三角形,结论正确;②根据判定定理1可得△ABC为等边三角形,结论正确;③一个三角形中有两个角都是60°时,根据三角形内角和定理可得第三个角也是60°,那么这个三角形的三个角都相等,根据判定定理1可得△ABC为等边三角形,结论正确;④根据判定定理2可得△ABC为等边三角形,结论正确.故选D.点评:本题考查了等边三角形的判定,等边三角形的判定方法有三种:(1)由定义判定:三条边都相等的三角形是等边三角形.(2)判定定理1:三个角都相等的三角形是等边三角形.(3)判定定理2:有一个角是60°的等腰三角形是等边三角形.注意:在证明一个三角形是等边三角形时,若已知或能求得三边相等则用定义来判定;若已知或能求得三个角相等则用判定定理1来证明;若已知等腰三角形且有一个角为60°,则用判定定理2来证明.8.如图是4×4正方形网格,其中已有3个小正方形涂成了黑色,现在要从其余13个白色小方格中选出一个也涂成黑色的图形称为轴对称图形,这样的白色小方格有( )A. 2个B. 3个C. 4个D. 5个考点:利用轴对称设计图案.分析:根据轴对称图形的概念求解.解答:解:如图所示,有4个位置使之成为轴对称图形.故选C.点评:此题考查的是利用轴对称设计图案,解答此题关键是找对称轴,按对称轴的不同位置,可以有4种画法.二、填空题:本大题共10小题,每小题2分,共20分.请把答案填在题中横线上9.4的平方根是±2.考点:平方根.专题:计算题.分析:根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.解答:解:∵(±2)2=4,∴4的平方根是±2.故答案为:±2.点评:本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.10.如果等腰三角形的底角是50°,那么这个三角形的顶角的度数是80°.考点:等腰三角形的性质.分析:在等腰三角形中,2个底角是相等的,这里用180°减去2个50°就是等腰三角形的顶角的度数.解答:解:180°﹣50°×2=180°﹣100°=80°.故这个三角形的顶角的度数是80°.故答案为:80°.点评:本题考查了等腰三角形的性质,关键是熟悉三角形的内角和是180°和等腰三角形2个底角是相等的,运用内角和求角.11.如果△ABC≌△DEF,∠A=40°,∠B=55°,那么∠E=55°.考点:全等三角形的性质.分析:根据全等三角形的性质可得∠B=∠E=55°.解答:解:∵△ABC≌△DEF,∴∠B=∠E,∵∠B=55°,∴∠E=55°,故答案为:55°.点评:此题主要考查了全等三角形的性质,关键是掌握全等三角形的对应角相等.12.如图,Rt△ABC中,∠C=90°,D是AB的中点,若AB=10,则CD的长等于 5 .考点:直角三角形斜边上的中线.分析:根据直角三角形斜边上的中线等于斜边的一半即可求解. 解答:解:∵Rt△ABC中,∠ACB=90°,D是AB的中点,∴CD= AB,∵AB=10,∴CD= ×10=5.故答案为5.。

新人教版新八年级上册数学2016期中考试试题答卷及参考答案

新人教版新八年级上册数学2016期中考试试题答卷及参考答案

八年级数学试题一.选择题(36分)1.下列结论正确的是?(????? )(A)有两个锐角相等的两个直角三角形全等;(B)一条斜边对应相等的两个直角三角形全等;(C)顶角和底边对应相等的两个等腰三角形全等;(D)两个等边三角形全等.2.下列四个图形中,不是轴对称图形的是()A B C D3.已知,如图1,AD=AC,BD=BC,O为AB上一点,那么,图中共有()对全等三角形.A. 1B. 2C.3D.4图14.如图2,AD是ABC△的中线,E,F分别是AD和AD延长线上的点,且DE DF,连结BF,CE.下列说法:①CE=BF;②△ABD和△ACD面积相等;③BF∥CE;④△BDF≌△CDE.其中正确的有()A.1个B.2个C.3个D.4个5.直角三角形斜边上的中线把直角三角形分成的两个三角形的关系是()A.形状相同B.周长相等C.面积相等D.全等6.已知一个等腰三角形两内角的度数之比为1:4,则这个等腰三角形顶角的度数为()A.20B.120C.20或120D.367.如图4,已知点O是△ABC内一点,且点O到三边的距离相等,∠A=40,则∠BOC=()A. 0110 B.0120 C.0130 D.01408.圆、正方形、长方形、等腰梯形中有唯一条对称轴的是()A. 圆B. 正方形C. 长方形D. 等腰梯形9.点(3,-2)关于x轴的对称点是( )A. (-3,-2)B. (3,2)C. (-3,2)D. (3,-2)10.下列长度的三线段,能组成等腰三角形的是()A. 1,1,2B. 2,2,5C. 3,3,5D. 3,4,511.等腰三角形的一个角是80°,则它的底角是()A. 50°B. 80°C. 50°或80°D. 20°或80°12.若等腰三角形腰上的高是腰长的一半,则这个等腰三角形的底角是()A. 75°或30°B. 75°C. 15°D. 75°和15°二.填空题(18分)AD CB图2EFCOAB图413.如果△ABC 和△DEF 全等,△DEF 和△GHI 全等,则△ABC 和△GHI ______全等, 如果△ABC 和△DEF 不全等,△DEF 和△GHI 全等,则△ABC 和△GHI ______全等.(填“一定”或“不一定”或“一定不”)14.点P (-1,2)关于x 轴对称点P 1的坐标为( ).15.如左下图.△ABC ≌△ADE ,则,AB=??????? ,∠E=∠?????? .若∠BAE=120°∠BAD=40°.则∠BAC=???? ? .16.如图3,AB ,CD 相交于点O ,AD =CB ,请你补充一个条件,使得△AOD ≌△COB .你补充的条件是______.17.点M (-2,1)关于x 轴对称的点N 的坐标是________,直线MN 与x 轴的位置关系是___________.18.如图4,直线AE ∥BD ,点C 在BD 上,若AE =4,BD =8,△ABD 的面积为16,则ACE △的面积为______.三.作图题(6分)19.近年来,国家实施“村村通”工程和农村医疗卫生改革,某县计划在张村、李村之间建一座定点医疗站P ,张、李两村座落在两相交公路内(如图所示).医疗站必须满足下列条件:①使其到两公路距离相等,②到张、李两村的距离也相等,请你通过作图确定P 点的位置.(不写作法,要保留作图痕迹)四.解答题(40分)20(本题8分).如图,AB=DF ,AC=DE ,BE=FC ,问:ΔABC 与ΔDEF 全等吗?AB 与DF 平行吗?请说明你的理由。

人教版数学八年级上册期中测试卷

人教版数学八年级上册期中测试卷

人教版数学八年级上册期中考试数学试卷一、选择题(每小题3分,共36分)1.(3分)如图,下列图案是我国几家银行的标志,其中轴对称图形有()A.4个B.3个C.2个D.1个2.(3分)一个三角形的两边长分别为3cm和7cm,则此三角形第三边长可能是()A.3cm B.4 cm C.7 cm D.11cm3.(3分)在平面直角坐标系中,点P(3,﹣2)关于y轴的对称点在()A.第一象限B.第二象限C.第三象限D.第四象限4.(3分)如图,△ABC中,∠C=70°,若沿图中虚线截去∠C,则∠1+∠2=()A.360°B.250°C.180°D.140°5.(3分)等腰三角形一边等于5,另一边等于8,则其周长是()A.18 B.21 C.18或21 D.不能确定6.(3分)如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是()A.带①去B.带②去C.带③去D.带①和②去7.(3分)如图,在△ABC中,∠ACB=90°,BE平分∠ABC,DE⊥AB于点D,如果AC=3cm,那么AE+DE等于()A.2cm B.3cm C.4cm D.5cm8.(3分)把一个正方形三次对折后沿虚线剪下,如图所示,则所得的图形是()A.B.C. D.9.(3分)如图,DE是△ABC中边AC的垂直平分线,若BC=18cm,AB=10cm,则△ABD的周长为()A.16 cm B.28 cm C.26 cm D.18 cm10.(3分)如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB=()A.40°B.30°C.20°D.10°11.(3分)如图,∠AOB内一点P,P1,P2分别是P关于OA、OB的对称点,P1P2交OA于点M,交OB于点N.若△PMN的周长是5cm,则P1P2的长为()A.3cm B.4cm C.5cm D.6cm12.(3分)若等腰三角形的底边长为6cm,一腰上的中线把它的周长分成差为2cm的两部分,则腰长为()A.4cm B.8cm C.4cm或8cm D.以上都不对二、填空题(每小题3分,共18分)13.(3分)角是轴对称图形,是它的对称轴.14.(3分)在直角三角形中,最小的角是30度,最短边长是5厘米,则斜边长为.15.(3分)每个内角都为144°的多边形为边形.16.(3分)如图,已知AC=BD,∠A=∠D,请你添一个直接条件,,使△AFC ≌△DEB.17.(3分)如图,是从镜中看到的一串数字,这串数字应为.18.(3分)如图,△ABC的三边AB、BC、CA长分别是20、30、40,其三条角平分线将△ABC分成三个三角形,则S△ABO :S△BCO:S△CAO等于.三、作图题(共18分)19.(5分)“西气东输”是造福子孙后代的创世工程,现有两条高速公路L1、L2和两个城镇A,B,准备建一个燃气控制中心站P,使中心站到两条公路距离相等,并且到两个城镇等距离,请你画出中心站的位置.(保留画图痕迹,不写画法)20.(5分)如图,某住宅小区拟在休闲场地的三条道路m,n,l上修建三个凉亭A、B、C且凉亭与长廊两两连通.如果凉亭A、B的位置己经选定,那么凉亭C建在道路l上的什么位置,才能使工程造价最低?请用尺规作出图形(不写作法,但保留作图痕迹)21.(8分)如图,在平面直角坐标系xOy中,A(﹣1,5),B(﹣1,0),C(﹣4,3)(1)请画出△ABC关于y轴对称的图形;(2)写出点A,点B,点C分别关于y轴对称点的坐标;(3)计算△ABC的面积.四、解答题(共28分)22.(6分)一个多边形的外角和是内角和的,求这个多边形的边数.23.(6分)如图,△ABC中,AB=AC,∠A=50°,P为△ABC内一点,∠PBC=∠PCA,求∠BPC的值.24.(8分)如图,AB=AC,AD=AE,∠1=∠2,试说明△ABD与△ACE全等.25.(8分)已知,如图,△ABC是等边三角形,AE=CD,BQ⊥AD于Q,BE交AD 于点P,求证:BP=2PQ.参考答案与试题解析一、选择题(每小题3分,共36分)1.(3分)(2015•冠县校级模拟)如图,下列图案是我国几家银行的标志,其中轴对称图形有()A.4个B.3个C.2个D.1个【分析】根据轴对称图形的概念对各图形分析判断后即可得解.【解答】解:(1)是轴对称图形;(2)不是轴对称图形;(3)是轴对称图形;(4)是轴对称图形;所以,是轴对称图形的共3个.故选:B.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,本题仔细观察图形是解题的关键.2.(3分)(2016秋•静宁县校级期中)一个三角形的两边长分别为3cm和7cm,则此三角形第三边长可能是()A.3cm B.4 cm C.7 cm D.11cm【分析】首先设第三边长为xcm,根据三角形的三边关系可得7﹣3<x<7+3,再解不等式即可.【解答】解:设第三边长为xcm,根据三角形的三边关系可得:7﹣3<x<7+3,解得:4<x<10,故选:C【点评】此题主要考查了三角形的三边关系,关键是掌握第三边的范围是:大于已知的两边的差,而小于两边的和.3.(3分)(2002•淮安)在平面直角坐标系中,点P(3,﹣2)关于y轴的对称点在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据关于y轴对称的点,纵坐标相同,横坐标互为相反数求出对称点的坐标,再根据各象限内点的坐标特点解答.【解答】解:∵点P(3,﹣2)关于y轴的对称点是(﹣3,﹣2),∴点P(3,﹣2)关于y轴的对称点在第三象限.故选C.【点评】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.4.(3分)(2012•南通)如图,△ABC中,∠C=70°,若沿图中虚线截去∠C,则∠1+∠2=()A.360°B.250°C.180°D.140°【分析】先利用三角形内角与外角的关系,得出∠1+∠2=∠C+(∠C+∠3+∠4),再根据三角形内角和定理即可得出结果.【解答】解:∵∠1、∠2是△CDE的外角,∴∠1=∠4+∠C,∠2=∠3+∠C,即∠1+∠2=∠C+(∠C+∠3+∠4)=70°+180°=250°.故选B.【点评】此题主要考查了三角形内角和定理及外角的性质,三角形内角和是180°;三角形的任一外角等于和它不相邻的两个内角之和.5.(3分)(2016秋•独山县校级期中)等腰三角形一边等于5,另一边等于8,则其周长是()A.18 B.21 C.18或21 D.不能确定【分析】因为等腰三角形的两边分别为5和8,但没有明确哪是底边,哪是腰,所以有两种情况,需要分类讨论.【解答】解:当5为底时,其它两边都为8,5、8、8可以构成三角形,周长为21;当5为腰时,其它两边为5和8,5、5、8可以构成三角形,周长为18,所以周长是18或21.故选C.【点评】本题考查了等腰三角形的性质及三角形三边关系,对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论.6.(3分)(2005•广元)如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是()A.带①去B.带②去C.带③去D.带①和②去【分析】此题可以采用全等三角形的判定方法以及排除法进行分析,从而确定最后的答案.【解答】解:A、带①去,仅保留了原三角形的一个角和部分边,不能得到与原来一样的三角形,故A选项错误;B、带②去,仅保留了原三角形的一部分边,也是不能得到与原来一样的三角形,故B选项错误;C、带③去,不但保留了原三角形的两个角还保留了其中一个边,符合ASA判定,故C选项正确;D、带①和②去,仅保留了原三角形的一个角和部分边,同样不能得到与原来一样的三角形,故D选项错误.故选:C.【点评】主要考查学生对全等三角形的判定方法的灵活运用,要求对常用的几种方法熟练掌握.7.(3分)(2016秋•独山县校级期中)如图,在△ABC中,∠ACB=90°,BE平分∠ABC,DE⊥AB于点D,如果AC=3cm,那么AE+DE等于()A.2cm B.3cm C.4cm D.5cm【分析】由角平分线的性质可得DE=EC,则AE+DE=AC,可求得答案.【解答】解:∵∠ACB=90°,BE平分∠ABC,DE⊥AB,∴DE=EC,∴AE+DE=AE+EC=AC=3cm,故选B.【点评】本题主要考查角平分线的性质,掌握角平分线上的点到角两边的距离相等是解题的关键.8.(3分)(2008•张家界)把一个正方形三次对折后沿虚线剪下,如图所示,则所得的图形是()A.B.C. D.【分析】把一个正方形的纸片向上对折,向右对折,向右下方对折,从上部剪去一个等腰直角三角形,展开,看得到的图形为选项中的哪个即可.【解答】解:从折叠的图形中剪去8个等腰直角三角形,易得将从正方形纸片中剪去4个小正方形,故选C.【点评】考查学生的动手操作能力,也可从剪去的图形入手思考.9.(3分)(2016秋•独山县校级期中)如图,DE是△ABC中边AC的垂直平分线,若BC=18cm,AB=10cm,则△ABD的周长为()A.16 cm B.28 cm C.26 cm D.18 cm【分析】根据线段垂直平分线上的点到线段两端点的距离相等可得AD=CD,然后求出△ABD的周长=AB+BC,代入数据进行计算即可得解.【解答】解:∵DE是AC的垂直平分线,∴AD=CD,∴△ABD的周长=AB+BD+AD=AB+BD+CD=AB+BC,∵BC=18cm,AB=10cm,∴△ABD的周长=18+10=28cm.故选B.【点评】本题主要考查了线段垂直平分线上的点到线段两端点的距离相等的性质,把△ABD的周长转化为AB、BC的和是解题的关键.10.(3分)(2009•荆门)如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB=()A.40°B.30°C.20°D.10°【分析】由三角形的一个外角等于与它不相邻的两个内角的和,得∠A′DB=∠CA'D﹣∠B,又折叠前后图形的形状和大小不变,∠CA'D=∠A=50°,易求∠B=90°﹣∠A=40°,从而求出∠A′DB的度数.【解答】解:∵Rt△ABC中,∠ACB=90°,∠A=50°,∴∠B=90°﹣50°=40°,∵将其折叠,使点A落在边CB上A′处,折痕为CD,则∠CA'D=∠A,∵∠CA'D是△A'BD的外角,∴∠A′DB=∠CA'D﹣∠B=50°﹣40°=10°.故选:D.【点评】本题考查图形的折叠变化及三角形的外角性质.关键是要理解折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,只是位置变化.解答此题的关键是要明白图形折叠后与折叠前所对应的角相等.11.(3分)(2016春•灵石县期末)如图,∠AOB内一点P,P1,P2分别是P关于OA、OB的对称点,P1P2交OA于点M,交OB于点N.若△PMN的周长是5cm,则P1P2的长为()A.3cm B.4cm C.5cm D.6cm【分析】根据轴对称的性质可得PM=P1M,PN=P2N,然后求出△PMN的周长=P1P2.【解答】解:∵P点关于OA、OB的对称点P1、P2,∴PM=P1M,PN=P2N,∴△PMN的周长=PM+MN+PN=P1M+MN+P2N=P1P2,∵△PMN的周长是5cm,∴P1P2=5cm.故选:C.【点评】本题考查轴对称的性质,对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等.12.(3分)(2016秋•独山县校级期中)若等腰三角形的底边长为6cm,一腰上的中线把它的周长分成差为2cm的两部分,则腰长为()A.4cm B.8cm C.4cm或8cm D.以上都不对【分析】首先根据题意画出图形,由题意可得:(AB+AD)﹣(BC+CD)=2cm或(BC+CD)﹣(AB+AD)=2cm,即可得AB﹣BC=2cm或BC﹣AB=2cm,又由等腰三角形的底边长为6cm,即可求得答案.【解答】解:如图,AB=AC,BD是中点,根据题意得:(AB+AD)﹣(BC+CD)=2cm或(BC+CD)﹣(AB+AD)=2cm,则AB﹣BC=2cm或BC﹣AB=2cm,∵BC=6cm,∴AB=8cm或4cm.∴腰长为:4cm或8cm.故选C.【点评】此题考查了等腰三角形的性质.注意根据题意得到AB﹣BC=2cm或BC﹣AB=2cm是关键.二、填空题(每小题3分,共18分)13.(3分)(2016春•灵石县期末)角是轴对称图形,角平分线所在的直线是它的对称轴.【分析】根据角的对称性解答.【解答】解:角的对称轴是“角平分线所在的直线”.故答案为:角平分线所在的直线.【点评】本题考查了角的对称轴,需要注意轴对称图形的对称轴是直线,此题容易说成是“角平分线”而导致出错.14.(3分)(2016秋•静宁县校级期中)在直角三角形中,最小的角是30度,最短边长是5厘米,则斜边长为10cm .【分析】根据直角三角形30°角所对的直角边等于斜边的一半解答.【解答】解:∵直角三角形中30°角所对的直角边长是5cm,∴斜边的长=2×5=10cm.故答案为:10cm.【点评】本题考查了直角三角形30°角所对的直角边等于斜边的一半的性质,熟记性质是解题的关键.15.(3分)(2016秋•独山县校级期中)每个内角都为144°的多边形为十边形.【分析】根据n边形的内角和等于(n﹣2)×180°解答.【解答】解:设这个多边形的边数是n,由题意得,=144°,解得,n=10,故答案为:十.【点评】本题考查的是多边形的内角与外角的计算,掌握n边形的内角和等于(n ﹣2)×180°是解题的关键.16.(3分)(2014秋•花垣县期末)如图,已知AC=BD,∠A=∠D,请你添一个直接条件,∠ACF=∠DBE ,使△AFC≌△DEB.【分析】证明△AFC≌△DEB,已知AC=BD,∠A=∠D,一边一角对应相等,故添加一组角∠ACF=∠DBE可利用ASA证明全等.【解答】解:在△AFC和△DEB中,,∴△AFC≌△DEB(ASA).故答案为:∠ACF=∠DBE.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.17.(3分)(2013秋•栾城县期末)如图,是从镜中看到的一串数字,这串数字应为810076 .【分析】关于镜子的像,实际数字与原来的数字关于竖直的线对称,根据相应数字的对称性可得实际数字.【解答】解:∵是从镜子中看,∴对称轴为竖直方向的直线,∵镜子中数字的顺序与实际数字顺序相反,∴这串数字应为 810076,故答案为:810076.【点评】考查镜面对称,得到相应的对称轴是解决本题的关键;若是竖直方向的对称轴,数的顺序正好相反.18.(3分)(2016秋•独山县校级期中)如图,△ABC的三边AB、BC、CA长分别是20、30、40,其三条角平分线将△ABC分成三个三角形,则S△ABO :S△BCO:S△CAO等于2:3:4 .【分析】由角平分线的性质可得,点O到三角形三边的距离相等,即三个三角形的AB、BC、CA的高相等,利用面积公式即可求解.【解答】解:过点O作OD⊥AC于D,OE⊥AB于E,OF⊥BC于F,∵O是三角形三条角平分线的交点,∴OD=OE=OF,∵AB=20,BC=30,AC=40,∴S△ABO :S△BCO:S△CAO=2:3:4.故答案为:2:3:4.【点评】此题主要考查角平分线的性质和三角形面积的求法,难度不大,作辅助线很关键.三、作图题(共18分)19.(5分)(2016秋•独山县校级期中)“西气东输”是造福子孙后代的创世工程,现有两条高速公路L1、L2和两个城镇A,B,准备建一个燃气控制中心站P,使中心站到两条公路距离相等,并且到两个城镇等距离,请你画出中心站的位置.(保留画图痕迹,不写画法)【分析】连接AB,作出∠EOF的平分线OH及线段AB的垂直平分线ED,两线的交点即为所求.【解答】解:①连接AB,②先作∠EOF的平分线OH,再作线段AB的垂直平分线ED,ED与OH相交于点D,则D点即为所求点.【点评】本题考查的是作图﹣应用与设计作图,涉及到最短路线问题、线段垂直平分线及角平分线的性质,具有一定的综合性.20.(5分)(2016秋•独山县校级期中)如图,某住宅小区拟在休闲场地的三条道路m,n,l上修建三个凉亭A、B、C且凉亭与长廊两两连通.如果凉亭A、B 的位置己经选定,那么凉亭C建在道路l上的什么位置,才能使工程造价最低?请用尺规作出图形(不写作法,但保留作图痕迹)【分析】工程造价最低,那么三个凉亭间的距离最短,又在直线l上,那么应作出点A关于直线l的对称点A′,连接A′B交直线l于点C,点C就是所求的点.【解答】解:三个凉亭间的距离实际相当于A'B的距离,两点之间,线段最短,所以符合题意.【点评】本题考查的是作图﹣应用与设计作图,涉及到在同一条直线的一旁的两点与这条直线上的一点的最短路线问题,一般属于点关于直线对称问题.21.(8分)(2016秋•静宁县校级期中)如图,在平面直角坐标系xOy中,A(﹣1,5),B(﹣1,0),C(﹣4,3)(1)请画出△ABC关于y轴对称的图形;(2)写出点A,点B,点C分别关于y轴对称点的坐标;(3)计算△ABC的面积.【分析】(1)作出各点关于y轴的对称点,再顺次连接即可;(2)根据各点在坐标系中的位置写出各点坐标即可;(3)根据三角形的面积公式进行计算即可.【解答】解:(1)如图,△A′B′C′即为所求;(2)由图可知,A′(1,5),B′(1,0),C′(4,5);(3)S=×5×3=.△ABC【点评】本题考查的是作图﹣轴对称变换,熟知关于y轴对称的点的坐标特点是解答此题的关键.四、解答题(共28分)22.(6分)(2013春•翠屏区期末)一个多边形的外角和是内角和的,求这个多边形的边数.【分析】一个多边形的外角和是内角和的,任何多边形的外角和是360°,因而多边形的内角和是1260°.n边形的内角和是(n﹣2)•180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.【解答】解:设这个多边形的边数为n,依题意得:(n﹣2)180°=360°,解得n=9.答:这个多边形的边数为9.【点评】根据外角和的大小与多边形的边数无关,由外角和求正多边形的边数,是常见的题目,需要熟练掌握.23.(6分)(2016秋•独山县校级期中)如图,△ABC中,AB=AC,∠A=50°,P 为△ABC内一点,∠PBC=∠PCA,求∠BPC的值.【分析】根据等腰三角形的两个底角相等,即可求得∠ACB=∠ABC,则∠PBC+∠PCB即可求得,根据三角形的内角和定理即可求解.【解答】解:∵在△ABC中,AB=AC,∠A=50°,∴∠ACB=∠ABC=65°.又∵∠PBC=∠PCA,∴∠PBC+∠PCB=65°,∴∠BPC=115°.【点评】本题考查了等腰三角形的性质:等腰三角形的两个内角相等,以及三角形的内角和定理.24.(8分)(2009春•福鼎市校级期末)如图,AB=AC,AD=AE,∠1=∠2,试说明△ABD与△ACE全等.【分析】由∠1=∠2,可得∠CAE=∠BAD,进而利用两边夹一角,证明全等.【解答】证明:∵∠1=∠2,∴∠CAE=∠BAD,∵AB=AC,AD=AE,∴△ABD≌△ACE.【点评】本题考查了全等三角形的判定;能够熟练掌握三角形的判定方法来证明三角形的全等问题,由∠1=∠2得∠CAE=∠BAD是解决本题的关键.25.(8分)(2016秋•独山县校级期中)已知,如图,△ABC是等边三角形,AE=CD,BQ⊥AD于Q,BE交AD于点P,求证:BP=2PQ.【分析】根据等边三角形的性质可得AB=AC,∠BAE=∠C=60°,再利用“边角边”证明△ABE和△CAD全等,根据全等三角形对应角相等可得∠1=∠2,然后求出∠BPQ=60°,再根据直角三角形两锐角互余求出∠PBQ=30°,然后根据直角三角形30°角所对的直角边等于斜边的一半证明即可.【解答】证明:∵△ABC是等边三角形,∴AB=AC,∠BAE=∠C=60°,在△ABE和△CAD中,,∴△ABE≌△CAD(SAS),∴∠1=∠2,∴∠BPQ=∠2+∠3=∠1+∠3=∠BAC=60°,∵BQ⊥AD,∴∠PBQ=90°﹣∠BPQ=90°﹣60°=30°,∴BP=2PQ.【点评】本题考查了全等三角形的判定与性质,等边三角形的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,熟记各性质并准确识图求出△BPQ 是含30°角的直角三角形是解题的关键.考试前——放松自己,别给自己太大压力我们都知道,在任何大考中,一个人的心态都十分重要。

2015-2016学年新人教版八年级(上)期中数学试卷及答案

2015-2016学年新人教版八年级(上)期中数学试卷及答案

2015-2016学年八年级(上)期中数学试卷一、选择题:(每小题3分,共36分)1.下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为轴对称图形的是()A.B.C.D.2.以下列各组线段为边,能组成三角形的是()A.2cm,3cm,5cm B.5cm,6cm,10cm C.1cm,1cm,3cm D.3cm,4cm,9cm3.点M(3,2)关于y轴对称的点的坐标为()A.(﹣3,2)B.(﹣3,﹣2)C.(3,﹣2)D.(2,﹣3)4.已知一个多边形的内角和等于它的外角和的3倍,那么它的边数是()A.5 B. 6 C.7 D.85.在三角形ABC中,BD是∠ABC的平分线,若∠A=60°,∠C=50°,则∠DBC=()A.40度B.45度C.35度D.55度6.如图,∠B=∠D=90°,CB=CD,∠1=30°,则∠2=()A.30° B.40° C.50° D.60°7.现有四根木棒,长度分别为4cm,6cm,8cm,10cm,从中任取三根木棒,能组成三角形的个数为()A.1个B.2个C.3个D.4个8.如图,△ABC中,AB=AC,D为BC的中点,以下结论:(1)△ABD≌△ACD;(2)AD⊥BC;(3)∠B=∠C;(4)AD是△ABC的角平分线.其中正确的有()A.1个B.2个C.3个D.4个9.已知等腰三角形一边长为4,一边的长为6,则等腰三角形的周长为()A.14 B.16 C.10 D.14或1610.一个多边形从一个顶点可引对角线3条,这个多边形内角和等于()A.360° B.540° C.720° D.900°11.如图所示,某同学把一块三角形的玻璃不小心打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带()去.A.① B.② C.③ D.①和②12.黄帅拿一张正方形的纸按如图所示沿虚线连续对折后剪去带直角的部分,然后打开后的形状是()A.B.C.D.二、填空题:(每小题3分,共24分)13.三角形的三边长分别为5,x,8,则x的取值范围是.14.已知如图,△ABC≌△FED,且BC=DE,∠A=30°,∠B=80°,则∠FDE=.15.如图,则∠A+∠B+∠C+∠D+∠E+∠F的度数为.16.如果一个多边形的每个内角都相等,且内角和为1800°,那么该多边形的一个外角是.17.如图,在生活中,我们经常会看见在电线杆上拉两条钢线,来加固电线杆,这是利用了三角形的.18.如图,直线a、b、c表示三条互相交叉的公路,现要建一个货物中转站.要求它到三条公路的距离相等,则可供选择的地址有处.19.如图,已知∠ABD=20°,∠ACD=25°,∠A=35°,则∠BDC=.20.△ABC和△FED中,BD=FC,∠B=∠F.当添加条件时,就可得到△ABC≌△FED,依据是(只需填写一个你认为正确的条件).三.作图题:21.(10分)(2014秋•平凉校级期中)如图,求作点P,使点P到A、B两点的距离相等,且P到∠MON两边的距离也相等.四.解答题:(50分)22.已知一个多边形的内角和与外角和的差为1080°,求这个多边形的边数.23.如图,△ABC中,AB=AC,∠A=30°,DE垂直平分AC,求∠BCD.24.如图,E,F在BC上,BE=CF,AB=CD,AB∥CD.求证:(1)△ABF≌△DCE.(2)AF∥DE.25.如图,AD为△ABC的中线,BE为△ABD的中线.(1)∠ABE=15°,∠BAD=40°,求∠BED的度数;(2)若△ABC的面积为40,BD=5,则E到BC边的距离为多少.26.如图,已知△ABC的周长为24,OB,OC分别平分∠ABC,∠ACB,OD⊥BC于点D,且OD=2,求△ABC的面积.27.(10分)(2014秋•万州区校级期末)如图,点B在线段AC上,点E在线段BD上,∠ABD=∠DBC,AB=DB,EB=CB,M、N分别是AE、CD的中点,判断BM与BN的关系,并说明理由.2015-2016学年八年级(上)期中数学试卷参考答案与试题解析一、选择题:(每小题3分,共36分)1.下列图形分别是桂林、湖南、甘肃、佛山电视台的台徽,其中为轴对称图形的是()A.B.C.D.考点:轴对称图形.分析:根据轴对称图形的概念求解.解答:解:A、不是轴对称图形,故错误;B、不是轴对称图形,故错误;C、不是轴对称图形,故错误;D、是轴对称图形,故正确.故选D.点评:本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.以下列各组线段为边,能组成三角形的是()A.2cm,3cm,5cm B.5cm,6cm,10cm C.1cm,1cm,3cm D.3cm,4cm,9cm考点:三角形三边关系.分析:根据在三角形中任意两边之和>第三边进行分析即可.解答:解:A、2+3=5,不能组成三角形,故此选项错误;B、5+6>10,不能组成三角形,故此选项正确;C、1+1<3,能组成三角形,故此选项错误;D、3+4<9,不能组成三角形,故此选项错误;故选:B.点评:本题主要考查了三角形的三边关系,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.3.点M(3,2)关于y轴对称的点的坐标为()A.(﹣3,2)B.(﹣3,﹣2)C.(3,﹣2)D.(2,﹣3)考点:关于x轴、y轴对称的点的坐标.分析:根据关于y轴对称点的横坐标互为相反数,纵坐标相等回答即可.解答:解:点M(3,2)关于y轴对称的点的坐标为(﹣3,2).故选:A.点评:本题主要考查的是关于坐标轴对称的点的坐标特点,关于y轴对称点的横坐标互为相反数,纵坐标相等;关于x轴对称点纵坐标互为相反数,横坐标相等.4.已知一个多边形的内角和等于它的外角和的3倍,那么它的边数是()A.5 B. 6 C.7 D.8考点:多边形内角与外角.分析:根据多边形的内角和等于它的外角和的3倍可求得多边形的内角和,然后利用多边形的内角和公式计算即可.解答:解:∵多边形的内角和等于它的外角和的3倍,∴多边形的内角和=360°×3.设多边形的边数为n,根据题意得:(n﹣2)×180°=360°×3.解得n=8.故选:D.点评:本题主要考查的是多边形的内角和与外角和,掌握多边形的内角和公式是解题的关键.5.在三角形ABC中,BD是∠ABC的平分线,若∠A=60°,∠C=50°,则∠DBC=()A.40度B.45度C.35度D.55度考点:三角形内角和定理.分析:根据题意画出图形,由三角形内角和定理求出∠ABC的度数,由角平分线的定义即可得出结论.解答:解:如图所示,∵在△ABC中,∠A=60°,∠C=50°,∴∠ABC=70°.∵BD是∠ABC的平分线,∴∠DBC=∠ABC=35°,故选C点评:本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.6.如图,∠B=∠D=90°,CB=CD,∠1=30°,则∠2=()A.30° B.40° C.50° D.60°考点:全等三角形的判定与性质.分析:根据直角三角形两锐角互余求出∠3,再利用“HL”证明Rt△ABC和Rt△ADC全等,根据全等三角形对应角相等可得∠2=∠3.解答:解:∵∠B=90°,∠1=30°,∴∠3=90°﹣∠1=90°﹣30°=60°,在Rt△ABC和Rt△ADC中,,∴Rt△ABC≌Rt△ADC(HL),∴∠2=∠3=60°.故选D.点评:本题考查了全等三角形的判定与性质,直角三角形两锐角互余的性质,熟练掌握三角形全等的判定方法是解题的关键.7.现有四根木棒,长度分别为4cm,6cm,8cm,10cm,从中任取三根木棒,能组成三角形的个数为()A.1个B.2个C.3个D.4个考点:三角形三边关系.分析:取四根木棒中的任意三根,共有4中取法,然后依据三角形三边关系定理将不合题意的方案舍去.解答:解:共有4种方案:①取4cm,6cm,8cm;由于8﹣4<6<8+4,能构成三角形;②取4cm,8cm,10cm;由于10﹣4<8<10+4,能构成三角形;③取4cm,6cm,10cm;由于6=10﹣4,不能构成三角形,此种情况不成立;④取6cm,8cm,10cm;由于10﹣6<8<10+6,能构成三角形.所以有3种方案符合要求.故选C.点评:考查三角形的边时,要注意三角形形成的条件:任意两边之和大于第三边,任意两边之差小于第三边.当题目指代不明时,一定要分情况讨论,把符合条件的保留下来,不符合的舍去.8.如图,△ABC中,AB=AC,D为BC的中点,以下结论:(1)△ABD≌△ACD;(2)AD⊥BC;(3)∠B=∠C;(4)AD是△ABC的角平分线.其中正确的有()A.1个B.2个C.3个D.4个考点:等腰三角形的性质.分析:由“三线合一”可知(2)(4)正确,由等边对等角可知(3)正确,且容易证明△ABD≌△ACD,可得出答案.解答:解:∵AB=AC,∴∠B=∠C,∴(3)正确,∵D为BC的中点,∴AD⊥BC,∠BAD=∠CAD,∴(2)(4)正确,在△ABD和△ACD中∴△ABD≌△ACD(SSS),∴(1)正确,∴正确的有4个,故选D.点评:本题主要考查等腰三角形的性质,掌握等腰三角形底边上的中线、底边上的高、顶角的角平分线相互重合是解题的关键.9.已知等腰三角形一边长为4,一边的长为6,则等腰三角形的周长为()A.14 B.16 C.10 D.14或16考点:等腰三角形的性质;三角形三边关系.专题:分类讨论.分析:因为底边和腰不明确,分两种情况进行讨论.解答:解:(1)当4是腰时,符合三角形的三边关系,所以周长=4+4+6=14;(2)当6是腰时,符合三角形的三边关系,所以周长=6+6+4=16.故选D.点评:注意此题一定要分两种情况讨论.但要注意检查是否符合三角形的三边关系.10.一个多边形从一个顶点可引对角线3条,这个多边形内角和等于()A.360° B.540° C.720° D.900°考点:多边形内角与外角;多边形的对角线.分析:首先确定出多边形的边数,然后利用多边形的内角和公式计算即可.解答:解:∵从一个顶点可引对角线3条,∴多边形的边数为3+3=6.多边形的内角和=(n﹣2)×180°=4×180°=720°.故选:C.点评:本题主要考查的是多边形的对角线和多边形的内角和公式的应用,掌握公式是解题的关键.11.如图所示,某同学把一块三角形的玻璃不小心打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是带()去.A.① B.② C.③ D.①和②考点:全等三角形的应用.分析:此题可以采用排除法进行分析从而确定最后的答案.解答:解:第一块,仅保留了原三角形的一个角和部分边,不符合任何判定方法;第二块,仅保留了原三角形的一部分边,所以该块不行;第三块,不但保留了原三角形的两个角还保留了其中一个边,所以符合ASA判定,所以应该拿这块去.故选C.点评:此题主要考查学生对全等三角形的判定方法的灵活运用,要求对常用的几种方法熟练掌握.12.黄帅拿一张正方形的纸按如图所示沿虚线连续对折后剪去带直角的部分,然后打开后的形状是()A.B.C.D.考点:剪纸问题.分析:本题主要考查学生的动手能力及空间想象能力.解答:解:严格按照图中的顺序向右下对折,向左下对折,从直角顶点处剪去一个直角三角形,展开得到结论.故选C.点评:对于此类问题,学生只要亲自动手操作,答案就会很直观地呈现.二、填空题:(每小题3分,共24分)13.三角形的三边长分别为5,x,8,则x的取值范围是3<x<13.考点:三角形三边关系.分析:由三角形的两边的长分别为8和5,根据已知三角形两边,则第三边的长度应是大于两边的差而小于两边的和,即可求得答案.解答:解:根据三角形的三边关系,得:8﹣5<x<8+5,即:3<x<13.故答案为:3<x<13.点评:本题考查了能够组成三角形三边的条件,其实用两条较短的线段相加,如果大于最长的那条就能够组成三角形.14.已知如图,△ABC≌△FED,且BC=DE,∠A=30°,∠B=80°,则∠FDE=70°.考点:全等三角形的判定与性质.分析:首先根据全等三角形的性质可得∠EDF=∠BCA,再根据三角形内角和定理计算出∠BCA=70°,进而得到答案.解答:解:∵△ABC≌△FED,∴∠EDF=∠BCA,∵∠A=30°,∠B=80°,∴∠BCA=70°,∴∠EDF=70°.故答案为:70°.点评:此题主要考查了全等三角形的性质,解题的关键是掌握全等三角形的对应边相等,题目比较简单,是中考常见题型.15.如图,则∠A+∠B+∠C+∠D+∠E+∠F的度数为360°.考点:多边形内角与外角;三角形的外角性质.分析:根据∠CNE为△CDN的外角,得到∠CNE=∠C+∠D,根据∠FMN为△ABM的外角,得到∠FMN=∠A+∠B,由四边形内角和为360°,所以∠CNE+∠FMN+∠E+∠F=360°,即∠A+∠B+∠C+∠D+∠E+∠F=360°.解答:解:如图,∵∠CNE为△CDN的外角,∴∠CNE=∠C+∠D,∵∠FMN为△ABM的外角,∴∠FMN=∠A+∠B,∵四边形内角和为360°,∴∠CNE+∠FMN+∠E+∠F=360°,即∠A+∠B+∠C+∠D+∠E+∠F=360°,故答案为:360°.点评:本题考查了多边形的内角与外角,解决本题的关键是运用三角形的一个外角等于和它不相邻的两个内角和,将已知角转化在同一个四边形中,再根据四边形内角和为360°求解.16.如果一个多边形的每个内角都相等,且内角和为1800°,那么该多边形的一个外角是30°.考点:多边形内角与外角.分析:由多边形的内角和公式求得多边形的边数,然后根据任意多边形的外角和是360°求解即可.解答:解:设这个多边形的边数为n.根据题意得:(n﹣2)×180°=1800°.解得:n=12.360÷12=30°.故答案为:30°.点评:本题主要考查的是多边形的内角和和外角和,由多边形的内角和公式求得多边形的边数是解题的关键.17.如图,在生活中,我们经常会看见在电线杆上拉两条钢线,来加固电线杆,这是利用了三角形的稳定性.考点:三角形的稳定性.分析:根据三角形的稳定性解答即可.解答:解:加固后构成三角形的形状,利用了三角形的稳定性.故答案为:稳定性.点评:本题考查了三角形的稳定性,是基础题.18.如图,直线a、b、c表示三条互相交叉的公路,现要建一个货物中转站.要求它到三条公路的距离相等,则可供选择的地址有4处.考点:三角形的内切圆与内心;直线与圆的位置关系.专题:应用题.分析:由三角形内角平分线的交点到三角形三边的距离相等,可得三角形内角平分线的交点满足条件;然后利用角平分线的性质,可证得三角形两条外角平分线的交点到其三边的距离也相等,这样的点有3个,可得可供选择的地址有4个.解答:解:∵△ABC内角平分线的交点到三角形三边的距离相等,∴△ABC内角平分线的交点满足条件;如图:点P是△ABC两条外角平分线的交点,过点P作PE⊥AB,PD⊥BC,PF⊥AC,∴PE=PF,PF=PD,∴PE=PF=PD,∴点P到△ABC的三边的距离相等,∴△ABC两条外角平分线的交点到其三边的距离也相等,满足这条件的点有3个;综上,到三条公路的距离相等的点有4个,∴可供选择的地址有4个.故填4.点评:此题考查了角平分线的性质.注意掌握角平分线上的点到角两边的距离相等,注意数形结合思想的应用,小心别漏解.19.如图,已知∠ABD=20°,∠ACD=25°,∠A=35°,则∠BDC=80°.考点:三角形内角和定理.分析:先根据三角形内角和定理求出∠DBC+∠DCB的度数,进而可得出∠BDC的度数.解答:解:∵∠ABD=20°,∠ACD=25°,∠A=35°,∴∠DBC+∠DCB=180°﹣20°﹣25°﹣35°=100°,∴∠BDC=180°﹣100°=80°.故答案为:80°.点评:本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.20.△ABC和△FED中,BD=FC,∠B=∠F.当添加条件AB=EF时,就可得到△ABC≌△FED,依据是SAS(只需填写一个你认为正确的条件).考点:全等三角形的判定.专题:开放型.分析:先证出BC=FD,由SAS即可证明△ABC≌△EFD.解答:解:添加条件:AB=EF;依据是SAS;理由如下:∵BD=FC,∴BC=FD.在△ABC和△EFD中,,∴△ABC≌△EFD(SAS);故答案为:AB=EF,SAS.点评:本题考查了三角形全等的判定方法;熟练掌握全等三角形的判定方法,并能进行推理论证是解决问题的关键.三.作图题:21.(10分)(2014秋•平凉校级期中)如图,求作点P,使点P到A、B两点的距离相等,且P到∠MON两边的距离也相等.考点:作图—复杂作图;角平分线的性质;线段垂直平分线的性质.专题:作图题.分析:利用基本作图,作出∠MON的平分线和AB的中垂线,那么它们的交点为所求的P 点.解答:解:∠MON的角平分线和线段AB的垂直平分线相交于点P,这点P为所求.点评:本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.四.解答题:(50分)22.已知一个多边形的内角和与外角和的差为1080°,求这个多边形的边数.考点:多边形内角与外角.分析:已知一个多边形的内角和与外角和的差为1080°,外角和是360度,因而内角和是1440度.n边形的内角和是(n﹣2)•180°,代入就得到一个关于n的方程,就可以解得边数n.解答:解:根据题意,得(n﹣2)•180=1080+360,解得:n=10.故这个多边形的边数是十.点评:考查了多边形内角与外角,已知多边形的内角和求边数,可以转化为解方程的问题解决.23.如图,△ABC中,AB=AC,∠A=30°,DE垂直平分AC,求∠BCD.考点:线段垂直平分线的性质;等腰三角形的性质.分析:首先利用线段垂直平分线的性质推出∠DAC=∠DCA,根据等腰三角形的性质可求出∠ABC=∠ACB,易求∠BCD的度数.解答:解:∵AB=AC,∠A=30°∴∠ABC=∠ACB=75°根据线段垂直平分线的性质可推出AD=CD∴∠A=∠ACD=30°∴∠BCD=∠ACB﹣∠ACD=45°.点评:本题主要考查了线段垂直平分线的性质以及等腰三角形的性质,利用线段垂直平分线的性质是解答此题的关键.24.如图,E,F在BC上,BE=CF,AB=CD,AB∥CD.求证:(1)△ABF≌△DCE.(2)AF∥DE.考点:全等三角形的判定与性质.专题:证明题.分析:(1)由等式的性质就可以得出BF=CE,由平行线的性质就可以得出∠B=∠C,根据SAS就可以得出结论;(2)由△ABF≌△DCE就可以得出∠AFB=∠DEC就可以得出结论.解答:证明:∵BE=CF,∴BE+EF=CF+EF,∴BF=CE.∵AB∥CD,∴∠B=∠C.在△ABF和△DCE中,∴△ABF≌△DCE(SAS);(2)∵△ABF≌△DCE,∴∠AFB=∠DEC,∴AF∥DE.点评:本题考查了等式的性质的运用,平行线的性质的运用,全等三角形的判定及性质的运用,解答时证明三角形全等是关键.25.如图,AD为△ABC的中线,BE为△ABD的中线.(1)∠ABE=15°,∠BAD=40°,求∠BED的度数;(2)若△ABC的面积为40,BD=5,则E到BC边的距离为多少.考点:三角形的面积;三角形的角平分线、中线和高;三角形的外角性质.分析:(1)根据三角形内角与外角的性质解答即可;(2)过E作BC边的垂线即可得:E到BC边的距离为EF的长,然后过A作BC边的垂线AG,再根据三角形中位线定理求解即可.解答:解:(1)∵∠BED是△ABE的外角,∴∠BED=∠ABE+∠BAD=15°+40°=55°;(2)过E作BC边的垂线,F为垂足,则EF为所求的E到BC边的距离,过A作BC边的垂线AG,∴AD为△ABC的中线,BD=5,∴BC=2BD=2×5=10,∵△ABC的面积为40,∴BC•AG=40,即×10•AG=40,解得AG=8,∵EF⊥BC于F,∴EF∥AG,∵E为AD的中点,∴EF是△AGD的中位线,∴EF=AG=×8=4.∴E到BC边的距离为4.点评:本题考查了三角形外角的性质、三角形中位线定理及三角形的面积公式,涉及面较广,但难度适中.添加适当的辅助线是解题的关键.26.如图,已知△ABC的周长为24,OB,OC分别平分∠ABC,∠ACB,OD⊥BC于点D,且OD=2,求△ABC的面积.考点:角平分线的性质.分析:连接OA,作OE⊥AB于E,OF⊥AC与F,根据角平分线的性质求出OE、OF的长,根据△ABC的面积=△A0B的面积+△BOC的面积+△AOC的面积计算即可.解答:解:连接OA,作OE⊥AB于E,OF⊥AC与F,∵OB,OC分别平分∠ABC,∠ACB,OD⊥BC,OE⊥AB,OF⊥AC,∴OE=OE=OD=2,△ABC的面积=△A0B的面积+△BOC的面积+△AOC的面积=AB•OE+AC•OF+CB•OD=×(AB+AC+BC)×2=24.答:△ABC的面积是24.点评:本题主要考查平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键,注意辅助线的作法要正确.27.(10分)(2014秋•万州区校级期末)如图,点B在线段AC上,点E在线段BD上,∠ABD=∠DBC,AB=DB,EB=CB,M、N分别是AE、CD的中点,判断BM与BN的关系,并说明理由.考点:全等三角形的判定与性质;直角三角形斜边上的中线.分析:根据SAS推出△ABE≌△DBC,推出AE=DC,∠EAB=∠BDC,∠AEB=∠DCB,求出∠ABD=∠DBC=90°,BM=AM=EM=AE,BN=CN=DN=CD,推出∠ABM=∠DBN,∠EBM=∠NBC即可.解答:解:BM=BN,BM⊥BN,理由是:在△ABE和△DBC中,,∴△ABE≌△DBC(SAS),∴AE=DC,∠EAB=∠BDC,∠AEB=∠DCB,∵∠ABD=∠DBC,∠ABD+∠DBC=180°,∴∠ABD=∠DBC=90°,∵M为AE的中点,N为CD的中点,∴BM=AM=EM=AE,BN=CN=DN=CD,∴BM=BN,∠EAB=∠MBA,∠CDB=∠DBN,∠AEB=∠EBA,∠NCB=∠NBC,∵∠EAB=∠BDC,∠AEB=∠DCB,∴∠ABM=∠DBN,∠EBM=∠NBC,∴∠ABC=2∠DBN+2∠EBM=180°,∴∠EBN+∠EBM=90°,∴BM⊥BN.点评:本题考查了全等三角形的性质和判定,直角三角形斜边上中线性质,等腰三角形的性质的应用,主要考查学生的推理能力.。

人教版八年级数学上 度第一学期期中测试卷.docx

人教版八年级数学上  度第一学期期中测试卷.docx

图10CADBE ABDCEF图9初中数学试卷桑水出品2016学年度第一学期期中测试卷八年级数学一、选择题(每小题3分,共30分)1.如图所示,图中不是轴对称图形的是( )A B C D 2. 已知△ABC ≌△DEF ,∠A=80°,∠E=40°,则∠F 等于 ( )A 、 80°B 、40°C 、 120°D 、 60° 3.已知等腰三角形的两边长分别为3和6,则它的周长等于( )A. 12B. 12或15C. 15D. 15或18 4..下列各组图形中,是全等形的是 ( )A.两个含60°角的直角三角形B.腰对应相等的两个等腰直角三角形C.边长为3和4的两个等腰三角形D.一个钝角相等的两个等腰三角形 5.如图5,为估计池塘岸边A 、B 两点的距离,小方在池塘的一侧选取一点O ,测得15=OA 米,10=OB 米,A 、B 间的距离不可能是 ( )米A . 20B .10C . 15D . 5图5 图66.如图6,△ABC 中,AB=AC ,∠A=36°,AB 的垂直平分线DE 交AC 于D ,交AB 于E ,则∠BDC 的度数为( )A.72°B.36°C.60°D.82°7.已知等腰三角形一腰上的高线与另一腰的夹角为50°,那么这个等腰三角形的顶角等于( ) A.15°或75° B.140° C. 40° D. 140°或40° ()8.点M (—1,2)关于y 轴对称的点的坐标为( )A.(-1,-2)B.(1,2)C.(1,-2)D.(2,-1)9.如图9所示,在△ABC 中,已知点D ,E ,F 分别是BC ,AD ,CE 的中点,且ABC S △=4平方厘米,则BEF S △的值为 ( ) A 、2平方厘米 B 、1平方厘米 C 、12平方厘米 D 、14平方厘米 10.如图10所示,△ABC 中,∠C =90°,点D 在AB 上,BC=BD ,DE ⊥AB 交AC 于点E .△ABC 的周长为12,△ADE 的周长为6.则BC 的长为( )A 、3B 、4C 、5D 、6二、填空题(每题3分,共18分)11.小明上午在理发店理发时,从镜子内看到背后墙上普通时钟的时针与分针的位置如图所示,此时时间是_____.12.如图,直线l ∥m ,将含有45°角的三角形板ABC 的直角顶点C 放在直线m 上,若∠1=25°,则∠2的度数为__________. 13.已知△ABC ≌△DEF , 且∠A =30°, ∠E =75°, 则∠F = .14.△ABC 中,∠A=1000,BI 、CI 分别平分∠ABC ,∠ACB ,则∠BIC=若BN 、CN 分别平分∠ABC ,∠ACB 的外角平分线,则∠N=15..如图4, 已知AB =AC , ∠A =40°, AB 的垂直平分线MN 交AC 于点D ,则∠DBC = _______度.16. 如图:点P 为∠AOB 内一点,分别作出P 点关于OA 、OB 的对称点P 1,P 2,连接P 1P 2交OA 于M ,交OB 于N ,P 1P 2=15,则△PMN 的周长为 .P 1MB 1(第12题图)2ACB图4NMDC BA图8ABCDE三、解答题(共102分)17.(8分)如图,点E 、F 在BC 上,BE=FC ,AB=DC ,∠B=∠C . 求证:∠A=∠D .18、(8分)如图,在△ABC 中,AD 平分∠BAC ,点D 是BC 的中点,DE ⊥AB 于点E ,DF ⊥AC 于点F . 求证:∠B=∠C .19.(9分)如图8,在ABC ∆中,090=∠ACB ,CE BE BC AC ⊥=,于E ,AD CE ⊥于D , ,5cm AD =cm DE 3=,你知道BE 的长吗?20.(9分)如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题:(用直尺画图) (1)画出格点△ABC (顶点均在格点上)关于直线DE 对称的△A 1B 1C 1 (2)在DE 上画出点P ,使PC PB +1最小;(3)在DE 上画出点Q ,使QC QA +最小。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016-2017学年八年级(上)期中数学试卷一.选择题(每题3分.共30分)1.下列运算正确的是( )A.=±2 B.=±3 C.=﹣2 D.﹣|﹣2|=22.下列运算正确的是( )A.a3•a2=a6B.(a2b)3=a6b3C.a8÷a2=a4D.a+a=a23.在实数,0,,,0.1010010001…,,中无理数有( )A.0个B.1个C.2个D.3个4.大家知道是一个无理数,那么﹣1在哪两个整数之间( )A.1与2 B.2与3 C.3与4 D.4与55.下列从左边到右边的变形,属于因式分解的是( )A.(x+1)(x﹣1)=x2﹣1 B.x2﹣2x+1=x(x﹣2)+1C.x2﹣4y2=(x+4y)(x﹣4y)D.x2﹣x﹣6=(x+2)(x﹣3)6.下列多项式在有理数范围内能用平方差公式进行因式分解的是( )A.x2+y2B.﹣x2+y2C.﹣x2﹣y2D.x2﹣3y7.下列说法正确的是( )A.无限小数是无理数 B.不循环小数是无理数C.无理数的相反数还是无理数 D.两个无理数的和还是无理数8.如果(x+m)(x﹣n)中不含x的一次项,则m、n满足( )A.m=n B.m=0 C.m=﹣n D.n=09.化简:(a+1)2﹣(a﹣1)2=( )A.2 B.4 C.4a D.2a2+210.我们已经接触了很多代数恒等式,知道可以用一些硬纸片拼成的图形面积来解释一些代数恒等式.例如图甲可以用来解释(a+b)2﹣(a﹣b)2=4ab.那么通过图乙面积的计算,验证了一个恒等式,此等式是( )A.a2﹣b2=(a+b)(a﹣b)B.(a﹣b)(a+2b)=a2+ab﹣b2C.(a﹣b)2=a2﹣2ab+b2D.(a+b)2=a2+2ab+b2二.填空题(每题3分,共30分)11.满足﹣<x的整数x有__________个.12.计算:①(﹣a)2•(﹣a)3=__________;②(﹣3x2)3=__________.13.计算:①399×401=__________;②0.252006×42007=__________.14.若多项式4x2+kx+1是一个完全平方式,则k=__________.15.若a2+2a=1,则3a2+6a+1=__________.16.若9m=6,3n=2,则32m﹣n=__________.17.当x__________时,有意义.18.如果x、y为实数,且,则x+y=__________.19.当a2=64时,=__________.20.计算(3﹣1)(32+1)(34+1)(38+1)(316+1)=__________.三.解答题21.计算题(1)(﹣a2b)2•(6ab)÷(﹣3b2)(2)(3x﹣y)2﹣(3x+2y)(3x﹣2y)22.将下列各式因式分解:(1)8a2+4ab+2a(2)n2(m﹣2)+4(2﹣m)(3)(a2+b2)2﹣4a2b2(4)a2+b2﹣2ab﹣1.23.先化简,再求值:(1)(a+b)2﹣2a(b+1)﹣a2,其中a=﹣,b=2(2)a(2﹣a)﹣(a+1)(a﹣1)+(a﹣1)2,其中a=.24.已知a+b=3,ab=﹣1.求代数式下列代数式的值①a2+b2②(a﹣b)2.25.有这样一道计算题:“求[(a﹣2b)2+(a+2b)2﹣2(a+2b)(a﹣2b)]÷(﹣3b)的值,其中a=﹣,b=6.”小明同学误把a=﹣抄成a=,但他计算的最后结果也是正确的.请你帮他找一找原因,并求出这个结果.26.数a、b在数轴上的位置如图所示,化简:.27.对于实数a,b,c,d,规定一种运算=ad﹣bc,那么当=27时,求x的值.28.已知a2+b2+2a﹣4b+5=0,试求a2﹣b2的值.29.已知关于x的方程x2﹣6x+1=0.求:(1)x+的值;(2)x2+的值.2016-2017学年八年级(上)期中数学试卷一.选择题(每题3分.共30分)1.下列运算正确的是( )A.=±2 B.=±3 C.=﹣2 D.﹣|﹣2|=2【考点】立方根;绝对值;算术平方根.【分析】根据算术平方根、立方根,即可解答.【解答】解:A、=2,故错误;B、=3,故错误;C、=﹣2,正确;D、﹣|﹣2|=﹣2,故错误;故选:C.【点评】本题考查了算术平方根、立方根,解决本题的关键是熟记平方根、立方根的定义.2.下列运算正确的是( )A.a3•a2=a6B.(a2b)3=a6b3C.a8÷a2=a4D.a+a=a2【考点】同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据同底数幂的乘法、幂的乘方及同底数幂的除法法则,分别进行各选项的判断即可.【解答】解:A、a3•a2=a5,故本选项错误;B、(a2b)3=a6b3,故本选项正确;C、a8÷a2=a6,故本选项错误;D、a+a=2a,故本选项错误.故选B.【点评】本题考查了幂的乘方、同底数幂的乘除法及合并同类项的法则,属于基础题,掌握各部分的运算法则是关键.3.在实数,0,,,0.1010010001…,,中无理数有( )A.0个B.1个C.2个D.3个【考点】无理数.【分析】根据无理数的定义即可判断选择项.【解答】解:在实数,0,,,0.1010010001…,,中,=2是整数,0是整数,是分数,=0.5是小数这4个数是有理数,0.1010010001…,,这3个数是无理数.故选D.【点评】本题主要考查无理数等知识点,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.4.大家知道是一个无理数,那么﹣1在哪两个整数之间( )A.1与2 B.2与3 C.3与4 D.4与5【考点】估算无理数的大小.【分析】应先找到所求的无理数在哪两个和它接近的整数之间,然后判断出所求的无理数的范围.【解答】解:∵4<5<9,∴2<<3,∴1<﹣1<2.故选A.【点评】此题主要考查了估算无理数的大小的能力,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.5.下列从左边到右边的变形,属于因式分解的是( )A.(x+1)(x﹣1)=x2﹣1 B.x2﹣2x+1=x(x﹣2)+1C.x2﹣4y2=(x+4y)(x﹣4y)D.x2﹣x﹣6=(x+2)(x﹣3)【考点】因式分解的意义.【专题】常规题型.【分析】把一个多项式化为几个最简整式的积的形式,这种变形叫做把这个多项式因式分解,也叫作分解因式.据此作答.【解答】解:A、和因式分解正好相反,故不是分解因式;B、结果中含有和的形式,故不是分解因式;C、x2﹣4y2=(x+2y)(x﹣2y),解答错误;D、是分解因式.故选:D.【点评】此题考查因式分解的意义,掌握概念是关键.6.下列多项式在有理数范围内能用平方差公式进行因式分解的是( )A.x2+y2B.﹣x2+y2C.﹣x2﹣y2D.x2﹣3y【考点】因式分解-运用公式法.【分析】能用平方差公式分解的多项式的特点是:(1)有两项;(2)是“两数”或“两项”的平方差.【解答】解:A、x2+y2,两平方项符号相同,故此选项错误;B、﹣x2+y2=(x+y)(y﹣x),故此选项正确;C、﹣x2﹣y2﹣=﹣[m2+n2],两平方项符号相同,故此选项错误;D、x2﹣3y两平方项符号相反,但是次数不同,故此选项错误;故选:B.【点评】此题主要考查了用平方差公式分解的多项式的特点,是两平方项,并且符号相反.7.下列说法正确的是( )A.无限小数是无理数 B.不循环小数是无理数C.无理数的相反数还是无理数 D.两个无理数的和还是无理数【考点】无理数.【分析】A、根据无理数的定义即可判定;B、根据无理数的定义即可判定;C、根据无理数的性质即可判定;D、根据无理数的性质即可判定.【解答】解:A、0.333…是无限小数也是有理数,故选项错误;B、0.3030030003就是有理数,故选项错误;C、无理数的相反数还是无理数,故选项正确;D、+(﹣)=0,和就是有理数,故选项错误.故选C.【点评】本题主要考查了无理数的概念,是需要识记的内容.8.如果(x+m)(x﹣n)中不含x的一次项,则m、n满足( )A.m=n B.m=0 C.m=﹣n D.n=0【考点】多项式乘多项式.【分析】把式子展开,找到所有x项的所有系数,令其为0,可求出m的值.【解答】解:∵(x+m)(x﹣n)=x2﹣nx+mx﹣mn=x2+(m﹣n)x﹣mn,又∵结果中不含x的一次项,∴m﹣n=0,即m=n.故选A.【点评】本题主要考查了多项式乘多项式的运算,注意当要求多项式中不含有哪一项时,应让这一项的系数为0.9.化简:(a+1)2﹣(a﹣1)2=( )A.2 B.4 C.4a D.2a2+2【考点】平方差公式.【专题】计算题.【分析】将a+1和a﹣1看成一个整体,用平方差公式解答.【解答】解:(a+1)2﹣(a﹣1)2,=[(a+1)﹣(a﹣1)][(a+1)+(a﹣1)],=2×2a,=4a.故选:C.【点评】本题考查了平方差公式,关键是将a+1和a﹣1看成一个整体,并熟练掌握平方差公式:(a﹣b)(a+b)=a2﹣b2.10.我们已经接触了很多代数恒等式,知道可以用一些硬纸片拼成的图形面积来解释一些代数恒等式.例如图甲可以用来解释(a+b)2﹣(a﹣b)2=4ab.那么通过图乙面积的计算,验证了一个恒等式,此等式是( )A.a2﹣b2=(a+b)(a﹣b)B.(a﹣b)(a+2b)=a2+ab﹣b2C.(a﹣b)2=a2﹣2ab+b2D.(a+b)2=a2+2ab+b2【考点】完全平方公式的几何背景.【分析】根据空白部分的面积等于大正方形的面积减去两个长方形的面积再加上右上角小正方形的面积列式整理即可得解.【解答】解:空白部分的面积:(a﹣b)2,还可以表示为:a2﹣2ab+b2,所以,此等式是(a﹣b)2=a2﹣2ab+b2.故选C.【点评】本题考查了完全平方公式的几何背景,利用两种方法表示出空白部分的面积是解题的关键.二.填空题(每题3分,共30分)11.满足﹣<x的整数x有4个.【考点】估算无理数的大小.【分析】利用﹣以及的取值范围得出﹣<x的整数个数.【解答】解:∵﹣<﹣<﹣,1<<,∴﹣<x的整数x有:﹣2,﹣1,0,1故有4个.故答案为:4.【点评】此题主要考查了估计无理数的大小,得出﹣以及的取值范围是解题关键.12.计算:①(﹣a)2•(﹣a)3=﹣a5;②(﹣3x2)3=﹣27x6.【考点】幂的乘方与积的乘方;同底数幂的乘法.【分析】根据幂的乘方和积的乘方运算法则求解.【解答】解:①原式=﹣a5;②原式=﹣27x6.故答案为:﹣a5;﹣27x6.【点评】本题考查了幂的乘方和积的乘方,掌握运算法则是解答本题的关键.13.计算:①399×401=159999;②0.252006×42007=4.【考点】平方差公式;幂的乘方与积的乘方.【分析】①399=400﹣1,401=400+1,将其代入399×401中,利用平方差公式进行解答;②先把0.252006化为4﹣2006,然后再计算就简单了.【解答】解:①399×401=(400﹣1)(400+1)=4002﹣1=160000﹣1=159999.②0.252006×42007=4﹣2006×42007=42007﹣2006=4.故答案是:159999;4.【点评】本题考查了平方差公式和幂的乘方与积的乘方.运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方.14.若多项式4x2+kx+1是一个完全平方式,则k=±4.【考点】完全平方式.【分析】完全平方式有两个:a2+2ab+b2和a2﹣2ab+b2,得出k=±2×2×1,求出即可.【解答】解:∵4x2+kx+1是一个完全平方式,∴k=±2×2×1=±4,故答案为:±4.【点评】本题考查了对完全平方式的应用,解此题的关键是得出k=±2×2×1,注意:完全平方式有两个:a2+2ab+b2和a2﹣2ab+b2.15.若a2+2a=1,则3a2+6a+1=4.【考点】代数式求值.【专题】计算题.【分析】原式前两项提取3变形后,把已知等式代入计算即可求出值.【解答】解:∵a2+2a=1,∴原式=3(a2+2a)+1=3+1=4.故答案为:4【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键.16.若9m=6,3n=2,则32m﹣n=3.【考点】同底数幂的除法;幂的乘方与积的乘方.【分析】根据同底数幂的除法,底数不变指数相减,把要求的式子进行变形,再代入计算即可.【解答】解:∵9m=32m=6,3n=2,∴32m﹣n=32m÷3n=6÷2=3;故答案为:3.【点评】本题考查同底数幂的除法,熟练掌握同底数幂的除法,底数不变指数相减是本题的关键.17.当x≥时,有意义.【考点】二次根式有意义的条件.【专题】计算题.【分析】根据二次根式的意义,被开方数是非负数,列不等式,求解集即可.【解答】解:根据题意得:3x﹣1≥0,解得x≥.【点评】本题主要考查自变量的取值范围,函数关系中主要有二次根式.根据二次根式的意义,被开方数是非负数.18.如果x、y为实数,且,则x+y=0.【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【分析】根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.【解答】解:根据题意得,x+2=0,y﹣2=0,解得x=﹣2,y=2,所以,x+y=﹣2+2=0.故答案为:0.【点评】本题考查了平方数非负数,算术平方根非负数的性质,根据几个非负数的和等于0,则每一个算式都等于0列式是解题的关键.19.当a2=64时,=±2.【考点】立方根;算术平方根.【分析】由于a2=64时,根据平方根的定义可以得到a=±8,再利用立方根的定义即可计算a 的立方根.【解答】解:∵a2=64,∴a=±8.∴=±2.【点评】本题主要考查了立方根的概念.如果一个数x的立方等于a,即x的三次方等于a (x3=a),那么这个数x就叫做a的立方根,也叫做三次方根.20.计算(3﹣1)(32+1)(34+1)(38+1)(316+1)=(332﹣1).【考点】平方差公式.【分析】原式乘以×(3+1),再依次运用平方差公式进行计算即可.【解答】解:原式=(3+1)(3﹣1)(32+1)(34+1)(38+1)(316+1)=(32﹣1)(32+1)(34+1)(38+1)(316+1)=(34﹣1)(34+1)(38+1)(316+1)=(38﹣1)(38+1)(316+1)=(316﹣1)(316+1)=(332﹣1),故答案为:(332﹣1).【点评】本题考查了平方差公式的应用,注意:平方差公式为(a+b)(a﹣b)=a2﹣b2.三.解答题21.计算题(1)(﹣a2b)2•(6ab)÷(﹣3b2)(2)(3x﹣y)2﹣(3x+2y)(3x﹣2y)【考点】整式的混合运算.【分析】(1)首先计算乘方,然后进行乘法计算,最后进行除法计算即可;(2)首先利用完全平方公式和平方差公式计算,然后合并同类项即可求解.【解答】解:(1)原式=a4b2•6ab÷(﹣3b2)=6a5b3÷(﹣3b2)=﹣2a5b;(2)原式=9x2+y2﹣6xy﹣(9x2﹣4y2)=9x2+y2﹣6xy﹣9x2+4y2=5y2﹣6xy.【点评】本题主要考查整式的混合运算,理解完全平方公式和平方差公式的运用,熟记公式是解题的关键.22.将下列各式因式分解:(1)8a2+4ab+2a(2)n2(m﹣2)+4(2﹣m)(3)(a2+b2)2﹣4a2b2(4)a2+b2﹣2ab﹣1.【考点】提公因式法与公式法的综合运用.【分析】(1)提取公因式2a整理即可;(2)先提取公因式(m﹣2),再对余下的多项式利用平方差公式继续分解;(3)先利用平方差公式分解,再利用完全平方公式继续分解因式;(4)将前三项组成一组,利用完全平方公式分解,然后再利用平方差公式继续分解因式.【解答】解:(1)8a2+4ab+2a,=2a(4a+2b+1);(2)n2(m﹣2)+4(2﹣m),=(m﹣2)(n2﹣4),=(m﹣2)(n+2)(n﹣2);(3)(a2+b2)2﹣4a2b2,=(a2+2ab+b2)(a2﹣2ab+b2),=(a+b)2(a﹣b)2;(4)a2+b2﹣2ab﹣1,=(a2+b2﹣2ab)﹣1,=(a﹣b)2﹣1,=(a﹣b+1)(a﹣b﹣1).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.23.先化简,再求值:(1)(a+b)2﹣2a(b+1)﹣a2,其中a=﹣,b=2(2)a(2﹣a)﹣(a+1)(a﹣1)+(a﹣1)2,其中a=.【考点】整式的混合运算—化简求值.【分析】(1)先算乘法,再合并同类项,最后代入求出即可;(2)先算乘法,再合并同类项,最后代入求出即可.【解答】解:(1)(a+b)2﹣2a(b+1)﹣a2=a2+2ab+b2﹣2ab﹣2a﹣a2=b2﹣2a,当a=﹣,b=2时,原式=22﹣2×(﹣)=5;(2)a(2﹣a)﹣(a+1)(a﹣1)+(a﹣1)2=2a﹣a2﹣a2+1+a2﹣2a+1=﹣a2+2,当a=时,原式=﹣()2+2=﹣1.【点评】本题考查了整式的混合运算和求值的应用,能正确运用整式的运算法则进行化简是解此题的关键.24.已知a+b=3,ab=﹣1.求代数式下列代数式的值①a2+b2②(a﹣b)2.【考点】完全平方公式.【分析】根据完全平方公式,即可解答.【解答】解:(1)a2+b2=(a+b)2﹣2ab=32﹣2×(﹣1)=11.(2)(a﹣b)2=(a+b)2﹣4ab=32﹣4×(﹣1)=13.【点评】本题考查了完全平方公式,解决本题的关键是熟记完全平方公式.25.有这样一道计算题:“求[(a﹣2b)2+(a+2b)2﹣2(a+2b)(a﹣2b)]÷(﹣3b)的值,其中a=﹣,b=6.”小明同学误把a=﹣抄成a=,但他计算的最后结果也是正确的.请你帮他找一找原因,并求出这个结果.【考点】整式的混合运算—化简求值.【分析】首先利用乘法公式去括号,进而合并同类项,进而分析得出即可.【解答】解:原式=[(a﹣2b)2+(a+2b)2﹣2(a+2b)(a﹣2b)]÷(﹣3b)=[a2+4b2﹣4ab+a2+4b2+4ab﹣2(a2﹣4b2)]÷(﹣3b)=8b2÷(﹣3b)=﹣b,故化简结果只含有字母b,不含字母a,故把a抄错,并不影响结果.原式的值为:﹣×6=﹣16.【点评】此题主要考查了整式的混合运算,正确应用乘法公式是解题关键.26.数a、b在数轴上的位置如图所示,化简:.【考点】二次根式的性质与化简;实数与数轴.【专题】常规题型.【分析】根据数轴判断出a、b的取值范围,然后判断出a+1,b﹣1,a﹣b的正负情况,再根据二次根式的性质去掉根号,进行计算即可得解.【解答】解:根据图形可得,﹣2<a<﹣1,1<b<2,所以﹣1<a+1<0,0<b﹣1<1,a﹣b<0,所以,=﹣(a+1)+(b﹣1)+(a﹣b),=﹣a﹣1+b﹣1+a﹣b,=﹣2.【点评】本题考查了二次根式的性质与化简,实数与数轴.根据图形判断出a、b的取值范围,是解题的关键.27.对于实数a,b,c,d,规定一种运算=ad﹣bc,那么当=27时,求x的值.【考点】整式的混合运算;解一元一次方程.【专题】新定义.【分析】根据题中的新定义化简所求式子,计算即可求出解.【解答】解:根据题意得:=(x+1)(x﹣1)﹣(x﹣3)(x+2)=27,整理得:x2﹣1﹣x2﹣2x+3x+6=27,移项合并得:x=22.【点评】此题考查了整式的混合运算,以及解一元一次方程,弄清题中的新定义是解本题的关键.28.已知a2+b2+2a﹣4b+5=0,试求a2﹣b2的值.【考点】配方法的应用;非负数的性质:偶次方.【分析】已知等式左边变形后,利用非负数的性质求出a与b的值,即可确定出所求式子的值.【解答】解:∵a2+b2+2a﹣4b+5=(a+1)2+(b﹣2)2=0,∴a+1=0,b﹣2=0,即a=﹣1,b=2,则a2﹣b2=1﹣4=﹣3.【点评】此题考查了配方法的应用,以及非负数的性质,熟练掌握完全平方公式是解本题的关键.29.已知关于x的方程x2﹣6x+1=0.求:(1)x+的值;(2)x2+的值.【考点】完全平方公式.【分析】根据完全平方公式,即可解答.【解答】解:(1)x2﹣6x+1=0x﹣6+=0x=6.(2).【点评】本题考查了完全平方公式,解决本题的关键是熟记完全平方公式.。

相关文档
最新文档