数学:18.2勾股定理的逆定理(一)教案(人教版八年级)
勾股定理的逆定理数学教案

勾股定理的逆定理数学教案
标题:勾股定理的逆定理数学教案
一、教学目标
1. 知识与技能目标:理解并掌握勾股定理的逆定理,并能运用它解决实际问题。
2. 过程与方法目标:通过探究、讨论、练习等活动,提高学生的观察力、思维能力和解决问题的能力。
3. 情感态度价值观目标:激发学生对数学的兴趣,培养他们的合作精神和实事求是的科学态度。
二、教学内容与过程
1. 引入新课:通过一些简单的实例,让学生感受到直角三角形中边长之间的关系,引出勾股定理的逆定理。
2. 新课讲解:首先回顾勾股定理的内容,然后提出问题:如果一个三角形的三条边满足a²+b²=c²,那么这个三角形一定是直角三角形吗?引导学生思考这个问题,从而引入勾股定理的逆定理。
3. 例题解析:给出几个具体的例子,让学生通过计算验证勾股定理的逆定理是否成立。
4. 练习巩固:设计一些习题,让学生自己动手计算,进一步理解和掌握勾股定理的逆定理。
三、教学反思
在本节课的教学过程中,要注意引导学生主动思考,积极参与课堂活动。
同时,要注重理论联系实际,使学生能够将所学知识应用到实际生活中去。
八年级数学下册 第十八章勾股定理全章教案 人教新课标版

18.1勾股定理(1)年级:八年级科目:数学课型:新授执笔:姜艳审核:徐中国,薛柏双备课时间:2010.3.28 上课时间:2010.3.31教学目标1.了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。
2.培养在实际生活中发现问题总结规律的意识和能力。
3.介绍我国古代在勾股定理研究方面所取得的成就,激发学生的爱国热情,促其勤奋学习。
重点:勾股定理的内容及证明。
难点:勾股定理的证明。
课前预习导学过程阅读教材第64页至第67页的部分,完成以下问题在Rt△ABC,∠C=90°⑴已知a=b=5,求c。
⑵已知a=1,c=2, 求b。
⑶已知c=17,b=8, 求a。
⑷已知a:b=1:2,c=5, 求a。
⑸已知b=15,∠A=30°,求a,c课堂活动:活动1、预习反馈多种方法证明勾股定理活动2、例习题分析例1:一个门框的尺寸如图,一块3m,宽2.2m的薄木板能否从门框内通过?为什么?CA B例2:如图,一个3m 长的梯子AB ,斜靠在一竖直的墙AO ,这时AO 的距离为2.5m ,如果梯子的顶端A 沿墙下滑0.5m ,那么梯子底端B 也外移0.5m 吗?课堂练习:1.勾股定理的具体内容是:2.如图,直角△ABC 的主要性质是:∠C=90°,(用几何语言表示)⑴两锐角之间的关系: ;⑵若D 为斜边中点,则斜边中线 ;⑶若∠B=30°,则∠B 的对边和斜边: ;⑷三边之间的关系: 。
3.⑴在Rt △ABC ,∠C=90°,a=8,b=15,则c= 。
⑵在Rt △ABC ,∠B=90°,a=3,b=4,则c= 。
⑶在Rt △ABC ,∠C=90°,c=10,a :b=3:4,则a= ,b= 。
⑷一个直角三角形的三边为三个连续偶数,则它的三边长分别为 。
⑸已知直角三角形的两边长分别为3cm 和5cm ,,则第三边长为 。
⑹已知等边三角形的边长为2cm ,则它的高为 ,面积为 。
初中数学_勾股定理的逆定理教学设计学情分析教材分析课后反思

勾股定理逆定理教学设计设计人:教学任务分析教学流程安排教学过程设计图18.2-21、说出下列命题的逆命题.这些命题的逆命题成立吗?(1)两条直线平行,同位角相等。
(2)如果两个实数相等,那么它们的平方相等。
(3)对顶角相等。
(4)全等三角形的对应角相等。
[活动3] 构建模型 验证猜想1. 如图18.2-2,若△ABC 的三边长a 、b 、c 满足 试证明△ABC 是直角三角形,请简要地写出证明过程.2此定理与勾股定理之间有怎样的关系?互逆定理等概念的阐述学生独立完成第一题,师公布正确答案,统计全对的人数,反馈教学效果。
结合四个题目:师生共同得出:一个命题是真命题,它的逆命题却不一定是真命题.教师提出问题,并适时诱导,师生共同完成活动3的证明.之后,归纳得出勾股定理的逆定理.在此基础上,类比命题与逆命题的关系,介绍互逆定理的概念在活动3中教师应重点关注:(1)通过构造直角三角形,借助三角形的全等来证明。
(2)是否真正地理解了AB =A /B /(如图18.2-2);(4)数形结合的意识;(5)能否准确地找出一个命题的题设和结论.让学生感知原命题成立时,它的逆命题不一定成立,从而进入对勾股定理逆命题的正确与否的探究。
变“命题+证明=定理”的推理模式为定理的发生、发展、形成的探究过程,把“构造直角三角形”这一方法的获取过程展现给学生,让他们感知定理的由来,有效地突破本节的难点.通过比较勾股定理及其逆定理的题设和结论,引出互逆定理概念。
a 2+b 2=c 2效果分析本节课学生的学习效果不错,对互逆定理的理解掌握很好,正确率能达到百分之九十。
对勾股定理的逆定理的简单应用也掌握很好,也能达到百分之九十。
对常用勾股数交流的很充分,通过实例感受到了一组勾股数的正整数倍也是一组勾股数。
对于例题2和例题3学生体会到了勾股定理和逆定理在实际生活中的应用,也学会了如何利用定理和逆定理来解决问题,为下一节课应用的练习打下了基础。
勾股定理逆定理的应用(教案)【2023春人教版八下数学优质备课】

17.2.2勾股定理逆定理的应用核心素养目标:1.应用勾股定理的逆定理判断一个三角形是否是直角三角形;2.灵活应用勾股定理及逆定理解综合题;3.进一步加深性质定理与判定定理之间关系的认识。
教学重难点:重点:进一步理解勾股定理的逆定理;难点:勾股定理逆定理的灵活应用;教学过程:一、复习导入1.我们已经学习了勾股定理及其逆定理,你能叙述吗?2.你能用勾股定理及其逆定理解决哪些问题?二、互助探究探究点一:利用勾股定理的逆定理解答角度问题例题讲解:例1如图,某港口P位于东西方向的海岸线上,“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里.它们离开港口一个半小时后分别位于Q、R处,且相距30海里,如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?探究点二:利用勾股定理的逆定理解答面积问题例2已知:如图,四边形ABCD中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD的面积.跟踪练习:如图,有一块地,已知,AD=4m,CD=3m,∠ADC=90°,AB=13m,BC=12m.求这块地的面积.探究点三:利用勾股定理的逆定理解答检测问题例3 如图,是一农民建房时挖地基的平面图,按标准应为长方形,他在挖完后测量了一下,发现AB=DC=8m,AD=BC=6m,AC=9m,请你运用所学知识帮他检验一下挖的是否合格?跟踪练习:一个零件的形状如图所示,按规定这个零件中∠A和∠DBC都应为直角,工人师傅量得这个零件各边的尺寸如图所示,这个零件符合要求吗?三、课堂小结1.利用勾股定理逆定理求角的度数2.利用勾股定理逆定理求线段的长3.利用勾股定理逆定理解决实际问题四、课堂检测1.如图,直线l上有三个正方形a,b,c,若a,c的面积分别为5和11,则b的面积为()A.4B.6C.16D.552. 如图,△ABC的顶点A,B,C,在边长为1的正方形方格的格点上,BD⊥AC于点D,则BD的长为()A. 23√5 B. 34√5 C. 45√5 D.56√53. 医院、公园和超市的平面示意图如图所示,超市在医院的南偏东25°的方向,且到医院的距离为300m,公园到医院的距离为400m.若公园到超市的距离为500m,则公园在医院的北偏东的方向.4.如图,等边三角形的边长为6,则高AD的长是;这个三角形的面积是 .5. 如图,矩形ABCD中,AB=8,BC=6,将矩形沿AC折叠,点D落在E处,则重叠部分△AFC的面积是多少?五、课后作业必做题:教材习题17.2第4题.选做题:教材习题17.2第12、13、14题.。
2022年人教版八年级下册《勾股定理的逆定理》公开课教案

17.2 勾股定理的逆定理教学目标【知识与技能】1.理解勾股定理的逆定理的证明方法,能证明勾股定理的逆定理.2.能用勾股定理的逆定理判别一个三角形是否是直角三角形,并能用它解决实际问题. 【过程与方法】在探索勾股定理的逆定理及其证明方法和运用勾股定理逆定理解决具体问题的过程中,进一步体验数形结合的思想,增强分析问题、解决问题的能力.【情感态度】1.通过用三角形三边的数量关系来判断三角形的形状,体验数与形的内在联系,感受定理与逆定理之间的和谐及辩证统一的关系;2.进一步增强与他人交流合作的意识和探究精神.教学重难点【教学重点】勾股定理的逆定理及其应用.【教学难点】勾股定理的逆定理的证明.课前准备无教学过程一、情境导入,初步认识问题〔1〕勾股定理的内容是怎样的?〔2〕求以线段a,b为直角边的直角三角形的斜边c的长:①a=3,b=4;②a=2.5,b=6;③a=4,b=7.5.〔3〕想一想:分别以〔2〕中a、b、c为三边的三角形的形状会是怎样的?【教学说明】教师提出问题后,学生自主探究,相互交流获得结论,最后教师针对问题〔2〕、〔3〕提醒学生注意它们各自特征,其中〔2〕是由形获得数量关系,而〔3〕是由数量关系得到形的特征,为勾股定理的逆定理的引入作铺垫.二、思考探究,获取新知探究1 画出三边长分别为3cm、4cm和5cm,2.5cm、6cm和6.5cm,4cm、7.5cm和8.5cm 的三个三角形,用量角器测出较大角的度数,你有什么发现?你能解释其原因吗?【教学说明】将全班同学分成三个小组,分别画出上述三个三角形,然后相互交流,教师巡视,指导并帮助有困难同学画出尽可能准确的图形,从而形成对勾股定理的逆定理的感性认识.猜测如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.探究2 〔1〕三边长分别为3,4,5的三角形与以3,4为直角边的直角三角形的三边关系如何?你是怎样得到的?简要说明理由.〔2〕你能否受〔1〕启发,说明分别以2.5cm、6cm、6.5cm和4cm、7.5cm、8.5cm为三边长的三角形也是直角三角形呢?〔3〕如图,假设△ABC的三边a、b、c满足a2+b2=c2,试证明△ABC是直角三角形,请简要地写出证明过程.【教学说明】教师应引导学生利用问题〔1〕、〔2〕的思路完成问题〔3〕的证明,得出勾股定理的逆定理,在这期间,教师顺势给出原命题、逆命题、逆定理的概念,最后师生共同给出逆定理的证明过程,在黑板上展示〔也可通过多媒体展示〕,从而帮助学生获得正确认知.证明:如图,画Rt△A′C′B′,使A′C′=b,B′C′=a,∠A′C′B′=90°.∴在Rt△A′C′B′中,有A′B′2=B′C′2+A′C′2=a2+b2.又a2+b2=c2,∴A′B′2=c2,∴A′B′=c.∴△ABC≌△A′B′C′,∴∠ACB=∠A′C′B′=90°,即△ABC是直角三角形.三、典例精析,掌握新知例1判断由线段a,b,c组成的三角形是不是直角三角形:〔1〕a=15,b=8,c=17;〔2〕a=13,b=14,c=15.【教学说明】本例可由学生自己独立完成,教师巡视指导,应关注学生是否是利用两短边的平方和与最长边的平方进行比拟.例2某港口位于东西方向的海岸线上,“远航〞号、“海天〞号轮船同时离开港口,各自沿一固定方向航行,“远航〞号每小时航行16海里,“海天〞号每小时航行12海里,它们离开港口一个半小时后相距30海里,如果知道“远航〞号沿东北方向航行,能知道“海天〞号沿哪个方向航行吗?【分析】由题意,可画出示意图如下图,易知PQ=16×32=24,PR=12×32=18,又RQ=30.∵242+182=576+324=900,RQ2=900,∴PR2+PQ2=RQ2,故以P、Q、R为顶点的三角形是直角三角形,由“远航〞号沿东北方向航行,故易知“海天〞号沿西北方向航行.例3说出以下命题的逆命题,这些命题的逆命题成立吗?〔1〕两条直线平行,内错角相等;〔2〕如果两个实数相等,那么它们的绝对值相等.【分析】如果一个命题的题设和结论是另一个命题的结论和题设,那么这两个命题是互逆命题,从而可得〔1〕、〔2〕的逆命题分别为“内错角相等,两直线平行〞,“如果两个实数的绝对值相等,那么这两个数相等〞,且〔1〕中的逆命题是真命题,〔2〕中的逆命题是假命题.四、运用新知,深化理解1.如果三条线段a、b、c满足a2=c2-b2,这三条线段组成的三角形是不是直角三角形?为什么?2.说出以下命题的逆命题,这些命题的逆命题成立吗?〔1〕全等三角形的对应角相等;〔2〕角的内部到角的两边距离相等的点在角的平分线上.【教学说明】学生自主探究,寻求结论,教师巡视,及时指导,让学生在练习过程中加深对知识的领悟.【答案】1.是直角三角形,由勾股定理的逆定理可得.2.〔1〕逆命题为对应角相等的三角形全等,该逆命题不成立.〔2〕逆命题为角平分线上的点到角的两边距离相等.该逆命题成立.五、师生互动,课堂小结谈谈这节课你的收获有哪些?还有哪些疑问?与同伴交流.课后作业1.布置作业:从教材“〞中选取.2.完成练习册中本课时练习.教学反思本课时的教学目标是在掌握了勾股定理的根底上,让学生如何从三边的关系来判定一个三角形是否为直角三角形,即“勾股定理的逆定理〞.由于学生对此在理解上可能有些困难,因此教学时可以实行分层教学,让不同水平的学生在同一课堂都能学好,为此,可设计三个层次的问题,以到达分层教学目标:第一层次是让学生直接运用定理判断三角形是否是直角三角形,掌握定理的根本运用;第二层次是强调三角形三边长或三边关系,再判断三角形是否是直角三角形,这样既稳固了勾股定理的逆定理的应用,又为下一个层次做好了铺垫;第三层次是灵活运用勾股定理及其逆定理解决图形面积的计算问题.根据学生原有的认知结构,让学生更好地体会分割的思想.教案中设计的题型前后照应,使知识有序推进,有助于学生的理解和掌握,让学生通过合作、交流、反思、感悟的过程,激发学生探究新知的兴趣,感受探索、合作的乐趣,并从中获得成功的体验,真正表达学生是学习的主人.第2课时教学目标:1、了解几何体、平面和曲面的意义,能正确判定围成几何体的面是平面还是曲面;了解几何图形构成的根本元素是点、线、面、体及其关系,能正确判定由点、线、面、体经过运动变化形成的简单的几何图形。
18.2勾股定理的逆定理(1)

具体训练步骤
1、情景引入2、典型例题3、针对性练习4、小结
训练内容实例
一、情景引入一起看书第73页上的故事引出命题2
命题2如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形
思考:这个命题与命题1“如果直角三角形两直角边是a、b,斜边是c,那么a2+b2=c2”
(2)勾股定理的逆定理是:如果两条直角边的平方和等于斜边的平方,那么这个三角形是直角三角形。
(3)△ABC的三边之比是1:1: ,则△ABC是直角三角形。
2.△ABC中∠A、∠B、∠C的对边分别是a、b、c,下列命题中的假命题是()
A.如果∠C-∠B=∠A,则△ABC是直角三角形。
B.如果c2= b2—a2,则△ABC是直角三角形,且∠C=90°。
⑴a= ,b= ,c= ;⑵a=5,b=7,c=9;
⑶a=2,b= ,c= ;⑷a=5,b= ,c=1。
5.若三角形的三边是⑴1、 、2;⑵ ;⑶32,42,52⑷9,40,41;
⑸(m+n)2-1,2(m+n),(m+n)2+1;则构成的是直角三角形的有()
A.2个B.3个 C.4个 D.5个
三、本课知识能力提升训练
四、课堂梳理小结作业说明
小结具体内容
1、命题与逆命题2、勾股定理的逆定理3、直角三角形的判断
详细分层作业
布置要求说明
必做:书76页习题18.2 1、2导航33页18.2随堂练习
选作:书76页习题18.2 4、6
提升能力点
灵活运用“勾股定理的逆定理”解决问题
学生层面
综合运用因式分解等相关知识解决勾股定理的问题
提升内容
1、已知a , b , c是△ABC的三边长,且满足 ,
勾股定理的逆定理10分钟教案

18.2勾股定理的逆定理一、教学目标知识目标:1、体会勾股定理的逆定理得出过程,掌握勾股定理的逆定理。
2、探究勾股定理的逆定理的证明方法。
3、理解原命题、逆命题、逆定理的概念。
能力目标:(1)通过对勾股定理的逆定理的探索,经历知识的发生、发展和形成的过程;(2)通过用三角形的三边的数量关系来判断三角形的形状,体验数形结合方法的应用。
二、教学重点难点重点:证明勾股定理的逆定理;用勾股定理的逆定理解决具体的问题。
难点:理解勾股定理的逆定理的推导。
三、教学准备一根打了13个等距离结的细绳子四、教学过程(1)复习旧课1、勾股定理:如果直角三角形两直角边分别为a ,b ,斜边为c ,那么222c b a =+(2)情境导入1、在古代,没有直尺、圆规等作图工具,人们是怎样画直角三角形的呢?【实验观察】用一根打了13个等距离结的细绳子,在小黑板上,用钉子钉在第一个结上,再钉在第4个结上,再钉在第8个结上,最后将第十三个结与第一个结钉在一起.然后用三角板量出最大角的度数.可以发现这个三角形是直角三角形。
(这是古埃及人画直角的方法)学生猜想:如果一个三角形的三边长c b a ,,满足下面的关系222c b a =+,那么这个三角形是直角三角形。
2、指出这个命题的题设和结论,对比勾股定理,理解互逆命题。
(3)证明新知在下图中,△ABC 的三边长a ,b ,c 满足222c b a =+。
如果△ABC 是直角三角形,它应该与直角边是a ,b 的直角三角形全等。
实际情况是这样吗?用三角形全等的方法证明这个命题。
(由于难度较大,由教师示范证明过程)已知:在△ABC 中,AB=c ,BC=a ,AC=b ,并且222c b a =+,如上图(1)。
求证:∠C=90°。
证明 : 作△A ’B ’C ’,使∠C ’=90°,A ’C ’=b , B ’C ’=a ,如上图(2),那么A ’B ’2 =22b a +(勾股定理)又∵222c b a =+(已知)∴A ’B ’2=2c ,A ’B ’=c (A ’B ’>0) 在△ABC 和△A ’B ’C ’中,BC=a =B ’C ’CA=b =C ’A ’AB=c =A ’B ’∴△ABC ≌△A ’B ’C ’(SSS)∴∠C=∠C ’=90°,∴△ABC 是直角三角形【强调说明】(1)勾股定理的逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形。
八年级数学 勾股定理的逆定理说课稿(精品教案)

勾股定理的逆定理说课稿延吉市第十三中学 金香丹 尊敬的各位评委,各位老师,大家好:我叫金香丹,延吉市第十三来自中学。
我今天说课的内容是《勾股定理的逆定理》第一课时。
下面我将从教材、目标、重点难点、教法、教学流程等几个方面向各位专家阐述我对本节课的教学设想。
一、说教材。
这节内容选自《人教版》义务教育课程标准实验教科书数学八年级下册第十八章《勾股定理》中的第二节。
勾股定理的逆定理是几何中一个非常重要的定理,它是对直角三角形的再认识,也是判断一个三角形是不是直角三角形的一种重要方法。
还是向学生渗透“数形结合”这一数学思想方法的很好素材。
八年级正是学生由实验几何向推理几何过渡的重要时期,通过对勾股定理逆定理的探究,培养学生的分析思维能力,发展推理能力。
在教学中渗透类比、转化,从特殊到一般的思想方法。
二、说教学目标。
教学目标支配着教学过程,教学目标的制定和落实是实施课堂教学的关键。
考虑到学生已有的认知结构心理特征及本班学生的实际情况,我制定了如下教学目标:1、知识与技能:探索并掌握直角三角形判别思想,会应用勾股定理及逆定理解决实际问题。
2、过程与方法:通过对勾股定理的逆定理的探索和证明,经历知识的发生,发展与形成的过程,体验“数形结合”方法的应用。
3、情感、态度、价值观:培养数学思维以及合情推理意识,感悟勾股定理和逆定理的应用价值。
渗透与他人交流、合作的意识和探究精神,体验数与形的内在联系。
三、说教学重点、难点,关键。
本着课程标准,在吃透教材的基础上,我确立了如下的教学重、难点及关键。
重点:理解并掌握勾股定理的逆定理,并会应用。
难点:理解勾股定理的逆定理的推导。
关键:动手验证,体验勾股定理的逆定理。
四、说教法。
在本节课中,我设计了以下几种教法学法:情景教学法,启发教学法,分层导学法。
让学生实践活动,动手操作,看自己画的三角形是否为一个直角三角形。
体会观察,作出合理的推测。
同时通过引入,让学生了解古代都用这种方法来确定直角的。
人教版八年级数学下册《勾股定理的逆定理》教学设计

《勾股定理的逆定理》教学设计教学目标:理解互逆命题、互逆定理及勾股定理的逆定理,掌握直角三角形的判别条件,熟记一些勾股数.重点:探究勾股定理的逆定理,理解并掌握互逆命题、原命题、逆命题难点:勾股定理的逆定理的应用.教学流程:一、导入新课说一说勾股定理的内容及题设、结论:答案:如果直角三角形两直角边长分别为a,b,斜边长为c,那么a2+b2=c2.题设(条件):直角三角形的两直角边长为a,b,斜边长为c.结论:a2+b2=c2.二、新课讲解介绍1:据说,古埃及人曾用下面的方法画直角:把一根长绳打上等距离的13 个结,然后以3 个结间距,4 个结间距、5 个结间距的长度为边长,用木桩钉成一个三角形,其中一个角便是直角.指出:如果三角形的三边分别为3,4,5,这些数满足关系:32+42=52,围成的三角形是直角三角形.介绍2:相传,我国古代大禹治水测量工程时,也用类似的方法确定直角.画一画:下列各组数中的两数平方和等于第三数的平方,分别以这些数为边长画出三角形(单位:cm),想一想:它们是直角三角形吗?① 2.5,6,6.5;②4,7.5,8.5.答案:它们是直角三角形猜想:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.互逆命题:两个命题的题设与结论正好相反,我们把像这样的两个命题叫做互逆命题.已知:如图,△ABC的三边长分别为a,b,c,且满足a2+b2=c2.求证:△ABC是直角三角形.证明:画一个Rt △A 'B 'C ',使B 'C '=a ,A 'C '=b ,∠C '=90°,由勾股定理得: 2222A B B C A C a b c ''''''=+=+=,,,BC a B C AC b A C AB c A B ''''''======ABC A B C '''∴∆≅∆090C C '∴∠=∠=即△ABC 是直角三角形.互逆定理:一般的,如果一个定理的逆命题经过证明是正确的,那么它也是一个定理,我们称这两个定理互为逆定理.勾股定理的逆定理:如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形是直角三角形. 例1:判断由线段a ,b ,c 组成的三角形是不是直角三角形:(1) a =15,b =8,c =17;(2) a =13,b =14,c =15.解:(1)∵152+82 =225+64=289,172=289,∴152+82 =172.根据勾股定理的逆定理,这个三角形是直角三角形.(2)∵132+142 =169+196=365,152=225,∴132+142 ≠152.根据勾股定理的逆定理,这个三角形不是直角三角形.勾股数:像15,8,17这样,能够成为直角三角形三条边长的三个正整数,称为勾股数例2:某港口P 位于东西方向的海岸线上.“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16 n mile ,“海天”号每小时航行12 n mile .它们离开港口一个半小时后分别位于点Q ,R 处,且相距30 n mile .如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?解:根据题意,PQ =16×1.5=24,PR =12×1.5=18,QR =30.∵242+182=302,即PQ 2+PR 2= QR 2,∴∠QPR = 90°由“远航”号沿东北方向航行可知,∠1=45°,∴∠2=45°,即“海天”号沿西北方向航行.三、巩固提升1.如果三角形的三边长分别为a,b,c,满足a2=c2-b2.这三条线段组成的三角形是不是直角三角形?为什么?解:是直角三角形.理由如下:∵a2=c2-b2,∴a2+b2=c2.∴这个三角形是直角三角形.2.说出下列命题的逆命题.这些逆命题是成立吗?(1)两条直线平行,内错角相等;答案:逆命题:内错角相等,两直线平行.成立(2)如果两个实数相等,那么它们的绝对值相等;答案:逆命题:如果两个实数的绝对值相等,那么这两个实数相等. 不成立(3)全等三角形的对应角相等;答案:逆命题:对应角相等的两个三角形全等.不成立(4)在角的内部,到角的两边距离相等的点在角的平分线上.答案:逆命题:角平分线上的点到角的两边的距离相等. 成立3.已知a,b,c分别是△ABC的三条边,则下列三角形是直角三角形的有_________.(填序号)①a=7,b=24,c=25;②a=6,b=9,c=12;③a∶b∶c=3∶4∶5;④a=1,b=2,c=3.答案:①③④4. A、B、C三地的两两距离如图所示,A地在B地的正东方向,C地在B地的什么方向上?解:∵AB=12km, BC=5km, AC=13km,又∵122+52=132.∴AB2+BC2=AC2.根据勾股定理的逆定理,△ABC是直角三角形,且∠C=90°.∵A地在B地的正东方向,∴C地在B地的正北方向上.5.如图,在四边形ABCD中,AB=3,BC=4,CD=12,AD=13,∠B=90°,求四边形ABCD的面积.解:∵AB=3,BC=4,∠B=90°,∴AC=5.∵CD=12,AD=13,又∵52+122=132,∴AC2+CD2=AD2,∴△ACD是直角三角形.∴四边形ABCD的面积为:1134+512=36 22⨯⨯⨯⨯.四、课堂小结今天我们学习了哪些知识?1.什么是互逆命题?什么是互逆定理?2.勾股定理的逆定理的内容是什么?它有什么作用?五、布置作业教材P34页习题17.2第1、3题.。
《勾股定理》集体备课教案

阳逻三中八年级数学下册集体备课教案第十八章《勾股定理》教材分析及教学建议本章主要内容是勾股定理及其逆定理。
首先让学生通过观察得出直角三角形两条直角边的平方和等于斜边的平方的结论并加以证明,从而得到勾股定理,然后运用勾股定理解决问题。
在此基础上,引入勾股定理的逆定理,并结合此项内容介绍逆命题、逆定理的概念。
本章教学时间约需8课时,具体安排如下:18.1 勾股定理 4 课时18.2 勾股定理的逆定理 3课时数学活动小结 1课时一、教科书内容和课程学习目标本章知识结构框图:直角三角形是一种特殊的三角形,它有许多重要的性质,如两个锐角互余,30°的角所对的直角边等于斜边的一半。
本章所研究的勾股定理,也是直角三角形的性质,而且是一条非常重要的性质。
勾股定理是几何中几个最重要的定理之一,它揭示了一个直角三角形三条边之间的数量关系,它可以解决许多直角三角形中的计算问题,是解直角三角形的主要依据之一,在生产生活实际中用途很大。
它不仅在数学中,而且在其他自然科学中也被广泛地应用。
目前世界上许多科学家正在试图寻找其他星球的“人”,为此向宇宙发出了许多信号,如地球上人类的语言、音乐、各种图形等。
据说我国著名数学家华罗庚曾建议,发射一种反映勾股定理的图形,如果宇宙人是“文明人”,那么他们一定会识别这种“语言”的。
这个事实可以说明勾股定理的重大意义,发现勾股定理,尤其在2000多年前,是非常了不起的成就。
在第一节中,教科书让学生通过观察计算一些直角三角形两直角边为边长的小正方形的面积与以斜边为边长的正方形的面积的关系,发现两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积,从而发现勾股定理。
勾股定理的证明方法很多,教科书正文中介绍的是一种面积证法。
其中的依据是图形经过割补拼接后,只要没有重叠,没有空隙,面积不会改变。
在教科书中,图18.1-3(1)中的图形经过割补拼接后得到图18.1-3(3)中的图形。
18.2勾股定理的逆定理(1)[精选文档]
![18.2勾股定理的逆定理(1)[精选文档]](https://img.taocdn.com/s3/m/d95b845d4b7302768e9951e79b89680203d86bad.png)
(1)a=6,b=8,c=10; (2)a=5,b=12,c=13;
(3)a=5,b=7,c=9; (4)a=8,b=15,c=17;
尝试应用
4.说出下列命题的逆命题.这些命题的逆命题成立吗? (1)两条直线平行,内错角相等. (2)如果两个实数相等,那么它们的平方相等. (3)如果两个实数相等,那么它们的绝对值相等. (4)全等三角形的对应角相等. 5.如图所示△ABC三边a,b,c为边向外作正方形, 若S1+S2=S3成立,则△ABC是什么三角形?为什么?
情境引入
用一根钉上13个等距离结的细绳子,让同学操作, 用钉子钉在第一个结上,再钉在第4个结上,再钉在第8个结 上,最后将第十三个结与第一个结钉在一起.然后用角尺量 出最大角的度数.可以发现这个三角形是直角三角形.
课中探究
探究一:动手实践.
(一)、画一画.画出边长分别是下列各组数的三角形(单位:厘米).
作用:根据边的 数量关系判定是 否是直角三角形.
尝试应用
1.“如果同旁内角互补,那么两条直线平行”的题设是
_____, 结论是 ,逆命题是_______.
2.“对顶角相等”的的题设是 结论是
,逆命题
是_______.
3. 已知:在△ABC中,∠A、∠B、∠C的对边分别是a、b、
c,分别为下列长度,判断该三角形是否是直角三角形?
(1):3、4、5 ;(2):3、6、8;(3):6、8、10
(二)、量一量.用你的量角器分别测量一下小组内同学画出的三个三角形的
最大角的度数,并判断上述你们所画的三角形的形状:(按角分类)
(三)、算一算.请比较上述每个三角形的两条较短边的平方和与最长边的
平方之间的大小关系. 你能发现什么规律?
最新人教版八年级数学下册 第十七章《勾股定理的逆定理》教案

《勾股定理的逆定理》教案1【教学设计说明】本课使学生在动手操作的基础上和合作交流的良好氛围中,让学生充分观察、动手实践,营造轻松愉快的学习氛围,以此激发学生的学习兴趣.通过巧妙而自然地在学生的认识结构与几何知识结构之间筑了一个信息流通渠道,进而达到完善学生的数学认识结构的目的.【教材分析】勾股定理是我国古代数学的一项伟大成就,被广泛的应用于数学和实际生产生活的各个方面.勾股定理的逆定理是在学生研究了勾股定理的基础上进一步学习的内容,它是初中数学教学内容中的一个重要定理,是对直角三角形的再认识,也是判断一个三角形是否是直角三角形的重要方法,体现了数形结合的思想,同时在应用中渗透了利用代数计算的方法证明几何问题的思想,为将来学习解析几何埋下了伏笔.通过本节内容的学习,进一步加深学生对“性质与判定”之间的辩证统一关系的认识,同时也完善了学生的知识结构,为后续的学习打下基础.【学情分析】尽管学生知识增多,能力增强,但思维的局限性还很大,能力也有差距,而勾股定理的逆定理的证明方法学生第一次见到,它要求根据已知条件构造一个直角三角形,根据学生的智能状况,学生不容易想到,因此勾股定理的逆定理的证明又是本节的难点,这样如何添辅助线就是解决它的关键.在前面知识的学习过程中,学生已经经历了的自主探究、动手实践、合作学习等过程,具有了一定参与数学活动的经验和数学思考,具备了一定的进行数学活动的能力.【教学目标】1.了解原命题及其逆命题的概念.会识别两个互逆的命题,知道原命题成立其逆命题不一定成立.2.探索勾股定理的逆定理,并能运用它们解决一些简单的实际问题.3.在探究勾股定理的逆定理的活动中,通过一系列富有探究性的问题,渗透与他人交流、合作的意识和探究精神.4.通过对勾股定理的逆定理的探索,经历知识的发生、发展与形成的过程.通过用三角形三边的数量关系来判断三角形的形状,体验数形结合方法的应用.【教学重点】勾股定理的逆定理及其运用.【教学难点】勾股定理的逆定理的证明.【课时设计】两课时.【教学策略】本节课主要通过创设问题情境,引导学生动手实践、自主学习、合作交流、采用发现法、探究法、练习法为辅的教学方法.【教学过程设计】(一)复习引入(1)勾股定理的内容是什么?(2)求以线段a、b为直角边的直角三角形的斜边c的长:①a=3,b=4;②a=5,b=12;③a=8,b=15.(3)上述(2)中三角形的边a,b,c有什么关系______,分别以上述a,b,c为边的三角形的形状会是什么样的呢?通过此情景引发学生的质疑、兴趣,师揭示课题,提出教学目标并板书课题.答案:(1)勾股定理:如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么a +b =c .(2)①c=5;②c=13;③c=17;(3)a +b =c ;直角三角形.【设计意图】在复习旧知的基础上,通过调换命题的条件和结论,巧妙地过渡到本节课的课题.(二)探索新知实验观察:1.拼一拼:同学们拿出准备好的木条,用三根木条作为三角形的边a ,b ,c 拼成一个三角形,要求如下:(1)a =3cm ,b =4cm ,c =5cm ;(2)a =5cm ,b =12cm ,c =13cm ;(3)a =8cm ,b =15c m ,c =17cm.2.量一量:用你的量角器分别测量一下上述各三角形的最大角的度数,并说出此三角形的形状.3.猜一猜:由上面几个例子你发现了什么吗?请以命题的形式说出你的观点.学生思考并回答:命题2与勾股定理的题设和结论有何关系?师生共同归纳:原命题与逆命题的定义.4.说一说:说出下列命题的逆命题.这些命题的逆命题成立吗?(1)两直线平行,内错角相等.(2)如果两个实数相等,那么它们的平方相等.(3)如果两个实数相等,那么它们的绝对值相等.(4)全等三角形的对应边相等答案:2.90;直角三角形.3.命题2:如果三角形的三边长分别为a ,b ,c ,满足a +b =c ,那么这个三角形是直角三角形.4.(1)内错角相等,两直线平行.成立(2)如果两个实数的平方相等,那么这两个实数相等.不成立(3)如果两个实数的绝对值相等,那么这两个实数相等.不成立(4)对应边相等的两个三角形是全等三角形.成立【设计意图】通过“拼一拼”“量一量”“猜一猜”“说一说”等活动感知勾股定理的逆定理.比较勾股定理与命题2的题设与结论,认知原命题与逆命题的互逆性,凸显命题的形成过程,自然地得出勾股定理的逆命题.5.验一验:师:那勾股定理的逆命题是否正确?我们怎么验证呢?师生行为:让学生试着寻找解题思路;教师可引导学生发现证明的思路.本活动中,教师应重点关注学生:①能否在教师的引导下,理清思路.②能否积极主动地思考问题,参与交流、讨论.222222222师生共同得出:把命题转化成已知求证的形式.已知:如图,在△ABC 中,AB =c ,AC =b ,BC =a ,且a +b =c ,求证:∠C =90.222 师:△ABC 的三边长a ,b ,c 满足a +b =c .如果△ABC 是直角三角形,它应与直角边是a ,b 的直角三角形全等,实际情况是这样吗?我们作一个Rt △A 'B 'C ',使B 'C '=a ,A 'C '=b ,∠C '=90(如下图)Rt △A B C 会与△ABC 全等吗?'''222生:我们所作的Rt △A 'B 'C ',A 'B '=a +b ,又因为c =a +b ,所以A 'B '=c ,2222222∠C =∠C '=90.△ABC 即A 'B '=c .△ABC 和△A 'B 'C '三边对应相等,所以两个三角形全等,为直角三角形.即勾股定理的逆命题是正确的.师:很好,当我们证明了勾股定理的逆命题是正确的,那么命题就成为一个定理.勾股定理和勾股定理的逆定理称为互为逆定理.师生共同归纳出勾股定理的逆定理:如果三角形的三边长分别为a ,b ,c ,满足a 2+b 2=c 2,那么这个三角形是直角三角形.学生明确利用勾股定理的逆定理求角要注意的事项:(1).条件:须知道三角形三边长a 、b 、c 满足a +b =c ,往往要通过计算.结论:∠C =90(最长边c 所对的角).(2).书写格式:∵如图在△ABC 中,AC +BC =AC .∴∠C =90.222 222【设计意图】经历定理的发生、发展、形成的探究过程,把“构造直角三角形”这一方法的获取过程交给学生,让他们在不断的尝试、探究的过程中,亲身体验参与发现的愉悦,有效地突破本节的难点.(三)例题讲解例1:判断由线段a,b,c组成的三角形是不是直角三角形?(1)a=15,b=17,c=8;;(2)a=13,b=15,c=14.学生根据勾股逆定理来解决此类已知三边,判断三角形形状的问题.通过思考,归纳出解题思路.师生共同归纳:像15,17,8,能够成为直角三角形三条边长的三个正整数,称为勾股数.答案:(1) 152+82=225+64=289172=289∴152+82=172∴这个三角形是直角三角形(2) 132+142=169+196=365152=225∴13+14≠15222∴这个三角形不是直角三角形【设计意图】进一步熟悉和掌握勾股定理的逆定理及其运用,理解勾股数的概念,突出本节的教学重点.例2.某港口位于东西方向的海岸线上.“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里.它们离开港口一个半小时后相距30海里.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?NQ远航号海天号R21P E海岸线解:根据题意画图,如图所示:PQ=16⨯1.5=24,PR=12⨯1.5=18,QR=30242+182=302,即PQ2+PR2=QR2∴∠QPR=90由”远航“号沿东北方向航行可知,∠QPS=45.所以∠RPS=45 ,即?海天”号沿西北方向航行.【设计意图】以例2为理解勾股定理逆定理的应用.(四)拓展提高1.下面以∠A 、∠B 、∠C 的对应边分别为a ,b ,c 的三角形是不是直角三角形?如果是,那么哪一个角是直角?(1)a =15b =20c =25;(2)a =13b =10c =20;(3)a =1b =2c =3;(4)a :b :c =3:4:5 .2.△ABC 中,∠A ,∠B ,∠C 所对应边的长分别为a ,b ,c ,且c =a -b ,则下列说法正确的是().A .∠C 是钝角B .∠C 是直角C .∠A 是直角D .∠B 是直角3.满足下列条件的△ABC ,不是直角三角形的是().A .AC +BC =AB B .a ∶b ∶c =5∶12∶13C .∠C =∠A +∠BD .∠A ∶∠B ∶∠C =3∶4∶54.一个零件的形状如左图所示,按规定这个零件中∠A 和∠DBC 都应为直角.工人师傅量得这个零件各边尺寸如右图所示,这个零件符合要求吗?222222C13D ACD 4512BA 3B参考答案:1、(1)是;∠C.(2)不是.(3)是;∠B.(4)是;∠C.2、C3、D4、解析:∵AB 2+AD 2=32+42=25BD 2=52=25∴AB 2+AD 2=BD 2∴∠A =90∵BD 2+BC 2=52+122=169CD 2=132=169∴BD 2+BC 2=CD 2∴∠CBD =90∴这个零件符合要求.【设计意图】及时反馈教学效果,查漏补缺,对学有困难的同学给予鼓励和帮助.(五)知识小结你能谈谈学习这节内容的收获和体会吗?【设计意图】通过归纳总结,使学生优化概念,内化知识.(六)课后作业1.下列三条线段能组成直角三角形的是().A .6,8,9B .5,6,12C .5,3,2D .10,7,82.有六根细木棒,它们的长度分别为2,4,6,8,10,12(单位:cm ),从中取出三根首尾顺次连接搭成一个直角三角形,则这根木棒的长度分别为().A .2,4,8B .4,8,10C .6,8,10D .8,10,123.在△ABC 中,∠A ,∠B ,∠C 的对边分别为a ,b ,c ,且(a +b )(a -b )=c ,则().2A .∠A 为直角B .∠C 为直角C .∠B 为直角D .不是直角三角形4.一个三角形的三边长分别为15,20,25,那么它的最长边上的高是().A .12.5B .12C .152D .925.请你写一组勾股数:_________________.6.若一个三角形的三边分别为5、4、3,则它的面积为.27.已知a -5+(b -12)+c -13=0,则以a ,b ,c 为边的三角形是_____________.8.若一个三角形的三边之比为5:12:13,且周长为60cm ,则它的面积为_______cm .9.已知:在∆ABC 中,AB =13cm,BC =10cm,BC 边上的中线AD =12cm.求AC .10.如图,在我国沿海有一艘不明国籍的轮船进入我国海域,我海军甲、乙两艘巡逻艇立即从相距13海里的A 、B 两个基地前去拦截,六分钟后同时到达C 地将其拦截.已知甲巡逻艇每小时航行120海里,乙巡逻艇每小时航行50海里,航向为北偏西40°,问:甲巡逻艇的航向?2答案:1.C 2.C 3.A 4.B5.3,4,5答案不唯一6.67.直角三角形.解:由题意可得a=5,b=12,c=13.∵52+122=169,132=169.∴52+122=132即a 2+b 2=c 2所以三角形是直角三角形8.1209.∵AD 2+BD 2=52+122=169AB 2=132=169即AD 2+BD 2=AB 2∴△ABD 是直角三角形∴在Rt △ACD 中,AC=52+122=1311⨯120=12海里,BC =⨯50=5海里1010∵AC 2+BC 2=52+122=16910.由题意得,AC =AB 2=132=169即AC 2+BC 2=AB 2∴△ABC 是直角三角形∴乙巡逻艇向北偏西40 方向航行,即∠ABC =50 ∴∠BAC =40 ,即甲巡逻艇向北偏东50 方向航行.答:甲巡逻艇向北偏东50 方向航行.【板书设计】【教学反思】这节课的学习,我采用了体验探究的教学方式.在课堂教学中,首先由教师创设情境,提出问题;再让学生通过“拼一拼”“量一量”“猜一猜”“说一说”等活动猜想出一般性的结论;然后由去验证结论,使学生自始至终感悟、体验、尝试到了知识的生成过程,品尝着成功后带来的乐趣.这不仅使学生学到获取知识的思想和方法,同时也体会到在解决问题的过程中与他人合作的重要性,而且为学生今后获取知识以及探索、发现和创造打下了良好的基础,更增强了学生敢于实践、勇于探索、不断创新和努力学习数学知识的信心和勇气.要想真正搞好以探究活动为主的课堂教学,必须掌握多种教学思想方法和教学技能,不断更新与改变教学观念和教学态度,使课堂真正成为学生既能自主探究,师生又能合作互动的场所,培养学生成为既有创新能力,又能够适应现代社会发展的公民.作为教师,在课堂教学中要始终牢记:学生才是学习的主体,学生才是课堂的主体;教师只是课堂教学活动的组织者、引导者与合作者.因此,课堂教学过程的设计,也必须体现出学生的主体性.。
勾股定理的逆定理说课稿

18.2勾股定理的逆定理说课稿一、教材分析 :(一)、本节课在教材中的地位作用“勾股定理的逆定理”一节,是在上节“勾股定理”之后,继续学习的一个直角三角形的判断定理,它是前面知识的继续和深化,勾股定理的逆定理是初中几何学习中的重要内容之一,是今后判断某三角形是直角三角形的重要方法之一,在以后的解题中,将有十分广泛的应用,同时在应用中渗透了利用代数计算渗透与他人交流、合作的意识和探究精神(三)、学情分析:尽管已到初二下学期学生知识增多,能力增强,但思维的局限性还很大,能力也有差距,而勾股定理的逆定理的证明方法学生第一次见到,它要求根据已知条件构造一个直角三角形,根据学生的智能状况,学生不容易想到,因此勾股定理的逆定理的证明又是本节的难点,这样如何添辅助线就是解决它的关键,这样就确定了本节课的重点、难点和关键。
重点:勾股定理逆定理的应用难点:勾股定理逆定理的证明关键:辅助线的添法探索二、教学过程:本节课的设计原则是:使学生在动手操作的基础上和合作交流的良好氛围中,通过巧妙而自然地在学生的认识结构与几何知识结构之间筑了一个信息流通渠道,进而达到完善学生的数学认识结构的目的。
(一)、复习回顾: 复习回顾与勾股定理有关的内容,建立新旧知识之间的联系。
直角三角形,通过操作验证两三角形全等,从而不仅显示了符合条件的三角形是直角三角形,还孕育了辅助线的添法,为后面进行逻辑推理论证提供了直观的数学模型。
接下来就是利用这个数学模型,从理论上证明这个定理。
从动手操作到证明,学生自然地联想到了全等三角形的性质,证明它与一个直角三角形全等,顺利作出了辅助直角三角形,整个证明过程自然、无神秘感,实现了从生动直观向抽象思维的转化,同时学生亲身体会了动手操作——观察——猜测——探索——论证的全过程,这样学生不是被动接受勾股定理的逆定理,因而使学生感到自然、亲切,学生的学习兴趣和学习积极性有所提高。
使学生确实在学习过程中享受到自我创造的快乐。
人教版八年级数学下册《勾股定理》复习课教学设计 (1)

《勾股定理》复习课教学设计一、教学目标:1、理解本章节知识构建过程,进一步理解勾股定理及其逆定理,掌握常见的勾股定理题型,能熟练进行常规题型通性通法的运算。
2、在观察、比较、分析、概括、猜想、验证等学习活动过程中,有条理、有根据地思考、探究问题,渗透数形结合的数学思想,并培养学生的抽象概括能力。
3、感受主动参与、合作交流的乐趣,培养学生自主探索的学习习惯,乐于探究的学习态度。
二、教学重点:勾股定理及其逆定理的特征和计算。
教学难点:运用转化思想构造所需要的直角三角形。
三、教学准备教师准备:课件(图片资料、视频等)、勾股定理直观演示教具;学生准备:练习本。
四、教学过程:教学引入:勾股定理描述了直角三角形三边之间的数量关系,是沟通了几何图形与数的运算一个重要桥梁,同时又蕴含了多种数学思想,如:数形结合、分类讨论、转化、方程等,所以本单元在中考中从思想方法和计算能力上要求都比较高。
学习目标展示:设计目的:让学生学习有目标,努力有方向。
素养小题抢答:1、勾股定理的内容是什么?2、若直角三角形的两条边长分别为3cm,4cm,另外一条边长为多少.3、如果一个直角三角形的两直角边分别为6,8,则斜边上的是多少.4、勾股定理逆定理的内容是什么?5、给出下列4组数据:(1) 9、12、15 ;(2)7、24、25;(3)32、42、52;(4)3a、4a、5a (a>0);其中可构成直角三角形的有______________ (填序号)。
6、勾股定理有什么作用?学习过程:让各组学生抢答,根据抢答情况分组加分,同时组织学生纠错。
教师活动:针对易出错问题进行及时强调。
思维导图扬帆:学习过程:教师检查小组长的学案,然后让小组长检查纠错。
设计目的:进一步形成知识网络题型分类助航:教师活动:为学生展示美丽的“勾股树”,引出勾股定理的证明,并为学生展示动图证明勾股定理,激发学习的学习欲望和爱国热情。
题型一、“勾股树”问题典型例题1 —(同步学习33页,练习1)如下图,所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A,B,C,D的边长分别为3,5,2,3,则正方形E的面积为()A. 13B. 26C. 47D. 94活动设计:自主思考,举手回答,到屏幕处讲解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
18.2 勾股定理的逆定理(一)
一、教学目标
1.体会勾股定理的逆定理得出过程,掌握勾股定理的逆定理。
2.探究勾股定理的逆定理的证明方法。
3.理解原命题、逆命题、逆定理的概念及关系。
二、重点、难点
1.重点:掌握勾股定理的逆定理及证明。
2.难点:勾股定理的逆定理的证明。
三、例题的意图分析
例1(补充)使学生了解命题,逆命题,逆定理的概念,及它们之间的关系。
例2(P82探究)通过让学生动手操作,画好图形后剪下放到一起观察能否重合,激发学生的兴趣和求知欲,锻炼学生的动手操作能力,再通过探究理论证明方法,使实践上升到理论,提高学生的理性思维。
例3(补充)使学生明确运用勾股定理的逆定理判定一个三角形是否是直角三角形的一般步骤:①先判断那条边最大。
②分别用代数方法计算出a 2+b 2和c 2的值。
③判断a 2+b 2和c 2是否相等,若相等,则是直角三角形;若不相等,则不是直角三角形。
四、课堂引入
创设情境:⑴怎样判定一个三角形是等腰三角形?
⑵怎样判定一个三角形是直角三角形?和等腰三角形的判定进行对比,从勾股定理的逆命题进
行猜想。
五、例习题分析
例1(补充)说出下列命题的逆命题,这些命题的逆命题成立吗?
⑴同旁内角互补,两条直线平行。
⑵如果两个实数的平方相等,那么两个实数平方相等。
⑶线段垂直平分线上的点到线段两端点的距离相等。
⑷直角三角形中30°角所对的直角边等于斜边的一半。
分析:⑴每个命题都有逆命题,说逆命题时注意将题设和结论调换即可,但要分清题设和结论,并注意语言的运用。
⑵理顺他们之间的关系,原命题有真有假,逆命题也有真有假,可能都真,也可能一真一假,还可能都假。
解略。
例2(P82探究)证明:如果三角形的三边长a ,b ,
c 满足a b c a
b B C A A1C1
B1
a2+b2=c2,那么这个三角形是直角三角形。
分析:⑴注意命题证明的格式,首先要根据题意画出图形,然后写已知求证。
⑵如何判断一个三角形是直角三角形,现在只知道若有一个角是直角的三角形是直角三角形,从而将问题转化为如何判断一个角是直角。
⑶利用已知条件作一个直角三角形,再证明和原三角形全等,使问题得以解决。
⑷先做直角,再截取两直角边相等,利用勾股定理计算斜边A1B1=c,则通过三边对应相等的两个三角形全等可证。
⑸先让学生动手操作,画好图形后剪下放到一起观察能否重合,激发学生的兴趣和求知欲,再探究理论证明方法。
充分利用这道题锻炼学生的动手操作能力,由实践到理论学生更容易接受。
证明略。
例3(补充)已知:在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,a=n2-1,b=2n,c=n2+1(n >1)
求证:∠C=90°。
分析:⑴运用勾股定理的逆定理判定一个三角形是否是直角三角形的一般步骤:①先判断那条边最大。
②分别用代数方法计算出a2+b2和c2的值。
③判断a2+b2和c2是否相等,若相等,则是直角三角形;若不相等,则不是直角三角形。
⑵要证∠C=90°,只要证△ABC是直角三角形,并且c边最大。
根据勾股定理的逆定理只要证明a2+b2=c2即可。
⑶由于a2+b2= (n2-1)2+(2n)2=n4+2n2+1,c2=(n2+1)2= n4+2n2+1,从而a2+b2=c2,故命题获证。
六、课堂练习
1.判断题。
⑴在一个三角形中,如果一边上的中线等于这条边的一半,那么这条边所对的角是直角。
⑵命题:“在一个三角形中,有一个角是30°,那么它所对的边是另一边的一半。
”的逆命题是真命题。
⑶勾股定理的逆定理是:如果两条直角边的平方和等于斜边的平方,那么这个三角形是直角三角形。
⑷△ABC的三边之比是1:1:2,则△ABC是直角三角形。
2.△ABC中∠A、∠B、∠C的对边分别是a、b、c,下列命题中的假命题是()
A.如果∠C-∠B=∠A,则△ABC是直角三角形。
B.如果c2= b2—a2,则△ABC是直角三角形,且∠C=90°。
C.如果(c+a)(c-a)=b2,则△ABC是直角三角形。
D.如果∠A:∠B:∠C=5:2:3,则△ABC是直角三角形。
3.下列四条线段不能组成直角三角形的是( )
A .a=8,b=15,c=17
B .a=9,b=12,c=15
C .a=5,b=3,c=2
D .a :b :c=2:3:4
4.已知:在△ABC 中,∠A 、∠B 、∠C 的对边分别是a 、b 、c ,分别为下列长度,判断该三角形是否是直角三角形?并指出那一个角是直角?
⑴a=3,b=22,c=5; ⑵a=5,b=7,c=9;
⑶a=2,b=3,c=7; ⑷a=5,b=62,c=1。
七、课后练习,
1.叙述下列命题的逆命题,并判断逆命题是否正确。
⑴如果a 3>0,那么a 2>0;
⑵如果三角形有一个角小于90°,那么这个三角形是锐角三角形;
⑶如果两个三角形全等,那么它们的对应角相等;
⑷关于某条直线对称的两条线段一定相等。
2.填空题。
⑴任何一个命题都有 ,但任何一个定理未必都有 。
⑵“两直线平行,内错角相等。
”的逆定理是 。
⑶在△ABC 中,若a 2=b 2-c 2,则△ABC 是 三角形, 是直角;
若a 2<b 2-c 2,则∠B 是 。
⑷若在△ABC 中,a=m 2-n 2,b=2mn ,c= m 2+n 2,则△ABC 是 三角形。
3.若三角形的三边是 ⑴1、3、2; ⑵51,41,
31; ⑶32,42,52 ⑷9,40,41; ⑸(m +n )2-1,2(m +n ),(m +n )2+1;则构成的是直角三角形的有( )
A .2个
B .3个 C.4个 D.5个
4.已知:在△ABC 中,∠A 、∠B 、∠C 的对边分别是a 、b 、c ,分别为下列长度,判断该三角形是否是直角三角形?并指出那一个角是直角?
⑴a=9,b=41,c=40; ⑵a=15,b=16,c=6;
⑶a=2,b=32,c=4; ⑷a=5k ,b=12k ,c=13k (k >0)。
课后反思:。