初二数学上册期末考试试题及答案

合集下载

人教版数学八年级上册期末考试试题含答案解析

人教版数学八年级上册期末考试试题含答案解析

人教版数学八年级上册期末考试试卷一、选择題(共10小题,每小题3分,总分30分)1.若分式有意义,则x应满足的条件是()A.x≠0B.x≥3C.x≠3D.x≤32.若下列各组值代表线段的长度,能组成三角形的是()A.1、2、3.5B.4、5、9C.5、15、8D.20、15、83.如图,AB=AD,BC=CD,那么全等三角形的对数是()A.1B.2C.3D.44.如图,在△ABC中,∠C=90°,∠ABC=60°,BD平分∠ABC,若AD=6,则CD等于()A.3B.4C.5D.65.下列运算中正确的是()A.(x3)2=x5B.2a﹣5•a3=2a8C.6x3÷(﹣3x2)=2x D.3﹣2=6.如图,已知∠1=∠2,要得到△ABD≌△ACD,还需从下列条件中补选一个,则错误的选法是()A.AB=AC B.DB=DC C.∠ADB=∠ADC D.∠B=∠C7.下列图形中,不一定是轴对称图形的是()A.直角三角形B.线段C.钝角D.等腰三角形8.如果=3,则=()A.B.xy C.4D.9.货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少?设货车的速度为x千米/小时,依题意列方程正确的是()A.B.C.D.10.如图所示的正方形网格中,网格线的交点称为格点.已知A、B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则点C的个数是()A.6B.7C.8D.9二、填空題(共8小题,每小題3分,满分24分)11.若分式的值为0,则x的值为.12.三角形三边的长分别为8、19、a,则边a的取值范围是.13.已知x2+mx+9是完全平方式,则常数m等于.14.已知点A(a,1)和B(2,b)关于x轴对称,则(a+b)2015=.15.已知:a+b=,ab=1,化简(a﹣2)(b﹣2)的结果是.16.分解因式:3a3﹣12a=.17.在△ABC中,AB=AC,AB的垂直平分线DE交AC于D,交AB于E,∠ADE=50°,则∠B=.18.如图,在△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,且AB=8cm,则△BED的周长是.三、解答題(本大题共6小题,共计46分)19.解方程:﹣=0.20.一个多边形内角和是一个四边形内角和的4倍,请求出这个多边形的边数.21.如图,在平面直角坐标系xOy中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)求出△ABC的面积.(2)在图中作出△ABC关于y轴的对称图形△A1B1C1.(3)写出点A1,B1,C1的坐标.22.先化简,再求值:÷(1+),其中x=﹣1.23.如图1,在△ABC中,AB=AC,点D是BC的中点,点E在AD上.(1)求证:BE=CE;(2)如图2,若BE的延长线交AC于点F,且BF⊥AC,垂足为F,∠BAC=45°,原题设其它条件不变.求证:△AEF≌△BCF.24.一项工程,甲,乙两公司合作,12天可以完成,共需付施工费102000元;如果甲,乙两公司单独完成此项工程,乙公司所用时间是甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1500元.(1)甲,乙两公司单独完成此项工程,各需多少天?(2)若让一个公司单独完成这项工程,哪个公司的施工费较少?参考答案与试题解析一、选择題(共10小题,每小题3分,总分30分)1.若分式有意义,则x应满足的条件是()A.x≠0B.x≥3C.x≠3D.x≤3【考点】分式有意义的条件.【专题】压轴题.【分析】本题主要考查分式有意义的条件:分母≠0.【解答】解:∵x﹣3≠0,∴x≠3.故选C.【点评】本题考查的是分式有意义的条件.当分母不为0时,分式有意义.2.若下列各组值代表线段的长度,能组成三角形的是()A.1、2、3.5B.4、5、9C.5、15、8D.20、15、8【考点】三角形三边关系.【专题】探究型.【分析】根据三角形两边之和大于第三边和两边之差小于第三边可以判断选项中的数据是否能组成三角形,本题得以解决.【解答】解:∵1+2<3.5,∴选项A中的数据不能组成三角形;∵4+5=9,∴选项B中的数据不能组成三角形;∵5+8<15∴选项C中的数据不能组成三角形;∵15+8>20∴选项D中的数据能组成三角形;故选D.【点评】本题考查三角形三边的关系,解题的关键是明确三角形两边之和大于第三边和两边之差小于第三边.3.如图,AB=AD,BC=CD,那么全等三角形的对数是()A.1B.2C.3D.4【考点】全等三角形的判定.【分析】先根据SSS推出△ABC≌△ADC,推出∠1=∠2,∠3=∠4,再根据SAS即可推出△ABO≌△ADO,△CBO≌△CDO.【解答】解:全等三角形有△ABC≌△ADC,△ABO≌△ADO,△CBO≌△CDO,共3对,故选C.【点评】本题考查了全等三角形的性质和判定的应用,注意:全等三角形的判定定理是:SAS,ASA,AAS,SSS.4.如图,在△ABC中,∠C=90°,∠ABC=60°,BD平分∠ABC,若AD=6,则CD等于()A.3B.4C.5D.6【考点】含30度角的直角三角形.【分析】由于∠C=90°,∠ABC=60°,可以得到∠A=30°,又由BD平分∠ABC,可以推出∠CBD=∠ABD=∠A=30°,BD=AD=6,再30°角所对的直角边等于斜边的一半即可求出结果.【解答】解:∵∠C=90°,∠ABC=60°,∴∠A=30°,∵BD平分∠ABC,∴∠CBD=∠ABD=∠A=30°,∴BD=AD=6,∴CD=BD=6×=3.故选A.【点评】本题主要考查了等腰三角形的性质和判定,三角形的内角和定理,含30度角的直角三角形性质的应用,关键是求出BD的长和得出CD=BD.5.下列运算中正确的是()A.(x3)2=x5B.2a﹣5•a3=2a8C.6x3÷(﹣3x2)=2x D.3﹣2=【考点】整式的除法;幂的乘方与积的乘方;负整数指数幂.【分析】根据幂的乘方、单项式的乘方、除法法则以及负指数次幂的意义即可判断.【解答】解:A、(x3)2=x6,选项错误;B、2a﹣5•a3=2a﹣2=,选项错误;C、6x3÷(﹣3x2)=﹣2x,选项错误;D、3﹣2==,选项正确.故选D.【点评】本题考查了单项式除单项式,用整式乘除解决实际问题时要注意分清量与量之间存在的数量关系.6.如图,已知∠1=∠2,要得到△ABD≌△ACD,还需从下列条件中补选一个,则错误的选法是()A.AB=AC B.DB=DC C.∠ADB=∠ADC D.∠B=∠C【考点】全等三角形的判定.【分析】先要确定现有已知在图形上的位置,结合全等三角形的判定方法对选项逐一验证,排除错误的选项.本题中C、AB=AC与∠1=∠2、AD=AD组成了SSA是不能由此判定三角形全等的.【解答】解:A、∵AB=AC,∴,∴△ABD≌△ACD(SAS);故此选项正确;B、当DB=DC时,AD=AD,∠1=∠2,此时两边对应相等,但不是夹角对应相等,故此选项错误;C、∵∠ADB=∠ADC,∴,∴△ABD≌△ACD(ASA);故此选项正确;D、∵∠B=∠C,∴,∴△ABD≌△ACD(AAS);故此选项正确.故选:B.【点评】本题考查了三角形全等的判定定理,普通两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,但SSA无法证明三角形全等.7.下列图形中,不一定是轴对称图形的是()A.直角三角形B.线段C.钝角D.等腰三角形【考点】轴对称图形.【分析】根据轴对称图形的概念容易得出结果.【解答】解:B、C、D都是轴对称图形;A、不一定是轴对称图形,若三角形不是等腰直角三角形就不是轴对称图形.故选:A.【点评】本题考查了轴对称图形的知识,注意掌握轴对称图形的判断方法:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.8.如果=3,则=()A.B.xy C.4D.【考点】分式的基本性质.【专题】计算题.【分析】由=3,得x=3y,再代入所求的式子化简即可.【解答】解:由=3,得x=3y,把x=3y代入==4,故选C.【点评】找出x、y的关系,代入所求式进行约分.9.货车行驶25千米与小车行驶35千米所用时间相同,已知小车每小时比货车多行驶20千米,求两车的速度各为多少?设货车的速度为x千米/小时,依题意列方程正确的是()A.B.C.D.【考点】由实际问题抽象出分式方程.【分析】题中等量关系:货车行驶25千米与小车行驶35千米所用时间相同,列出关系式.【解答】解:根据题意,得.故选:C.【点评】理解题意是解答应用题的关键,找出题中的等量关系,列出关系式.10.如图所示的正方形网格中,网格线的交点称为格点.已知A、B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则点C的个数是()A.6B.7C.8D.9【考点】等腰三角形的判定.【专题】分类讨论.【分析】根据题意,结合图形,分两种情况讨论:①AB为等腰△ABC底边;②AB为等腰△ABC其中的一条腰.【解答】解:如上图:分情况讨论.①AB为等腰△ABC底边时,符合条件的C点有4个;②AB为等腰△ABC其中的一条腰时,符合条件的C点有4个.故选:C.【点评】本题考查了等腰三角形的判定;解答本题关键是根据题意,画出符合实际条件的图形,再利用数学知识来求解.数形结合的思想是数学解题中很重要的解题思想.二、填空題(共8小题,每小題3分,满分24分)11.若分式的值为0,则x的值为3.【考点】分式的值为零的条件.【专题】计算题.【分析】分式的值为0的条件是:(1)分子为0;(2)分母不为0.两个条件需同时具备,缺一不可.据此可以解答本题.【解答】解:由题意可得x﹣3=0且x+3≠0,解得x=3.故答案为:3.【点评】本题主要考查了分式的值为0的条件.由于该类型的题易忽略分母不为0这个条件,所以常以这个知识点来命题.12.三角形三边的长分别为8、19、a,则边a的取值范围是11<a<27.【考点】三角形三边关系.【专题】推理填空题.【分析】根据三角形中的两边之和大于第三边和两边之差小于第三边进行计算即可解答本题.【解答】解:∵三角形三边的长分别为8、19、a,∴19﹣8<a<19+8,∴11<a<27,故答案为:11<a<27.【点评】本题考查三角形的三边关系,解题的关键是明确两边之和大于第三边和两边之差小于第三边.13.已知x2+mx+9是完全平方式,则常数m等于±6.【考点】完全平方式.【分析】完全平方式有a2+2ab+b2和a2﹣2ab+b2两个,根据已知得出mx=±2•x•3,求出即可.【解答】解:x2+mx+9=x2+mx+32,∵x2+mx+9是完全平方式,∴mx=±2•x•3,解得:m=±6,故答案为:±6.【点评】本题考查了对完全平方式的应用,能求出符合的两个值是解此题的关键,注意:完全平方式有a2+2ab+b2和a2﹣2ab+b2两个.14.已知点A(a,1)和B(2,b)关于x轴对称,则(a+b)2015=1.【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于x轴对称的点,横坐标相同,纵坐标互为相反数,可得a、b的值,根据1的任何次幂都是1,可得答案.【解答】解:由点A(a,1)和B(2,b)关于x轴对称,得a=2,b=﹣1.(a+b)2015=1,故答案为:1.【点评】本题考查了关于x轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.15.已知:a+b=,ab=1,化简(a﹣2)(b﹣2)的结果是2.【考点】整式的混合运算—化简求值.【专题】整体思想.【分析】根据多项式相乘的法则展开,然后代入数据计算即可.【解答】解:(a﹣2)(b﹣2)=ab﹣2(a+b)+4,当a+b=,ab=1时,原式=1﹣2×+4=2.故答案为:2.【点评】本题考查多项式相乘的法则和整体代入的数学思想.16.分解因式:3a3﹣12a=3a(a+2)(a﹣2).【考点】提公因式法与公式法的综合运用.【分析】先提取公因式3a,再对余下的多项式利用平方差公式继续分解.【解答】解:3a3﹣12a=3a(a2﹣4),=3a(a+2)(a﹣2).故答案为:3a(a+2)(a﹣2).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.17.在△ABC中,AB=AC,AB的垂直平分线DE交AC于D,交AB于E,∠ADE=50°,则∠B=70°.【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】根据线段垂直平分线的概念得到∠AED=90°,求出∠A=40°,根据三角形内角和定理和等腰三角形的性质计算即可.【解答】解:∵DE是AB的垂直平分线,∴DE⊥AB,∴∠AED=90°,又∠ADE=50°,∴∠A=40°,又AB=AC,∴∠B=∠C=70°,故答案为:70°.【点评】本题考查的是线段垂直平分线的概念和等腰三角形的性质,掌握三角形内角和等于180°、等腰三角形等边对等角是解题的关键.18.如图,在△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于E,且AB=8cm,则△BED的周长是8cm.【考点】角平分线的性质;等腰直角三角形.【分析】根据角平分线上的点到角的两边的距离相等可得CD=DE,再根据“HL”证明△ACD和△AED 全等,根据全等三角形对应边相等可得AC=AE,然后求出△BED的周长=AB,即可得解.【解答】解:∵∠C=90°,AD平分∠CAB,DE⊥AB,∴CD=DE,在△ACD和△AED中,,∴△ACD≌△AED(HL),∴AC=AE,∴△BED的周长=DE+BD+BE,=BD+CD+BE,=BC+BE,=AC+BE,=AE+BE,=AB,∵AB=8cm,∴△BED的周长是8cm.故答案为:8cm.【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,全等三角形的判定与性质,熟记性质并求出△BED的周长=AB是解题的关键.三、解答題(本大题共6小题,共计46分)19.解方程:﹣=0.【考点】解分式方程.【专题】计算题.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:4x﹣8﹣3x=0,解得:x=8,经检验x=8是分式方程的解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.20.一个多边形内角和是一个四边形内角和的4倍,请求出这个多边形的边数.【考点】多边形内角与外角.【分析】设这个多边形的边数为n,根据n边形的内角和的计算公式(n﹣2)•180°列出方程,解方程即可.【解答】解:设这个多边形的边数为n,由题意得,(n﹣2)×180°=360°×4,解得:n=10.答:这个多边形的边数为10.【点评】本题考查的是多边形的内角和和外角和的计算,掌握n边形的内角和的计算公式:(n﹣2)•180°是解题的关键.21.如图,在平面直角坐标系xOy中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)求出△ABC的面积.(2)在图中作出△ABC关于y轴的对称图形△A1B1C1.(3)写出点A1,B1,C1的坐标.【考点】作图-轴对称变换.【专题】综合题.【分析】(1)根据网格可以看出三角形的底AB是5,高是C到AB的距离,是3,利用面积公式计算.(2)从三角形的各顶点向y轴引垂线并延长相同长度,找对应点.顺次连接即可.(3)从图中读出新三角形三点的坐标.【解答】解:(1)S△ABC=×5×3=(或7.5)(平方单位).(2)如图.(3)A1(1,5),B1(1,0),C1(4,3).【点评】本题综合考查了三角形的面积,网格,轴对称图形,及直角坐标系,学生对所学的知识要会灵活运用.22.先化简,再求值:÷(1+),其中x=﹣1.【考点】分式的化简求值.【分析】分式的化简,要熟悉混合运算的顺序,分子、分母能因式分解的先因式分解;除法要统一为乘法运算,注意化简后,将,代入化简后的式子求出即可.【解答】解:=÷(+)=÷=×=,把,代入原式====.【点评】此题主要考查了分式混合运算,要注意分子、分母能因式分解的先因式分解;除法要统一为乘法运算是解题关键.23.如图1,在△ABC中,AB=AC,点D是BC的中点,点E在AD上.(1)求证:BE=CE;(2)如图2,若BE的延长线交AC于点F,且BF⊥AC,垂足为F,∠BAC=45°,原题设其它条件不变.求证:△AEF≌△BCF.【考点】全等三角形的判定与性质;等腰三角形的性质.【专题】证明题.【分析】(1)根据等腰三角形三线合一的性质可得∠BAE=∠EAC,然后利用“边角边”证明△ABE 和△ACE全等,再根据全等三角形对应边相等证明即可;(2)先判定△ABF为等腰直角三角形,再根据等腰直角三角形的两直角边相等可得AF=BF,再根据同角的余角相等求出∠EAF=∠CBF,然后利用“角边角”证明△AEF和△BCF全等即可.【解答】证明:(1)∵AB=AC,D是BC的中点,∴∠BAE=∠EAC,在△ABE和△ACE中,,∴△ABE≌△ACE(SAS),∴BE=CE;(2)∵∠BAC=45°,BF⊥AF,∴△ABF为等腰直角三角形,∴AF=BF,∵AB=AC,点D是BC的中点,∴AD⊥BC,∴∠EAF+∠C=90°,∵BF⊥AC,∴∠CBF+∠C=90°,∴∠EAF=∠CBF,在△AEF和△BCF中,,∴△AEF≌△BCF(ASA).【点评】本题考查了全等三角形的判定与性质,等腰三角形三线合一的性质,等腰直角三角形的判定与性质,同角的余角相等的性质,是基础题,熟记三角形全等的判定方法与各性质是解题的关键.24.一项工程,甲,乙两公司合作,12天可以完成,共需付施工费102000元;如果甲,乙两公司单独完成此项工程,乙公司所用时间是甲公司的1.5倍,乙公司每天的施工费比甲公司每天的施工费少1500元.(1)甲,乙两公司单独完成此项工程,各需多少天?(2)若让一个公司单独完成这项工程,哪个公司的施工费较少?【考点】分式方程的应用;一元一次方程的应用.【分析】(1)设甲公司单独完成此项工程需x天,则乙工程公司单独完成需1.5x天,根据合作12天完成列出方程求解即可.(2)分别求得两个公司施工所需费用后比较即可得到结论.【解答】解:(1)设甲公司单独完成此项工程需x天,则乙公司单独完成此项工程需1.5x天.根据题意,得+=,解得x=20,经检验知x=20是方程的解且符合题意.1.5x=30故甲公司单独完成此项工程,需20天,乙公司单独完成此项工程,需30天;(2)设甲公司每天的施工费为y元,则乙公司每天的施工费为(y﹣1500)元,根据题意得12(y+y﹣1500)=102000,解得y=5000,甲公司单独完成此项工程所需的施工费:20×5000=100000(元);乙公司单独完成此项工程所需的施工费:30×(5000﹣1500)=105000(元);故甲公司的施工费较少.【点评】本题考查了分式方程的应用,解题的关键是从实际问题中整理出等量关系并利用等量关系求解.。

人教版八年级上册数学期末考试试题带答案

人教版八年级上册数学期末考试试题带答案

人教版八年级上册数学期末考试试卷一、选择题。

(每小题只有一个正确答案)1.下列四个图案中,是轴对称图形的是()A .B .C .D .2.如果线段a ,b ,c 能组成三角形,那么它们的长度比可能是()A .1∶2∶4B .2∶3∶4C .3∶4∶7D .1∶3∶43.石墨烯是现在世界上最薄的纳米材料,其理论厚度仅是0.00000000034m ,这个数用科学记数法表示正确的是()A .3.4×10-9m B .0.34×10-9mC .3.4×10-10mD .3.4×10-11m 4.下列运算中,正确的是()A .22a a a ⋅=B .224()a a =C .236a a a ⋅=D .2323()a b a b =⋅5.如图,点P 是∠AOB 的平分线OC 上一点,PD ⊥OA ,垂足为D ,若PD =2,则点P 到边OB 的距离是()A .4B C .2D .16.若分式13x +有意义,则x 的取值范围是()A .x >3B .x <3C .x ≠-3D .x =37.如图,在△ABC 中,∠A =80°,∠C =60°,则外角∠ABD 的度数是()A .100°B .120°C .140°D .160°8.下列各式是完全平方式的是()A .214x x -+B .21x +C .22x xy y -+D .221a a +-9.已知一个多边形的内角和是1080°,则这个多边形是()A.五边形B.六边形C.七边形D.八边形10.如图所示,C为线段AE上一动点(不与点A,E重合),在AE同侧分别作正△ABC和正△CDE,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.以下四个结论:①△ACD≌△BCE;②AD=BE;③∠AOB=60°;④△CPQ是等边三角形.其中正确的是()A.①②③④B.②③④C.①③④D.①②③二、填空题11.点()2,1M-关于y轴的对称点的坐标为______.12.如果多边形的每个内角都等于150︒,则它的边数为______.13.如图,△ABC≌△DCB,A、B的对应顶点分别为点D、C,如果AB=6cm,BC=12cm,AC=10cm,DO=3cm,那么OC的长是_____cm.14.在△ABC中,AB=AC,AB的垂直平分线交AC于D,交AB于E,连接BD,若∠ADE =40°,则∠DBC=_____.15.已知13aa+=,则221+=aa_____________________;16.如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β=_____.三、解答题17.解方程:21133xx x-=---.18.先化简,再求值:(3x+2)(3x﹣2)﹣10x(x﹣1)+(x﹣1)2,其中x=﹣1.19.如图:已知∠AOB和C、D两点,求作一点P,使PC=PD,且P到∠AOB两边的距离相等.20.如图,直线EF∥GH,点A在EF上,AC交GH于点B,若∠EAB=110°,∠C=60°,点D在GH上,求∠BDC的度数.21.甲、乙两工程队共同完成一项工程,乙队先单独做1天后,再由甲、乙两队合作2天就完成了全部工程,已知甲队单独完成这项工程所需的天数是乙队单独完成工程所需天数的2倍,则甲、乙两工程队单独完成工程各需多少天?22.如图,已知AB=AC=AD,且AD∥BC,求证:∠C=2∠D.23.如图:在△ABC中∠ACB=90°,AC=BC,AE是BC边上的中线,过点C作CF⊥AE,垂足为F,过B作BD⊥BC交CF的延长线于D.求证:(1)AE=CD.(2)若AC=12cm,求BD的长.24.某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元.(1)该商场两次共购进这种运动服多少套?(2)如果这两批运动服每套的售价相同,且全部售完后总利润不低于20%,那么每套售价至少是多少元?25.如图所示,已知△ABC中,AB=AC=10厘米,BC=8厘米,点D为AB的中点.如果点P在线段BC上以1厘米/秒的速度由B点向C点运动,同时点Q在线段CA上由C点向A点运动.(1)若点Q与点P的运动速度相等,经过3秒后,△BPD与△CQP是否全等?请说明理由;(2)若点Q与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP 全等?参考答案1.C【解析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,对各项进行判断找出不是轴对称图形即可.【详解】A.不是轴对称图形;B.不是轴对称图形;C.是轴对称图形;D.不是轴对称图形;故选:C .【点睛】考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.B【分析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析求解.【详解】A 、1+2<4,不能组成三角形;B 、2+3>4,能组成三角形;C 、3+4=7,不能够组成三角形;D 、1+3=4,不能组成三角形.故选B .【点睛】考查了三角形的三边关系.判断能否组成三角形的简便方法是看较小的两个数的和是否大于第三个数.3.C【详解】试题分析:根据科学记数法的概念可知:用科学记数法可将一个数表示10n a ⨯的形式,所以将0.00000000034用科学记数法表示103.410-⨯,故选C .考点:科学记数法4.B【解析】【分析】根据同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项分析判断后利用排除法求解.【详解】A 选项:23a a a ⋅=,故是错误的;B选项:()224a a=,故是正确的;C选项:235a a a⋅=,故是错误的;D选项:()3243=⋅,故是错误的;a b a b故选:B.【点睛】考查了同底数幂乘法和幂的乘方,解题关键是运用了同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘.5.C【分析】根据角平分线的性质解答.【详解】解:如图,作PE⊥OB于E,∵点P是∠AOB的角平分线OC上一点,PD⊥OA,PE⊥OB,∴PE=PD=2,故选C.【点睛】本题考查的是角平分线的性质,掌握角的平分线上的点到角的两边的距离相等是解题的关键.6.C【解析】【分析】考查分式有意义的条件:分母≠0,即x+3≠0,解得x的取值范围.【详解】∵x+3≠0,∴x≠-3.故选:C.考查的是分式有意义的条件:当分母不为0时,分式有意义.7.C【解析】【分析】根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.【详解】由三角形的外角性质得,∠ABD=∠A+∠C=80°+60°=140°.故选C.【点睛】考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.8.A【解析】【分析】根据完全平方式(a2+2ab+b2和a2-2ab+b2)进行判断.【详解】A、是完全平方式,故本选项正确;B、不是完全平方式,故本选项错误;C、不是完全平方式,故本选项错误;D、不是完全平方式,故本选项错误;故选:A.【点睛】考查了对完全平方式的应用,主要考查学生的判断能力.9.D【分析】根据多边形的内角和=(n﹣2)•180°,列方程可求解.【详解】设所求多边形边数为n,∴(n﹣2)•180°=1080°,解得n=8.【点睛】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.10.A【分析】由已知条件运用等边三角形的性质得到三角形全等,进而得到更多结论,然后运用排除法,对各个结论进行验证从而确定最后的答案.【详解】∵△ABC和△CDE是正三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∵∠ACD=∠ACB+∠BCD,∠BCE=∠DCE+∠BCD,∴∠ACD=∠BCE,∴△ADC≌△BEC(SAS),故①正确,∴AD=BE,故②正确;∵△ADC≌△BEC,∴∠ADC=∠BEC,∴∠AOB=∠DAE+∠AEO=∠DAE+∠ADC=∠DCE=60°,故③正确;∵CD=CE,∠DCP=∠ECQ=60°,∠ADC=∠BEC,∴△CDP≌△CEQ(ASA).∴CP=CQ,∴∠CPQ=∠CQP=60°,∴△CPQ是等边三角形,故④正确;故选A.【点睛】考查等边三角形的性质及全等三角形的判定等知识点;得到三角形全等是正确解答本题的关键.11.()2,1【分析】关于y 轴对称的点,纵坐标相同,横坐标互为相反数.【详解】∵关于y 轴对称的点,纵坐标相同,横坐标互为相反数∴点()2,1M -关于y 轴的对称点的坐标为()2,1.故答案为:()2,1【点睛】考核知识点:轴对称与点的坐标.理解轴对称和点的坐标关系是关键.12.12【分析】先求出这个多边形的每一个外角的度数,再用360°除以外角的度数即可得到边数.【详解】∵多边形的每一个内角都等于150°,∴多边形的每一个外角都等于180°﹣150°=30°,∴边数n =360°÷30°=12.故答案为12.【点睛】本题考查了多边形的内角与外角的关系,求出每一个外角的度数是解答本题的关键.13.7【解析】【分析】根据△ABC ≌△DCB 可证明△AOB ≌△DOC ,从而根据已知线段即可求出OC 的长.【详解】∵△ABC ≌△DCB ,∴AB=DC ,∠A=∠D ,又∵∠AOB=∠DOC (对顶角相等),∴△AOB ≌△DOC ,∴OC=BO=BD-DO=AC-DO=7.故答案是:7.【点睛】考查了全等三角形的性质解题的关键是注意掌握全等三角形的对应边相等,注意对应关系.14.15°.【分析】先根据线段垂直平分线的性质得出DA=DB ,∠AED=∠BED=90︒,即可得出∠A=∠ABD ,∠BDE =∠ADE ,然后根据直角三角形的两锐角互余和等腰三角形的性质分别求出∠ABD ,∠ABC 的度数,即可求出∠DBC 的度数.【详解】∵AB 的垂直平分线交AC 于D ,交AB 于E ,∴DA=DB ,∠AED=∠BED=90︒,∴∠A=∠ABD ,∠BDE =∠ADE ,∵∠ADE =40︒,∴∠A=∠ABD=9040︒-︒=50︒,∵AB =AC ,∴∠ABC=150652︒-︒=︒,∴∠DBC =∠ABC-∠ABD=15︒.故答案为15︒.【点睛】本题考查线段垂直平分线的性质,等腰三角形的性质.15.7【分析】把已知条件平方,然后求出所要求式子的值.【详解】∵13a a +=,∴219a a ⎛⎫+= ⎪⎝⎭,∴2212+a a +=9,∴221+=a a =7.故答案为7.【点睛】此题考查分式的加减法,解题关键在于先平方.16.240°【详解】已知等边三角形的顶角为60°,根据三角形的内角和定理可得两底角和=180°-60°=120°;再由四边形的内角和为360°可得∠α+∠β=360°-120°=240°.故答案是:240°.17.无解【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】21133x x x -=---2-x=x-3-1-2x=-3-1-2x=3当x=3时,x-3=0,所以原分式方程无解.【点睛】考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.18.8x -3,-11【解析】【分析】原式利用平方差公式,完全平方公式,以及单项式乘以多项式法则计算,去括号合并即可得到结果.【详解】原式=9x 2-4-10x 2+10x+x 2+1-2x=8x-3当x=-1时,原式=-8-3=-11.【点睛】考查了整式的混合运算,平方差公式,以及完全平方公式,熟练掌握运算法则是解本题的关键.19.见解析【分析】先作CD的垂直平分线和∠AOB的平分线,它们的交点为P点,则根据线段垂直平分线的性质和角平分线的性质得到PC=PD,且P到∠AOB两边的距离相等.【详解】解:如图,点P为所作.【点睛】本复考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.20.50°【分析】先利用平行线求出∠CBG,再用邻补角的定义求出∠CBD,最后用三角形的内角和定理即可得出结论.【详解】解:∵EF∥GH,∴∠CBG=∠EAB,∵∠EAB=110°,∴∠CBG=110°,∴∠CBD=180°﹣∠CBG=70°,在△BCD中,∵∠C=60°,∴∠BDC=180°﹣∠C﹣∠CBD=180°﹣60°﹣70°=50°,即:∠BDC的度数为50°.【点睛】此题主要考查了平行线的性质,邻补角的定义,三角形内角和定理,求出∠CBD=70°是解本题的关键.21.甲需8天,乙需4天【解析】【分析】根据乙队先单独做1天后,再由两队合作2天就完成了全部工程则等量关系为:乙一天的工作量+甲乙合作2天的工作量=1,再设未知数列方程,解方程即可.【详解】设乙队单独完成所需天数x天,则甲队单独完成需2x天,1112(1++=2x x x解得:x=4,当x=4时,分式方程有意义,所以x=4是分式方程的解,所以甲、乙两队单独完成工程各需8天和4天.答:甲、乙两队单独完成工程各需8天和4天.【点睛】考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.22.证明见解析【详解】试题分析:首先根据AB=AC=AD,可得∠C=∠ABC,∠D=∠ABD,∠ABC=∠CBD+∠D;然后根据AD∥BC,可得∠CBD=∠D,据此判断出∠ABC=2∠D,再根据∠C=∠ABC,即可判断出∠C=2∠D.试题解析:∵AB=AC=AD,∴∠C=∠ABC,∠D=∠ABD.∴∠ABC=∠CBD+∠D.∵AD∥BC,∴∠CBD=∠D.∴∠ABC=2∠D.又∵∠C=∠ABC,∴∠C=2∠D.23.(1)见解析;(2)6【分析】(1)根据DB ⊥BC ,CF ⊥AE ,得出∠D =∠AEC ,再结合∠DBC =∠ECA =90°,且BC =CA ,证明△DBC ≌△ECA ,即可得证;(2)由(1)可得△DBC ≌△ECA ,可得CE=BD ,根据BC=AC=12cm AE 是BC 的中线,即可得出12CE BC =,即可得出答案.【详解】证明:(1)证明:∵DB ⊥BC ,CF ⊥AE ,∴∠DCB +∠D =∠DCB +∠AEC =90°.∴∠D =∠AEC .又∵∠DBC =∠ECA =90°,且BC =CA ,在△DBC 和△ECA 中90D AEC DBC ECA BC AC ∠∠∠∠⎪⎩︒⎧⎪⎨====,∴△DBC ≌△ECA (AAS ).∴AE =CD ;(2)由(1)可得△DBC ≌△ECA∴CE=BD ,∵BC=AC=12cm AE 是BC 的中线,∴162CE BC cm ==,∴BD=6cm .【点睛】本题考查了全等三角形的判定和性质,直角三角形斜边上的中线,证明△DBC ≌△ECA 解题关键.24.(1)商场两次共购进这种运动服600套;(2)每套运动服的售价至少是200元【分析】(1)设该商场第一次购进这种运动服x 套,第二次购进2x 套,然后根据题意列分式解答即可;(2)设每套售价是y 元,然后根据“售价-两次总进价≥成本×利润率”列不等式并求解即可.【详解】解:(1)设商场第一次购进x 套运动服,由题意得6800032000102x x-=解这个方程,得200x =经检验,200x =是所列方程的根22200200600x x +=⨯+=;答:商场两次共购进这种运动服600套;(2)设每套运动服的售价为y 元,由题意得600320006800020%3200068000y --+ ,解这个不等式,得200y ≥.答:每套运动服的售价至少是200元.【点睛】本题主要考查了分式方程和一元一次不等式的应用,弄清题意、确定量之间的关系、列出分式方程和不等式是解答本题的关键.25.(1)全等;(2)当点Q 的运动速度为54厘米/秒时,能够使△BPD 与△CQP 全等.【分析】(1)根据时间和速度分别求得两个三角形中的边的长,根据SAS 判定两个三角形全等;(2)根据全等三角形应满足的条件探求边之间的关系,再根据路程=速度×时间公式,先求得点P 运动的时间,再求得点Q 的运动速度.【详解】(1)因为t =3秒,所以BP =CQ =1×3=3(厘米),因为AB =10厘米,点D 为AB 的中点,所以BD =5厘米.又因为PC =BC BP -,BC =8厘米,所以PC =835-=(厘米),所以PC =BD .因为AB =AC ,所以∠B=∠C,所以△BPD≌△CQP(SAS).(2)因为P v≠Q v,所以BP≠CQ,当△BPD≌△CPQ时,因为∠B=∠C,AB=10厘米,BC=8厘米,所以BP=PC=4厘米,CQ=BD=5厘米,所以点P,点Q运动的时间为4秒,所以54Qv 厘米/秒,即当点Q的运动速度为54厘米/秒时,能够使△BPD与△CQP全等.【点睛】考查了全等三角形的判定,等腰三角形的性质.解题时,主要是运用了路程=速度×时间的公式.熟练运用全等三角形的判定和性质,能够分析出追及相遇的问题中的路程关系.。

沪科版八年级上册数学期末考试试卷及答案

沪科版八年级上册数学期末考试试卷及答案

沪科版八年级上册数学期末考试试题一、选择题。

(每小题只有一个正确答案)1.下列四副图案中,不是轴对称图形的是()A .B .C .D .2.在函数y =2x +1中自变量x 的取值范围是()A .x ≥12B .x ≥−12C .x <12D .x <−123.下列函数,y 随x 增大而减小的是()A .y x =B .y x 1=-C .y x 1=+D .y x 1=-+4.下列语句不是命题的是()A .对顶角不相等B .不平行的两条直线有一个交点C .两点之间线段最短D .x 与y 的和等于0吗5.下列图象中,可以表示一次函数y kx b =+与正比例函数y kbx =(k ,b 为常数,且kb ≠0)的图象的是()A .B .C .D .6.设三角形三边之长分别为3,8,1﹣2a ,则a 的取值范围为()A .﹣6<a <﹣3B .﹣5<a <﹣2C .﹣2<a <5D .a <﹣5或a >27.已知:如图,在△ABC 中,∠C=∠ABC=2∠A ,BD 是AC 边上的高,则∠DBC=()A .10∘B .18∘C .20∘D .30∘8.如图,AD 是ABC ∆的中线,E ,F 分别是AD 和AD 延长线上的点,且DE DF =,连结BF ,CE .下列说法:①CE BF =;②ABD ∆和ACD ∆面积相等;③//BF CE ;④BDF CDE ∆≅∆.其中正确的有()A .1个B .2个C .3个D .4个9.如图,AD=AE ,BE=CD ,∠ADB=∠AEC=100°,∠BAE=70°,下列结论错误的是()A .ABE ≌ACDB .ABD ≌ACEC .DAE 40∠=D .C 30∠=10.潜山市某村办工厂,今年前5个月生产某种产品的总量C (件)关于时间t (月)的函数图象如图所示,则该厂对这种产品来说()A .1月至3月每月生产总量逐月增加,4、5两月每月生产总量逐月减少B .1月至3月每月生产总量逐月增加,4,5两月每月生产量与3月持平C .1月至3月每月生产总量逐月增加,4、5两月均停止生产D .1月至3月每月生产总量不变,4、5两月均停止生产二、填空题11.命题“全等三角形的对应边都相等”的逆命题是___命题.(填“真”或“假”)12.若P (x ,y )在第二象限且|x|=2,|y|=3,则点P 的坐标是______.13.如图,等腰△ABC 中,AB=AC ,BD 为腰AC 的中线,将△ABC 分成长12cm 和9cm的两段,则等腰△ABC的腰长为______.14.如图,AD是△ABC的边BC上的中线,由下列条件中的某一个就能推出△ABC是等腰三角形的是______(把所有的正确答案的序号都填在横线上)①∠BAD=∠ACD;②∠BAD+∠B=∠CAD+∠C;③AB+BD=AC+CD;④AB-BD=AC-CD15.如图,△ABC的两条角平分线相交于O,过O的直线MN∥BC交AB于M交AC于N,若BC=8cm,△AMN的周长是12cm,则△ABC的周长等于_____cm.三、解答题16.△ABC在平面直角坐标系中的位置如图所示.(1)画出△ABC关于y轴对称的△A1B1C1;(2)将△ABC向右平移6个单位,作出平移后的△A2B2C2,并写出△A2B2C2各顶点的坐标;(3)观察△A1B1C1和△A2B2C2,它们是否关于某条直线对称?若是,请在图上画出这条对称轴.17.已知:如图,∠AOB=30°,P是∠AOB的平分线上一点,PC∥OA,交OB于点C,PD⊥OA,垂足为D,如果PC=4,求PD的长.18.如图信息,L1为走私船,L2为我公安快艇,航行时路程与时间的函数图象,问(1)在刚出发时我公安快艇距走私船多少海里?(2)计算走私船与公安快艇的速度分别是多少?(3)写出L1,L2的解析式(4)问6分钟时两艇相距几海里.(5)猜想,公安快艇能否追上走私船,若能追上,那么在几分钟追上?19.已知:E是AB、CD外一点,∠D=∠B+∠E,求证:AB∥CD.20.如图,已知:AB=DE且AB∥DE,BE=CF.求证(1):∠A=∠D;(2)AC∥DF.21.取一副三角板按如图所示拼接,固定三角板ADC,将三角板ABC绕点A顺时针方向旋转,旋转角度为α(0°<α≤45°),得到△ABC′.①当α为多少度时,AB∥DC?②当旋转到图③所示位置时,α为多少度?③连接BD,当0°<α≤45°时,探求∠DBC′+∠CAC′+∠BDC值的大小变化情况,并给出你的证明.22.如图,在△ABC中,边AB、AC的垂直平分线分别交BC于D、E.(1)若BC=8,则△ADE周长是多少?(2)若∠BAC=118°,则∠DAE的度数是多少?23.如图,D为等边△ABC内一点,且AD=BD,BP=AB,∠DBP=∠DBC。

人教版八年级上册数学期末考试试题带答案

人教版八年级上册数学期末考试试题带答案

人教版八年级上册数学期末考试试题一、选择题。

(每小题只有一个正确答案)1.下列标志是轴对称图形的是()A .B .C .D .2.某细胞的直径约为0.0000008米,该直径用科学记数法表示为()A .50.810-⨯米B .78010-⨯米C .6810-⨯米D .7810-⨯米3.五边形的内角和是()A .180°B .360°C .540°D .720°4.使分式121x -有意义的x 的取值范围是()A .1x ≠B .2x ≠C .12x ≠D .0x ≠5.计算(-2b )3的结果是()A .38b -B .38bC .36b -D .36b 6.如图所示,若△ABE ≌△ACF ,且AB=6,AE=2,则BF 的长为()A .2B .3C .5D .47.如图,在△ABC 中,AB=AC ,D 为BC 中点,∠BAD=35°,则∠C 的度数为()A .35°B .45°C .55°D .60°8.下列各式中,是最简分式的是()A .aba B .4x2y C .2x 1x 1--D .x 2x 2+-9.若三角形的三边长分别为3,12x +,8,则x 的取值范围是()A .2x 5<<B .3x 8<<C .4x 7<<D .5x 9<<10.若114x y -=,则分式2x 3xy 2y x 2xy y +---的值是()A .112B .56C .32D .2二、填空题11.在ABC 中,若A 90∠= ,B 50∠= ,则C ∠度数为___.12.点A (1,-2)关于x 轴对称的点的坐标是______.13.分解因式:22x 4x -=___14.如图,在△ABC 中.BC =5cm ,BP 、CP 分别是∠ABC 和∠ACB 的平分线,且PD ∥AB ,PE ∥AC ,则△PDE 的周长是______cm15.如图,在正方形ABCD 的外侧,作等边DCE ,则AEC ∠的度数是__________.16.如图,已知ABC 中,AB AC 16cm ==,B C ∠∠=,BC 10cm =,点D 为AB 的中点,如果点P 在线段BC 上以2厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.若当BPD 与CQP 全等时,则点Q 运动速度可能为____厘米/秒.三、解答题17.计算:3220734x x (x )(2019π)2x x ⋅---+÷18.先化简,再求值:221x 41x 3x 6x 9-⎛⎫+÷ ⎪--+⎝⎭,然后从0x 3<≤的范围内选取一个合适的整数作为x 的值代入求值.19.解方程1233x x x+=--20.如图,AD 、BC 相交于点O ,AD BC =,C D 90∠∠== .()1求证:ACB ≌BDA ;()2若ABC 32∠= ,求CAO ∠的度数.21.在ABC 中,C 90∠=()1尺规作图:作AB 的垂直平分线,交BC 于点D ,交AB 于点E ;(不写作法,保留作图痕迹)()2若AC 2=,B 15 ∠=,求BD 的长.22.小张从家出发去距离9千米的婆婆家,他骑自行车前往比乘汽车多用20分钟,乘汽车的平均速度是骑自行车的3倍,求小张骑自行车的平均速度.23.阅读材料:常用的分解因式方法有提取公因式法、公式法等,但有的多项式只用上述方法就无法分解,如22x 4y 2x 4y --+,细心观察这个式子会发现,前两项符合平方差公式,后两项可提取公因式,前后两部分分别分解因式后会产生公因式,然后提取公因式就可以完成整个式子的分解因式,过程为:()()2222x 4y 2x 4y x 4y 2x 4y --+=---()()()x 2y x 2y 2x 2y =+---()()x 2y x 2y 2=-+-这种分解因式的方法叫分组分解法,利用这种方法解决下列问题:()1分解因式22x 2xy y 25-+-;()2ABC 三边a ,b ,c 满足2a ab ac bc 0--+=,判断ABC 的形状.24.如图,ABC 中,AB BC AC 24cm ===,现有两点M 、N 分别从点A 、点B 同时出发,沿三角形的边运动,已知点M 的速度为1cm /s ,点N 的速度为2cm /s.当点N 第一次到达B 点时,M 、N 同时停止运动.()1点M ,N 运动几秒后,M 、N 两点重合?()2点M 、N 运动几秒后,可得到等边三角形AMN ?()3当点M 、N 在BC 边上运动时,能否得到以MN 为底边的等腰三角形AMN ?如存在,请求出此时M 、N 运动的时间.25.在BC A 中,ACB 90∠= ,AC BC =,点D 是AB 的中点,点E 是AB 边上一点.()1直线BF 垂直于CE 于点F ,交CD 于点G(如图1).求证:AE CG =;()2直线AH 垂直于CE ,垂足为H ,交CD 的延长线于点M(如图2).试猜想CM 与BE 有怎样的数量和位置关系?并证明你的猜想.参考答案1.B【解析】试题分析:将一个图形沿着某条直线折叠,如果直线两边的图形能够完全重合,则这个图形就是轴对称图形,这条直线就是对称轴.根据定义可得:B 为轴对称图形.2.D【分析】科学记数法的表示形式为a ⨯10n 的形式,其中110a ≤<,n 为整数确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】将0.0000008用科学记数法表示为:7810-⨯.故选D .【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为a ⨯10n 的形式,其中110a ≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.C【分析】根据n 边形的内角和为:()2180(3n n -⋅≥ ,且n 为整数),求出五边形的内角和是多少度即可.【详解】解:五边形的内角和是:(5﹣2)×180°=3×180°=540°故选C .【点睛】此题主要考查了多边形的内角和定理,要熟练掌握,解答此题的关键是要明确n 边形的内角和为:()2180(3n n -⋅≥ ,且n 为整数).4.C【解析】【分析】根据分式有意义的条件是分母不为0;分析原分式可得关系式2x 10-≠,解可得自变量x 的取值范围.【详解】根据题意,有2x 10-≠,解可得1x 2≠.故自变量x 的取值范围是1x 2≠.故选C .【点睛】此题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零.5.A【分析】直接利用积的乘方运算法则计算得出答案.【详解】33(2b)8b -=-.故选A .【点睛】此题主要考查了积的乘方运算,正确将原式变形是解题关键.6.D【分析】已知△ABE ≌△ACF ,就可以根据全等三角形的对应边的比相等,即可求得AF 的长,即可得到BF 的长.【详解】解:∵△ABE ≌△ACF ,∴AF=AE=2,∴BF=AB ﹣AF=6﹣2=4,故选D .【点睛】此题考查全等三角形的性质,解答本题的关键在于理解全等三角形的对应边的比相等7.C【详解】试题分析:根据等腰三角形的三线合一的性质可直接得到AD 平分∠BAC ,AD ⊥BC ,因此∠DAC=∠BAD=35°,∠ADC=90°,从而可求得∠C=55°.故选C考点:等腰三角形三线合一8.D【解析】【分析】根据最简分式的定义,只要判断出分子分母是否有公因式即可.【详解】A 、ab b a=,原式不是最简分式,故本选项不符合题意;B 、4x 2x 2y y =,原式不是最简分式,故本选项不符合题意;C 、2x 11x 1x 1-=-+,原式不是最简分式,故本选项不符合题意;D 、x 2x 2+-中分子、分母不含公因式,原式是最简分式,故本选项符合题意;故选D .【点睛】此题考查了最简分式的定义:一个分式的分子与分母没有公因式时,叫最简分式.9.A【解析】【分析】首先根据三角形的三边关系定理三角形两边之和大于第三边三角形的两边差小于第三边可得8-3<1+2x<3+8解不等式即可.【详解】根据三角形的三边关系可得:8312x 38-<+<+,解得:2x 5<<.故选A .【点睛】此题主要考查了三角形的三边关系和解一元一次不等式,关键是掌握第三边的范围是:大于已知的两边的差,而小于两边的和.【分析】先化简分式,再代入求值即可.【详解】114x y -= ,y x4xy -∴=,可得:x y 4xy -=-,()()2x y 3xy 2x 3xy 2y 8xy 3xy 5x 2xy y x y 2xy 4xy 2xy 6-++--+∴===------,故选B .【点睛】此题考查分式的化简求值,关键是用换元的思想解答.11.40°【解析】【分析】根据三角形的内角和是180°即可得到结论.【详解】C 180A B 180905040∠∠∠=--=--= ,故答案为40 .【点睛】本题考查了三角形的内角和,熟练掌握三角形的内角和定理是解题的关键.12.()1,2【分析】根据平面直角坐标系中关于坐标轴成轴对称的两点的坐标之间的关系可得答案.【详解】根据轴对称的性质,得点()A 1,2-关于x 轴对称的点的坐标是()1,2.【点睛】关于x 轴的对称点,横坐标不变,纵坐标变成相反数.13.()2x x 2-要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.【详解】直接提取公因式2x 即可:()22x 4x 2x x 2-=-.填:()2x x 2-.14.5【分析】分别利用角平分线的性质和平行线的性质,求得△DBP 和△ECP 为等腰三角形,由等腰三角形的性质得BD =PD ,CE =PE ,那么△PDE 的周长就转化为BC 的长,即5cm .【详解】解:∵BP 、CP 分别是∠ABC 和∠ACB 的平分线,∴∠ABP =∠PBD ,∠ACP =∠PCE ,∵PD ∥AB ,PE ∥AC ,∴∠ABP =∠BPD ,∠ACP =∠CPE ,∴∠PBD =∠BPD ,∠PCE =∠CPE ,∴BD =PD ,CE =PE ,∴△PDE 的周长=PD +DE +PE =BD +DE +EC =BC =5cm .故答案为5.【点睛】此题主要考查了平行线的性质,角平分线的性质及等腰三角形的判定和性质等知识点.解题的关键是将△PDE 的周长转化为BC 边的长.15.45︒【分析】先求出AED ∠的度数,即可求出AEC ∠.【详解】解:由题意可得,,90,60AD DC DE ADC EDC DEC ︒︒==∠=∠=∠=,,150AD DE ADE ADC EDC ︒=∠=∠+∠= 180150152AED DAE ︒︒︒-∴∠=∠==45AEC CED AED ︒∴∠=∠-∠=故答案为45︒【点睛】本题考查了等腰与等边三角形的性质,等腰三角形的两底角相等,等边三角行的三条边都相等,三个角都相等,灵活应用等腰及等边三角形的性质是解题的关键.16.2或3.2【分析】B C ∠∠=,表示出BD 、BP 、PC 、CQ ,再根据全等三角形对应边相等,分①BD 、PC 是对应边,②BD 与CQ 是对应边两种情况讨论求解即可.【详解】AB 16cm = ,BC 10cm =,点D 为AB 的中点,1BD 168cm 2∴=⨯=,设点P 、Q 的运动时间为t ,则BP 2t =,()PC 102t cm=-①当BD PC =时,102t 8-=,解得:t 1=,则BP CQ 2==,故点Q 的运动速度为:212(÷=厘米/秒);②当BP PC =时,BC 10cm = ,BP PC 5cm ∴==,t 52 2.5(∴=÷=秒).故点Q 的运动速度为8 2.5 3.2(÷=厘米/秒).故答案为2或3.2厘米/秒【点睛】本题考查了全等三角形的判定,根据边角边分情况讨论是本题的难点.17.45x 1-.【解析】【分析】先计算乘方和零指数幂,再计算乘除,最后并同类项即可.【详解】原式4444x x 12x =--+45x 1=-.【点睛】本题主要考查整式的混合运算,解题的关键是掌握整式混合运算顺序和运算法则.18.23-.【分析】先根据分式的混合运算顺序和运算法则化简原式,再根据分式有意义的条件得出x 的值,继而代入计算可得.【详解】原式()()2x 2x 2x 31x 3x 3(x 3)+--⎛⎫=+÷ ⎪---⎝⎭()()2x 2(x 3)x 3x 2x 2--=⋅-+-x 3x 2-=+,x 2≠± 且x 3≠,∴在0x 3<≤的范围内使分式有意义的x 的整数为x 1=,则原式132123-==-+.【点睛】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则及分式有意义的条件.19.x=73【解析】【分析】观察可得最简公分母是(x ﹣3),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【详解】方程的两边同乘(x ﹣3),得:1﹣x =2(x ﹣3)解得:x =73.检验:把x =73代入最简公分母是(x ﹣3),得:x ﹣3=23-≠0,∴原方程的解为:x =73.【点睛】本题考查了解分式方程,注意:(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.(3)去分母时要注意符号的变化.20.(1)见解析;(2)CAO 26∠= .【解析】【分析】()1根据HL 证明Rt ABC ≌Rt BAD ;()2利用全等三角形的性质和三角形内角和定理证明即可.【详解】(1)D C 90∠∠== ,ABC ∴ 和BAD 都是Rt ,在Rt ABC 和Rt BAD 中,{AD BCAB BA ==,Rt ABC ∴ ≌()Rt BAD HL ;(2)Rt ABC ≌Rt BAD ,ABC BAD 32∠∠∴== ,C 90∠= ,BAC 58∠∴= ,CAO CAB BAD 26∠∠∠∴=-= .【点睛】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS”、“SAS”、“ASA”、“AAS”,“HL”;全等三角形的对应边相等,对应角相等.21.()1如图,点D 、E 为所作;见解析;()2DB 4=.【解析】【分析】()1利用基本作图,作AB 的垂直平分线即可;()2连接AD ,利用线段的垂直平分线的性质得到DA DB =,则DAB B 15∠∠== ,所以ADC 30∠= ,然后根据含30度的直角三角形三边的关系求出DA ,从而得到DB 的长.【详解】()1如图所示,()2连接AD ,如图,DE 垂直平分AB ,DA DB ∴=,DAB B 15∠∠∴== ,ADC DAB B 151530∠∠∠∴=+=+= ,在Rt ADC 中,DA 2AC 4==,DB 4∴=.【点睛】本题考查了作图-基本作图:熟练掌握5种基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了线段垂直平分线的性质和含30度角的直角三角形三边的关系.22.小张骑自行车的平均速度为18千米/时.【解析】【分析】设小张骑自行车的平均速度为x 千米/时,则乘汽车的平均速度为3x 千米/时,根据时间=路程÷速度结合骑自行车前往比乘汽车多用20分钟,即可得出关于x 的分式方程,解之经检验后即可得出结论.【详解】设小张骑自行车的平均速度为x 千米/时,则乘汽车的平均速度为3x 千米/时,依题意,得:9920x 3x 60-=,解得:x 18=,经检验,x 18=是原分式方程的解,且符合题意.答:小张骑自行车的平均速度为18千米/时.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.23.()()()1x y 5x y 5-+--;()2ABC 的形状为等腰三角形.【分析】()1应用分组分解法,把22x 2xy y 25-+-分解因式即可.()2首先应用分组分解法,把2a ab ac bc --+分解因式,然后根据三角形的分类方法,判断出ABC 的形状即可.【详解】()221x 2xy y 25-+-2(x y)25=--()()x y 5x y 5=-+--()22a ab ac bc 0--+= ()()a abc a b ∴---()()a b a c 0=--=a b ∴=或a c=ABC ∴ 的形状为等腰三角形.【点睛】此题主要考查了因式分解的方法和应用,要熟练掌握,注意分组分解法的应用24.()1点M,N运动24秒后,M、N两点重合;()2点M、N运动4秒后,可得到等边AMN;()3当M、N运动16秒后,得到以MN为底边的等腰三角形AMN.【分析】()1由点N运动路程=点M运动路程AB+间的路程,列出方程,可求t的值;()2由等边三角形的性质可得AN AM=,可列方程,即可求x的值;()3由全等三角形的性质可得CM BN=,可列方程,可求y的值.【详解】()1设运动t秒,M、N两点重合,-=根据题意得:2t t24∴=t24答:点M,N运动24秒后,M、N两点重合()2设点M、N运动x秒后,可得到等边AMN是等边三角形AMNAN AM∴=,∴-=122x x解得:x4=∴点M、N运动4秒后,可得到等边三角形AMN.()3设M、N运动y秒后,得到以MN为底边的等腰三角形AMN.是等边三角形ABCAMN 是等腰三角形AM AN∴=AMN ANM ∠∠∴=,且B C ∠=∠,AC AB =,ACN ∴≌()ABM AAS CN BM∴=CM BN∴=y 12362y∴-=-y 16∴=答:当M 、N 运动16秒后,得到以MN 为底边的等腰三角形AMN .【点睛】本题是三角形综合题,考查了等边三角形的性质,全等三角形的判定和性质,利用方程的思想解决问题是本题的关键.25.(1)见解析;(2)见解析.【解析】【分析】()1根据点D 是AB 中点,ACB 90∠= ,可得出ACD BCD 45∠∠== ,判断出AEC ≌CGB ,即可得出AE CG =,()2利用三线合一即可得到BE CM ⊥,根据垂直的定义得出CMA MCH 90∠∠+= ,BEC MCH 90∠∠+= ,再根据AC BC =,ACM CBE 45∠∠== ,得出BCE ≌CAM ,进而证明出BE CM =.【详解】()1 点D 是AB 中点,AC BC =,ACB 90∠= ,CD AB ∴⊥,ACD BCD 45∠∠== ,CAD CBD 45∠∠∴== ,CAE BCG ∠∠∴=,又BF CE ⊥ ,又ACE BCF 90∠∠+= ,ACE CBG ∠∠∴=,在AEC 和CGB 中,CAE BCG AC BC ACE CBG ∠=∠⎧⎪=⎨⎪∠=∠⎩,AEC ∴≌()CGB ASA ,AE CG ∴=;()2BE CM =,BE CM ⊥.证明:CH HM ⊥,AC BC =,点D 是AB 的中点,CD AB ∴⊥,即BE CM ⊥.CMA MCH 90∠∠∴+= ,BEC MCH 90∠∠+= ,CMA BEC ∠∠∴=,又ACM CBE 45∠∠== ,在BCE 和CAM 中,BEC CMA ACM CBE BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,BCE ∴ ≌()CAM AAS ,BE CM ∴=.【点睛】本题主要考查了全等三角形的判定方法以及全等三角形对应边相等的性质,运用等腰直角三角形的性质是解决问题的关键.。

人教版八年级上册数学期末考试试卷附答案

人教版八年级上册数学期末考试试卷附答案

人教版八年级上册数学期末考试试题一、单选题1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A .B .C .D .2.下列各运算中,正确的是()A .a³·a²=a 6B .(-4a³)²=16a 6C .a 6÷a²=a³D .(a -1)²=a²-13.若分式23xx +有意义,则x 的取值范围是()A .x≠3B .x≠-3C .x >3D .x >-34.如图,∠1,∠2,∠3是五边形ABCDE 的3个外角,若∠A+∠B =220°,则∠1+∠2+∠3=()A .140°B .180°C .220°D .320°5.如果229x kxy y -+是一个完全平方式,那么k 的值是()A .3B .±6C .6D .±36.等腰三角形一腰上的高与另一腰的夹角是60°,则顶角的度数是()A .30°B .30°或150°C .60°或150°D .60°或120°7.已知11x y-=3,则代数式232x xy y x xy y +---的值是()A .72-B .112-C .92D .348.下列各式从左到右的变形中,属于因式分解的是()A .m (a+b )=ma+mbB .a 2+4a ﹣21=a (a+4)﹣21C .x 2﹣1=(x+1)(x ﹣1)D .x 2+16﹣y 2=(x+y )(x ﹣y )+169.如图,35AOB ∠=︒,C 为OB 上的定点,M ,N 分别为射线OA 、OB 上的动点.当CM MN +的值最小时,OCM ∠的度数为()A .35︒B .20︒C .45︒D .55︒10.《九章算术》中有一道“盈不足术”问题,原文为:今有人共买物,人出八,盈三;人出七,不足四,问人数,物价各几何?设该物品的价格是x 钱,共同购买该物品的有y 人,则根据题意,列出的方程组是()A .83{74y x y x -=-=B .83{74y x y y -=-=C .83{74y x y x -=--=-D .83{74y x y x -=-=-二、填空题11.当=a ____________时,分式44a a --的值为零.12.若点M (m ,﹣1)关于x 轴的对称点是N (2,n ),则m+n 的值是_____.13.如图,OP 平分∠AOB,∠AOP=15º,PC ∥OA,PD ⊥OA 于D,PC =10,则PD =_________.14.1301(2)(3.14)|1|2π-⎛⎫-++--+= ⎪⎝⎭_________.15.如图,ABC ADE △≌△,点D 落在BC 上,且70EDC ∠=︒,则BAD ∠的度数等于_________.16.若关于x 的方程2222x m x x++=--的解为正数,则m 的取值范围是_______.17.把长方形OABC 放在如图所示的平面直角坐标系中,点F 、E 分别在边OA 和AB 上,若点F (0,3),点C (9,0),且∠FEC =90°,EF =EC ,则点E 的坐标为_____.18.若85,a bab +==-,则()2a b -=___________.19.已知:如图所示,在△ABC 中,点D ,E ,F 分别为BC ,AD ,CE 的中点,且24ABC S cm = ,则阴影部分的面积为____2cm.20.如图,在第1个1A BC 中,30B ∠=︒,1A B CB =;在边1A B 上任取一点D ,延长1CA 到2A ,使121A A A D =,得到第2个12A A D ;在边2A D 上任取一点E ,延长12A A 到3A ,使232A A A E =,得到第3个23A A E △,按此做法继续下去,则第n 个三角形中以n A 为顶点的内角度数是________.三、解答题21.计算题:(1)因式分解:229()4()a x y b y x -+-;(2)计算:203)(2)---+-;(3)解分式方程:23193xx x +=--;(4)先化简-+⎛⎫-÷ ⎪+-⎝⎭223a 2a 11a 2a 4,然后从2-,1-,1,2中选择一个合适的整数作为a 的值代入求值.22.如图,点E ,F 在BC 上,BE =CF ,∠A =∠D ,∠B =∠C ,AF 与DE 交于点O .(1)求证:AB =DC ;(2)试判断△OEF 的形状,并说明理由.23.我市某县为创建省文明卫生城市,计划将城市道路两旁的人行道进行改造,经调查可知,若该工程由甲工程队单独来做恰好在规定时间内完成;若该工程由乙工程队单独完成,则需要的天数是规定时间的2倍,若甲、乙两工程队合作6天后,余下的工程由甲工程队单独来做还需3天完成.(1)问该县要求完成这项工程规定的时间是多少天?(2)已知甲工程队做一天需付给工资5万元,乙工程队做一天需付给工资3万元.现该工程由甲、乙两个工程队合作完成,该县准备了工程工资款65万元.请问该县准备的工程工资款是否够用?24.如图,直角坐标系中,ABC 的三个顶点的坐标分别为(2,1),(1,3),(3,2)--.(1)在图中作出ABC 关于x 轴对称的A B C ''' ,并写出点A '的坐标为________,点B '的坐标为_______,点C '的坐标为_______;(2)求ABC 的面积;25.如图:已知在ABC 中,90ACB ∠=︒,1AC BC ==,点D 是AB 上任意一点,AE AB ⊥,且AE BD =,DE 与AC 相交于点F .试判断CDE 的形状,并说明理由.26.已知:如图,点C 、D ,在线段AB 上,且AC =BD ,AE=BF ,ED ⊥AB ,FC ⊥AB .求证:AE ∥BF .27.如图1,2OA =,4OB =,以A 点为顶点、AB 为腰在第三象限作等腰Rt ABC △.(1)求C 点的坐标.(2)如图2,P 为y 轴负半轴上一个动点,当P 点沿y 轴负半轴向下运动时,以P 为顶点,PA 为腰作等腰Rt APD ,过D 作DE x ⊥轴于E 点,求OP DE -的值.参考答案1.A【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【详解】A.是轴对称图形,故A符合题意;B.不是轴对称图形,故B不符合题意;C.不是轴对称图形,故C不符合题意;D.是轴对称图形,故D不符合题意.故选:A.【点睛】本题主要考查轴对称图形的知识点.确定轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.B【详解】a3·a2=a5,故A选项错误;(-4a3)2=16a6,故B选项正确;a6÷a2=a4,故C选项错误;(a-1)2=a2-2a+1,故D选项错误.故选:B.【点睛】掌握同底数幂的运算法则.3.B【分析】直接利用分式有意义的条件分析得出答案.【详解】 分式23xx+有意义,∴x的取值范围为:3x≠-.故选B.【点睛】此题主要考查了分式有意义的条件,正确把握分式的定义是解题关键.4.C【分析】根据∠A+∠B=220°,可求∠A、∠B的外角和,再根据多边形外角和360°,可求∠1+∠2+∠3的值.【详解】解:根据∠A+∠B=220°,可知∠A的一个邻补角与∠B的一个邻补角的和为360°﹣220°=140°.根据多边形外角和为360°,可知∠1+∠2+∠3=360°﹣140°=220°.故选C.【点睛】本题主要考查多边形的外角和公式,内外角的转化是解题的关键.5.B【分析】根据完全平方式得出k=±2×1×3,求出即可.【详解】∵x2−kxy+9y2是一个完全平方式,∴x2−kxy+9y2=x2±2•x•3y+(3y)2,即k=±6,故选:B.【点睛】本题考查了对完全平方式的应用,注意:完全平方式有两个:a2+2ab+b2和a2−2ab +b2.6.B【分析】本题要分情况讨论.当等腰三角形的顶角是钝角或者等腰三角形的顶角是锐角两种情况.【详解】解:①当为锐角三角形时,如图1,∵∠ABD=60°,BD⊥AC,∴∠A=90°-60°=30°,∴三角形的顶角为30°;②当为钝角三角形时,如图2,∵∠ABD=60°,BD⊥AC,∴∠BAD=90°-60°=30°,∵∠BAD+∠BAC=180°,∴∠BAC=150°∴三角形的顶角为150°,故选:B .【点睛】本题主要考查了等腰三角形的性质及三角形内角和定理,做题时,考虑问题要全面,必要的时候可以做出模型帮助解答,进行分类讨论是正确解答本题的关键.7.D【分析】由113x y -=得出3y xxy -=,即3x y xy -=-,整体代入原式()()23x y xy x y xy-+=--,计算可得.【详解】113x y-=,∴3y xxy-=,∴3x y xy -=-,则原式()()236333344x y xyxy xy xy x y xyxy xy xy -+-+-====-----.故选:D .【点睛】本题主要考查分式的加减法,解题的关键是掌握分式加减运算法则和整体代入思想的运用.8.C【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】A 、是整式的乘法,故A 不符合题意;B 、没把一个多项式转化成几个整式积的形式,故B 不符合题意;C 、把一个多项式转化成几个整式积的形式,故C 符合题意;D 、没把一个多项式转化成几个整式积的形式,故D 不符合题意;故选C .【点睛】本题考查了因式分解的意义,判断因式分解的标准是把一个多项式转化成几个整式积的形式.9.B【分析】作点C 关于OA 的对称点E ,作EN ⊥OC 交OA 于点M ,此时CM+MN=EM+MN=EN 最短,进而根据∠AOB=35°,和直角三角形两个锐角互余即可求解.【详解】解:如图:作点C关于OA的对称点E,过点E作EN⊥OC于点N,交OA于点M,∴ME=MC,∴CM+MN=EM+MN=EN,根据垂线段最短,EN最短,∵∠AOB=35°,∠ENO=CFM=90°,∴∠OMN=55°,∠OCF=55°,∴∠EMF=∠OMN=55°,∴∠E=∠MCE=35°,∴∠OCM=∠OCF-∠MCE=20°.故选:B.【点睛】本题考查了轴对称-最短路线问题,熟知直角三角形的两个锐角互余是解题关键.10.D【分析】设该物品的价格是x钱,共同购买该物品的有y人,由“每人出8钱,则多3钱;每人出7钱,则差4钱”,即可得出关于x,y的二元一次方程组,此题得解.【详解】解:根据题意可知,83 74y xy x-=⎧⎨-=-⎩故答案为:D.【点睛】此题考查由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.11.-4【分析】分式的值为零时,分子等于零,分母不等于零,进行求解即可.【详解】解:∵分式44aa--的值为零,∴4=0a-.解得:=4a,所以=4a±当=4a时,分式无意义,故舍去.综上所述,=4a-.故答案为:-4.【点睛】考查了分式的值为零的条件,注意:“分母不为零”这个条件不能少.12.3【分析】直接利用关于x轴对称点的性质,横坐标相同,纵坐标互为相反数,即可得出答案.【详解】∵点M(m,﹣1)关于x轴的对称点是N(2,n),∴m=2,n=1,∴m+n=3.故答案为:3.13.5【详解】解:如图,过点P作PE⊥OB于E,∵OP平分∠AOB,∴∠AOB=2∠AOP=2×15°=30°,∵PC∥OA,∴∠PCE=∠AOB=30°,∴PE=12PC=12×10=5,∵OP平分∠AOB,PD⊥OA,PE⊥OB,∴PD=PE=5.故答案为:5.14.4--【分析】根据有理数的乘方运算法则、负整数指数幂运算法则、零次幂运算法则和绝对值运算进行计算求值即可.【详解】解:原式=﹣8+2+1﹣1)=﹣4故答案为:4--.【点睛】本题考查有理数的乘方、零指数幂、负整数指数幂、绝对值、实数的运算,熟练掌握和运算法则是解答的关键.15.70︒【分析】直接利用全等三角形的性质得出AB=AD ,∠B=∠ADE ,进而利用已知得出答案.【详解】解:∵△ABC ≌△ADE ,∴AB=AD ,∠B=∠ADE ,∴∠B=∠ADB ,∴∠BDA=∠ADE ,∵∠EDC=70°,∴∠BDA=∠ADE=12×(180°-70°)=55°.∴∠BAD=180°-55°-55°=70°,故答案为:70°.【点睛】此题主要考查了全等三角形的性质,正确得出对应角和对应边是解题关键.16.6m <且0m ≠【分析】根据分式方程的解法,解出x ,再根据题意列出不等式求解即可.【详解】解:∵2222x mx x ++=--去分母得:2()2(2)x m x -+=-解得:63mx -=因为方程的解为正数,∴603m->∴6m <,又∵2x ≠,∴623m-≠∴0m ≠,∴m 的取值范围为:6m <且0m ≠故答案为:6m <且0m ≠.【点睛】本题考查了根据分式方程解的情况求分式方程中的参数,解题的关键是掌握分式方程的解法,并且注意分式方程增根的问题.17.(6,6)【分析】根据矩形的性质得到AB =OC =9,∠FAE =∠B =90°,根据余角的性质得到∠AFE =∠CEB ,根据全等三角形的性质得到AF =BE ,AE =BC ,设AF =BE =x ,列方程即可得到结论.【详解】解:∵点F (0,3),点C (9,0),∴OF =3,OC =9,∵四边形ABCO 是矩形,∴AB =OC =9,∠FAE =∠B =90°,∵∠FEC =90°,∴∠AEF+∠AFE =∠AEF+∠CEB =90°,∴∠AFE =∠CEB ,∵EF =EC ,∴△AEF ≌△BCE (AAS ),∴AF =BE ,AE =BC ,设AF =BE =x ,∴AO =BC =AE =x+3,∴x+3+x =9,∴x =3,∴AE =BC =6,∴点E 的坐标为(6,6),故答案为:(6,6).【点睛】本题考查了全等三角形的判定和性质,矩形的性质,坐标与图形性质,证全等三角形是本题的关键,也是本题的难点.18.84【详解】解:把8a b +=两边平方得:222264a b a b ab +=++=(),将5ab =-代入得:2274a b +=,则原式=222741084a b ab +-=+=,故答案为:84.19.1【分析】根据三角形中线把三角形分成两个面积相等的三角形得出11,22ABD ABC ACD ABC S S S S == ,11,22BDE ABD CDE ACD S S S S == ,进而求得11,22BCE ABC BEF BCE S S S S == ,然后代入数据进行计算求解即可【详解】解:∵点D 、E 分别是边BC 、AD 的中点∴11,22ABD ABC ACD ABC S S S S == ,11,22BDE ABD CDE ACD S S S S == ,∴1122BCE BDE CDE ABD ACD S S S S S =+==+ 12ABC S =△∵点F 是CE 的中点111222BEF BCE ABC S S S ∴==⨯ 14ABC S =△24cm ABC S = 2141cm 4BEF S ∴=⨯= 故答案为:1【点睛】本题考查了三角形中线的性质和三角形面积的应用,熟知三角形中线平分三角形面积是解题的关键.20.11752n -⎛⎫⨯︒⎪⎝⎭【分析】先根据等腰三角形的性质求出∠BA 1C 的度数,再根据三角形外角的性质及等腰三角形的性质分别求出∠DA 2A 1,∠EA 3A 2及∠FA 4A 3的度数,找出规律即可得出第n 个三角形中以A n 为顶点的底角度数.【详解】解:∵在△CBA 1中,∠B=30°,A 1B=CB ,∴∠BA 1C=1802B ︒-∠=75°,∵A 1A 2=A 1D ,∠BA 1C 是△A 1A 2D 的外角,∴∠DA 2A 1=12∠BA 1C=12×75°;同理可得,∠EA 3A 2=(12)2×75°,∠FA 4A 3=(12)3×75°,∴第n 个三角形中以A n 为顶点的底角度数是(12)n-1×75°.故答案为:(12)n-1×75°.【点睛】本题考查的是等腰三角形的性质及三角形外角的性质,根据题意得出∠DA 2A 1,∠EA 3A 2及∠FA 4A 3的度数,找出规律是解答此题的关键.21.(1)()()()3232x y a b a b -+-;(2)(3)4x =-;(4)21a a --,a=-1时,原式=32【分析】(1)先提公因式(x ﹣y ),再利用平方差公式分解因式即可;(2)分别利用平方差公式、完全平方公式、零指数幂运算法则进行计算即可解答;(3)根据分式方程的解法步骤:化为整式方程、解方程、检验、写结论进行求解即可;(4)先通分化简括号内分式,再将除法算式化为乘法,同时分子、分母因式分解,约分化简原式,再代入使分式有意义的数值计算即可解答.【详解】(1)解:原式229()4()a x yb x y =---()(32)(32)x y a b a b =-+-解:原式207(141=---+=(3)解:方程两边都乘以()(33)x x +-,去分母得:23(3)9x x x ++=-去括号得:22339x x x ++=-移项、合并同类项得:312x =-化系数为1得:4x =-检验:当4x =-时,(3)(3)0x x +-≠所以4x =-是原分式方程的解(4)解:原式223(2)(2)2(1)a a a a a +-+-=⋅+-21a a -=-当2a =-,2,1时,分式无意义当1a =-时,原式123112--=--.22.(1)证明见解析(2)等腰三角形,理由见解析【详解】证明:(1)∵BE =CF ,∴BE +EF =CF +EF ,即BF =CE .又∵∠A =∠D ,∠B =∠C ,∴△ABF ≌△DCE (AAS ),∴AB =DC .(2)△OEF 为等腰三角形理由如下:∵△ABF ≌△DCE ,∴∠AFB=∠DEC .∴OE=OF .∴△OEF 为等腰三角形.23.(1)12;(2)见解析.【分析】(1)本题是工程问题,也就是总工作量、效率与时间问题,根据题意,规定时间就是甲单独需要的时间,所以设规定时间是x 天,那么甲单独完成的时间就是x 天,乙单独完成的时间为2x ,甲乙一天的工作效率分别为1x ,12x ,甲、乙两工程队合作6天的工作量表示为6(1x +12x ),甲又单独干了3天表示为3x,没交代具体工作量是多少的情况下,一般是总工作量为1,所以列方程6(1x +12x )+3x=1;(2)由(1)可以知道甲乙分别单独做需要的时间,用工作量除以两队合作一天的工作效率就是二者合作所用的时间,就可以进一步求出所需的工资款,作出判断,是否够用.【详解】(1)设规定时间是x 天,根据题意得6(1x +12x )+3x =1,解得x=12,经检验:x=12是原方程的解.答:该县要求完成这项工程规定的时间是12天;(2)由(1)知,由甲工程队单独做需12天,乙工程队单独做需24天,则甲乙两工程队合作需要的天数是1÷(112+124)=8(天),所需工程工资款为(5+3)×8=64万>63万,故该县准备的工程工资款不够用.24.(1)见解析,'(2,1)A -,'(1,3)B --,'(3,2)C --;(2)3.5【分析】(1)根据关于x 轴对称的点的坐标特征写出A '、B '、C '的坐标,再描点顺次连接即可;(2)根据网格特点和割补法求图形的面积的方法求解即可.【详解】解:(1)如图,A B C ''' 为所作,'(2,1),'(1,3),'(3,2)A B C -----,故答案为:(2,﹣1),(﹣1,﹣3),(﹣3,﹣2);(2)如图,ABC ADB BEC CFAADEF S S S S S ∆∆=--- 矩形11125231215222=⨯-⨯⨯-⨯⨯-⨯⨯3.5=.【点睛】本题考查轴对称与坐标变换、三角形面积公式,解答的关键是掌握平面直角坐标系内轴对称与坐标变换规律,会利用割补法求解不规则图形的面积.25.等腰直角三角形,理由见解析【分析】根据等腰直角三角形的性质求出∠B=∠BAC=45°,再求出∠CAE=45°,从而得到∠B=∠CAE ,再利用“边角边”证明△ACE 和△BCD 全等,根据全等三角形对应边相等可得CD=CE ,全等三角形对应角相等可得∠ACE=∠BCD ,再求出∠DCE=90°,从而得解.【详解】证明:CDE 是等腰直角三角形.理由如下:90ACB ︒∠=,AC BC =,45B BAC ∴∠=∠=︒,AE AB ⊥ ,904545CAE ∴∠=︒-︒=︒,B CAE ∴∠=∠,在ACE △和BCD △中,AE BD B CAE AC BC =⎧⎪∠=∠⎨⎪=⎩,()ACE BCD SAS ∴≅ CD CE ∴=,ACE BCD ∠=∠,90ACD BCD ACB ∠+∠=∠=︒ ,90DCE ACD ACE ∴∠=∠+∠=︒,CDE ∴ 是等腰直角三角形【点睛】本题考查了全等三角形的判定与性质,等腰直角三角形的判定与性质,熟练掌握三角形全等的判定方法是解题的关键.26.答案见解析.【分析】先由HL 证明两直角三角形全等,对应角相等,再由内错角相等两直线平行即可得证.【详解】∵ED ⊥AB ,FC ⊥AB ,∴∠DEA =∠FCB =90°,又∵AC =BD ,∴AD =BC ,在Rt △AED 和Rt △BFC 中,AE BF AD BC =⎧⎨=⎩,∴Rt △AED ≌Rt △BFC (HL )∴∠A =∠B ,∴AE ∥BF.27.(1)点C 的坐标为(6,2)--;(2)OP DE 2-=【分析】(1)如图1,过C 作CM ⊥x 轴于M 点,则可以求出△MAC ≌△OBA ,可得CM=OA=2,MA=OB=4,即可得到结论;(2)如图2,过D 作DQ ⊥OP 于Q 点,则DE=OQ ,利用三角形全等的判定定理可得△AOP ≌△PQD ,进一步可得PQ=OA=2,即OP-DE=2.【详解】解:(1)如图1,过C 作CM ⊥x 轴于M 点.∵∠MAC+∠OAB=90°,∠OAB+∠OBA=90°,∴∠MAC=∠OBA .在△MAC 和△OBA 中,∵∠CMA=∠AOB=90°,∠MAC=∠OBA ,AC=AB ,∴△MAC ≌△OBA(AAS),∴CM=OA=2,MA=OB=4,∴OM=OA+AM=2+4=6,∴点C 的坐标为(-6,-2).(2)如图2,过D 作DQ ⊥OP 于Q 点,则DE=OQ ,∴OP-DE=OP-OQ=PQ .∵∠APO+∠QPD=90°,∠APO+∠OAP=90°,∴∠QPD=∠OAP .在△AOP 和△PQD 中,∵∠AOP=∠PQD=90°,∠OAP=∠QPD ,AP=PD ,∴△AOP ≌△PQD(AAS),∴PQ=OA=2,即OP-DE=2.【点睛】本题重点考查了三角形全等的判定定理,两个三角形全等共有四个定理,即AAS、ASA、SAS、SSS,直角三角形可用HL定理,关键还要巧妙作出辅助线,再结合坐标轴才能解出,本题难度较大.。

最新人教版八年级上册数学期末考试试题(附答案)

最新人教版八年级上册数学期末考试试题(附答案)

最新人教版八年级上册数学期末考试试题(附答案)最新人教版八年级上册数学期末考试试题(附答案)考生注意:1.本次考试分试题卷和答题卷,考试结束时考生只交答题卷。

2.请将所有试题的解答都写在答题卷上。

3.全卷共五个大题,满分150分,时间120分钟。

一、选择题(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个正确的,请将正确答案的代号填在答题卡上。

1.剪纸是我国传统的民间艺术,下列剪纸作品中,是轴对称图形的是()A。

B。

C。

D。

2.使分式x-1有意义的x的取值范围是()A.x=1.B.x≠1.C.x=-1.D.x≠-1.3.计算:(-x)3·2x的结果是()A.-2x4B.-2x3C.2x4D.2x34.化简:=()-x-1x-1A.1.B.0.C.x。

D.-x5.一个等腰三角形的两边长分别为3和5,则它的周长为()A.11.B.12.C.13.D.11或136.如果(x-2)(x+3)=x2+px+q,那么p、q的值为()A.p=5,q=6.B.p=1,q=-6.C.p=1,q=6.D.p=5,q=-6.7.如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中∠α+∠β的度数是()A.180°B.220°C.240D.300°8.下列从左到右的变形中是因式分解的有()①x2-y2-1x y x-y-1②x3x xx2 1③x-y x2-2xy y2④x2-9y2x3y x-3y 2A.1个B.2个C.3个D.4个.9.如图,在Rt△ABC中,∠A=90°,∠C=30°,∠ABC的平分线BD交AC于点D,若AD=3,则BD+AC=()A、10.B、15.C、20.D、30.10.XXX准备生产5400套电子元件,甲车间独立生产一半后,由于要尽快投入市场,乙车间也加入了该电子元件的生产,若乙车间每天生产的电子元件套数是甲车间的1.5倍,结果用30天完成任务,问甲车间每天生产电子元件多少套?在这个问题中设甲车间每天生产电子元件x套,根据题意可得方程为()A。

人教版八年级上册数学期末考试试卷及答案

人教版八年级上册数学期末考试试卷及答案

人教版八年级上册数学期末考试试题一、单选题1.下列图形中,不是轴对称图形的是()A .B .C .D .2.将0.00000004米用科学记数法表示为()A .8410-⨯B .9410-⨯C .90.410⨯D .74010-⨯3.下列各式中,从左到右的变形是因式分解的是()A .()()2111x x x +-=-B .()24444x x x x -+=-+C .()()23412x x x x +-=--D .()()2422x x x -=+-4.使分式2x x +有意义的x 的取值范围是()A .2x ≠-B .0x ≠C .2x >-D .2x <-5.下列计算正确的是()A .336()x x =B .6424a a a ⋅=C .325a a a +=D .2232a a a-=6.下列选项中最简分式是()A .211x +B .224x C .211x x +-D .23x x x+7.如图,用尺规作图作已知角平分线,其根据是构造两个三形全等,它所用到的判别方法是()A .SASB .AASC .ASAD .SSS8.如图,CE ∥BF ,AE=DF ,要使△EAC ≌△FDB .需要添加下列选项中的()A .AB=CDB .EC=BFC .∠A=∠D D .AB=BC9.如图,AD 是△ABC 的角平分线,∠C=28°,AB+BD=AC 、将△ABD 沿AD 所在直线翻折,点B 在AC 边上的落点记为点E ,那么∠AED 的度数为()A .28°B .50°C .56°D .65°10.对于两个不相等的实数a 、b ,我们规定符号Min {a ,b }表示a 、b 中较小的值,如Min {2,4}=2,按照这个规定,方程Min {13,x x }=41x-的解为()A .1或3B .1或-3C .1D .3二、填空题11.(-2021)0=_________.12.点(1,2)A -关于x 轴对称点的坐标是___.13.已知三角形的两边分别为2和 7,则第三边c 的取值范围是_______.14.若46x =,412y =,则24x y -=________.15.分解因式:﹣x 2+2x ﹣1=_____.16.如图,在△ABC 中,∠ABC 和∠ACB 的平分线相交于F 点,过点F 作DE ∥BC ,交AB 于点D ,交AC 于点E ,若AB=8,AC=9,则△ADE 的周长为_______.17.如图,已知正五边形ABCDE ,AF ∥CD ,交DB 的延长线于点F ,则∠DFA =____度.18.如图,∠MON=30°,点123A A A 、、…在射线ON 上,点123B B B 、、…在射线OM 上,△112A B A ,△223A B A ,△334A B A ,…均为等边三角形,从左数起第1个等边三角形的边长记1a ,第2个等边三角形的边长记2a ,以此类推,若1OA =1,则2021=a ___.19.如图的三角形纸片中,AB=8cm ,BC=6cm ,AC=7cm ,沿过点B 的直线折叠三角形,使点C 落在AB 边的点E 处,折痕为BD ,则△AED 的周长为_____.20.如图,∠AOB=30°,OP 平分∠AOB ,PD ⊥OB 于D ,PC ∥OB 交OA 于C ,若PC=10,则PD=________.三、解答题21.计算:2(3)(6)x x x ---22.先化简,再求值:211()(4)22x x x +⋅--+,其中13x =.23.如图,△ABC中,∠B=2∠C,E为BC上一点,且到A、C两点的距离相等.(1)尺规作图:作出点E的位置(保留作图痕迹);(2)连接AE,求证:AB=AE.24.一网店经营的一个型号山地自行车,今年一月份销售额为27000元,二月份每辆车售价比一月份每辆车售价降价100元,若销售的数量与上一月销售的数量相同,则销售额是24000元.(1)求二月份每辆车售价是多少元?(2)为了促销,三月份每辆车售价比二月份每辆车售价降低了10%销售,网店仍可获利44%,求每辆山地自行车的进价是多少元?25.如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,以AB为一边向上作等边三角形ABD,点E在BC垂直平分线上,且EB⊥AB,连接CE,AE,CD.(1)判断△CBE的形状,并说明理由;(2)求证:AE=DC;(3)若CD与AE相交于点F,CD与AB相交于点G,求∠AFD的度数.26.如图,△ABC和△AOD是等腰直角三角形,AB=AC,AO=AD,∠BAC=∠OAD=90°,点O是△ABC内的一点,∠BOC=130°.(1)求证:OB=DC;(2)求∠DCO的大小;(3)设∠AOB=α,那么当α为多少度时,△COD是等腰三角形.27.如图,在等边三角形ABC中,点D,E分别在BC,AB上,且BD=AE,AD与CE 交于点F(1)求证:AD=CE;(2)求∠DFC的度数.28.已知:如图,AD∥BC,AD=BC,E为BC上一点,且AE=AB.求证:(1)∠DAE=∠B;(2)△ABC≌△EAD.参考答案1.D【分析】根据轴对称图形的定义,逐项判断即可求解.【详解】解:A、是轴对称图形,故本选项不符合题意;B、是轴对称图形,故本选项不符合题意;C、是轴对称图形,故本选项不符合题意;D、不是轴对称图形,故本选项符合题意;故选:D【点睛】本题主要考查了轴对称图形的定义,熟练掌握若一个图形沿着一条直线折叠后两部分能完全重合,这样的图形就叫做轴对称图形,这条直线叫做对称轴是解题的关键.2.A【分析】科学记数法的表示形式为a×10n的形式,其中1⩽|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:将0.00000004米用科学记数法表示为4×10-8.故选:A.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1⩽|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.D【分析】根据因式分解的意义(把一个多项式化成几个整式的积的形式,这个过程叫因式分解)逐个判断即可.【详解】解:A、是整式的乘法,不是因式分解,故本选项不符合题意;B、右边不是积的形式,所以不是因式分解,故本选项不符合题意;C、是整式的乘法,不是因式分解,故本选项不符合题意;D、是因式分解,故本选项符合题意;故选D.【点睛】本题考查了因式分解的定义,能正确理解因式分解的定义是解此题的关键.4.A【分析】根据分式有意义的条件列出关于x的不等式,求出x的取值范围即可.【详解】∵分式2x x +有意义,∴x+2≠0,解得x≠-2.故选:A .【点睛】本题考查的是分式有意义的条件,熟知分式有意义的条件是分母不等于零是解答此题的关键.5.C【分析】根据幂的乘方运算法则、同底数幂的乘法法则、合并同类项法则进行运算,即可判定.【详解】A .339()xx =,故该选项不正确;B .6410a a a = ,故该选项不正确;C .325a a a +=,故该选项正确;D .22232a a a -=,故该选项不正确.故选:C .【点睛】本题考查了幂的乘方运算法则、同底数幂的乘法法则、合并同类项法则,掌握各运算法则是解决本题的关键.6.A【分析】一个分式的分子与分母没有非零次的公因式时(即分子与分母互素)叫最简分式.【详解】A.211x +,是最简分式;B.222142x x =,不是最简分式;C.211x x +-=1x 1-,不是最简分式;D.23x x x+=3x+1,不是最简分式.故选A【点睛】本题考核知识点:最简分式.解题关键点:理解最简分式的意义.7.D【分析】根据作图过程可知:OC=OD ,PC=PD ,又OP=OP ,从而利用SSS 判断出△OCP ≌△ODP ,根据全等三角形的对应角相等得出∠COP=∠DOP ,即OP 平分∠AOB ,从而得出答案.【详解】解:由画法得OC=OD ,PC=PD ,而OP=OP ,所以△OCP ≌△ODP (SSS ),所以∠COP=∠DOP ,即OP 平分∠AOB.故答案为:D.【点睛】本题考查了用尺规作图作已知角平分线,三角形全等的判定,用尺规作图作已知角平分线,三角形全等的判定掌握是解题的关键.8.C【分析】由平行线的性质可得ACE DBF ∠=∠,结合AE DF =,则还需要一角,再结合选项可求得答案.【详解】解:∵CE BF ∥,ACE DBF ∴∠=∠.AE DF = ,∴要使EAC FDB ≌,利用判定三角形全等的”AAS “还需要A D ∠=∠或E F ∠=∠.故选:C .【点睛】本题主要考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键.9.C【分析】根据折叠的性质可得BD=DE ,AB=AE ,然后根据AC=AE+EC ,AB+BD=AC 证得DE=EC ,再根据等边对等角以及三角形的外角的性质求解.【详解】解:根据折叠的性质可得BD=DE ,AB=AE .∵AB+BD=AC ,AC=AE+EC ,∴AB+BD=AE+EC ,∴DE=EC ,∴∠EDC=∠C=28︒,∴28+28=56AED EDC C ∠=∠+∠=︒︒︒.故选:C .【点睛】本题考查了折叠的性质以及等腰三角形的性质、三角形的外角的性质,证明DE=EC是本题的关键.10.D【分析】分类讨论1x与3x的大小,列出分式方程,求出解即可.【详解】解:当13x x>时,x<0,方程变形为341x x=-,去分母得:3=4−x,解得:x=1,经检验x=1是分式方程的解,但是不符合题意;当13x x<时,x>0,方程变形得:141x x=-,去分母得:1=4−x,解得:x=3,经检验x=3是分式方程的解,故原方程的解为x=3故选:D.11.1【分析】根据零次幂进行计算即可求解.【详解】解:原式=1,故答案为:1.【点睛】本题考查了零次幂,掌握非零实数的零次幂为1是解题的关键.12.(1,2)--【分析】利用平面直角坐标系点对称的性质求解.【详解】解:关于x轴对称点的坐标是横坐标不变纵坐标变为原来的相反数可知,(1,2)A-关于x轴对称点的坐标是(1,2)--.故答案是:(1,2)--.【点睛】本题考查点对称的性质,解题的关键是掌握坐标关于x轴对称的变化规律,即关于x轴对称点的坐标是横坐标不变纵坐标变为原来的相反数.13.59c<<【分析】利用“三角形的两边差小于第三边,三角形两边之和大于第三边”,可求出c的取值范围.【详解】解:∵7-2=5,2+7=9,∴第三边c 的取值范围为5<c <9.故答案为:5<c <9.【点睛】本题考查了三角形三边关系,牢记“三角形的两边差小于第三边,三角形两边之和大于第三边”是解题的关键.14.3【分析】由同底数幂的除法,可知222444(4)4x y x y x y -=÷=÷,再把46x =,412y =代入,即可求得其值【详解】解:222444(4)4x y x y x y -=÷=÷,46x = ,412y =,224612=3x y -∴=÷.故答案为:3.15.﹣(x ﹣1)2【详解】试题分析:直接提取公因式﹣1,进而利用完全平方公式分解因式即可解:﹣x 2+2x ﹣1=﹣(x 2﹣2x+1)=﹣(x ﹣1)2.故答案为﹣(x ﹣1)2.考点:提公因式法与公式法的综合运用.16.17【分析】根据角平分线的定义可得∠DBF=∠CBF ,根据平行线的性质,可得∠CBF=∠BFD ,等量代换可得∠DBF=∠BFD ,根据等角对等边可得BD=FD ,同理可得CE=FE ,可求得△ADE 的周长为AB+AC ,据此即可求得.【详解】解:∵BF 平分∠ABC ,∴∠DBF=∠CBF ,∵DE//BC ,∴∠CBF=∠BFD ,∴∠DBF=∠BFD ,∴BD=FD ,同理可得CE=FE ,∵DE=FD+FE ,∴DE=BD+CE ,∴△ADE 的周长为:AD+DE+AE =AD+BD+CE+AE=AB+AC=8+9=17.故答案为:17.17.36【分析】首先求得正五边形内角∠C 的度数,然后根据CD =CB 求得∠CDB 的度数,然后利用平行线的性质求得∠DFA 的度数即可.【详解】解:∵正五边形的外角为360°÷5=72°,∴∠C =180°﹣72°=108°,∵CD =CB ,∴∠CDB =36°,∵AF ∥CD ,∴∠DFA =∠CDB =36°,故答案为36.18.20202【分析】根据等腰三角形的性质以及平行线的性质得出112233A B A B A B ∥∥,以及A 2B 2=2B 1A 2,得出A 3B 3=4B 1A 2,…,依此类推进而得出答案.【详解】解:如图,∵△A 1B 1A 2是等边三角形,∴A 1B 1=A 2B 1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°−120°−30°=30°,又∵∠3=60°,∴∠5=180°−60°−30°=90°,∵∠MON=∠1=30°,∴OA 1=A 1B 1=1,即△A 1B 1A 2的边长为0112a ==;∴A 2B 1=1,∵△A 2B 2A 3、△A 3B 3A 4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠10=∠11=60°,∠12=∠13=60°,∴112233A B A B A B ∥∥,1223B A B A ∥,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A 2B 2=2B 1A 2=2=21,即△A 2B 2A 3的边长为122a =同理得B 3A 3=2B 2A 3=4=22,即△A 3B 3A 4的边长为232a =,…,∴1n n n A B A + 的边长为12n n a -=,∴202120212022A B A △的边长为202020212a =.故答案为:20202.【点睛】本题考查的是平行线的判定与性质、等边三角形的性质以及等腰三角形的性质,根据已知得出规律是解决本题的关键.19.9cm【详解】试题分析:先根据图形翻折不变性的性质得出△DEB ≌△DCB ,故DE=CD ,EB=BC ,故可得出结论.解:∵△DEB 由△DCB 翻折而成,∴△DEB ≌△DCB ,∴DE=CD ,BE=BC ,∵AB=8cm ,BC=6cm ,AC=7cm ,∴△AED 的周长=AD+DE+AE=(AD+CD )+(AB ﹣BE )=AC+AB ﹣BC=7+8﹣6=9cm .故答案为9cm考点:翻折变换(折叠问题).20.5【详解】解:∵OP 平分∠AOB ,∴∠AOP=∠BOP ,∵PC ∥OB ,∴∠CPO=∠BOP ,∴∠CPO=∠AOP ,∴PC=OC .∵PC=10,∴OC=PC=10,过P 作PE ⊥OA 于点E ,∵PD ⊥OB ,OP 平分∠AOB ,∴PD=PE ,∵PC ∥OB ,∠AOB=30°∴∠ECP=∠AOB=30°在Rt △ECP 中,PE=12PC=5,∴PD=PE=5,故答案为5.21.9【分析】首先根据完全平方公式及单项式乘以多项式法则运算,再根据去括号法则去括号,最后合并同类项,即可求得【详解】解:2(3)(6)x x x ---2269(6)x x x x =-+--22696x x x x=-+-+9=22.2x ;23【分析】先将x 2-4根据平方差公式分解为(x+2)(x-2),再进行乘法运算,可得最简的式子2x ,最后将13x =代入计算即可.【详解】解:211((4)22x x x +⋅--+11=()(2)(2)22x x x x +⋅+--+=x+2+x-2=2x .把13x =代入最简式子,得原式12233=⨯=.23.(1)见解析;(2)见解析.【分析】作线段AC 的垂直平分线,交BC 于点E ,点E 即为所求的点;(2)根据线段垂直平分线的性质,可得AE=CE ,再根据三角形外角的性质,可证得∠AEB=2∠C ,由∠B=2∠C ,可得∠AEB=∠B ,据此即可证得结论.(1)解:如图:作线段AC 的垂直平分线MN ,交BC 于点E ,点E 即为所求的点.(2)解:∵MN 垂直平分AC ,∴AE=CE ,∴∠EAC=∠C ,∴∠AEB=∠EAC+∠C=2∠C ,∵∠B=2∠C ,∴∠AEB=∠B ,∴AB=AE .24.(1)800元;(2)500元.【分析】(1)设二月份每辆车售价为x 元,则一月份每辆车售价为(x+100)元,根据数量=总价÷单价,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)设每辆山地自行车的进价为y 元,根据利润=售价−进价,即可得出关于y 的一元一次方程,解之即可得出结论.(1)解:二月份每辆车售价为x 元,则一月份每辆车售价为(x+100)元,根据题意得:27002400100x x=+解得:x=800,经检验:x=800是原分式方程的解,故二月份每辆车售价为800元;(2)解:设每辆山地自行车的进价为y 元,根据题意得:800(110%)44%y y ⨯--=,解得:y=500,故每辆山地自行车的进价为500元.【点睛】本题考查了分式方程的应用以及一元一次方程的应用,解题的关键是:找准等量关系,正确列出方程;注意分式方程要检验.25.(1)等边三角形,理由见解析;(2)见解析;(3)60°.【分析】(1)根据垂直平分线的性质可得EC=EB ,再算出∠CBE=60°,可判定△CBE 是等边三角形;(2)根据SAS 可证明△ABE ≌△DBC ,即可得出结论;(3)由(2)中全等可得∠EAB=∠CDB ,再根据三角形内角和可得∠AFD 的度数.(1)解:△CBE 是等边三角形.理由如下:∵点E 在BC 垂直平分线上,∴EC=EB ,∵EB ⊥AB ,∴∠ABE=90°,∵∠ABC=30°,∴∠CBE=60°,∴△CBE 是等边三角形.(2)解:∵△ABD 是等边三角形,∴AB=DB ,∠ABD=60°,∵∠ABC=30°,∴∠DBC=90°,∵EB ⊥AB ,∴∠ABE=90°,∴∠ABE=∠DBC ,由(1)可知:△CBE 是等边三角形,∴EB=CB ,在△ABE 与△DBC 中,===AB DBABE DBC EB CB⎧⎪∠∠⎨⎪⎩∴△ABE ≌△DBC(SAS),∴AE=DC ;(3)解:如图,∵△ABE ≌△DBC ,∴∠EAB=∠CDB ,又∵∠AGC=∠BGD ,∴∠AFD=∠ABD=60°.26.(1)证明见解析;(2)40°;(3)当α的度数为115°或85°或145°时,△AOD 是等腰三角形【分析】(1)由已知证明△AOB ≌△ADC ,根据全等三角形的性质即可证得;(2)由∠BOC=130°,根据周角的定义可得∠BOA+∠AOC=230°,再根据全等三角形的性质继而可得∠ADC+∠AOC=230°,由∠DAO=90°,在四边形AOCD 中,根据四边形的内角和即可求得∠DCO 的度数;(3)分三种情况进行讨论即可得.【详解】(1)∵∠BAC=∠OAD=90°,∴∠BAC ﹣∠CAO=∠OAD ﹣∠CAO ,∴∠DAC=∠OAB ,在△AOB 与△ADC 中,AB AC OAB DAC AO AD =⎧⎪∠=∠⎨⎪=⎩,∴△AOB ≌△ADC ,∴OB=DC ;(2)∵∠BOC=130°,∴∠BOA+∠AOC=360°﹣130°=230°,∵△AOB≌△ADC∠AOB=∠ADC,∴∠ADC+∠AOC=230°,又∵△AOD是等腰直角三角形,∴∠DAO=90°,∴四边形AOCD中,∠DCO=360°﹣90°﹣230°=40°;(3)当CD=CO时,∴∠CDO=∠COD=1801804022DCO︒-∠︒-︒==70°,∵△AOD是等腰直角三角形,∴∠ODA=45°,∴∠CDA=∠CDO+∠ODA=70°+45°=115°,又∠AOB=∠ADC=α,∴α=115°;当OD=CO时,∴∠DCO=∠CDO=40°,∴∠CDA=∠CDO+∠ODA=40°+45°=85°,∴α=85°;当CD=OD时,∴∠DCO=∠DOC=40°,∠CDO=180°﹣∠DCO﹣∠DOC=180°﹣40°﹣40°=100°,∴∠CDA=∠CDO+∠ODA=100°+45°=145°,∴α=145°,综上所述:当α的度数为115°或85°或145°时,△AOD是等腰三角形.27.(1)见解析;(2)60°【分析】(1)根据等边三角形的性质,利用SAS证得△AEC≌△BDA,所以AD=CE,(2)根据全等三角形的性质得到∠ACE=∠BAD,再根据三角形的外角与内角的关系得到∠DFC=∠FAC+∠ACF=∠FAC+∠BAD=∠BAC=60°.【详解】(1)证明:∵△ABC是等边三角形,∴∠B=∠BAC=60°,AB=AC.又∵BD=AE∴△ABD≌△CAE(SAS)∴AD=CE(2)解:由(1)得△ABD≌△CAE∴∠ACE=∠BAD.∴∠DFC=∠FAC+∠ACE=∠FAC+∠BAD=∠BAC=60°.28.证明见解析【详解】试题分析:(1)首先由AE=AB可以得到∠B=∠AEB,然后由AD∥BC可以得到∠AEB=∠DAE,由此即可证明题目的结论;(2)利用(1)的结论,而且AD=BC,AE=AB,由此即可证明△ABC≌△EAD.证明:(1)∵AE=AB,∴∠B=∠AEB,又∵AD∥BC,∴∠AEB=∠DAE,∴∠DAE=∠B;(2)∵∠DAE=∠B,AD=BC,AE=AB,∴△ABC≌△EAD.。

人教版八年级上册数学期末考试试卷有答案

人教版八年级上册数学期末考试试卷有答案

人教版八年级上册数学期末考试试题一、单选题1.下列图形中是轴对称图形的是()A .B .C .D .2.若分式211a a --的值为0,则a 的值为()A .±1B .0C .﹣1D .13.如图,ABC BAD ≌,点A 和点B ,点C 和点D 是对应点.如果AB=6厘米,BD=5厘米,AD=4厘米,那么BC 的长是()A .6cmB .5cmC .4cmD .不能确定4.下列各式从左到右的变形中,是因式分解的为()A .x (a ﹣b )=ax ﹣bxB .x 2﹣3x+1=x (x ﹣3)+1C .x 2﹣4=(x+2)(x ﹣2)D .m+1=x (1+1m )5.下列运算正确的是()A .a 2•a 5=a 10B .a 2+a 2=a 4C .(a 2b )3=a 5b 3D .(﹣a 2)4=a 86.已知4x 2+2kx +9是完全平方式,则k 的值为()A .12B .±6C .±12D .67.如图所示,在ABC 中,D 、E 、F 分别为BC 、AD 、CE 的中点,且216cm ABCS =△,则DEF 的面积等于()A .22cmB .24cmC .26cmD .28cm8.如图,点B、F、C、E在一条直线上,AB∥ED,AC∥FD,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是()A.AB=DE B.AC=DF C.∠A=∠D D.BF=EC9.如图,以△ABC的顶点B为圆心,BA长为半径画弧,交BC边于点D,连接AD.若∠B=40°,∠C=36°,则∠DAC的大小为()A.30°B.34°C.36°D.40°10.分式方程21x-=1x的解是()A.x=﹣1B.x=0C.x=1D.无解二、填空题11.因式分解:ax2﹣4ay2=____.12.如果一个多边形的内角和等于外角和的2倍,那么这个多边形的边数n=________.13.已知“★”表示新的一种运算符号,且规定如下运算规律:m★n=3m-2n,若2★x=0,则x=______.14.如图,在△ABC中,DE是AC的垂直平分线,AE=4,AD=5,则△ACD的周长为_____.15.如图,用圆规以直角顶点O为圆心,以适当半径画一条弧交两直角边于A,B两点,若再以A点为圆心,以OA为半径画弧,与弧AB交于点C,则∠BOC等于______.16.如图,在△ABC 中,D 是BC 延长线上一点,∠B=40°,∠ACD=120°,则∠A=____.17.一个等腰三角形的两边长分别为5或6,则这个等腰三角形的周长是_____.18.化简:1xy x y ++=_____.19.若(x+2)(x ﹣6)=x 2+px+q ,则p+q =_____.20.如图,已知A (3,0),B (0,﹣1),连接AB ,过点B 的垂线BC ,使BC =BA ,则点C 坐标是_____.三、解答题21.因式分解:x 3﹣16x .22.解分式方程:3211x x x +=--23.先化简,再求值:(31x -–11x +)÷211x -,其中x=2.24.如图,在Rt △ABC 中,∠C=90°.(1)作∠BAC 的平分线AD 交边BC 于点D .(尺规作图,保留作图痕迹,不写作法).(2)在(1)的条件下,若∠BAC=28°,求∠ADB 的度数.25.(列方程解应用题)为提高学生的阅读兴趣,某学校建立了共享书架,并购买了一批书籍.其中购买A 种图书花费了3000元,购买B 种图书花费了1600元,A 种图书的单价是B 种图书的1.5倍,购买A 种图书的数量比B 种图书多20本,求A 和B 两种图书的单价分别为多少元?26.如图,在ABC 中,D 是BC 边上的一点,AB DB =,BE 平分ABC ∠,交AC 边于点E ,连接DE .(1)求证:AE DE =;(2)若100A ∠=︒,50C ∠=︒,求AEB ∠的度数.27.如图,点C,E,F,B在同一直线上,点A,D在BC异侧,AB∥CD,AE=DF,∠A=∠D,(1)求证:AB=CD;(2)若AB=CF,∠B=30°,求∠D的度数.28.如图①,△ABC是等边三角形,点P是BC上一动点(点P与点B、C不重合),过点P作PM∥AC交AB于M,PN∥AB交AC于N,连接BN、CM.(1)求证:PM+PN=BC;(2)在点P的位置变化过程中,BN=CM是否成立?试证明你的结论;(3)如图②,作ND∥BC交AB于D,则图②成轴对称图形,类似地,请你在图③中添加一条或几条线段,使图③成轴对称图形(画出一种情形即可).参考答案1.B【分析】直接利用轴对称图形的定义进行判断.如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【详解】解:A,C,D选项中的图形都不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形;B 选项中的图形能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形;故选:B .【点睛】此题主要考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.C【分析】根据分式的值为0的条件,即分子为0,分母不为0,即可求解.【详解】解:根据题意得:210a -=且10a -≠,解得:1a =-.故选:C【点睛】本题主要考查了分式的值为0的条件,熟练掌握分子为0,分母不为0是解题的关键.3.C【分析】根据全等三角形的性质可直接进行求解.【详解】解:∵ABC BAD ≌,AD=4厘米,∴4cm BC AD ==;故选C .【点睛】本题主要考查全等三角形的性质,熟练掌握全等三角形的性质是解题的关键.4.C【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】解:A 、是整式的乘法,故A 错误,不符合题意;B 、没把一个多项式转化成几个整式积的形式,故B 错误,不符合题意;C 、把一个多项式转化成几个整式积的形式,故C 正确,符合题意;D 、等号左右两边式子不相等,故D 错误,不符合题意;故选C【点睛】本题考查了因式分解的意义,明确因式分解的结果应是整式的积的形式是解题的关键.5.D【分析】根据幂的乘方、同底数幂的乘法和加法、积的乘方的计算方法逐项计算,即可判断.【详解】22575a a a a +=⋅=,故A 选项错误,不符合题意;2222a a a +=,故B 选项错误,不符合题意;2323363()a b a b a b ⨯==,故C 选项错误,不符合题意;244248()(1)a a a ⨯-=-⋅=,故D 选项正确,符合题意;故选D .6.B【分析】先将4x 2+2kx+9变为(2x±3)2,可得2kx=±12即可求得k 的值.【详解】解:∵4x 2+2kx+9是完全平方式,∴4x 2+2kx+9=(2x±3)2,∴4x 2+2kx+9=4x 2±12x+9,∴2kx=±12x,即k=±6.故选B .7.A【分析】三角形的一条中线分三角形为两个三角形,这两个三角形的面积相等,根据以上内容求出每个三角形的面积,即可求出答案.【详解】解:∵S △ABC=16cm 2,D 为BC 中点,∴S △ADB=S △ADC=12S △ABC=8cm 2,∵E 为AD 的中点,∴S △CED=12S △ADC=4cm 2,∵F 为CE 的中点,∴S △DEF=12S △DEC=2cm 2;故选:A .8.C【详解】解:选项A 、添加AB=DE 可用AAS 进行判定,故本选不符合题意;选项B 、添加AC=DF 可用AAS 进行判定,故本选项不符合题意;选项C 、添加∠A=∠D 不能判定△ABC ≌△DEF ,故本选项符合题意;选项D 、添加BF=EC 可得出BC=EF ,然后可用ASA 进行判定,故本选项不符合题意.故选C .9.B【分析】由AB =BD ,∠B =40°得到∠ADB =70°,再根据三角形的外角的性质即可得到结论.【详解】解:∵AB =BD ,∠B =40°,∴∠ADB =70°,∵∠C =36°,∴∠DAC =∠ADB ﹣∠C =34°.故选:B .10.A【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:去分母得:2x =x ﹣1,解得:x =﹣1,经检验x =﹣1是分式方程的解,故选:A .【点睛】本题考查了分式方程的解法,其基本思路是把方程的两边都乘以各分母的最简公分母,化为整式方程求解,求出x 的值后不要忘记检验.11.a (x+2y )(x ﹣2y )【分析】先提公因式a ,再利用平方差公式即可进行因式分解.【详解】解:原式=a (x 2﹣4y 2)=a (x+2y )(x ﹣2y ),故答案为:a (x+2y )(x ﹣2y ).【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确运用公式是解题关键.12.6【分析】n 边形的内角的和等于()2180n -⋅︒(3n ≥且n 为整数),外角和为360︒,根据语句:一个多边形的内角和等于外角和的2倍,可列出关于n 的方程,然后求解即可.【详解】解:设这个多边形的边数为n ,依题意,得:()21802360n -⨯︒=⨯︒,解得:6n =.故答案为:6.【点睛】本题考查多边形的内角和计算公式,多边形的外角和.解题的关键是根据题意利用多边形的外角和及内角和之间的关系列出方程求边数.13.3【分析】已知等式利用题中的新定义化简,求出解即可得到x 的值.【详解】解:已知等式利用题中的新定义化简得:6-2x=0,解得:x=3.故答案为:3.【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.14.18【分析】根据线段的垂直平分线的性质,可知AD DC =,进而可知△ADC 为等腰三角形,根据三角形三线合一的性质可知4EC AE ==,可求出△ADC 的周长.【详解】解:∵DE 是AC 的垂直平分线,∴AD DC =(线段的垂直平分线上一点,到线段的两个端点的距离相等)∴△ADC 为等腰三角形,∴4EC AE ==,∴22252418ADC S AD DC AC AD AE =++=+=⨯+⨯=,故答案为:18.【点睛】本题考查线段的垂直平分线的性质,以及等腰三角形三线合一的性质,能够熟练掌握等腰三角形,以及垂直平分线的性质是解决本题的关键.15.30°##30度【分析】根据作图可知OAC 为等边三角形,即得出60AOC ∠=︒,从而由BOC AOB AOC ∠=∠-∠即可求出BOC ∠的大小.【详解】由作图可知OA OC AC ==,∴OAC 为等边三角形,∴60AOC ∠=︒,∴906030BOC AOB AOC ∠=∠-∠=︒-︒=︒.故答案为:30°.【点睛】本题考查等边三角形的判定和性质.根据题意判断出OAC 为等边三角形是解题关键.16.80︒##80度【分析】根据三角形的外角性质即可得.【详解】解:由三角形的外角性质得:ACD A B ∠=∠+∠,40,120B ACD ∠=︒∠=︒Q ,40120A ∴∠+︒=︒,解得80A ∠=︒,故答案为:80︒.【点睛】本题考查了三角形的外角性质,熟练掌握三角形的外角性质是解题关键.17.16或17.【详解】由于未说明两边哪个是腰哪个是底,故需分两种情况讨论:(1)当等腰三角形的腰为5,底为6时,周长为5+5+6=16;(2)当等腰三角形的腰为6,底为5时,周长为5+6+6=17.∴这个等腰三角形的周长是16或17.18.x【分析】把分子分解因式,然后利用分式的性质化简得出答案.【详解】解:原式=()11x y y ++=x .故答案为:x .【点睛】本题考查了分式的约分,熟练掌握分式的基本性质是解答本题的关键,本题也考查了因式分解.19.-16【分析】已知等式左边利用多项式乘多项式法则计算,利用多项式相等的条件求出p 与q 的值,再代入计算即可求解.【详解】解:(x+2)(x ﹣6)=x 2﹣4x ﹣12=x 2+px+q ,可得p =﹣4,q =﹣12,p+q =﹣4﹣12=﹣16.故答案为:﹣16.【点睛】本题考查了多项式与多项式的乘法运算,多项式与多项式相乘,先用一个多项式的每一项分别乘另一个多项式的每一项,再把所得的积相加.20.C (1,﹣4)【分析】过点作CE ⊥y 轴于E ,证明△AOB ≌△BEC (AAS ),得出OA =BE ,OB =CE ,再求出OA =3,OB =1,即可得出结论;【详解】解:如图,过点作CE ⊥y 轴于E ,∴∠BEC =90°,∴∠BCE+∠CBE =90°,∵AB ⊥BC ,∴∠ABC =90°,∴∠ABO+∠CBE =90°,∴∠ABO =∠BCE ,在△AOB 和△BEC 中,90AOB BEC ABO BCE AB BC⎧∠=∠=⎪∠=∠⎨⎪=⎩,∴△AOB ≌△BEC (AAS ),∴OA =BE ,OB =CE ,∵A (3,0),B (0,﹣1),∴OA =3,OB =1,∴CE =1,BE =3,∴OE =OB+BE =4,∴C (1,﹣4).21.x(x+4)(x-4).【分析】原式提取x ,再利用平方差公式继续分解即可.【详解】解:x 3﹣16x=x(x 2-16)=x(x+4)(x-4).22.1x =-【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:3211x x x +=--去分母得,()321x x +-=,解得,1x =-,经检验,1x =-是原方程的解.所以,原方程的解为:1x =-.【点睛】本题主要考查了分式方程的解法.解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.23.24x +;8【分析】首先根据分式的加减法法则将括号里面的分式进行计算,然后将除法改成乘法进行约分化简,最后将x 的值代入化简后的式子进行计算.【详解】解:211(1113x x x -÷-+-,3(1)11[](1)(1)(1)(1)(1)(1)x x x x x x x x +-=-÷+-+-+-,331(1)(1)(1)(1)x x x x x x +-+=⋅+-+-,24x =+,当2x =时,原式2248=⨯+=.24.(1)见解析;(2)104°【分析】(1)直接根据角平分线的作图方法进行作图即可;(2)先根据三角形内角和定理求出∠B=180°-∠C-∠BAC=62°,再由角平分线的定义求出1==142BAD BAC o ∠∠,最后根据三角形内角和定理得到∠ADB=180°-∠BAD-∠B=104°.【详解】解:(1)以A 为圆心,以任意长为半径画弧,分别交AC ,AB 于M 、N ,再分别以M 、N 为圆心,以大于MN 长的一半为半径画弧,两者交于点P ,连接AP 并延长与BC 交于D ,即为所求;(2)∵∠C=90°,∠BAC=28°,∴∠B=180°-∠C-∠BAC=62°,∵AD 平分∠BAC ,∴1==142BAD BAC o ∠∠,∴∠ADB=180°-∠BAD-∠B=104°.25.A 种图书的单价为30元,B 种图书的单价为20元.【分析】设B 种图书的单价为x 元,则A 种图书的单价为1.5x 元,根据数量=总价÷单价结合用3000元购买的A 种图书比用1600元购买的B 种图书多20本,即可得出关于x 的分式方程,解之经检验后即可得出结论.【详解】解:设B 种图书的单价为x 元,则A 种图书的单价为1.5x 元,依题意,得:30001600201.5x x-=,解得:x =20,经检验,x =20是原分式方程的解,且符合题意,∴1.5x =30.答:A 种图书的单价为30元,B 种图书的单价为20元.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.26.(1)见解析;(2)65°【分析】(1)由角平分线的定义可得∠ABE=∠DBE ,即可利用SAS 证明△ABE ≌△DBE得到AE=DE ;(2)先由三角形内角和定理求出∠ABC=30°,再由角平分线的定义求出∠ABE=15°,最后根据三角形内角和定理求解即可.【详解】解:(1)∵BE 平分∠ABC ,∴∠ABE=∠DBE ,在△ABE 和△DBE 中,==AB DB ABE DBE BE BE ⎧⎪∠∠⎨⎪=⎩,∴△ABE ≌△DBE (SAS ),∴AE=DE ;(2)∵∠A=100°,∠C=50°,∴∠ABC=180°-∠A-∠C=30°,∵BE 平分∠ABC ,∴1==152ABE CBE ABE =︒∠∠,∴∠AEB=180°-∠A-∠ABE=65°.【点睛】本题主要考查了角平分线的定义,全等三角形的性质与判定,三角形内角和定理,解题的关键在于能够熟练掌握全等三角形的性质与判定条件.27.(1)证明见解析;(2)∠D=75°【分析】(1)易证得ABE DCF △≌△,即可得AB CD =;(2)易证得ABE DCF △≌△,即可得AB CD =,又由AB=CF ,∠B=30°,即可证得△ABE 是等腰三角形,解答即可.【详解】证明:(1)∵AB ∥CD ,∴∠B=∠C .在△ABE和△DCF中,∠A=∠D∠C=∠B AE=DF,∴ABE DCF AAS≌().∴AB=.(2)解:∵ABE DCF△≌△,∴AB=CD,∵AB=CF,∴CD=CF.∴△CDF是等腰三角形,∵∠C=∠B=30°,∴∠D=12×(180°−30°)=75°.【点睛】本题考查全等三角形问题和等腰三角形的性质,关键是根据AAS证明三角形全等,再利用全等三角形的性质解答.28.(1)见解析;(2)结论成立,理由见解析;(3)见解析【分析】(1)先证明△BMP,△CNP是等边三角形,再证明△BPN≌△MPC,从而PM=PB,PN=PC,可得PM+PN=BC;(2)BN=CM总成立,由(1)知△BPN≌△MPC,根据全等三角形的性质可得结论;(3)作ND∥BC交AB于N,作ME∥BC交AC于M,作EF∥AB交BC于F,连接DF 即可.【详解】(1)证明:∵△ABC是等边三角形,∴AB=BC,∠ABC=∠ACB=60°,∵PM∥AC,PN∥AB,∴∠BPM=∠ACB=60°,∠CPN=∠ABC=60°,∴△BMP,△CNP是等边三角形,∴∠BPM=∠CPN=60°,PN=PC,PN=PC,∴∠BPN=∠MPC,∴△BPN≌△MPC,∴PM=PB,PN=PC,∵BP+PC=BC,∴PM+PN=BC;(2)BN=CM总成立,理由:由(1)知△BPN≌△MPC,∴BN=CM;(3)解:如图③即为所求.作ND∥BC交AB于N,作ME∥BC交AC于M,作EF∥AB交BC于F,连接DF,作直线AH⊥BC交BC于H,同(1)可证△AND,△AME,△BPM,△CEF都是等边三角形,∴D与N,M与E,B与C关于AH对称.∴BM=CE,∴BM=CF,∴P与F关于AH对称,∴所做图形是轴对称图形.。

人教版八年级上册数学期末考试试卷含答案

人教版八年级上册数学期末考试试卷含答案

人教版八年级上册数学期末考试试题一、单选题1.点M (﹣2,1)关于x 轴的对称点N 的坐标是()A .(2,1)B .(﹣2,1)C .(﹣2,﹣1)D .(2,﹣1)2.使分式321x x --有意义的x 的取值范围是()A .x >12B .x <12C .x≠3D .x≠123.一个三角形的两边长分别为3cm 和8cm ,则此三角形第三边长可能是()A .3cmB .5cmC .7cmD .11cm4.如图,已知ABC DCB ∠=∠,添加以下条件,不能判定ABC DCB ∆≅∆的是()A .AB DC =B .BE CE =C .AC DB=D .A D∠=∠5.如果2(2)9x m x +-+是个完全平方式,那么m 的值是()A .8B .-4C .±8D .8或-46.若分式211x x -+的值为0,则x 的值为().A .0B .1C .﹣1D .±17.下列运算正确的是()A .x 2+x 2=2x 4B .a 2•a 3=a 5C .(﹣2x 2)4=16x 6D .(x+3y )(x ﹣3y )=x 2﹣3y 28.如图,已知D 为△ABC 边AB 的中点,E 在AC 上,将△ABC 沿着DE 折叠,使A 点落在BC 上的F 处.若∠B=65°,则∠BDF 等于()A .65°B .50°C .60°D .57.5°9.若(x+a )(x 2﹣x ﹣b )的乘积中不含x 的二次项和一次项,则常数a 、b 的值为()A.a=1,b=﹣1B.a=﹣1,b=1C.a=1,b=1D.a=﹣1,b=﹣1 10.如图,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB、AC于点M和N,再分别以M、N为圆心,大于12MN的长为半径画弧,两弧交于点P,连接AP并延长交BC于点D,有下列说法:①AD是∠BAC的平分线;②∠ADC=60°;③点D在AB的中垂线上;④S△DAC:S△ABC=1:3.其中说法正确的个数是()A.1B.2C.3D.4二、填空题11.当x≠__时,分式11xx-+有意义.12.分解因式:3x2﹣12xy+12y2=_____.13.数据0.0000000001,用科学记数法表示为____.14.关于x的分式方程3111mx x+=--的解为正数,则m的取值范围是________.15.若一个正多边形的每一个外角都是30°,则这个正多边形的内角和等于____度.16.已知m+2n+2=0,则2m•4n的值为_____.17.如图,△ABC的两条高BD、CE相交于点O且OB=OC.则下列结论:①△BEC≌△CDB;②△ABC是等腰三角形;③AE=AD;④点O在∠BAC的平分线上,其中正确的有_____.(填序号)18.如图,已知每个小方格的边长为1,A、B两点都在小方格的格点(顶点)上,请在图中找一个格点C,使△ABC是等腰三角形,这样的格点C有________个。

人教版八年级上册数学期末考试试卷含答案

人教版八年级上册数学期末考试试卷含答案

人教版八年级上册数学期末考试试题一、单选题1.下列图形中有且只有一条对称轴的是()A .B .C .D .2.如果分式62x -有意义,那么x 满足()A .2x =B .2x ≠C .0x =D .0x ≠3.下列各式不能用平方差公式计算的是()A .(2a -3b )(3a +2b )B .(4a 2-3bc )(4a 2+3bc )C .(3a +2b )(2b -3a )D .(3m +5)(5-3m )4.从正多边形的一个顶点可以引出5条对角线,则这个正多边形每个外角的度数为()A .135°B .45°C .60°D .120°5.如图,在△ABC 中,F 是高AD 和BE 的交点,BC =6,CD =2,AD =BD ,则线段AF 的长度为()A .2B .1C .4D .36.如图,OP 平分∠MON ,PA ⊥ON 于点A ,点Q 是射线OM 上的一个动点,若PA=2,则PQ 的最小值为()A .1B .2C .3D .47.如图,在△ABC 中,D 是CA 延长线上一点,∠B=40°,∠BAD=76°,则∠C 的度数为()A .36︒B .116︒C .26︒D .104︒8.已知:如图,在△ABC 中,边AB 的垂直平分线分别交BC 、AB 于点G 、D ,若△AGC 的周长为31cm ,AB=20cm ,则△ABC 的周长为()A .31cmB .41cmC .51cmD .61cm二、填空题9.数据0.00000008m ,用科学记数法表示为______________m10.若代数式02(2)(2)m m -++-有意义,则m 的取值范围是___________.11.因式分解:22123xy -=__________.12.若23x =,25y =,则2x y +=_____.13.如图,在△ABC 中,点E 、F 分别是AB 、AC 边上的点,EF ∥BC ,点D 在BC 边上,连接DE 、DF 请你添加一个条件___________________,使△BED ≌△FDE14.等腰三角形一腰上的高与另一腰的夹角的度数为20°,则顶角的度数是__________.15.如图,在Rt △ABC 中,∠C=90°,∠B=30°,边AB 的垂直平分线DE 交AB 于点E ,交BC 于点D ,CD=3,则BC 的长为___________16.当x_________时,分式235x -有意义.17.甲、乙两个搬运工搬运某种货物.已知乙比甲每小时多搬运600kg ,甲搬运5000kg 所用的时间与乙搬运8000kg 所用的时间相等.设甲每小时搬运xkg 货物,则可列方程为___.18.如图,过边长为1的等边ABC ∆的边AB 上一点P ,作PE AC ⊥于E ,Q 为BC 延长线上一点,当PA CQ =时,连接PQ 交AC 边于D ,则DE 的长为______.三、解答题19.解方程:1x -53x +=020.先化简,再求值:()()2(23)22x y x y x y +-+-,其中13x =,12y =-.21.如图,在平面直角坐标系中(1)请在图中作出△ABC 关于直线m 的轴对称图形△A 1B 1C 1(2)坐标系中有一点M(-3,3),点M 关于直线m 的对称点为点N ,点N 关于直线n 的对称点为点E ,写出点N 的坐标;点E 的坐标.22.已知:如图,点E 、A 、C 在同一直线上,AB ∥CD ,AB =CE ,AC =CD求证:∠B =∠E23.如图,BD是△ABC的角平分线,AE丄BD交BD的'延长线于点E,∠ABC=72°,∠C:∠ADB=2:3,求∠BAC和∠DAE的度数.24.如图,在△ABC中,已知AB=AC,AB的垂直平分线交AB于点N,交AC于点M,连接MB(1)若∠ABC=65°,则∠NMA的度数为(2)若AB=10cm,△MBC的周长是18cm①求BC的长度②若点P为直线MN上一点,则△PBC周长的最小值为cm25.问题:分解因式(a+b)2-2(a+b)+1答:将“a+b”看成整体,设M=a+b,原式=M2-2M+1=(M-1)2,将M还原,得原式=(a+b-1)2上述解题用到的是“整体思想”,这是数学解题中常用的一种思想方法.请你仿照上面的方法解答下列问题:(1)因式分解:(2a+b)2-9a2=(2)求证:(n+1)(n+2)(n 2+3n )+1的值一定是某一个正整数的平方(n 为正整数)26.如图,△ABC 是等边三角形,D 是边AC 的中点,EC ⊥BC 与点C ,连接BD 、DE 、AE 且CE=BD ,求证:△ADE 为等边三角形27.水果店的老板用2400元购进一批仙桃,很快售完;老板又用3700元购进第二批仙桃,所购件数是第一批的32倍,但进价比第一批每件多了5元.(1)第一批仙桃每件进价是多少元?(2)老板以每件225元的价格销售第二批仙桃,售出80%后,为了尽快售完,剩下的决定打折促销.要使得第二批仙桃的销售利润不少于440元,剩余的仙桃每件售价至少打几折?(利润=售价﹣进价)28.如图①,∠BAD=90°,AB=AD ,过点B 作BC ⊥AC 于点C ,过点D 作DE ⊥CA 的延长线点E ,由∠1+∠2=∠D+∠2=90°,得∠1=∠D ,又∠ACB=∠AED=90°,AB=AD ,得△ABC ≌△DAE 进而得到AC=DE ,BC=AE ,我们把这个数学模型称为“K 字”模型或“一线三等角”模型.请应用上述“一线三等角”模型,解决下列问题:(1)如图②,∠BAD=∠CAE=90°,AB=AD ,AC=AE ,连接BC 、DE ,且BC ⊥AH 于点H ,DE 与直线AH 交于点G ,求证:点G 是DE 的中点.(2)如图③,在平面直角坐标系中,点A 为平面内任意一点,点B 的坐标为(4,1),若△AOB 是以OB 为斜边的等腰直角三角形,请直接写出点A 的坐标.参考答案1.D【分析】根据轴对称图形的概念求解,如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【详解】解:A.不是轴对称图形,故此选项不合题意;B.有4条对称轴,故此选项不合题意;C.有3条对称轴,故此选项不合题意;D.有1条对称轴,故此选项符合题意.故选:D.2.B【分析】根据分式有意义的条件:分母不为零,得到不等式解不等式即可.【详解】要使分式62x-有意义,则x-2≠0,得到2x≠,故选B3.A【分析】利用平方差公式的结构特征判断即可.【详解】解:A.(2a-3b)(3a+2b)不符合平方差公式的特点,故不能用平方差公式计算;B.(4a2-3bc)(4a2+3bc)=16a4-9b2c2,故能用平方差公式计算;C.(3a+2b)(2b-3a)=4b2-9a2,故能用平方差公式计算;D.(3m+5)(5-3m)=25-9m2,故能用平方差公式计算;故选:A.4.B【分析】先由n边形从一个顶点出发可引出(n-3)条对角线,可求出多边形的边数,再根据正多边形的每个外角相等且外角和为360°.【详解】解:∵经过多边形的一个顶点有5条对角线,∴这个多边形有5+3=8条边,∴此正多边形的每个外角度数为360°÷8=45°,故选B5.A【分析】先求BD,AD的长,再证△BFD≌△ADC,即可得到FD的长,即可求解.【详解】∵BC=6,CD=2,∴BD=BC-CD =6-2=4,∴AD =BD=4∵AD 和BE 是三角形的高∴∠ADB=∠ADC=∠BEC=90°∴∠DAC+∠C=90°,∠EBC+∠C=90°∴∠DAC=∠EBC在△BFD 和△ADC 中DAC EBC BD AD ADB ADC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△BFD ≌△ADC (ASA )∴FD=DC=2∴AF=AD-FD=2故选A6.B【分析】根据题意点Q 是射线OM 上的一个动点,要求PQ 的最小值,需要找出满足题意的点Q ,根据直线外一点与直线上各点连接的所有线段中,垂线段最短,所以我们过点P 作PQ 垂直OM ,此时的PQ 最短,然后根据角平分线上的点到角两边的距离相等可得PA=PQ ,利用已知的PA 的值即可求出PQ 的最小值.【详解】解:过点P 作PQ ⊥OM ,垂足为Q ,则PQ 为最短距离,∵OP 平分∠MON ,PA ⊥ON ,PQ ⊥OM ,∴PA=PQ=2,故选:B .7.A【详解】解:∵∠BAD 是△ABC 的一个外角,∴∠BAD=∠B+∠C ,∴∠C=∠BAD-∠B=76°-40°=36°.故选A.8.C【分析】已知△AGC 的周长,因为GB 等于AG ,所以△ABC 的周长等于AC+CG+GB+AB ,即等于△AGC 的周长+AB.【详解】∵DG 是AB 边的垂直平分线,∴GA=GB ,△AGC 的周长=AG+AC+CG=AC+BC=31cm ,又AB=20cm ,∴△ABC 的周长=AC+BC+AB=51cm ,故选C.【点睛】本题考查线段的垂直平分线的性质.把求△ABC 的周长进行转化是解题的关键.9.8810-⨯【分析】将原数写成10n a ⨯的形式,a 是大于等于1小于10的数.【详解】解:80.00000008810-=⨯.故答案是:8810-⨯.【点睛】本题考查科学记数法,解题的关键是掌握科学记数法的表示方法.10.2m ≠±【分析】根据零指数幂的法则和负整数指数幂的法则可得关于m 的不等式组,解不等式组即可得出答案.【详解】解:根据题意,得:20m +≠且20m -≠,解得:2m ≠±.故答案为2m ≠±.【点睛】本题考查了零指数幂和负整数指数幂的知识,属于基础题型,熟知运用零指数幂和负整数指数幂的运算法则进行计算的前提条件是解此题的关键.11.3(2x+y)(2x-y)【分析】先提取公因式,然后根据平方差公式因式分解即可.【详解】解:原式=3(4x 2-y 2)=3(2x+y )(2x-y ).【点睛】因式分解是本题的考点,熟练掌握因式分解的方法是解题的关键,本题用到了提取公因式法和公式法.12.15【分析】由23x=,25y =,根据同底数幂的乘法可得222x y x y +=⋅,继而可求得答案.【详解】∵23x=,25y =,∴2223515x y x y +=⋅=⨯=,故答案为15.【点睛】本题考查了同底数幂的乘法,熟练掌握运算法则是解题的关键.本题中要注意掌握公式的逆运算.13.BD=FE (答案不唯一);【分析】根据平行四边形的判定和性质、全等三角形的判定定理即可解答.【详解】当BD=FE 时,△BED ≌△FDE ,∵EF ∥BC ,当BD=FE 时,∴四边形BEFD 是平行四边形,∴∠B =∠DFE ,BE =FD∵BD =FE∴△BED ≌△FDE ,故答案为:BD =FE .【点睛】本题考查了全等三角形的判定,利用了平行四边形的判定及其性质,全等三角形的判定,利用平行四边形的性质得出三角形全等的条件是解题关键.14.110°或70°【详解】解:分情况讨论:当等腰三角形的顶角是钝角时,腰上的高在外部.根据三角形的一个外角等于与它不相邻的两个内角的和,即可求得顶角是90°+20°=110°;当等腰三角形的顶角是锐角时,腰上的高在其内部,故顶角是90°﹣20°=70°.故答案为110°或70°.考点:1.等腰三角形的性质;2.分类讨论.15.9【详解】∵DE是AB的垂直平分线,∴AD=BD,∴∠DAE=∠B=30°,∴∠ADC=∠DAE+∠B=60°,∴∠CAD=30°,∴AD=2DC=6,即BD=6,∴BC=9.【点睛】本题主要考查的知识点有线段垂直平分线的性质、直角三角形30°角所对的直角边等于斜边的一半的性质,熟练运用各性质是解题的关键.16.5 3≠【分析】根据分母不等于0列式求解即可.【详解】由题意得3x-5≠0,x5 3≠.故答案为5 3≠.【点睛】本题考查了分式有意义的条件,熟知分母不为零时分式有意义是解答本题的关键.17.5000x=8000600+x【分析】设甲每小时搬运x千克,则乙每小时搬运(x+600)千克,根据甲搬运5000kg所用时间与乙搬运8000kg所用时间相等建立方程求出其解就可以得出结论.【详解】解:设甲每小时搬运x千克,则乙每小时搬运(x+600)千克,由题意得:5000x=8000600+x.故答案是:5000x =8000600+x .【点睛】本题考查了由实际问题抽象出分式方程,根据题意找到等量关系是关键.18.12【分析】过P 作PF ∥BC 交AC 于F ,得出等边三角形APF ,推出AP=PF=QC ,根据等腰三角形性质求出EF=AE ,证△PFD ≌△QCD ,推出FD=CD ,推出DE=12AC 即可.【详解】解:过P 作PF ∥BC 交AC 于F,∵PF ∥BC ,△ABC 是等边三角形,∴∠PFD=∠QCD ,∠APF=∠B=60°,∠AFP=∠ACB=60°,∠A=60°,∴△APF 是等边三角形,∴AP=PF=AF ,∵PE ⊥AC ,∴AE=EF ,∵AP=PF ,AP=CQ ,∴PF=CQ ,在△PFD 和△QCD 中PFD QCDPDF CDQ PF CQ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△PFD ≌△QCD ,∴FD=CD ,∵AE=EF ,∴EF+FD=AE+CD ,∴AE+CD=DE=12AC ,∵AC=1,∴DE=12;故答案为:12.【点睛】本题综合考查了全等三角形的性质和判定,等边三角形的性质和判定,等腰三角形的性质,平行线的性质等知识点的应用,能综合运用性质进行推理是解此题的关键,通过做此题培养了学生分析问题和解决问题的能力,题型较好,难度适中.19.x=34【分析】方程两边同乘以x(x+3),得到整式方程,解整式方程,把得到的根代入最简公分母检验即可.【详解】解:x +3-5x=04x=3x=34检验:当x=34时,x (x+3)≠0,故x=34是原方程的根.【点睛】本题考查的是分式方程的解法,解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.20.21210xy y +,12【分析】先利用完全平方公式与平方差公式计算乘法,再合并同类项,最后代入计算即可.【详解】()()2(23)22x y x y x y +-+-()222241294x xy y x y =++--22222412941210x xy y x y xy y =++-+=+,当13x =,12y =-时,原式21111210322⎛⎫⎛⎫=⨯⨯-+⨯- ⎪ ⎪⎝⎭⎝⎭522=-+12=.【点睛】本题主要考查了整式的混合运算,涉及了完全平方公式,平方差公式,解题的关键是熟练掌握整式混合运算的运算顺序和运算法则.21.(1)见解析;(2)(1,3),(1,1).【分析】(1)利用网格结构分别找出点A 、B 、C 关于直线m 的对称点,然后顺次连接即可.(2)利用网格结构找出点M 关于直线m 的对称点N ,再找出点N 关于直线n 的对称点E ,写出其坐标即可.【详解】(1)如图即为ABC 关于直线m 的轴对称图形111A B C △.(2)如图,即可知点M 关于直线m 的对称点N 的坐标是(1,3);点N 关于直线n 的对称点E 的坐标是(1,1).故答案为:(1,3);(1,1).【点睛】本题考查画轴对称图形和轴对称-坐标的变化.了解轴对称的性质是解答本题的关键.22.见解析【分析】根据平行线的性质可得∠BAC=∠ECD ,再由条件AB=CE ,AC=CD 可证出△BAC 和△ECD 全等,再根据全等三角形对应角相等即可求证结论.【详解】证明:∵AB ∥CD∴∠BAC=∠ECD∵在△ABC 和△CED 中,AB CE BAC ECD AC CD =⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△CED (SAS )∴∠B=∠E【点睛】本题考查了平行线的性质,全等三角形的判定和性质,解题的关键是证明△ABC ≌△CED .23.∠BAC =36°,∠DAE=18°.【分析】先根据BD 是△ABC 的角平分线,∠ABC =72°求出∠EBC=36°,由∠C :∠ADB =2:3可设∠C=2x ,则∠ADB=3x,根据在△BCD 中的外角定理列出方程即可求解x,再根据等腰三角形的及垂直的性质求解.【详解】∵BD 是△ABC 的角平分线,∠ABC =72°∴∠EBC=36°,∵∠C :∠ADB =2:3可设∠C=2x ,则∠ADB=3x,在△BCD 中∠ADB=∠EBC+∠C即3x=36°+2x解得x=36°,∴∠C=72°,∠ADB=108°,故∠BAC=180°-∠C-∠ABC=36°,在△DAE 中,AE 丄BD∴∠DAE=∠ADB-90°=18°.【点睛】此题主要考查角度的求解,解题的关键是熟知三角形的外角定理.24.(1)40°;(2)①8cm ;②18【分析】(1)先根据等腰三角形的性质求出∠A=50°,根据垂直平分线的定义得到∠ANM =90°,然后根据直角三角形两锐角互余求解即可;(2)①根据垂直平分线的性质得AM=BM ,△MBC 的周长是18cm ,AC=AB=10cm ,即可求BC 的长度;②当点P 与点M 重合时,△PBC 周长的最小,即为△MBC 的周长.【详解】解:(1)∵AB=AC ,∴∠ABC=∠C∵∠ABC=65°,∴∠C=65°,∴∠A=50°,∵MN 是AB 的垂直平分线,∴∠ANM =90°,∴∠NMA=90°-50°=40°;(2)①∵MN 是线段AB 的垂直平分线,∴AM=MB .∵△MBC 的周长是18cm ,AB=10cm ,∴BM+MC+BC=AM+MC+BC=AC+BC=AB+BC=18cm ,∴BC=18-AB=18-10=8cm ;②∵MN 是线段AB 的垂直平分线,∴点A 和点B 关于直线MN 对称,∴当点P 与点M 重合时,△PBC 周长的值最小,∴△PBC 的周长的最小值为18cm .【点睛】本题考查了等腰三角形的性质,线段垂直平分线的性质,轴对称-最短路线问题,解决本题的关键是掌握线段垂直平分线的性质和等腰三角形的性质.25.(1)()()5+a b b a -;(2)见解析【分析】(1)根据平方差公式分解因式即可求解;(2)先根据多项式乘以多项式进行计算,再根据完全平方公式分解即可求解.【详解】解:(1)原式()()22=2+3a b a -()()=2+32+3a b a a b a +-()()=5+a b b a -证明(2)(n+1)(n+2)(n 2+3n )+1=(n 2+3n+2)(n 2+3n )+1=(n 2+3n )2+2(n 2+3n )+1=(n 2+3n+1)2故当n 为正整数时,(n+1)(n+2)(n 2+3n )+1的值一定是某一个正整数的平方【点睛】本题考查因式分解,解题的关键是熟练掌握平方差公式、完全平方公式的应用.26.证明见解析【分析】利用△ABC 是等边三角形,D 为边AC 的中点,求得∠ADB=90°,再用SAS 证明△CBD ≌△ACE ,推出AE=CD=AD ,∠AEC=∠BDC=90°,根据直角三角形斜边上中线性质求出DE=AD ,即可证明.【详解】证明:∵△ABC 是等边三角形,D 是边AC 的中点,∴AD=DC ,BC=CA ,BD ⊥AC ,∴∠BDC=90°,即∠DBC+∠DCB=90°,∵EC ⊥BC ,∴∠BCE=90°,即∠ACE+∠BCD=90°,∴∠ACE=∠DBC ,在△CBD 和△ACE 中,BC CA DBC ACE BD CE =⎧⎪∠=∠⎨⎪=⎩∴△CBD ≅△ACE (SAS )∴CD=AE ,∴∠AEC=∠CDB=90°∵D 为AC 的中点∴AD=DE ,AD=DC ,∴AD=AE=DE ,即△ADE 为等边三角形.【点睛】本题主要考查等边三角形的性质和判定,全等三角形的性质和判定,直角三角形斜边上的中线等.解答此题的关键是先证明△CBD ≌△ACE ,然后再利用三边相等证明此三角形是等边三角形.27.(1)进价为180元;(2)至少打6折.【分析】(1)根据题意,列出等式24003370025x x ⨯=+,解等式,再验证即可得到答案;(2)设剩余的仙桃每件售价打y 折,由题意得到不等式,再解不等式,即可得到答案.【详解】解:(1)设第一批仙桃每件进价x 元,则24003370025x x ⨯=+,解得180x =.经检验,180x =是原方程的根.答:第一批仙桃每件进价为180元;(2)设剩余的仙桃每件售价打y 折.则:3700370022580%225(180%)0.1370044018051805y ⨯⨯+⨯⨯-⨯-≥++,解得6y ≥.答:剩余的仙桃每件售价至少打6折.【点睛】本题考查分式方程的应用和一元一次不等式的应用,解题的关键是熟练掌握分式方程的应用和一元一次不等式的应用.28.(1)见解析;(2)A(32,52)或(52,-32).【分析】(1)过点D 作DM ⊥AM 交AG 于点M ,过点E 作EN ⊥AG 于点N .根据“K 字模型”即可证明AH=DM 和AH=EN ,即EN=DM ,再根据全等三角形的判定和性质即可证明DG=EG ,即点G 是DE 的中点.(2)分情况讨论①当A 点在OB 的上方时,作AC 垂直于y 轴,BE 垂直于x 轴,CA 和EB 的延长线交于点D .根据“K 字模型”即可证明AC BD OC AD DE ===,,再利用B 点坐标即可求出A 点坐标.②当A 点在OB 的下方时,作AP 垂直于y 轴,BM 垂直于x 轴,PA 和BM 的延长线交于点Q .同理即能求出A 点坐标.【详解】(1)如图,过点D 作DM ⊥AM 交AG 于点M ,过点E 作EN ⊥AG 于点N ,则∠DMA=90°,∠ENG=90°.∵∠BHA=90,∴∠2+∠B=90°.∵∠BAD=90°,∴∠1+∠2=90°.∴∠B=∠1.在△ABH 和△DAM 中1BHA AMD B AB DA ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABH ≅△DAM (AAS ),∴AH=DM .同理△ACH ≅△EAN (AAS ),∴AH=EN .∴EN=DM .在△DMG 和△ENG 中MGD NGE DMG ENG DM EN ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DMG ≅△ENG (AAS ).∴DG=EG .∴点G 是DE的中点.(2)根据题意可知有两种情况,A 点分别在OB 的上方和下方.①当A 点在OB 的上方时,如图,作AC 垂直于y 轴,BE 垂直于x 轴,CA 和EB 的延长线交于点D .利用“K 字模型”可知ACO BDA ≅ ,∴AC BD OC AD DE ===,,设AC x =,则BD x =,∵1DE BD BE x =+=+,∴1OC AD DE x ===+,又∵4CD AD AC =+=,即14x x ++=,解得32x =,∴32AC =,35122DE =+=.即点A 坐标为(32,52).②当A点在OB的下方时,如图,作AP垂直于y轴,BM垂直于x轴,PA和BM的延长线交于点Q.根据①同理可得:52AP=,32MQ=.即点A坐标为(52,32-).。

人教版八年级上册数学期末考试试卷含答案

人教版八年级上册数学期末考试试卷含答案

人教版八年级上册数学期末考试试题一、单选题1.计算23x x ⋅的结果为()A .6x B .5x C .4x D .3x 2的值在()A .1和2之间B .2和3之间C .3和4之间D .4和5之间3.如图,A D ∠=∠,ACB DBC ∠=∠,那么ABC DCB △≌△的依据是()A .SASB .ASAC .AASD .SSS 4.如图,△ABC ≌△ADE ,下列说法错误的...是()A .BC=DEB .AB ⊥DEC .∠CAE=∠BAD D .∠B=∠D5.用直尺和圆规作一个角等于已知角,如图,能得出∠A O B '''=∠AOB 的依据是()A .(SAS )B .(SSS )C .(ASA )D .(AAS )6.在综合实践活动课上,小明用三根木棒首尾顺次相接摆三角形.下列每组数分别是三根木棒的长度(单位:cm ),其中能摆出直角三角形的一组是()A .4,4,7B .32,42,52C .9,12,15D .6,7,87.如图,ABC 的三边AB ,BC ,CA 长分别是20,30,40,其三条角平分线将ABC 分为三个三角形,则ABO S :BCO S △:CAO S △等于()A .1:1:1B .1:2:3C .2:3:4D .3:4:58.如图所示的2×4的正方形网格中,△ABC 的顶点都在小正方形的格点上,这样的三角形称为格点三角形,则点A 到BC 的距离等于()A B .CD9.若实数m ,n 满足30m -=,且m ,n 恰好是Rt ABC 的两条边长,则第三条边长为()A .3或4B .5C .5D10.如图,AD 是△ABC 的角平分线,DE ⊥AC ,垂足为E ,BF AC ∥交ED 的延长线于点F ,若BC 恰好平分∠ABF ,AE=2BF ,给出下列四个结论:①DE=DF ;②DB=DC ;③AD ⊥BC ;④AC=3BF ,其中正确的结论共有()A .4个B .3个C .2个D .1个二、填空题11.已知一个等腰三角形的两边分别为4和10,则它的周长为_____.12.计算:23(66)32ab ab a b --+=______.13.分解因式26m m +=_________.14.如图, ABE ≌ DCE ,AE =2cm ,BE =1.2cm ,∠A =25°,∠B =48°,那么DE =_____cm ,∠C =_________°.15.如图,在Rt △ABC 中,∠ACB=90°,∠B=15°,AB 的垂直平分线与BC 交于点D ,交AB 于点E ,连接AD .则∠CAD 的度数为_________.16.在△ABC 中,AB =AC ,AB 的垂直平分线分别交AB 和直线AC 于D 、E 两点,且∠EBC =30°,则∠A 的度数为___________.17.等腰ABC 一腰上的高与另一腰的夹角为50°,则ABC 顶角的度数为________.18.如图,Rt ABC ∆中,90C ∠=︒,8AC =,6BC =,利用尺规在AC ,AB 上分别截取AD ,AE .使AD AE =,分别以D ,E 为圆心,以大于12DE 为长的半径作弧,两弧在BAC ∠内交于点F ,作射线AF 交边BC 于点G ,点P 为边AB 上的一动点,则GP 的最小值为________.19.已知关于x 的分式方程233x k x x -=--有一个正数解,则k 的取值范围为________.20.如图所示,在ABC ∆中,90,C DE AB ∠=︒⊥于点,E AC AE =,且55CDA ∠=︒,则B ∠=___度.三、解答题21.化简:(1)223x y x y -++;(2)22224(3)3(4)x y xy xy x y ---+.22.如果a 的算术平方根是4,b ﹣1是8的立方根,求a ﹣b ﹣4的平方根.23.分解因式:(1)22363x xy y -+(2)328x x-24.如图,AB =AD ,BC =DC ,求证:∠ABC =∠ADC .25.已知MAN ∠.(1)用尺规完成下列作图:(保留作图痕迹,不写作法)①作MAN ∠的平分线AE ;②在AE 上任取一点F ,作AF 的垂直平分线分别与AM 、AN 交于P 、Q ;(2)在(1)的条件下线段AP 与AQ 有什么数量关系,请直接写出结论.26.如图,在△ABC 中,点D 是AB 的中点,点F 是BC 延长线上一点,连接DF ,交AC 于点E ,连接BE ,∠A =∠ABE .(1)求证:ED 平分∠AEB ;(2)若AB =AC ,∠A =40°,求∠F 的度数.27.如图,长方形纸片ABCD ,AD ∥BC ,将长方形纸片折叠,使点D 与点B 重合,点C 落在点C'处,折痕为EF .(1)求证:BE =BF .(2)若AB =4,AD =8,求AE 的长.28.如图,在等边三角形ABC 中,D 是AB 上的一点,E 是CB 延长线上一点,连接,CD DE 、已知,6EDB ACD BC ∠=∠=,(1)求证:DEC ∆是等腰三角形(2)当5,8,2BDC EDB EC AD ∠=∠==时,求EDC ∆的面积.参考答案1.B2.C3.C4.B5.B6.C7.C8.C9.B10.A11.2412.222244a b a b ab -+-【分析】根据单项式乘以多项式计算即可;【详解】原式222244a b a b ab =-+-;故答案是:222244a b a b ab -+-.13.(6)m m +【分析】直接提取公因式m ,进而分解因式得出答案.【详解】解:26m m+=m (m+6).故答案为:m (m+6).【点睛】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键.14.248【分析】根据全等三角形的性质即可求得结果.【详解】∵ ABE ≌ DCE∴DE=AE=2cm ,∠C=∠B=48°故答案为:2,48【点睛】本题考查了全等三角形的性质,掌握全等三角形的性质是关键.15.60°##60度【分析】由垂直平分线的性质可求得BD=DA,且可求得∠ADC=2∠B=30°,在Rt△ACD中可求得∠CAD的度数.【详解】解:∵DE为线段AB的垂直平分线,∴BD=DA,∴∠DAB=∠B=15°,∴∠ADC=2∠B=30°,∵∠ACD=90°,∴∠CAD=90°-∠ADC=90°-30°=60°,故答案为:60°.【点睛】本题主要考查线段垂直平分线的性质及等腰三角形的性质,利用线段垂直平分线上的点到线段两端点的距离相等得到BD=DA是解题的关键.16.40°或160°或80°【分析】结合题意,分E在线段AC上、AC延长线上、CA延长线上,三种情况分析;根据等腰三角形的性质得到∠ABC=∠ACB,根据线段垂直平分线的性质得到EA=EB,得到∠ABE=∠EAB,结合三角形的内角和的性质,列一元一次方程并求解,即可得到答案.【详解】解:根据题意,分E在线段AC上、AC延长线上、CA延长线上,三种情况分析;当E在线段AC上,如图:∵AB=AC,∴∠ABC=∠ACB,∠ABC+∠ACB+∠A=180°,∵DE垂直且平分AB,∴EA=EB,∴∠ABE=∠A,∴∠ABC=∠ACB=∠ABE+∠EBC=∠A+30°,∴∠A+2(∠A+30°)=180°,解得∠A =40°;当E 在CA 延长线上,如图∵AB =AC ,∴∠ABC =∠ACB ,∵DE 垂直且平分AB ,∴EA =EB ,∴∠ABE =∠BAE ,∴∠ABC =∠ACB =∠EBC ﹣∠ABE =∠EBC ﹣∠BAE =30°﹣∠BAE ,∵∠ABC+∠ACB =∠BAE ,∴2(30°﹣∠BAE )=∠BAE ,解得∠BAE =20°,∴∠A =180°﹣20°=160°.当E 在AC 延长线上,如下图:∵AB =AC ,∴∠ABC =∠ACB ,∠ABC+∠ACB+∠A =180°,∴∠ABC =1802A︒-∠∵DE 垂直且平分AB ,∴EA =EB ,∴∠ABE =∠A ,∴∠ABE=∠ABC+∠EBC=1802A︒-∠+30°,∴∠A=1802A︒-∠+30°,解得∠A=80°;故答案为:40°或160°或80°.17.40°或140°【分析】由于等腰三角形分为锐角、直角、钝角等腰三角形,当为等腰直角三角形时不符合题意,分两种情况讨论:①若∠A<90°;②若∠A>90°;求出顶角∠BAC的度数.【详解】解:分两种情况讨论:①若∠A<90°,如图1所示:∵BD⊥AC,AB=AC,∴∠A+∠ABD=90°,∵∠ABD=50°,∴∠A=90°−50°=40°;②若∠A>90°,如图2所示:同①可得:∠DAB=90°−50°=40°,∴∠BAC=180°−40°=140°;综上所述,ABC顶角的度数为40°或140°,故答案为:40°或140°.18.83【分析】利用角平分线的性质设出GC=GP=x ,根据等积法得到方程168452x x ⨯⨯=+,得出结果.【详解】解:如图,当GP ⊥AB 时,GP 最小,根据作图知AG 平分∠BAC ,∠C=90°,∴GC=GP ,设GC=GP=x ,在直角△ABC 中,∠C=90°,10==,又∵ABCACG ABG S S S =+△△△,即11168=45222AC x AB x x x ⨯⨯⋅+⋅=+,解得x=83,故答案为83.【点睛】本题考查角平分线的性质,注意掌握利用等积法求三角形的高或点的线的距离的方法.19.k<6且k≠3【分析】根据解分式方程的步骤,可得分式方程的解,根据分式方程的解是正数,可得不等式,解不等式,可得答案,并注意分母不分零.【详解】解:233x k x x -=--,方程两边都乘以(x-3),得x=2(x-3)+k ,解得x=6-k≠3,关于x 的方程程233x k x x -=--有一个正数解,∴x=6-k >0,k <6,且k≠3,∴k 的取值范围是k <6且k≠3.故答案为k <6且k≠3.【点睛】本题主要考查了解分式方程、分式方程的解、一元一次不等式等知识,能根据已知和方程的解得出k 的范围是解此题的关键.20.20【分析】利用HL 得到△ACD ≌△AED ,由此可得到∠CDA=∠ADE ,再通过三角形内角和及角的和与差求出∠CAE ,可得到最终结果.【详解】解:∵DE ⊥AB ,∠C=90°,AC=AE ,AD=AD ,∴△ACD ≌△AED (HL ),∴∠CDA=∠ADE=55°,∠CAD=∠DAE ,∵∠CAD=180°-90°-55°=35°,∴∠CAE=70°,∴∠B=180°-90°-70°=20°.故答案为:20.【点睛】本题考查了全等三角形的判定与性质,属于基础题,熟练掌握全等三角形的判定与性质是解决本题的关键.21.(1)4x(2)2xy -【分析】(1)合并同类项即可.(2)去括号后,合并同类项,即可.(1)解:223x y x y -++=2(31)(11)x y ++-=4x .(2)解:22224(3)3(4)x y xy xy x y ---+=2222124312x y xy xy x y-+-=22(1212)(43)x y xy -+-+=2xy -.【点睛】本题考查了整式的加减、去括号、合并同类项,熟练掌握去括号法则,准确进行合并同类项是解题的关键.22.3±【分析】首先根据算术平方根的性质求出a 的值,然后根据立方根的性质求出b 的值,最后代入a ﹣b ﹣4即可求出平方根.【详解】解:由题意2416a ==,12b -==,3b ∴=,49a b ∴--=4a b ∴--的平方根为3±.【点睛】此题考查了平方根,算术平方根和立方根的性质,解题的关键是熟练掌握平方根,算术平方根和立方根的性质.23.(1)23()x y -;(2)2(2)(2)x x x +-【分析】(1)原式提取公因式,再利用完全平方公式分解即可;(2)原式提公因式后,利用平方差公式分解即可.【详解】解:(1)22363x xy y -+()2232x xy y =-+23()x y =-;(2)328x x-()224x x =-2(2)(2)x x x =+-【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.24.见解析.【分析】连接AC ,根据SSS 证明△ACD ≌△ACB 即可得到结论.【详解】证明:连接AC在△ACD 与△ACB 中,AD AB AC AC CD CB =⎧⎪=⎨⎪=⎩,∴△ACD ≌△ACB ,∴ABC ADC ∠=∠.25.(1)①作图见解析;②作图见解析;(2)AP=AQ ,理由见解析【分析】(1)①根据角平分线的作图方法求解即可;②根据线段垂直平分线的作图方法求解即可;(2)只需要证明△ATP ≌△ATQ 即可得到AP=AQ .【详解】解:(1)①如图所示,以A 为圆心,以任意长为半径画弧,分别与AM ,AN 交于点H 、G ,再分别以H 、G 为圆心,以大于HG 长的一半为半径画弧,二者交于点O ,过点O 作射线AE即为所求;②如图所示,分别以A 、F 为圆心,以大于AF 长的一半为半画弧,二者分别交于J 、K ,连接JK 分别交AM 于P ,AN 于Q ,AE 于T ;(2)AP=AQ,理由如下:∵JK是线段AF的垂线平分线,∴∠PTA=∠QTA=90°,∵AE是∠MAN的角平分线,∴∠MAE=∠NAE,又∵AT=AT,∴△ATP≌△ATQ(ASA),∴AP=AQ.【点睛】本题主要考查了角平分线和线段垂直平分线的尺规作图,角平分线的定义,线段垂直平分线的性质,全等三角形的性质与判定等等,解题的关键在于能够熟练掌握相关知识进行求解.26.(1)证明见解析;(2)∠F=20°.【分析】(1)先证EA=EB,再利用等腰三角形的三线合一性质即可得出结论.(2)根据等腰三角形的性质求出∠ABE,再由等腰三角形的性质证明∠BDF=90°,然后由直角三角形的性质即可得出答案.【详解】(1)证明:∵∠A=∠ABE,∴EA=EB,∵AD=DB,∴ED平分∠AEB;(2)解:∵∠A=40°,∴∠ABE=∠A=40°,∵AB=AC,∴∠ABC=∠ACB=70°,∵EA =EB ,AD =DB ,∴ED ⊥AB ,∴∠FDB =90°,∴∠F =90°﹣∠ABC =20°.【点睛】本题考查的是线段垂直平分线的判定与性质、等腰三角形的判定与性质以及三角形内角和定理等知识,熟练掌握等腰三角形的判定与性质是解题的关键.27.(1)证明见解析;(2)3.【分析】(1)先根据折叠的性质可得BEF DEF ∠=∠,再根据平行线的性质可得BFE DEF ∠=∠,从而可得BEF BFE ∠=∠,然后根据等腰三角形的判定即可得证;(2)先根据长方形的性质可得90A ∠=︒,再根据折叠的性质可得BE DE =,设BE DE x ==,从而可得8AE x =-,然后在Rt ABE △中,利用勾股定理可求出x 的值,由此即可得出答案.【详解】证明:(1)由折叠的性质得:BEF DEF ∠=∠,AD BC ,BFE DEF ∴∠=∠,BEF BFE ∴∠=∠,BE BF ∴=;(2) 四边形ABCD 是长方形,90A ∴∠=︒,由折叠的性质得:BE DE =,设BE DE x ==,则8AE AD DE x =-=-,在Rt ABE △中,4AB =,90A ∠=︒,222AB AE BE ∴+=,即2224(8)x x +-=,解得5x =,8853AE x ∴=-=-=.【点睛】本题考查了折叠问题、勾股定理、等腰三角形的判定等知识点,熟练掌握折叠的性质是解题关键.28.(1)证明见解析;(2)16【分析】(1)证明:根据等边三角形的性质得到60ABC ACB ∠=∠=︒,推出∠E=∠BCD ,得到DE=DC ,由此得到结论;(2)设EDB ACD x ∠=∠=,则5BDC x ∠=,求出15x =o ,得到690EDC x ∠==︒,推出△DEC 是等腰直角三角形,过点D 作DF EC ⊥于点F ,证得△DFE 、△DFC 都是等腰直角三角形,求出DF=4,即可根据三角形的面积公式求出答案.【详解】(1)证明:ABC ∆ 是等边三角形60ABC ACB ∴∠=∠= ,E EDB ACD BCD ∠+∠=∠+∠∴,EDB ACD ∠=∠ ,E BCD ∴∠=∠,DE DC ∴=,DEC ∴∆是等腰三角形;(2)设EDB ACD x ∠=∠=,则5BDC x ∠=,60ACB ∠=60BCD x ∠=∴- ,60E x ∠=∴- ,在DEC ∆中,180E EDC DCE ∠+∠+∠=︒,60560180x x x x ∴+ ,解得15x =o ,690EDC x ∴∠== ,DEC ∴∆是等腰直角三角形,过点D 作DF EC ⊥于点F ,如图所示,DF EC ⊥ ,,DFE DFC ∆∆∴都是等腰直角三角形,12DF EC∴=8EC = ,∴DF=4,EDC ∴∆的面积为:11841622EC DF ⋅⋅=⨯⨯=。

人教版八年级上册数学期末考试试卷带答案

人教版八年级上册数学期末考试试卷带答案

人教版八年级上册数学期末考试试题一、单选题1.下列图形中,不是轴对称图形的是()A .B .C .D .2.当1x =时,下列分式没有意义的是()A .1x x +B .1xx -C .1x x-D .1x x +3.下列各组数可能是一个三角形的边长的是()A .4,4,9B .4,5,6C .2,6,8D .1,2,34.某病毒的直径约为80~120纳米,1纳米=91.010-=⨯米,若用科学记数法表示110纳米,则正确的结果是()A .91.110-⨯米B .81.110-⨯米C .71.110-⨯米D .61.110-⨯米5.六边形的外角和是()A .360°B .540°C .720°D .900°6.下列计算正确的是()A .224x x x +=B .()222x y x y -=-C .()326=x yx y D .235()x x x -⋅=7.计算11x x x +-的结果为()A .1B .x C .1x D .2x x +8.已知7a b +=,8a b -=则22a b -的值是()A .11B .15C .56D .609.如图,已知∠ABC=∠DCB ,下列所给条件不能证明△ABC ≌△DCB 的是()A .∠A=∠DB .AB=DC C .∠ACB=∠DBCD .AC=BD10.如图,在△ABC 中,∠C=90°,AD 平分∠BAC 交BC 于点D ,DE ⊥AB 于点E ,则下列结论:①AD 平分∠CDE ;②∠BAC=∠BDE ;③DE 平分∠ADB ;④若AC=4BE ,则S △ABC =8S △BDE 其中正确的有()A .1个B .2个C .3个D .4个二、填空题11.因式分解:4x 2﹣9=_____.12.点M (-5,3)关于x 轴对称的点N 的坐标是________.13.如果实数a ,b 满足a+b =6,ab =8,那么a 2+b 2=_____.14.如图,小明把一块三角形的玻璃片打碎成三块,现要到玻璃店去配一块完全相同的玻璃片,那么最省事的办法是带_________去.15.如图,在△ABC 中,∠C =90°,AD 平分∠BAC ,若CD =8,点E 是AB 上一动点,DE 的最小值为_________.16.分式3232a b c 与246a b a b c-的最简公分母是_____.17.把一副三角板按如图所示的方式放置,则图中钝角α是______o .三、解答题18.计算:2202001()(1)(4)2π----+-.19.解分式方程:3211x x x +=--20.先化简,再求值:1x x +÷(x -1x ),其中x=3.21.如图,在△ABC 中,∠A >∠B .(1)作边AB 的垂直平分线DE ,与AB ,BC 分别相交于点D ,E (用尺规作图,保留作图痕迹,不要求写作法).(2)在(1)的条件下,连接AE ,若∠B =45°,求∠AEC 的度数.22.如图,点C ,E ,F ,B 在同一直线上,点A ,D 在BC 异侧,AB ∥CD ,AE=DF ,∠A=∠D ,(1)求证:AB=CD ;(2)若AB=CF ,∠B=30°,求∠D 的度数.23.如图1所示,边长为a 的正方形中有一个边长为b 的小正方形,如图2中阴影部分剪裁后拼成的一个长方形.(1)设如图1中阴影部分面积为S 1,如图2中阴影部分面积为S 2,请直接用含a ,b 的代数式表示S 1,S 2;(2)请写出上述过程所揭示的乘法公式;(3)试利用这个公式计算:(2+1)(22+1)(24+1)(28+1)+124.如图,点P、Q分别是边长为4cm的等边△ABC边AB、BC上的动点,点P从顶点A 沿AB向B点运动,点Q同时从顶点B沿BC向C点运动,它们的速度都为1cm/s,当到达终点时停止运动,设它们的运动时间为t秒,连接AQ、CP交于点M.(1)求证:△ABQ≌△CAP.(2)求证:点P、Q在运动的过程中,∠CMQ的度数不变化,并求出∠CMQ的度数.(3)当t为何值时△PBQ是直角三角形?25.某体育用品商场用32000元购进了一批运动服,上市后很快销售一空.商场又用68000元紧急购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元.(1)该商场两次共购进这种运动服多少套?(2)若两批运动服每套的售价相同,第二批售完后获利比第一批售完后获利多12000元,则每套运动服的售价是元.26.如图,∠DAB=∠CAE,AD=AB,AC=AE.(1)求证△ABE≌△ADC;(2)设BE与CD交于点O,∠DAB=30°,求∠BOC的度数.27.已知,在△ABC中,∠A=90°,AB=AC,点D为BC的中点.(1)如图①,若点E、F分别为AB、AC上的点,且DE⊥DF,求证:BE=AF;(2)若点E、F分别为AB、CA延长线上的点,且DE⊥DF,那么BE=AF吗?请利用图②说明理由.参考答案1.D【分析】根据轴对称图形的定义(如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形)逐项判断即可得.【详解】解:A、是轴对称图形,故本选项不符合题意;B 、是轴对称图形,故本选项不符合题意;C 、是轴对称图形,故本选项不符合题意;D 、不是轴对称图形,故本选项符合题意;故选:D .【点睛】本题考查了轴对称图形,熟记轴对称图形的定义是解题关键.2.B【分析】由分式有意义的条件分母不能为零判断即可.【详解】1x x ,当x=1时,分母为零,分式无意义.故选B.【点睛】本题考查分式有意义的条件,关键在于牢记有意义条件.3.B【分析】根据三角形的三边关系:三角形两边之和大于第三边,计算两个较小的边的和,看看是否大于第三边即可.【详解】解:A 、4+4<9,不能组成三角形,故此选项不符合题意;B 、5+4>6,能组成三角形,故此选项符合题意;C 、2+6=8,不能组成三角形,故此选项不符合题意;D 、1+2=3,不能组成三角形,故此选项不符合题意.故选:B.【点睛】此题主要考查了三角形的三边关系,关键是掌握三角形的三边关系定理.4.C【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n 由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:110纳米=110×10-9米=1.1×10-7米.故选:C .【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.5.A【分析】根据多边形外角和都是360°即可得出答案.【详解】∵多边形的外角和都是360°,∴六边形的外角和是360°.故选:A.【点睛】本题主要考查多边形外角和,掌握多边形外角和都是360°是解题的关键.6.D【分析】根据合并同类项法则、完全平方公式、积的乘方法则、同底数幂的乘方法则计算,判断即可.【详解】x2+x2=2x2,A错误;(x-y)2=x2-2xy+y2,B错误;(x2y)3=x6y3,C错误;(-x)2•x3=x2•x3=x5,D正确;故选:D.【点睛】本题考查的是合并同类项、完全平方公式、积的乘方、同底数幂的乘法,掌握它们的运算法则是解题的关键.7.A【分析】根据同分母分式相加减,分母不变,分子相加减计算即可得解.【详解】解:原式=11111 x x xx x x x++--===.故选:A.考点:分式的加减法【点睛】本题主要考查分式的加减运算,掌握运算法则是解题关键.8.C【分析】直接利用平方差公式将a2-b2分解为(a+b)(a-b),代入数据后即可得出结论.【详解】解:∵a+b=7,a-b=8,∴a2-b2=(a+b)(a-b)=7×8=56.故选:C.【点睛】本题考查了平方差公式的应用,公式法因式分解.解题的关键是利用平方差公式将a2-b2分解为(a+b)(a-b).9.D【详解】A.添加∠A=∠D可利用AAS判定△ABC≌△DCB,故此选项不合题意;B.添加AB=DC可利用SAS定理判定△ABC≌△DCB,故此选项不合题意;C.添加∠ACB=∠DBC可利用ASA定理判定△ABC≌△DCB,故此选项不合题意;D.添加AC=BD不能判定△ABC≌△DCB,故此选项符合题意.故选D.10.B【分析】根据题中条件,结合图形及角平分线的性质得到结论,与各选项进行比对,排除错误答案,选出正确的结果.【详解】解:∵AD平分∠BAC,∴∠DAC=∠DAE,∵∠C=90°,DE⊥AB,∴∠C=∠E=90°,∵AD=AD,∴△DAC≌△DAE(AAS),∴∠CDA=∠EDA,∴①AD平分∠CDE正确;无法证明∠BDE=60°,∴③DE平分∠ADB错误;∵BE+AE=AB,AE=AC,∵AC=4BE,∴AB=5BE,AE=4BE,∴S△ADB=5S△BDE,S△ADC=4S△BDE,∴S△ABC=9S△BDE,∴④错误;∵∠BDE=90°-∠B,∠BAC=90°-∠B,∴∠BDE=∠BAC,∴②∠BAC=∠BDE正确.故选B.11.(2x+3)(2x﹣3).【分析】根据平方差公式进行分解即可.【详解】原式=22(2)3x -=(2x+3)(2x ﹣3),故答案为(2x+3)(2x ﹣3).12.(-5,-3).【详解】根据平面直角坐标系内关于x 轴对称,纵坐标互为相反数,横坐标不变,点M (-5,3)关于y 轴的对称点为(-5,-3).13.20【详解】∵6,a b +=∴222()236,a b a ab b +=++=∵ab=8,∴22a b +=36-2ab=36-2×8=20.14.③【分析】根据全等三角形的判定可即可求解.【详解】解:第①块和第②块都没有保留完整的边,而全等三角形的判定定理中,至少存在一条边,第③块保留了一边边和两个角,则利用ASA 判定定理可得到一个全等三角形,进而可带③去,故答案为:③.【点睛】本题考查了全等三角形的条件,解题的关键是需要注意的是只靠一个角或两条边不能等得到全等.15.8【分析】过点D 作DE ⊥AB 于E ,根据点与直线垂线段最短,则当DE ⊥AB 时有最小值,再根据角平分线的性质即可求解.【详解】解:过点D 作DE ⊥AB 于E ,如图所示:根据点与直线垂线段最短,则当DE ⊥AB 时有最小值,∵∠C =90°,AD 平分∠BAC ,CD =8,∴DE=CD=8,故答案为:8.16.6a 3b 4c【分析】取各分式分母中系数的最小公倍数与各字母因式最高次幂的乘积作公分母,叫最简公分母.【详解】解:先分离出两个分式的分母2a 3b 2c,6a 2b 4c ,其中a 、b 、c 的最高次幂分别为3、4、1故分式3232a b c ,246a b a b c-的最简公分母是6a 3b 4c .故答案为6a 3b 4c.17.105【分析】利用三角形内角和定理计算即可.【详解】解:由三角形的内角和定理可知:α=180°-30°-45°=105°,故答案为105.18.4【分析】原式分别化简21()2=4--,2020(1)=1-,0(=14)π-,然后再进行加减运算即可得到答案.【详解】解:2202001()(1)(4)2π----+-=4﹣1+1=419.1x =-【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:3211x x x +=--去分母得,()321x x +-=,解得,1x =-,经检验,1x =-是原方程的解.所以,原方程的解为:1x =-.20.11x -;12【分析】先计算括号内分式的减法,再将除法转化为乘法,最后约分即可化简原式,继而将x 的值代入计算可得答案.【详解】解:1x x+÷(x -1x )=211x x x x +-÷=()()111x x x x x +⨯+-=11x -当x=3时,原式=131-=12.21.(1)作图见解析(2)90°【分析】(1)依据垂直平分线的作图方法,即可得到边AB 的垂直平分线DE ;(2)依据垂直平分线的性质,即可得到∠BAE=∠B ,再根据三角形外角性质,即可得到∠AEC 的度数.(1)如图所示DE 为所求;(2)∵DE 是AB 的垂直平分线,∴AE =BE ,∴∠EAB =∠B =45°,∵AEC ∠是ABE ∆的外角,∴∠AEC =∠EAB ﹢∠B =90°.【点睛】本题主要考查了线段垂直平分线的的性质以及基本作图,解决问题的关键是掌握线段垂直平分线上任意一点,到线段两端点的距离相等.22.(1)证明见解析;(2)∠D=75°【分析】(1)易证得ABE DCF△≌△,即可得AB CD=;(2)易证得ABE DCF△≌△,即可得AB CD=,又由AB=CF,∠B=30°,即可证得△ABE 是等腰三角形,解答即可.【详解】证明:(1)∵AB∥CD,∴∠B=∠C.在△ABE和△DCF中,∠A=∠D∠C=∠B AE=DF,∴ABE DCF AAS≌().∴AB=.(2)解:∵ABE DCF△≌△,∴AB=CD,∵AB=CF,∴CD=CF.∴△CDF是等腰三角形,∵∠C=∠B=30°,∴∠D=12×(180°−30°)=75°.【点睛】本题考查全等三角形问题和等腰三角形的性质,关键是根据AAS证明三角形全等,再利用全等三角形的性质解答.23.(1)S1=a2-b2,S2=(a+b)(a﹣b);(2)(a+b)(a﹣b)=a2﹣b2;(3)216.【分析】(1)直接计算两个图形的面积即可;(2)根据两个图形面积相等可得(a+b)(a-b)=a2-b2;(3)从左到右依次利用平方差公式即可求解.【详解】解:(1)S1=a2-b2,S2=(a+b)(a﹣b);(2)(a+b)(a﹣b)=a2﹣b2;(3)原式=(2﹣1)(2+1)(22+1)(24+1)(28+1)+1=(22﹣1)(22+1)(24+1)(28+1)+1=(24﹣1)(24+1)(28+1)+1=(28﹣1)(28+1)+1=(216﹣1)+1=216.24.(1)证明见解析(2)证明见解析;∠CMQ=60°(3)当第43秒或第83秒时,△PBQ为直角三形【分析】(1)利用等边三角形的性质可知AB=AC,∠B=∠CAP=60°,结合AP=BQ即可得证;(2)由△APC≌△BQA知∠BAQ=∠ACP,再利用三角形外角的性质可证得∠CMQ=60°;(3)可用t分别表示出BP和BQ,分∠PQB=90°和∠BPQ=90°两种情况,分别利用直角三角形的性质可得到关于t的方程,则可求得t的值.(1)∵△ABC是等边三角形,∴AB=AC,∠B=∠CAP=60°,又AP=BQ,∴△ABQ≌△CAP(SAS).(2)∵△ABQ≌△CAP,∴∠BAQ=∠ACP,又∠CMQ=∠ACP﹢∠CAM∴∠CMQ=∠BAQ﹢∠CAM=∠BAC=60°.(3)由题意知AP=BQ=t,PB=4﹣t,①当∠PQB=90°时,∵∠B=60°,∴PB=2BQ,即4﹣t=2t,解得t=4 3;②当∠BPQ=90°时,∵∠B=60°,∴BQ=2BP,即t=2(4﹣t),解得t=8 3;综上所述,当第43秒或第83秒时,△PBQ为直角三形.25.(1)商场两次共购进这种运动服600套;(2)240【分析】(1)设商场第一次购进x套运动服,则第二次购进2x套运动服,抓住每套进价多了10元列分式方程求解即可.(2)求出两次购进运动服的进价,根据“第二批售完后获利比第一批售完后获利多12000元”可列出一元一次方程得解.【详解】(1)设商场第一次购进x套运动服,由题意得:680003200010 2x x-=.解这个方程,得x=200.经检验,x=200是所列方程的根.2x+x=2×200+200=600.答:商场两次共购进这种运动服600套.(2)第一批运动服的进价为32000200=160(元),第二批运动服的进价为68000400=170(元),设每套运动服的售价是x元,由题意得:400(x﹣170)﹣200(x﹣160)=12000,解得:x=240故答案为240.26.(1)见解析;(2)150°.【分析】(1)先利用角的和差证出∠DAC=∠BAE,再利用SAS证△ABE≌△ADC即可;(2)设AB与OD交于点F,根据(1)中全等可得:∠ABE=∠D,根据三角形的内角和定理可证∠BOF=∠DAB=30°,从而求出∠BOC的度数.【详解】解:(1)∵∠DAB=∠CAE∴∠DAB+∠BAC=∠CAE+∠BAC∴∠DAC=∠BAE在△ABE和△ADC中AB AD BAE DAC AE AC ⎧⎪∠=∠⎨⎪⎩==∴△ABE ≌△ADC ;(2)设AB 与OD 交于点F∵△ABE ≌△ADC∴∠ABE=∠D∵∠BFO=∠DFA∴∠BOF=180°-∠ABE -∠BFO=180°-∠D -∠DFA=∠DAB=30°∴∠BOC=180°-∠BOF=150°27.(1)证明见解析;(2)BE=AF ,证明见解析.【分析】(1)连接AD ,根据等腰三角形的性质可得出AD=BD 、∠EBD=∠FAD ,根据同角的余角相等可得出∠BDE=∠ADF ,由此即可证出△BDE ≌△ADF (ASA ),再根据全等三角形的性质即可证出BE=AF ;(2)连接AD ,根据等腰三角形的性质及等角的补角相等可得出∠EBD=∠FAD 、BD=AD ,根据同角的余角相等可得出∠BDE=∠ADF ,由此即可证出△EDB ≌△FDA (ASA ),再根据全等三角形的性质即可得出BE=AF .【详解】(1)证明:连接AD,如图①所示.∵∠A=90°,AB=AC ,∴△ABC 为等腰直角三角形,∠EBD=45°.∵点D 为BC 的中点,∴AD=12BC=BD ,∠FAD=45°.∵∠BDE+∠EDA=90°,∠EDA+∠ADF=90°,∴∠BDE=∠ADF .在△BDE 和△ADF 中,EBD FADBD AD BDE ADF∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BDE ≌△ADF (ASA ),∴BE=AF ;(2)BE=AF ,证明如下:连接AD,如图②所示.∵∠ABD=∠BAD=45°,∴∠EBD=∠FAD=135°.∵∠EDB+∠BDF=90°,∠BDF+∠FDA=90°,∴∠EDB=∠FDA .在△EDB 和△FDA 中,EBD FADBD AD EDB FDA∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△EDB ≌△FDA (ASA ),∴BE=AF .。

人教版八年级上册数学期末考试试卷含答案

人教版八年级上册数学期末考试试卷含答案

人教版八年级上册数学期末考试试题一、单选题1.七巧板是我国的一种传统智力玩具,下列用七巧板拼成的图形是轴对称图形的是()A .B .C .D .2.已知△ABC 中,∠A =20°,∠B =70°,那么△ABC 是()A .直角三角形B .锐角三角形C .钝角三角形D .正三角形3.已知△ABC ≌△DEF ,∠A =80°,∠E =50°,则∠F 的度数为()A .30°B .50°C .80°D .100°4.已知三角形两边长分别为7、11,那么第三边的长可以是()A .2B .3C .4D .55.下列计算正确的是()A .2323a a a +=B .326a a a ⋅=C .()236a a =D .()2224a a -=-6.若分式12x -有意义,则x 的取值范围是()A .x =2B .x >2C .x <2D .x≠27.若24a a k ++表示一个完全平方式,则k 的值为()A .4±B .4C .8±D .88.如图,等腰三角形ABC 的周长为21,底边BC=5,AB 的垂直平分线DE 交AB 于点D ,交AC 于点E ,则△BEC 的周长为()A .13B .14C .15D .169.如图,在△ABC 中,∠ABC 和∠ACB 的平分线交于点E ,过点E 作MN BC 交AB 于M ,交AC 于N ,若BM+CN=9,则线段MN 的长为()A .6B .7C .8D .910.如图,△DAC 和△EBC 均是等边三角形,AE 、BD 分别与CD 、CE 交于点M 、N ,且A 、C 、B 在同一直线上,有如下结论:①△ACE ≌△DCB ;②CM =CN ;③AC =DN ;④PC 平分∠APB ;⑤∠APD =60°,其中正确结论有()A .①②③④⑤B .①②④⑤C .①②③⑤D .①②⑤二、填空题11.分解因式:2x 2x -=___.12.计算:()23262x y x y -= ______.13.如图,将一副直角三角板,按如图所示的方式摆放,则∠α的度数是__________.14.如图,∠DAE =∠ADE =15°,AD 平分∠BAC ,DF ⊥AB ,若AE =8,则DF =_____.15.数据0.000000102m ,用科学记数法表示这个数为______.16.若一个多边形的每一个内角都是150︒,则它是______边形.17.如图,在△ABC 中,AB =AC =10,BC =12,AD =8,AD 是∠BAC 的平分线.若P ,Q 分别是AD 和AC 上的动点,则PC+PQ 的最小值是_____.三、解答题18|﹣4|+(﹣1)0﹣(12)﹣1.19.先化简再求值:21111x x x ⎛⎫÷- ⎪-+⎝⎭其中3x =.20.如图,已知CD ⊥AB ,BE ⊥AC ,垂足分别为点D ,E ,且AB =AC ,BE 交CD 于点O .(1)求证:DB =EC .(2)求证:AO 平分∠BAC .21.如图,在边长为1的正方形网格中有一个 ABC,完成下列各图(用无刻度的直尺画图,保留作图痕迹).(1)作 ABC关于直线MN对称的 A1B1C1;(2)求 ABC的面积;(3)在直线MN上找一点P,使得PA+PB最小.22.如图,点C、E、B、F在同一直线上,AC∥DF,AC=DF,请你添加一个条件,使△ABC≌△DEF,并加以证明.23.某文化用品商店用1000元购进了一批圆规,很快销售一空;商店又用1000元购进了第二批该种圆规,但进价比原来上涨了25%,结果第二次所购进圆规的数量比第一次少40件.(1)求两批圆规购进的进价分别是多少;(2)若商店将第一批圆规以每件7元,第二批圆规以每件8元的价格全部售出,则共可盈利多少元?24.如图,ABC 中,EF 垂直平分AC ,交AC 于点F ,交BC 于点E ,AD BC ⊥,垂足为D ,且BD DE =,连接AE .(1)求证:AB CE =;(2)若ABC 的周长为14cm ,6cm AC =,则DC 的长为________cm .25.配方法是数学中非常重要的一种思想方法,它是指将一个式子或一个式子的某一部分通过恒等变形化为完全平方式或几个完全平方式的和的方法.定义:若一个整数能表示成22a b +(a ,b 是整数)的形式,则称这个数为“完美数”.例如,5是“完美数”.理由:因为22512=+,所以5是“完美数”.解决问题:(1)已知29是“完美数”,请将它写成22a b +(a ,b 是整数)的形式:;(2)若245x x -+可配成()2x m n -+(m ,n 为常数),则mn 的值为;探究问题:(3)已知222450x y x y +-++=,求x y +的值.26.在△ABC 中,AB =AC ,∠BAC =100°,点D 在BC 边上,△ABD 和△AFD 关于直线AD 对称,∠FAC 的平分线交BC 于点G ,连接FG .(1)求∠DFG 的度数;(2)设∠BAD =θ,①当θ为何值时,△DFG 为等腰三角形;②△DFG 有可能是直角三角形吗?若有,请求出相应的θ值;若没有,请说明理由.参考答案1.D 2.A 3.B 4.D 5.C 6.D 7.B 8.A 9.D 10.B 11.()x x 2-12.4412x y -13.75︒14.415.71.0210-⨯16.十二17.48518.619.11x -,12【详解】解:原式21111x x x x +-÷=-+()()111xx x x x+=⋅+-11x =-,当3x =时,原式12=.20.(1)见解析;(2)见解析【分析】(1)根据垂直的定义得到∠ADC =∠AEB =90°,根据AAS 判定△ADC ≌△AEB (AAS ),得出AD =AE 可得到结论;(2)根据垂直的定义得到∠BDO =∠CEO =90°,根据AAS 判定△BDO ≌△CEO (AAS ),得出OD =OE ,根据角平分线的判定即可得到结论.【详解】(1)证明:∵CD ⊥AB ,BE ⊥AC ,∴∠ADC =∠AEB =90°,在△ADC 和△AEB 中,DAC EAB ADC AEB AC AB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADC ≌△AEB (AAS ),∴AD =AE ,∴AB ﹣AD =AC ﹣AE ,即DB =EC ;(2)证明:∵CD ⊥AB ,BE ⊥AC ,∴∠BDO =∠CEO =90°,在△BDO 和△CEO 中,BDO CEO DOB EOC BD CE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BDO ≌△CEO (AAS ),∴OD =OE ,∵CD ⊥AB ,BE ⊥AC ,∴AO 平分∠BAC .21.(1)作图见解析;(2)52;(3)作图见解析【分析】(1)分别作出三个顶点关于直线MN 的对称点,再首尾顺次连接即可;(2)用长为2、宽为3的矩形面积减去四周三个直角三角形的面积即可得出答案;(3)连接AB 1,与直线MN 的交点即为所求.【详解】解:(1)如图所示,△A 1B 1C 1即为所求.(2)S △ABC =2×3﹣2×12×1×2﹣12×1×3=52;(3)如图所示,点P 即为所求.22.CE =BF (答案不唯一),证明见解析.【分析】根据全等三角形的判定定理进行分析,即可.【详解】添加:CE =BF ,证明:∵AC ∥DF ,∴∠C =∠F ,∵CE =BF ,CE BE BF BE +=+,∴BC =EF ,ACB DFE 在和中AC DF C F CB FE =⎧⎪∠=∠⎨⎪=⎩∴△ACB ≌△DFE (SAS ).23.(1)第一批购进圆规的单价为5元/件,第二批进价为6.25元/件;(2)680元【分析】(1)设第一批购进圆规的单价为x 元/件,则第二批购进圆规的单价为(1+25%)x 元/件,根据数量=总价÷单价结合第二次所购进圆规的数量比第一次少40件,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)利用数量=总价÷单价及第二次所购进圆规的数量比第一次少40件,可分别求出第一批及第二批购进圆规的数量,再利用利润=销售单价×销售数量−进货总价,即可求出结论.【详解】解:(1)设第一批购进圆规的单价为x 元/件,则第二批购进圆规的单价为(1+25%)x 元/件,依题意得:10001000401.25x x-=,解得:x =5,经检验,x =5是原方程的解,且符合题意.则第二批进价为:1.25 6.25x =元/件答:第一批购进圆规的单价为5元/件,第二批进价为6.25元/件;(2)第一批购进圆规的数量为1000÷5=200(件),第二批购进圆规的数量为200−40=160(件),共盈利(200×7−1000)+(160×8−1000)=400+280=680(元).答:一共盈利680元.24.(1)见解析;(2)4【分析】(1)根据线段垂直平分线性质可得AB=AE ,AE=CE ,再利用等式性质即可得解;(2)根据三角形周长求出AB+BC=14-AC=8cm ,然后再证AB+BD=DE+EC=DC ,把AB+BC 转化为AB+BC=AB+BD+DC=2DC=8cm 即可.【详解】(1)证明:∵AD ⊥BC ,BD=DE ,即AD 是BE 的垂直平分线,∴AB=AE ,又∵EF 垂直平分AC ,∴AE=CE ,∴AB=CE ;(2)解:∵6cm AC =,ABC 的周长为14cm ,∴AB+BC+AC=14cm ,∴AB+BC=14-AC=14-6=8cm,∵BD DE,AB=CE,∴AB+BD=DE+EC=DC,∵AB+BC=AB+BD+DC=2DC=8cm,∴DC=4cm.故答案为:4.25.(1)29=52+22;(2)2;(3)-1【分析】(1)根据“完美数”的定义判断即可;(2)利用配方法进行转化,然后求得对应系数的值;(3)配方后根据非负数的性质可得x和y的值,进行计算即可;【详解】解:(1)∵29=52+22,∴29是“完美数”,故答案为:29=52+22;(2)∵x2-4x+5=(x2-4x+4)+1=(x-2)2+1,又x2-4x+5=(x-m)2+n,∴m=2,n=1,∴mn=2×1=2,故答案为:2;(3)x2+y2-2x+4y+5=0,x2-2x+1+(y2+4y+4)=0,(x-1)2+(y+2)2=0,∴x-1=0,y+2=0,∴x=1,y=-2,∴x+y=1-2=-1.26.(1)80°;(2)①10°,25°或40°;②5°或45°.【详解】试题分析:(1)由轴对称可以得出△ADB≌△ADF,就可以得出∠B=∠AFD,AB=AF,在证明△AGF≌△AGC就可以得出∠AFG=∠C,就可以求出∠DFG的值;(2)①当GD=GF时,就可以得出∠GDF═80°,根据∠ADG=40+θ,就有40°+80°+40°+θ+θ=180°就可以求出结论;当DF=GF时,就可以得出∠GDF=50°,就有40°+50°+40°+2θ=180°,当DF=DG时,∠GDF=20°,就有40°+20°+40°+2θ=180°,从而求出结论;②由已知条件可以得出∠DFG=80°,当∠GDF=90°时,就有40°+90°+40°+2θ=180°就可以求出结论,当∠DGF=90°时,就有∠GDF=10°,得出40°+10°+40°+2θ=180°求出结论.试题解析:(1)∵AB=AC,∠BAC=100°,∴∠B=∠C=40°.∵△ABD和△AFD关于直线AD对称,∴△ADB≌△ADF,∴∠B=∠AFD=40°,AB=AF∠BAD=∠FAD=θ,∴AF=AC.∵AG平分∠FAC,∴∠FAG=∠CAG.在△AGF和△AGC中,AF=AC,∠FAG=∠CAG,AG=AG,∴△AGF≌△AGC(SAS),∴∠AFG=∠C.∵∠DFG=∠AFD+∠AFG,∴∠DFG=∠B+∠C=40°+40°=80°.答:∠DFG的度数为80°;(2)①当GD=GF时,∴∠GDF=∠GFD=80°.∵∠ADG=40°+θ,∴40°+80°+40°+θ+θ=180°,∴θ=10°.当DF=GF时,∴∠FDG=∠FGD.∵∠DFG=80°,∴∠FDG=∠FGD=50°.∴40°+50°+40°+2θ=180°,∴θ=25°.当DF=DG时,∴∠DFG=∠DGF=80°,∴∠GDF=20°,∴40°+20°+40°+2θ=180°,∴θ=40°.∴当θ=10°,25°或40°时,△DFG为等腰三角形;②当∠GDF=90°时,∵∠DFG=80°,∴40°+90°+40°+2θ=180°,∴θ=5°.当∠DGF=90°时,∵∠DFG=80°,∴∠GDF=10°,∴40°+10°+40°+2θ=180°,∴θ=45°∴当θ=5°或45°时,△DFG为直角三角形.。

八年级上册数学期末考试试卷及答案

八年级上册数学期末考试试卷及答案

八年级上册数学期末考试试卷及答案 1.下列运算中,计算结果正确的是(B)。 B。(a2)3=a6 2.23表示(A)。 A。2×2×2 3.在平面直角坐标系中,点P(-2,3)关于x轴的对称点在(D)。 D。第四象限 4.等腰但不等边的三角形的角平分线、高线、中线的总条数是(C)。 C。7 5.在如图中,AB=AC。BE⊥AC于E,CF⊥AB于F,BE、CF交于点D,则下列结论中不正确的是(A)。 A。△ABE≌△ACF 6.在以下四个图形中,对称轴条数最多的一个图形是(B)。 7.下列是用同一副七巧板拼成的四幅图案,则与其中三幅图案不同的一幅是(D)。 D. 8.下列四个统计图中,用来表示不同品种的奶牛的平均产奶量最为合适的是(A)。 A. 9.若单项式3amb2与abn是同类项,则m22n=3. 10.三个具有轴对称图形的汉字:人、日、月。 11.补画后的图形为轴对称图形。 12.在小方格的顶点上标出一个点P,使点P落在∠AOB的平分线上。 13.(1) 18×891=162×99;(2) 24×231=264×21. 14.(1) 第4个图案中白色瓷砖块数是16;(2) 第n个图案中白色瓷砖块数是2n-2. 15.(1)(y-x)2+2x-2y=(y-x+1)2-3;(2)a2-16(a-b)2=(a+4b)(a-4b)。 16.原式为(3a-1)(2a+5),代入a=2得值为19. 二、认真判断(本大题共6小题,每小题4分,共24分) 9.3 10.1 11.2 12.3 13.4 14.1 三、细心算一算(本大题共4小题,每小题6分,共24分) 15.$-\frac{5}{4}$ 16.$-\frac{15}{4}$ 17.方法共有两种,一种是将4x2分解成2x和2x,然后加上2x2,即$4x^2+1+2x^2=(2x+1)^2$,另一种是将4x2分解成(2x)2,然后加上1,即$4x^2+1+1=(2x+1)^2$。 18.(1)见图片。 2)A'(-1,-2),B'(-2,-3),C'(1,-3),$S_{\triangle A'B'C'}=\frac{5}{2}$。

人教版八年级上册数学期末考试试卷带答案

人教版八年级上册数学期末考试试卷带答案

人教版八年级上册数学期末考试试卷一、选择题。

(每小题只有一个正确答案)1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A .B .C .D .2.下列长度的三条线段能组成三角形的是()A .1,2,3B .2,2,4C .2,3,4D .2,4,83.下列图形中具有稳定性的是()A .正方形B .长方形C .等腰三角形D .平行四边形4.点M (3,1)关于y 轴的对称点的坐标为()A .(﹣3,1)B .(3,﹣1)C .(﹣3.﹣1)D .(1,3)5.已知28x x a -+可以写成一个完全平方式,则a 可为()A .4B .8C .16D .16-6.化简a 1a 11a+--的结果为()A .﹣1B .1C .a 1a 1+-D .a 11a+-7.下列运算正确的是()A .x 2+x 2=2x 4B .a 2•a 3=a 5C .(﹣2a 2)4=16x 6D .a 6÷a 2=a 38.下列各式从左到右的变形中,属于因式分解的是()A .﹣12x 3y =﹣3x 3•4yB .m (mn ﹣1)=m 2n ﹣mC .y 2﹣4y ﹣1=y (y ﹣4)﹣1D .ax +ay =a (x ﹣y )9.如图,OP 为∠AOB 的平分线,PC ⊥OA ,PD ⊥OB ,垂足分别是C ,D ,则下列结论错误的是()A .∠COP =∠DOPB .PC =PD C .OC =OD D .∠COP =∠OPD10.如图,在△ABC 中,AB =AC ,D 是BC 的中点,AC 的垂直平分线交AC ,AD ,AB 于点E ,O ,F ,则图中全等三角形的对数是()A .1对B .2对C .3对D .4对二、填空题11.若分式2x x+的值为0,则x 的值为_____12.分解因式:mx 2﹣4m =_____.13.水由氢原子和氧原子组成,其中氢原子的直径约为0.0000000001m,这个数据用科学记数法表示为____.14.若3a b +=,则226a b b -+的值为__________.15.如图,在△ABC 中,∠BAC =90°.AD ⊥BC 于点D ,若∠C =30°,BD =1,则线段CD 的长为_____.16.如图所示,底边BC 为3A 为120°的等腰△ABC 中,DE 垂直平分AB 于D ,则△ACE 的周长为__________.17.如图,在第一个△ABA 1中,∠B =20°,AB =A 1B ,在A 1B 上取一点C ,延长AA 1到A 2,使得A 1A 2=A 1C ,得到第二个△A 1A 2C ;在A 2C 上取一点D ,延长A 1A 2=A 2D ;…,按此做法进行下去,则第5个三角形中,以点A 4为顶点的等腰三角形的底角的度数为_____.三、解答题18.化简:()()2233mm m m +--⨯.19.如图,在△ABC中,AB=AC,∠A=36°.(1)用直尺和圆规作∠ABC的平分线BD交AC于点D(保留作图痕迹,不要求与作法);(2)在(1)的条件下,求∠BDC的度数.20.先化简,再求值:2221169x xx x x-⎛⎫-⋅⎪--+⎝⎭,其中x是从1,2,3中选取的一个合适的数.21.如图,AC=BC,AE⊥CD于点A,BD⊥CE于点B.(1)求证:CD=CE;(2)若点A为CD的中点,求∠C的度数.22.某体育用品商场预测某品牌运动服能够畅销,就用32000元购进了一批这种运动服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元.(1)该商场两次共购进这种运动服多少套?(2)如果这两批运动服每套的售价相同,且全部售完后总利润不低于20%,那么每套售价至少是多少元?23.将一副三角板按如图所示的方式摆放,AD是等腰直角三角板ABC斜边BC上的高,另一块三角板DMN的直角顶点与点D重合,DM、DN分别交AB、AC于点E、F.(1)请判别△DEF的形状.并证明你的结论;(2)若BC=4,求四边形AEDF的面积.24.阅读下列材料:材料1、将一个形如x2+px+q的二次三项式因式分解时,如果能满足q=mn且p=m+n,则可以把x2+px+q因式分解成(x+m)(x+n).(1)x2+4x+3=(x+1)(x+3)(2)x2﹣4x﹣12=(x﹣6)(x+2)材料2、因式分解:(x+y)2+2(x+y)+1解:将“x+y”看成一个整体,令x+y=A,则原式=A2+2A+1=(A+1)2再将“A”还原,得:原式=(x+y+1)2上述解题用到“整体思想”,整体思想是数学解题中常见的一种思想方法,请你解答下列问题:(1)根据材料1,把x2﹣6x+8分解因式.(2)结合材料1和材料2,完成下面小题:①分解因式:(x﹣y)2+4(x﹣y)+3;②分解因式:m(m+2)(m2+2m﹣2)﹣3.25.如图,等边△ABC的边长为15cm,现有两点M,N分别从点A,点B同时出发,沿三角形的边顺时针运动,已知点M的速度为1cm/s,点N的速度为2cm/s.当点N第一次到达B点时,M,N同时停止运动(1)点M、N运动几秒后,M,N两点重合?(2)点M、N运动几秒后,△AMN为等边三角形?(3)当点M,N在BC边上运动时,能否得到以MN为底边的等腰三角形AMN?如存在,请求出此时M,N运动的时间.参考答案1.D【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【详解】A、不是轴对称图形,故A不符合题意;B、不是轴对称图形,故B不符合题意;C、不是轴对称图形,故C不符合题意;D、是轴对称图形,故D符合题意.故选D.【点睛】本题主要考查轴对称图形的知识点.确定轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.C【分析】根据三角形的三边关系进行分析判断.【详解】根据三角形任意两边的和大于第三边,得A 中,1+2=3,不能组成三角形;B 中,2+2<4,不能组成三角形;C 中,3+2>4,能够组成三角形;D 中,2+4<8,不能组成三角形.故选:C .【点睛】此题主要考查三角形的构成条件,解题的关键是熟知三角形任意两边的和大于第三边.3.C 【分析】根据三角形具有稳定性可得答案.【详解】解:根据“三角形具有稳定性”可知等腰三角形有稳定性.故C 项符合题意.故本题正确答案为C.【点睛】本题主要考查三角形的基本性质:稳定性.4.A 【分析】根据关于y 轴的对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案.【详解】点M (3,1)关于y 轴的对称点的坐标为(﹣3,1),故选:A .【点睛】此题主要考查坐标与图形,解题的关键是熟知关于y 轴的对称点的坐标特点.5.C 【详解】∵28x x a -+可以写成一个完全平方式,∴x 2-8x+a=(x-4)2,又(x-4)2=x 2-8x+16,∴a=16,6.B【分析】先把分式进行通分,把异分母分式化为同分母分式,再把分子相加,即可求出答案.【详解】解:a1a1a11 a11a a1a1a1-+=-==-----.故选B.7.B【分析】直接利用积的乘方运算以及同底数幂的乘除运算法则分别化简得出答案.【详解】A、x2+x2=2x2,故此选项错误;B、a2•a3=a5,正确;C、(﹣2a2)4=16x8,故此选项错误;D、a6÷a2=a4,故此选项错误;故选:B.【点睛】此题主要考查幂的运算,解题的关键是熟知幂的运算法则.8.D【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】A、左边不是多项式,不是因式分解,故本选项不符合题意;B、是整式的乘法运算,故本选项不符合题意;C、没把一个多项式转化成几个整式积的形式,故本选项不符合题意;D、把一个多项式转化成几个整式积的形式,故本选项符合题意;故选:D.【点睛】此题主要考查因式分解的识别,解题的关键是熟知因式分解的定义.【分析】先根据角平分线的性质得出PC =PD ,∠POC =∠POD ,再利用HL 证明△OCP ≌△ODP ,根据全等三角形的性质得出OC =OD 即可判断.【详解】∵OP 为∠AOB 的角平分线,PC ⊥OA ,PD ⊥OB ,垂足分别是C 、D ,∴PC =PD ,∠POC =∠POD ,故A ,B 正确;在Rt △OCP 与Rt △ODP 中,OP OPPC PD=⎧⎨=⎩,∴Rt △OCP ≌Rt △ODP (HL ),∴OC =OD ,故C 正确.不能得出∠COP =∠OPD ,故D 错误.故选:D .【点睛】此题主要考查角平分线的性质与证明,解题的关键是熟知角平分线的性质定理与全等三角形的判定方法.10.D 【详解】试题分析:∵D 为BC 中点,∴CD=BD ,又∵∠BDO=∠CDO=90°,∴在△ABD 和△ACD 中,AB AC AD AD BD CD =⎧⎪=⎨⎪=⎩,∴△ABD ≌△ACD ;∵EF 垂直平分AC ,∴OA=OC ,AE=CE ,在△AOE 和△COE 中,0A 0COE 0E AE CE=⎧⎪=⎨⎪=⎩,∴△AOE ≌△COE ;在△BOD 和△COD 中,BD CD BDO CDO OD 0D =⎧⎪∠=∠⎨⎪=⎩,∴△BOD ≌△COD ;在△AOC 和△AOB 中,AC AB OA 0A OC 0B =⎧⎪=⎨⎪=⎩,∴△AOC ≌△AOB ;所以共有4对全等三角形,故选D .考点:全等三角形的判定.11.-2【分析】根据分子为零且分母不为零分式的值为零,可得答案.【详解】由题意,得x +2=0且x ≠0,解得x =-2,故答案为:-2.【点睛】此题主要考查分式的值,解题的关键是熟知分子为零且分母不为零时分式的值为零.12.m (x+2)(x ﹣2)【解析】【分析】提取公因式法和公式法相结合因式分解即可.【详解】原式()24,m x =-()()22.m x x =+-故答案为()()22.m x x +-【点睛】本题主要考查因式分解,熟练掌握提取公因式法和公式法是解题的关键.分解一定要彻底.13.1×10-10.【分析】根据科学记数法的定义进行求解即可.【详解】根据题意得:0.0000000001m=1×10-10(m ).故答案为1×10-10.【点睛】本题考查科学记数法,其形式为:a ×10n (1≤a <10,n 为整数).14.9【解析】分析:先将226a b b -+化为()()6a b a b b +-+,再将3a b +=代入所化式子计算即可.详解:∵3a b +=,∴226a b b -+=()()6a b a b b +-+=3()6a b b -+=336a b b -+=3()a b +=9.故答案为:9.点睛:“能够把226a b b -+化为()()6a b a b b +-+”是解答本题的关键.15.3【分析】求出∠BAD =∠BAC ﹣∠DAC =30°,求出AB =2,求出BC =4,则CD 可求出.【详解】∵AD ⊥BC 于点D ,∠C =30°,∴∠DAC =60°,∵∠BAC =90°,∴∠BAD =∠BAC ﹣∠DAC =30°,∴在Rt △ABD 中,AB =2BD =2,∴Rt △ABC 中,∠C =30°,∴BC =2AB =4,∴CD=BC﹣BD=4﹣1=3.故答案为:3.【点睛】此题主要考查直角三角形的性质与证明,解题的关键是熟知含30°的直角三角形的性质.16.【解析】【分析】过A作AF⊥BC于F,根据等腰三角形的性质得到∠B=∠C=30°,得到AB=AC=2,根据线段垂直平分线的性质得到BE=AE,即可得到结论.【详解】解:过A作AF⊥BC于F,∵AB=AC,∠A=120°,∴∠B=∠C=30°,∴AB=AC=2,∵DE垂直平分AB,∴BE=AE,∴∴△ACE的周长故答案为.【点睛】本题考查了线段垂直平分线性质、三角形内角和定理、等腰三角形的性质、含30度角的直角三角形性质等知识点,主要考查运用性质进行推理的能力.17.5°【分析】根据第一个△ABA 1中,∠B =20°,AB =A 1B ,可得∠BA 1A =80°,依次得∠CA 2A 1=40°…即可得到规律,从而求得以点A 4为顶点的等腰三角形的底角的度数.【详解】∵△ABA 1中,∠B =20°,AB =A 1B ,∴∠BA 1A =1802B︒-∠=80°,∵A 1A 2=A 1C ,∠BA 1A 是△A 1A 2C 的外角,∴∠CA 2A 1=12BAA ∠=40°同理可得:∠DA 3A 2=20°,∠EA 4A 3=10°,∴∠A n =1802n -︒,∴以点A 4为顶点的等腰三角形的底角的度数为:∠A 5=4802︒=5°.故答案为5°.【点睛】此题主要考查三角形的角度规律的探究,解题的关键是熟知等腰三角形的性质.18.-4.【解析】试题分析:先用“平方差公式”和“单项式乘以多项式的法则”进行计算,再合并同类项即可.试题解析:原式=224m m --=4-.19.(1)见解析;(2)72°【分析】(1)直接利用角平分线的作法得出BD ;(2)利用等腰三角形的性质以及角平分线的性质分析得出答案.【详解】(1)如图所示:BD 即为所求;(2)∵AB =AC ,∠A =36°,∴∠ABC =∠C =72°,∵BD 平分∠ABC ,∴∠ABD =12∠ABC =36°,∴∠BDC =∠A +∠ABD =72°.【点睛】此题主要考查角平分线的作图与角度求解,解题的关键是熟知等腰三角形的性质.20.3x x -;-2【分析】先计算括号内的异分母分式减法,再计算乘法,最后将可选取的x 值代入计算即可.【详解】解:原式23(1)1(3)3x x x x x x x --=⋅=---,当x 2=时,原式2223==--.【点睛】此题考查分式的化简求值,正确掌握分式的混合运算法则及确定字母的可取数值是解题的关键.21.(1)见解析;(2)60°【分析】(1)证明△CAE ≌△CBD (ASA ),可得出结论;(2)根据题意得出△CDE 为等边三角形,进而得出∠C 的度数.【详解】(1)∵AE ⊥CD 于点A ,BD ⊥CE 于点B ,∴∠CAE =∠CBD =90°,在△CAE 和△CBD 中,C C AC BC CAE CBD ∠∠⎧⎪=⎨⎪∠∠⎩==,∴△CAE ≌△CBD (ASA ).∴CD =CE ;(2)连接DE,∵由(1)可得CE =CD ,∵点A 为CD 的中点,AE ⊥CD ,∴CE =DE ,∴CE =DE =CD ,∴△CDE 为等边三角形.∴∠C =60°.【点睛】此题主要考查全等三角形的判定的综合问题,解题的关键是熟知全等三角形的判定方法及等边三角形的判定定理.22.(1)商场两次共购进这种运动服600套;(2)每套运动服的售价至少是200元【分析】(1)设该商场第一次购进这种运动服x 套,第二次购进2x 套,然后根据题意列分式解答即可;(2)设每套售价是y 元,然后根据“售价-两次总进价≥成本×利润率”列不等式并求解即可.【详解】解:(1)设商场第一次购进x 套运动服,由题意得6800032000102x x-=解这个方程,得200x =经检验,200x =是所列方程的根22200200600x x +=⨯+=;答:商场两次共购进这种运动服600套;(2)设每套运动服的售价为y 元,由题意得600320006800020%3200068000y --+ ,解这个不等式,得200y ≥.答:每套运动服的售价至少是200元.【点睛】本题主要考查了分式方程和一元一次不等式的应用,弄清题意、确定量之间的关系、列出分式方程和不等式是解答本题的关键.23.(1)△DEF 是等腰直角三角形,理由见解析;(2)2【分析】(1)可得∠CAD =∠B =45°,根据同角的余角相等求出∠CDF =∠ADE ,然后利用“角边角”证明△ADE 和△CDF 全等,则结论得证;(2)根据全等三角形的面积相等可得S △ADE =S △CDF ,从而求出S 四边形AEDF =S △ABD =218BC ,可求出答案.【详解】(1)解:△DEF 是等腰直角三角形.证明如下:∵AD ⊥BC ,∠BAD =45°,∴∠EAD =∠C ,∵∠MDN 是直角,∴∠ADF +∠ADE =90°,∵∠CDF +∠ADF =∠ADC =90°,∴∠ADE =∠CDF ,在△ADE 和△CDF 中,DAE CDF AD CD ADE CDF ∠∠⎧⎪=⎨⎪∠∠⎩==,∴△ADE ≌△CDF (ASA ),∴DE=DF,又∵∠MDN=90°,∴∠EDF=90°,∴△DEF是等腰直角三角形;(2)∵△ADE≌△CDF,∴S△ADE=S△CDF,∵△ABC是等腰直角三角形,AD⊥BC∴AD=BD=12BC,∴S四边形AEDF =S△ABD=2221111()2228AD BC BC=⨯==2148⨯=2.【点睛】此题主要考查等腰三角形的性质与判定,解题的关键是熟知全等三角形的判定定理、等腰三角形的性质.24.(1)(x﹣2)(x﹣4);(2)①(x﹣y+1)(x﹣y+3);②(m+1)2(m﹣1)(m+3).【分析】(1)根据材料1,可对进行x2﹣6x+8进行分解因式;(2)①根据材料2的整体思想,可对(x﹣y)2+4(x﹣y)+3进行分解因式;②根据材料1、2,可对m(m+2)(m2+2m﹣2)﹣3进行分解因式.【详解】解:(1)x2﹣6x+8=(x﹣2)(x﹣4);(2)①令A=x﹣y,则原式=A2+4A+3=(A+1)(A+3),所以(x﹣y)2+4(x﹣y)+3=(x﹣y+1)(x﹣y+3);②令B=m2+2m,则原式=B(B﹣2)﹣3=B2﹣2B﹣3=(B+1)(B﹣3),所以原式=(m2+2m+1)(m2+2m﹣3)=(m+1)2(m﹣1)(m+3).【点睛】本题主要考查因式分解的方法-十字相乘法.25.(1)15秒;(2)5秒;(3)20秒【分析】(1)由点N运动路程=点M运动路程+AB间的路程,列出方程求解,捷克得出结论;(2)由等边三角形的性质可得AN=AM,可列方程求解,即可得出结论;(3)由全等三角形的性质可得CM=BN,可列方程求解,即可得出结论.【详解】(1)设运动t秒,M、N两点重合,根据题意得:2t﹣t=15,∴t=15,答:点M,N运动15秒后,M、N两点重合;(2)如图1,设点M、N运动x秒后,△AMN为等边三角形,∴AN=AM,由运动知,AN=15﹣2x,AM=x,∴15﹣2x=x,解得:x=5,∴点M、N运动5秒后,△AMN是等边三角形;(3)假设存在,如图2,设M、N运动y秒后,得到以MN为底边的等腰三角形AMN,∴AM=AN,∴∠AMN=∠ANM,∵△ABC是等边三角形,∴AB=AC,∠C=∠B=60°,∴△ACN≌△ABM(AAS),∴CN=BM,∴CM=BN,由运动知,CM=y﹣15,BN=15×3﹣2y,∴y﹣15=15×3﹣2y,∴y=20,故点M,N在BC边上运动时,能得到以MN为底边的等腰三角形AMN,此时M,N运动的时间为20秒.【点睛】此题主要考查等边三角形的性质与证明,解题的关键是熟知全等三角形的判定与性质、等边三角形的性质.。

人教版数学八年级上册期末考试试卷及答案

人教版数学八年级上册期末考试试卷及答案

人教版数学八年级上册期末考试试题一、单选题(每小题3分,共30分;每小题只有一个正确答案)1.下列平面图形中,不是轴对称图形的是()A.B.C.D.2.用下列长度的三根木棒首尾相接,能做成三角形框架的是()A.2,2,4B.3,4,5C.1,2,3D.2,3,63.下列运算正确的是()A.(a2)3=a5B.a4•a2=a8C.a6÷a3=a2D.(ab)3=a3b3 4.如图,∠1=()A.40°B.50°C.60°D.70°5.下列各组图形中,AD是△ABC的高的图形是()A.B.C.D.6.如图,已知∠ABC=∠DCB,添加以下条件,不能判定△ABC≌△DCB的是()A.∠A=∠D B.∠ACB=∠DBC C.AC=DB D.AB=DC 7.化简的结果是()A.﹣x B.x C.x﹣1D.x+18.下列多项式乘法中可以用平方差公式计算的是()A.(2x+y)(y﹣2x)B.(x+2)(2+x)C.(﹣a+b)(a﹣b)D.(x﹣2)(x+1)9.如图,AD⊥BC,垂足为D,BF⊥AC,垂足为F,AD与BF交于点E,AD=BD=5,DC=2,则AE的长为()A.2B.5C.3D.710.如图,设△ABC和△CDE都是正三角形,且∠EBD=62°,则∠AEB的度数是()A.124°B.122°C.120°D.118°二、填空题(每题3分,满分18分,将答案填在答题纸上)11.若分式的值为0,则x的值为.12.DNA分子直径为0.00000069cm,这个数可以表示为6.9×10n,其中n=.13.计算:3a4•(﹣2a)=.14.如果一个正n边形的每一个外角都是72°,那么n=.15.如图,△ABC中,∠C=90°,AD平分∠CAB,且BC=12,BD=8,则点D到AB的距离为.16.如图,在平面直角坐标系中,直线l与x轴交于点B1,与y轴交点于D,且OB1=1,∠ODB1=60°,以OB1为边长作等边三角形A1OB1,过点A1作A1B2平行于x轴,交直线l于点B2,以A1B2为边长作等边三角形A2A1B2,过点A2作A2B3平行于x轴,交直线l于点B3,以A2B3为边长作等边三角形A3A2B3,…,按此规律进行下去,则点A6的横坐标是.三、解答题(本大题共7小题,共52分.解答应写出文字说明、证明过程或演算步骤.)17.化简:a(a﹣2)﹣(a﹣1)2.18.因式分解:am2﹣6ma+9a.19.解方程:=﹣1.20.如图,(1)在网格中画出△ABC关于y轴对称的△A1B1C1;(2)写出△ABC关于x轴对称的△A2B2C2的各顶点坐标;(3)在y轴上确定一点P,使△PAB周长最短.只需作图,保留作图痕迹.21.王强同学用10块高度都是2cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC=BC,∠ACB=90°),点C在DE上,点A和B分别与木墙的顶端重合,求两堵木墙之间的距离.22.为了抗击疫情,支援武汉一线,某工厂接到上级下达赶制60万只医用一次性口罩的任务,为使医用一次性口罩早日到达防疫一线,开工后每天加工口罩的数量是原计划的1.5倍,结果提前5天完成任务,则该厂原计划每天加工多少万只医用一次性口罩?23.如图,等边△ABC的边长为15cm,现有两点M,N分别从点A,点B同时出发,沿三角形的边顺时针运动,已知点M的速度为1cm/s,点N的速度为2cm/s.当点N第一次到达B点时,M,N同时停止运动(1)点M、N运动几秒后,M,N两点重合?(2)点M、N运动几秒后,△AMN为等边三角形?(3)当点M,N在BC边上运动时,能否得到以MN为底边的等腰三角形AMN?如存在,请求出此时M,N运动的时间.参考答案与试题解析一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列平面图形中,不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线对称,进而判断得出答案.【解答】解:B、C、D都是轴对称图形,A不是轴对称图形,故选:A.2.用下列长度的三根木棒首尾相接,能做成三角形框架的是()A.2,2,4B.3,4,5C.1,2,3D.2,3,6【分析】根据三角形的任意两边之和大于第三边,对各选项分析判断后利用排除法求解.【解答】解:A、2+2=4,不能组成三角形,故本选项不符合题意;B、3+4=7>5,能组成三角形,故本选项符合题意;C、1+2=3,不能组成三角形,故本选项不符合题意;D、2+3=5<6,不能组成三角形,故本选项不符合题意.故选:B.3.下列运算正确的是()A.(a2)3=a5B.a4•a2=a8C.a6÷a3=a2D.(ab)3=a3b3【分析】根据同底数幂的除法法则,同底数幂的乘法的运算方法,以及幂的乘方与积的乘方的运算方法,逐项判定即可.【解答】解:∵(a2)3=a6,∴选项A不符合题意;∵a4•a2=a6,∴选项B不符合题意;∵a6÷a3=a3,∴选项C不符合题意;∵(ab)3=a3b3,∴选项D符合题意.故选:D.4.如图,∠1=()A.40°B.50°C.60°D.70°【分析】根据三角形的外角的性质计算即可.【解答】解:∠1=130°﹣60°=70°,故选:D.5.下列各组图形中,AD是△ABC的高的图形是()A.B.C.D.【分析】根据过三角形的顶点向对边作垂线,顶点和垂足之间的线段叫做三角形的高线解答.【解答】解:△ABC的高AD是过顶点A与BC垂直的线段,只有D选项符合.故选:D.6.如图,已知∠ABC=∠DCB,添加以下条件,不能判定△ABC≌△DCB的是()A.∠A=∠D B.∠ACB=∠DBC C.AC=DB D.AB=DC【分析】全等三角形的判定方法有SAS,ASA,AAS,SSS,根据定理逐个判断即可.【解答】解:A、∠A=∠D,∠ABC=∠DCB,BC=BC,符合AAS,即能推出△ABC≌△DCB,故本选项错误;B、∠ABC=∠DCB,BC=CB,∠ACB=∠DBC,符合ASA,即能推出△ABC≌△DCB,故本选项错误;C、∠ABC=∠DCB,AC=BD,BC=BC,不符合全等三角形的判定定理,即不能推出△ABC≌△DCB,故本选项正确;D、AB=DC,∠ABC=∠DCB,BC=BC,符合SAS,即能推出△ABC≌△DCB,故本选项错误;故选:C.7.化简的结果是()A.﹣x B.x C.x﹣1D.x+1【分析】根据分式的运算法则即可求出答案.【解答】解:原式===x,故选:B.8.下列多项式乘法中可以用平方差公式计算的是()A.(2x+y)(y﹣2x)B.(x+2)(2+x)C.(﹣a+b)(a﹣b)D.(x﹣2)(x+1)【分析】平方差公式:两个数的和与这两个数的差相乘,等于这两个数的平方差,由此进行判断即可.【解答】解:A、(2x+y)(y﹣2x),能用平方差公式进行计算,故本选项符合题意;B、(x+2)(2+x),不能用平方差公式进行计算,故本选项不符合题意;C、(﹣a+b)(a﹣b),不能用平方差公式进行计算,故本选项不符合题意;D、(x﹣2)(x+1)不能用平方差公式进行计算,故本选项不符合题意;故选:A.9.如图,AD⊥BC,垂足为D,BF⊥AC,垂足为F,AD与BF交于点E,AD=BD=5,DC=2,则AE的长为()A.2B.5C.3D.7【分析】由“SAS”可证△DBE≌△DAC,可得CD=DE=2,即可求解.【解答】解:∵AD⊥BC,BF⊥AC,∴∠ADC=∠ADB=∠BFC=90°,∴∠C+∠DAC=90°=∠C+∠DBF,∴∠DAC=∠DBF,在△DBE和△DAC中,,∴△DBE≌△DAC(SAS),∴CD=DE=2,∴AE=AD﹣DE=3,故选:C.10.如图,设△ABC和△CDE都是正三角形,且∠EBD=62°,则∠AEB的度数是()A.124°B.122°C.120°D.118°【分析】由题中条件,可得△ACE≌△BCD,得出∠DBC=∠CAE,进而再通过角之间的转化,可最终求解出结论.【解答】解:∵△ABC和△CDE都是正三角形,∴AC=BC,CE=CD,∠ACB=∠ECD =60°,又∠ACB=∠ACE+∠BCE,∠ECD=∠BCE+∠BCD,∴∠BCD=∠ACE,△ACE≌△BCD,∴∠DBC=∠CAE,即62°﹣∠EBC=60°﹣∠BAE,即62°﹣(60°﹣∠ABE)=60°﹣∠BAE,∴∠ABE+∠BAE=60°+60°﹣62°=58°,∴∠AEB=180°﹣(∠ABE+∠BAE)=180°﹣58°=122°.故选:B.二、填空题(每题3分,满分18分,将答案填在答题纸上)11.若分式的值为0,则x的值为﹣3.【分析】分式的值为零,分子等于零,且分母不等于零.【解答】解:由题意,知x+3=0且x﹣1≠0.解得x=﹣3.故答案是:﹣3.12.DNA分子直径为0.00000069cm,这个数可以表示为6.9×10n,其中n=﹣7.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00000069=6.9×10﹣7,则n=﹣7.故答案为:﹣7.13.计算:3a4•(﹣2a)=﹣6a5.【分析】直接利用单项式乘以单项式运算法则计算得出答案.【解答】解:3a4•(﹣2a)=﹣6a5.故答案为:﹣6a5.14.如果一个正n边形的每一个外角都是72°,那么n=5.【分析】根据正多边形的边数=360°÷每一个外角的度数,进行计算即可得解.【解答】解:n=360°÷72°=5.故答案为:5.15.如图,△ABC中,∠C=90°,AD平分∠CAB,且BC=12,BD=8,则点D到AB的距离为4.【分析】过D作DE⊥AB于E,根据角平分线性质得出CD=DE,求出CD长即可.【解答】解:如图,过点D作DE⊥AB于E.∵BC=12,BD=8,∴CD=BC﹣BD=4.又∵∠C=90°,AD平分∠BAC交BC于点D,∴DE=CD=4.故答案为:4.16.如图,在平面直角坐标系中,直线l与x轴交于点B1,与y轴交点于D,且OB1=1,∠ODB1=60°,以OB1为边长作等边三角形A1OB1,过点A1作A1B2平行于x轴,交直线l于点B2,以A1B2为边长作等边三角形A2A1B2,过点A2作A2B3平行于x轴,交直线l于点B3,以A2B3为边长作等边三角形A3A2B3,…,按此规律进行下去,则点A6的横坐标是31.5.【分析】观察图形,找到图形变化的规律,利用规律求解即可.【解答】解:∵OB1=1,∠ODB1=60°,∴OD==,B1(1,0),∠OB1D=30°,∴D(0,﹣),如图所示,过A1作A1A⊥OB1于A,则OA=OB1=,即A1的横坐标为=,由题可得∠A1B2B1=∠OB1D=30°,∠B2A1B1=∠A1B1O=60°,∴∠A1B1B2=90°,∴A1B2=2A1B1=2,过A2作A2B⊥A1B2于B,则A1B=A1B2=1,即A2的横坐标为+1==,过A3作A3C⊥A2B3于C,同理可得,A2B3=2A2B2=4,A2C=A2B3=2,即A3的横坐标为+1+2==,同理可得,A4的横坐标为+1+2+4==,由此可得,A n的横坐标为,∴点A6的横坐标是=31.5,故答案为:31.5.三、解答题(本大题共7小题,共52分.解答应写出文字说明、证明过程或演算步骤.)17.化简:a(a﹣2)﹣(a﹣1)2.【分析】直接利用完全平方公式以及单项式乘多项式计算得出答案.【解答】解:原式=a2﹣2a﹣(a2﹣2a+1)=a2﹣2a﹣a2+2a﹣1=﹣1.18.因式分解:am2﹣6ma+9a.【分析】先提公因式,然后利用公式法分解因式.【解答】解:原式=a(m2﹣6m+9)=a(m﹣3)2.19.解方程:=﹣1.【分析】观察可得最简公分母是(x﹣2),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:两边同时乘以(x﹣2)得,x﹣3=﹣3﹣(x﹣2),2x=4,x=2.检验:当x=2时,x﹣3≠0,故x=2是原分式方程的解.20.如图,(1)在网格中画出△ABC关于y轴对称的△A1B1C1;(2)写出△ABC关于x轴对称的△A2B2C2的各顶点坐标;(3)在y轴上确定一点P,使△PAB周长最短.只需作图,保留作图痕迹.【分析】(1)分别作出A,B,C的对应点A1,B1,C1即可.(2)分别作出A,B,C的对应点A2,B2,C2即可,写出各个点的坐标即可.(3)连接BA1交Y轴于点P,连接AP,点P即为所求.【解答】解:(1)如图,△A1B1C1即为所求作.(2)如图,△A2B2C2的即为所求作.A2(﹣3,﹣2)、B2(﹣4,3)、C2(﹣1,﹣1).(3)如图,点P即为所求作.21.王强同学用10块高度都是2cm的相同长方体小木块,垒了两堵与地面垂直的木墙,木墙之间刚好可以放进一个等腰直角三角板(AC=BC,∠ACB=90°),点C在DE上,点A和B分别与木墙的顶端重合,求两堵木墙之间的距离.【分析】根据题意可得AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,进而得到∠ADC =∠CEB=90°,再根据等角的余角相等可得∠BCE=∠DAC,再证明△ADC≌△CEB即可,利用全等三角形的性质进行解答.【解答】解:由题意得:AC=BC,∠ACB=90°,AD⊥DE,BE⊥DE,∴∠ADC=∠CEB=90°,∴∠ACD+∠BCE=90°,∠ACD+∠DAC=90°,∴∠BCE=∠DAC,在△ADC和△CEB中,,∴△ADC≌△CEB(AAS);由题意得:AD=EC=6cm,DC=BE=14cm,∴DE=DC+CE=20(cm),答:两堵木墙之间的距离为20cm.22.为了抗击疫情,支援武汉一线,某工厂接到上级下达赶制60万只医用一次性口罩的任务,为使医用一次性口罩早日到达防疫一线,开工后每天加工口罩的数量是原计划的1.5倍,结果提前5天完成任务,则该厂原计划每天加工多少万只医用一次性口罩?【分析】设该厂原计划每天加工x万只医用一次性口罩,则实际每天加工1.5x万只医用一次性口罩,根据工作时间=工作总量÷工作效率结合实际比原计划提前5天完成任务,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:设该厂原计划每天加工x万只医用一次性口罩,则实际每天加工1.5x万只医用一次性口罩,依题意,得:﹣=5,解得:x=4,经检验,x=4是原方程的解,且符合题意.答:该厂原计划每天加工4万只医用一次性口罩.23.如图,等边△ABC的边长为15cm,现有两点M,N分别从点A,点B同时出发,沿三角形的边顺时针运动,已知点M的速度为1cm/s,点N的速度为2cm/s.当点N第一次到达B点时,M,N同时停止运动(1)点M、N运动几秒后,M,N两点重合?(2)点M、N运动几秒后,△AMN为等边三角形?(3)当点M,N在BC边上运动时,能否得到以MN为底边的等腰三角形AMN?如存在,请求出此时M,N运动的时间.【分析】(1)由点N运动路程=点M运动路程+AB间的路程,列出方程求解,捷克得出结论;(2)由等边三角形的性质可得AN=AM,可列方程求解,即可得出结论;(3)由全等三角形的性质可得CM=BN,可列方程求解,即可得出结论.【解答】解:(1)设运动t秒,M、N两点重合,根据题意得:2t﹣t=15,∴t=15,答:点M,N运动15秒后,M、N两点重合;(2)如图1,设点M、N运动x秒后,△AMN为等边三角形,∴AN=AM,由运动知,AN=15﹣2x,AM=x,∴15﹣2x=x,解得:x=5,∴点M、N运动5秒后,△AMN是等边三角形;(3)假设存在,如图2,设M、N运动y秒后,得到以MN为底边的等腰三角形AMN,∴AM=AN,∴∠AMN=∠ANM,∵△ABC是等边三角形,∴AB=AC,∠C=∠B=60°,∴△ACN≌△ABM(AAS),∴CN=BM,∴CM=BN,由运动知,CM=y﹣15,BN=15×3﹣2y,∴y﹣15=15×3﹣2y,∴y=20,故点M,N在BC边上运动时,能得到以MN为底边的等腰三角形AMN,此时M,N 运动的时间为20秒.。

人教版八年级上册数学期末考试试卷附答案

人教版八年级上册数学期末考试试卷附答案

人教版八年级上册数学期末考试试题一、单选题1.下列倡导节约的图案中,是轴对称图形的是()A .B .C .D .2.下列计算正确的是()A .(a 3)3=a 9B .a 3•a 4=a 12C .a 2+a 3=a 5D .a 6÷a 2=a 33.下列四个多项式中,能因式分解的是().A .a 2+1B .x 2+5yC .x 2-5yD .a 2-6a+94.满足下列条件的三条线段,,a b c 能构成三角形的是()A .::1:2:3a b c =B .4,9a b a b c +=++=C .3,4,5a b c ===D .::1:1:2a b c =5.下列说法正确的是()A .等腰三角形两边长为4,9,则三角形的周长为17或22B .三角形的外角和为180︒C .在三角形,四边形,五边形中,只有三角形具有稳定性D .四边形共有4条对角线6.下列计算错误的是()A .3223a b a a b b=B .2()a b a b b a -=--C .0.22100.5510a b a b a b a b ++=--D .2222a b ab ab a b a b-=-+7.如图所示,在Rt ABC △中,90,C DE ︒∠=垂直平分AB ,交BC 于点E ,垂足为D ,6cm BE =,30AEC ︒∠=,则AC 等于()A .6cmB .5cmC .4cmD .3cm8.为推进垃圾分类,某化工厂要购进甲、乙两种型号机器人用来进行垃圾分类.用360万元购买甲型机器人和用480万元购买乙型机器人的台数相同,两型号机器人的单价和为140万元.若设甲型机器人每台x 万元,根据题意,所列方程正确的是()A .360480140x x=-B .360480140x x =-C .360480140x x +=D .360480140x x -=9.如图,在等边ABC 中,D 、E 分别是BC 、AC 上的点,且BD CE =,AD 与B 相交于点P ,则APE ∠的度数为()A .45︒B .50︒C .60︒D .80︒10.如图,△ABC 是等边三角形,AQ=PQ ,PR ⊥AB 于点R ,PS ⊥AC 于点S ,PR=PS .下列结论:①点P 在∠A 的角平分线上;②AS=AR ;③QP ∥AR ;④△BRP ≌△QSP .其中,正确的有()A .1个B .2个C .3个D .4个二、填空题11.用科学记数法表示:0.00002021=___.12.分解因式214m m ++=_______.13.若22116a b -=-,14a b +=-,则a b -的值为______.14.在△ABC 中,边AB 的垂直平分线分别交AB 、AC 于点D ,E ,若AD 为4㎝,△ABC 的周长为26㎝,则△BCE 的周长为______㎝.15.关于x 的分式方程12122a x x-+=--的解为正数,则a 的取值范围是_____.16.如图,在平面直角坐标系中,已知(0,5),(2,0)A B ,在第一象限内的点C ,使ABC 是以AB 为腰的等腰直角三角形,则点C 的坐标为_____.17.如图,点P 关于OA ,CB 的对称点分别是1P ,2P ,12PP 分别交OA ,CB 于点C ,D ,126PP =,则PCD 的周长为_____.18.如图,在△ABC 中,∠C =90°,∠B =22.5°,DE 垂直平分AB 交BC 于点E ,EC =2,则△ACE 的面积为_______.三、解答题19.计算:021( 3.14)()2|3π--++-(2)4a (a+b )﹣(a+2b )2;20.先化简,再求值:22x 3211•1131x x x x x ++⎛⎫-+ ⎪⎝⎭----,其中x =-65.21.解方程(1)2x =32x +(2)51122x x x-+=--22.△OAB 在平面直角坐标系中的位置如图所示,点O (0,0),点A (1,﹣3),点B (4,﹣1).(1)画出△OAB 关于x 轴对称的△OA 1B 1;(2)在x 轴找到一点P ,使PA+PB 的值最小;(画出图形,保留痕迹,不写画法)(3)求△OAB 的面积.23.如图,//,,//AC DF AD BE BC EF =.求证:ABC DEF ≌△△.24.如图,90,,,ACB AC BC AD CE BE CE ∠=︒=⊥⊥,垂足分别为D ,E ,2.5cm, 1.7cm AD DE ==.求BE 的长.25.某服装销售公司准备从服装厂购进甲、乙两种服装进行销售.若一件甲种服装的进价比一件乙种服装的进价多50元,用4000元购进甲种服装的数量是用1500元购进乙种服装的数量的2倍.(1)求每件甲种服装和乙种服装的进价分别是多少元?(2)该公司甲种服装每件售价260元,乙种服装每件售价190元.公司根据顾客需求,决定在这家服装厂购进一批服装,且购进乙种服装的数量比购进甲种服装的数量的2倍还多4件;若本次购进的两种服装全部售出后,总获利不少于7160元,求该公司本次购进甲种服装至少多少件?26.如图1,AC=BC,CD=CE,∠ACB=∠DCE=α,AD、BE相交于点M.(1)求证:BE=AD;(2)直接用含α的式子表示∠AMB的度数为__(3)当α=90°时,取AD,BE的中点分别为点P、Q,连接CP,CQ,PQ,如图2,判断△CPQ 的形状,直接写出答案即可.参考答案1.C【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,根据轴对称图形的概念求解.【详解】解:A 、不是轴对称图形,故此选项错误;B 、不是轴对称图形,故此选项错误;C 、是轴对称图形,故此选项正确;D 、不是轴对称图形,故此选项错误.故选C .2.A【详解】解:A .(a 3)3=a 9,故A 正确,本选项符合题意;B .a 3•a 4=a 7,故B 错误,选项不符合题意;C .a 2+a 3不能合并,故C 错误,选项不符合题意;D .a 6÷a 2=a 4,故D 错误,选项不符合题意.故选:A .3.D【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】解:A 、B 、C 都不能把一个多项式转化成几个整式积的形式,故A 、B 、C 不能因式分解;D 是完全平方公式的形式,故D 能分解因式;故选:D .4.C【分析】根据三角形三条边的关系计算即可,三角形任意两边之和大于第三边,任意两边之差小于第三边.【详解】A.设,,a b c 分别为,2,3(0)x x x x >,则有a b c +=,不符合三角形的三边关系,故不能构成三角形;B.当4a b +=时,5,45c =<,不符合三角形的三边关系,故不能构成三角形;C.当3a =,4b =,5c =时,345+>,符合三角形的三边关系,故能构成三角形;D.设,,a b c 分别为,,2(0)x x x x >,则有a b c +=,不符合三角形的三边关系,故不能构成三角形.故选C .5.C【分析】根据等腰三角形的定义,三角形三边的关系,三角形的稳定性,多边形的外角和等于360°,多边形的对角线的定义即可求解.【详解】A.等腰三角形两边长为4,9,当4为腰长时,449+< ,不满足三角形三边关系定理,∴三角形的周长为99422++=,错误;B.三角形的外角和为360︒,错误;C.在三角形,四边形,五边形中,只有三角形具有稳定性,正确;D.四边形共有2条对角线,错误.故选C .【点睛】此题考查等腰三角形的定义,三角形三条边的关系,三角形的稳定性,多边形的外角和等于360°,多边形的对角线,需要熟练掌握.6.B【分析】根据约分的步骤找出分子与分母的公分母,再约去即可.【详解】解:A 、3223a b a a b b=,正确,不符合题意;B 、2()a b b a b a-=--,不正确,符合题意;C 、0.22100.5510a b a b a b a b++=--,正确,不符合题意;D 、2222a b ab ab a b a b-=-+,正确,不符合题意;故选:B .【点睛】本题考查了约分,用到的知识点是分式的基本性质,约去分式的分子与分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分.确定公因式要分为系数、字母、字母的指数来分别确定.7.D【分析】由垂直平分线的性质,得到AE ,再由直角三角形的性质即可求出AC 的长度.【详解】解:∵DE 垂直平分AB ,∴6cm AE BE ==.∵在Rt ACE 中,30AEC ∠=︒,∴1163(cm)22AC AE ==⨯=;故选:D .【点睛】本题考查了垂直平分线的性质定理,30度直角三角形的性质,解题的关键是熟练掌握所学的性质,正确求出AC 的长度.8.A【分析】甲型机器人每台x 万元,根据360万元购买甲型机器人和用480万元购买乙型机器人的台数相同,列出方程即可.【详解】解:设甲型机器人每台x 万元,根据题意,可得360480140x x=-,故选:A .【点睛】本题考查的是分式方程,解题的关键是熟练掌握分式方程.9.C【分析】先证明△ABD ≌△BCE ,得到∠BAD=∠CBE ,再由三角形的外角性质,即可得到答案.【详解】解:∵ABC 是等边三角形,∴AB BC =,60ABC C ∠=∠=︒,∵BD CE =,∴△ABD ≌△BCE (SAS ),∴∠BAD=∠CBE ,∵60ABP CBE ABC ∠+∠=∠=︒,∴60ABP BAD ∠+∠=︒,∴APE ∠60ABP BAD =∠+∠=︒;故选:C .【点睛】本题考查了等边三角形的性质,全等三角形的判定和性质,三角形的外角性质,解题的关键是掌握所学的性质,证明△ABD ≌△BCE .10.D【详解】∵△ABC 是等边三角形,PR ⊥AB ,PS ⊥AC ,且PR=PS ,∴P 在∠A 的平分线上,故①正确;由①可知,PB=PC ,PS=PR ,∴Rt △BPR ≌Rt △CPS ,∴BR=AR ∴AS=AR ,故②正确;∵AQ=PQ ,∴∠APQ=∠PAC ,∠CQP=2∠APQ=60°=∠BAC ,∴PQ ∥AR ,故③正确;由③得,△PQC 是等边三角形,∴△PQS ≌△PCS ,又由②可知,④△BRP ≌△QSP ,故④也正确,∵①②③④都正确,故选D .【点睛】本题考查了角平分线的性质与全等三角形的判定与性质,准确识图并熟练掌握全等三角形的判定方法与性质是解题的关键.11.52.02110-⨯【分析】根据绝对值小于1的数可以用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定,即可求解.【详解】解:50.00002021 2.02110-=⨯故答案为:52.02110-⨯12.2(1)2m +【分析】把原式化为2212122m m ⎛⎫+⨯⨯+ ⎪⎝⎭,再利用完全平方公式分解因式即可.【详解】解:2221121422m m m m ⎛⎫++=+⨯⨯+ ⎪⎝⎭212m ⎛⎫=+ ⎪⎝⎭故答案为:212m ⎛⎫+ ⎪⎝⎭13.14【分析】由平方差公式进行因式分解,再代入计算,即可得到答案.【详解】解:221()()16a b a b a b -=+-=-,∵14a b +=-,1111644a b ⎛⎫∴-=-÷-= ⎪⎝⎭.故答案是:14.14.18.【详解】试题分析:∵ED 垂直平分AB ,∴AE=BE ,∴BD=AD=4cm ,AB=8cm ,∵△ABC 的周长为26cm ,∴AC+BC=18cm ,△BCE 的周长=BC+CE+AE=BC+CE+AE=18cm .故答案为18.考点:等腰三角形的判定.15.5a <且3a ≠【分析】直接解分式方程,进而利用分式方程的解是正数得出a 的取值范围,进而结合分式方程有意义的条件分析得出答案.【详解】去分母得:122a x -+=-,解得:5x a =-,50a ->,解得:5a <,当52x a =-=时,3a =不合题意,故5a <且3a ≠.故答案为5a <且3a ≠.16.(7,2)或(5,7)【分析】分别从当∠ABC=90°,AB=BC 时,当∠BAC=90°,AB=AC 时去分析求解,利用全等三角形的判定与性质,即可求得点C 的坐标.【详解】如图①,当∠ABC=90°,AB=BC 时,过点C 作CD ⊥x 轴于点D ,∴∠CDB=∠AOB=90°,∵∠OAB+∠ABO=90°,∠ABO+∠CBD=90°,∴∠OAB=∠CBD ,在△AOB 和△BDC 中,AOB BDC OAB CBD AB BC ∠∠⎧⎪∠∠⎨⎪⎩===,∴△AOB ≌△BDC (AAS ),∴BD=OA=5,CD=OB=2,∴OD=OB+BD=7,∴点C 的坐标为(7,2);如图②,当∠BAC=90°,AB=AC 时,过点C 作CD ⊥y 轴于点D ,同理可证得:△OAB ≌△DCA ,∴AD=OB=2,CD=OA=5,∴OA=OA+AD=7,∴点C 的坐标为(5,7);综上所述点,点C 的坐标为(7,2)或(5,7).17.6【分析】根据轴对称的性质,得1CP CP =,2DPDP =,结合三角形周长的性质计算,即可得到答案.【详解】∵点P 关于OA ,CB 的对称点分别是1P ,2P ∴1CP CP =,2DPDP =∴PCD 的周长12126CD CP DP CD CP DP PP =++=++==故答案为:6.18.2【分析】由线段垂直平分线的性质可知EA =EB ,由等边对等角的性质及外角的性质可得∠AEC =45°,易知△ACE 为等腰直角三角形,可得CA 长,利用三角形面积公式求解即可.【详解】解:∵DE 垂直平分AB 交BC 于点E ,∴EA =EB ,∴∠EAB =∠B =22.5°,∴∠AEC =∠EAB+∠B =45°,∵∠C =90°,∴∠CAE=90°-∠AEC=45°=∠EAC ,∴AC =EC =2,∴CA =CE =2,∴S △ACE =12×AC×EC =12×2×2=2.故答案为:2.19.(1)12-(2)2234a b -【分析】(1)根据算术平方根,零指数幂,负整数指数幂,绝对值的计算法则求解即可;(2)根据单项式乘以多项式和完全平方公式先去括号,然后根据整式的加减计算法则求解即可.(1)021( 3.14)()2|3π---++-2192=-++-12=;(2)解:()()242a a b a b +-+2224444a ab a ab b =+---2234a b =-.20.11x -,511-【分析】首先根据分式的混合运算法则对原式进行化简,最后代入值进行求解即可.【详解】解:2232111131x x x x x x -++⎛⎫-+ ⎪---⎝⎭=()()()213111131x x x x x x +-⎛⎫-+ ⎪+---⎝⎭=11111x x x +⎛⎫-+ ⎪--⎝⎭=111 11 x xx x++-⎛⎫- ⎪--⎝⎭=111 x x x x +---=1 1 x-当65x=-时,原式=1561115=---21.(1)4x=(2)x=-1【分析】(1)根据解分式方程的过程即可求解;(2)根据解分式方程的过程即可求解.(1)解:方程两边同时乘x(x+2),得2(x+2)=3x化简,得x-4=0解得:x=4经检验,x=4是原分式方程的解所以x=4(2)解:方程两边乘(x-2),得5+(x-2)=1-x化简,得2x=-2解得:x=-1检验:当x=-1时,x-2≠0所以x=-1是原分式方程的解22.(1)见解析;(2)见解析;(3)11 2【分析】(1)分别作出三个顶点关于x轴的对称点,再首尾顺次连接即可;(2)连接A1B,与x轴的交点即为所求;(3)用长方形的面积减去四周三个三角形的面积.【详解】解:(1)如图所示,△OA 1B 1即为所求;(2)如图所示,点P 即为所求;(3)△OAB 的面积为:11134314132222⨯-⨯⨯-⨯⨯-⨯⨯=112.【点睛】本题主要考查作图—轴对称变换,最短路径,解题的关键是掌握轴对称变换的定义与性质.23.见解析【分析】利用直线平行得出A EDF ∠=∠以及ABC E ∠=∠,再根据题意求得AD BE =,最后利用ASA 定理来证明即可.【详解】证明:∵//AC DF ,∴A EDF ∠=∠,∵//BC EF ,∴ABC E ∠=∠,∵AD BE =,∴AD BD BE BD +=+,即AB DE =,在ABC 和DEF 中,ABC E AB DE A EDF ∠=∠⎧⎪=⎨⎪∠=∠⎩,,,∴()ABC DEF ASA V V ≌.【点睛】本题考查了全等三角形的判定与性质,熟练掌握是解决问题的关键.24.0.8cm【分析】根据已知条件证明BCE ≌△CAD ,则可得BE CD =,AD CE =进而根据BE CD CE DE AD DE ==-=-即可求得BE 的长.【详解】∵AD CE ⊥,BE CE ⊥,∴90ADC CEB ∠=∠=︒,∵90ACB ∠=︒,∴90BCE DCA ∠+∠=︒.∵90BCE EBC ∠+∠=︒,∴DCA EBC ∠=∠.∵AC BC =,∴BCE ≌△()AAS CAD △.∴BE CD =,AD CE =.∴0.8cm BE CD CE DE AD DE ==-=-=.【点睛】本题考查了全等三角形的性质与判定,掌握全等三角形的性质与判定是解题的关键.25.(1)每件甲种服装的进价是200元,每件乙种服装的进价是150元.(2)该该服装销售公司本次购进甲种服装至少51件.【分析】(1)设每件甲种服装为x 元,每件乙种服装为(x-50)元,根据关键语句“用4000元购进甲种服装的数量是用1500元购进乙种服装的数量的2倍”可列方程求解;(2)设购进甲种服装a 件,则购进乙种服装(2a+4)件,根据题意可得不等关系:甲服装的利润+乙服装的利润≥7160元,根据不等关系列出不等式,求出解集,即可确定答案.【详解】解:(1)设每件甲种服装进价x 元,每件乙种服装进价()50x -元,根据题意得,40001500250x x =⨯-,解得x=200,经检验x=200是原分式方程的解,x-50=150.答:每件甲种服装的进价是200元,每件乙种服装的进价是150元.(2)设该服装销售公司本次购进甲种服装a 件,则购进乙种服装(2a+4)件,根据题意可得,()()()260200190150247160a a -+-+≥,解得50a ≥,a 为正整数,a ∴的最小整数值为51.答:该该服装销售公司本次购进甲种服装至少51件.【点睛】此题主要考查了分式方程的应用以及一元一次不等式的应用,关键是弄清题意,找出等量关系和不等关系,列出方程和不等式.26.(1)见解析(2)α(3)等腰直角三角形【分析】(1)由CA=CB ,CD=CE ,∠ACB=∠DCE=α,利用SAS 即可判定△ACD ≌△BCE ;(2)根据△ACD ≌△BCE ,得出∠CAD=∠CBE ,再根据∠AFC=∠BFH ,即可得到∠AMB=∠ACB=α;(3)先根据SAS 判定△ACP ≌△BCQ ,再根据全等三角形的性质,得出CP=CQ ,∠ACP=∠BCQ ,最后根据∠ACB=90°即可得到∠PCQ=90°,进而得到△PCQ 为等腰直角三角形.(1)解:如图1,∵∠ACB=∠DCE=α,∴∠ACD=∠BCE ,在△ACD 和△BCE 中,CA CB ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△BCE (SAS ),∴BE=AD ;(2)解:如图1,∵△ACD ≌△BCE ,∴∠CAD=∠CBE ,∵△ABC 中,∠BAC+∠ABC=180°-α,∴∠BAM+∠ABM=180°-α,∴△ABM 中,∠AMB=180°-(180°-α)=α;(3)解:△CPQ 为等腰直角三角形,理由如下:如图2,由(1)可得,BE=AD,∵AD ,BE 的中点分别为点P 、Q ,∴AP=BQ ,∵△ACD ≌△BCE ,∴∠CAP=∠CBQ ,在△ACP 和△BCQ 中,CA CBCAP CBQ AP BQ=⎧⎪∠=∠⎨⎪=⎩,∴△ACP ≌△BCQ (SAS ),∴CP=CQ ,且∠ACP=∠BCQ ,又∵∠ACP+∠PCB=90°,∴∠BCQ+∠PCB=90°,∴∠PCQ=90°,∴△CPQ 为等腰直角三角形.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

D C A B

8 8 8

8

4 4 4 4 x x y y y y O O O O A、 B、 C、 D、

博瑞教育数学模拟试卷(一) 一、选择题(每小题有且只有一个答案正确,每小题4分,共40分) 1、如图,两直线a∥b,与∠1相等的角的个数为( ) A、1个 B、2个 C、3个 D、4个

2、不等式组x>3x<4的解集是( ) A、33 D、无解 3、如果a>b,那么下列各式中正确的是( ) A、a3b D、2a<2b 4、如图所示,由∠D=∠C,∠BAD=∠ABC推得△ABD≌△BAC,所用的的判定定理的简称是( ) A、AAS B、ASA C、SAS D、SSS 5、已知一组数据1,7,10,8,x,6,0,3,若x=5,则x应等于( ) A、6 B、5 C、4 D、2 6、下列说法错误的是( ) A、长方体、正方体都是棱柱; B、三棱住的侧面是三角形; C、六棱住有六个侧面、侧面为长方形; D、球体的三种视图均为同样大小的图形; 7、△ABC的三边为a、b、c,且2(a+b)(a-b)=c,则( ) A、△ABC是锐角三角形; B、c边的对角是直角; C、△ABC是钝角三角形; D、a边的对角是直角; 8、为筹备班级的初中毕业联欢会,班长对全班学生爱吃哪几种水果作了民意调查,那么最终买什么水果,下面的调查数据中最值得关注的是( ) A、中位数; B、平均数; C、众数; D、加权平均数; 9、如右图,有三个大小一样的正方体,每个正方体的六个面上都按照相同的顺序,依次标有1,2,3,4,5,6这六个数字,并且把标有“6”的面都放在左边,那么它们底面所标的3个数字之和等于( ) A、8 B、9 C、10 D、11 10、为鼓励居民节约用水,北京市出台了新的居民用水收费标准:(1)若每月每户居民用水不超过4立方米,则按每立方米2米计算;(2)若每月每户居民用水超过4立方米,则超过部分按每立方米4.5米计算(不超过部分仍按每立方米2元计算)。现假设该市某户居民某月用水x立方米,水费为y元,则y与x的函数关系用图象表示正确的是( ) 二、填空题(每小题4分,共32分) 11、不等式2x-1>3的解集是__________________; 12、已知点A在第四象限,且到x轴,y轴的距离分别为3,5,则A点的坐标为_________; 13、为了了解某校初三年级400名学生的体重情况,从中抽查了50名学生的体重进行统计分析,在这个问题中,总体是

1 a b

4 1 3 2 1 2 6 A B C D E F A B

O C D

y

x 5 20

21 12

S(千米) 7.5 10 22

指__________________________________; 14、某班一次体育测试中得100分的有4人,90分的有11人,80分的有11人,70分的有8人,60分的有5人,剩下的8人一共得了300分,则中位数是_____________。 15、如图,已知∠B=∠DEF,AB=DE,请添加一个条件使△ABC≌△DEF,则需添加的条件是__________; 16、如图,AD和BC相交于点O,OA=OD,OB=OC,若∠B=40°,∠AOB=110°,则∠D=________度; 17、弹簧的长度y(cm)与所挂物体的质量x (kg)的关系是一次函数, 图象如右图所示,则弹簧不挂物体时的长度是___________cm;

第15题图 第16题图 第17题图 18、如下图所示,图中是一个立体图形的三视图,请你根据视图,说出立体图形的名称:

对应的立体图形是________________的三视图。 三、解答题(共78分) 19、(8分)解不等式x+1(x1)12,并把解集在数轴上表示出来。

20、(8分)填空(补全下列证明及括号内的推理依据): 如图:已知:AD⊥BC于D,EF⊥BC于F,∠1=∠3, 求证:AD平分∠BAC。 证明:∵AD⊥BC,EF⊥BC于F(已知) ∴AD∥EF( ) ∴∠1=∠E( ) ∠2=∠3( ) 又∵∠3=∠1(已知) ∴∠1=∠2(等量代换) ∴AD平分∠BAC( ) 21、画出下图的三视图(9分) 22、(9分)已知点A(10,0),B(10,8),C(5,0),D(0,8),E(0,0),请在下面的平面直角坐标系中, (1)分别描出A、B、C、D、E五个点,并顺次连接这五个点,观察图形像什么字母; (2)要图象“高矮”不变,“胖瘦”变为原来图形的一半,坐标值应发生怎样的变化?

23、(10分)如图,lA,lB分别表示A步行与B骑车在同一路上行驶的路程S与时间t的关系。 (1)B出发时与A相距_________千米。 (2)走了一段路后,自行车发生故障,进行修理,所用的时间是____________小时。

主视图 左视图

俯视图

1 2

3

A

B C D

E F A B C D E F

(3)B出发后_________小时与A相遇。 (4)若B的自行车不发生故障,保持出发时的速度前进,几小时与A相遇,相遇点离B的出发点多少千米。在图中表示出这个相遇点C,并写出过程。 24、(10分)已知:如图,RtABC≌Rt△ADE,∠ABC=∠ADE=90°,试以图中标有字母的点为端点,连结两条线段,如果你所连结的两条线段满足相等、垂直或平行关系中的一种,那么请你把它写出来并说明理由。

25、(10分)某工厂有甲、乙两条生产线,在乙生产线投产前,甲生产线已生产了200吨成品,从乙生产线投产开始,甲、乙两条生产线每天生产20吨和30吨成品。 (1)分别求出甲、乙两条生产线投产后,各自的总产量y(吨)与从乙开始投产以后所用时间x(天)之间的函数关系式,并求出第几天结束时,甲、乙两条生产线的总产量相同; (2)在如图所示的直角坐标系中,作出上述两个函数和第一象限内的图象,并观察图象,分别指出第15天和第25天结束时,哪条生产线的总产量高? 26、(14分) (1)为保护环境,某校环保小组成员小敏收集废电池,第一天收集1号电池4节、5号电池5节,总重量460克;第二天收集1号电池2节、5号电池3节,总重量240克。 ① 求1号和5号电池每节分别重多少克?

② 学校环保小组为估算四月份收集废电池的总重量,他们随意抽取了该月腜 5天每天收集废电池的数量,如下表: 1号废电池(单位:节) 29 30 32 28 31 5号废电池(单位:节) 51 53 47 49 50 分别计算两种电池的样本平均数,并由此估算该月(30天)环保小组收集废电池的总重量是多少千克? (2)如图,用正方体石墩垒石梯,下图分别表示垒到一、二、三阶梯时的情况,那么照这样垒下去, ①填出下表中未填的两空,观察规律。 阶梯级数 一级 二级 三级 四级 石墩块数 3 9 ② 垒到第n级阶梯时,共用正方体石墩________________块(用含n的代数式表示)。 数学部分 一、选择题(每小题有且只有一个答案正确,每小题4分,共40分) 1、C;2、A;3、D;4、A;5、B;6、B;7、D;8、C;9、A;10、C; 二、填空题(每小题4分,共32分)

11、2x;12、(5,3);13、某校初三年级400名学生体重情况的全体;14、80分 15、BC=EF(答案不唯一);16、30;17、9;18、四棱锥或五面体; 三、解答题(共78分)

19、解:x+1(x1)12

x+12(x1)2……………………………………(2分)

1 2 0 —1 A B C D

F E

x12x22……………………………………(1分)

x1 ……………………………………(1分)

x1 ……………………………………(2分)

数轴表示正确2分; 20、证明:∵AD⊥BC,EF⊥BC于F(已知) ∴AD∥EF(同位角相等,两直线平等或在同一平面内,垂直于同一条干线的两条直线平行) ∴∠1=∠E(两条直线平行,同位角相等) ∠2=∠3(两条直线平行,内错角相等) 又∵∠3=∠1(已知) ∴∠1=∠2(等量代换) ∴AD平分∠BAC(角平分线的定义 ) 每空2分,共8分; 21、图形如下,每个3分,共9分; 主视图 左视图 俯视图 22、图形略,(3分) (1)像字母M;(2分) (2)横坐标变为原来的一半,纵坐标不变;(4分) 23、(1)10;(2)1;(3)3;………………………………………………(每题1分) (4)解:表示出相遇点C得1分; 求出lA的函数关系式:S=4t+10…………………………2分

求出Bl的函数关系:S=15t…………………………………2分

解得10t=11………………………………………………………1分 150S=

11……………………………………………………1分

24、解:有不同的情况,图形画正确,并且结论也正确的即可给2分; (1)连结CD、EB,则有CD=EB; (2)连结AF、BD,则有AF⊥BD; (3)连结BD、EC,则有BD∥EC; 选(1); 证明:∵Rt△ABC≌Rt△ADE(已知) ∴AC=AE,AD=AB(全等三角形对应边相等) ∠CAB=∠EAB(全等三角形对应角相等)…………………………3分 ∴CABBAD=EADBAD

即:CAD=EAB…………………………………………………2分 ∴在△ADC和△ABE中:

∵AC=AEÐCAD=?EABAD=AB ∴△ADC≌△ABE(SAS)……………………………………………2分 ∴CD=EB……………………………………………………………1分

25、(1)解得:y=200+20x甲…………………………2分

y=30x乙………………………………2分

两者总生产量相等,即:y=y乙甲

相关文档
最新文档