初中八年级数学下册17勾股定理17.1勾股定理(第4课时)教案新人教版
人教版数学八年级下册17.1《勾股定理》教学设计
人教版数学八年级下册17.1《勾股定理》教学设计一. 教材分析《勾股定理》是初中数学的重要内容,也是中学数学中最为基本的定理之一。
人教版数学八年级下册17.1节主要介绍了勾股定理的证明和应用。
通过本节课的学习,学生能够理解勾股定理的含义,学会运用勾股定理解决实际问题。
二. 学情分析学生在学习本节课之前,已经掌握了相似三角形的性质、三角函数等知识,具备了一定的逻辑思维能力和空间想象能力。
但部分学生对理论证明的过程可能感到困惑,对实际应用的掌握程度也有所不同。
三. 教学目标1.知识与技能:让学生掌握勾股定理的证明和应用,能够运用勾股定理解决实际问题。
2.过程与方法:通过观察、操作、探究、合作等方法,培养学生的逻辑思维能力和空间想象能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作精神,使学生感受到数学在生活中的应用。
四. 教学重难点1.重难点:勾股定理的证明和应用。
2.难点:对勾股定理证明过程中的一些关键步骤的理解和运用。
五. 教学方法1.情境教学法:通过生活中的实例,激发学生的学习兴趣,引导学生主动探究。
2.问题驱动法:提出问题,引导学生思考,培养学生解决问题的能力。
3.合作学习法:分组讨论,共同完成任务,培养学生的团队合作精神。
4.实践操作法:让学生动手操作,加深对知识的理解和记忆。
六. 教学准备1.教具:多媒体课件、黑板、粉笔、三角板、直尺等。
2.学具:笔记本、文具、三角板、直尺等。
七. 教学过程1.导入(5分钟)利用多媒体展示一些生活中的直角三角形,如篮球架、房屋建筑等,引导学生观察并思考这些三角形中是否存在某种特殊的关系。
2.呈现(15分钟)介绍勾股定理的定义和表述,展示勾股定理的证明过程,如Pythagorean theorem的证明。
引导学生理解并掌握勾股定理。
3.操练(15分钟)分组讨论,每组选取一个实际问题,运用勾股定理进行解答。
教师巡回指导,解答学生疑问。
4.巩固(10分钟)针对学生的解答,进行讲解和点评,强调勾股定理在实际问题中的应用。
八年级数学下册17勾股定理教案(新版)新人教版
第十七章 勾股定理17.1 勾股定理 第 1 课时 勾股定理 (1)重点 勾股定理的内容和证明及简单应用. 难点 勾股定理的证明.了解勾股定理的发现过程, 应用勾股定理进行简单的计算. 理解并掌握勾股定理的内容, 会用面积法证明勾股定理, 能一、创设情境,引入新课让学生画一个直角边分别为 3 cm和4 cm的直角△ ABC用刻度尺量出斜边的长.再画一个两直角边分别为5和12的直角△ ABC用刻度尺量出斜边的长.2 2 2 2 2 2 2 2 2 2 2 2 你是否发现了3 + 4与5的关系,5 + 12与13的关系,即3 +4 =5 , 5 + 12 = 13 , 那么就有勾2+股2=弦:对于任意的直角三角形也有这个性质吗?由一学生朗读“毕达哥拉斯观察地面图案发现勾股定理”的传说,引导学生观察身边的地面图形,猜想毕达哥拉斯发现了什么?拼图实验,探求新知1. 多媒体课件演示教材第22〜23页图17.1 —2和图17.1 —3,引导学生观察思考.2. 组织学生小组合作学习. 问题:每组的三个正方形之间有什么关系?试说一说你的想法.引导学生用拼图法初步体验结论. 生:这两组图形中,每组的大正方形的面积都等于两个小正方形的面积和. 师:这只是猜想,一个数学命题的成立,还要经过我们的证明.归纳验证,得出定理(1) 猜想:命题1:如果直角三角形的两直角边长分别为a, b,斜边长为c,那么a2+b2= c2.(2) 是不是所有的直角三角形都有这样的特点呢?这就需要对一个一般的直角三角形进行证明. 到目前为止,对这个命题的证明已有几百种之多,下面我们就看一看我国数学家赵爽是怎样证明这个定理的.①用多媒体课件演示.②小组合作探究:a.以直角三角形ABC的两条直角边a, b为边作两个正方形,你能通过剪、拼把它拼成弦图的样子吗?b.它们的面积分别怎样表示?它们有什么关系?C.利用学生自己准备的纸张拼一拼,摆一摆,体验古人赵爽的证法•想一想还有什么方法?师:通过拼摆,我们证实了命题1的正确性,命题1与直角三角形的边有关,我国把它称为勾股定理.即在我国古代,人们将直角三角形中短的直角边叫做勾,长的直角边叫做股,斜边叫做弦.二、例题讲解【例1】填空题.⑴在Rt△ ABC中,/ C= 90°, a= 8, b = 15,则c= _______________ ;(2) 在Rt△ ABC中,/ B= 90°, a= 3, b = 4,贝U c = ____________ ;(3) 在Rt△ ABC中,/ C= 90°, c= 10, a : b = 3 : 4,贝U a = ___________ , b = __________ ;(4) 一个直角三角形的三边为三个连续偶数,则它的三边长分别为__________________ ;(5) 已知等边三角形的边长为2 cm则它的高为______________ cm面积为 ___________ cn^【答案】(1)17 (2) ,7 (3)6 8 (4)6 , 8, 10 (5) .3 . 3【例2】已知直角三角形的两边长分别为5和12,求第三边.分析:已知两边中,较大边12可能是直角边,也可能是斜边,因此应分两种情况分别进行计算.让学生知道考虑问题要全面,体会分类讨论思想.【答案】119或13三、巩固练习填空题.在Rt A ABC中,/ C= 90° .⑴如果a= 7, c = 25,贝U b= __________ ;⑵如果/ A= 30°, a = 4,贝U b= ___________ ;⑶如果/ A= 45°, a = 3,贝U c= ______________ ;⑷如果c = 10, a—b= 2,贝U b= _________ ;⑸如果a, b, c是连续整数,则a + b + c = ___________⑹如果b= 8, a : c = 3 : 5,贝U c= _________ .【答案】(1)24 (2)4 3 (3)3 2 (4)6 (5)12(6) 10四、课堂小结1. 本节课学到了什么数学知识?2. 你了解了勾股定理的发现和验证方法了吗?3. 你还有什么困惑?本节课的设计关注学生是否积极参与探索勾股定理的活动, 思考、能够探索出解决问题的方法,能否进行积极的联想表达活动过程和所获得的结论等. 关注学生的拼图过程,验证勾股定理.关注学生能否在活动中积极(数形结合)以及学生能否有条理地鼓励学生结合自己所拼得的正方形第2课时勾股定理(2)能将实际问题转化为直角三角形的数学模型,并能用勾股定理解决简单的实际问题.重点将实际问题转化为直角三角形模型.难点如何用解直角三角形的知识和勾股定理来解决实际问题.一、复习导入问题1:欲登12 米高的建筑物,为安全需要,需使梯子底端离建筑物 5 米,至少需要多长的梯子?师生行为:学生分小组讨论,建立直角三角形的数学模型.教师深入到小组活动中,倾听学生的想法.生:根据题意,(如图)AC是建筑物,则心12 m BC= 5 m AB是梯子的长度,所以在Rt△ ABC中,AB2= A C+B C= 122+ 52= 132,贝U AB= 13 m所以至少需13 m长的梯子.师:很好!由勾股定理可知,已知两直角边的长分别为a, b,就可以求出斜边c的长•由勾股定理可得a2= c2—b2或b2= c2—a2,由此可知,已知斜边与一条直角边的长,就可以求出另一条直角边的长,也就是说,在直角三角形中,已知两边就可求出第三边的长.问题2 :一个门框的尺寸如图所示,一块长 3 m宽2.2 m的长方形薄木板能否从门框内通过?为什么?学生分组讨论、交流,教师深入到学生的数学活动中,引导他们发现问题,寻找解决问题的途径.生1 :从题意可以看出,木板横着进,竖着进,都不能从门框内通过,只能试试斜着能否通过.生2 :在长方形ABCC中,对角线AC是斜着能通过的最大长度,求出AC,再与木板的宽比较,就能知道木板是否能通过.师生共析:解:在Rt△ ABC中,根据勾股定理AC= A B"+B C= 12+ 22= 5.因此AC= , 5 2.236.因为AC沐板的宽,所以木板可以从门框内通过.二、例题讲解【例1】如图,山坡上两棵树之间的坡面距离是 4 3米,则这两棵树之间的垂直距离是________ 米,水平距离是____________ 米.分析:由/ CAB= 30°易知垂直距离为2@米,水平距离是6米.【答案】2 3 6【例2】教材第25页例2三、巩固练习1. 如图,欲测量松花江的宽度,沿江岸取B, C两点,在江对岸取一点A,使AC垂直江岸,测得BO 50米,/ B= 60°,则江面的宽度为__________________ .【答案】50 3米2. 某人欲横渡一条河,由于水流的影响,实际上岸地点C偏离欲到达地点B 200米,结果他在水中实际游了520米,求该河流的宽度.【答案】约480 m四、课堂小结1•谈谈自己在这节课的收获有哪些?会用勾股定理解决简单的应用题;会构造直角三角形.2. 本节是从实验问题出发,转化为直角三角形问题,并用勾股定理完成解答.这是一节实际应用课,过程中要充分发挥学生的主导性,鼓励学生动手、动脑,经历将实际问题转化为直角三角形的数学模型的过程,激发了学生的学习兴趣,锻炼了学生独立思考的能力.第3 课时勾股定理(3)1.利用勾股定理证明:斜边和一条直角边对应相等的两个直角三角形全等.2.利用勾股定理,能在数轴上找到表示无理数的点.3.进一步学习将实际问题转化为直角三角形的数学模型,并能用勾股定理解决简单的实际问题.重点在数轴上寻找表示2, 3, 5,…这样的表示无理数的点.难点利用勾股定理寻找直角三角形中长度为无理数的线段.一、复习导入复习勾股定理的内容.本节课探究勾股定理的综合应用.师:在八年级上册,我们曾经通过画图得到结论:斜边和一条直角边对应相等的两个直角三角形全等.你们能用勾股定理证明这一结论吗?学生思考并独立完成,教师巡视指导,并总结.先画出图形,再写出已知、求证如下:已知:如图,在Rt△ ABC和Rt△ A B' C'中,/ C=Z C'= 90°, AB= A B', AC= A C'.求证:△ AB3A A B' C'.证明:在Rt△ ABC和Rt△ A' B' C'中,/ C=Z C = 90°,根据勾股定理,得BC= AB"- A C, B' C'= A B' 2—A C' 2.又AB= A B', AC= A C',「. BC= B' C',「.△ABC^A A B' C(SSS .师:我们知道数轴上的点有的表示有理数,有的表示无理数,你能在数轴上表示出.13所对应的点吗?教师可指导学生寻找像长度为,2, •. 3, 5,「这样的包含在直角三角形中的线段.师:由于要在数轴上表示点到原点的距离为2, 3, 5,…,所以只需画出长为2, 3, 5,…的线段即可,我们不妨先来画出长为.2 , , 3, i 5,…的线段.生:长为眾的线段是直角边都为i的直角三角形的斜边,而长为{5的线段是直角边为1和2的直角三角形的斜边.师:长为,13的线段能否是直角边为正整数的直角三角形的斜边呢?生:设c = ;' 13,两直角边长分别为a, b,根据勾股定理a + b = c[即a + b = 13.若a, b为正整数,则13必须分解为两个平方数的和,即13 = 4 + 9, a2= 4, b2= 9,则a = 2, b= 3,所以长为,13的线段是直角边长分别为2, 3的直角三角形的斜边.师:下面就请同学们在数轴上画出表示,13的点.生:步骤如下:1 .在数轴上找到点A,使OA= 3.2. 作直线I垂直于OA在I上取一点B,使AB= 2.3. 以原点O为圆心、以OB为半径作弧,弧与数轴交于点C,则点C即为表示13的点.二、例题讲解【例1】飞机在空中水平飞行,某一时刻刚好飞到一个男孩头顶正上方4800米处,过了10秒后,飞机距离这个男孩头顶5000米,飞机每小时飞行多少千米?分析:根据题意,可以画出如图所示的图形,A点表示男孩头顶的位置,C, B点是两个时刻飞机的位置,/ C是直角,可以用勾股定理来解决这个问题.解:根据题意,得在Rt△ ABC中,/ C= 90°, AB= 5000米,AC= 4800米.由勾股定理,得A B"=A C +B C,即卩50002= B C+ 48002,所以BC= 1400 米.飞机飞行1400米用了10秒,那么它1小时飞行的距离为1400X 6X 60= 504000(米)= 504(千米),即飞机飞行的速度为504千米/时.【例2】在平静的湖面上,有一棵水草,它高出水面3分米,一阵风吹来,水草被吹到一边,草尖齐至水面,已知水草移动的水平距离为6分米,问这里的水深是多少?解:根据题意,得到上图,其中D是无风时水草的最高点,BC为湖面,AB是一阵风吹过水草的位置,CD= 3分米,CB= 6分米,AD= AB BC丄AD,所以在Rt△ ACB中,A B= AC? + BC2,即(AC+ 3)2= AC+ 62, AC+ 6AC+ 9= AC+ 36,「. 6AC= 27 , AC= 4.5,所以这里的水深为4.5分米.【例3】在数轴上作出表示.17的点.解:以,17为长的边可看作两直角边分别为4和1的直角三角形的斜边,因此,在数轴上画出表示17的点,如下图:师生行为:由学生独立思考完成,教师巡视指导.此活动中,教师应重点关注以下两个方面:①学生能否积极主动地思考问题;②能否找到斜边为.17,另外两条直角边为整数的直角三角形.三、课堂小结1 •进一步巩固、掌握并熟练运用勾股定理解决直角三角形问题.2•你对本节内容有哪些认识?会利用勾股定理得到一些无理数,并理解数轴上的点与实数一一对应.本节课的教学中,在培养逻辑推理的能力方面,做了认真的考虑和精心的设计,把推理证明作为学生观察、实验、探究得出结论的自然延续,注重数学与生活的联系,从学生的认知规律和接受水平出发,这些理念贯彻到课堂教学当中,很好地激发了学生学习数学的兴趣,培养了学生善于提出问题、敢于提出问题、解决问题的能力.17.2 勾股定理的逆定理第1课时勾股定理的逆定理(1)1.掌握直角三角形的判别条件.2.熟记一些勾股数.3.掌握勾股定理的逆定理的探究方法.重点探究勾股定理的逆定理,理解并掌握互逆命题、原命题、逆命题的有关概念及关系.难点归纳猜想出命题2 的结论.一、复习导入活动探究(1) 总结直角三角形有哪些性质;(2) 一个三角形满足什么条件时才能是直角三角形?生:直角三角形有如下性质:(1) 有一个角是直角;(2) 两个锐角互余;(3) 两直角边的平方和等于斜边的平方;(4) 在含30°角的直角三角形中,30°的角所对的直角边是斜边的一半.师:那么一个三角形满足什么条件时,才能是直角三角形呢?生1 :如果三角形有一个内角是90°,那么这个三角形就为直角三角形.生2 :如果一个三角形,有两个角的和是90°,那么这个三角形也是直角三角形.师:前面我们刚学习了勾股定理,知道一个直角三角形的两直角边a, b与斜边c具有一定的数量关系即a2+ b2= c2,我们是否可以不用角,而用三角形三边的关系来判定它是否为直角三角形呢?我们来看一下古埃及人是如何做的?问题:据说古埃及人用下图的方法画直角:把一根长绳打上等距离的13 个结,然后以3 个结、4个结、5 个结的长度为边长,用木桩钉成一个三角形,其中一个角便是直角.这个问题意味着,如果围成的三角形的三边长分别为3, 4, 5,有下面的关系:32+42 =52,那么围成的三角形是直角三角形.22 画画看,如果三角形的三边长分别为 2.5 cm 6 cm 6.5 cm有下面的关系:2.5 + 6=6.5 2,画出的三角形是直角三角形吗?换成三边分别为 4 cm, 7.5 cm 8.5 cm,再试一试.生1:我们不难发现上图中,第1个结到第4个结是3个单位长度即AO 3;同理BC= 4, AB= 5.因为32+ 42= 52,所以我们围成的三角形是直角三角形.生2:如果三角形的三边长分别是2.5 cm,6 cm,6.5 cm. 我们用尺规作图的方法作此三角形,经过测量后,发现6.5 cm的边所对的角是直角,并且 2.5 2+ 62= 6.5 2.再换成三边长分别为4 cm 7.5 cm 8.5 cm的三角形,可以发现8.5 cm的边所对的角是直角,且有42+ 7.5 2= 8.5 2.师:很好!我们通过实际操作,猜想结论.命题2如果三角形的三边长a, b, c满足a2+ b2= c2,那么这个三角形是直角三角形. 再看下面的命题:命题1如果直角三角形的两直角边长分别为a, b,斜边长为c,那么a2+ b2= c2.它们的题设和结论各有何关系?师:我们可以看到命题2 与命题1 的题设、结论正好相反, 我们把像这样的两个命题叫做互逆命题.如果把其中的一个叫做原命题,那么另一个叫做它的逆命题.例如把命题1当成原命题,那么命题2 是命题1 的逆命题.二、例题讲解【例1】说出下列命题的逆命题,这些命题的逆命题成立吗?(1) 同旁内角互补,两条直线平行;(2) 如果两个实数的平方相等,那么这两个实数相等;(3) 线段垂直平分线上的点到线段两端点的距离相等;(4) 直角三角形中30°角所对的直角边等于斜边的一半.分析: (1) 每个命题都有逆命题,说逆命题时注意将题设和结论调换即可,但要分清题设和结论,并注意语言的运用;(2) 理顺它们之间的关系,原命题有真有假,逆命题也有真有假,可能都真,也可能一真一假,还可能都假.解略.三、巩固练习教材第33 页练习第2 题.四、课堂小结师:通过这节课的学习,你对本节内容有哪些认识?学生发言,教师点评.本节课的教学设计中,将教学内容精简化,实行分层教学.根据学生原有的认知结构, 让学生更好地体会分割的思想. 设计的题型前后呼应, 使知识有序推进, 有助于学生理解和掌握;让学生通过合作、交流、反思、感悟的过程,激发学生探究新知的兴趣,感受探索、合作的乐趣,并从中获得成功的体验,真正体现学生是学习的主人.将目标分层后,满足不同层次学生的做题要求,达到巩固课堂知识的目的.第2 课时勾股定理的逆定理(2)1.理解并掌握证明勾股定理的逆定理的方法.2.理解逆定理、互逆定理的概念.重点勾股定理的逆定理的证明及互逆定理的概念. 难点理解互逆定理的概念.一、复习导入师:我们学过的勾股定理的内容是什么?生:如果直角三角形的两条直角边长分别为 a , b ,斜边长为c ,那么a 2+ b 2= c 2.师:根据上节课学过的内容, 我们得到了勾股定理逆命题的内容: 如果三角形的三边长 a , b , c 满足a 2+ b 2= c 2,那么这个三角形是直角三角形.师:命题 2 是命题 1 的逆命题, 命题 1 我们已证明过它的正确性, 命题 2 正确吗?如何 证明呢? 师生行为:让学生试着寻找解题思路,教师可引导学生理清证明的思路.师:△ ABC 的三边长a , b , c 满足a 2 + b 2= c 2.如果△ ABC 是直角三角形,它应与直角边 是 a ,b 的直角三角形全等,实际情况是这样吗?我们画一个直角三角形 A B' C',使B' C'= a , AC'= b ,/ C'= 90° (如图),把画好的厶A B' C'剪下,放在△ ABC 上,它们重合吗? 生:我们所画的 Rt △ A ' B' C', (A ' B') 2= a 2+ b 2,又因为 c 2 = a 2+ b 2,所以(A ' B'):2 =c ,即 A B'= c.△ ABC 和厶A B' C'三边对应相等,所以两个三角形全等,/ C =Z C'= 90°,所以△ ABC为直角三角形.即命题2 是正确的.师:很好!我们证明了命题2是正确的, 那么命题2 就成为一个定理. 由于命题1 证明正确以后称为勾股定理,命题2又是命题1的逆命题,在此,我们就称定理2 是勾股定理的逆定理,勾股定理和勾股定理的逆定理称为互逆定理.师:但是不是原命题成立,逆命题一定成立呢?生:不一定,如命题“对顶角相等”成立,它的逆命题“如果两个角相等,那么它们是对顶角”不成立.师:你还能举出类似的例子吗?生:例如原命题:如果两个实数相等,那么它们的绝对值也相等.逆命题:如果两个数的绝对值相等,那么这两个实数相等.显然原命题成立,而逆命题不一定成立.二、新课教授【例1】教材第32 页例1【例2】教材第33 页例2【例3】一个零件的形状如图所示,按规定这个零件中/A 和/DBC都应为直角.工人师傅量出了这个零件各边的尺寸,那么这个零件符合要求吗?分析:这是一个利用直角三角形的判定条件解决实际问题的例子.解:在△ ABD中,AB2+ AD = 9+ 16 = 25= BD,所以△ ABD是直角三角形,/ A是直角.在厶BCD 中,BD + BC= 25 + 144= 169= 132= CD,所以△ BCD是直角三角形,/ DBC是直角.因此这个零件符合要求.三、巩固练习1.小强在操场上向东走80 m后,又走了60 m再走100 m回到原地.小强在操场上向东走了80 m 后,又走60 m的方向是__________________________ .【答案】向正南或正北2•如图,在我国沿海有一艘不明国籍的轮船进入我国海域,我海军甲、乙两艘巡逻艇立即从相距13海里的A, B两个基地前去拦截,6分钟后同时到达C地将其拦截•已知甲巡逻艇每小时航行120海里,乙巡逻艇每小时航行50海里,航向为北偏西40°,求甲巡逻艇的航向.1 12 2 2【答案】解:由题意可知:AC= 120X 6X = 12 , BC= 50X 6X = 5, 12 + 13 .又60 60AB= 13,「. AC+ BC= A氏•••△ ABC是直角三角形,且/ ACB= 90°,二/ CAB= 40°,航向为北偏东50° .四、课堂小结1.同学们对本节的内容有哪些认识?2 •勾股定理的逆定理及其应用,熟记几组勾股数.本节课我采用以学生为主体,引导发现、操作探究的教学设计,符合学生的认知规律和认知水平,最大限度地调动了学生学习的积极性,有利于培养学生动手、观察、分析、猜想、验证、推理的能力,切实使学生在获取知识的过程中得到能力的培养.。
八年级数学下册人教版17.1勾股定理教学设计
4.小组讨论题:分组讨论课本练习第17.1节的第6题,共同探讨勾股定理在其他数学领域的应用。
-鼓励小组合作,培养学生的团队协作和交流沟通能力。
-引导学生从多角度思考问题,拓宽知识视野,激发学生的创新意识。
5.家庭作业:布置一道综合性的勾股定理题目,要求学生在家庭作业本上完成。
5.能够运用勾股定理及其逆定理解决一些简单的几何作图问题。
(二)过程与方法
1.通过实际操作、观察和思考,提高学生的空间想象能力和逻辑思维能力。
2.学会运用数学语言进行表达和交流,提高学生的数学表达能力和团队协作能力。
3.能够运用勾股定理解决实际问题,培养学生的实际问题解决能力和创新意识。
4.在学习过程中,引导学生总结规律,提高学生的归纳总结能力。
1.注重激发学生的学习兴趣,通过引入生动有趣的实例,使学生感受到勾股定理在实际生活中的重要性。
2.针对不同学生的学习能力,设计梯度性问题和练习,使每个学生都能在原有基础上得到提高。
3.强调几何直观,引导学生通过观察、操作、画图等方式,加深对勾股定理的理解。
4.加强对学生几何逻辑思维能力的培养,引导学生运用勾股定理进行推理和证明。
2.教学方法:独立完成、相互检查、教师辅导。
3.教学过程:
a.教师布置具有梯度性的练习题,涵盖勾股定理的基本应用和拓展应用。
b.学生独立完成练习题,教师巡回指导,解答学生的疑问。
c.学生相互检查练习结果,共同讨论解题思路和方法。
d.教师针对学生的练习情况进行点评,强调解题技巧和注意事项。
(五)总结归纳
-设计综合性题目,让学生自主整合所学知识,形成完整的知识结构。
人教版初二数学下册17.1.4勾股定理
17.1.4勾股定理教案商丘市回民中学李冰17.1.4勾股定理一、教学内容:利用勾股定理在数轴上能画出表示无理数的点二、教学目标:1. 掌握勾股定理,能运用勾股定理在数轴上画出表示无理数的点,进一步领会数形结合的思想.2. 通过学生实践操作,培养学生的探究能力、画图能力和解决问题的能力3. 体验学习数学的乐趣,形成积极参与数学活动的意识,再一次感受勾股定理的应用价值.三、教学重难点:重点:运用勾股定理解决数学中的实际问题.难点:勾股定理的灵活运用.四、教学方法:“探究式”教学方法五、教学准备:三角尺、圆规和PPT六、教学设计:(一)知识回顾:1. 已知直角三角形ABC的三边为a、b、c, / C =90,贝y a、b、c三者之间的关示疋______________________ ?2. 若一个直角三角形两条直角边长是3和2,那么第三条边长是________________ ;3. __________________________________ 叫做无理数.【答案:1. a2b^c2;2. . 13 ;3.无限不循环小数】(二)问题思考:在八年级上册中我们曾经通过画图得到结论:斜边和一条直角边对应相等的两个直角三角形全等.学习了勾股定理后,你能证明这一结论吗?请同学们先画出图形,,再写出已知、求证过程.师生共同探究:已知:如教材图17.1-9,在Rt ABC和Rt A'B'C'中,C = C'=90 ,AB 二A'B',AC 二AC.求证:ABC 也A'B'C'教材图17.1 —-9证明:在 RtAABC 和 RUA'B'C'中,N C=NC'=90:根据勾股定理,得 BC = AB 2 - AC 2 ,B'C'= •、A'B'2—A'C'2,又 AB =A'B', AC = ACBC=BC在 Rt ABC 和 Rt A'B'C'中,AB 二 A'B'』AC =ACBC =BCABC 也. A'B'C'(SSS)思考:还有没有别的判定方法? (三) 问题探究:我们知道数轴上的点有的表示有理数, 有的表示无理数,你能在数轴上画出表示・.13的点吗?分析: 如果能画出长为■. 13的线段,就能在数轴上画出表示 ■. 13的点.容易知道,长为..2的线段是两条直角边的长都为 1的直角三角形的斜边.长为• 13的线段能是直角边的长为正整数的直角三角形的斜边吗?利用勾股定理,可以发现,直角边的长为正整数 2,3的直角三角形的斜边长为.13.由■>教材图17.1 —10作法:(1) 如教材图17.1-10所示,在数轴上找出表示3的点A ,则OA = 3;(2) 过点A 作直线I 垂直于OA ,在I 上取点B ,使AB =2 ;⑶ 以原点O 为圆心,以OB 为半径作弧,弧于与数轴的交点 C ,即表示 13的点.此可以依照如下方法,在数轴上画出.13的点.利用勾股定理,你能作出长为.2、 3、•: 5...的线段吗?教材图17.1-12建议:教师在黑板上(或者利用多媒体) 演示在数轴上画出相应的点的画图过程, 以加深学生的画图印象.(四)巩固练习:1. 利用探究的方法,请你在数轴上画出表示.10的点.2. 如图所示,ACB =/ABD =90 , CA=CB , DAB =30 , AD =8,求 AC分析:vQ 2f =l 2+12,(怎2=(忑2+12, (45)=12+22,...则利用勾股定理可以作出长为 、.2、,3、, 5,...的线段(教材 17.1-11)yio教材图17.1-11按照同样的方法,可以在数轴上画出表示 、..1、 ,2、-. 3、...4、 ■, 5,...的点(教材图 17.1-12).问题: 023耳的长度•3.如图所示,矩形ABCD中,AB=3, AD=1, AB在数轴上,若以A为圆心,以对角线AC长为半径画弧交数轴正半轴于M点,则M点表示的数为建议:先分析,再做题.(五)课堂小结:1. 本节课你对勾股定理又有了多少新的认识?2. 预习时的疑难问题解决了吗?(六)作业布置:必做题:教材第29页习题17.1第11、12题.选做题:教材习题17.1第14题.。
人教版八年级下册第十七章17.1勾股定理(教案)
其次,在实践活动和小组讨论中,学生们表现出了很高的热情,积极投入到讨论和实验操作中。但我也观察到,有些小组在讨论过程中容易偏离主题,讨论内容与勾股定理的实际应用关系不大。针对这个问题,我需要在今后的教学中加强对学生的引导,确保讨论主题紧扣教学内容,提高课堂效率。
此外,在课堂总结环节,虽然大部分学生能较好地掌握勾股定理的知识点,但仍有少数学生存在疑问。为了帮助这部分学生更好地消化吸收课堂内容,我计划在课后设置答疑时间,鼓励他们提出问题,并及时给予解答。
-对勾股数的理解和应用:学生需要掌握勾股数的概念,并能够找出勾股数,这对于数感和数学直觉有一定要求。
举例解释:
a.在证明过程的难点上,例如,使用面积法证明勾股定理时,学生可能会难以理解如何从一个大正方形中分割出四个相同的直角三角形和一个中间的小正方形,以及如何通过这些图形的面积关系得出勾股定理。
b.在解决复杂问题的难点上,如在一个不规则图形中识别出直角三角形并应用勾股定理,或者在一个实际问题中,如测量旗杆高度时,学生可能不知道如何将问题抽象为直角三角形的模型,并应用勾股定理。
c.在勾股数的应用上,例如,学生可能知道3、4、5是一组勾股数,但不知道如何找出其他勾股数,或不理解勾股数在建筑、工程等领域中的应用。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《勾股定理》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过直角三角形的情形?”比如,在篮球场地的角落,或是楼梯的形状。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索勾股定理的奥秘。
(二)新课讲授(用时10分钟)
《17.1.4勾股定理》教学设计 (2)
《17.1.4勾股定理习题课》教学设计1、教材内容义务教育课程标准实验教科书(人教版)《数学》八年级下册第17章第一节勾股定理第4课时复习课。
2.设计理念本设计以“活动----参与”教学法为主,辅之小组合作、交流讨论。
以问题为主线,练习为核心,活动为载体,从学生已有的生活经验和认知基础出发,引导其经历探索勾股定理及应用的全过程,激发学生的学习热情,更好地理解勾股定理应用价值,逐步树立科学探索精神。
体现“人人学有价值数学、不同的人在数学中得到不同发展”的新课程理念。
整个数学设计流程突出以学定教,体现“设计问题化,过程活动化,活动练习化,练习要点化,要点目标化,目标课标化”的要求,充分利用现代信息技术的直观、动态功能,丰富教学可视性材料,增大课堂容量,优化教学结构,实现课堂教学效果最优化。
3.知识背景分析本章所研究的是勾股定理,勾股定理是数学中几个最重要的定理之一,它揭示了一个直角三角形三条边之间的数量关系,他可以解决许多直角三角形中的计算问题,是解直角三角形的主要依据之一,在生产生活实际中用途很大,它不仅在教学中,而且在其他自然科学中也被广泛的应用。
本章分为两节,第一节介绍勾股定理及其应用,第二节介绍勾股定理的逆定理。
由于勾股定理反映的是一个直角三角形三边之间的关系,它也是直角三角形的一条重要性质。
同时由勾股定理及其逆定理,能够把形的特征(三角形中有一个角是直角)转化成数量关系(三边之间满足a2 +b2=c2),它把形与数密切的联系起来,因此,它在理论上也有重要地位。
本节课是勾股定理的第4课时,要求学生能熟练地掌握勾股定理,并能灵活的运用勾股定理解决数学问题和现实世界的实际问题。
4.学情背景分析教学对象是八年级学生,在学习本节前,学生已经初步掌握了勾股定理的知识,通过本节的学习使学生能熟练地掌握勾股定理,并能灵活的运用勾股定理解决现实世界的实际问题。
鉴于学生的知识基础和学习方法的积累本节课以学生练习与合作探究为主,教师根据反馈信息进行指导、点评。
人教版数学八年级下册17.1《勾股定理》教学设计4
人教版数学八年级下册17.1《勾股定理》教学设计4一. 教材分析《勾股定理》是人教版数学八年级下册第17.1节的内容,它是初等数学中的一个重要定理,也是解决直角三角形相关问题的基础。
本节课的内容主要包括勾股定理的证明、应用以及相关的历史背景。
通过学习本节课,学生能够了解并掌握勾股定理,提高解决几何问题的能力。
二. 学情分析学生在学习本节课之前,已经掌握了相似三角形的性质、直角三角形的边角关系等基础知识。
但勾股定理的证明和应用还需要学生具备一定的逻辑思维能力和空间想象力。
对于八年级的学生来说,他们对新鲜事物充满好奇,但同时也可能存在一定的恐惧心理。
因此,在教学过程中,教师需要关注学生的心理变化,激发他们的学习兴趣。
三. 教学目标1.知识与技能:让学生掌握勾股定理的内容、证明方法和应用。
2.过程与方法:通过观察、操作、思考、讨论等过程,培养学生解决几何问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养他们勇于探索、合作交流的精神。
四. 教学重难点1.重点:勾股定理的证明和应用。
2.难点:勾股定理的证明方法的理解和运用。
五. 教学方法1.情境教学法:通过设置有趣的问题情境,激发学生的学习兴趣。
2.问题驱动法:引导学生提出问题,自主探究,培养解决问题的能力。
3.合作交流法:鼓励学生与他人合作,共同探讨问题,提高沟通与合作能力。
4.案例教学法:通过分析实际案例,使学生更好地理解和掌握勾股定理。
六. 教学准备1.教具:黑板、粉笔、多媒体设备等。
2.学具:笔记本、尺子、圆规、直角三角板等。
3.教学资源:与勾股定理相关的图片、视频、案例等。
七. 教学过程1.导入(5分钟)利用多媒体展示勾股定理的历史背景,如古代中国的赵爽弦图、古希腊的毕达哥拉斯等。
引导学生思考:为什么勾股定理如此重要?激发学生的学习兴趣。
2.呈现(10分钟)介绍勾股定理的定义:直角三角形两条直角边的平方和等于斜边的平方。
并通过多媒体展示一些实际的勾股定理的应用案例,让学生初步了解勾股定理的应用。
人教版八年级数学下册17.1勾股定理教学设计
《17.1 勾股定理》教学设计——八年级数学新人教版教学目标1、了解勾股定理的发现过程,掌握勾股定理的内容,并能运用勾股定理解决简单的实际问题。
2、会用面积法证明勾股定理,知道从特殊到一般的探索方法,及借助于图形的面积来验证数学结论的数形结合思想。
3、了解我国古代在勾股定理研究方面所取得的成就,激发学生的爱国热情,培养在实际生活中发现问题总结规律的意识和能力。
学情分析八年级学生已具备一些平面几何的知识,能够进行一般的推理和论证,但如何通过面积法(拼图法)证明勾股定理,学生对这种解决问题的途径还比较陌生,存在一定的难度,因此,我采用拼图等手段进行直观教学,让学生动手、动口、动脑,化难为易,深入浅出,让学生感受学习知识的乐趣。
重点 勾股定理的演绎过程及证明。
难点问题:,花草!4米3米D B C设计意图:激发学生学习兴趣,引起学生思考“如何知道直角三角形的两条直角边求斜边”,进一步思考“直角三角形的三边有什么关系”,从而起到设置悬念、引人课题的作用。
二、合作探究,体验发现探究一 等腰直角三角形三边的关系4米3D C(1)拼图活动 请同学们用准备的几个全等的等腰直角三角形拼正方形,可以拼出几种不同的正方形?把你拼的正方形画在纸上。
(2)若每个等腰直角三角形的腰为a 斜边为c ,则你所拼的正方形的面积分别可以怎样表示? (3)正方形的面积之间有什么关系?由此可以得到什么结论?(结论:对于等腰直角三角形有这样的性质:两直边的平方和等于斜边的平)设计意图:从等腰直角三角形入手,体现从特殊到一般的数学思想。
本环节通过拼图活动,调动学生思维的积极性,为学生提供从事数学活动的机会,培养学生动手、动脑、观察能力,让学生体验学习数学的乐趣。
2、思考对于等腰直角三角形有这样的性质:两直边的平方和等于斜边的平方。
那么对于一般的直角三角形是否也有这样的性质呢?探究二 直角三角形三边的关系(1)拼图 用你准备的几个全等的直角三角形拼正方形,可以拼出几种不同的正方形?把你拼的正方形画在纸上。
人教版八年级数学下册17.1 勾股定理(第4课时)优秀教学设计
课题17.1 勾股定理(第4课时)优化方案目标1、会用勾股定理解决简单的实际问题。
2、能熟练运用勾股定理。
准备多媒体课件、导学案设境定向在Rt△ABC中,90C∠=︒,(1)如果a=3,b=4,则c=________;(2)如果a=6,b=8,则c=________;(3)如果a=5,b=12,则c=________;(4) 如果a=15,b=20,则c=________.组织探究展示交流点拨提升1、下列说法正确的是()A.若a、b、c是△ABC的三边,则222a b c+=B.若a、b、c是Rt△ABC的三边,则222a b c+=C.若a、b、c是Rt△ABC的三边,90A∠=︒,则222a b c+=D.若a、b、c是Rt△ABC的三边,90C∠=︒,则222a b c+=2、一个直角三角形中,两直角边长分别为3和4,下列说法正确的是()A.斜边长为25 B.三角形周长为25 C.斜边长为5 D.三角形面积为203、如图,三个正方形中的两个的面积S1=25,S2=144,则另一个的面积S3为________.4、一个直角三角形的两边长分别为5cm和12cm,则第三边的长为。
5.在Rt△ABC中,∠C=90°,①若a=5,b=12,则c=___________;②若a=15,c=25,则b=___________;③若c=61,b=60,则a=__________;④若a∶b=3∶4,c=10则S Rt△ABC=________。
6、一直角三角形的一直角边长为6,斜边长比另一直角边长大2,则斜边的长为。
7、一个直角三角形的两边长分别为3cm和4cm,则第三边的为。
8、已知,如图在ΔABC中,AB=BC=CA=2cm,AD是边BC上的高.求①AD的长;②ΔABC的面积.9、已知:在Rt△ABC中,∠C=90°,CD⊥AB于D,∠A=60°,CD=3,求线段AB的长。
人教版八年级下学期数学17.1勾股定理教学设计
3.提高拓展题:选取课本第17.1节后的练习题4、5、6,旨在培养学生运用勾股定理解决复杂问题的能力,尤其是涉及斜边和直角边长度计算的问题。
4.创新思维题:鼓励学生运用勾股定理,自己设计一道有趣的数学问题,并与同学分享。此举旨在激发学生的创新思维和解决问题的能力。
5.课后反思:要求学生撰写一篇关于勾股定理学习心得的短文,内容包括对勾股定理的认识、学习过程中的困惑与解决方法、勾股定理在实际生活中的应用等。
6.预习任务:布置下一节课的相关预习内容,让学生提前了解勾股定理的拓展知识,为后续学习做好准备。
注意事项:
1.作业难度要适中,既要保证学生对基础知识的巩固,又要激发他们的挑战欲望。
(二)过程与方法
1.通过观察、分析、归纳等教学活动,引导学生自主发现勾股定理,培养观察能力和归纳总结能力。
2.通过小组合作、讨论交流等方式,让学生在探究勾股定理的过程中,发展团队协作能力和解决问题的能力。
3.通过勾股定理的证明过程,引导学生运用已知数学知识,培养创新思维和解决问题的方法。
4.设计丰富的例题和练习题,让学生在实际操作中掌握勾股定理的应用,提高解决问题的能力。
4.培养学生将勾股定理应用于解决实际问题的能力,鼓励他们从生活中发现数学问题,提高数学素养。
三、教学重难点和教学设想
(一)教学重难点
1.理解并掌握勾股定理的概念及其在直角三角形中的应用。
2.能够运用勾股定理解决实际问题,特别是涉及直角三角形边长计算的题目。
3.理解并掌握勾股定理的证明过程,培养逻辑推理能力和数学思维能力。
人教版八下数学17.1 课时1 勾股定理教案+学案
人教版八年级下册数学第17章勾股定理17.1 勾股定理课时1 勾股定理教案【教学目标】1.经历探索及验证勾股定理的过程,体会数形结合的思想;2.掌握勾股定理,并运用它解决简单的计算题;3.了解利用拼图验证勾股定理的方法..【教学重点】1.经历探索及验证勾股定理的过程,体会数形结合的思想;2.掌握勾股定理,并运用它解决简单的计算题.【教学难点】了解利用拼图验证勾股定理的方法.【教学过程设计】一、情境导入如图所示的图形像一棵枝叶茂盛、姿态优美的树,这就是著名的毕达哥拉斯树,它由若干个图形组成,而每个图形的基本元素是三个正方形和一个直角三角形.各组图形大小不一,但形状一致,结构奇巧.你能说说其中的奥秘吗?二、合作探究知识点一:勾股定理【类型一】直接运用勾股定理例1如图,在△ABC中,∠ACB=90°,AB=13cm,BC=5cm,CD⊥AB于D,求:(1)AC的长;(2)S△ABC;(3)CD的长.解析:(1)由于在△ABC中,∠ACB=90°,AB=13cm,BC=5cm,根据勾股定理即可求出AC的长;(2)直接利用三角形的面积公式即可求出S△ABC;(3)根据面积公式得到CD·AB=BC·AC即可求出CD.解:(1)∵在△ABC中,∠ACB=90°,AB=13cm,BC=5cm,∴AC=AB2-BC2=12cm;(2)S△ABC=12CB·AC=12×5×12=30(cm2);(3)∵S△ABC=12AC·BC=12CD·AB,∴CD=AC·BCAB=6013cm.方法总结:解答此类问题,一般是先利用勾股定理求出第三边,然后利用两种方法表示出同一个直角三角形的面积,然后根据面积相等得出一个方程,再解这个方程即可.【类型二】分类讨论思想在勾股定理中的应用例2在△ABC中,AB=15,AC=13,BC边上的高AD=12,试求△ABC 的周长.解析:本题应分△ABC为锐角三角形和钝角三角形两种情况进行讨论.解:此题应分两种情况说明:(1)当△ABC为锐角三角形时,如图①所示.在Rt△ABD中,BD=AB2-AD2=152-122=9.在Rt△ACD中,CD=AC2-AD2=132-122=5,∴BC=5+9=14,∴△ABC的周长为15+13+14=42;(2)当△ABC为钝角三角形时,如图②所示.在Rt△ABD中,BD=AB2-AD2=152-122=9.在Rt△ACD中,CD=AC2-AD2=132-122=5,∴BC=9-5=4,∴△ABC的周长为15+13+4=32.∴当△ABC为锐角三角形时,△ABC 的周长为42;当△ABC为钝角三角形时,△ABC的周长为32.方法总结:解题时要考虑全面,对于存在的可能情况,可作出相应的图形,判断是否符合题意.【类型三】勾股定理的证明例3探索与研究:方法1:如图:对任意的符合条件的直角三角形ABC 绕其顶点A 旋转90°得直角三角形AED ,所以∠BAE =90°,且四边形ACFD 是一个正方形,它的面积和四边形ABFE的面积相等,而四边形ABFE 的面积等于Rt △BAE 和Rt △BFE 的面积之和.根据图示写出证明勾股定理的过程;方法2:如图:该图形是由任意的符合条件的两个全等的Rt △BEA 和Rt △ACD 拼成的,你能根据图示再写出一种证明勾股定理的方法吗?解析:方法1:根据四边形ABFE 面积等于Rt △BAE 和Rt △BFE 的面积之和进行解答;方法2:根据△ABC 和Rt △ACD 的面积之和等于Rt △ABD 和△BCD的面积之和解答.解:方法1:S 正方形ACFD =S 四边形ABFE =S △BAE +S △BFE ,即b 2=12c 2+12(b +a )(b -a ),整理得2b 2=c 2+b 2-a 2,∴a 2+b 2=c 2;方法2:此图也可以看成Rt △BEA 绕其直角顶点E 顺时针旋转90°,再向下平移得到.∵S 四边形ABCD =S △ABC +S △ACD ,S 四边形ABCD =S △ABD +S △BCD ,∴S △ABC +S △ACD=S △ABD +S △BCD ,即12b 2+12ab =12c 2+12a (b -a ),整理得b 2+ab =c 2+a (b -a ),b 2+ab =c 2+ab -a 2,∴a 2+b 2=c 2.方法总结:证明勾股定理时,用几个全等的直角三角形拼成一个规则的图形,然后利用大图形的面积等于几个小图形的面积和化简整理证明勾股定理.知识点二:勾股定理与图形的面积例4 如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A 、B 、C 、D 的面积分别为2,5,1,2.则最大的正方形E 的面积是________.解析:根据勾股定理的几何意义,可得正方形A、B的面积和为S1,正方形C、D的面积和为S2,S1+S2=S3,即S3=2+5+1+2=10.故答案为10.方法总结:能够发现正方形A、B、C、D的边长正好是两个直角三角形的四条直角边,根据勾股定理最终能够证明正方形A、B、C、D的面积和即是最大正方形的面积.【板书设计】17.1 勾股定理课时1 勾股定理1.勾股定理如果直角三角形的两条直角边长分别为a,b,斜边长为c,那么a2+b2=c2.2.勾股定理的证明“赵爽弦图”、“刘徽青朱出入图”、“詹姆斯·加菲尔德拼图”、“毕达哥拉斯图”.【教学反思】在课堂教学中应注意调动学生学习数学的积极性.让学生满怀激情地投入到数学学习中,提高数学课堂教学效率.勾股定理的验证既是本节课的重点,也是本节课的难点,为了突破这一难点,设计一些拼图活动,并自制精巧的课件让学生从形上感知,再层层设问,从面积(数)入手,师生共同探究突破本节课的难点.人教版八年级下册数学第17章勾股定理17.1 勾股定理课时1 勾股定理学案【学习目标】1.经历勾股定理的探究过程,了解关于勾股定理的一些文化历史背景,会用面积法来证明勾股定理,体会数形结合的思想;2.会用勾股定理进行简单的计算.【学习重点】掌握用面积法来证明勾股定理,体会数形结合的思想.【学习难点】能够运用勾股定理进行有关的运算.【自主学习】一、知识回顾网格中每个小正方形的面积为单位1,你能数出图中的正方形A、B 的面积吗?你又能想到什么方法算出正方形C的面积呢?AB CCBA方法1:补形法(把以斜边为边长的正方形补成各边都在网格线上的正方形):左图:S c=__________________________;右图:S c=__________________________.方法2:分割法(把以斜边为边长的正方形分割成易求出面积的三角形和四边形):左图:S c=__________________________;右图:S c=__________________________.二、合作探究考点1:勾股定理的认识及验证想一想 1.2500年前,毕达哥拉斯去老朋友家做客,看到他朋友家用等腰三角形砖铺成的地面,联想到了正方形A,B和C面积之间的关系,你能想到是什么关系吗?2.右图中正方形A、B、C所围成的等腰直角三角形三边之间有什么特殊关系?3.在网格中一般的直角三角形,以它的三边为边长的三个正方形A、B、C 是否也有类似的面积关系?(每个小正方形的面积为单位1)4.正方形A、B、C 所围成的直角三角形三条边之间有怎样的特殊关系?思考你发现了直角三角形三条边之间的什么规律?你能结合字母表示出来吗?猜测:如果直角三角形的两条直角边长分别为a,b,斜边长为c,那么________.活动2 接下来让我们跟着以前的数学家们用拼图法来证明活动1的猜想.证法利用我国汉代数学家赵爽的“赵爽弦图”=________,证明:∵S大正方形S小正方形=________,S大正方形=___·S三角形+S小正方形,∴________=________+__________.要点归纳:勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2. 公式变形:222222, ,=+--.a cb bc a c a b知识点2:利用勾股定理进行计算【典例探究】例1如图,在Rt△ABC中,∠C=90°.(1)若a=b=5,求c;(2)若a=1,c=2,求b.变式题1 在Rt△ABC中,∠C=90°.(1)若a:b=1:2 ,c=5,求a;(2)若b=15,∠A=30°,求a,c.方法总结:已知直角三角形两边关系和第三边的长求未知两边时,要运用方程思想设未知数,根据勾股定理列方程求解.变式题2在Rt△ABC中,AB=4,AC=3,求BC的长.方法总结:当直角三角形中所给的两条边没有指明是斜边或直角边时,其中一较长边可能是直角边,也可能是斜边,这种情况下一定要进行分类讨论,否则容易丢解.例2已知∠ACB=90°,CD⊥AB,AC=3,BC=4.求CD的长.方法总结:由直角三角形的面积求法可知直角三角形两直角边的积等于斜边与斜边上高的积,它常与勾股定理联合使用.【跟踪训练】求下列图中未知数x、y的值:三、知识梳理内容勾股定理如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2.注意1.在直角三角形中2.看清哪个角是直角3.已知两边没有指明是直角边还是斜边时一定要分类讨论四、学习中我产生的疑惑【学习检测】1.下列说法中,正确的是()A.已知a,b,c是三角形的三边,则a2+b2=c2B.在直角三角形中两边和的平方等于第三边的平方C.在Rt△ABC中,∠C=90°,所以a2+b2=c2D.在Rt△ABC中,∠B=90°,所以a2+b2=c22. 如图,Rt△ABC(∠C=90°)的主要性质:(用几何语言表示)(1)两锐角之间的关系:____________________.(2)若∠B=30°,则∠B的对边和斜边:_________.3.如果直角三角形的两直角边分别为a、b,斜边为c,那么_________.4. 右图中阴影部分是一个正方形,则此正方形的面积为_____________.5.在△ABC中,∠C=90°.(1)若a=15,b=8,则c=_______.(2)若c=13,b=12,则a=_______.6.若直角三角形中,有两边长是5和7,则第三边长的平方为_________.7.如图所示,所有的四边形都是正方形,三角形是直角三角形,其中最大的正方形的边长为6,则正方形A,B的面积的和为_______.8.求斜边长17cm、一条直角边长15cm的直角三角形的面积.9.如图,在△ABC中,AD⊥BC,∠B=45°,∠C=30°,AD=1,求△ABC的周长.10.如图,将长为10米的梯子AC斜靠在墙上,BC长为6米,求梯子上端A到墙的底端B的距离AB。
人教版数学八年级下册17.1《勾股定理》教学设计1
人教版数学八年级下册17.1《勾股定理》教学设计1一. 教材分析人教版数学八年级下册17.1《勾股定理》是初中的重要知识点,也是中学数学中的一个难点。
本节课主要介绍勾股定理的证明及其应用。
通过学习,学生能够理解勾股定理的含义,掌握勾股定理的证明方法,并能够运用勾股定理解决实际问题。
二. 学情分析学生在学习本节课之前,已经掌握了相似三角形的性质,会使用勾股定理求解直角三角形的问题。
但是,对于证明勾股定理,学生可能存在一定的困难。
因此,在教学过程中,需要引导学生通过探究、合作的方式,理解并证明勾股定理。
三. 教学目标1.理解勾股定理的含义,掌握勾股定理的证明方法。
2.能够运用勾股定理解决实际问题。
3.培养学生的探究能力和合作精神。
四. 教学重难点1.教学重点:勾股定理的证明及其应用。
2.教学难点:理解并证明勾股定理。
五. 教学方法1.探究法:引导学生通过自主探究、合作交流的方式,证明勾股定理。
2.案例分析法:通过具体案例,让学生理解勾股定理在实际问题中的应用。
3.讲解法:教师对勾股定理的相关知识进行讲解,为学生提供学习指导。
六. 教学准备1.课件:制作勾股定理的相关课件,包括勾股定理的证明过程及应用案例。
2.素材:准备一些关于勾股定理的应用问题,用于课堂练习和拓展。
3.板书:设计好板书,包括勾股定理的表述和证明过程。
七. 教学过程1.导入(5分钟)利用课件展示勾股定理的背景知识,引导学生回顾相似三角形的性质,为新课的学习做好铺垫。
2.呈现(10分钟)教师简要介绍勾股定理的定义,然后通过课件展示勾股定理的证明过程,让学生初步了解勾股定理的证明方法。
3.操练(10分钟)学生分组讨论,每组选取一个证明方法,尝试证明勾股定理。
教师巡回指导,为学生提供帮助。
4.巩固(10分钟)教师选取几组勾股定理的应用问题,让学生独立解答。
解答完毕后,教师进行点评,巩固学生对勾股定理的理解。
5.拓展(10分钟)教师提出一些关于勾股定理的拓展问题,引导学生进行思考。
八年级数学下册 第十七章 勾股定理说课稿 (新版)新人教版 教案
勾股定理17.1勾股定理说课稿(模版一)一、教材分析(一)教材所处的地位及作用:勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系,它可以解决直角三角形中的计算问题,是解直角三角形的主要根据之一,在实际生活中用途也很大。
它在数学的发展中起过重要的作用。
学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。
(二)学情分析:前面,学生已具备一些平面几何的知识,能够进行一般的推理和论证,但如何通过面积法(拼图法)证明勾股定理,学生对这种解决问题的途径还比较陌生,存在一定的难度,因此,我采用多媒体等手段进行直观教学,让学生动手、动口、动脑,化难为易,深入浅出,让学生感受学习知识的乐趣。
(三)教学目标:1、知识与能力:了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理;2、过程与方法:经历“观察—猜想—归纳—验证”的数学发现过程,发展合情合理的推理能力,沟通数学知识之间的内在联系,体会“数形结合”和“特殊到一般”的思想方法。
3、情感态度与价值观:通过介绍中国古代研究勾股定理的成就,激发学生的爱国热情,感受数学文化,激发学生学习的热情。
(三)教学重点、难点:教学重点:探索和掌握勾股定理;教学难点:用面积法(拼图法)证明勾股定理二、教法分析:针对八年级学生的知识结构和心理特征,本节课可选择引导探索法,由浅入深,由特殊到一般地提出问题。
引导学生自主探索,合作交流,这种教学理念反映了时代精神,有利于提高学生的思维能力,能有效地激发学生的思维积极性。
三、学法分析:在教师的组织引导下,学生采用自主探究、合作交流的研讨式学习方式,获取知识,掌握方法,借此培养学生动手、动脑、动口的能力,使学生真正成为学习的主人.四、教学过程设计:(一)回顾交流:通过回顾交流让学生复习直角三角形的相关性质,设疑其三边有何关系,为引入勾股定理奠定基础。
(二)图片欣赏:通过图片欣赏,感受数学美,感受勾股定理的文化价值.以激发学生的学习欲望。
八年级数学下册17.1勾股定理(第4课时)教案(新版)新人教版
勾股定理第4课时教学目标1.会用勾股定理解决较综合的问题.2.树立数形结合的思想.教学重点难点勾股定理的综合应用. 勾股定理的综合应用.教学过程一、导入新课教师复习上节课内容(两道例题),导入新课的教学.二、新课教学思考:在八年级上册中我们曾经通过画图得到结论:斜边和一条直角边对应相等的两个直角三角形全等.学习了勾股定理后,你能证明这一结论吗?教师引导学生先画出图形,再写出已知条件,然后证明.已知:如图,在Rt △ABC 和Rt △A′B′C′中,∠C =∠C′=90°,AB =A′B′,AC =A′C′. 求证:△ABC ≌△A′B′C′.证明:在Rt △ABC 和Rt △A′B′C′中,∠C =∠C′=90°,根据勾股定理,得 BC =22AC AB -,B′C′=22C A B A ''-''.又 AB =A′B′,AC =A′C′,∴ BC =B′C′.∴ △ABC ≌△A′B′C′ (SSS ).探究:我们知道数轴上的点有的表示有理数,有的表示无理数,你能在数轴上画出表示13的点吗? 此为在数轴上画出表示13的点,教师可分以下四步引导学生:(1)将在数轴上画出表示13的点问题转化为画出长为13的线段的问题;(2)由长为2的线段是直角边都为1的直角三角形的斜边,联想到长为13的线段能否是直角边为正整数的直角三角形的斜边;(3)通过尝试我们发现,长为13的线段是直角边为2、3的直角三角形的斜边;(4)画出长为13的线段,从而在数轴上画出表示13的点.在此基础上,结合教材第27页图17.1-11和图17.1-12指出:利用勾股定理,可以作出长为n (n 是整数)的线段,进而在数轴上画出表示n (n 是整数)的点.三、实例探究例 已知:在Rt △ABC 中,∠C =90°,CD ⊥BC 于D ,∠A =60°,CD =3,求线段AB 的长.分析:本题是“双垂图”的计算题,“双垂图”是重要的考点,所以要求学生对图形及性质掌握非常熟练,能够灵活应用.目前“双垂图”需要掌握的知识点有:3个直角三角形,三个勾股定理及推导式BC 2-BD 2=AC 2-AD 2,两对相等锐角,四对互余角,及30°或45°特殊角的特殊性质等.要求学生能够自己画图,并正确标图.欲求AB ,可由AB =BD +CD ,分别在两个三角形中利用勾股定理和特殊角,求出BD =3和AD =1.或欲求AB ,可由AB =22BC AC ,分别在两个三角形中利用勾股定理和特殊角,求出AC =2和BC =6. 四、课堂练习1.△ABC 中,AB =AC =25cm ,高AD =20cm ,则BC = ,S △ABC = .2.△ABC 中,若∠A =2∠B =3∠C ,AC =32cm ,则∠A = 度,∠B = 度,B AD∠C=度,BC=,S△ABC=.2,CD⊥AB于D,则AC=,CD=,3.△ABC中,∠C=90°,AB=4,BC=3BD=,AD=,S△ABC=.2 的点.4.在数轴上画出表示-5,5参考答案:1.30cm,300cm2;2;2.90,60,30,4,32;3.2,3,3,1,34.略.五、布置作业习题17.1第6、13题.教学反思:。
人教版八年级下册17.1勾股定理优秀教学案例
(三)情感态度与价值观
1.学生了解勾股定理在我国古代的发现和应用,感受数学文化的魅力,培养民族自豪感和对数学的热爱。
2.学生通过学习勾股定理,培养对数学的兴趣和好奇心,激发学习数学的内在动力。
3.学生通过解决实际问题,体验数学的价值和意义,认识到数学在生活中的重要性,培养应用数学的意识和能力。
2.学生能够通过观察、分析、推理等数学思维活动,探索并发现勾股定理的规律,提高空间想象能力和逻辑思维能力。
3.学生能够运用勾股定理解决一些简单的几何问题,提高运用数学知识解决实际问题的能力。
(二)过程与方法
1.学生通过观察生活实例,培养从实际问题中抽象出数学模型的能力,提高解决问题的能力。
2.学生在小组合作、讨论交流的过程中,培养团队协作能力和表达能力,提高自主学习能力和合作学习能力。
3.动态演示辅助:运用几何画板等教学工具,动态展示直角三角形中两直角边的变动,让学生直观地观察到斜边的变化规律,帮助学生理解和掌握勾股定理。
(二)问题导向
1.设计问题链:围绕勾股定理的定义、证明和应用,设计一系列递进式问题,引导学生思考和探索,激发学生的好奇心,培养学生的问题解决能力。
2.自主探究引导:引导学生提出问题,鼓励学生自主探究,引导学生通过观察、分析、推理等数学思维活动,探索并发现勾股定理的规律。
3.动态演示辅助:运用几何画板等教学工具,动态展示直角三角形中两直角边的变动,让学生直观地观察到斜边的变化规律,帮助学生理解和掌握勾股定理。
(二)讲授新知
1.勾股定理的定义:通过几何画板工具,展示直角三角形中两直角边的变动,引导学生观察和分析斜边的变化规律,引股定理的证明:引导学生通过小组合作、讨论交流的方式,探索并发现勾股定理的证明方法,引导学生运用几何画板工具,动态展示直角三角形的证明过程,帮助学生理解和掌握勾股定理的证明方法。
人教版八年级数学下册17.1.1《勾股定理》教学设计
《勾股定理》教学设计一、教材分析(一)教材的地位与作用勾股定理是数学中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。
它在数学的发展中起着重要的作用,在现实世界中也有着广泛的应用。
学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。
(二)教学目标基于以上分析和数学课程标准的要求,制定了本节课的教学目标。
知识与技能:1、了解勾股定理的文化背景,体验勾股定理的探索过程,了解利用拼图验证勾股定理的方法。
2、了解勾股定理的内容。
3、能利用已知两边求直角三角形另一边的长。
过程与方法:1、通过拼图活动,体验数学思维的严谨性,发展形象思维。
2、在探索活动中,学会与人合作,并能与他人交流思维的过程和探索的结果。
情感与态度:1、通过对勾股定理历史的了解,对比介绍我国古代和西方数学家关于勾股定理的研究,激发学生热爱祖国悠久文化的情感,激励学生奋发学习。
2、在探索勾股定理的过程中,体验获得结论的快乐,锻炼克服困难的勇气,培养合作意识和探索精神。
(三)教学重、难点重点:探索和证明勾股定理难点:用拼图方法证明勾股定理二、学情分析学生对几何图形的观察,几何图形的分析能力已初步形成。
部分学生解题思维能力比较高,能够正确归纳所学知识,通过学习小组讨论交流,能够形成解决问题的思路。
现在的学生已经厌倦教师单独的说教方式,希望教师设计便于他们进行观察的几何环境,给他们自己探索、发表自己见解和展示自己才华的机会;更希望教师满足他们的创造愿望。
三、教学策略本节课采用探究发现式教学,由浅入深,由特殊到一般地提出问题,鼓励学生采用观察分析、自主探索、合作交流的学习方法,让学生经历数学知识的形成与应用过程。
四、教学程序图18.1-1深入探究交流(1)等腰直角三角形是特殊的直角三角形,一般的直角三角形是否也具有“两直角边的平方和等于斜边的平方”呢?图18.1-2如图18.1-2,每个小方格的面积均为1,以格点为顶点,有一个直角边分别是2、3的直角三一般的数学思想学生提供参与数学活动的时间和空间,发挥学生的主体作用;迁移能力及探索问题的能力,相互欣赏、助中得到提高。
人教版八年级数学下册17.1勾股定理教学设计
2.提出问题:
-在直角三角形中,我们学过哪些关于边长的关系?
-你觉得直角三角形中的斜边和两个直角边之间是否存在某种特定的关系?
3.目标导向:
通过导入环节,激发学生对勾股定理的兴趣,明确本节课的学习目标,即理解并掌握勾股定理。
(二)讲授新知
1.勾股定理的表述:
-以直观的图形和具体的数字为例,引导学生观察直角三角形中斜边和两个直角边之间的关系。
-给出勾股定理的表述:直角三角形中,斜边的平方等于两个直角边的平方和。
2.勾股定理的证明:
-采用数学归纳法,引导学生通过实际操作和逻辑推理,证明勾股定理的正确性。
-结合多媒体演示,形象直观地展示勾股定理的证明过程。
(五)总结归纳
1.教学活动设计:
-组织学生回顾本节课的学习内容,总结勾股定理的表述、证明和应用。
-引导学生反思学习过程中的收获和不足,为下一节课的学习做好准备。
2.归纳总结:
-勾股定理是直角三角形中一个重要的边长关系,具有广泛的应用价值。
-学生通过自主探究、小组讨论和课堂练习,掌握了勾股定理的证明和应用。
1.学生对勾股定理的认知程度:大部分学生可能只知道勾股定理的表述,但对其证明过程和应用范围了解不深,需要引导学生通过实例和练习,逐步加深理解。
2.学生的逻辑推理能力:在本章节的教学过程中,要注重培养学生的逻辑推理能力,引导学生运用已知知识推导出勾股定理,并能够运用定理解决实际问题。
3.学生的动手操作能力:通过设计丰富的实践环节,让学生在实际操作中感受勾股定理的奥妙,提高学生运用勾股定理解决问题的能力。
4.引导学生总结勾股定理的相关性质和规律,形成知识体系,提高学生的总结概括能力。
八年级数学17勾股定理17.1勾股定理第4课时教案新人教版
17.1 勾股定理课题17.1 勾股定理课时第4课时课型作课时间教学内容分析本节课学习勾股定理的应用.教学目标1.经历探究勾股定理在实际问题中的应用过程,感受勾股定理的应用方法.2.在解决问题过程中更好地理解勾股定理,树立数形结合的思想.重点难点勾股定理在实际问题中的应用教学策略选择与设计通过2个探究讲解,联系实际,感受勾股定理在实际问题中的应用过程,树立数形结合的思想,会用勾股定理解决简单的实际问题。
学生学习方法分析法,讨论法,练习法教具三角板教学过程教师活动学生活动设计意图探究1:1.在长方形ABCD 中,宽AB 为1m ,长BC 为2m ,求AC 的长2.用式子表示长方形ABCD 中AB 、BC 、AC 大小关系:3.一个门框的尺寸如图所示.①若有一块长3米,宽0.8米的薄木板,问怎样从门框通过?②若薄木板长3米,宽1.5米呢?③若薄木板长3米,宽2.2米呢?为什么?探究2: 如图,一个3米长的梯子AB ,斜着靠在竖直的墙AO 上,这时AO 的距离为2.5米. ①球梯子的底端B 距墙角O 多少米?②如果梯的顶端A 沿墙下滑0.5米至C ,请同学们猜一猜,底端也将滑动0.5米吗?算一算,底端滑动的距离近似值(结果保留两位小数).分析审图思考读题将实际问题转化为数学问题,建立几何模型,画出图形,分析已知量、待求量,让学生掌握解决实际问题的一般思路.BC1m2mAC CA C AOB O课堂检测:1.小明和爸爸妈妈十一登香山,他们沿着45度的坡路走了500米,看到了一棵红叶树,这棵红叶树的离地面的高度是 米。
2.如图,山坡上两株树木之间的坡面距离是43米,则这两株树之间的垂直距离是 米,水平距离是 米。
3.如图,一根12米高的电线杆两侧各用15米的铁丝固定,两个固定点之间的距离是 。
4.有一个边长为1米正方形的洞口,想用一个圆形盖去盖住这个洞口,则圆形盖半径至少为 米。
5.一根32厘米的绳子被折成如图所示的形状钉在P 、Q 两点,PQ=16厘米,且RP ⊥PQ ,则RQ= 厘米。
人教版八年级下册17.1勾股定理教学设计
3.教师点评:针对学生的讨论成果,给予积极评价和指导,强调勾股定理的证明方法和在实际问题中的应用。
(四)课堂练习
1.设计练习题:针对勾股定理的知识点,设计具有层次性的练习题,让学生在练习中巩固所学知识。
2.解题指导:在学生解题过程中,给予适当的指导,帮助他们掌握解题方法。
人教版八年级下册7.1勾股定理教学设计
一、教学目标
(一)知识与技能
1.理解并掌握勾股定理的概念及表述方式,能够准确地用勾股定理解决直角三角形的边长问题。
2.能够运用勾股定理进行实际问题的计算,如测量距离、计算面积等。
3.能够运用勾股定理推导出直角三角形中其他相关结论,如:直角三角形内切圆半径、外接圆半径等。
4.部分学生对数学学习的兴趣和自信心可能不足。教师应关注这些学生,通过鼓励、表扬等方式,激发他们的学习兴趣,提高自信心。
三、教学重难点和教学设想
(一)教学重点
1.勾股定理的概念及其表述。
2.勾股定理的证明过程及应用。
3.直角三角形边长关系的理解和应用。
(二)教学难点
1.勾股定理的证明过程,尤其是几何证明方法的推导。
4.课后反思:要求学生针对本节课所学内容,进行课后反思,总结自己在学习过程中的收获和不足,以及需要进一步改进的地方。
5.家长签字:请家长关注学生的学习情况,并在作业本上签字,共同促进学生的成长。
2.提高练习:为了提高学生的解题能力和逻辑思维能力,布置以下作业:
a.完成课本习题17.1中的第4、5题,这两题要求学生对勾股定理进行灵活运用。
b.让学生尝试证明勾股定理的其他形式,如:等腰直角三角形、等边三角形等特殊情况下的勾股定理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学习
方法
分析法,讨论法,练习法
教具
三角板
教学过程
教师活动
学生活动
设计意图
探究1:
1.在长方形ABCD中,宽AB为1m,长BC为2m,求AC的长
2.用式子表示长方形ABCD中AB、BC、AC大小关系:
3.一个门框的尺寸如图所示.
①若有一块长3米,宽0.8米的薄木板,问怎样从门框通过?
②若薄木板长3米,宽1.5米呢?
3.如图,一根12米高的电线杆两侧各用15米的铁丝固定,两个固定点之间的距离是。
4.有一个边长为1米正方形的洞口,想用一个圆形盖去盖住这个洞口,则圆形盖半径至少为米。
5.一根32厘米的绳子被折成如图所示的形状钉在P、Q两点,PQ=16厘米,且RP⊥PQ,则RQ= 厘米。
分析
讨论
填空
分析
思考
通过综合应用勾股定理和直角三角形全等的知识对实际问题进行解释,培养学生从身边的事物中抽象出几何模型的能力,使学生更加深刻地认识 数学。
思考
读题
审图
分析
将实际问题转化为数学问题,建立几何模型,画出图形,分析已知量、待求量,让学生掌握解决实际问题的一般思路.
教师活动
学生活动
设计意图
课堂检测:
1.小明和爸爸妈妈十一登香山,他们沿着45度的坡路走了500米,看到了一棵红叶树,这棵红叶树 的离地面的高度是米。
2.如图,山坡上两株树木之间的坡面距离是4 米,则这两株树之间的垂直距离是米,水平距离是 米。
作
业
如图,一架25m长的云梯AB斜靠在一竖直的墙AO上,这时AO为24m.
(1)求这个梯子的底端距墙的垂直距离有多远;
(2)当BD=8m时,AC的长是多少米?
(3)如果梯子的底端向墙一侧移动2m,那么梯子顶端向上滑动的 距离是多少米?
板
书设计17.1 Nhomakorabea股定理探究1:
1.在长方形ABCD中,宽AB为1m,长BC为2m,求AC的长
③若薄木板长3米,宽2.2米呢?为什么?
探究2:如图,一个3米长的梯子AB,斜着靠在竖直的墙AO上,这时AO的距离为2.5米.
①球梯子的底端B距墙角O多少米?
②如果梯的顶端A沿墙下滑0.5米至C,请同学们猜一猜,底端也将滑动0.5米吗?
算一算, 底端滑动的距离近似值(结果 保留两 位小数).
分析
审图
17.1勾股定理
课题
17.1勾股定理
课时
第4课时
课型
作课时间
教学
内容
分析
本节课学习勾股定理的应用.
教学
目标
1.经历探究勾股定 理在实际问题中的应用过程,感受勾股 定理的应用方法.
2.在解决问题过程中更好地理解勾股定理,树立数形结合的思想.
重点
难点
勾股定理在实际问题中的应用
教学
策略
选择
与设计
通过2个探究讲解,联系实际,感受勾股定理在实际问题中的应用过程,树立数形结合的思想,会用勾股定理解决简单的实际问题。
2.用式子表示长方形ABCD中AB、BC、AC大小关系:
3.一个门框的尺寸如图所示.
①若有一块长3米,宽0.8米的薄木板,问怎样从门框通过?
②若薄木板长3米,宽1.5米呢?
③若薄木板 长3米,宽2.2米呢?为什么?
教
学
反
思