中考数学压轴题旋转问题带答案(1)

合集下载

中考数学旋转压轴题解题方法(详解答案)

中考数学旋转压轴题解题方法(详解答案)

中考数学旋转压轴题解题方法一、图形旋转知识与方法1、图形的变换是新课标中“空间与图形”领域的一个主要内容,体现运动变换的理念与思想,是教材中的一大亮点.初中数学所学的图形变换包括平移、轴对称、旋转、位似。

2、旋转,它是一种数学变换.生活中的旋转也是随处可见,汽车的轮子,钟表的指针,游乐园里的摩天轮,都是旋转现象.3、图形的旋转有三个要素:①旋转中心;②旋转方向;③旋转角度.三要素中只要任意改变一个,图形就会不一样.4、旋转具有以下性质:①对应点到旋转中心的距离相等,即边相等。

②对应点与旋转中心所连线段的夹角等于旋转角,即角相等③旋转前、后的图形全等。

5、旋转是近几年中考数学的热点题型,对旋转的特例“中心对称”的考查多以选择题或填空题的形式出现,题目比较简单,大多数属于送分题;利用旋转作图,是格点作图题中的重点。

利用旋转构造复杂几何图形,通常将旋转融合在综合题中,题目难度中等,在选择题、填空题、解答题中都有出现。

有旋转点的,有旋转线段的,更多的是旋转图形的。

旋转三角形,旋转平行四边形,旋转矩形,旋转正方形,其中,近两年的各地中考试题中,旋转矩形出现的最频繁,深受出题老师的青睐。

其实旋转的题目还有一个好听的名字就是“手拉手问题”,本文将对这一类问题分类汇总,以这三个性质为突破口,就能快速解决问题。

二、典例精讲典例.在△ABC中,AC=BC,∠ACB=α,点D为直线BC上一动点,过点D作DF∥AC 交直线AB于点F,将AD绕点D顺时针旋转α得到ED,ED交直线AB于点O,连接BE.(1)问题发现:如图1,α=90°,点D在边BC上,猜想:①AF与BE的数量关系是;②∠ABE=度.(2)拓展探究:如图2,0°<α<90°,点D在边BC上,请判断AF与BE的数量关系及∠ABE的度数,并给予证明.(3)解决问题如图3,90°<α<180°,点D在射线BC上,且BD=3CD,若AB=8,请直接写出BE 的长.思路点拨:(1)①由等腰直角三角形的判定和性质可得:∠ABC=45°,由平行线的性质可得∠FDB=∠C=90°,进而可得由等角对等边可得DF=DB,由旋转可得:∠ADF=∠EDB,DA=DE,继而可知△ADF≌△EDB,继而即可知AF=BE;②由全等三角形的性质可知∠DAF=∠E,继而由三角形内角和定理即可求解;(2)由平行线的性质可得∠ACB=∠FDB=α,∠CAB=∠DFB,由等边对等角可得∠ABC=∠CAB,进而根据等角对等边可得DB=DF,再根据全等三角形的判定方法证得△ADF≌△EDB,进而可得求证AF=BE,∠ABE=∠FDB=α;(3)分两种情况考虑:①如图(3)中,当点D在BC上时,②如图(4)中,当点D在BC的延长线上时,由平行线分线段成比例定理可得1==4AF CDAB CB、1==2AF CDAB CB,代入数据求解即可;满分解答:(1)问题发现:如图1中,设AB交DE于O.∵∠ACB=90°,AC=BC,∴∠ABC=45°,∵DF∥AC,∴∠FDB=∠C=90°,∴∠DFB=∠DBF=45°,∴DF=DB,∵∠ADE=∠FDB=90°,∴∠ADF=∠EDB,∵DA=DE,DF=DB∴△ADF≌△EDB(SAS),∴AF=BE,∠DAF=∠E,∵∠AOD=∠EOB,∴∠ABE=∠ADO=90°故答案为:①AF=BE,②90°.(2)拓展探究:结论:AF=BE,∠ABE=α.理由如下:∵DF‖AC∴∠ACB=∠FDB=α,∠CAB=∠DFB,∵AC=BC,∴∠ABC=∠CAB,∴∠ABC=∠DFB,∴DB=DF,∵∠ADF=∠ADE﹣∠FDE,∠EDB=∠FDB﹣∠FDE,∴∠ADF=∠EDB,∵AD=DE,DB=DF∴△ADF≌△EDB(SAS),∴AF=BE,∠AFD=∠EBD∵∠AFD=∠ABC+∠FDB,∠DBE=∠ABD+∠ABE,∴∠ABE=∠FDB=α.(3)解决问题①如图(3)中,当点D在BC上时,由(2)可知:BE=AF,∵DF∥AC,∴1==4 AF CDAB CB,∵AB=8,∴AF=2,∴BE=AF=2,②如图(4)中,当点D在BC的延长线上时,∵AC∥DF,∴1==2 AF CDAB CB,∵AB=8,∴BE=AF=4,故BE的长为2或4.名师点评:(1)本题考查等腰直角三角形的判定和性质、平行线的性质、等边对等角的性质和等角对等边的性质、旋转的性质、相似三角形的判定及其性质、三角形内角和定理、平行线分线段成比例定理,涉及到的知识点较多,解题的关键是综合运用所学知识.(2)旋转问题三步走:。

数学中考压轴题旋转问题(经典)

数学中考压轴题旋转问题(经典)

数学中考压轴题旋转问题(经典)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN旋转一、选择题1. (广东)如图,把一个斜边长为2且含有300角的直角三角板ABC 绕直角顶点C 顺时针旋转900到△A 1B 1C ,则在旋转过程中这个三角板扫过的图形的面积是【 】A .πB .3C .33+42π D .113+124π 2. (湖北)如图,O 是正△ABC 内一点,OA=3,OB=4,OC=5,将线段BO 以点B 为旋转中心逆时针旋转60°得到线段BO′,下列结论:①△BO′A 可以由△BOC 绕点B 逆时针旋转60°得到;②点O 与O′的距离为4;③∠AOB=150°;④AOBO S =6+33四形边;⑤AOC AOB 93SS6+4+=.其中正确的结论是【 】 A .①②③⑤ B .①②③④ C .①②③④⑤ D .①②③ 3. (四川)如图,P 是等腰直角△ABC 外一点,把BP 绕点B 顺时针旋转90°到BP′,已知∠AP′B=135°,P′A :P′C=1:3,则P′A :PB=【 】。

A .1:2 B .1:2 C .3:2 D .1:34. (贵州)点P 是正方形ABCD 边AB 上一点(不与A 、B 重合),连接PD 并将线段PD 绕点P 顺时针旋转90°,得线段PE ,连接BE ,则∠CBE 等于【 】 A .75° B .60° C .45° D .30°5. (广西)如图,等边△ABC 的周长为6π,半径是1的⊙O 从与AB 相切于点D 的位置出发,在△ABC 外部按顺时针方向沿三角形滚动,又回到与AB 相切于点D 的位置,则⊙O 自转了:【 】A .2周B .3周C .4周D .5周二、填空题6. (四川)如图,四边形ABCD 中,∠BAD=∠BCD=900,AB=AD,若四边形ABCD 的面积是24cm 2.则AC 长是 ▲ cm.7. (江西南昌)如图,正方形ABCD与正三角形AEF的顶点A重合,将△AEF绕顶点A旋转,在旋转过程中,当BE=DF时,∠BAE的大小可以是▲ .8. (吉林省)如图,在等边△ABC中,D是边AC上一点,连接BD.将△BCD绕点B逆时针旋转60°得到△BAE,连接ED.若BC=10,BD=9,则△AED的周长是_ ▲____.三、解答题9. (北京市)在ABC△中,BA=BC BAC,,M是AC的中点,P是线段BM上的动点,将线段∠=αPA绕点P顺时针旋转2α得到线段PQ。

中考数学压轴题之旋转(中考题型整理,突破提升)及详细答案

中考数学压轴题之旋转(中考题型整理,突破提升)及详细答案
【答案】解:(1)CG=EG (2)(1)中结论没有发生变化,即 EG=CG. 证明:连接 AG,过 G 点作 MN⊥AD 于 M,与 EF 的延长线交于 N 点.
在△ DAG 与△ DCG 中, ∵ AD=CD,∠ ADG=∠ CDG,DG=DG, ∴ △ DAG≌ △ DCG. ∴ AG=CG. 在△ DMG 与△ FNG 中, ∵ ∠ DGM=∠ FGN,FG=DG,∠ MDG=∠ NFG, ∴ △ DMG≌ △ FNG. ∴ MG=NG 在矩形 AENM 中,AM=EN. 在 Rt△ AMG 与 Rt△ ENG 中, ∵ AM=EN, MG=NG, ∴ △ AMG≌ △ ENG. ∴ AG=EG ∴ EG=CG. (3)(1)中的结论仍然成立.
4.如图(1)所示,将一个腰长为 2 等腰直角△ BCD 和直角边长为 2、宽为 1 的直角△ CED 拼在一起.现将△ CED 绕点 C 顺时针旋转至△ CE’D’,旋转角为 a. (1)如图(2),旋转角 a=30°时,点 D′到 CD 边的距离 D’A=______.求证:四边形 ACED′ 为矩形; (2)如图(1),△ CED 绕点 C 顺时针旋转一周的过程中,在 BC 上如何取点 G,使得 GD’=E’D;并说明理由.
【答案】(1)详见解析;(2)FE·sin( -90°) 【解析】 【分析】 (1)由四边形 ABCD 是平行四边形得 AF∥ BE,所以∠ FAE=∠ BEA,由折叠的性质得 ∠ BAE=∠ FAE,∠ BEA=∠ FEA,所以∠ BAE=∠ FEA,故有 AB∥ FE,因此四边形 ABEF 是平行四 边形,又 BE=EF,因此可得结论; (2)根据点 M 在线段 BE 上和 EC 上两种情况证明∠ ENG=90°- ,利用菱形的性质得到

最新九年级数学中考复习:旋转综合压轴题(角度问题)含答案

最新九年级数学中考复习:旋转综合压轴题(角度问题)含答案

2023年九年级数学中考复习:旋转综合压轴题(角度问题)1.如图① ,在①ABC 中,AB =AC =4,①BAC =90°,AD ①BC ,垂足为D .(1)S △ABD = .(直接写出结果)(2)如图①,将①ABD 绕点D 按顺时针方向旋转得到①A′B′D ,设旋转角为α (α<90°),在旋转过程中: 探究一:四边形APDQ 的面积是否随旋转而变化?说明理由; 探究二:当α=________时,四边形APDQ 是正方形.2.如图,在等腰Rt ABC 和等腰Rt CDE 中,90ACB DCE ∠=∠=︒.(1)观察猜想:如图1,点E 在BC 上,线段AE 与BD 的关系是_________;(2)探究证明:把CDE △绕直角顶点C 旋转到图2的位置,(1)中的结论还成立吗?说明理由; (3)拓展延伸:把CDE △绕点C 在平面内转动一周,若10AC BC ==,5CE CD ==,AE 、BD 交于点P 时,连接CP ,直接写出BCP 最大面积_________.3.如图1,在Rt △ABC 中,①A =90°,AB =AC ,点D ,E 分别在边AB ,AC 上,AD =AE ,连接DC ,点M ,P ,N 分别为DE ,DC ,BC 的中点.(1)观察猜想:图1中,请判断线段PM 与PN 的数量关系和位置关系,并说明理由;(2)探究证明:把△ADE 绕点A 逆时针方向旋转到图2的位置,连接MN ,BD ,CE ,判断△PMN 的形状,并说明理由;(3)拓展延伸:把△ADE 绕点A 在平面内自由旋转,若AD =3,AB =7,请直接写出△PMN 面积的最大值.4.如图1,①ABC 为等腰直角三角形,①BAC =90°,AB =AC ,点D 在AB 边上,点E 在AC 边上,AD =AE ,连接DE ,取BC 边的中点O ,连接DO 并延长到点F ,使OF =OD ,连接CF . (1)请判断①CEF 的形状,并说明理由;(2)将(1)中①ADE 绕点A 旋转,连接CE ,(1)中的结论是否仍然成立,若成立,请仅就图2所示情况给出证明,若不成立,请说明理由;(3)若AB =6,AD =4,将①ADE 由图1位置绕点A 旋转,当点B ,E ,D 三点共线时,请直接写出①CEF 的面积.5.如图,在Rt ABC 中,90BAC ∠=︒,AB AC =,点D 是AB 外一动点,连接AD ,把AD 绕点A 逆时针旋转90°,得到AE ,连接CE ,DE ,BC 与DE 交于点F ,且AB BD ⊥.(1)如图1,若CB =6CE =,求DE 的长;(2)如图2,若点H 、G 分别为线段CF 、AE 的中点,连接HG ,求证:12HG BF =;(3)如图3,在(2)的条件下,若CE =4CF =,将BDF 绕点F 顺时针旋转角3(060)αα︒<≤︒,得到B D F '',连接B G ',取B G '中点Q ,连接BQ ,当线段BQ 最小时,请直接写出BQB '的面积.6.如图1,矩形ABCD 中,15,20AB BC ==,将矩形ABCD 绕着点A 顺时针旋转,得到矩形BEFG .(1)当点E 落在BD 上时,则线段DE 的长度等于________; (2)如图2,当点E 落在AC 上时,求BCE 的面积;(3)如图3,连接AE CE AG CG 、、、,判断线段AE 与CG 的位置关系且说明理由,并求22CE AG +的值;(4)在旋转过程中,请直接写出BCE ABG S S +△△的最大值.7.在平面直角坐标系中,O 为原点,点(4,0)A -,点(0,3),B ABO 绕点B 顺时针旋转,得A BO ''△,点A O 、旋转后的对应点为A O ''、,记旋转角为α.(1)如图①,90α=︒,边OA 上的一点M 旋转后的对应点为N ,当1OM =时,点N 的坐标为_____; (2)90α=︒,边OA 上的一点M 旋转后的对应点为N ,当O M BN '+取得最小值时,在图①中画出点M 的位置,并求出点N 的坐标.(3)如图①,P 为AB 上一点,且:2:1PA PB =,连接PO PA ''、,在ABO 绕点B 顺时针旋转一周的过程中,PO A ''的面积是否存在最大值和最小值,若存在,请求出;若不存在,请说明理由.8.如图1,①ABC 和①DEC 均为等腰三角形,且①ACB =①DCE =90°,连接BE ,AD ,两条线段所在的直线交于点P .(1)线段BE 与AD 有何数量关系和位置关系,请说明理由. (2)若已知BC =12,DC =5,①DEC 绕点C 顺时针旋转, ①如图2,当点D 恰好落在BC 的延长线上时,求AP 的长;①在旋转一周的过程中,设①P AB 的面积为S ,求S 的最值.9.如图,在菱形ABCD 中,2AB =,60BAD ∠=,过点D 作DE AB ⊥于点E ,DF BC ⊥于点F .()1如图1,连接AC 分别交DE 、DF 于点M 、N ,求证:13MN AC =; ()2如图2,将EDF 以点D 为旋转中心旋转,其两边'DE 、'DF 分别与直线AB 、BC 相交于点G 、P ,连接GP ,当DGP 的面积等于10.如图1,一副直角三角板满足AB=BC ,AC=DE ,①ABC=①DEF=90°,①EDF=30°操作:将三角板DEF 的直角顶点E 放置于三角板ABC 的斜边AC 上,再将三角板DEF 绕点E 旋转,并使边DE 与边AB 交于点P ,边EF 与边BC 于点Q . 探究一:在旋转过程中, (1)如图2,当1CEEA=时,EP 与EQ 满足怎样的数量关系?并给出证明; (2)如图3,当2CEEA=时,EP 与EQ 满足怎样的数量关系?并说明理由; (3)根据你对(1)、(2)的探究结果,试写出当CEm EA=时,EP 与EQ 满足的数量关系式为 ,其中m 的取值范围是 .(直接写出结论,不必证明) 探究二:若2CEEA=且AC=30cm ,连接PQ ,设△EPQ 的面积为S (cm 2),在旋转过程中: (1)S 是否存在最大值或最小值?若存在,求出最大值或最小值;若不存在,说明理由. (2)随着S 取不同的值,对应△EPQ 的个数有哪些变化,求出相应S 的值或取值范围.11.如图1,在①ABC中,①BAC=90°,AB=AC,点D在边AC上,CD①DE,且CD=DE,连接BE,取BE的中点F,连接DF.(1)请直接写出①ADF的度数及线段AD与DF的数量关系;(2)将图1中的△CDE绕点C按逆时针旋转,①如图2,(1)中①ADF的度数及线段AD与DF的数量关系是否仍然成立?请说明理由;①如图3,连接AF,若AC=3,CD=1,求S△ADF的取值范围.12.已知点E是正方形ABCD的边AB上一点,AB=BE=2.以BE为边向右侧作正方形BEFG,将正方形BEFG绕点B顺时针旋转α度(0≤α≤90°),连结AE,CG(如图).(1)求证:①ABE①①CBG.(2)当点E在BD上时,求CG的长.(3)当90∠时,正方形BEFG停止旋转,求在旋转过程中线段AE扫过的面积.(参考数据:AEB=︒sin28︒≈,sin62︒≈tan28︒≈tan62︒≈)13.如图,矩形ABCD 中,5,6,==AB BC BCG 为等边三角形.点E ,F 分别为,AD BC 边上的动点,且EF AB ∥,P 为EF 上一动点,连接BP ,将线段BP 绕点B 顺时针旋转60︒至BM ,连接,,,PA PC PM GM .(1)求证:=GM PC ;(2)当,,PB PC PE 三条线段的和最小时,求PF 的长;(3)若点E 以每秒2个单位的速度由A 点向D 点运动,点P 以每秒1个单位的速度由E 点向F 点运动.E ,P 两点同时出发,点E 到达点D 时停止,点P 到达点F 时停止,设点P 的运动时间为t 秒. ①求t 为何值时,AEP △与CFP 相似; ①求BMP 的面积S 的最小值.14.如图1,在Rt ABC 中,90,5∠=︒==C AC BC ,点D 是边BC 上的一点,且BD =,过点D 做BC 边的垂线,交AB 边于点E ,将BDE 绕点B 顺时针方向旋转,记旋转角为()0360αα︒≤<︒.(1)【问题发现】当0α=︒时,AECD的值为________,直线,AE CD 相交形成的较小角的度数为________; (2)【拓展探究】试判断:在旋转过程中,(1)中的两个结论有无变化?请仅就图2的情况给出证明; (3)【问题解决】当BDE 旋转至A ,D ,E 三点在同一条直线上时,请直接写出ACD △的面积.15.在中Rt ABC △中.90ABC ∠=︒,AB BC =,点E 在射线CB 上运动.连接AE ,将线段AE 绕点E 顺时针旋转90°得到EF ,连接CF .(1)如图1,点E在点B的左侧运动;①当2BE=,BC=EAB∠=_________°;①猜想线段CA,CF与CE之间的数量关系为_________.(2)如图2,点E在线段CB上运动时,第(1)间中线段CA,CF与CE之间的数量关系是否仍然成立如果成立,请说明理由;如果不成立,请求出它们之间新的数量关系.=,以A,E,C,F为顶点的四边形面积为y,请直接写出(3)点E在射线CB上运动,BC=,设BE xy与x之间的函数关系式(不用写出x的取值范围).16.如图,在①ABC中,AB=,①A=45°,AC=C作直线平行AB,将①ABC绕点A顺时针旋转得到①AB C''(点B,C的对应点分别为B',C'),射线AB',AC'分别交直线l于点P、Q.(1)如图1,求BC的长;(2)如图2,当点C为PQ中点时,求tan①APQ;(3)如图3,当点P,Q分别在线段AB',AC'上时,试探究四边形PQC B''的面积是否存在最大值.若存在,求出其最大值;若不存在,请说明理由.17.已知Rt△ABC中,AC=BC,①C=90°,D为AB边的中点,①EDF=90°,①EDF绕D点旋转,它的两边分别交AC、CB(或它们的延长线)于E、F.(1)如图1,当①EDF 绕D 点旋转到DE ①AC 于E 时,易证S △DEF +S △CEF 与S △ABC 的数量关系为__________;(2)如图2,当①EDF 绕D 点旋转到DE 和AC 不垂直时,上述结论是否成立?若成立,请给予证明; (3)如图3,这种情况下,请猜想S △DEF 、S △CEF 、S △ABC 的数量关系,不需证明.18.面直角坐标系中,O 为原点,点(12,0)A ,点(0,5)B ,线段AB 的中点为点C .将ABO 绕着点B 逆时针旋转,点O 对应点为1O ,点A 的对应点为1A .(1)如图①,当点1O 恰好落在AB 上时, ①此时1CO 的长为__________;①点P 是线段OA 上的动点,旋转后的对应点为1P ,连接11,BP PO ,试求11BP PO +最小时点P 的坐标; (2)如图①,连接11,CA CO ,则在旋转过程中,11CAO △的面积是否存在最大值?若存在,直接写出最大值,若不存在,说明理由.19.如图,在Rt ABC 中,90C ∠=︒,5AB =,3sin 5A =.点P 从点A 出发,以每秒4个单位长度的速度向终点B 匀速运动,过点P 作PD AB ⊥交折线AC ,CB 于点D ,连结BD ,将DBP 绕点D 逆时针旋转90︒得到DEF .设点P 的运动时间为t (秒).(1)用含t 的代数式表示线段PD 的长. (2)当点E 落在AB 边上时,求AD 的长. (3)当点F 在ABC 内部时,求t 的取值范围.(4)当线段DP 将ABC 的面积分成1:2 的两部分时,直接写出t 的值.20.如图1,在Rt ABC △中,90B ∠=︒,AB BC =,AO 是BC 边上的中线,点D 是AO 上一点,DE EO ⊥,E 是垂足,DEO 可绕着点O 旋转,点F 是点E 关于点O 的对称点,连接AD 和CF .(1)问题发现:如图2,当1ADDO=时,则下列结论正确的是_______.(填序号)①BE CF =;①点F 是OC 的中点:①AO 是BAC ∠的角平分线;①AD .(2)数学思考:将图2中DEO 绕点O 旋转,如图3,则AD 和CF 具有怎样的数量关系?请给出证明过程;(3)拓展应用:在图1中,若ADx DO=,将DEO 绕着点O 旋转. ①则AD =_______CF ;①若4AB =,1x =,在DEO 旋转过程中,如图4,当点D 落在AB 上时,连结BE ,EC ,求四边形ABEC 的面积.答案21.(1)4(2)四边形APDQ 的面积不会随旋转而变化,理由见详解;当45α=︒时,四边形APDQ 是正方形.22.(1)AE BD =,AE BD ⊥; (2)结论仍成立23.(1)PM =PN ,PM ①PN . (2)△PMN 是等腰直角三角形. (3)S △PMN 最大=25224.(1) ①CEF 是等腰直角三角形;(2)成立,(3)18-18+25.(1)(3)8 26.(1)10;(2)42;(3) AE ①CG 221250CE AG =+;(4)30027.(1)(-3,4);(2)N (-3,92);(3)最大值为283,最小值为8328.(1)BE =AD ,BE 与AD 互相垂直,(2)①AP =8413;①最小47,最大72 29.(2)顺时针或逆时针旋转60.30.探究一:(1)EP=EQ ;证明见解析;(2)1:2,(3)EP :EQ=1:m ,①0<(1)当50cm 2;当75cm 2.(2)50<S≤62.5时,这样的三角形有2个;当S=50或62.5<S≤75时,这样的三角形有一个.31.(1)①ADF =45°,AD (2)①成立,;①1≤S △ADF ≤4.32.(3)3145S π=33.(3)①73;①34.,45︒;(2)无变化(3)121235.(1)①30;①AC +CF CE ;(2)CA -CF;(3)当点E 在点B 左侧运动时,y =21322x +;当点E 在点B 右侧运动时,y 32+.36.(3)存在;21-37.(1)S △DEF +S △CEF =12S △ABC(2)上述结论S △DEF +S △CEF =12S △ABC 成立(3)S △DEF -S △CEF =12S △ABC38.(1)①1.5 ①20,07⎛⎫ ⎪⎝⎭ (2)存在最大值,最大值为6939.(1)3t (2)258 (3)355374t ≤≤40.(1)①①①(2)AD =,①465。

中考数学压轴题之初中数学 旋转(中考题型整理,突破提升)及详细答案

中考数学压轴题之初中数学 旋转(中考题型整理,突破提升)及详细答案

中考数学压轴题之初中数学旋转(中考题型整理,突破提升)及详细答案一、旋转1.阅读材料:小胖同学发现这样一个规律:两个顶角相等的等腰三角形,如果具有公共的顶角的顶点,并把它们的底角顶点连接起来则形成一组旋转全等的三角形.小胖把具有这个规律的图形称为“手拉手”图形.如图1,在“手拉手”图形中,小胖发现若∠BAC=∠DAE,AB=AC,AD=AE,则BD=CE.(1)在图1中证明小胖的发现;借助小胖同学总结规律,构造“手拉手”图形来解答下面的问题:(2)如图2,AB=BC,∠ABC=∠BDC=60°,求证:AD+CD=BD;(3)如图3,在△ABC中,AB=AC,∠BAC=m°,点E为△ABC外一点,点D为BC中点,∠EBC=∠ACF,ED⊥FD,求∠EAF的度数(用含有m的式子表示).【答案】(1)证明见解析;(2)证明见解析;(3)∠EAF =12 m°.【解析】分析:(1)如图1中,欲证明BD=EC,只要证明△DAB≌△EAC即可;(2)如图2中,延长DC到E,使得DB=DE.首先证明△BDE是等边三角形,再证明△ABD≌△CBE即可解决问题;(3)如图3中,将AE绕点E逆时针旋转m°得到AG,连接CG、EG、EF、FG,延长ED到M,使得DM=DE,连接FM、CM.想办法证明△AFE≌△AFG,可得∠EAF=∠FAG=12 m°.详(1)证明:如图1中,∵∠BAC=∠DAE,∴∠DAB=∠EAC,在△DAB和△EAC中,AD AE DAB EAC AB AC ⎧⎪∠∠⎨⎪⎩===,∴△DAB ≌△EAC ,∴BD=EC .(2)证明:如图2中,延长DC 到E ,使得DB=DE .∵DB=DE ,∠BDC=60°,∴△BDE 是等边三角形,∴∠BD=BE ,∠DBE=∠ABC=60°,∴∠ABD=∠CBE ,∵AB=BC ,∴△ABD ≌△CBE ,∴AD=EC ,∴BD=DE=DC+CE=DC+AD .∴AD+CD=BD .(3)如图3中,将AE 绕点E 逆时针旋转m°得到AG ,连接CG 、EG 、EF 、FG ,延长ED 到M ,使得DM=DE ,连接FM 、CM .由(1)可知△EAB ≌△GAC ,∴∠1=∠2,BE=CG ,∵BD=DC ,∠BDE=∠CDM ,DE=DM ,∴△EDB ≌△MDC ,∴EM=CM=CG ,∠EBC=∠MCD ,∵∠EBC=∠ACF,∴∠MCD=∠ACF,∴∠FCM=∠ACB=∠ABC,∴∠1=3=∠2,∴∠FCG=∠ACB=∠MCF,∵CF=CF,CG=CM,∴△CFG≌△CFM,∴FG=FM,∵ED=DM,DF⊥EM,∴FE=FM=FG,∵AE=AG,AF=AF,∴△AFE≌△AFG,∴∠EAF=∠FAG=12 m°.点睛:本题考查几何变换综合题、旋转变换、等腰三角形的性质、全等三角形的判定和性质等知识,解题的关键是学会利用“手拉手”图形中的全等三角形解决问题,学会构造“手拉手”模型,解决实际问题,属于中考压轴题.2.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图①),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图②),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图③),请你直接写出线段EF,BE,DF之间的数量关系.【答案】(1)证明见解析;(2)证明见解析;(3)EF2=2BE2+2DF2.【解析】试题分析:(1)根据旋转的性质可知AF=AG,∠EAF=∠GAE=45°,故可证△AEG≌△AEF;(2)将△ADF绕着点A顺时针旋转90°,得到△ABG,连结GM.由(1)知△AEG≌△AEF,则EG=EF.再由△BME、△DNF、△CEF均为等腰直角三角形,得出CE=CF,BE=BM,NF=DF,然后证明∠GME=90°,MG=NF,利用勾股定理得出EG2=ME2+MG2,等量代换即可证明EF2=ME2+NF2;(3)将△ADF绕着点A顺时针旋转90°,得到△ABG,根据旋转的性质可以得到△ADF≌△ABG,则DF=BG,再证明△AEG≌△AEF,得出EG=EF,由EG=BG+BE,等量代换得到EF=BE+DF.试题解析:(1)∵△ADF绕着点A顺时针旋转90°,得到△ABG,∴AF=AG,∠FAG=90°,∵∠EAF=45°,∴∠GAE=45°,在△AGE与△AFE中,,∴△AGE≌△AFE(SAS);(2)设正方形ABCD的边长为a.将△ADF绕着点A顺时针旋转90°,得到△ABG,连结GM.则△ADF≌△ABG,DF=BG.由(1)知△AEG≌△AEF,∴EG=EF.∵∠CEF=45°,∴△BME、△DNF、△CEF均为等腰直角三角形,∴CE=CF,BE=BM,NF=DF,∴a﹣BE=a﹣DF,∴BE=DF,∴BE=BM=DF=BG,∴∠BMG=45°,∴∠GME=45°+45°=90°,∴EG2=ME2+MG2,∵EG=EF,MG=BM=DF=NF,∴EF2=ME2+NF2;(3)EF2=2BE2+2DF2.如图所示,延长EF交AB延长线于M点,交AD延长线于N点,将△ADF绕着点A顺时针旋转90°,得到△AGH,连结HM,HE.由(1)知△AEH≌△AEF,则由勾股定理有(GH+BE)2+BG2=EH2,即(GH+BE)2+(BM﹣GM)2=EH2又∴EF=HE,DF=GH=GM,BE=BM,所以有(GH+BE)2+(BE﹣GH)2=EF2,即2(DF2+BE2)=EF2考点:四边形综合题3.已知正方形ABCD中,E为对角线BD上一点,过E点作EF⊥BD交BC于F,连接DF,G为DF中点,连接EG,CG.(1)请问EG与CG存在怎样的数量关系,并证明你的结论;(2)将图①中△BEF绕B点逆时针旋转45°,如图②所示,取DF中点G,连接EG,CG.问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.(3)将图①中△BEF绕B点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?(请直接写出结果,不必写出理由)【答案】(1)证明见解析(2)证明见解析(3)结论仍然成立【解析】【分析】(1)利用直角三角形斜边上的中线等于斜边的一半,可证出CG=EG.(2)结论仍然成立,连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点;再证明△DAG≌△DCG,得出AG=CG;再证出△DMG≌△FNG,得到MG=NG;再证明△AMG≌△ENG,得出AG=EG;最后证出CG=EG.(3)结论依然成立.【详解】(1)CG=EG.理由如下:∵四边形ABCD是正方形,∴∠DCF=90°.在Rt△FCD中,∵G为DF的中点,∴CG=12FD,同理.在Rt△DEF中,EG=12FD,∴CG=EG.(2)(1)中结论仍然成立,即EG=CG.证法一:连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点.在△DAG与△DCG中,∵AD=CD,∠ADG=∠CDG,DG=DG,∴△DAG≌△DCG(SAS),∴AG=CG;在△DMG与△FNG中,∵∠DGM=∠FGN,FG=DG,∠MDG=∠NFG,∴△DMG≌△FNG (ASA),∴MG=NG.∵∠EAM=∠AEN=∠AMN=90°,∴四边形AENM是矩形,在矩形AENM中,AM=EN.在△AMG与△ENG中,∵AM=EN,∠AMG=∠ENG,MG=NG,∴△AMG≌△ENG(SAS),∴AG=EG,∴EG=CG.证法二:延长CG至M,使MG=CG,连接MF,ME,EC.在△DCG与△FMG中,∵FG=DG,∠MGF=∠CGD,MG=CG,∴△DCG≌△FMG,∴MF=CD,∠FMG=∠DCG,∴MF∥CD∥AB,∴EF⊥MF.在Rt△MFE与Rt△CBE中,∵MF=CB,∠MFE=∠EBC=90°,EF=BE,∴△MFE≌△CBE∴∠MEF=∠CEB,∴∠MEC=∠MEF+∠FEC=∠CEB+∠CEF=90°,∴△MEC为直角三角形.∵MG=CG,∴EG=12MC,∴EG=CG.(3)(1)中的结论仍然成立.理由如下:过F作CD的平行线并延长CG交于M点,连接EM、EC,过F作FN垂直于AB于N.由于G为FD中点,易证△CDG≌△MFG,得到CD=FM,又因为BE=EF,易证∠EFM=∠EBC,则△EFM≌△EBC,∠FEM=∠BEC,EM=EC∵∠FEC+∠BEC=90°,∴∠FEC+∠FEM=90°,即∠MEC=90°,∴△MEC是等腰直角三角形.∵G为CM中点,∴EG=CG,EG⊥CG【点睛】本题是四边形的综合题.(1)关键是利用直角三角形斜边上的中线等于斜边的一半解答;(2)关键是利用了直角三角形斜边上的中线等于斜边的一半的性质、全等三角形的判定和性质解答.4.(1)如图①,在矩形ABCD 中,对角线AC 与BD 相交于点O ,过点O 作直线EF ⊥BD ,交AD 于点E ,交BC 于点F ,连接BE 、DF ,且BE 平分∠ABD .①求证:四边形BFDE 是菱形;②直接写出∠EBF 的度数;(2)把(1)中菱形BFDE 进行分离研究,如图②,点G 、I 分别在BF 、BE 边上,且BG=BI ,连接GD ,H 为GD 的中点,连接FH 并延长,交ED 于点J ,连接IJ 、IH 、IF 、IG.试探究线段IH 与FH 之间满足的关系,并说明理由;(3)把(1)中矩形ABCD 进行特殊化探究,如图③,当矩形ABCD 满足AB=AD 时,点E 是对角线AC 上一点,连接DE 、EF 、DF ,使△DEF 是等腰直角三角形,DF 交AC 于点G.请直接写出线段AG 、GE 、EC 三者之间满足的数量关系.【答案】(1)①详见解析;②60°.(2)IH =3FH ;(3)EG 2=AG 2+CE 2.【解析】【分析】(1)①由△DOE ≌△BOF ,推出EO =OF ,∵OB =OD ,推出四边形EBFD 是平行四边形,再证明EB =ED 即可.②先证明∠ABD =2∠ADB ,推出∠ADB =30°,延长即可解决问题.(2)IH =3FH .只要证明△IJF 是等边三角形即可.(3)结论:EG 2=AG 2+CE 2.如图3中,将△ADG 绕点D 逆时针旋转90°得到△DCM ,先证明△DEG ≌△DEM ,再证明△ECM 是直角三角形即可解决问题.【详解】(1)①证明:如图1中,∵四边形ABCD 是矩形,∴AD ∥BC ,OB =OD ,∴∠EDO =∠FBO ,在△DOE 和△BOF 中,EDO FBO OD OBEOD BOF ∠∠⎧⎪⎨⎪∠∠⎩=== ,∴△DOE ≌△BOF ,∴EO =OF ,∵OB =OD ,∴四边形EBFD 是平行四边形,∵EF ⊥BD ,OB =OD ,∴EB =ED ,∴四边形EBFD 是菱形.②∵BE 平分∠ABD ,∴∠ABE =∠EBD ,∵EB =ED ,∴∠EBD =∠EDB ,∴∠ABD =2∠ADB ,∵∠ABD +∠ADB =90°,∴∠ADB =30°,∠ABD =60°,∴∠ABE =∠EBO =∠OBF =30°,∴∠EBF =60°.(2)结论:IH =3FH .理由:如图2中,延长BE 到M ,使得EM =EJ ,连接MJ .∵四边形EBFD 是菱形,∠B =60°,∴EB =BF =ED ,DE ∥BF ,∴∠JDH =∠FGH ,在△DHJ 和△GHF 中,DHG GHF DH GHJDH FGH ∠∠⎧⎪⎨⎪∠∠⎩=== , ∴△DHJ ≌△GHF ,∴DJ =FG ,JH =HF ,∴EJ =BG =EM =BI ,∴BE =IM =BF ,∵∠MEJ =∠B =60°,∴△MEJ 是等边三角形,∴MJ =EM =NI ,∠M =∠B =60°在△BIF 和△MJI 中,BI MJ B M BF IM ⎧⎪∠∠⎨⎪⎩===,∴△BIF ≌△MJI ,∴IJ =IF ,∠BFI =∠MIJ ,∵HJ =HF ,∴IH ⊥JF ,∵∠BFI +∠BIF =120°,∴∠MIJ +∠BIF =120°,∴∠JIF =60°,∴△JIF 是等边三角形,在Rt △IHF 中,∵∠IHF =90°,∠IFH =60°,∴∠FIH =30°,∴IH =3FH .(3)结论:EG 2=AG 2+CE 2.理由:如图3中,将△ADG 绕点D 逆时针旋转90°得到△DCM ,∵∠FAD +∠DEF =90°,∴AFED 四点共圆,∴∠EDF =∠DAE =45°,∠ADC =90°,∴∠ADF +∠EDC =45°,∵∠ADF =∠CDM ,∴∠CDM +∠CDE =45°=∠EDG ,在△DEM 和△DEG 中,DE DE EDG EDM DG DM ⎧⎪∠∠⎨⎪⎩=== , ∴△DEG ≌△DEM ,∴GE =EM ,∵∠DCM =∠DAG =∠ACD =45°,AG =CM ,∴∠ECM =90°∴EC 2+CM 2=EM 2,∵EG =EM ,AG =CM ,∴GE 2=AG 2+CE 2.【点睛】考查四边形综合题、矩形的性质、正方形的性质、菱形的判定和性质,等边三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形,学会转化的思想思考问题.5.在平面直角坐标系中,已知点A(0,4),B(4,4),点M,N是射线OC上两动点(OM<ON),且运动过程中始终保持∠MAN=45°,小明用几何画板探究其中的线段关系.(1)探究发现:当点M,N均在线段OB上时(如图1),有OM2+BN2=MN2.他的证明思路如下:第一步:将△ANB绕点A顺时针旋转90°得△APO,连结PM,则有BN=OP.第二步:证明△APM≌△ANM,得MP=MM.第一步:证明∠POM=90°,得OM2+OP2=MP2.最后得到OM2+BN2=MN2.请你完成第二步三角形全等的证明.(2)继续探究:除(1)外的其他情况,OM2+BN2=MN2的结论是否仍然成立?若成立,请证明;若不成立,请说明理由.(3)新题编制:若点B是MN的中点,请你编制一个计算题(不标注新的字母),并直接给出答案(根据编出的问题层次,给不同的得分).【答案】(1)见解析;(2)结论仍然成立,理由见解析;(3)见解析.【解析】【分析】(1)将△ANB绕点A顺时针旋转90°得△APO,连结PM,则有BN=OP.证明△APM≌△ANM,再利用勾股定理即可解决问题;(2)如图2中,当点M,N在OB的延长线上时结论仍然成立.证明方法类似(1);(3)如图3中,若点B是MN的中点,求MN的长.利用(2)中结论,构建方程即可解决问题.【详解】(1)如图1中,将△ANB绕点A顺时针旋转90°得△APO,连结PM,则有BN=OP.∵点A(0,4),B(4,4),∴OA=AB,∠OAB=90°,∵∠NAP=∠OAB=90°,∠MAN=45°,∴∠MAN=∠MAP,∵MA=MA,AN=AP,∴△MAN≌△MAP(SAS).(2)如图2中,结论仍然成立.理由:如图2中,将△ANB绕点A顺时针旋转90°得△APO,连结PM,则有BN=OP.∵∠NAP=∠OAB=90°,∠MAN=45°,∴∠MAN=∠MAP,∵MA=MA,AN=AP,∴△MAN≌△MAP(SAS),∴MN=PM,∵∠ABN=∠AOP=135°,∠AOB=45°,∴∠MOP=90°,∴PM2=OM2+OP2,∴OM2+BN2=MN2;(3)如图3中,若点B是MN的中点,求MN的长.设MN=2x,则BM=BN=x,∵OA=AB=4,∠OAB=90°,∴OB=2,∴OM=2﹣x,∵OM2+BN2=MN2.∴(42﹣x)2+x 2=(2x)2,解得x =﹣22+26或﹣22﹣26(舍弃)∴MN =﹣42+46.【点睛】本题属于几何变换综合题,考查了等腰直角三角形的性质和判定,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会利用旋转法添加辅助线,构造全等三角形解决问题,属于中考压轴题.6.如图1,在Rt △ABC 中,∠ACB =90°,AC =BC .点D 、E 分别在AC 、BC 边上,DC =EC ,连接DE 、AE 、BD .点M 、N 、P 分别是AE 、BD 、AB 的中点,连接PM 、PN 、MN .(1)PM 与BE 的数量关系是 ,BE 与MN 的数量关系是 .(2)将△DEC 绕点C 逆时针旋转到如图2的位置,判断(1)中BE 与MN 的数量关系结论是否仍然成立,如果成立,请写出证明过程,若不成立,请说明理由;(3)若CB =6.CE =2,在将图1中的△DEC 绕点C 逆时针旋转一周的过程中,当B 、E 、D 三点在一条直线上时,求MN 的长度.【答案】(1)1,22PM BE BE MN ==;(2)成立,理由见解析;(3)MN 17﹣117【解析】【分析】(1)如图1中,只要证明PMN 的等腰直角三角形,再利用三角形的中位线定理即可解决问题;(2)如图2中,结论仍然成立,连接AD 、延长BE 交AD 于点H .由ECB DCA ≅,推出BE AD =,DAC EBC ∠=∠,即可推出BH AD ⊥,由M 、N 、P 分别AE 、BD 、AB 的中点,推出//PM BE ,12PM BE =,//PN AD ,12PN AD =,推出PM PN =,90MPN ∠=︒,可得2222BE PM MN ===; (3)有两种情形分别求解即可.【详解】(1)如图1中,∵AM =ME ,AP =PB ,∴PM ∥BE ,12PM BE =, ∵BN =DN ,AP =PB , ∴PN ∥AD ,12PN AD =, ∵AC =BC ,CD =CE ,∴AD =BE ,∴PM =PN ,∵∠ACB =90°,∴AC ⊥BC ,∴∵PM ∥BC ,PN ∥AC ,∴PM ⊥PN , ∴△PMN 的等腰直角三角形,∴2MN PM =, ∴122MN BE =⋅, ∴2BE MN =,故答案为12PM BE =,2BE MN =. (2)如图2中,结论仍然成立.理由:连接AD 、延长BE 交AD 于点H .∵△ABC 和△CDE 是等腰直角三角形,∴CD =CE ,CA =CB ,∠ACB =∠DCE =90°,∵∠ACB ﹣∠ACE =∠DCE ﹣∠ACE ,∴∠ACD =∠ECB ,∴△ECB ≌△DCA ,∴BE =AD ,∠DAC =∠EBC ,∵∠AHB =180°﹣(∠HAB +∠ABH )=180°﹣(45°+∠HAC +∠ABH )=∠180°﹣(45°+∠HBC +∠ABH )=180°﹣90°=90°,∴BH ⊥AD ,∵M 、N 、P 分别为AE 、BD 、AB 的中点,∴PM ∥BE ,12PM BE =,PN ∥AD ,12PN AD =, ∴PM =PN ,∠MPN =90°, ∴22222BE PM MN MN ==⨯=. (3)①如图3中,作CG ⊥BD 于G ,则2CG GE DG ===,当D 、E 、B 共线时,在Rt △BCG 中,()22226234BG BC CG =-=-= ∴342BE BG GE =-=∴21712MN BE ==. ②如图4中,作CG ⊥BD 于G ,则2CG GE DG ===当D 、E 、B 共线时,在Rt △BCG 中,()22226234BG BC CG =-=-=, ∴342BE BG GE =+=+,∴21712MN BE ==+. 综上所述,MN =17﹣1或17+1.【点睛】本题属于几何变换综合题,考查了等腰直角三角形的性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.7.已知正方形 ABCD 中,E 为对角线 BD 上一点,过 E 点作 EF ⊥BD 交 BC 于 F ,连接 DF ,G 为 DF 中点,连接 EG ,CG .(1) 求证:EG =CG ;(2) 将图①中△BEF 绕 B 点逆时针旋转 45∘,如图②所示,取 DF 中点 G ,连接 EG ,CG .问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;(3) 将图①中△BEF 绕 B 点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察你还能得出什么结论(均不要求证明).【答案】解:(1)CG=EG(2)(1)中结论没有发生变化,即EG=CG .证明:连接AG ,过G 点作MN ⊥AD 于M ,与EF 的延长线交于N 点.在△DAG与△DCG中,∵ AD=CD,∠ADG=∠CDG,DG=DG,∴△DAG≌△DCG.∴ AG=CG.在△DMG与△FNG中,∵∠DGM=∠FGN,FG=DG,∠MDG=∠NFG,∴△DMG≌△FNG.∴ MG=NG在矩形AENM中,AM=EN.在Rt△AMG 与Rt△ENG中,∵ AM=EN, MG=NG,∴△AMG≌△ENG.∴ AG=EG∴ EG=CG.(3)(1)中的结论仍然成立.【解析】试题分析:(1)利用直角三角形斜边上的中线等于斜边的一半,可证出CG=EG.(2)结论仍然成立,连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点;再证明△DAG≌△DCG,得出AG=CG;再证出△DMG≌△FNG,得到MG=NG;再证明△AMG≌△ENG,得出AG=EG;最后证出CG=EG.(3)结论依然成立.还知道EG⊥CG;试题解析:解:(1)证明:在Rt△FCD中,∵G为DF的中点,∴,同理,在Rt△DEF中,,∴CG=EG;(2)(1)中结论仍然成立,即EG=CG;连接AG,过G点作MN⊥AD于M,与EF的延长线交于N点,如图所示:在△DAG与△DCG中,∵AD=CD,∠ADG=∠CDG,DC=DC,∴△DAG≌△DCG,∴AG=CG,在△DMG与△FNG中,∵∠DGM=∠FGN,DG=FG,∠MDG=∠NFG,∴△DMG≌△FNG,∴MG=NG,在矩形AENM中,AM=EN.,在Rt△AMG与Rt△ENG中,∵AM=EN,MG=NG,∴△AMG≌△ENG,∴AG=EG,∴EG=CG,(3)(1)中的结论仍然成立,即EG=CG且EG⊥CG。

2020年中考九年级数学旋转压轴题专题复习(WORD版,包含答案)

2020年中考九年级数学旋转压轴题专题复习(WORD版,包含答案)

四川省渠县三中 2020 年中考九年级数学旋转压轴题专题复习练习1、填空或解答:点 B、C、E 在同一直线上,点 A、D 在直线 CE 的同侧,AB=AC,EC=ED,∠BAC=∠CED,直线 AE、BD 交于点 F.(1)如图①,若∠BAC=60°,则∠AFB=;如图②,若∠BAC=90°,则∠ AFB= ;(2)如图③,若∠BAC=α,则∠AFB=(用含α的式子表示);(3)将图③中的△ABC绕点 C 旋转(点 F 不与点 A、B 重合),得图④或图⑤.在图④中,∠AFB与∠α的数量关系是∠AFB=90°;在图⑤中,∠AFB与∠ α的数量关系是.请你任选其中一个结论证明.2、如图,等腰直角△ABC中,∠ABC=90°,点P 在AC 上,将△ABP绕顶点 B 沿顺时针方向旋转90°后得到△CBQ.(1)求∠PCQ的度数;(2)当AB=4,AP:PC=1:3 时,求 PQ 的大小;(3)当点 P 在线段 AC 上运动时(P 不与 A 重合),请写出一个反映PA2,PC2,PB2之间关系的等式,并加以证明.3、如图 1,已知△ABC中,AB=BC=1,∠ABC=90°,把一块含30°角的三角板 DEF 的直角顶点 D 放在AC 的中点上(直角三角板的短直角边为 DE,长直角边为 DF),将直角三角板 DEF 绕D 点按逆时针方向旋转.(1)在图 1 中,DE 交AB 于M,DF 交BC 于N.①证明 DM=DN;②在这一过程中,直角三角板 DEF 与△ABC的重叠部分为四边形 DMBN,请说明四边形 DMBN 的面积是否发生变化?若发生变化,请说明是如何变化的;若不发生变化,求出其面积;(2)继续旋转至如图 2 的位置,延长 AB 交DE 于M,延长 BC 交DF 于N,DM=DN 是否仍然成立?若成立,请给出证明;若不成立,请说明理由;(3)继续旋转至如图 3 的位置,延长 FD 交BC 于N,延长 ED 交AB 于M,DM=DN 是否仍然成立?若成立,请给出写出结论,不用证明.4、已知△ABC中,∠ACB=135°,将△ABC绕点A 顺时针旋转90°,得到△AED,连接 CD,CE.(1)求证:△A CD 为等腰直角三角形;(2)若BC=1,AC=2,求四边形 ACED 的面积.5、如图,在Rt△ABC中,∠A=90°,AB=3,tan∠B=,点P 在BC 边上,且BP=3.以点 P 为中心,将△ABC中按逆时针方向旋转90°至△A′B′C′,A′C′与 AC、BC 分别交于点 R、Q,B′C′与AC、BC 分别交于点 S、P.求:(1)线段PC′的长;(2)线段 RS 的长.6、如图,把一块含60°的三角尺 ACB 与边长为 2 的正方形 ACFG 按如图所示重叠在一起,∠B=30°.若把三角尺绕直角顶点 C 按顺时针方向旋转,使斜边 AB 恰好经过正方形 ACFG 的顶点 F,得△PCN,PC,PN 交AB 于D、E.(1)求∠BAC的度数;(2)△ACB至少旋转多少度才能得到△PCN?请通过计算说明理由;(3)试求出△ACB与△PCN的重叠部分(即四边形 CDEF)的面积(精确到 0.01).7、如图 1,△ABC与△DEF中,AB=AC,D 为BC 的中点,∠EDF+∠BAC=180°,直线DF 、 DE 分别交直线AB 、AC 于点P 、Q.(1)如图 2,∠BAC=60°,猜想 BP+QC 与BC 的关系,并说明理由;(2)当∠BAC=120°,BP+QC 与BC 的关系为;(3)当∠BAC=α,探究 BP+QC 与BC 的关系,并说明理由;(4)如图 3,当△DEF绕点 D 旋转时,其他条件不变,(3)中的结论是否一定成立?若成立,请你写出一个真命题;若不成立,请你画图说明.8、把两个全等的等腰直角三角形 ABC 和 EFG(其直角边长均为 4)叠放在一起(如图①),且使三角板 EFG 的直角顶点 G 与三角板 ABC 的斜边中点 O 重合.现将三角板 EFG 绕 O 点逆时针旋转(旋转角α满足条件:0°<α<90°),四边形 CHGK 是旋转过程中两三角板的重叠部分(如图②).(1) 在上述旋转过程中,BH 与 CK 有怎样的数量关系四边形 CHGK 的面积有何变化?证明你发现的结论;(2) 连接 HK ,在上述旋转过程中,设 BH=x ,△GKH 的面积为 y ,求 y 与 x 之间的函数关系式,并写出自变量 x 的取值范围;(3) 在(2)的前提下,是否存在某一位置,使△GKH 的面积恰好等于△ABC 面积的?若存在,求出此时 x 的值;若不存在,说明理由.9、将两块含 30°角且大小相同的直角三角板如图 1 摆放.(1) 将图 1 中△A 1B 1C 绕点 C 顺时针旋转 45°得图 2,点 P 1 是 A 1C 与 AB 的交点,求证:CP 1=AP 1;(2) 将图 2 中△A 1B 1C 绕点 C 顺时针旋转 30°到△A 2B 2C (如图 3),点 P 2 是 A 2C与 AB 的交点.线段 CP 1 与 P 1P 2 之间存在一个确定的等量关系,请你写出这个关系式并说明理由; (3) 将图 3 中线段 CP 1 绕点 C 顺时针旋转 60°到 CP 3(如图 4),连接 P 3P 2,求证: P 3P 2⊥AB.10、如图,平面直角坐标系中,△ABC 为等边三角形,其中点 A 、B 、C 的坐标分别为(﹣3,﹣1)、(﹣3,﹣3)、(﹣3+,﹣2).现以 y 轴为对称轴作△ABC 的对称图形,得△A 1B 1C 1,再以 x 轴为对称轴作△A 1B 1C 1 的对称图形,得△A 2B 2C 2. (1) 直接写出点 C 1、C 2 的坐标; (2) 能否通过一次旋转将△ABC 旋转到△A 2B 2C 2 的位置?你若认为能,请作出肯定的回答,并直接写出所旋转的度数;你若认为不能,请作出否定的回答(不必说明理由); (3) 设当△ABC 的位置发生变化时,△A 2B 2C 2、△A 1B 1C 1 与△ABC 之间的对称关系始终保持不变.①当△ABC向上平移多少个单位时,△A1B1C1与△A2B2C2完全重合并直接写出此时点C 的坐标;②将△ABC绕点A 顺时针旋转α°(0≤α≤180),使△A1B1C1与△A2B2C2完全重合,此时α的值为多少点 C 的坐标又是什么?11、如图a,△ABC和△CEF是两个大小不等的等边三角形,且有一个公共顶点 C,连接 AF 和BE.(1)线段 AF 和BE 有怎样的大小关系?请证明你的结论;(2)将图 a 中的△CEF绕点 C 旋转一定的角度,得到图 b,这时(1)中的结论还成立吗?作出判断并说明理由;(3)若将图 a 中的△ABC绕点C 旋转一定的角度,请你画出一个变换后的图形(草图即可),(1)中的结论还成立吗?作出判断不必说明理由;(4)根据以上证明、说理、画图,归纳你的发现.12、如图,已知△A BC 是等腰直角三角形,CD 是斜边AB 的中线,△ADC绕点D 旋转一定角度得到△A'DC',A'D 交AC 于点E,DC'交BC 于点F,连接EF,若,则的值?13、如图,在△ABC中,∠ACB=90°,AC=BC=10,在△DCE中,∠DCE=90°,DC=EC=6,点D 在线段 AC 上,点E 在线段 BC 的延长线上.将△DCE绕点C 旋转60°得到△D′CE′(点D 的对应点为点D′,点E 的对应点为点E′),连接AD′、BE′,过点 C 作CN⊥BE′,垂足为 N,直线 CN 交线段AD′于点 M,求MN 的长?14、如图,在等腰Rt△ABC中,P 是斜边 BC 的中点,以 P 为顶点的直角的两边分别与边 AB,AC 交于点 E,F,连接 EF.当∠EPF绕顶点 P 旋转时(点E 不与A, B 重合),△PEF也始终是等腰直角三角形,请你说明理由.答案:1、【解答】解:(1)∵AB=AC,EC=ED,∠BAC=∠CED=60°,∴△ABC∽△EDC,∴∠CBD=∠CAE,∴∠AFB=180°﹣∠CAE﹣∠BAC﹣∠ABD=180°﹣∠BAC﹣∠ABC=∠ACB,∴∠AFB=60°,同理可得:∠AFB=45°;(2)∵AB=AC,EC=ED,∠BAC=∠CED,∴△ABC∽△EDC,∴∠ACB=∠ECD,,∴∠BCD=∠ACE,∴△BCD∽△ACE,∴∠CBD=∠CAE,∴∠AFB=180°﹣∠CAE﹣∠BAC﹣∠ABD,=180°﹣∠BAC﹣∠ABC=∠ACB,∵AB=AC,∠BAC=α,∴∠ACB=90°﹣,∴∠AFB=90°﹣.故答案为:∠AFB=90°.(3)图4 中:∠AFB=90°;图5 中:∠AFB=90°+.∠AFB=90°的证明如下:∵AB=AC,EC=ED,∠BAC=∠CED,∴△ABC∽△EDC,∴∠ACB=∠ECD,,∴∠BCD=∠ACE,∴△BCD∽△ACE,∴∠CBD=∠CAE,∴∠AFB=180°﹣∠CAE﹣∠BAC﹣∠ABD,=180°﹣∠BAC﹣∠ABC=∠ACB,∵AB=AC,∠BAC=α,∴∠ACB=90°﹣,∴∠AFB=90°﹣.∠AFB=90°+的证明如下:∵AB=AC,EC=ED,∠BAC=∠CED,∴△ABC∽△EDC,∴∠ACB=∠ECD,,∴∠BCD=∠ACE,∴△BCD∽△ACE,∴∠BDC=∠AEC,∴∠AFB=∠BDC+∠CDE+∠DEF,=∠CDE+∠CED=180°﹣∠DCE,∵AB=AC,EC=ED,∠BAC=∠DEC=α,∴∠DCE=90°﹣,∴∠AFB=180°﹣(90°﹣)=90°+.2、【解答】解:(1)由题意知,△ABP≌△CQB,∴∠A=∠ACB=∠BCQ=45°,∠ABP=∠CPQ,AP=CQ,PB=BQ,∴∠PCQ=∠ACB+∠BCQ=90°,∠ABP+∠PBC=∠CPQ+∠PBC=90°,∴△BPQ 是等腰直角三角形,△PCQ 是直角三角形.(2)当AB=4,AP:PC=1:3 时,有AC=4,AP=,PC=3,∴PQ==2 .(3)存在 2PB2=PA2+PC2,由于△BPQ是等腰直角三角形,∴PQ=PB,∵AP=CQ,∴PQ2=PC2+CQ2=PA2+PC2,故有 2PB2=PA2+PC2.3、【解答】解:(1)①如图 1,连接 DB,在Rt△ABC中,AB=BC,AD=DC,∴DB=DC=AD,∠BDC=90°,∴∠ABD=∠C=45°,∵∠MDB+∠BDN=∠CDN+∠BDN=90°,∴∠MDB=∠NDC,∴△BMD≌△CND(ASA),∴DM=DN;②四边形 DMBN 的面积不发生变化;由①知△BMD≌△CND,∴S△BMD =S△CND,∴S四边形DMBN =S△DBN+S△DMB=S△DBN+S△DNC=S△DBC=S△ABC=×=;(2)DM=DN 仍然成立;证明:如图 2,连接 DB,在Rt△ABC 中,AB=BC,AD=DC,∴DB=DC,∠BDC=90°,∴∠DCB=∠DBC=45°,∴∠DBM=∠DCN=135°,∵∠NDC+∠CDM=∠BDM+∠CDM=90°,∴∠CDN=∠BDM,则在△BMD和△CND中,,∴△BMD≌△CND(ASA),∴DM=DN.(3)DM=DN.4、【解答】证明:(1)∵△AED是△ABC旋转90°得到的,∴△ABC≌△AED,∴∠CAD=90°,AC=AD,∠ADE=∠ACB=135°,∴△ACD 是等腰直角三角形;解:(2)∵△ACD是等腰直角三角形,∴∠ADC=∠ACD=45°,AC=AD=2,∴CD==2 ,由(1)知,∠ADE=135°,∴∠CDE=∠ADE﹣∠ADC=90°,∵D E=BC=1,∴S四边形ADEC =S△ACD+S△CDE=AC•AD+ CD•DE= ×2×2+×2×1=2+.5、【解答】解:(1)在Rt△ABC中,∠A=90°,AB=3,tan∠B=,∴AC=3× =4,BC===5,∵BP=3,∴PC=BC﹣BP=5﹣3=2,∵△ABC 按逆时针方向旋转90°得到△A′B′C′,∴PC′=PC=2;(2)由题意可知∠SPC=90°,∴∠PSC=∠B,在Rt△SPC中,∠SPC=90°,tan∠PSC=,PC=2∴SP=2÷= ,∴SC===,∴SC′=PC′﹣SP=,∵∠RSC′=∠PSC,∠C′=∠C,∴△RSC′∽△PSC,∴= ,即= ,解得RS=.6、【解答】解:(1)∠BAC=90°﹣30°=60°.(2)∵AC=CP=CF,又∠CPN=∠CAB=60°,∴△PCF 是等边三角形.∴∠PCF=60°.∴∠ACP=90°﹣∠PCF=30°,即△ABC 旋转30°时,得到△PCN.(3)在△ACD 中,∠ACD=30°,∠BAC=60°,∴∠ADC=90°,AD=AC=1,CD=AC•Sin60°=,∴PD=2﹣,DE=PD•tan60°=2﹣3.∴△PDE的面积为: PD•DE==CF•CP•sin60°=.又∵S△PCF,∴四边形DCFE 的面积为:﹣()≈1.67. 7、【解答】解:(1)BP+QC=BC;理由如下:过 D 作DM⊥AB 于 M,DN⊥AC 于 N,则∠MDN=∠PDQ=180°﹣∠BAC.∵∠B=∠C,BD=DC,∠DMB=∠DNC,∴△BDM≌△CDN,得 DM=DN,BM=NC.∵∠MDP=∠MDN﹣∠PDN,∠NDQ=∠PDQ﹣∠PDN,且∠MDN=∠PDQ,∴∠MDP=∠NDQ.又∵∠DMP=∠DNQ=90°,DM=DN,∴△DMP≌△DNQ,得 MP=NQ.∴BP+QC=BM+MP+NC﹣NQ=2BM.Rt△BDM中,∠B=60°,则BM=BD•cos∠B=BD,∴BP+QC=2BM=×2BD=BC.(2)BP+QC=BC.(证法可参照(1)(3))(3)BP+QC=BC•cos(90°﹣α).解法同(1),过 D 作DM⊥AB于M,DN⊥AC于N,则∠MDN=∠PDQ=180°﹣∠BAC.∵∠B=∠C,BD=DC,∠DMB=∠DNC,∴△BDM≌△CDN,得 DM=DN,BM=NC.∵∠MDP=∠MDN﹣∠PDN,∠NDQ=∠PDQ﹣∠PDN,且∠MDN=∠PDQ,∴∠MDP=∠NDQ,又∵∠DMP=∠DNQ=90°,DM=DN,∴△DMP≌△DNQ,得 MP=NQ.∴BP+QC=BM+MP+NC﹣NQ=2BM.Rt△BDM中,∠B=(180°﹣α)=90°﹣α,则BM=BD•cos∠B=BD•cos(90°﹣α);∴BP+QC=2BM=2BD•cos(90°﹣α)=BC•cos(90°﹣α).(4)当P、Q 分别在线段 BA、AC 上时,(3)的结论依然成立,即BP+QC 与BC 的关系为:BP+QC=BC•cos(90°﹣α).(证法同(3))当P、Q 在BA、AC 的延长线上时,(3)的结论不成立.如图 3,同(3)可得:BM=NC,MP=NQ.∴BP+CQ=BM+MP+NQ﹣NC=BM+MP+BM﹣MP=2BM=2NQ.因此(3)的结论不成立.8、【解答】解:(1)在上述旋转过程中,BH=CK,四边形 CHGK 的面积不变.证明:连接 CG,KH,∵△ABC 为等腰直角三角形,O(G)为其斜边中点,∴CG=BG,CG⊥AB,∴∠ACG=∠B=45°,∵∠BGH 与∠CGK 均为旋转角,∴∠BGH=∠CGK,在△BGH 与△CGK 中,∴△BGH≌△CGK(ASA),∴BH=CK,S△BGH =S△CGK.∴S四边形CHGK =S△CHG+S△CGK=S△CHG+S△BGH=S△ABC=××4×4=4,即:S四边形CHGK的面积为 4,是一个定值,在旋转过程中没有变化;(2)∵AC=BC=4,BH=x,∴CH=4﹣x,CK=x.由S△GHK =S四边形CHGK﹣S△CHK,得y=4﹣x(4﹣x),∴y=x2﹣2x+4.由0°<α<90°,得到 BH 最大=BC=4,∴0<x<4;(3)存在.根据题意,得x2﹣2x+4= ×8,解这个方程,得 x1=1,x2=3,即:当x=1 或x=3 时,△GHK的面积均等于△ABC的面积的.9、【解答】(1)证明:过点 P1作CA 的垂线,垂足为D.易知:△CDP1为等腰直角三角形,△P1DA 是直角三角形,且∠A=30°,所以CP1=P1D,P1D= AP1,故CP1=AP1.(2)解:过点 P1 作CA2 的垂线,垂足为 E,易知:△P1EP2是等腰直角三角形,(其中∠2=∠A+∠P2CA=45°),因为△P1CE 是直角三角形,且∠1=30°,所以CP1=2P1E,P1E=P1P2,故CP1=P1P2.(3)证明:将图 3 中线段 CP1 绕点 C 顺时针旋转60°到CP3,易证:△CP1P2≌△CP3P2,于是∠CP3P2=∠CP1P2=105°,∴∠P1P2P3=360°﹣105°×2﹣60°=90°,故 P2P3⊥AB.10、解:(1)点C1、C2的坐标分别为(3﹣,﹣2)、(3﹣,2).(2)能通过一次旋转将△ABC旋转到△A2B2C2 的位置,所旋转的度数为180°;(3)①当△ABC向上平移 2 个单位时,△A1B1C1 与△A2B2C2 完全重合,此时点 C 的坐标为(﹣3+,0)(如图1);②当α=180时,△A1B1C1与△A2B2C2完全重合,此时点C 的坐标为(﹣3﹣,0)(如图 2).11、【解答】解:(1)AF=BE.证明:在△AFC和△BEC中,∵△ABC 和△CEF 是等边三角形,∴AC=BC,CF=CE,∠ACF=∠BCE=60°,∴△AFC≌△BEC.∴AF=BE.(2)成立.理由:在△AFC 和△BEC 中,∵△ABC 和△CEF 是等边三角形,∴AC=BC,CF=CE,∠ACB=∠FCE=60°,∴∠ACB﹣∠FCB=∠FCE﹣∠FCB,即∠ACF=∠BCE.∴△AFC≌△BEC,∴AF=BE.(3)此处图形不惟一,仅举几例.如图,(1)中的结论仍成立.12、【解答】解:∵△ABC 是等腰直角三角形,CD 是斜边 AB 的中线,∴CD⊥AB,CD=AD,∠A=∠BCD=45°.又∵∠ADE=90°﹣∠CDE=∠CDF,∴△ADE≌△CDF (ASA)∴DE=DF.∵DA=DA′,DC=DC′,∴DE:DA′=DF:DC′,∴EF∥A′C′.∴△DEF∽△DA′C′,∴.∵,则,∴.13、【解答】解:①若将△DCE 绕点 C 顺时针旋转60°得到△D′CE′,如图中左边所示,过点 B 作E′C的垂线交其延长线于 F 点,过点D′作CM 的垂线交 CM 于H 点,过 A 点作CM 的垂线交其延长线于 G 点.∵∠ACD′=60°,∠ACB=∠D′CE′=90°,∴∠BCE′=360°﹣∠ACD′﹣∠ACB﹣∠D′CE′=120°.∴∠BCF=180°﹣∠BCE′=60°,BF=sin∠BCF•BC= ×10=,=BF•CE′=.∴S△BCE′∵∠ACG+∠BCN=90°,∠BCN+∠CBN=90°,∴∠ACG=∠CBN,又∵AC=BC,∴Rt△ACG≌Rt△CBN,∴AG=CN,CG=BN.同理△CD′H≌△E′CN,D′H=CN,CH=NE′.∴AG=D′H,在△AMG 和△D′MH 中,∴△AMG≌△D′MH,∴HM=MG,∴M为GH 中点,CM=(CG+CH)= (NB+NE′)=BE′.又∵BF=,∠BCF=60°,∴CF=5,FE′=CF+CE′=11,∴BE′== =14,∴CM=BE′=7.又∵SCN•BE′,△BCE′=÷BE′=,∴CN=2S△BCE′∴MN=CM+CN=7.②同理,当△CDE逆时针旋转60°时,MN 如图中右边所示,MN=7﹣.故答案为:7+或7﹣.14、【解答】解:理由如下:连接 PA,∵PA 是等腰△ABC 底边上的中线,∴PA⊥PC(等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合(三线合一)).又AB⊥AC,∴∠1=90°﹣∠PAC,∠C=90°﹣∠PAC,∴∠1=∠C(等量代换).同理可得PA⊥PC,PE⊥PF,∴∠2=90°﹣∠APF,∠3=90°﹣∠APF,∴∠2=∠3.由 PA 是Rt△ABC 斜边上的中线,得:PA=BC=PC(直角三角形斜边上的中线等于斜边的一半).在△PAE和△PCF中,∠1=∠C,PA=PC,∠2=∠3,∴△PAE≌△PCF(ASA).∴PE=PF(全等三角形对应边相等),则△PEF始终是等腰直角三角形.。

2019-2021年上海各区数学中考一模压轴题分类汇编18题-图形的旋转含详解

2019-2021年上海各区数学中考一模压轴题分类汇编18题-图形的旋转含详解

专题图形的旋转【知识梳理】【历年真题】1.(2021秋•普陀区期末)如图,在△ABC中,AB=AC=5,BC=4,AD是边BC上的高,将△ABC绕点C旋转,点B落在线段AD上的点E处,点A落在点F处,那么cos∠FAD =.2.(2021秋•静安区期末)如图,正方形ABCD中,将边BC绕着点C旋转,当点B落在边AD的垂直平分线上的点E处时,∠AEC的度数为.3.(2021秋•杨浦区期末)如图,已知在Rt△ABC中,∠C=90°,tan A=512,将△ABC绕点A逆时针旋转90°后得△ADE,点B落在点D处,点C落在点E处,联结BE、CD,作∠CAD的平分线AN,交线段BE于点M,交线段CD于点N,那么AMAN的值为.4.(2021秋•嘉定区期末)如图,在△ABC中,∠C=90°,BC=2,AB=25D在边AC上,CD:AD=1:3,联结BD,点E在线段BD上,如果∠BCE=∠A,那么CE=.5.(2021秋•松江区期末)如图,已知矩形ABCD中,AD=3,AB=5,E是边DC上一点,将△ADE绕点A顺时针旋转得到△AD′E′,使得点D的对应点D'落在AE上,如果D′E′的延长线恰好经过点B,那么DE的长度等于.6、(2021秋•黄浦区期末17)如图,在△ABC中,AB=4,AC=5,将△ABC绕点A旋转,使点B落在AC边上的点D处,点C落在点E处,如果点E恰好在线段BD的延长线上,那么边BC的长等于.7.(2020秋•嘉定区期末)已知在△ABC 中,∠ACB =90°,AB =10,sin A =55(如图),把△ABC 绕着点C 按顺时针方向旋转α°(0<α<360),将点A 、B 的对应点分别记为点A ′,B ′,如果△AA ′C 为直角三角形,那么点A 与点B '的距离为.8.(2020秋•闵行区期末)如图,在Rt △ABC 中,∠ACB =90°,AB =3,tan B =.将△ABC 绕着点A 顺时针旋转后,点B 恰好落在射线CA 上的点D 处,点C 落在点E 处,射线DE 与边AB 相交于点F ,那么BF =.9.(2020秋•静安区期末)在Rt △ABC 中,∠C =90°,AB =13,tan B =23(如图),将△ABC 绕点C 旋转后,点A 落在斜边AB 上的点A ',点B 落在点B ',A 'B '与边BC 相交于点D ,那么'CD A D 的值为.10.(2020秋•杨浦区期末)如图,已知在△ABC 中,∠B =45°,∠C =60°,将△ABC 绕点A 旋转,点B 、C 分别落在点B 1、C 1处,如果BB 1∥AC ,联结C 1B 1交边AB 于点D ,那么1BD B D 的值为.11.(2020秋•宝山区期末)在Rt △ABC 中,∠ACB =90°,AC =BC ,点E 、F 分别是边CA 、CB 的中点,已知点P 在线段EF 上,联结AP ,将线段AP 绕点P 逆时针旋转90°得到线段DP ,如果点P 、D 、C 在同一直线上,那么tan ∠CAP =.12.(2020秋•奉贤区期末)如图,在Rt △ABC 中,∠ACB =90°,AC =3,BC =4,CD 是△ABC 的角平分线,将Rt △ABC 绕点A 旋转,如果点C 落在射线CD 上,点B 落在点E 处,联结DE ,那么∠AED 的正切值为.13.(2019秋•奉贤区期末)如图,已知矩形ABCD (AB >BC ),将矩形ABCD 绕点B 顺时针旋转90°,点A 、D 分别落在点E 、F 处,连接DF ,如果点G 是DF 的中点,那么∠BEG 的正切值是.14.(2019秋•浦东新区期末)在Rt △ABC 中,∠C =90°,AC =2,BC =4,点D 、E 分别是边BC 、AB 的中点,将△BDE 绕着点B 旋转,点D 、E 旋转后的对应点分别为点D '、E ',当直线D 'E '经过点A 时,线段CD '的长为.15.(2019秋•长宁、金山区期末)如图,在Rt△ABC中,∠ABC=90°,AB=2,BC=4点P在边BC上,联结AP,将△ABP绕着点A旋转,使得点P与边AC的中点M重合,点B的对应点是点B′,则BB′的长等于.16.(2019秋•松江区期末)如图,矩形ABCD中,AD=1,AB=k,将矩形ABCD绕着点B 顺时针旋转90°得到矩形A′BC′D′,联结AD′,分别交边CD,A′B于E、F,如果AE D′F,那么k=.17.(2019秋•嘉定区期末)在△ABC中,∠ACB=90°,AB=10,cos A=35(如图),把△ABC绕着点C按照顺时针的方向旋转,将A、B的对应点分别记为点A'、B'.如果A'B'恰好经过点A,那么点A与点A'的距离为.18.(2019秋•徐汇区期末)如图,在矩形ABCD中,AB=3,AD=4,将矩形ABCD绕着点B顺时针旋转后得到矩形A'BC'D',点A的对应点A'在对角线AC上,点C、D分别与点C'、D'对应,A′D'与边BC交于点E,那么BE的长是.19.(2019秋•普陀区期末)如图,在RtΔABC中,∠C=90°,AC=5,sinB=513,点P为边BC上一点,PC=3,将△ABC绕点P旋转得到△A'B'C'(点A,B、C分别与点A'、B'、C'对应).使B'C'∥AB,边A'C'与边AB交于点G,那么A'G 的长等于.专题图形的旋转【历年真题】1.(2021秋•普陀区期末)如图,在△ABC 中,AB =AC =5,BC =4,AD 是边BC 上的高,将△ABC 绕点C 旋转,点B 落在线段AD 上的点E 处,点A 落在点F 处,那么cos ∠FAD =21332-.【考点】旋转的性质;解直角三角形;等腰三角形的性质;勾股定理.【专题】几何综合题;推理能力.【分析】如图,过点F 作FG ⊥AD 于点G ,由旋转可知:CE =BC =4,CF =EF =AB =AC =5,利用三角函数可得∠ECD =60°,进而可得:DE =AF =EF =5,运用勾股定理可得AD ,AE ﹣,由等腰三角形性质可得AG =EG =21332-,再运用三角函数可得cos ∠FAD =AG AF =.【解答】解:如图,过点F 作FG ⊥AD 于点G ,∵将△ABC 绕点C 旋转,点B 落在线段AD 上的点E 处,点A 落在点F 处,∴CE =BC =4,CF =EF =AB =AC =5,∵AB =AC ,AD 是边BC 上的高,∴BD =CD =2,∴cos ∠ECD =2142CD CE ==,∴∠ECD =60°,∴DE =CE •sin ∠ECD =4×sin60°=,∵∠ACF =∠ECD =60°,∴△ACF 是等边三角形,∴AF =EF =5,在Rt △ACD 中,AD ===,∴AE =AD ﹣DE ﹣∵AF =EF ,FG ⊥AD ,∴AG =EG =21332-,∴cos ∠FAD =AG AF ==2-,故答案为:2.【点评】本题考查了旋转的性质,等腰三角形的性质,等边三角形的判定和性质,勾股定理,三角函数定义,解题关键是要熟练运用等腰三角形性质.2.(2021秋•静安区期末)如图,正方形ABCD中,将边BC绕着点C旋转,当点B落在边AD的垂直平分线上的点E处时,∠AEC的度数为45°或135°..【考点】旋转的性质;线段垂直平分线的性质;正方形的性质.【专题】矩形菱形正方形;平移、旋转与对称;推理能力.【分析】分两种情况讨论,由旋转的性质和线段垂直平分线的性质可得△BEC是等边三角形,由等腰三角形的性质可求解.【解答】解:如图,当点E在BC的上方时,连接BE∵MN是AD的垂直平分线,四边形ABCD是正方形,∴MN垂直平分BC,∴BE=EC,∵将边BC绕着点C旋转,∴BC=CE,∴△BEC是等边三角形,∴∠EBC=∠BEC=60°,∴∠ABE=30°,∵AB=BC=BE,∴∠AEB=75°,∴∠AEC=75°+60°=135°;当点E'在BC的下方时,同理可得△BE'C是等边三角形,∴BC=BE',∠BE'C=60°=∠CBE',∴∠ABE'=150°,∵AB=BC=BE',∴∠AE'B=15°,∴∠AE'C=45°,故答案为:45°或135°.【点评】本题考查了旋转的性质,正方形的性质,等边三角形的性质,利用分类讨论思想解决问题是解题的关键.3.(2021秋•杨浦区期末)如图,已知在Rt△ABC中,∠C=90°,tan A=512,将△ABC绕点A逆时针旋转90°后得△ADE,点B落在点D处,点C落在点E处,联结BE、CD,作∠CAD的平分线AN,交线段BE于点M,交线段CD于点N,那么AMAN的值为23.【考点】相似三角形的判定与性质;解直角三角形;旋转的性质.【专题】三角形;等腰三角形与直角三角形;推理能力.【分析】先根据题目条件作出图象,由∠C=90°和tan A=512,设BC=5k,AC=12k,然后由旋转的性质得到AE =AC=12k,ED=BC=5k,AB=AD=13k,以点C为原点、BC和AC所在直线分别为x轴和y轴建立平面直角坐标系,则A(0,12k),B(﹣5k,0),E(12k,12k),D(12k,7k),过点N作NF⊥AC于点F,交BE于点P,NH ⊥AD于点H,得到NF=NH,得到AMCAMDAC12k==AD13kSS△△,然后由高相等的两个三角形的面积之比为底边长之比得到CNDN的值,进而用含有k的式子表示点N的坐标,再求得直线BE的解析式,然后求得点P的坐标得到NP的长,最后通过△MAE∽△MNP得到AMNM的值,即可得到AMAN的值.【解答】方法一:解:由∠C=90°和tan A=512可设BC=5k,AC=12k,∴AB=13k,由旋转得,AE=AC=12k,ED=BC=5k,AB=AD=13k,如图,以点C为原点,BC和AC所在直线分别为x轴和y轴,建立平面直角坐标系,则A(0,12k),B(﹣5k,0),∵旋转角为90°,∴E(12k,12k),D(12k,7k),过点N作NF⊥AC于点F,交BE于点P,作NH⊥AD于点H,∵AN平分∠CAD,∴NF=NH,∴AMCAMDAC12k==AD13kSS△△,又∵△ANC 在边CN 上的高和△AND 在边DN 上的高相等,∴AMC AMD CN 12==DN 13S S △△,∴点N 的坐标为(144k 25,84k 25),设直线BE 的解析式为y =mx +n ,则-5mk+01212n km n k =⎧⎨+=⎩,解得:12m 176017k n ⎧=⎪⎪⎨⎪=⎪⎩,∴直线BE 的解析式为y =1217x +6017k ,当y =8425k 时,1217x +6017k =8425k ,解得:x =﹣625k ,∴P (﹣625k ,8425k ),∴NP =144k 25﹣(﹣625k )=6k ,∵NF ⊥AC ,∠EAC =90°,∴AE ∥NP ,∴△MAE ∽△MNP ,∴126AM AE k MN NP k ===2,∴23AM AN =,方法二:解:由题可知,∠BAC =∠DAE ,∠CAM =∠MAD ,∴∠BAC +∠CAM =∠DAE +∠MAD ,∴∠BAN =∠NAE ,如图,延长AN ,交BC 的延长线于点F ,∵AE ∥BC ,∴∠EAN =∠AFC ,∴∠BAN =∠AFC ,∴BF =BA ,设BC =5,AC =12,AB =13,∴1213AE BF =,∴△AME ∽△FMB ,∴1213AM AE MF BF ==,∴1225AM AF =,延长AD 与BC 的延长线交于点H ,延长ED 与BH 交于点I ,∵DE =5,∴四边形ACIE 为正方形,∴DI =7,延长CD 与AE 延长线交于点G ,易证△EDG ∽△IDC ,∴EG DE CI DI =,即5127EG =,∴EG =607,∴AG =12+607=1447,易知,△ANG ∽△FNC ,∴AN AG NF FC =,∵BF =13,BC =5,∴CF =8,∴14418787AN NF ==,∴1825AN NF =,∵1225AM NF =,∴122183AM AN ==,故答案为:23.【点评】本题考查了旋转的性质、勾股定理、相似三角形的判定与性质、角平分线的性质定理、三角形的面积,解题的关键是通过旋转的性质建立平面直角坐标系.4.(2021秋•嘉定区期末)如图,在△ABC 中,∠C =90°,BC =2,D 在边AC 上,CD :AD =1:3,联结BD ,点E 在线段BD 上,如果∠BCE =∠A ,那么CE =52.【考点】相似三角形的判定与性质;勾股定理.【专题】图形的相似;运算能力.【分析】根据已知∠BCE =∠A ,想到构造这两个角所在的三角形相似,所以过点E 作EF ⊥BC ,垂足为F ,可得△ABC ∽△CEF ,进而可得CF =2EF ,然后设EF 为a ,则CF 为2a ,BF 为2﹣2a ,最后再证明A 字模型相似△BFE ∽△BCD ,从而解答即可.【解答】解:过点E 作EF ⊥BC ,垂足为F ,∵∠ACB =90°,BC =2,25AB =2222(25)24AC AB BC =-=-,∵CD :AD =1:3,∴CD =1,∵∠BCE =∠A ,∠ACB =∠CFE =90°,∴△ABC ∽△CEF ,∴42AC CF BC EF ===2,∴设EF 为a ,则CF 为2a ,BF 为2﹣2a ,∵∠ACB =∠BFE =90°,∠CBD =∠FBE ,∴△BFE ∽△BCD ,∴BF EF BC CD =,∴2221a a -=,∴a =12,∴EF =12,CF =1,∴CE 22215()122EF CF +=+=,故答案为:52.【点评】本题考查了相似三角形的判定与性质,勾股定理,熟练掌握A 字模型相似是解题的关键.5.(2021秋•松江区期末)如图,已知矩形ABCD 中,AD =3,AB =5,E 是边DC 上一点,将△ADE 绕点A 顺时针旋转得到△AD ′E ′,使得点D 的对应点D '落在AE 上,如果D ′E ′的延长线恰好经过点B ,那么DE 的长度等于94.【考点】旋转的性质;矩形的性质.【专题】平移、旋转与对称;推理能力.【分析】如图,连接BE 、BE ′,根据矩形的性质和旋转变换的性质可得:AD ′=AD =3,∠AD ′E =∠D =90°,利用勾股定理可得BD ′=4,再运用面积法可得:AB •AD =AE •BD ′,求出AE =,再运用勾股定理即可求得答案.【解答】解:如图,连接BE 、BE ′,∵矩形ABCD 中,AD =3,AB =5,∴∠D =90°,由旋转知,△AD ′E ′≌△ADE ,∴AD′=AD=3,∠AD′E=∠D=90°,∵D′E′的延长线恰好经过点B,∴∠AD′B=90°,在Rt△ABD′中,BD4==,∵AB•AD=AE•BD′,∴AE='5315 44AB AD BD⨯==,在Rt△ADE中,DE94 =,方法二:∵△ADE∽△BDA,∴'' DE AD AD BD=∴334DE=∴DE=94故答案为:9 4.【点评】本题考查了矩形的性质,旋转变换的性质,勾股定理,三角形面积等,解题关键是运用面积法求得AE.6、(2021秋•黄浦区期末17)如图,在△ABC中,AB=4,AC=5,将△ABC绕点A旋转,使点B落在AC边上的点D处,点C落在点E处,如果点E恰好在线段BD的延长线上,那么边BC【考点】旋转的性质;相似三角形的判定.【专题】平移、旋转与对称;推理能力.【分析】如图所示,连接CE,由旋转的性质可得:AD=AB=4,BC=DE,∠BCD=∠DEA,AE=AC=5,则CD=AC-AD=1,然后证明△BDC∽△ADE,得到BC DCAE DE=,即15BCBC=,则BC2=5,由此即可得到答案.【解答】解:如图所示,连接CE,由旋转的性质可得:AD=AB=4,BC=DE,∠BCD=∠DEA,AE=AC=5,∴CD=AC-AD=1又∵∠BDC=∠ADE∴△BDC∽△ADE,∴BC DCAE DE=,即15BCBC=,∴BC2=5,∴BC (负值已经舍去),【点评】本题主要考查了旋转的性质,相似三角形的性质与判定,熟知相似三角形的性质与判定条件是解题的关键.7.(2020秋•嘉定区期末)已知在△ABC中,∠ACB=90°,AB=10,sin A=55(如图),把△ABC绕着点C按顺时针方向旋转α°(0<α<360),将点A、B的对应点分别记为点A′,B′,如果△AA′C为直角三角形,那么点A与点B'的距离为【考点】旋转的性质;解直角三角形.【专题】分类讨论;平移、旋转与对称;几何直观.【分析】根据△AA′C为直角三角形,分两种情况:①当点B'在线段AC上时,△AA′C为直角三角形;②当点B'在线段AC的延长线上时,△AA′C为直角三角形,依据线段的和差关系进行计算即可得到点A与点B'的距离.【解答】解:分两种情况:①当点B'在线段AC上时,△AA′C为直角三角形,∵∠ACB=90°,AB=10,sin A=5 5,∴BC=AB×5=10×5=∴B'C=AC=,∴AB'=AC﹣B'C=②当点B'在线段AC的延长线上时,△AA′C为直角三角形,同理可得,B'C=AC=,∴AB'=AC+B'C=综上所述,点A与点B'的距离为故答案为:【点评】本题考查了旋转的性质,勾股定理,锐角三角函数的应用,运用分类思想是本题的关键.8.(2020秋•闵行区期末)如图,在Rt△ABC中,∠ACB=90°,AB=3,tan B=.将△ABC绕着点A顺时针旋转后,点B恰好落在射线CA上的点D处,点C落在点E处,射线DE与边AB相交于点F,那么BF=3【考点】旋转的性质;解直角三角形.【专题】平移、旋转与对称;解直角三角形及其应用;运算能力;推理能力.【分析】过点F作FG⊥AC于点G,由旋转的性质得出∠B=∠D,得出tan∠B=tan∠D=12FGGD=,由平行线的性质得出∠B=∠AFG,设AG=x,则FG=2x,则2132xx=+,求出AG=1,则可得出答案.【解答】解:如图,过点F作FG⊥AC于点G,∵将△ABC 绕着点A 顺时针旋转后,点B 恰好落在射线CA 上的点D 处,∴∠B =∠D ,∴tan ∠B =tan ∠D =12FG GD =,∵∠ACB =∠FGA =90°,∴BC ∥FG ,∴∠B =∠AFG ,∴tan ∠B =tan ∠AFG =12AG FG =,设AG =x ,则FG =2x ,∴2132x x =+,解得x =1,∴AG =1,FG =2,∴AF 225FG AG +=∴BF =AB ﹣AF =35.故答案为:35【点评】本题考查了旋转的性质,直角三角形的性质,锐角三角函数的定义,勾股定理,熟练掌握旋转的性质是解题的关键.9.(2020秋•静安区期末)在Rt △ABC 中,∠C =90°,AB =13,tan B =23(如图),将△ABC 绕点C 旋转后,点A 落在斜边AB 上的点A ',点B 落在点B ',A 'B '与边BC 相交于点D ,那么'CD A D 的值为3135.【考点】旋转的性质;解直角三角形.【专题】等腰三角形与直角三角形;几何直观.【分析】过C 作CE ⊥AB 于E ,根据勾股定理和正切的定义得到AC =213,BC =313,根据三角形面积得到CE =6,再根据旋转的性质和相似三角形的判定与性质即可求解.【解答】解:过C 作CE ⊥AB 于E ,∵tan B =23,∴23AC BC =,设AC =2x ,则BC =3x ,在Rt △ABC 中,AB=13,解得x=AC =,BC =,S △ABC =12AC •BC =12AB •CE ,即12××312×13×CE ,解得CE =6,∵tan B =CE EB =23,∴EB =9,∵将△ABC 绕点C 旋转后,点A 落在斜边AB 上的点A ',点B 落在点B ',∴∠B =∠B ′,AC =AC ′,∵CE ⊥AB ,∴AE ′=AE =AB ﹣BE =13﹣9=4,∴A ′B =AB ﹣A ′E =9﹣4=5,∵∠A ′DB =∠CDB ′,∴△A ′DB ∽△B ′DC ,∴'CD A D =''CB A B ='CB A B..【点评】本题考查了勾股定理,解直角三角形,旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.10.(2020秋•杨浦区期末)如图,已知在△ABC 中,∠B =45°,∠C =60°,将△ABC 绕点A 旋转,点B 、C 分别落在点B 1、C 1处,如果BB 1∥AC ,联结C 1B 1交边AB 于点D ,那么1BD B D 的值为622.【考点】旋转的性质;平行线的性质.【专题】平移、旋转与对称;推理能力.【分析】由旋转的性质和等腰三角形的性质可求∠B1AB=30°,由直角三角形的性质可求DB1=DE,DB=﹣DE,即可求解.【解答】解:如图,过点D作DE⊥AB1于E,∵∠B=45°,∠C=60°,∴∠CAB=75°,∵BB1∥AC,∴∠CAB=∠ABB1=75°,∵将△ABC绕点A旋转,∴AB=AB1,∠AB1C1=∠ABC=45°,∴∠AB1B=∠ABB1=75°,∴∠B1AB=30°,又∵DE⊥AB1,∠AB1C1=45°,∴AD=2DE,AE=DE,DE=B1E,∴AB1DE+DE=AB,DB1DE,∴DB=AB﹣ADDE﹣DE,∴1BDB D622=,故答案为:622.【点评】本题考查了旋转的性质,等腰三角形的性质,直角三角形的性质,灵活运用这些性质进行推理是本题的关键.11.(2020秋•宝山区期末)在Rt△ABC中,∠ACB=90°,AC=BC,点E、F分别是边CA、CB的中点,已知点P在线段EF上,联结AP,将线段AP绕点P逆时针旋转90°得到线段DP,如果点P、D、C在同一直线上,那么tan∠CAP﹣1.【考点】旋转的性质;解直角三角形;等腰直角三角形;三角形中位线定理.【专题】等腰三角形与直角三角形;平移、旋转与对称;图形的相似;解直角三角形及其应用;推理能力.【分析】分两种情形:①当点D在线段PC上时,延长AD交BC的延长线于H.证明AD=DC即可解决问题.②当点P在线段CD上时,同法可证:DA=DC解决问题.【解答】解:如图1,当点D在线段PC上时,延长AD交BC的延长线于H.∵CE=EA,CF=FB,∴EF∥AB,∴∠EFC=∠ABC=45°,∵∠PAO=45°,∴∠PAO=∠OFH,∵∠POA=∠FOH,∴∠H=∠APO,∵∠APC=90°,EA=EC,∴PE=EA=EC,∴∠EPA=∠EAP=∠BAH,∴∠H=∠BAH,∴BH=BA,∵∠ADP=∠BDC=45°,∴∠ADB=90°,∴BD⊥AH,∴∠DBA=∠DBC=22.5°,∵∠ADB=∠ACB=90°,∴A,D,C,B四点共圆,∠DAC=∠DBC=22.5°,∠DCA=∠ABD=22.5°,∴∠DAC=∠DCA=22.5°,∴DA=DC,设AD=a,则DC=AD=a,AP=PD =22a,∴PC=a +22a,∴tan∠CAP=22122a aCPAP+==;如图2中,当点P在线段CD上时,同法可证:DA=DC,设AD=a,则CD=AD=a,PD =2 2 a,∴PC=a ﹣22 a,∴tan∠CAP=22122a aCPAP+==,∵点P在线段EF上,∴情形1,不满足条件,情形2满足条件,﹣1.【点评】本题考查了旋转变换,等边三角形的性质,等腰直角三角形的性质,全等三角形的判定和性质,相似三角形的判定和性质等知识,解题的关键是正确寻找全等三角形或相似三角形解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.12.(2020秋•奉贤区期末)如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,CD是△ABC的角平分线,将Rt△ABC绕点A旋转,如果点C落在射线CD上,点B落在点E处,联结DE,那么∠AED的正切值为3 7.【考点】旋转的性质;解直角三角形.【专题】等腰三角形与直角三角形;平移、旋转与对称;解直角三角形及其应用;推理能力.【分析】设点C落在射线CD上的点C'处,由勾股定理可求AB=5,由旋转的性质可得∠ACD=∠AC'C=45°=∠DCB,∠EAB=∠CAC',由平行线分线段成比例可求AD的长,即可求解.【解答】解:如图,设点C落在射线CD上的点C'处,∵∠ACB=90°,AC=3,BC=4,∴AB=5,∵CD是△ABC的角平分线,∴∠ACD=∠DCB=45°,∵将Rt△ABC绕点A旋转,∴∠ACD=∠AC'C=45°=∠DCB,∠EAB=∠CAC',∴∠CAC'=90°=∠EAB,∴AC'∥BC,∴'34AD ACDB BC==,∴AD=157,∴tan∠AED=37 ADAE=,故答案为:3 7.【点评】本题考查了旋转的性质,勾股定理,锐角三角函数,平行线的性质等知识,灵活运用这些性质解决问题是本题的关键.13.(2019秋•奉贤区期末)如图,已知矩形ABCD(AB>BC),将矩形ABCD绕点B顺时针旋转90°,点A、D分别落在点E、F处,连接DF,如果点G是DF的中点,那么∠BEG的正切值是1.【考点】旋转的性质;矩形的性质.【专题】平移、旋转与对称;应用意识.【分析】连接BD,BF,EG.利用四点共圆证明∠BEG=∠BFD=45°即可.【解答】解:连接BD,BF,EG.由题意:BD=BF,∠DBF=90°,∵DG=GF,∴BG⊥DF,∴∠BGF=∠BEF=90°,∴B,G,E,F四点共圆,∠BEG=∠BFD=45°,∴∠BEG的正切值是1.故答案为1.【点评】本题考查旋转变换,等腰直角三角形的判定和性质,四点共圆,锐角三角函数等知识,解题的关键是学会添加常用辅助线解决问题,属于中考常考题型.14.(2019秋•浦东新区期末)在Rt△ABC中,∠C=90°,AC=2,BC=4,点D、E分别是边BC、AB的中点,将△BDE绕着点B旋转,点D、E旋转后的对应点分别为点D'、E',当直线D'E'经过点A时,线段CD'的长为【考点】三角形综合题.【专题】图形的全等;等腰三角形与直角三角形;矩形菱形正方形;图形的相似;推理能力.【分析】分两种情况:①点A在E'D'的延长线上时;②点A在线段D'E'的延长线上时;然后分类讨论,求出线段BD的长各是多少即可.【解答】解:如图1,当点A 在E 'D '的延长线上时,∵∠C =90°,AC =2,BC =4,∴AB ==2,∵点D 、E 分别是边BC 、AB 的中点,∴DE ∥AC ,DE =12AC =1,BD =12BC =2,∴∠EDB =∠ACB =90°,∵将△BDE 绕着点B 旋转,∴∠BD 'E '=∠BDE =90°,D 'E '=DE =1,BD =BD '=2,∵在Rt △ABC 和Rt △BAD '中,D 'B =AC =2,AB =BA ,∴Rt △ABC ≌Rt △BAD '(HL ),∴AD '=BC ,且AC =D 'B ,∴四边形ACBD '是平行四边形,且∠ACB =90°,∴四边形ACBD '是矩形,∴CD '=AB =如图2,当点A 在线段D 'E '的延长线上时,∵∠AD 'B =90°,∴AD '==4,∴AE '=AD '﹣D 'E '=3,∵将△BDE 绕着点B 旋转,∴∠ABC =∠E 'BD ',∵'12BE AB ==BD BC ,∴△ABE '∽△CBD ',∴''AE AB CD BC=,∴'3254CD =,∴CD '故答案为:.【点评】本题属于三角形综合题,考查了全等三角形的判定和性质,相似三角形的判定和性质,矩形的判定和性质,勾股定理等知识,解题的关键是理解题意,正确寻找相似三角形解决问题,属于中考常考题型.15.(2019秋•长宁、金山区期末)如图,在Rt △ABC 中,∠ABC =90°,AB =2,BC =4点P在边BC上,联结AP,将△ABP绕着点A旋转,使得点P与边AC的中点M重合,点B的对应点是点B′,则BB′的长等于5.【考点】旋转的性质;相似三角形的判定与性质.【专题】等腰三角形与直角三角形;平移、旋转与对称;图形的相似;推理能力.【分析】如图,延长AB'交BC于E,过点B'作B'D⊥AB于点D,由勾股定理可求AC的长,由旋转的性质可求AP=AM,∠PAB=∠CAE,AB=AB'=2,通过证明△ABP∽△CBA,可得∠PAB=∠C,可得CE=AE,由勾股定理可求CE,BE的长,由相似三角形的性质可求B'D,BD的长,即可求解.【解答】解:如图,延长AB'交BC于E,过点B'作B'D⊥AB于点D,∵∠ABC=90°,AB=2,BC=4,∴AC==∵点M是AC中点,∴AM∵将△ABP绕着点A旋转,使得点P与边AC的中点M重合,∴AP=AM,∠PAB=∠CAE,AB=AB'=2,∵AP2=AB2+PB2,∴PB=1,∵BAPB=2=BCAB,且∠ABP=∠ABC=90°,∴△ABP∽△CBA,∴∠PAB=∠C,∴∠C=∠CAE,∴CE=AE,∵AE2=AB2+BE2,∴CE2=4+(4﹣CE)2,∴CE=AE=52,∴BE=32,∵B'D∥BC,∴△AB'D∽△AEB,∴''AB AD B DAE AB BE==,∴'253222AD B D==,∴AD=85,B'D=65,∴BD=25,∴BB'=2105,故答案为:2105.【点评】本题考查了旋转的性质,相似三角形的判定和性质,等腰三角形的性质,勾股定理等知识,求出CE 的长是本题的关键.16.(2019秋•松江区期末)如图,矩形ABCD 中,AD =1,AB =k ,将矩形ABCD 绕着点B顺时针旋转90°得到矩形A ′BC ′D ′,联结AD ′,分别交边CD ,A ′B 于E 、F ,如果AED ′F ,那么k【考点】旋转的性质;相似三角形的判定与性质;矩形的性质.【专题】矩形菱形正方形;平移、旋转与对称;图形的相似;推理能力.【分析】由矩形的性质和旋转的性质可求AD =A 'D '=1,AB =A 'B =k ,∠A '=∠DAB =90°=∠DCB =∠ABC ,通过证明△ADE ∽△FA 'D ',可得''''AD DE AE A F A D D F ==,可求DE ,A 'F 的长,通过证明△A 'D 'F ∽△CEF ,由相似三角形的性质可求解.【解答】解:∵将矩形ABCD 绕着点B 顺时针旋转90°得到矩形A ′BC ′D ′,∴AD =A 'D '=1,AB =A 'B =k ,∠A '=∠DAB =90°=∠DCB =∠ABC ,∴A 'D '∥BA ∥CD∴∠A 'D 'F =∠FEC =∠DEA ,且∠D =∠A '=90°,∴△ADE ∽△FA 'D ',∴''''AD DE AE A F A D D F==,且AED ′F ,∴DEA 'D ',A 'FAD=2,∵∠A '=∠DCF =90°,∠A 'FD '=∠EFC ,∴△A 'D 'F ∽△CEF ,∴'''EC FC A D A F =,∴''21222k k A D ---=∴k+1,+1.【点评】本题考查了旋转的性质,矩形的性质,相似三角形的判定和性质,利用相似三角形的性质求DE ,A 'F 的长是本题的关键.17.(2019秋•嘉定区期末)在△ABC中,∠ACB=90°,AB=10,cos A=35(如图),把△ABC绕着点C按照顺时针的方向旋转,将A、B的对应点分别记为点A'、B'.如果A'B'恰好经过点A,那么点A与点A'的距离为36 5.【考点】旋转的性质;解直角三角形.【专题】等腰三角形与直角三角形;平移、旋转与对称;解直角三角形及其应用;推理能力.【分析】如图,过点C作CE⊥A'B',由锐角三角函数可求AC=6,由旋转的性质可得AC=A'C=6,∠A'=∠BAC,即可求A'E的长,由等腰三角形的性质可求AA'的长.【解答】解:如图,过点C作CE⊥A'B',∵在△ABC中,∠ACB=90°,AB=10,cos∠BAC=35,∴AC=6,∵把△ABC绕着点C按照顺时针的方向旋转,∴AC=A'C=6,∠A'=∠BAC,∵cos∠A'=cos∠BAC==35,∴A'E=185,∵AC=A'C,CE⊥A'B',∴AA'=2A'E=36 5,故答案我:36 5.【点评】本题考查了旋转的性质,等腰三角形的性质,锐角三角函数的应用,求出A'E的长是本题的关键.18.(2019秋•徐汇区期末)如图,在矩形ABCD中,AB=3,AD=4,将矩形ABCD绕着点B顺时针旋转后得到矩形A'BC'D',点A的对应点A'在对角线AC上,点C、D分别与点C'、D'对应,A′D'与边BC交于点E,那么BE的长是25 8.【考点】旋转的性质;相似三角形的性质;矩形的性质.【专题】矩形菱形正方形;平移、旋转与对称;图形的相似;推理能力.【分析】如图,过点B 作BF ⊥AC ,过点E 作EH ⊥AC ,由勾股定理可求AC =5,由面积法可求BF =125,由勾股定理可求AF =95,由旋转的性质可得AB =BA ',∠BAD =∠BA 'D '=90°,可求CA '=75,由等腰三角形的性质可求HC 的长,通过证明△EHC ∽△ABC ,可得EC BC HC AC =,可求EC 的长,即可求解.【解答】解:如图,过点B 作BF ⊥AC ,过点E 作EH ⊥AC,∵AB =3,AD =4,∠ABC =90°,∴AC ===5,∵S △ABC =12AB ×BC =12AC ×BF ,∴3×4=5BF ,∴BF =125∴AF 22144925AB BF -=-95,∵将矩形ABCD 绕着点B 顺时针旋转后得到矩形A 'BC 'D ',∴AB =BA ',∠BAD =∠BA 'D '=90°,且BF ⊥AC ,∴∠BAC =∠BA 'A ,AF =A 'F =95,∠BA 'A +∠EA 'C =90°,∴A 'C =AC ﹣AA '=75,∵∠BA 'A +∠EA 'C =90°,∠BAA '+∠ACB =90°,∴∠ACB =∠EA 'C ,∴A 'E =EC ,且EH ⊥AC ,∴A 'H =HC =12A 'C =710,∵∠ACB =∠ECH ,∠ABC =∠EHC =90°,∴△EHC ∽△ABC ,∴BC HC AC EC =∴74105EC =∴EC =78,∴BE =BC ﹣EC =4﹣78=258,故答案为:258.【点评】本题考查了旋转的性质,矩形的性质,勾股定理,等腰三角形的性质,相似三角形的判定和性质,求出HC 的长是本题的关键.19.(2019秋•普陀区期末)如图,在RtΔABC 中,∠C=90°,AC=5,sinB=513,点P 为边BC 上一点,PC=3,将△ABC 绕点P 旋转得到△A'B'C'(点A ,B 、C 分别与点A'、B'、C'对应).使B'C'∥AB ,边A'C'与边AB 交于点G ,那么A'G 的长等于2013.【考点】旋转的性质;解直角三角形;平行线的判定,图形的旋转【专题】矩形菱形正方形;平移,旋转与对称;解直角一角形及其应用;应用意识。

备战中考数学——旋转的综合压轴题专题复习含答案

备战中考数学——旋转的综合压轴题专题复习含答案

一、旋转真题与模拟题分类汇编(难题易错题)1.如图:在△ABC中,∠ACB=90°,AC=BC,∠PCQ=45°,把∠PCQ绕点C旋转,在整个旋转过程中,过点A作AD⊥CP,垂足为D,直线AD交CQ于E.(1)如图①,当∠PCQ在∠ACB内部时,求证:AD+BE=DE;(2)如图②,当CQ在∠ACB外部时,则线段AD、BE与DE的关系为_____;(3)在(1)的条件下,若CD=6,S△BCE=2S△ACD,求AE的长.【答案】(1)见解析(2)AD=BE+DE (3)8【解析】试题分析:(1)延长DA到F,使DF=DE,根据线段垂直平分线上的点到线段两端点的距离相等可得CE=CF,再求出∠ACF=∠BCE,然后利用“边角边”证明△ACF和△BCE全等,根据全等三角形的即可证明AF=BE,从而得证;(2)在AD上截取DF=DE,然后根据线段垂直平分线上的点到线段两端点的距离相等可得CE=CF,再求出∠ACF=∠BCE,然后利用“边角边”证明△ACF和△BCE全等,根据全等三角形的即可证明AF=BE,从而得到AD=BE+DE;(3)根据等腰直角三角形的性质求出CD=DF=DE,再根据等高的三角形的面积的比等于底边的比求出AF=2AD,然后求出AD的长,再根据AE=AD+DE代入数据进行计算即可得解.试题解析:(1)证明:如图①,延长DA到F,使DF=DE.∵CD⊥AE,∴CE=CF,∴∠DCE=∠DCF=∠PCQ=45°,∴∠ACD+∠ACF=∠DCF=45°.又∵∠ACB=90°,∠PCQ=45°,∴∠ACD+∠BCE=90°﹣45°=45°,∴∠ACF=∠BCE.在△ACF和△BCE中,∵CE CFACF BCEAC BC=⎧⎪∠=∠⎨⎪=⎩,∴△ACF≌△BCE(SAS),∴AF=BE,∴AD+BE=AD+AF=DF=DE,即AD+BE=DE;(2)解:如图②,在AD上截取DF=DE.∵CD⊥AE,∴CE=CF,∴∠DCE=∠DCF=∠PCQ=45°,∴∠ECF=∠DCE+∠DCF=90°,∴∠BCE+∠BCF=∠ECF=90°.又∵∠ACB=90°,∴∠ACF+∠BCF=90°,∴∠ACF=∠BCE.在△ACF和△BCE中,∵CE CFACF BCEAC BC=⎧⎪∠=∠⎨⎪=⎩,∴△ACF≌△BCE(SAS),∴AF=BE,∴AD=AF+DF=BE+DE,即AD=BE+DE;故答案为:AD=BE+DE.(3)∵∠DCE=∠DCF=∠PCQ=45°,∴∠ECF=45°+45°=90°,∴△ECF是等腰直角三角形,∴CD=DF=DE=6.∵S△BCE=2S△ACD,∴AF=2AD,∴AD=1×6=2,∴AE=AD+DE=2+6=8.12点睛:本题考查了全等三角形的判定与性质,线段垂直平分线上的点到线段两端点的距离相等的性质,等腰直角三角形的性质,综合性较强,但难度不是很大,作辅助线构造出全等三角形是解题的关键.2.已知△ABC是边长为4的等边三角形,边AB在射线OM上,且OA=6,点D是射线OM 上的动点,当点D不与点A重合时,将△ACD绕点C逆时针方向旋转60°得到△BCE,连接DE.(1)如图1,猜想:△CDE的形状是三角形.(2)请证明(1)中的猜想(3)设OD=m,①当6<m<10时,△BDE的周长是否存在最小值?若存在,求出△BDE周长的最小值;若不存在,请说明理由.②是否存在m的值,使△DEB是直角三角形,若存在,请直接写出m的值;若不存在,请说明理由.【答案】(1)等边;(2)详见解析;(3)3;②当m=2或14时,以D、E、B 为顶点的三角形是直角三角形.【解析】【分析】(1)由旋转的性质猜想结论;(2)由旋转的性质得到∠DCE=60°,DC=EC,即可得到结论;(3)①当6<m<10时,由旋转的性质得到BE=AD,于是得到C△DBE=BE+DB+DE=AB+DE=4+DE,根据等边三角形的性质得到DE=CD,由垂线段最短得到当CD⊥AB时,△BDE的周长最小,于是得到结论;②存在,分四种情况讨论:a)当点D与点B重合时,D,B,E不能构成三角形;b)当0≤m<6时,由旋转的性质得到∠ABE=60°,∠BDE<60°,求得∠BED=90°,根据等边三角形的性质得到∠DEB=60°,求得∠CEB=30°,求得OD=OA﹣DA=6﹣4=2=m;c)当6<m<10时,此时不存在;d)当m>10时,由旋转的性质得到∠DBE=60°,求得∠BDE>60°,于是得到m=14.【详解】(1)等边;(2)∵将△ACD绕点C逆时针方向旋转60°得到△BCE,∴∠DCE=60°,DC=EC,∴△CDE是等边三角形.(3)①存在,当6<t<10时,由旋转的性质得:BE=AD,∴C△DBE=BE+DB+DE=AB+DE=4+DE,由(1)知,△CDE是等边三角形,∴DE=CD,∴C△DBE=CD+4,由垂线段最短可知,当CD⊥AB时,△BDE的周长最小,此时,CD=23,∴△BDE的最小周长=CD+4=23+4;②存在,分四种情况讨论:a)∵当点D与点B重合时,D,B,E不能构成三角形,∴当点D与点B重合时,不符合题意;b)当0≤m<6时,由旋转可知,∠ABE=60°,∠BDE<60°,∴∠BED=90°,由(1)可知,△CDE是等边三角形,∴∠DEB=60°,∴∠CEB=30°.∵∠CEB=∠CDA,∴∠CDA=30°.∵∠CAB=60°,∴∠ACD=∠ADC=30°,∴DA=CA=4,∴OD=OA﹣DA=6﹣4=2,∴m=2;c)当6<m<10时,由∠DBE=120°>90°,∴此时不存在;d)当m>10时,由旋转的性质可知,∠DBE=60°,又由(1)知∠CDE=60°,∴∠BDE=∠CDE+∠BDC=60°+∠BDC,而∠BDC>0°,∴∠BDE>60°,∴只能∠BDE=90°,从而∠BCD=30°,∴BD=BC=4,∴OD=14,∴m=14.综上所述:当m=2或14时,以D、E、B为顶点的三角形是直角三角形.【点睛】本题考查了旋转的性质,等边三角形的判定和性质,三角形周长的计算,直角三角形的判定,熟练掌握旋转的性质是解题的关键.3.如图①,在ABCD中,AB=10cm,BC=4cm,∠BCD=120°,CE平分∠BCD交AB于点E.点P从A点出发,沿AB方向以1cm/s的速度运动,连接CP,将△PCE绕点C逆时针旋转60°,使CE与CB重合,得到△QCB,连接PQ.(1)求证:△PCQ是等边三角形;(2)如图②,当点P在线段EB上运动时,△PBQ的周长是否存在最小值?若存在,求出△PBQ周长的最小值;若不存在,请说明理由;(3)如图③,当点P在射线AM上运动时,是否存在以点P、B、Q为顶点的直角三角形?若存在,求出此时t的值;若不存在,请说明理由.(1)(2)(3)【答案】(1)证明见解析;(2)存在,理由见解析;(3)t为2s或者14s.【解析】分析:(1)根据旋转的性质,证明△PCE≌△QCB,然后根据全等三角形的性质和等边三角形的判定证明即可;(2)利用平行四边形的性质证得△BCE为等边三角形,然后根据全等三角形的性质得到△PBQ的周长为4+CP,然后垂线段最短可由直角三角形的性质求解即可;(3)根据点的移动的距离,分类讨论求解即可.详解:(1)∵旋转∴△PCE≌△QCB∴CP=CQ,∠PCE =∠QCB,∵∠BCD=120°,CE平分∠BCD,∴∠PCQ=60°,∴∠PCE +∠QCE=∠QCB+∠QCE=60°,∴△PCQ为等边三角形.(2)存在∵CE平分∠BCD,∴∠BCE=60 ,∵在平行四边形ABCD 中,∴AB∥CD∴∠ABC=180°﹣120°=60°∴△BCE为等边三角形∴BE=CB=4∵旋转∴△PCE≌△QCB∴EP=BQ,∴C△PBQ=PB+BQ+PQ=PB+EP+PQ=BE+PQ=4+CP∴CP⊥AB时,△PBQ周长最小当CP⊥AB时,CP=BCsin60°=∴△PBQ周长最小为4+(3)①当点B与点P重合时,P,B,Q不能构成三角形②当0≤t<6时,由旋转可知,∠CPE=∠CQB,∠CPQ=∠CPB+∠BPQ=60°则:∠BPQ+∠CQB=60°,又∵∠QPB+∠PQC+∠CQB+∠PBQ=180°∴∠CBQ=180°—60°—60°=60°∴∠QBP=60°,∠BPQ<60°,所以∠PQB可能为直角由(1)知,△PCQ为等边三角形,∴∠PBQ=60°,∠CQB=30°∵∠CQB=∠CPB∴∠CPB=30°∵∠CEB=60°,∴∠ACP=∠APC=30°∴PA=CA=4,所以AP=AE-EP=6-4=2÷=s所以t=212③当6<t<10时,由∠PBQ=120°>90°,所以不存在④当t>10时,由旋转得:∠PBQ=60°,由(1)得∠CPQ=60°∴∠BPQ=∠CPQ+∠BPC=60°+∠BPC,而∠BPC>0°,∴∠BPQ>60°∴∠BPQ=90°,从而∠BCP=30°,所以AP=14cm所以t=14s综上所述:t为2s或者14s时,符合题意。

中考数学专卷2020届中考数学总复习(27)图形的旋转-精练精析(1)及答案解析

中考数学专卷2020届中考数学总复习(27)图形的旋转-精练精析(1)及答案解析

图形的变化——图形的旋转1一.选择题(共9小题)1.如图,把图中的△ABC经过一定的变换得到△A′B′C′,如果图中△ABC上的点P的坐标为(a,b),那么它的对应点P′的坐标为()A.(a﹣2,b)B.(a+2,b)C.(﹣a﹣2,﹣b)D.(a+2,﹣b)2.如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连接AA′,若∠1=20°,则∠B的度数是()A.70° B.65° C.60° D.55°3.如图,在△ABC中,∠ACB=90°,∠ABC=30°,AB=2.将△ABC绕直角顶点C逆时针旋转60°得△A′B′C,则点B转过的路径长为()A.B.C.D.π4.如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,△A′B′C可以由△ABC绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,则AA′的长为()A.6 B.4 C.3 D.35.如图,边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB1C1D1,边B1C1与CD交于点O,则四边形AB1OD的面积是()A. B.C.D.6.如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点C顺时针旋转至△A′B′C,使得点A′恰好落在AB上,则旋转角度为()A.30° B.60° C.90° D.150°7.如图,已知△ABC中,∠C=90°,AC=BC=,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C′B,则C′B的长为()A.2﹣B.C.﹣1 D.18如图,在4×4的正方形网格中,每个小正方形的边长为1,若将△AOC绕点O顺时针旋转90°得到△BOD,则的长为()A.πB.6πC.3πD.1.5π9.如图,△ABC中,∠CAB=65°,在同一平面内,将△ABC绕点A旋转到△AED的位置,使得DC∥AB,则∠BAE等于()A.30° B.40° C.50° D.60°二.填空题(共8小题)10.如图,把△ABC绕点C按顺时针方向旋转35°,得到△A′B′C,A′B′交AC于点D.若∠A′DC=90°,则∠A=_________ .11如图,将等边△ABC绕顶点A顺时针方向旋转,使边AB与AC重合得△ACD,BC的中点E 的对应点为F,则∠EAF的度数是_________ .12.如图,是将菱形ABCD以点O为中心按顺时针方向分别旋转90°,180°,270°后形成的图形.若∠BAD=60°,AB=2,则图中阴影部分的面积为_________ .13.如图,△ABC绕点A顺时针旋转45°得到△A′B′C′,若∠BAC=90°,AB=AC=,则图中阴影部分的面积等于_________ .14.如图,在△A BC中,AB=2,AC=4,将△ABC绕点C按逆时针方向旋转得到△A′B′C,使CB′∥AB,分别延长AB、CA′相交于点D,则线段BD的长为_________ .15如图,AB是⊙O的直径,分别以OA,OB为直径作半圆.若AB=4,则阴影部分的面积是_________ .16.如图,在正方形ABCD中,AD=1,将△ABD绕点B顺时针旋转45°得到△A′BD′,此时A′D′与CD交于点E,则DE的长度为_________ .17如图,等腰Rt△ABC中,∠ACB=90°,AC=BC=1,且AC边在直线a上,将△ABC绕点A 顺时针旋转到位置①可得到点P1,此时AP1=;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2,此时AP2=1+;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP3=2+;…,按此规律继续旋转,直至得到点P2014为止.则AP2014=_________ .三.解答题(共7小题)18.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,将△ABC绕点C按顺时针方向旋转n度后,得到△DEC,点D刚好落在AB边上.(1)求n的值;(2)若F是DE的中点,判断四边形ACFD的形状,并说明理由.19.如图,已知Rt△ABC中,∠ABC=90°,先把△ABC绕点B顺时针旋转90°至△DBE后,再把△ABC沿射线平移至△FEG,DE、FG相交于点H.(1)判断线段DE、FG的位置关系,并说明理由;(2)连结CG,求证:四边形CBEG是正方形.20.在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,1),B(﹣4,5),C(﹣5,2).(1)画出△ABC关于y轴对称的△A1B1C1;(2)画出△ABC关于原点O成中心对称的△A2B2C2.21.如图,将一副直角三角形拼放在一起得到四边形ABCD,其中∠BAC=45°,∠ACD=30°,点E为CD边上的中点,连接AE,将△ADE沿AE所在直线翻折得到△AD′E,D′E交AC于F 点.若AB=6cm.(1)AE的长为_________ cm;(2)试在线段AC上确定一点P,使得DP+EP的值最小,并求出这个最小值;(3)求点D′到BC的距离.22.正方形ABCD中,E是CD边上一点,(1)将△ADE绕点A按顺时针方向旋转,使AD、AB重合,得到△ABF,如图1所示.观察可知:与DE相等的线段是_________ ,∠AFB=∠_________(2)如图2,正方形ABCD中,P、Q分别是BC、CD边上的点,且∠PAQ=45°,试通过旋转的方式说明:DQ+BP=PQ(3)在(2)题中,连接BD分别交AP、AQ于M、N,你还能用旋转的思想说明BM2+DN2=MN2.23.(1)如图1,点P是正方形ABCD内的一点,把△ABP绕点B顺时针方向旋转,使点A与点C重合,点P的对应点是Q.若PA=3,PB=2,PC=5,求∠BQC的度数.(2)点P是等边三角形ABC内的一点,若PA=12,PB=5,PC=13,求∠BPA的度数.24.如图,在等腰△ABC中,AB=BC,∠A=30°将△ABC绕点B顺时针旋转30°,得△A1BC1,A1B交AC于点E,A1C1分别交AC、BC于D、F两点.(1)证明:△ABE≌△C1BF;(2)证明:EA1=FC;(3)试判断四边形ABC1D的形状,并说明理由.图形的变化——图形的旋转1参考答案与试题解析一.选择题(共9小题)1.如图,把图中的△ABC经过一定的变换得到△A′B′C′,如果图中△ABC上的点P的坐标为(a,b),那么它的对应点P′的坐标为()A.(a﹣2,b)B.(a+2,b)C.(﹣a﹣2,﹣b)D.(a+2,﹣b)考点:坐标与图形变化-旋转.专题:压轴题.分析:先根据图形确定出对称中心,然后根据中点公式列式计算即可得解.解答:解:由图可知,△ABC与△A′B′C′关于点(﹣1,0)成中心对称,设点P′的坐标为(x,y),所以,=﹣1,=0,解得x=﹣a﹣2,y=﹣b,所以,P′(﹣a﹣2,﹣b).故选C.点评:本题考查了坐标与图形变化﹣旋转,准确识图,观察出两三角形成中心对称,对称中心是(﹣1,0)是解题的关键.2如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连接AA′,若∠1=20°,则∠B的度数是()A.70°B.65°C.60°D.55°考点:旋转的性质.专题:几何图形问题.分析:根据旋转的性质可得AC=A′C,然后判断出△ACA′是等腰直角三角形,根据等腰直角三角形的性质可得∠CAA′=45°,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠A′B′C,然后根据旋转的性质可得∠B=∠A′B′C.解答:解:∵Rt△ABC绕直角顶点C顺时针旋转90°得到△A′B′C,∴AC=A′C,∴△ACA′是等腰直角三角形,∴∠CAA′=45°,∴∠A′B′C=∠1+∠CAA′=20°+45°=65°,由旋转的性质得∠B=∠A′B′C=65°.故选:B.点评:本题考查了旋转的性质,等腰直角三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键.3.如图,在△ABC中,∠ACB=90°,∠ABC=30°,AB=2.将△ABC绕直角顶点C逆时针旋转60°得△A′B′C,则点B转过的路径长为()A.B C.D.π考点:旋转的性质;弧长的计算.专题:几何图形问题.分析:利用锐角三角函数关系得出BC的长,进而利用旋转的性质得出∠BCB′=60°,再利用弧长公式求出即可.解答:解:∵在△ABC中,∠ACB=90°,∠ABC=30°,AB=2,∴cos30°=,∴BC=ABcos30°=2×=,∵将△ABC绕直角顶点C逆时针旋转60°得△A′B′C,∴∠BCB′=60°,∴点B转过的路径长为:=π.故选:B.点评:此题主要考查了旋转的性质以及弧长公式应用,得出点B转过的路径形状是解题关键.4.如图,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,△A′B′C可以由△ABC绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,则AA′的长为()A. 6 B4C3D.3考点:旋转的性质.专题:几何图形问题.分析:利用直角三角形的性质得出AB=4,再利用旋转的性质以及三角形外角的性质得出AB′=2,进而得出答案.解答:解:∵在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,∴∠CAB=30°,故AB=4,∵△A′B′C由△ABC绕点C顺时针旋转得到,其中点A′与点A是对应点,点B′与点B是对应点,连接AB′,且A、B′、A′在同一条直线上,∴AB=A′B′=4,AC=A′C,∴∠CAA′=∠A′=30°,∴∠ACB′=∠B′AC=30°,∴AB′=B′C=2,∴AA′=2+4=6.故选:A.点评:此题主要考查了旋转的性质以及直角三角形的性质等知识,得出AB′=B′C=2是解题关键.5.如图,边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB1C1D1,边B1C1与CD交于点O,则四边形AB1OD的面积是()A.B C D.考点:旋转的性质;正方形的性质.专题:几何图形问题.分析:连接AC1,AO,根据四边形AB1C1D1是正方形,得出∠C1AB1=∠AC1B1=45°,求出∠DAB1=45°,推出A、D、C1三点共线,在Rt△C1D1A中,由勾股定理求出AC1,进而求出DC1=OD,根据三角形的面积计算即可.解答:解:连接AC1,∵四边形AB1C1D1是正方形,∴∠C1AB1=×90°=45°=∠AC1B1,∵边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB1C1D1,∴∠B1AB=45°,∴∠DAB1=90°﹣45°=45°,∴AC1过D点,即A、D、C1三点共线,∵正方形ABCD的边长是1,∴四边形AB1C1D1的边长是1,在Rt△C1D1A中,由勾股定理得:AC1==,则DC1=﹣1,∵∠AC1B1=45°,∠C1DO=90°,∴∠C1OD=45°=∠DC1O,∴DC1=OD=﹣1,∴S△ADO=×OD•AD=,∴四边形AB1OD的面积是=2×=﹣1,故选:C.点评:本题考查了正方形性质,勾股定理等知识点,主要考查学生运用性质进行计算的能力,题目比较好,但有一定的难度.6.如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,将△ABC绕点C顺时针旋转至△A′B′C,使得点A′恰好落在AB上,则旋转角度为()A.30°B60°C.90°D.150°考点:旋转的性质.专题:几何图形问题.分析:根据直角三角形两锐角互余求出∠A=60°,根据旋转的性质可得AC=A′C,然后判断出△A′AC是等边三角形,根据等边三角形的性质求出∠ACA′=60°,然后根据旋转角的定义解答即可.解答:解:∵∠ACB=90°,∠ABC=30°,∴∠A=90°﹣30°=60°,∵△ABC绕点C顺时针旋转至△A′B′C时点A′恰好落在AB上,∴AC=A′C,∴△A′AC是等边三角形,∴∠ACA′=60°,∴旋转角为60°.故选:B.点评:本题考查了旋转的性质,直角三角形两锐角互余,等边三角形的判定与性质,熟记各性质并准确识图是解题的关键.7.如图,已知△ABC中,∠C=90°,AC=BC=,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C′B,则C′B的长为()A.2﹣B.C.﹣1 D.1考点:旋转的性质.分析:连接BB′,根据旋转的性质可得AB=AB′,判断出△ABB′是等边三角形,根据等边三角形的三条边都相等可得AB=BB′,然后利用“边边边”证明△ABC′和△B′BC′全等,根据全等三角形对应角相等可得∠ABC′=∠B′BC′,延长BC′交AB′于D,根据等边三角形的性质可得BD⊥AB′,利用勾股定理列式求出AB,然后根据等边三角形的性质和等腰直角三角形的性质求出BD、C′D,然后根据BC′=BD﹣C′D计算即可得解.解答:解:如图,连接BB′,∵△ABC绕点A顺时针方向旋转60°得到△AB′C′,∴AB=AB′,∠BAB′=60°,∴△ABB′是等边三角形,∴AB=BB′,在△ABC′和△B′BC′中,,∴△ABC′≌△B′BC′(SSS),∴∠ABC′=∠B′BC′,延长BC′交AB′于D,则BD⊥AB′,∵∠C=90°,AC=BC=,∴AB==2,∴BD=2×=,C′D=×2=1,∴BC′=BD﹣C′D=﹣1.故选:C.点评:本题考查了旋转的性质,全等三角形的判定与性质,等边三角形的判定与性质,等腰直角三角形的性质,作辅助线构造出全等三角形并求出BC′在等边三角形的高上是解题的关键,也是本题的难点.8.如图,在4×4的正方形网格中,每个小正方形的边长为1,若将△AOC绕点O顺时针旋转90°得到△BOD,则的长为()A.πB6πC.3πD.1.5π考点:旋转的性质;弧长的计算.专题:计算题.分析:根据弧长公式列式计算即可得解.解答:解:的长==1.5π.故选:D.点评:本题考查了旋转的性质,弧长的计算,熟记弧长公式是解题的关键.9.如图,△ABC中,∠CAB=65°,在同一平面内,将△ABC绕点A旋转到△AED的位置,使得DC∥AB,则∠BAE等于()A.30°B.40°C.50°D.60°考点:旋转的性质.专题:计算题.分析:先根据平行线的性质得∠DCA=∠CAB=65°,再根据旋转的性质得∠BAE=∠CAD,AC=AD,则根据等腰三角形的性质得∠ADC=∠DCA=65°,然后根据三角形内角和定理计算出∠CAD=180°﹣∠ADC﹣∠DCA=50°,于是有∠BAE=50°.解答:解:∵DC∥AB,∴∠DCA=∠CAB=65°,∵△ABC绕点A旋转到△AED的位置,∴∠BAE=∠CAD,AC=AD,∴∠ADC=∠DCA=65°,∴∠CAD=180°﹣∠ADC﹣∠DCA=50°,∴∠BAE=50°.故选:C.点评:本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.二.填空题(共8小题)10.如图,把△ABC绕点C按顺时针方向旋转35°,得到△A′B′C,A′B′交AC于点D.若∠A′DC=90°,则∠A=55°.考点:旋转的性质.分析:根据题意得出∠ACA′=35°,则∠A′=90°﹣35°=55°,即可得出∠A的度数.解答:解:∵把△ABC绕点C按顺时针方向旋转35°,得到△A′B′C,A′B′交AC于点D,∠A′DC=90°,∴∠ACA′=35°,则∠A′=90°﹣35°=55°,则∠A=∠A′=55°.故答案为:55°.点评:此题主要考查了旋转的性质以及三角形内角和定理等知识,得出∠A′的度数是解题关键.11.如图,将等边△ABC绕顶点A顺时针方向旋转,使边AB与AC重合得△ACD,BC的中点E的对应点为F,则∠EAF的度数是60°.考点:旋转的性质;等边三角形的性质.专题:计算题.分析:根据等边三角形的性质以及旋转的性质得出旋转角,进而得出∠EAF的度数.解答:解:∵将等边△ABC绕顶点A顺时针方向旋转,使边AB与AC重合得△ACD,BC的中点E的对应点为F,∴旋转角为60°,E,F是对应点,则∠EAF的度数为:60°.故答案为:60°.点评:此题主要考查了等边三角形的性质以及旋转的性质,得出旋转角的度数是解题关键.12如图,是将菱形ABCD以点O为中心按顺时针方向分别旋转90°,180°,270°后形成的图形.若∠BAD=60°,AB=2,则图中阴影部分的面积为12﹣4.考点:旋转的性质;菱形的性质.分析:根据菱形的性质得出DO的长,进而求出S正方形DNMF,进而得出S△ADF即可得出答案.解答:解:如图所示:连接AC,BD交于点E,连接DF,FM,MN,DN,∵将菱形ABCD以点O为中心按顺时针方向分别旋转90°,180°,270°后形成的图形,∠BAD=60°,AB=2,∴AC⊥BD,四边形DNMF是正方形,∠AOC=90°,BD=2,AE=EC=,∴∠AOE=45°,ED=1,∴AE=EO=,DO=﹣1,∴S正方形DNMF=2(﹣1)×2(﹣1)×=8﹣4,S△ADF=×AD×AFsin30°=1,∴则图中阴影部分的面积为:4S△ADF+S正方形DNMF=4+8﹣4=12﹣4.故答案为:12﹣4.点评:此题主要考查了菱形的性质以及旋转的性质,得出正确分割图形得出DO的长是解题关键.13.如图,△ABC绕点A顺时针旋转45°得到△A′B′C′,若∠BAC=90°,AB=AC=,则图中阴影部分的面积等于﹣1 .考点:旋转的性质;等腰直角三角形.专题:压轴题.分析:根据题意结合旋转的性质以及等腰直角三角形的性质得出AD=BC=1,AF=FC′=AC′=1,进而求出阴影部分的面积.解答:解:∵△ABC绕点A顺时针旋转45°得到△A′B′C′,∠BAC=90°,AB=AC=,∴BC=2,∠C=∠B=∠CAC′=∠C′=45°,∴AD⊥BC,B′C′⊥AB,∴AD=BC=1,AF=FC′=AC′=1,∴图中阴影部分的面积等于:S△AFC′﹣S△DEC′=×1×1﹣×(﹣1)2=﹣1.故答案为:﹣1.点评:此题主要考查了旋转的性质以及等腰直角三角形的性质等知识,得出AD,AF,DC′的长是解题关键.14.如图,在△ABC中,AB=2,AC=4,将△ABC绕点C按逆时针方向旋转得到△A′B′C,使CB′∥AB,分别延长AB、CA′相交于点D,则线段BD的长为 6 .考点:旋转的性质;相似三角形的判定与性质.专题:几何图形问题.分析:利用平行线的性质以及旋转的性质得出△CAD∽△B′A′C,再利用相似三角形的性质得出AD的长,进而得出BD的长.解答:解:∵将△ABC绕点C按逆时针方向旋转得到△A′B′C,∴AC=CA′=4,AB=B′A′=2,∠A=∠CA′B′,∵CB′∥AB,∴∠B′CA′=∠D,∴△CAD∽△B′A′C,∴=,∴=,解得AD=8,∴BD=AD﹣AB=8﹣2=6.故答案为:6.点评:此题主要考查了旋转的性质以及相似三角形的判定与性质等知识,得出△CAD∽△B′A′C是解题关键.15.如图,AB是⊙O的直径,分别以OA,OB为直径作半圆.若AB=4,则阴影部分的面积是2π.考点:旋转的性质.分析:首先计算出圆的面积,根据图示可得阴影部分面积为半圆的面积,进而可得答案.解答:解:∵AB=4,∴BO=2,∴圆的面积为:π×22=4π,∴阴影部分的面积是:×4π=2π,故答案为:2π.点评:此题主要考查了旋转的性质,关键是掌握圆的面积公式.16.如图,在正方形ABCD中,AD=1,将△ABD绕点B顺时针旋转45°得到△A′BD′,此时A′D′与CD交于点E,则DE的长度为2﹣.考点:旋转的性质.专题:几何图形问题.分析:利用正方形和旋转的性质得出A′D=A′E,进而利用勾股定理得出BD的长,进而利用锐角三角函数关系得出DE的长即可.解答:解:由题意可得出:∠BDC=45°,∠DA′E=90°,∴∠DEA′=45°,∴A′D=A′E,∵在正方形ABCD中,AD=1,∴AB=A′B=1,∴BD=,∴A′D=﹣1,∴在Rt△DA′E中,DE==2﹣.故答案为:2﹣.点评:此题主要考查了正方形和旋转的性质以及勾股定理、锐角三角函数关系等知识,得出A′D的长是解题关键.17.如图,等腰Rt△ABC中,∠ACB=90°,AC=BC=1,且AC边在直线a上,将△ABC绕点A 顺时针旋转到位置①可得到点P1,此时AP1=;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2,此时AP2=1+;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP3=2+;…,按此规律继续旋转,直至得到点P2014为止.则AP2014=1342+672.考点:旋转的性质.专题:规律型.分析:由已知得AP1=,AP2=1+,AP3=2+;再根据图形可得到AP4=2+2;AP5=3+2;AP6=4+2;AP7=4+3;AP8=5+3;AP9=6+3;每三个一组,由于2013=3×671,则AP2013=(2013﹣671)+671,然后把AP2013加上即可.解答:解:AP1=,AP2=1+,AP3=2+;AP4=2+2;AP5=3+2;AP6=4+2;AP7=4+3;AP8=5+3;AP9=6+3;∵2013=3×671,∴AP2013=(2013﹣671)+671=1342+671,∴AP2014=1342+671+=1342+672.故答案为:1342+672.点评:本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.三.解答题(共7小题)18.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,将△ABC绕点C按顺时针方向旋转n度后,得到△DEC,点D刚好落在AB边上.(1)求n的值;(2)若F是DE的中点,判断四边形ACFD的形状,并说明理由.考点:旋转的性质;含30度角的直角三角形;直角三角形斜边上的中线;菱形的判定.专题:几何图形问题.分析:(1)利用旋转的性质得出AC=CD,进而得出△ADC是等边三角形,即可得出∠ACD的度数;(2)利用直角三角形的性质得出FC=DF,进而得出AD=AC=FC=DF,即可得出答案.解答:解:(1)∵在Rt△ABC中,∠ACB=90°,∠B=30°,将△ABC绕点C按顺时针方向旋转n度后,得到△DEC,∴AC=DC,∠A=60°,∴△ADC是等边三角形,∴∠ACD=60°,∴n的值是60;(2)四边形ACFD是菱形;理由:∵∠DCE=∠ACB=90°,F是DE的中点,∴FC=DF=FE,∵∠CDF=∠A=60°,∴△DFC是等边三角形,∴DF=DC=FC,∵△ADC是等边三角形,∴AD=AC=DC,∴AD=AC=FC=DF,∴四边形ACFD是菱形.点评:此题主要考查了菱形的判定以及旋转的性质和直角三角形斜边上的中线等于斜边的一半等知识,得出△DFC是等边三角形是解题关键.19如图,已知Rt△ABC中,∠ABC=90°,先把△ABC绕点B顺时针旋转90°至△DBE后,再把△ABC沿射线平移至△FEG,DE、FG相交于点H.(1)判断线段DE、FG的位置关系,并说明理由;(2)连结CG,求证:四边形CBEG是正方形.考点:旋转的性质;正方形的判定;平移的性质.专题:几何图形问题.分析:(1)根据旋转和平移可得∠DEB=∠ACB,∠GFE=∠A,再根据∠ABC=90°可得∠A+∠ACB=90°,进而得到∠DEB+∠GFE=90°,从而得到DE、FG的位置关系是垂直;(2)根据旋转和平移找出对应线段和角,然后再证明是矩形,后根据邻边相等可得四边形CBEG是正方形.解答:(1)解:FG⊥ED.理由如下:∵△ABC绕点B顺时针旋转90°至△DBE后,∴∠DEB=∠ACB,∵把△ABC沿射线平移至△FEG,∴∠GFE=∠A,∵∠ABC=90°,∴∠A+∠ACB=90°,∴∠DEB+∠GFE=90°,∴∠FHE=90°,∴FG⊥ED;(2)证明:根据旋转和平移可得∠GEF=90°,∠CBE=90°,CG∥EB,CB=BE,∵CG∥EB,∴∠BCG=∠CBE=90°,∴∠BCG=90°,∴四边形BCGE是矩形,∵CB=BE,∴四边形CBEG是正方形.点评:此题主要考查了图形的旋转和平移,关键是掌握新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.20在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,1),B(﹣4,5),C(﹣5,2).(1)画出△ABC关于y轴对称的△A1B1C1;(2)画出△ABC关于原点O成中心对称的△A2B2C2.考点:作图-旋转变换;作图-轴对称变换.专题:作图题.分析:(1)根据网格结构找出点A、B、C关于y轴对称的点A1、B1、C1的位置,然后顺次连接即可;(2)根据网格结构找出点A、B、C关于原点对称的点A2、B2、C2的位置,然后顺次连接即可.解答:解:(1)△A1B1C1如图所示;(2)△A2B2C2如图所示.点评:本题考查了利用旋转变换作图,利用轴对称变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.21.如图,将一副直角三角形拼放在一起得到四边形ABCD,其中∠BAC=45°,∠ACD=30°,点E为CD边上的中点,连接AE,将△ADE沿AE所在直线翻折得到△AD′E,D′E交AC于F 点.若AB=6cm.(1)AE的长为4cm;(2)试在线段AC上确定一点P,使得DP+EP的值最小,并求出这个最小值;(3)求点D′到BC的距离.考点:几何变换综合题.专题:几何综合题.分析:(1)首先利用勾股定理得出AC的长,进而求出CD的长,利用直角三角形斜边上的中线等于斜边的一半进而得出答案;(2)首先得出△ADE为等边三角形,进而求出点E,D′关于直线AC对称,连接DD′交AC 于点P,此时DP+EP值为最小,进而得出答案;(3)连接CD′,BD′,过点D′作D′G⊥BC于点G,进而得出△ABD′≌△CBD′(SSS),则∠D′BG=45°,D′G=GB,进而利用勾股定理求出点D′到BC边的距离.解答:解:(1)∵∠BAC=45°,∠B=90°,∴AB=BC=6cm,∴AC=12cm,∵∠ACD=30°,∠DAC=90°,AC=12cm,∴CD=AC÷cos30°=12÷=12×=8(cm),∵点E为CD边上的中点,∴AE=DC=4cm.故答案为:4;(2)∵Rt△ADC中,∠ACD=30°,∴∠ADC=60°,∵E为CD边上的中点,∴DE=AE,∴△ADE为等边三角形,∵将△ADE沿AE所在直线翻折得△AD′E,∴△AD′E为等边三角形,∠AED′=60°,∵∠EAC=∠DAC﹣∠EAD=30°,∴∠EFA=90°,即AC所在的直线垂直平分线段ED′,∴点E,D′关于直线AC对称,连接DD′交AC于点P,∴此时DP+EP值为最小,且DP+EP=DD′,∵△ADE是等边三角形,AD=AE=4,∴DD′=2×AD×=2×6=12,即DP+EP最小值为12cm;(3)连接CD′,BD′,过点D′作D′G⊥BC于点G,∵AC垂直平分线ED′,∴AE=AD′,CE=CD′,∵AE=EC,∴AD′=CD′=4,在△ABD′和△CBD′中,,∴△ABD′≌△CBD′(SSS),∴∠D′BG=45°,∴D′G=GB,设D′G长为xcm,则CG长为(6﹣x)cm,在Rt△GD′C中x2+(6﹣x)2=(4)2,解得:x1=3﹣,x2=3+(不合题意舍去),∴点D′到BC边的距离为(3﹣)cm.点评:此题主要考查了全等三角形的判定与性质和锐角三角函数关系以及等边三角形的判定与性质等知识,利用垂直平分线的性质得出点E,D′关于直线AC对称是解题关键.22.正方形ABCD中,E是CD边上一点,(1)将△ADE绕点A按顺时针方向旋转,使AD、AB重合,得到△ABF,如图1所示.观察可知:与DE相等的线段是BF ,∠AFB=∠AED(2)如图2,正方形ABCD中,P、Q分别是BC、CD边上的点,且∠PAQ=45°,试通过旋转的方式说明:DQ+BP=PQ(3)在(2)题中,连接BD分别交AP、AQ于M、N,你还能用旋转的思想说明BM2+DN2=MN2.考点:旋转的性质;全等三角形的判定与性质;勾股定理;正方形的性质.分析:(1)直接根据旋转的性质得到DE=BF,∠AFB=∠AED;(2)将△ADQ绕点A按顺时针方向旋转90°,则AD与AB重合,得到△ABE,根据旋转的性质得∠EAQ=∠BAD=90°,AE=AQ,BE=DQ,而∠PAQ=45°,则∠PAE=45°,再根据全等三角形的判定方法得到△APE≌△APQ,则PE=PQ,于是PE=PB+BE=PB+DQ,即可得到DQ+BP=PQ;(3)根据正方形的性质有∠ABD=∠ADB=45°,将△ADN绕点A按顺时针方向旋转90°,则AD与AB重合,得到△ABK,根据旋转的性质得∠ABK=∠ADN=45°,BK=DN,AK=AN,与(2)一样可证明△AMN≌△AMK得到MN=MK,由于∠MBA+∠KBA=45°+45°=90°,得到△BMK为直角三角形,根据勾股定理得BK2+BM2=MK2,然后利用等相等代换即可得到BM2+DN2=MN2.解答:解:(1)∵△ADE绕点A按顺时针方向旋转,使AD、AB重合,得到△ABF,∵DE=BF,∠AFB=∠AED.故答案为BF,AED;(2)将△ADQ绕点A按顺时针方向旋转90°,则AD与AB重合,得到△ABE,如图2,则∠D=∠ABE=90°,即点E、B、P共线,∠EAQ=∠BAD=90°,AE=AQ,BE=DQ,∵∠PAQ=45°,∴∠PAE=45°,∴∠PAQ=∠PAE,在△APE和△AP Q中∵,∴△APE≌△APQ,∴PE=PQ,而PE=PB+BE=PB+DQ,∴DQ+BP=PQ;(3)∵四边形ABCD为正方形,∴∠ABD=∠ADB=45°,如图,将△ADN绕点A按顺时针方向旋转90°,则AD与AB重合,得到△ABK,则∠ABK=∠ADN=45°,BK=DN,AK=AN,与(2)一样可证明△AMN≌△AMK得到MN=MK,∵∠MBA+∠KBA=45°+45°=90°,∴△BMK为直角三角形,∴BK2+BM2=MK2,∴BM2+DN2=MN2.点评:本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了三角形全等的判定与性质、正方形的性质以及勾股定理.23.(1)如图1,点P是正方形ABCD内的一点,把△ABP绕点B顺时针方向旋转,使点A 与点C重合,点P的对应点是Q.若PA=3,PB=2,PC=5,求∠BQC的度数.(2)点P是等边三角形ABC内的一点,若PA=12,PB=5,PC=13,求∠BPA的度数.考点:旋转的性质;等边三角形的性质;勾股定理的逆定理;正方形的性质.分析:(1)根据题意得出△ABP绕点B顺时针方向旋转了90°,才使点A与C重合,进而得出∠PBQ=90°,再利用勾股定理得出∠PQC的度数,进而求出∠BQC的度数;(2)由题意可得出:△ABP绕点B顺时针方向旋转60°,才使点A与C重合,进而得出∠PP'C=90°,即可得出∠BPA的度数.解答:解:(1)连接PQ.由旋转可知:,QC=PA=3.又∵ABCD是正方形,∴△ABP绕点B顺时针方向旋转了90°,才使点A与C重合,即∠PBQ=90°,∴∠PQB=45°,PQ=4.则在△PQC中,PQ=4,QC=3,PC=5,∴PC2=PQ2+QC2.即∠PQC=90°.故∠BQC=90°+45°=135°.(2)将此时点P的对应点是点P′.由旋转知,△APB≌△CP′B,即∠BPA=∠BP′C,P′B=PB=5,P′C=PA=12.又∵△ABC是正三角形,∴△ABP绕点B顺时针方向旋转60°,才使点A与C重合,得∠PBP′=60°,又∵P′B=PB=5,∴△PBP′也是正三角形,即∠PP′B=60°,PP′=5.因此,在△PP′C中,PC=13,PP′=5,P′C=12,∴PC2=PP′2+P′C2.即∠PP′C=90°.故∠BPA=∠BP′C=60°+90°=150°.点评:此题主要考查了旋转的性质以及勾股定理逆定理和正方形的性质等知识,熟练利用勾股定理逆定理得出是解题关键.24.如图,在等腰△ABC中,AB=BC,∠A=30°将△ABC绕点B顺时针旋转30°,得△A1BC1,A1B交AC于点E,A1C1分别交AC、BC于D、F两点.(1)证明:△ABE≌△C1BF;(2)证明:EA1=FC;(3)试判断四边形ABC1D的形状,并说明理由.考点:旋转的性质;全等三角形的判定与性质;等腰三角形的性质;菱形的判定.分析:(1)利用全等三角形的判定结合ASA得出答案;(2)利用全等三角形的性质对边相等得出答案;(3)首先得出四边形ABC1D是平行四边形,进而利用菱形的判定得出即可.解答:(1)证明:∵等腰△ABC中,AB=BC,∠A=30°将△ABC绕点B顺时针旋转30°,得△A1BC1,∴AB=BC1=A1B=BC,∠ABE=∠C1BF,∠A=∠C1=∠A1=∠C,在△ABE和△C1BF中,,∴△ABE≌△C1BF(ASA);(2)证明:∵△ABE≌△C1BF,∴EB=BF.又∵A1B=CB,∴A1B﹣EB=CB﹣BF,∴EA1=FC;(3)答:四边形ABC1D是菱形.证明:∵∠A1=∠C=30°,∠ABA1=∠CBC1=30°,∠A1=∠C=∠ABA1=∠CBC1.∴AB∥C1D,AD∥BC1,∴四边形ABC1D是平行四边形∵AB=BC1,∴四边形ABC1D是菱形.点评:此题主要考查了旋转的性质、全等三角形的判定与性质以及菱形的判定等知识,利用旋转的性质得出对应边关系是解题关键.。

2023年九年级数学中考复习:旋转(面积问题)综合压轴题(Word版,含答案)

2023年九年级数学中考复习:旋转(面积问题)综合压轴题(Word版,含答案)

2023年九年级数学中考复习:旋转(面积问题)综合压轴题1.一节数学课上,老师提出一个这样的问题:如图,点P是正方形ABCD内一点,P A=1,PB=2,PC=3,你能求出∠APB的度数吗?小明通过观察、分析、思考,形成了如下思路:思路一:将∠PBC绕点B逆时针旋转90°,得到∠P'BA,连接P P',求出∠APB的度数.思路二:将∠APB绕点B顺时针旋转90°,得到∠C P'B,连接P P',求出∠APB的度数.请参考小明的思路,任选一种写出完整的解答过程.2.如图,已知在∠ABC中,AB=AC,D、E是BC边上的点,将∠ABD绕点A旋转,得到∠AC D,连接D E.(1)当∠BAC=120°,∠DAE=60°时,求证:DE=D E;(2)当DE=D E时,∠DAE与∠BAC有怎样的数量关系?请写出,并说明理由.(3)在(2)的结论下,当∠BAC=90°,BD与DE满足怎样的数量关系时,∠D EC是等腰直角三角形?(直接写出结论,不必证明)AC BD相交于点O,3.如图,平行四边形ABCD中,,1,5AB AC AB BC⊥==,BC AD于点E,F.将直线AC绕点O顺时针旋转,分别交,(1)证明:当旋转角为90°时,四边形ABEF 是平行四边形;(2)证明:在旋转过程中,线段AF 与EC 总保持相等;(3)在旋转过程中,当AC 绕点O 顺时针旋转多少度时,四边形BEDF 是菱形,请给出证明.4.如图1所示,将一个边长为2的正方形ABCD 和一个长为2、宽为1的长方形CEFD 拼在一起,构成一个大的长方形ABEF .现将小长方形CEFD 绕点C 顺时针旋转至''CE FD ,旋转角为α.(1)当点D 恰好落在边EF 上时,点D 到边DC 的距离为____________,旋转角α=____________︒;(2)如图2,G 为BC 的中点,且090α︒<<︒,求证:GD E D ''=;(3)小长方形CEFD 绕点C 顺时针旋转一周的过程中,DCD '与CBD '△能否全等?若能,直接写出旋转角α的值;若不能,说明理由.5.将两块完全相同的且含60°角的直角三角板ABC 和AFE 按如图1所示位置放置,现将Rt AEF 绕A 点按逆时针方向旋转()090αα︒<<︒.如图2,AE 与BC 交于点M ,AC 与EF 交于点N ,BC 与EF 交于点P .(1)若AMC 是等腰三角形,则旋转角α的度数为______.(2)在旋转过程中,连接AP ,CE ,求证:AP 所在的直线是线段CE 的垂直平分线.(3)在旋转过程中,CPN是否能成为直角三角形?若能,直接写出旋转角α的度数;若不能,说明理由.6.旋转是一种重要的图形变换,当图形中有一组邻边相等时,往往可以通过旋转解决问题.如图∠,在四边形ABCD中,AD CDADC∠=︒,2∠=︒,60=,120ABCAB=,1BC=.【问题提出】(1)如图∠,在图∠的基础上连接BD,由于AD CD=,所以可将DCB绕点D顺时针方向旋转60°,得到DAB',则BDB'的形状是_______;【尝试解决】(2)在(1)的条件下,求四边形ABCD的面积;【类比应用】(3)如图∠,等边ABC的边长为2,BDC是顶角120∠=︒的等腰三角形,以D为顶BDC点作一个60°的角,角的两边分别交AB于点M,交AC于点N,连接MN,求AMN的周长.7.如图1,在等腰三角形ABC中,∠A=120°,AB=AC,点D、E分别在边AB、AC上,AD=AE,连接BE,点M、N、P分别为DE、BE、BC的中点.。

中考第二轮复习:中考数学压轴题旋转问题精选解析(一)

中考第二轮复习:中考数学压轴题旋转问题精选解析(一)

中考数学压轴题旋转问题精选解析(一)例1 如图,已知A 、B 是线段MN 上的两点,4=MN ,1=MA ,1>MB .以A 为中心顺时针旋转点M ,以B 为中心逆时针旋转点N ,使M 、N(1)求x 的取值范围;(2)若△ABC 为直角三角形,求x 的值;(3)探究:△ABC 的最大面积?解析:例2 如图,在Rt △ABC 中,∠ACB =90°, ∠B =60°,BC =2.点0是AC 的中点,过点0的直线l 从与AC 重合的位置开始,绕点0作逆时针旋转,交AB 边于点D .过点C 作CE ∥AB 交直线l 于点E ,设直线l 的旋转角为α.(1)①当α=________度时,四边形EDBC 是等腰梯形,此时AD 的长为_________; ②当α=________度时,四边形EDBC 是直角梯形,此时AD 的长为_________;(2)当α=90°时,判断四边形EDBC 是否为菱形,并说明理由.(第1题)解析:(1)①当四边形EDBC 是等腰梯形时,∠EDB=∠B=60°,而∠A=30°,根据三角形的外角性质,得α=∠EDB -∠A=30,此时,AD=1;②当四边形EDBC 是直角梯形时,∠ODA=90°,而∠A=30°,根据三角形的内角和定理,得α=90°-∠A=60,此时,AD=1.5.(2)当∠α=90°时,四边形EDBC 是菱形.∵∠α=∠ACB=90°,∴BC‖ED,∵CE‖AB,∴四边形EDBC 是平行四边形.在Rt△ABC 中,∠ACB=90°,∠B=60°,BC=2,∴∠A=30度,∴AB=4,AC=2 ,∴AO= = .在Rt△AOD 中,∠A=30°,∴AD=2,∴BD=2,∴BD=B C .又∵四边形EDBC 是平行四边形,∴四边形E DBC 是菱形.例3(1)如图1,圆心接ABC △中,AB BC CA ==,OD 、OE 为O ⊙的半径,OD BC ⊥于点F ,OE AC ⊥于点G ,求证:阴影部分四边形OFCG 的面积是ABC △的面积的13. (2)如图2,若DOE ∠保持120°角度不变,求证:当DOE ∠绕着O 点旋转时,由两条半径和ABC △的两条边围成的图形(图中阴影部分)面积始终是ABC △的面积的13.。

中考数学几何压轴题及答案及答案

中考数学几何压轴题及答案及答案

中考数学几何压轴题及答案一、解答题(共30小题)1.观察猜想(1)如图①,在Rt△ABC中,∠BAC=90°,AB=AC=3,点D与点A重合,点E在边BC上,连接DE,将线段DE绕点D顺时针旋转90°得到线段DF,连接BF,BE与BF的位置关系是,BE+BF=;探究证明(2)在(1)中,如果将点D沿AB方向移动,使AD=1,其余条件不变,如图②,判断BE与BF的位置关系,并求BE+BF的值,请写出你的理由或计算过程;拓展延伸(3)如图③,在△ABC中,AB=AC,∠BAC=α,点D在边BA的延长线上,BD=n,连接DE,将线段DE绕着点D顺时针旋转,旋转角∠EDF=α,连接BF,则BE+BF的值是多少?请用含有n,α的式子直接写出结论2.在△ABC的边BC上取B′、C′两点,使∠AB′B=∠AC′C=∠BAC(1)如图1中∠BAC为直角,∠BAC=∠AB′B=∠AC′C=90°(点B′与点C′重合),则△ABC∽△B'BA∽△C'AC,,,进而可得AB2+AC2=;(2)如图2中当∠BAC为锐角,图3中∠BAC为钝角时(1)中的结论还成立吗?若不成立,则AB2+AC2等于什么(用含用BC和B′C′的式子表示)?并说明理由(3)若在△ABC中,AB=5,AC=6,BC=9,请你先判断出△ABC的类型,再求出B′C′的长3.(1)问题发现如图1,在Rt△ABC和Rt△CDE中,∠ACB=∠DCE=90°,∠CAB=∠CDE=45°,点D是线段AB上一动点,连接BE填空:①的值为;②∠DBE的度数为.(2)类比探究如图2,在Rt△ABC和Rt△CDE中,∠ACB=∠DCE=90°,∠CAB=∠CDE=60°,点D是线段AB上一动点,连接BE.请判断的值及∠DBE的度数,并说明理由;(3)拓展延伸如图3,在(2)的条件下,将点D改为直线AB上一动点,其余条件不变,取线段DE 的中点M,连接BM、CM,若AC=2,则当△CBM是直角三角形时,线段BE的长是多少?请直接写出答案.4.(1)问题发现:如图①,在△ABC中,∠BAC=90°,AB=AC,点D是BC的中点,以点D为顶点作正方形DFGE,使点A、C分别在DE和DF上,连接BE、AF.则线段BE 和AF数量关系.(2)类比探究:如图②,保持△ABC固定不动,将正方形DFGE绕点D旋转α(0°<α≤360°),则(1)中的结论是否成立?如果成立,请证明;如果不成立,请说明理由.(3)解决问题:若BC=DF=2,在(2)的旋转过程中,连接AE,请直接写出AE的最大值.5.如图,在平行四边形ABCD中,AC与BD交于点O,以点O为顶点的∠EOF的两边分别与边AB、AD交于点E、F,且∠EOF与∠BAD互补.(1)若四边形ABCD是正方形,则线段OE与OF有何数量关系?请直接写出结论;(2)若四边形ABCD是菱形,那么(1)中的结论是否成立?若成立,请画出图形并给出证明;若不成立,请说明理由;(3)若AB:AD=m:n,探索线段OE与OF的数量关系,并证明你的结论.6.如图(1),已知点G在正方形ABCD的对角线AC上,GE⊥BC,垂足为点E,GF⊥CD,垂足为点F.(1)证明与推断:①求证:四边形CEGF是正方形;②推断:的值为:(2)探究与证明:将正方形CEGF绕点C顺时针方向旋转α角(0°<α<45°),如图(2)所示,试探究线段AG与BE之间的数量关系,并说明理由;(3)拓展与运用:正方形CEGF在旋转过程中,当B,E,F三点在一条直线上时,如图(3)所示,延长CG交AD于点H.若AG=6,GH=2,则BC=.7.如图1,在△ABC中,AB=AC=2,∠BAC=120°,点D、E分别是AC、BC的中点,连接DE.定理:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.探索发现:图1中,的值为;的值为.(2)拓展探完若将△CDE绕点C逆时针方向旋转一周,在旋转过程中的大小有无变化?请仅就图2的情形给出证明.(3)问题解决当△CDE旋转至A,D,E三点共线时,直接写出线段BE的长.8.已知△ABC是边长为4的等边三角形,边AB在射线OM上,且OA=6,点D是射线OM上的动点,当点D不与点A重合时,将△ACD绕点C逆时针方向旋转60°得到△BCE,连接DE,设OD=m.(1)问题发现如图1,△CDE的形状是三角形.(2)探究证明如图2,当6<m<10时,△BDE的周长是否存在最小值?若存在,求出△BDE周长的最小值;若不存在,请说明理由.(3)解决问题是否存在m的值,使△DEB是直角三角形?若存在,请直接写出m的值;若不存在,请说明理由.9.等腰直角三角形ABC和等腰直角三角形ADE中,∠BAC=∠DAE=90°,AB=4,AE=2,其中△ABC固定,△ADE绕点A作360°旋转,点F、M、N分别为线段BE、BC、CD 的中点,连接MN、NF.问题提出:(1)如图1,当AD在线段AC上时,则∠MNF的度数为,线段MN 和线段NF的数量关系为;深入讨论:(2)如图2,当AD不在线段AC上时,请求出∠MNF的度数及线段MN和线段NF的数量关系;拓展延伸:(3)如图3,△ADE持续旋转过程中,若CE与BD交点为P,则△BCP面积的最小值为.10.四边形是我们在学习和生活中常见的图形,而对角线互相垂直的四边形也比较常见,比如筝形、菱形、图1中的四边形ABCD等.它们给我们的学习和生活带来了很多的乐趣和美感.(1)如图2,在四边形ABCD中,AB=AD,CB=CD,则AC与BD的位置关系是,请说明理由.(2)试探究图1中四边形ABCD的两组对边AB,CD与BC,AD之间的数量关系,请写出证明过程.(3)问题解决:如图3,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG 和正方形ABDE,连接CE,BG,GE,已知AC=4,AB=5,求GE的长.11.问题发现:如图(1)在Rt△ABC和Rt△BDE中,∠A=∠DEB=30°,BC=BE=6,Rt△BDE绕点B逆时针旋转,H为CD的中点,当点C与点E重合时,BH与AE的位置关系为,BH与AE的数量关系为;问题证明:在Rt△BDE绕点B旋转的过程中,(1)中的结论是否仍然成立?若成立,请就图(2)的情形给出证明若不成立,请说明理由;拓展应用:在Rt△BDE绕点B旋转的过程中,当DE∥BC时,请直接写出BH2的长.12.如图1,菱形ABCD与菱形GECF的顶点C重合,点G在对角线AC上,且∠BCD=∠ECF=60°,(1)问题发现的值为;(2)探究与证明将菱形GECF绕点C按顺时针方向旋转α角(0°<α<60°),如图2所示,试探究线段AG与BE之间的数量关系,并说明理由;(3)拓展与运用:菱形GECF在旋转过程中,当点A,G,F三点在一条直线上时,如图3所示连接CG并延长,交AD于点H,若CE=2,GH=,则AH的长为.13.如图,在Rt△ABC中,∠ACB=90°,=,CD⊥AB于点D,点E是直线AC上一动点,连接DE,过点D作FD⊥ED,交直线BC于点F.(1)探究发现:如图1,若m=n,点E在线段AC上,则=;(2)数学思考:①如图2,若点E在线段AC上,则=(用含m,n的代数式表示);②当点E在直线AC上运动时,①中的结论是否仍然成立?请仅就图3的情形给出证明;(3)拓展应用:若AC=,BC=2,DF=4,请直接写出CE的长.14.如图,已知点E是射线BC上的一点,以BC、CE为边作正方形ABCD和正方形CEFG,连接AF,取AF的中点M,连接DM、MG(1)如图1,判断线段DM和GM的数量关系是,位置关系是;(2)如图2,在图中的正方形CEFG绕点C逆时针旋转的过程中,其他条件不变,(1)中的结论是否成立?说明理由;(3)已知BC=10,CE=2,正方形CEFG绕点C旋转的过程中,当A、F、E共线时,直接写出△DMG的面积.15.在Rt△ABC中,∠ACB=90°,AB=,AC=2,过点B作直线m∥AC,将△ABC绕点C顺时针旋转得到△A′B′C(点A,B的对应点分别为A',B′),射线CA′,CB′分别交直线m于点P,Q.(1)如图1,当P与A′重合时,求∠ACA′的度数;(2)如图2,设A′B′与BC的交点为M,当M为A′B′的中点时,求线段PQ的长;(3)在旋转过程中,当点P,Q分别在CA′,CB′的延长线上时,试探究四边形P A'B′Q的面积是否存在最小值.若存在,求出四边形P A′B′Q的最小面积;若不存在,请说明理由.16.如图(1),在等边三角形ABC中,点D,E分别在边AB,AC上,AD=AE,连接BE,CD,点M,N,P分别是BE,CD,BC的中点,连接DE,PM,PN,MN.(1)观察猜想,图(1)中△PMN是(填特殊三角形的名称)(2)探究证明,如图(2),△ADE绕点A按逆时针方向旋转,则△PMN的形状是否发生改变?并就图(2)说明理由.(3)拓展延伸,若△ADE绕点A在平面内自由旋转,AD=2,AB=6,请直接写出△PMN 的周长的最大值.17.已知△ABC,AB=AC,D为直线BC上一点,E为直线AC上一点,AD=AE,设∠BAD=α,∠CDE=β,(1)如图1,若点D在线段BC上,点E在线段AC上.∠ABC=60°,∠ADE=70°,则α=°;β=°.(2)如图2,若点D在线段BC上,点E在线段AC上,则α,β之间有什么关系式?说明理由.(3)是否存在不同于(2)中的α,β之间的关系式?若存在,请写出这个关系式(写出一种即可),说明理由;若不存在,请说明理由.18.问题提出:(1)如图1,在四边形ABCD中,连接AC、BD,AB=AD,∠BAD=∠BCD=90°,将△ABC绕点A逆时针旋转90°,得到△ADE,点B的对应点落在点D,点C的对应点为点E,可知点C、D、E在一条直线上,则△ACE为三角形,BC、CD、AC的数量关系为;探究发现:(2)如图2,在⊙O中,AB为直径,点C为的中点,点D为圆上一个点,连接AD、CD、AC、BC、BD,且AD<BD,请求出CD、AD、BD间的数量关系.拓展延伸:(3)如图3,在等腰直角三角形ABC中,点P为AB的中点,若AC=13,平面内存在一点E,且AE=10,CE=13,当点Q为AE中点时,PQ=.19.已知△ABC中,CA=CB,0°<∠ACB≤90°,点M、N分别在边CA,CB上(不与端点重合),BN=AM,射线AG∥BC交BM延长线于点D,点E在直线AN上,EA=ED.(1)【观察猜想】如图1,点E在射线NA上,当∠ACB=45°时,①线段BM与AN的数量关系是;②∠BDE的度数是;(2)【探究证明】如图2点E在射线AN上,当∠ACB=30°时,判断并证明线段BM与AN的数量关系,求∠BDE的度数;(3)【拓展延伸】如图3,点E在直线AN上,当∠ACB=60°时,AB=3,点N是BC 边上的三等分点,直线ED与直线BC交于点F,请直接写出线段CF的长.20.如图①,在正方形ABCD和正方形AB'C'D'中,AB=2,AB'=,连接CC’(1)问题发现:.(2)拓展探究:将正方形AB'C'D'绕点A逆时针旋转,记旋转角为θ,连接BB',试判断:当0°≤θ<360°时,的值有无变化?请仅就图②中的情形给出你的证明;(3)问题解决:请直接写出在旋转过程中,当C,C′,D'三点共线时BB′的长.21.如图1,在正方形ABCD中,点O是对角线BD的中点.(1)观察猜想将图1中的△BCD绕点O逆时针旋转至图2中△ECF的位置,连接AC,DE,则线段AC与DE的数量关系是,直线AC与DE的位置关系是.(2)类比探究将图2中的△ECF绕点O逆时针旋转至图3的位置,(1)中的结论是否成立?并说明理由.(3)拓展延伸将图2中的△ECF在平面内旋转,设直线AC与DE的交点为M,若AB=4,请直接写出BM的最大值与最小值.22.如图1,点B在直线l上,过点B构建等腰直角三角形ABC,使∠BAC=90°,且AB=AC,过点C作CD⊥直线l于点D,连接AD.(1)小亮在研究这个图形时发现,∠BAC=∠BDC=90°,点A,D应该在以BC为直径的圆上,则∠ADB的度数为°,将射线AD顺时针旋转90°交直线l于点E,可求出线段AD,BD,CD的数量关系为;(2)小亮将等腰直角三角形ABC绕点B在平面内旋转,当旋转到图2位置时,线段AD,BD,CD的数量关系是否变化,请说明理由;(3)在旋转过程中,若CD长为1,当△ABD面积取得最大值时,请直接写AD的长.23.如图1,将三角板放在正方形ABCD上,使三角板的直角顶点E与正方形ABCD的顶点A重合,三角板的一边交CD于点F.另一边交CB的延长线于点G.(1)观察猜想:线段EF与线段EG的数量关系是;(2)探究证明:如图2,移动三角板,使顶点E始终在正方形ABCD的对角线AC上,其他条件不变,(1)中的结论是否仍然成立?若成立,请给予证明:若不成立.请说明理由:(3)拓展延伸:如图3,将(2)中的“正方形ABCD”改为“矩形ABCD”,且使三角板的一边经过点B,其他条件不变,若AB=a、BC=b,求的值.24.如图1,在Rt△ABC中,∠B=90°,AB=2,BC=1,点D,E分别是边BC,AC的中点,连接DE.将△EDC绕点C按顺时针方向旋转,记旋转角为α.(1)问题发现①当α=0°时,=;②当α=180°时,=.(2)拓展探究试判断:当0°≤α<360°时,的大小有无变化?请仅就图2的情况给出证明.(3)问题解决当△EDC旋转至A、B、E三点共线时,直接写出线段BD的长.25.在△ABC中,AD为BC边上的中线,E为AD上一动点,设DE=nEA,连接CE并延长,交AB于点F.(1)尝试探究如图(1),当∠BAC=90°,∠B=30°,DE=EA时,BF,BA之间的数量关系是;(2)类比延伸如图(2),当△ABC为锐角三角形,DE=EA时,(1)中的结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由;(3)拓展迁移如图(3),当△ABC为锐角三角形,DE=nEA时,请直接写出BF,BA之间的数量关系.26.古希腊数学家毕达哥拉斯认为:“一切平面图形中最美的是圆”.请研究如下美丽的圆.如图,线段AB是⊙O的直径,延长AB至点C,使BC=OB,点E是线段OB的中点,DE ⊥AB交⊙O于点D,点P是⊙O上一动点(不与点A,B重合),连接CD,PE,PC.(1)求证:CD是⊙O的切线;(2)小明在研究的过程中发现是一个确定的值.回答这个确定的值是多少?并对小明发现的结论加以证明.27.定义:三角形一个内角的平分线和与另一个内角相邻的外角平分线相交所成的锐角称为该三角形第三个内角的遥望角.(1)如图1,∠E是△ABC中∠A的遥望角,若∠A=α,请用含α的代数式表示∠E.(2)如图2,四边形ABCD内接于⊙O,=,四边形ABCD的外角平分线DF交⊙O 于点F,连结BF并延长交CD的延长线于点E.求证:∠BEC是△ABC中∠BAC的遥望角.(3)如图3,在(2)的条件下,连结AE,AF,若AC是⊙O的直径.①求∠AED的度数;②若AB=8,CD=5,求△DEF的面积.28.【性质探究】如图,在矩形ABCD中,对角线AC,BD相交于点O,AE平分∠BAC,交BC于点E.作DF⊥AE于点H,分别交AB,AC于点F,G.(1)判断△AFG的形状并说明理由.(2)求证:BF=2OG.【迁移应用】(3)记△DGO的面积为S1,△DBF的面积为S2,当=时,求的值.【拓展延伸】(4)若DF交射线AB于点F,【性质探究】中的其余条件不变,连结EF,当△BEF的面积为矩形ABCD面积的时,请直接写出tan∠BAE的值.29.如图,已知AC为正方形ABCD的对角线,点P是平面内不与点A,B重合的任意一点,连接AP,将线段AP绕点P顺时针旋转90°得到线段PE,连接AE,BP,CE.(1)求证:△APE∽△ABC;(2)当线段BP与CE相交时,设交点为M,求的值以及∠BMC的度数;(3)若正方形ABCD的边长为3,AP=1,当点P,C,E在同一直线上时,求线段BP 的长.30.如图1和图2,在△ABC中,AB=AC,BC=8,tan C=.点K在AC边上,点M,N 分别在AB,BC上,且AM=CN=2.点P从点M出发沿折线MB﹣BN匀速移动,到达点N时停止;而点Q在AC边上随P移动,且始终保持∠APQ=∠B.(1)当点P在BC上时,求点P与点A的最短距离;(2)若点P在MB上,且PQ将△ABC的面积分成上下4:5两部分时,求MP的长;(3)设点P移动的路程为x,当0≤x≤3及3<x≤9时,分别求点P到直线AC的距离(用含x的式子表示);(4)在点P处设计并安装一扫描器,按定角∠APQ扫描△APQ区域(含边界),扫描器随点P从M到B再到N共用时36秒.若AK=,请直接写出点K被扫描到的总时长.参考答案与试题解析一.解答题(共30小题)1.【解答】解:(1)如图①中,∵∠EAF=∠BAC=90°,∴∠BAF=∠CAE,∵AF=AE,AB=AC,∴△BAF≌△CAE,∴∠ABF=∠C,BF=CE,∵AB=AC,∠BAC=90°,∴∠ABC=∠C=45°,∴∠FBE=∠ABF+∠ABC=90°,BC=BE+EC=BE+BF,故答案为:BF⊥BE,BC.(2)如图②中,作DH∥AC交BC于H.∵DH∥AC,∴∠BDH=∠A=90°,△DBH是等腰直角三角形,由(1)可知,BF⊥BE,BF+BE=BH,∵AB=AC=3,AD=1,∴BD=DH=2,∴BH=2,∴BF+BE=BH=2;(3)如图③中,作DH∥AC交BC的延长线于H,作DM⊥BC于M.∵AC∥DH,∴∠ACB=∠H,∠BDH=∠BAC=α,∵AB=AC,∴∠ABC=∠ACB∴∠DBH=∠H,∴DB=DH,∵∠EDF=∠BDH=α,∴∠BDF=∠HDE,∵DF=DE,DB=DH,∴△BDF≌△HDE,∴BF=EH,∴BF+BE=EH+BE=BH,∵DB=DH,DM⊥BH,∴BM=MH,∠BDM=∠HDM,∴BM=MH=BD•sin.∴BF+BE=BH=2n•sin.2.【解答】解:(1)如图1中,∵△ABC∽△B'BA∽△C'AC,∴=,=,∴AB2=BB′×BC,AC2=CC′×BC,∴AB2+AC2=BC(BB′+CC′)=BC×BC=BC2,故答案为BC2.(2)不成立.理由:如图2中当∠BAC为锐角时,BB′+CC′﹣B′C′=BC,且△ABC∽△B'BA∽△C'AC,∴∴=,=,∴AB2=BB′×BC,AC2=CC′×BC,∴AB2+AC2=BC(BB′+CC′)=BC2+BC•B′C′.图3中∠BAC为钝角时,BB′+CC′+B′C′=BC.AB2+AC2=BC(BB′+CC′)=BC2﹣BC•B′C′.(3)当AB=5,AC=6,BC=9时,则AB2+AC2<BC2,可知△ABC为钝角三角形,由图3可知:AB2+AC2=BC2﹣BC•B′C′,∴52+62=92﹣9B′C′,∴B′C′=.3.【解答】解:(1)∵∠ACB=∠DCE=90°,∠CAB=∠CDE=45°,∴∠ABC=∠CAB=45°=∠CDE=∠CED,∴AC=BC,CD=CE,∵∠ACB=∠DCE=90°,∴∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴BE=AD,∠CAB=∠CBE=45°,∴∠DBE=∠ABC+∠CBE=90°,=1,故答案为:1,90°(2),∠DBE=90°理由如下:∵∠ACB=∠DCE=90°,∠CAB=∠CDE=60°,∴∠ACD=∠BCE,∠CED=∠ABC=30°∴tan∠ABC=tan30°==∵∠ACB=∠DCE=90°,∠CAB=∠CDE=60°,∴Rt△ACB∽Rt△DCE∴∴,且∠ACD=∠BCE∴△ACD∽△BCE∴=,∠CBE=∠CAD=60°∴∠DBE=∠ABC+∠CBE=90°(3)若点D在线段AB上,如图,由(2)知:=,∠ABE=90°∴BE=AD∵AC=2,∠ACB=90°,∠CAB=90°∴AB=4,BC=2∵∠ECD=∠ABE=90°,且点M是DE中点,∴CM=BM=DE,∵△CBM是直角三角形∴CM2+BM2=BC2=(2)2,∴BM=CM=∴DE=2∵DB2+BE2=DE2,∴(4﹣AD)2+(AD)2=24∴AD=+1∴BE=AD=3+若点D在线段BA延长线上,如图同理可得:DE=2,BE=AD∵BD2+BE2=DE2,∴(4+AD)2+(AD)2=24,∴AD=﹣1∴BE=AD=3﹣综上所述:BE的长为3+或3﹣4.【解答】解:(1)∵△ABC中,∠BAC=90°,AB=AC,点D是BC的中点,∴AD=BD=DC,∠BDA=90°,∵四边形DFGE是正方形,∴DE=DF,∠EDF=90°,∴∠BDE=∠ADF=90°,在△BDE和△ADF中,,∴△BDE≌△ADF(SAS),∴BE=AF故答案为:BE=AF;(2)成立;理由如下:当正方形DFGE在BC的上方时,如图②所示,连接AD,∵在Rt△ABC中,AB=AC,D为斜边BC的中点,∴AD=BD,AD⊥BC,∴∠ADE+∠EDB=90°,∵四边形DFGE为正方形,∴DE=DF,且∠EDF=90°,∴∠ADE+∠ADF=90°,∴∠BDE=∠ADF,在△BDE和△ADF中,,∴△BDE≌△ADF(SAS),∴BE=AF;当正方形DFGE在BC的下方时,连接AD,如图③所示:∵∠BDE=∠BDF+90°,∠ADF=∠BDF+90°,∴∠BDE=∠ADF,在△BDE和△ADF中,,∴△BDE≌△ADF(SAS),∴BE=AF;综上所述,(1)中的结论BE=AF成立;(3)在△ADE中,∵AE<AD+DE,∴当点A、D、E共线时,AE取得最大值,最大值为AD+DE.如图④所示:则AD=BC=1,DE=DF=2,∴AE=AD+DE=3,即AE的最大值为3.5.【解答】解:(1)如图1,过点O作OM⊥AB于M,ON⊥AD于N,∴∠OME=∠ONF=90°,∴∠BAD+∠MON=180°,∵∠BAD+∠EOF=180°,∴∠MON=∠EOF,∴∠EOM=∠FON,∵O是正方形ABCD的对角线的交点,∴∠BAO=∠DAO,∵OM⊥AB,ON⊥AD,∴OM=ON,∴△OME≌△ONF(AAS)∴OE=OF;(2)(1)的结论成立;理由:如图2,过点O作OM⊥AB于M,ON⊥AD于N,∴∠OME=∠ONF=90°,∴∠BAD+∠MON=180°,∵∠BAD+∠EOF=180°,∴∠MON=∠EOF,∴∠EOM=∠FON,∵O是菱形ABCD的对角线的交点,∴∠BAO=∠DAO,∵OM⊥AB,ON⊥AD,∴OM=ON,∴△OME≌△ONF(AAS)∴OE=OF;(3)如图3,过点O作OG⊥AB于G,OH⊥AD于H,∴∠OGE=∠OHF=90°,∴∠BAD+∠GOH=180°,∵∠BAD+∠EOF=180°,∴∠GOH=∠EOF,∴△EOG∽△FOH,∴,∵O是▱ABCD的对角线的交点,∴S△AOB=S△AOD,∵S△AOB=AB•OG,S△AOD=AD•OH,∴AB•OG=AD•OH,∴=,∴.6.【解答】解:(1)①∵四边形ABCD是正方形,∴∠BCD=90°,∠BCA=45°,∵GE⊥BC、GF⊥CD,∴∠CEG=∠CFG=∠ECF=90°,∴四边形CEGF是矩形,∠CGE=∠ECG=45°,∴EG=EC,∴四边形CEGF是正方形;②由①知四边形CEGF是正方形,∴∠CEG=∠B=90°,∠ECG=45°,∴=,GE∥AB,∴==,故答案为:;(2)连接CG,由旋转性质知∠BCE=∠ACG=α,在Rt△CEG和Rt△CBA中,=cos45°=、=cos45°=,∴==,∴△ACG∽△BCE,∴==,∴线段AG与BE之间的数量关系为AG=BE;(3)∵∠CEF=45°,点B、E、F三点共线,∴∠BEC=135°,∵△ACG∽△BCE,∴∠AGC=∠BEC=135°,∴∠AGH=∠CAH=45°,∵∠CHA=∠AHG,∴△AHG∽△CHA,∴==,设BC=CD=AD=a,则AC=a,则由=得=,∴AH=a,则DH=AD﹣AH=a,CH==a,∴=得=,解得:a=3,即BC=3,故答案为:3.7.【解答】解:(1)如图1,连接AE,∵AB=AC=2,点E分别是BC的中点,∴AE⊥BC,∴∠BEC=90°,∵AB=AC=2,∠BAC=120°,∴∠B=∠C=30°,在Rt△ABE中,AE=AB=1,根据勾股定理得,BE=∵点E是BC的中点,∴BC=2BE=2,∴==,∵点D是AC的中点,∴AD=CD=AC=1,∴==,故答案为:,;(2)无变化,理由:由(1)知,CD=1,CE=BE=,∴=,,∴=,由(1)知,∠ACB=∠DCE=30°,∴∠ACD=∠BCE,∴△ACD∽△BCE,∴,(3)当点D在线段AE上时,如图2,过点C作CF⊥AE于F,∠CDF=180°﹣∠CDE=60°,∴∠DCF=30°,∴DF=CD=,∴CF=DF=,在Rt△AFC中,AC=2,根据勾股定理得,AF==,∴AD=AF+DF=,由(2)知,,∴BE=AD=当点D在线段AE的延长线上时,如图3,过点C作CG⊥AD交AD的延长线于G,∵∠CDG=60°,∴∠DCG=30°,∴DG=CD=,∴CG=DG=,在Rt△ACG中,根据勾股定理得,AG=,∴AD=AG﹣DG=,由(2)知,,∴BE=AD=即:线段BE的长为或.8.【解答】解:(1)证明:∵将△ACD绕点C逆时针方向旋转60°得到△BCE,∴∠DCE=60°,DC=EC,∴△CDE是等边三角形;故答案为:等边;(2)存在,当6<t<10时,由旋转的性质得,BE=AD,∴C△DBE=BE+DB+DE=AB+DE=4+DE,由(1)知,△CDE是等边三角形,∴DE=CD,∴C△DBE=CD+4,由垂线段最短可知,当CD⊥AB时,△BDE的周长最小,此时,CD=2,∴△BDE的最小周长=CD+4=2+4;(3)存在,①∵当点D与点B重合时,D,B,E不能构成三角形,∴当点D与点B重合时,不符合题意,②当0≤m<6时,由旋转可知,∠ABE=60°,∠BDE<60°,∴∠BED=90°,由(1)可知,△CDE是等边三角形,∴∠DEB=60°,∴∠CEB=30°,∵∠CEB=∠CDA,∴∠CDA=30°,∵∠CAB=60°,∴∠ACD=∠ADC=30°,∴DA=CA=4,∴OD=OA﹣DA=6﹣4=2,∴m=2;③当6<m<10时,由∠DBE=120°>90°,∴此时不存在;④当m>10时,由旋转的性质可知,∠DBE=60°,又由(1)知∠CDE=60°,∴∠BDE=∠CDE+∠BDC=60°+∠BDC,而∠BDC>0°,∴∠BDE>60°,∴只能∠BDE=90°,从而∠BCD=30°,∴BD=BC=4,∴OD=14,∴m=14,综上所述:当m=2或14时,以D、E、B为顶点的三角形是直角三角形.9.【解答】解:(1)如图1中,连接DB,MF,CE,延长BD交EC于H.∵AC=AB,AE=AD,∠BAD=∠CAE=90°,∴△BAD≌△CAE(SAS),∴BD=EC,∠ACE=∠ABD,∵∠ABD+∠ADB=90°,∠ADB=∠CDH,∴∠ADH+∠DCH=90°,∴∠CHD=90°,∴EC⊥BH,∵BM=MC,BF=FE,∴MF∥EC,MF=EC,∵CM=MB,CN=ND,∴MN∥BD,MN=BD,∴MN=MF,MN⊥MF,∴∠NMF=90°,∴∠MNF=45°,NF=MN.故答案为:45°(2):如图2中,连接MF,EC,BD.设EC交AB于O,BD交EC于H.∵AC=AB,AE=AD,∠BAD=∠CAE=90°,∴∠BAD=∠CAE,∴△BAD≌△CAE(SAS),∴BD=EC,∠ACE=∠ABD,∵∠AOC+∠ACO=90°,∠AOC=∠BOH,∴∠OBH+∠BOH=90°,∴∠BHO=90°,∴EC⊥BD,∵BM=MC,BF=FE,∴MF∥EC,MF=EC,∵CM=MB,CN=ND,∴MN∥BD,MN=BD,∴MN=MF,MN⊥MF,∴∠NMF=90°,∴∠MNF=45°,NF=MN.(3):如图3中,如图以A为圆心AD为半径作⊙A.当直线PB与⊙A相切时,此时∠CBP的值最小,点P到BC的距离最小,即△BCP的面积最小,∵AD=AE,AB=AC,∠BAC=∠DAE=90°,∴∠BAD=∠CAE,∴△BAD≌△CAE(SAS),∴∠ACE=∠ABD,BD=EC,∵∠ABD+∠AOB=90°,∠AOB=∠CPO,∴∠CPB=90°,∵PB是⊙A的切线,∴∠ADP=90°,∵∠DPE=∠ADP=∠DAE=90°,∴四边形ADPE是矩形,∵AE=AD,∴四边形ADPE是正方形,∴AD=AE=PD=PE=2,BD=EC==2,∴PC=2﹣2,PB=2+2,∴S△BCP的最小值=×PC×PB=(2﹣2)(2+2)=4.10.【解答】(1)解:AC⊥BD,理由如下:连接AC、BD,如图2所示:∵AB=AD,∴点A在线段BD的垂直平分线上,∵CB=CD,∴点C在线段BD的垂直平分线上,∴直线AC是线段BD的垂直平分线,∴AC⊥BD,故答案为:AC⊥BD;(2)解:AD2+BC2=AB2+CD2;理由如下:如图1,已知四边形ABCD中,AC⊥BD,设BD、AC相交于E,∵AC⊥BD,∴∠AED=∠AEB=∠BEC=∠CED=90°,由勾股定理得,AD2+BC2=AE2+DE2+BE2+CE2,AB2+CD2=AE2+BE2+CE2+DE2,∴AD2+BC2=AB2+CD2;(3)解:如图3,连接CG、BE,∵四边形ACFG和四边形ABDE是正方形,∴AC=AG,AB=AE,∠CAG=∠BAE=90°,∴∠CAG+∠BAC=∠BAE+∠BAC,即∠GAB=∠CAE,在△GAB和△CAE中,,∴△GAB≌△CAE(SAS),∴∠ABG=∠AEC,又∠AEC+∠AME=90°,∴∠ABG+∠AME=90°,即CE⊥BG,由(2)得,CG2+BE2=CB2+GE2,在Rt△ABC中,AC=4,AB=5,根据勾股定理得,BC2=52﹣42=9,∵CG和BE分别是正方形ACFG和正方形ABDG的对角线,∴CG2=42+42=32,BE2=52+52=50,∴GE2=CG2+BE2﹣CB2=32+50﹣9=73,∴GE=.11.【解答】解:问题发现:如图1中,结论:AE=2BH,AE⊥BH.理由:在Rt△ABC中,∵BC=6,∠A=30°,∴AE=2BC=12,在Rt△CDB中,∵∠DCB=30°,∴CD==4,∵CH=DH,∴BH=CD=2,∴==2,∴AE=2BH.故答案为AE⊥BH,AE=2BH.问题证明:如图2中,(1)中结论成立.理由:延长BH到F使得HF=BH,连接CF.设AE交BF于O.∵CH=DH,BH=HF,∠CHF=∠BHD,∴△CHF≌△DHB(SAS),∴BD=CF,∠F=∠DBH,∴CF∥BD,∵AB=BC,BE=BD,∴BE=CF,∴==,∵CF∥BD,∴∠BCF+∠CBD=180°,∵∠ABC+∠DBE=∠ABD+∠CBD+∠CBD+∠CBE=∠CBD+∠ABE=180°,∴∠BCF=∠ABE,∴△ABE∽△BCF,∴∠CBF=∠BAE,==,∴AE=BF=2BH,∵∠CBF+∠ABF=90°,∴∠ABF+∠BAE=90°,∴∠AOB=90°,∴BH⊥AE.拓展应用:如图3﹣1中,当DE在BC的下方时,延长AB交DE于F.∵DE∥BC∴∠ABC=∠BFD=90°,由题意BC=BE=6,AB=6,BD=2,DE=4,∵•BD•BE=•DE•BF,∴BF==3,∴EF=BF=3,∴AF=6+3,∴AE2=AF2+EF2=(6+3)2+(3)2=144+36.∵AE=2BH,∴AE2=12BH2,∴BH2=12+3如图3﹣2中,当DE在BC的上方时,同法可得AF=6﹣3,EF=3,∴BH2==(=12﹣3.12.【解答】解:(1)如图1中,作EH⊥CG于H.∵四边形ECFG是菱形,∠ECF=60°,∴∠ECH=∠ECF=30°,EC=EG,∵EH⊥CG,∴GH=CG,∴=cos30°=,∴=2•=,∵EG∥CD,AB∥CD,∴GE∥AB,∴==.故答案为.(2)结论:AG=BE.理由:如图2中,连接CG.∵四边形ABCD,四边形ECFG都是菱形,∠ECF=∠DCB=60°,∴∠ECG=∠EGC=∠BCA=∠BAC=30°,∴△ECG∽△BCE,∴=,∵∠ECB=∠GCA,∴△ECB∽△GCA,∴==,∴AG=BE.(3)如图3中,∵∠AGH=∠CGF=30°.∠AGH=∠GAC+∠GCA,又∵∠DAC=∠HAG+∠GAC=30°,∴∠HAG=∠ACH,∵∠AHG=∠AHC,∴△HAG∽△HCA,∴HA:HC=GH:HA,∴AH2=HG•HC,∴FC=2,CG=CF,∴GC=2,∵HG=,∴AH2=HG•HC=•3=9,∵AH>0,∴AH=3.故答案为3.13.【解答】解:(1)当m=n时,即:BC=AC,∵∠ACB=90°,∴∠A+∠ABC=90°,∵CD⊥AB,∴∠DCB+∠ABC=90°,∴∠A=∠DCB,∵∠FDE=∠ADC=90°,∴∠FDE﹣∠CDE=∠ADC﹣∠CDE,即∠ADE=∠CDF,∴△ADE∽△CDF,∴,∵∠A=∠DCB,∠ADC=∠BDC=90°,∴△ADC∽△CDB,∴=1,∴=1(2)①∵∠ACB=90°,∴∠A+∠ABC=90°,∵CD⊥AB,∴∠DCB+∠ABC=90°,∴∠A=∠DCB,∵∠FDE=∠ADC=90°,∴∠FDE﹣∠CDE=∠ADC﹣∠CDE,即∠ADE=∠CDF,∴△ADE∽△CDF,∴,∵∠A=∠DCB,∠ADC=∠BDC=90°,∴△ADC∽△CDB,∴,∴②成立.如图,∵∠ACB=90°,∴∠A+∠ABC=90°,又∵CD⊥AB,∴∠DCB+∠ABC=90°,∴∠A=∠DCB,∵∠FDE=∠ADC=90°,∴∠FDE+∠CDE=∠ADC+∠CDE,即∠ADE=∠CDF,∴△ADE∽△CDF,∴,∵∠A=∠DCB,∠ADC=∠BDC=90°,∴△ADC∽△CDB,∴,∴.(3)由(2)有,△ADE∽△CDF,∵=,∴=,∴CF=2AE,在Rt△DEF中,DE=2,DF=4,∴EF=2,①当E在线段AC上时,在Rt△CEF中,CF=2AE=2(AC﹣CE)=2(﹣CE),EF=2,根据勾股定理得,CE2+CF2=EF2,∴CE2+[2(﹣CE)]2=40∴CE=2,或CE=﹣(舍)而AC=<CE,∴此种情况不存在,②当E在AC延长线上时,在Rt△CEF中,CF=2AE=2(AC+CE)=2(+CE),EF=2,根据勾股定理得,CE2+CF2=EF2,∴CE2+[2(+CE)]2=40,∴CE=,或CE=﹣2(舍),③如图1,当点E在CA延长线上时,CF=2AE=2(CE﹣AC)=2(CE﹣),EF=2,根据勾股定理得,CE2+CF2=EF2,∴CE2+[2(CE﹣)]2=40,∴CE=2,或CE=﹣(舍)即:CE=2或CE=.14.【解答】解:(1)如图1,延长GM交AD于H,∵AD∥GF,∴∠GFM=∠HAM,在△FMG和△AMH中,,∴△FMG≌△AMH(ASA),∴HM=GM,AH=FG,∵AD=CD,AH=FG=CG,∴DH=DG,∵∠HDG=90°,HM=GM,∴DM=MG,DM⊥MG,故答案为DM=MG,DM⊥MG.(2)结论成立:DM=MG,DM⊥MG,理由:如图2中,延长GM使得MH=GM,连接AH、DH、DG,延长AD交GF的延长线于N,交CD于O.∵AM=MF,∠AMH=∠FMG,MH=MG,∴△AMH≌△FMG(SAS),∴AH=GF=CG,∠AHM=∠FGM,∴AH∥GN,∴∠HAD=∠N,∵∠ODN=∠OGC=90°,∠DON=∠GOC,∴∠N=∠OCG,∴∠HAD=∠DCG,∵AH=CG,AD=CD,∴△HAD≌△GCD(SAS),∴DH=DG,∠HDA=∠CDG,∴∠HDG=∠ADC=90°,∴△HDG是等腰直角三角形,∵MH=MG,∴DM⊥GH,DM=MH=MG,(3)①如图3﹣1中,连接AC.在Rt△ABC中,AC==10,在Rt△ACE中,AE==14,∴AF=AE=EF=14﹣2=12,∴FM=AM=AF=6,在Rt△MGF中,MG==2,∴S△DMG=×2×2=20,②如图3﹣2中,连接AC.同法可得AE=14,AF=16,FM=8,MG==2,∴S△DMG=×2×2=34,综上所述,满足条件的△DMG的面积为20或34.15.【解答】解:(1)由旋转可得:AC=A'C=2,∵∠ACB=90°,AB=,AC=2,∴BC=,∵∠ACB=90°,m∥AC,∴∠A'BC=90°,∴cos∠A'CB==,∴∠A'CB=30°,∴∠ACA'=60°;(2)∵M为A'B'的中点,∴∠A'CM=∠MA'C,由旋转可得,∠MA'C=∠A,∴∠A=∠A'CM,∴tan∠PCB=tan∠A=,∴PB=BC=,∵∠PCQ=∠PBC=90°,∴∠BQC+∠BPC=∠BCP+∠BPC=90°,∴∠BQC=∠BCP=∠A,∴tan∠BQC=tan∠A=,∴BQ=BC×=2,∴PQ=PB+BQ=;(3)∵S四边形P A'B′Q=S△PCQ﹣S△A'CB'=S△PCQ﹣,∴S四边形P A'B′Q最小,即S△PCQ最小,∴S△PCQ=PQ×BC=PQ,法一:(几何法)取PQ的中点G,∵∠PCQ=90°,∴CG=PQ,即PQ=2CG,当CG最小时,PQ最小,∴CG⊥PQ,即CG与CB重合时,CG最小,∴CG min=,PQ min=2,∴S△PCQ的最小值=3,S四边形P A'B′Q=3﹣;法二(代数法)设PB=x,BQ=y,由射影定理得:xy=3,∴当PQ最小时,x+y最小,∴(x+y)2=x2+2xy+y2=x2+6+y2≥2xy+6=12,当x=y=时,“=”成立,∴PQ=+=2,∴S△PCQ的最小值=3,S四边形P A'B′Q=3﹣.16.【解答】解:(1)结论:△PMN是等边三角形.理由:如图1中,∵△ABC是等边三角形,∴AB=AC,∠ABC=∠ACB=60°,∵AD=AE,∴BD=EC,∵PB=PC,CN=ND,BM=EM,∴PN∥BD,PM∥EC,PN=BD,PM=EC,∴PM=PN,∠NPC=∠ABC=60°,∠MPB=∠ACB=60°,∴∠MPN=60°,∴△PMN是等边三角形,故答案为等边三角形.(2)△PMN的形状不发生改变,仍为等边三角形,理由如下:如图2中,连接BD,CE.由旋转可得∠BAD=∠CAE,∵△ABC是等边三角形,∴AB=AC,∠ACB=∠ABC=60°又∵AD=AE,∴△ABD≌△ACE(SAS),∴BD=CE,∠ABD=∠ACE,∵M是BE的中点,P是BC的中点,∴PM是△BCE的中位线,∴PM=,且PM∥CE.同理可证PN=BD且PN∥BD,∴PM=PN,∠MPB=∠ECB,∠NPC=∠DBC,∴∠MPB+∠NPC=∠ECB+∠DBC=(∠ACB+∠ACE)+(∠ABC﹣∠ABD)=∠ACB+∠ABC=120°,∴∠MPN=60°,∴△PMN是等边三角形.(3)∵PM=EC,∴当EC最大时,等边△PMN的周长最大,∵EC≤AE+AC,∴EC≤8,∴PM≤4,∴PM的最大值为4,∴△PMN的周长的最大值为12.17.【解答】解:(1)∵AB=AC,∠ABC=60°,∴∠BAC=60°,∵AD=AE,∠ADE=70°,∴∠DAE=180°﹣2∠ADE=40°,∴α=∠BAD=60°﹣40°=20°,∴∠ADC=∠BAD+∠ABD=60°+20°=80°,∴β=∠CDE=∠ADC﹣∠ADE=10°,故答案为:20,10;(2)设∠ABC=x,∠AED=y,∴∠ACB=x,∠AED=y,在△DEC中,y=β+x,在△ABD中,α+x=y+β=β+x+β,∴α=2β;(3)①当点E在CA的延长线上,点D在线段BC上,如图1设∠ABC=x,∠ADE=y,∴∠ACB=x,∠ACE=y,在△ABD中,x+α=β﹣y,在△DEC中,x+y+β=180°,∴α=2β﹣180°,②当点E在CA的延长线上,点D在CB的延长线上,如图2,同①的方法可得α=180°﹣2β.18.【解答】解:(1)由旋转变换的性质可知,∠CAE=90°,AC=AE,∴△ACE为等腰直角三角形,∴CE=AC,∵CE=CD+DE=CD+BC,∴BC+CD=AC,故答案为:等腰直角;BC+CD=AC;(2)延长CO交⊙O于E,连接AE、BE、DE,则∠CDE=90°,∵点C为的中点,∴点E为的中点,∴EA=EB,∵AB为⊙O的直径,∴∠ADB=90°,由(1)得,DE=(AD+BD),由勾股定理得,CD2=CE2﹣DE2=AD2+BD2﹣(AD+BD)2=(AD﹣BD)2,∴CD=(BD﹣AD);(3)如图3,当点E在直线AC的左侧时,连接CQ、PC,∵CA=CB,点P为AB的中点,∴CP⊥AB,∵CA=CE,点Q为AE中点,∴CQ⊥AE,AQ=QE=AE=5,∴由勾股定理得,CQ==12,由(1)得,AQ+CQ=PQ,。

2023年中考数学真题汇编几何综合压轴问题专项练习(共40题)(解析版)

2023年中考数学真题汇编几何综合压轴问题专项练习(共40题)(解析版)

几何综合压轴问题专项练习答案(40题)(1)将CDE 绕顶点C 旋转一周,请直接写出点M ,N 距离的最大值和最小值;(2)将CDE 绕顶点C 逆时针旋转120︒(如图2),求MN 【答案】(1)最大值为3,最小值为1(2)7【分析】(1)根据直角三角形斜边上的中线,得出,CM CN 解;(2)过点N 作NP MC ⊥,交MC 的延长线于点P ,根据旋转的性质求得进而可得1CP =,勾股定理解Rt ,Rt NCP MCP ,即可求解.【详解】(1)解:依题意,112CM DE ==,12CN AB =当M 在NC 的延长线上时,,M N 的距离最大,最大值为(2)解:如图所示,过点N 作NP MC ⊥,交MC 的延长线于点∵CDE 绕顶点C 逆时针旋转∴120BCE ∠=︒,∵45BCN ECM ∠=∠=︒,∴MCN BCM ECM ∠=∠-∠=∴60NCP ∠=︒,∴30CNP ∠=︒,∴112CP CN ==,在Rt CNP 中,2NP NC =-在Rt MNP △中,MP MC CP =+∴2234MN NP MP =+=+【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半,勾股定理,旋转的性质,含(1)如图1,求证:DE BF =;(2)如图2,若2AD BF =,的延长线恰好经过DE 的中点【答案】(1)见解析(2)22BE =+△∵点G 是DE 的中点,∴GH 是FCD 的中位线,∴11122GH CD AD ===,设BE a =,则CH EH ==(1)如图1,求AB边上的高CH的长.''.(2)P是边AB上的一动点,点,C D同时绕点P按逆时针方向旋转90︒得点,C D①如图2,当点C'落在射线CA上时,求BP的长.△是直角三角形时,求BP的长.②当AC D''∴90C PQ PC Q '∠+∠='︒∵90C PQ CPH ∠+∠='︒∴PC Q CPH ∠=∠'.由旋转知PC PC '=,设C D ''与射线BA 的交点为作CH AB ⊥于点H .∵PC PC ⊥',∴90CPH TPC ∠'+∠=︒,∵C D AT ''⊥,∴90PC T TPC ∠'+∠='︒,【答案】(1)①见解析;②AD DF BD =+,理由见解析;【分析】(1)①证明:ABE CBD ∠=∠,再证明ABE ≅△可得DF DC =.证明AE DF =,从而可得结论;(2)如图,过点B 作BE AD ⊥于点E ,得90BED ∠=︒,证明2DE BD =,证明2AB BC =,ABE CBD ∠=∠,可得②AD DF BD=+.理由如下:∵DF和DC关于AD对称,=.∴DF DC=,∵AE CD∴AE DF=.∴AD AE DE DF BD=+=+∵DF 和DC 关于AD 对称,∴DF DC =,ADF ADC ∠=∠.∵CD BD ⊥,∴45ADF ADC ∠=∠=︒,∴45EBD ∠=︒.∴2DE BD =.∵AB AC AF ==,∴()11222HF BF BD DF ==-=,222262210BC BD CD =+=+=∴2221022AF AC BC ===⨯=25HF (2)知识应用:如图2Y是菱形;①求证:ABCD②延长BC至点E,连接OE交【答案】(1)见解析5∴1BG BO GC OD==,∴115222CG BC AD ===,∴552OF GC .处从由60PC P C PCP ''=∠=︒,,可知PCP '△为①三角形,故PP PC '=,又P A PA ''=,故PA PB PC PA PB PP A B '''++=++≥,由②可知,当B ,P ,P ',A 在同一条直线上时,PA PB PC ++取最小值,如图2,最小值为(3)如图5,设村庄A ,B ,C 的连线构成一个三角形,且已知4km 23km AC BC ==,,建一中转站P 沿直线向A ,B ,C 三个村庄铺设电缆,已知由中转站P 到村庄A ,B ,C 元/km ,a 元/km ,2a 元/km ,选取合适的P 的位置,可以使总的铺设成本最低为___________用含的式子表示)∵ACP A CP ''∠=∠,∴ACP BCP A CP BCP ∠+∠=∠+∠''又∵60PCP '∠=︒过点A '作A H BC '⊥,垂足为H ,∵60ACB ∠=︒,90ACA '∠=︒,∴30A CH '∠=︒,1猜想证明:(1)如图2,试判断四边形AEDG的形状,并说明理由.问题解决;(2)如图3,将图2中左侧折叠的三角形展开后,重新沿MN折叠,使得顶点B与点∵1122 CHGS CH HG=⋅=∴154302CG HE⋅=⨯=,①求证:PD PB =;②将线段DP 绕点P 逆时针旋转,化时,DPQ ∠的大小是否发生变化?请说明理由;③探究AQ 与OP 的数量关系,并说明理由.【答案】(1)①见解析;②不变化,(2)AQ CP =,理由见解析【分析】(1)①根据正方形的性质证明②作,PM AB PN AD ⊥⊥,垂足分别为点∵四边形ABCD 是正方形,∴45DAC BAC ∠=∠=︒,∴四边形AMPN 是矩形,∴90MPN ∠=︒,∵四边形ABCD 是正方形,∴45BAC ∠=︒,90AOB ∠=∴45AEP ∠=︒,四边形OPEF=作PM AB⊥于点M,则QM MB=,∴QA BE=.∴AQ CP(1)求BCF ∠的度数;(2)求CD 的长.深入探究:(3)若90BAC ∠<︒,将BMN 绕点B 顺时针旋转α,得到BEF △,连接AE ,CF 满足0360α︒<<︒,点,,C E F 在同一直线上时,利用所提供的备用图探究BAE ∠与ABF ∠的数量关系,并说明理由.【答案】初步尝试:(1)1MN AC =;MN AC ∥;(2)特例研讨:(1)30BCF ∠=︒;(2)CD∵MN 是BAC 的中位线,∴MN AC ∥,∴90BMN BAC ∠=∠=︒∵将BMN 绕点B 顺时针旋转α∴,BE BM BF BN ==;BEF ∠=∵点,,A E F 在同一直线上时,2∵,ADN BDE ANB BED ∠=∠∠=∠∴ADN BDE ∽,∴2222DN AN DE BE ===,设DE x =,则2DN x =,在Rt ABE △中,2,2BE AE ==在Rt ADN △中,22AD DN AN =+∵AB AC =,∴A ABC CB =∠∠,设ABC ACB θ∠=∠=,则1802BAC θ∠=︒-,∵MN 是ABC 的中位线,∴MN AC∥∴MNB MBN θ∠=∠=,∵将BMN 绕点B 顺时针旋转α,得到BEF △,∴EBF MBN ≌,MBE NBF α∠=∠=,∴EBF EFB θ∠=∠=∴1802BEF θ∠=︒-,∵点,,C E F 在同一直线上,∴2BEC θ∠=∴180BEC BAC ∠+∠=︒,∴,,,A B E C 在同一个圆上,∴EAC EBC αθ∠=∠=-∴()()1802BAE BAC EAC θαθ∠=∠-∠=︒---180αθ=︒--∵ABF αθ∠=+,∴180BAE ABF ∠∠=+︒;如图所示,当F 在EC 上时,∵,BEF BAC BC BC∠=∠=∴,,,A B E C 在同一个圆上,设ABC ACB θ∠=∠=,则1802BAC BEF θ∠=∠=︒-,将BMN 绕点B 顺时针旋转α,得到BEF △,设NBF β∠=,则EBM β∠=,则360αβ+=︒,∴ABF θβ∠=-,∵BFE EBF θ∠=∠=,EFB FBC FCB∠=∠+∠∴ECB FCB EFB FBC θβ∠=∠=∠-∠=-,∵ EBEB =∴EAB ECB θβ∠=∠=-∴BAE ∠ABF=∠综上所述,BAE ABF ∠=∠或180BAE ABF ∠∠=+︒【点睛】本题考查了圆周角定理,圆内接四边形对角互补,相似三角形的性质与判定,旋转的性质,中位线的性质与判定,等腰三角形的性质与判定,三角形内角和定理,三角形外角的性质,勾股定理,熟练掌握以上知识是解题的关键.10.(2023·湖北黄冈·统考中考真题)【问题呈现】CAB △和CDE 都是直角三角形,90,,ACB DCE CB mCA CE mCD ∠=∠=︒==,连接AD ,BE ,探究AD ,BE 的位置关系.(1)如图1,当1m =时,直接写出AD ,BE 的位置关系:____________;(2)如图2,当1m ≠时,(1)中的结论是否成立?若成立,给出证明;若不成立,说明理由.【拓展应用】(3)当3,47,4m AB DE ===时,将CDE 绕点C 旋转,使,,A D E 三点恰好在同一直线上,求(2)解:成立;理由如下:∵90DCE ACB ∠=∠=︒,∴DCA ACE ACE ∠+∠=∠+(3)解:当点E 在线段AD设AD y =,则AE AD DE =+根据解析(2)可知,DCA △∴3BE BC m AD AC===,勾股定理,解题的关键是熟练掌握三角形相似的判定方法,画出相应的图形,注意分类讨论.(1)若点P 在AB 上,求证:A P AP '=;(2)如图2.连接BD .①求CBD ∠的度数,并直接写出当180n =时,x 的值;②若点P 到BD 的距离为2,求tan A MP '∠的值;∵PM 平分A MA '∠∴90PMA ∠=︒∴PM AB∥∴DNM DBA V V ∽∴DN DM MN DB DA BA ==∵8,6,90AB DA A ==∠=︒,∴2226BD AB AD =+=+∴2103sin 3BQ BP DBA ===∠,∵90PQB CBD DAB ∠=∠=∠=︒,∴90QPB PBQ DBA ∠=︒-∠=∠,∵A MP AMP ' ≌,∴90PA M A '∠=∠=︒,(2)如图②,在矩形ABCD 的BC 边上取一点E ,将四边形ABED 沿DE 翻折,使点B '处,若24,6BC CE AB ⋅==,求BE 的值;(3)如图③,在ABC 中,45,BAC AD BC ∠=︒⊥,垂足为点,10,D AD AE ==于点F ,连接DF ,且满足2DFE DAC ∠=∠,直接写出53BD EF +的值.∵EF BC ∥,∴2CDF DFE ∠=∠=∴CDH FDH ∠=∠,又∵DH DH =,CHD ∠∴(ASA CHD FHD ≌【点睛】本题考查矩形的性质、翻折性质、勾股定理、相似三角形的判定与性质、等腰三角形的判定与性质、全等三角形的判定与性质、锐角三角函数等知识,综合性强,较难,属于中考压轴题,熟练掌握相关知识的联系与运用,添加辅助线求解是解答的关键.13.(2023·湖南郴州·=,连接点E,使CE AD(1)如图1,当点D在线段AB上时,猜测线段CF与BD的数量关系并说明理由;(2)如图2,当点D在线段AB的延长线上时,①线段CF与BD的数量关系是否仍然成立?请说明理由;②如图3,连接AE.设4AB=,若AEB DEB∠=∠,求四边形BDFC的面积.【答案】(1)1CF BD=,理由见解析∴60,ADG ABC AGD ∠=∠=︒∠=∠∴ADG △为等边三角形,∴AD AG DG ==,∵AD CE =,AD AB AG AC -=-∴DG CE =,BD CG =,于点由①知:ADG △为等边三角形,∵ABC 为等边三角形,∴4,AB AC BC BH CH =====∴2223AH AB BH =-=,(1)若正方形ABCD 的边长为2,E 是AD 的中点.①如图1,当90FEC ∠=︒时,求证:AEF DCE ∽△△;②如图2,当2tan 3FCE ∠=时,求AF 的长;(2)如图3,延长CF ,DA 交于点G ,当1,sin 3GE DE FCE =∠=时,求证:,可得结论;正方形ABCD 中,①ADC BAD ∠=∠ ∴AEF CED ∠+∠=AEF ECD ∴∠=∠,延长DA ,CF 交于点G ,作GH CE ⊥,垂足为H ,90EDC EHG ∠=∠=︒ 且∠问题探究:(1)先将问题特殊化,如图(2),当90α=︒时,直接写出GCF ∠的大小;(2)再探究一般情形,如图(1),求GCF ∠与α的数量关系.问题拓展:(3)将图(1)特殊化,如图(3),当120α=︒时,若12DG CG =,求BE CE 的值.故答案为:45︒.(2)解:在AB上截取ANABC BAE AEB∠+∠+∠=∠=∠,ABC AEF22⎝⎭(3)解:过点A作CD的垂线交CD的延长线于点【点睛】此题考查菱形性质、三角形全等、三角形相似,解题的关键是熟悉菱形性质、三角形全等、三角形相似.16.(2023·山西·统考中考真题)问题情境:“综合与实践沿对角线剪开,得到两个全等的三角形纸片,表示为∠=∠=︒∠=∠.将ABCACB DEF A D90,和DFE△(1)数学思考:谈你解答老师提出的问题;(2)深入探究:老师将图2中的DBE绕点B逆时针方向旋转,使点问题.∠①“善思小组”提出问题:如图3,当ABE②“智慧小组”提出问题:如图AH的长.请你思考此问题,直接写出结果.【答案】(1)正方形,见解析(2)①AM BE=,见解析;【分析】(1)先证明四边形形;∠(2)①由已知ABE【点睛】本题考查了旋转的性质、全等三角形的判定与性质、正方形的判定与性质、相似三角形的判定与性质、三角函数、勾股定理等知识点,适当添加的辅助线、构造相似三角形是解题的关键.17.(2023·湖北十堰·统考中考真题)过正方形E ,连接AE ,直线AE 交直线(1)如图1,若25CDP ∠=︒,则DAF ∠=___________(2)如图1,请探究线段CD ,EF ,AF 之间的数量关系,并证明你的结论;(3)在DP 绕点D 转动的过程中,设AF a =,EF 【答案】(1)20︒。

2023年九年级数学中考复习:旋转综合压轴题(角度问题)附答案

2023年九年级数学中考复习:旋转综合压轴题(角度问题)附答案

2023年九年级数学中考复习:旋转综合压轴题(角度问题)附答案1.在正方形ABCD 中,AB =4,O 为对角线AC 、BD 的交点.(1)如图1,延长OC ,使CE=OC ,作正方形OEFG ,使点G 落在OD 的延长线上,连接DE 、AG .求证:DE=AG ;(2)如图2,将问题(1)中的正方形OEFG 绕点O 逆时针旋转α°(0<α<180),得到正方形OE F G ''',连接AE E G '''、.①当α=30时,求点A 到E G ''的距离;②在旋转过程中,直接写出AE G ∆''面积的最小值为,并写出此时的旋转角α=.2.已知在矩形ABCD 中,∠ADC 的平分线DE 与BC 交于点E ,点P 是线段DE 上一定点(其中EP <PD )(1)如图1,若点F 在CD 边上(不与C ,D 重合),将∠DPF 绕点P 逆时针旋转90°后,角的两边PD ,PF 分别交射线DA 于点H ,G .①直接写出PG 与PF 之间的数量关系;②猜想DF ,DG ,DP 的数量关系,并证明你的结论.(2)如图2,若点F 在CD 的延长线上(不与D 重合),将PF 绕点P 逆时针旋转90°,交射线DA 于点G ,判断(1)②中DF ,DG ,DP 之间的数量关系是否仍然成立?若成立,给出证明;若不成立,请直接写出它们所满足的数量关系式.3.在平面直角坐标系中,直线l 与x 轴、y 轴分别交于A (a ,0)、B (0,b )两点,且a +2b ﹣5)2=0(1)求A 、B 两点坐标;(2)如图1,把线段BA 绕B 点顺时针旋转,点A 的对应点为C 点,使BC ⊥y 轴,E 为线段AC 上一点,EN ⊥AB 于N ,EM ⊥BC 于M ,求EM +EN 的值.(3)如图2,点D 为y 轴上点B 上方一点,DE ⊥AD 交直线CB 于点E ,∠DEC 的平分线EF 与∠DAO 的邻补角的平分线AF 交点F ,请问:D 点在运动的过程中∠AFE 的大小是否变化,若不变,求出其值;若变化,请说明理由.4.(1)发现:如图1,点B 是线段AD 上的一点,分别以AB BD ,为边向外作等边三角形ABC 和等边三角形BDE ,连接AE ,CD ,相交于点O .①线段AE 与CD 的数量关系为:___________;AOC ∠的度数为__________.②CBD ∆可看作ABE ∆经过怎样的变换得到的?____________________________.(2)应用:如图2,若点A B D ,,不在一条直线上,(1)的结论①还成立吗?请说明理由;(3)拓展:在四边形ABCD 中,=AB AC ,=90BAC ∠︒,=45ADC ∠︒,若8AD =,6CD =,请直接写出B ,D 两点之间的距离.5.【问题解决】一节数学课上,老师提出了这样一个问题:如图1,点P是正方形ABCD内一点,PA=1,PB=2,PC=3.你能求出∠APB的度数吗?小明通过观察、分析、思考,形成了如下思路:思路一:将△BPC绕点B逆时针旋转90°,得到△BP′A,连接PP′,求出∠APB的度数;思路二:将△APB绕点B顺时针旋转90°,得到△CP′B,连接PP′,求出∠APB的度数.请参考小明的思路,任选一种写出完整的解答过程.【类比探究】如图2,若点P是正方形ABCD外一点,PA=3,PB=1,PC APB的度数.6.在学习了图形的旋转知识后,数学兴趣小组的同学们又进一步对图形旋转前后的线(一)尝试探究:如图1,在四边形ABCD中,AB=AD,∠BAD=60°,∠ABC=∠ADC =90°,点E、F分别在线段BC、CD上,∠EAF=30°,连接EF.(1)如图2,将△ABE绕点A逆时针旋转60°后得到△A′B′E′(A′B′与AD重合),请直接写出∠E′AF=度,线段BE、EF、FD之间的数量关系为.(2)如图3,当但点E、F分别在线段BC、CD的延长线上时,其他条件不变,请探究线段BE、EF、FD之间的数量关系,并说明理由.(二)拓展延伸:如图4,在等边△ABC中,E、F是边BC上的两点,∠EAF=30°,BE=1,将△ABE绕点A逆时针旋转60°得到△A′B′E′(A′B′与AC重合),连接EE′,AF 与EE′交于点N,过点A作AM⊥BC于点M,连接MN,求线段MN的长度.7.已知△AOB,将△AOB绕O点旋转到△COD位置,使C点落在OB边上,连接AC、BD.(1)若∠AOB=90°(如图1),小亮发现∠BAC=∠BDC,请你证明这个结论;(2)若∠AOB=60°(如图2),小亮发现的结论是否仍然成立?说明理由;(3)若∠AOB为任意角α(如图3),小亮发现的结论还成立吗?说明理由;8.把边长分别为4和6的矩形ABCO如图放在平面直角坐标系中,将它绕点C顺时针旋转a角,旋转后的矩形记为矩形EDCF.在旋转过程中,(1)如图①,当点E在射线CB上时,E点坐标为;(2)当△CBD是等边三角形时,旋转角a的度数是(a为锐角时);(3)如图②,设EF与BC交于点G,当EG=CG时,求点G的坐标;(4)如图③,当旋转角a=90°时,请判断矩形EDCF的对称中心H是否在以C为顶点,且经过点A的抛物线上.9.把一副三角板如图(1)放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜边AB=12cm,DC=14cm,把三角板DCE绕点C逆时针旋转15°得到△(如图2).这时AB与相交于点O,与相交于点F.(1)填空:∠=°;(2)请求出△的内切圆半径;(3)把△绕着点C 逆时针再旋转度()得△,若△为等腰三角形,求的度数(精确到0.1°).10.“数学建模”是中学数学的核心素养,平时学习过程中能归纳一些几何模型,解决几何问题就能起到事半功倍的作用.(1)如图1,正方形ABCD 中,45EAF ∠=︒,且DE BF =,求证:EG AG =;(2)如图2,正方形ABCD 中,45EAF ∠=︒,延长EF 交AB 的延长线于点G ,(1)中的结论还成立吗?请说明理由;(3)如图3在(2)的条件下,作GQ AE ⊥,垂足为点Q ,交AF 于点N ,连结DN ,求证:45NDC ∠=︒.11.在学习利用旋转解决图形问题时,老师提出如下问题:(1)如图1,点P 是正方形ABCD 内一点,1PA =,2PB =,3PC =,你能求出APB ∠的度数吗?小明通过观察、分析、思考,形成了如下思路:思路一:将PBC 绕点B 逆时针旋转90︒,得到P BA '△,连接PP ',可求出APB ∠的度数;思路二:将PAB △绕点B 顺时针旋转90︒,得到P CB '△,连接PP ',可求出APB ∠的度数;请参照小明的思路,任选一种写出完整的解答过程;(2)如图2,若点P 是等边三角形ABC 内一点,若150APB ∠=︒,则线段PA ,PB ,PC 满足怎样的等量关系?请参考小明上述解决问题的方法进行探究,直接写出线段PA ,PB ,PC 满足的等量关系.12.把两个等腰直角ABC 和ADE 按如图1所示的位置摆放,将ADE 绕点A 按逆时针方向旋转,如图2,连接BD ,EC ,设旋转角为α(0360α︒<<︒).(1)如图1,BD 与EC 的数量关系是___________,BD 与EC 的位置关系是___________;(2)如图2,(1)中BD 和EC 的数量关系和位置关系是否仍然成立,若成立,请证明;若不成立请说明理由.(3)如图3,当点D 在线段BE 上时,BEC ∠=___________.(4)当旋转角α=__________时,ABD △的面积最大.13.如图1,在Rt ABC △中,90ACB ∠=︒,60A ∠=︒,直线MN 经过C 点垂直于AB ,垂足为D .(1)求证:ADC BDC ∽△△;(2)若直线MN 从图1的位置绕M 点逆时针旋转,如图2,设旋转的角度为()0180αα<<,作AP MN ⊥,垂足为P ,BQ MN ⊥,垂足为Q .①当α的度数为______时,点A ,P ,B ,Q 构成的四边形为平行四边形;②当α的度数为______时,点A ,P ,B ,Q 构成的四边形为矩形.14.已知△ABC 和△ADE 都是等腰三角形,AB =AC ,AD =AE ,∠DAE =∠BAC .【初步感知】(1)特殊情形:如图①,若点D ,E 分别在边AB ,AC 上,则DBEC .(填>、<或=)(2)发现证明:如图②,将图①中△ADE 的绕点A 旋转,当点D 在△ABC 外部,点E 在△ABC 内部时,求证:DB =EC .【深入研究】(3)如图③,△ABC 和△ADE 都是等边三角形,点C ,E ,D 在同一条直线上,则∠CDB 的度数为;线段CE ,BD 之间的数量关系为.(4)如图④,△ABC 和△ADE 都是等腰直角三角形,∠BAC =∠DAE =90°,点C 、D 、E 在同一直线上,AM 为△ADE 中DE 边上的高,则∠CDB 的度数为;线段AM ,BD ,CD 之间的数量关系为.15.把两个等腰直角△ABC 和△ADE 按如图1所示的位置摆放,将△ADE 绕点A 按逆时针方向旋转,如图2,连接BD ,EC ,设旋转角α(0°<α<360°).(Ⅰ)当DE ⊥AC 时,旋转角α=度,AD 与BC 的位置关系是,AE 与BC 的位置关系是;(Ⅱ)当点D 在线段BE 上时,求∠BEC 的度数;(Ⅲ)当旋转角α=时,△ABD 的面积最大.16.如图①,在 ABC 中,∠ACB =90°,∠ABC =30°,AC =1,D 为 ABC 内部的一动点(不在边上),连接BD ,将线段BD 绕点D 逆时针旋转60°,使点B 到达点F 的位置;将线段AB 绕点B 顺时针旋转60°,使点A 到达点E 的位置,连接AD ,CD ,AE ,AF ,BF ,EF .(1)求证: BDA ≌ BFE ;(2)当CD +DF +FE 取得最小值时,求证:AD ∥BF .(3)如图②,M ,N ,P 分别是DF ,AF ,AE 的中点,连接MP ,NP ,在点D 运动的过程中,请判断∠MPN 的大小是否为定值.若是,求出其度数;若不是,请说明理由.17.已知ABC 是等腰三角形,AB AC =,将ABC 绕点B 逆时针旋转得到''A BC ,(1)感知:如图①,当'BC 落在AB 边上时,'A AB ∠与'C CB ∠之间的数量关系是_____(不需要证明);(2)探究:如图②,当'BC 不落在AB 边上时,'A ∠AB 与'C CB ∠是否相等?如果相等;如果不相等,请说明理由;(3)应用:如图③,若90BAC ∠=︒,'AA 、'CC 交于点E ,则'A EC ∠=_____度.18.如图,已知正方形ABCD ,点E 为AB 上的一点,EF AB ⊥,交BD 于点F .(1)如图1,直按写出DF AE的值_______;(2)将△EBF 绕点B 顺时针旋转到如图2所示的位置,连接AE 、DF ,猜想DF 与AE 的数量关系,并证明你的结论;(3)如图3,当BE =BA 时,其他条件不变,△EBF 绕点B 顺时针旋转,设旋转角为(0360)αα︒<<︒,当α为何值时EA =ED ?请在图3或备用图中画出图形并求出α的值.19.(1)观察猜想:如图①,在Rt △ABC 和Rt △BDE 中,∠ABC =∠EBD =90°,AB =BC ,BE =BD ,连接AE ,点F 是AE 的中点,连接CD 、BF ,当点D 、B 、C 三点共线时,线段CD 与线段BF 的数量关系是_____,位置关系是_____(2)探究证明:在(1)的条件下,将Rt △BDE 绕点B 顺时针旋转至图②位置时,(1)中的结论是否仍然成立?如果成立,请你就图②的情形进行证明;如果不成立,请说明理由;(3)拓展延伸:如图③,在Rt△ABC和Rt△BDE中,∠ABC=∠EBD=90°,BC=2AB=8,BD=2BE=4,连接AE,点F是AE的中点,连结CD、BF,将△BDE绕点B在平面内自由旋转,请直接写出BF的取值范围,20.如图①,在矩形ABCD中,AB=6,BC=8,四边形EFGH是正方形,EH与BD 重合,将图①中的正方形EFGH绕着点D逆时针旋转.(1)旋转至如图②位置,使点G落在BC的延长线上,DE交BC于点L.已知旋转开始时,即图①位置∠CDG=37°,求正方形EFGH从图①位置旋转至图②位置时,旋转角的度数.(2)旋转至如图③位置,DE交BC于点L.延长BC交FG于点M,延长DC交EF于点N.试判断DL、EN、GM之间满足的数量关系,并给予证明.参考答案:1.(2)①点A 到E G ''的距离为;②在旋转过程中,直接写出AE G ∆''面积的最小值为16-α=135°.2.(1)②DG +DF ;(2)不成立,数量关系式应为:DG -DF ,3.(1)A (﹣3,0)、B (0,4);(2)4;(3)不变,45°4.(1)①AE CD =,60︒;(2)依然成立,(3)6.(一)(1)30,BE +DF =EF ;(2)BE ﹣DF =EF ;8.(1)E (4,;(2)60°;(3)13(4,)3G ;(4)点H 不在此抛物线上.9.(1)120°;(2)2;(3)37.7°、50.6°10.(1)见解析;(2)结论依然成立11.(1)135,APB Ð=°证明见解析;(2)222PC PA PB =+,12.(1)BD EC =,BD EC ⊥;(2)成立,(3)90︒;(4)90︒或270︒13.(2)①30°或90°;②90°.14.(1)=;(3)60︒,DB CE =;(4)90︒,2AM BD CD +=15.(Ⅰ)45;垂直;平行;(Ⅱ)90BEC ∠=︒;(Ⅲ)90︒或270︒16.∠MPN 的值为定值,30°.17.(1)相等;(2)相等;(3)135︒.18.(2)DF ,(3)α的值为30°或150°,19.(1)CD =2BF BF ⊥CD(2)CD =2BF ,BF ⊥CD 成立,(3)13BF ≤≤20.(1)16°(2)DL =EN +GM ,。

中考数学专题训练第13讲轴对称与旋转1(解析版)

中考数学专题训练第13讲轴对称与旋转1(解析版)

轴对称与旋转(压轴题组)1.综合与实践问题情境:数学活动课上.老师出示了一个问题:如图①.在平行四边形ABCD中.BE⊥AD.垂足为E.F为CD的中点.连接EF.BF.试猜想EF与BF的数量关系.并加以证明.独立思考:(1)请解答老师提出的问题.实践探究:(2)希望小组受此问题的启发.将平行四边形ABCD沿着BF(F为CD的中点)所在直线折叠.如图②.点C的对应点为C′.连接DC′并延长交AB于点G.请判断AG与BG的数量关系.并加以证明.问题解决:(3)智慧小组突发奇想.将▱ABCD沿过点B的直线折叠.如图③.点A的对应点为A′.使A′B⊥CD于点H.折痕交AD于点M.连接A′M.交CD于点N.该小组提出一个问题:若此平行四边形ABCD的面积为20.边长AB=5.BC=25.求图中阴影部分(四边形BHNM)的面积.请你思考此问题.直接写出结果.【答案】(1)EF=BF.理由见解析. (2)AG=BG.理由见解析. (3)223.【详解】解:(1)结论:EF=BF.理由如下:如图.过点F作FH∥AD交BE于点H.∵四边形ABCD是平行四边形.∴AD∥BC.∵FH∥AD.∴DE∥FH∥CB.∵F为CD的中点.即DF=CF.∴1EH DF HB FC== ∴EH =HB .∵BE ⊥AD .FH ∥AD .∴FH ⊥EB .∴EF =BF .(2)结论:AG =BG .理由如下:连接CC ' .由折叠知识得:BF CC '⊥ .FC FC '= .∵DF =FC .∴DF FC FC '==.∴,CC F C CF C DF DC F ''''∠=∠∠=∠ .∴CC D CC F DC F C CF C DF '''''∠=∠+∠=∠+∠.∴90CC D '∠=︒,∴CC GD '⊥ .∴DG ∥BF .∵DF ∥BG .∴四边形DFBG 是平行四边形.∴DF =BG .∵12AB CD DF CD ==, . ∴12BG AB = . ∴AG =GB .(3)如图.过点D 作DJ ⊥AB 于点J .过点M 作MT ⊥AB 于点T .∵S 平行四边形ABCD =AB ×DJ .∴DJ =20=45. ∵BC =5∴()222225-4=2AJ AD DJ =-= . 在平行四边形ABCD 中.AB ∥CD .∵A B CD '⊥ .∴A B AB '⊥ .∵DJ ⊥AB .∴∠DJB =∠JBH =∠DHB =90°.∴四边形DJBH 是矩形.∴BH =DJ =4.∴541A H A B BH ''=-=-= .∵MT ⊥AB .DJ ⊥AB .∴MT ∥DJ .∴ △ATM ∽△ADJ .∴MT AT DJ AJ = . ∴4=22MT DJ AT AJ ==. 设AT =x .则MT =2x .根据折叠得:45ABM MBA '∠=∠=︒ .∴MT =TB =2x .∴3x =5.解得:53x = . ∴103MT = . ∵,90A A AJD NHA ''∠=∠∠=∠=︒ .∴ △ADJ ∽△A 'NH .∴DJ AJ NH A H='.∴422NH DJA H AJ==='.∴NH=2.∴110255233 ABM A BMS S'==⨯⨯=.∴2512212323A BM NHABHNMS S S''=-=-⨯⨯=四边形.2.(2021·山东中区·九年级期末)定义:关于x轴对称且对称轴相同的两条抛物线叫作“同轴对称抛物线”.例如:y1=(x﹣1)2﹣2的“同轴对称抛物线”为y2=﹣(x﹣1)2+2.(1)请写出抛物线y1=(x﹣1)2﹣2的顶点坐标.及其“同轴对称抛物线”y2=﹣(x﹣1)2+2的顶点坐标.(2)求抛物线y=﹣2x2+4x+3的“同轴对称抛物线”的解析式.(3)如图.在平面直角坐标系中.点B是抛物线L:y=ax2﹣4ax+1上一点.点B的横坐标为1.过点B作x轴的垂线.交抛物线L的“同轴对称抛物线”于点C.分别作点B、C关于抛物线对称轴对称的点B'、C'.连接BC、CC'、B C''、BB'.①当四边形BB C C''为正方形时.求a的值.②当抛物线L与其“同轴对称抛物线”围成的封闭区域内(不包括边界)共有11个横、纵坐标均为整数的点时.直接写出a的取值范围.【答案】(1)(1.﹣2).(1.2).(2)y=2(x﹣1)2﹣5.(3)①a=23.②34≤a≤1或﹣14≤a<﹣15【详解】解:(1)由y1=(x﹣1)2﹣2知顶点坐标为(1.﹣2). 由y2=﹣(x﹣1)2+2知顶点坐标为(1.2).故答案为:(1.﹣2).(1.2).(2)∵y=﹣2x2+4x+3y=﹣2(x﹣1)2+5.∴“同轴对称抛物线”的解析式为:y=2(x﹣1)2﹣5.(3)①当x=1时.y=1﹣3a.∴B (1.1﹣3a ).∴C (1.3a ﹣1).∴BC =|1﹣3a ﹣(3a ﹣1)|=|2﹣6a |.∵抛物线L 的对称轴为直线x =42a a--=2. ∴点B '(3.1﹣3a ).∴BB '=3﹣1=2.∵四边形BB 'C 'C 是正方形.∴BC =BB '.即|2﹣6a |=2.解得:a =0(舍)或a =23. ②抛物线L 的对称轴为直线x =2.顶点坐标为(2.1﹣4a ).∵L 与“同轴对称抛物线”关于x 轴对称.∴整点数也是关于x 轴对称出现的.∴封闭区域内在x 轴上的整点可以是3个或5个.L 与x 轴围成的区域内整点个数为4个或3个.(i )当a >0时.∵L 开口向上.与y 轴交于点(0.1).∴封闭区域内在x 轴上只可能有3个整点.两个区域内各有4个整点.∴当x =1时.﹣2≤1﹣3a <﹣1.当x =2时.﹣3≤1﹣4a <﹣2. 解得:34≤a ≤1. (ii )当a <0时.∵L 开口向下.与y 轴交于点(0.1).∴封闭区域内在x 轴上只可能有5个整点.两个区域内各有3个整点.∴当x =2时.1<1﹣4a ≤2.当x =﹣1时.5a +1<0. 解得:1145a -≤<-. 综上所述:34≤a ≤1或﹣14≤a <﹣15. 3.(2021·江苏·苏州市景范中学校二模)如图1.在Rt ABC △中.90C ∠=︒.边6,8AC BC ==.点M N 、分别在线段AC BC 、上.将ABC 沿直线MN 翻折.点C 的对应点是点C '.(1)当M N 、分别是边AC BC 、的中点时.求出CC '的长度.(2)若2CN =.点C '到线段AB 的最短距离是________.(3)如图2.当点C '在落在边AB 上时.①点C '运动的路程长度是______.②当3611AM =时.求出CN 的长度. 【答案】(1)245.(2)85.(3)①4.② 6011. 【详解】 解:(1)设MN 交CC '于O∵M 、N 分别为AC 、BC 的中点∴AM =CM .CN =BN∴MN ∥AB (中位线定理).12MN AB =∵MC MC '=.NC NC '=∴MN 垂直平分CC '∴OC OC '=.12OC CC '= ∴CC AB '⊥且点C '落在AB 上∵∠C =90°∴2210AB AC BC =+=∵1122AC BC AB CC '= ∴245AC BC CC =AB '=(2)如图2中.过点N 作NH ⊥AB 与H∵2NC NC ='=.BC =8∴6BN BC CN =-= ∵sin NH AC B BN AB ==∠ ∴185AC BN NH AB == ∵点C '是在以N 为圆心.C N ' 长为半径的圆上.∴当点C '落在线段NH 上时.点C '到线段AB 的距离最短∴最短距离85NH NC '=-=.(3)①如图3-1所示.当点N 与B 重合时.BC '的值最大.最大值=BC =8. 如图3-2中.当M 与A 重合时.BC '的值最小.最小值=AB -AC '=AB -AC =4 观察图形可知.当点C '落在AB 上时.点C '的运动的路程长度为4②如图3-3中.过点M 作ME ⊥AB 于E .过点N 作NF ⊥AB 于F .设CN =x .则BN =8-x . ∵sin NF AC B BN AB ==∠.cos BF BC B BN AB ==∠ ∴()385AC BN NF x AB ==-.()485BC BN BF x AB ==- ∵A A ∠=∠.90AEM ACB ==∠∠∴MEA BCA △∽△∴AM AE EM AB AC BC== ∴10855AE =.1445ME =∵363061111MC MC AC AM '==-=-= ∴22223014442115555EC MC ME ⎛⎫⎛⎫''=-=-= ⎪ ⎪⎝⎭⎝⎭∴()()108424804108855555115C F AB AE EC BF x x ''=---=----=-- 由翻折的性质得:90ACB MC N '==∠∠∴90EC M FC N ''+=∠∠∵90EC M EMC ''+=∠∠∴EMC FC N ''=∠∠∴MEC C FN ''△∽△∴EM EC FC FN'=' ∴()()144425558043881155x x =--- 解得6011x = 经检验6011x =是分式方程的解 ∴6011CN =4.(2021·湖北当阳·一模)如图.在矩形ABCD 中.11AB =.6AD =.点E 是边AB 上的点(不与点A .B 重合).将A ∠沿DE 折叠.点1A 是点A 的对应点.点F 是边BC 上的点.将B 沿EF 折叠.点1B 是点B 的对应点.且点1B 在直线1EA 上.(1)若DE EF =.求CF 的长.(2)若点F 是BC 的中点.求tan ADE ∠的值.(3)当点1B 恰好落在边DC 上时.求四边形1DEBB 的面积.【答案】(1)1.(2)13或32.(3)44213+或44213- 【详解】解:(1)将A ∠沿DE 折叠.点1A 是点A 的对应点.∴△AED ≌△.∴1EDA DEA ∠=∠.∵将B 沿EF 折叠.点1B 是点B 的对应点.∴EFB △≌1EFB △.∴1BEF B EF ∠=∠.∴90DEF ∠=︒.∵90EDA DEA DEA FEB ∠+∠=∠+∠=°.∴DEA FEB ∠=∠.∵DE EF =.∴DAE △≌EBF △(AAS ).∴BF AE =.DA BE =.∵11AB =.6AD =.∴6EB =.5AE BF ==.∴1CF =.(2)由(1)知.DAE △∽EBF △.∴AE AD BF BE=. ∵点F 是BC 的中点.∴3BF =.∴6311AE AE=-. ∴2AE =或9AE =.在Rt ADE △中.1tan 3ADE ∠=或3tan 2ADE ∠=. (3)连接BB '.交EF 于M 点.∵点1B 恰好落在边DC 上.∴EF 是BB '的垂直平分线.∴BM EF ⊥.∴FEB FBB '∠=∠.∵ADE FEB ∠=∠.∴ADE CBB '∠=∠.∵AD BC =.90A C ∠=∠=︒.∴△AED ≌CBB '△(AAS ).∴AE B C '=.∴BE DB '=.∵//BE DB '.∴四边形DEBB '是平行四边形.设AE y =.BF x =.则B F x '=.6CF x =-.B C y '=.在Rt B CF '△中.()2226x y x =+-.∴21236x y =+.∵DAE △∽EBF △. ∴611y x y =-. ∴2611x y y =-.∴2236222y y y +=-. 解得11133y ±=. ∴四边形1DEBB 的面积44213=±,综上:四边形1DEBB 的面积为44+213或44213-.5.(2021·河北竞秀·一模)如图.平行四边形ABCD 中.AB =9.AD =13.tan A =125.点P 在射线AD 上运动.连接PB .沿PB 将△APB 折叠.得△A 'PB .(1)如图1.点P 在线段AD 上.当∠DP A'=20°时.∠APB = 度.(2)如图2.当P A '⊥BC 时.求线段P A 的长度.(3)当点A'落在平行四边形ABCD 的边所在的直线上时.求线段P A 的长度.(4)直接写出:在点P 沿射线AD 运动过程中.DA ′的最小值是多少?【答案】(1)80或100.(2)线段P A 的长度为15313.(3)线段P A 的长度为4513或9或1175.(4)DA ′的最小值是4109-.【详解】解:(1)当PA '在直线AD 的右侧时.△APB 折叠得到△A 'PB . 1=(18020)802APB A PB '∴∠=∠︒-︒=︒ 当PA '在直线AD 的左侧时.1=(18020)1002APB A PB '∴∠=∠︒+︒=︒. 故答案为:80或100.(2)如图.作BH AD ⊥于H .平行四边形ABCD 中.//,AD BC PA BC '⊥PA AD '∴⊥90APA '∴∠=︒45APB A PB '∴∠=∠=︒PH BH ∴=12tan 5A = 设12,5BH x AH x ==.22139AB AH BH x ∴=+==913x ∴=1081213BH x ∴== 45513AH x == 10813PH BH ∴== 10845153131313PA PH AH ∴=+=+=. (3)①当点A '在AD 上时.,AB A B PA PA ''==BP AD ∴⊥12tan 5A = 5451313AP AB ∴==. ②当点A '在BC 上时.由折叠可知.,AB A B AP A P ''==//AD BCAPB PBA ABP '∴∠=∠=∠AB PA ∴=∴四边形ABA P '是菱形.9AP ∴=.③当点A '在AB 的延长线上时.1902ABP ABA '∠=∠=︒1311755AP AB ∴== 综上所述.线段P A 的长度为4513或9或1175. (4)如图.作DH AB ⊥于H .连接,BD DA '.1213,tan 5DH AD A AH=== 12,5,954DH AH BH ∴===-=22410BD DH BH ∴+=DA BD BA ''≤-DA BD A B ''∴≤-9A B AB '==DA '∴的最小值是4109.6.(2021·四川·中江县凯江中学校九年级期中)在平面直角坐标系中.二次函数y =ax 2+bx+c 的图象与x 轴交于 A 、B 两点.与y 轴交于点C .过点D (53,24-)且顶点P 的坐标为(﹣1.3).(1)求二次函数的解析式.(2)如图1.若点M 是二次函数图象上的点.且在直线CD 的上方.连接MC .MD .求△MCD 面积的最大值及此时点M 的坐标.(3)如图2.设点Q 是抛物线对称轴上的一点.连接QC .将线段QC 绕点Q 逆时针旋转90°.点C 的对应点为F .连接PF 交抛物线于点E .求点E 的坐标.【答案】(1)222y x x -=-+.(2)△MCD 面积的最大值为12564.M 的坐标:547(,)416-(3)(2,2)E - 【详解】解:(1)二次函数y =ax 2+bx +c 的顶点P 的坐标为(﹣1.3).∴设二次函数的解析式为2(1)3y a x =++ 将点53(,)24D -代入.得 2351342a ⎛⎫=-++ ⎪⎝⎭解得1a =-∴二次函数的解析式为()213y x =-++222x x =--+∴222y x x -=-+ (2)如图.过点M 作MN y ∥轴.交直线DC 于点N .222y x x-=-+.令0x=.则2y=()0,2C∴53(,)24D-设直线CD的解析式为y kx b=+则53242k bb⎧-+=⎪⎨⎪=⎩解得122kb⎧=⎪⎨⎪=⎩∴直线CD的解析式为122y x=+点M是二次函数222y x x-=-+图象上的点.N是122y x=+上的点. 设()2,22M m m m--+.1(,2)2N m m+则12MCD C DS x x MN=⨯-⨯△2151(222)222m m m=⨯⨯--+--25542m m⎛⎫=-+⎪⎝⎭255125()4464m=-++当54m=-时.222m m--+=()213m-++25147(1)3341616=--++=-=547(,)416M∴-此时.△MCD 面积的最大值为12564 (3)设点(1,)Q n -.如图.当2n <时.过点Q 作HG x ∥轴.交y 轴于点G .过点F 作FH HG ⊥于点H .将线段QC 绕点Q 逆时针旋转90°.点C 的对应点为F . 90CQF ∴∠=︒.QC QF =.90CGQ FHQ FQC ∠=∠=∠=︒CQG FQH CQG QCG ∴∠+∠=∠+∠QCG FQH ∴∠=∠∴HQF GCQ △≌△,HQ CG FH QG ∴==(0,2)C ,(1,)Q n -1,2QG CG n ∴==-213,1HG n n FH ∴=-+=-=(3,1)F n n ∴-+(1,3)P -设直线PF 的解析式为y ax b =+.则31(3)a b n a n b =-+⎧⎨+=-+⎩解得14a b =⎧⎨=⎩∴直线PF 的解析式为4y x =+2422y x y x x =+⎧∴⎨=--+⎩解得1113x y =-⎧⎨=⎩.2222x y =-⎧⎨=⎩ (2,2)E ∴-②如图.当2n >时.过点C 作CK PQ ⊥于点K .过点F 作FL PQ ⊥于点L .同理可得.LQF KCQ △≌△2,211QK LF n LK n n ∴==-=-+=-(1,1),(3,1)L n F n n ∴-+--同理可得.直线PF 的解析式为4y x =+2422y x y x x =+⎧∴⎨=--+⎩解得1113x y =-⎧⎨=⎩.2222x y =-⎧⎨=⎩ (2,2)E ∴-③当2n =时.旋转后的C 点与F 点重合.此时过P 的点的直线由无数条.不能确定点E 的坐标.根据题意舍去.E .综上所述.(2,2)7.(2021·湖北新洲·九年级期中)问题背景:(1)如图1.等边△ABC.点P在△ABC左侧且∠APC=30°.将△APC绕点A顺时针旋转60°.画出图形.探究思考:(2)在(1)的条件下.求证:PB=AC.拓展创新:(3)如图2.等边△ABC.∠AMC=60°.AM=6.CM=4.直接写出BM的长.【答案】(1)见解析.(2)见解析.(3)192.【详解】(1)解:如图所示.(2)证明:如图2.连接PP'.由旋转得.AP'=AP.∠P AP'=60°.∠AP'B=∠APC=30°.∴△APP'是等边三角形.∴∠AP'P=60°.AP=AP'=PP'.∴∠PP'B=60°﹣30°=30°.∵AP'=PP'.∠PP'B=∠AP'B.BP'=BP'.∴△AP'B≌△PP'B(SAS).∴PB=AB.∵△ABC是等边三角形.∴AB=BC.∴PB=AC.(3)解:当点M在AC的右侧时.如图3.将△ACM绕点A顺时针旋转60°得到△ABG.连接CG.过点B作MH⊥BG.交BG的延长线于点H.设AG交BC于点T.由旋转得.AG=AM.∠MAG=60°.∠AGB=∠AMC=60°.BG=CM=4.∠ABG=∠ACM. ∵△ABC是等边三角形.∴∠ACB=∠ABC=60°.∴∠AGB=∠ACB=60°.∵∠BTG=∠ATC.∴△BTG∽△ATC.∴BT GT AT CT=.∵∠ATB=∠CTG.∴△ATB∽△CTG.∴∠BAT=∠BCG.∠AGC=∠ABC=60°.∵∠BAG+∠ABG+∠AGB=180°.∴∠BCG+∠ACM+∠ACB=180°.∴点G、C、M三点共线.∵AG=AM.∠MAG=60°.∴△AGM是等边三角形.∴GM=AM=6.∵∠AGM=∠AGB=60°.∴∠MGH=60°.∵MH⊥BG.∴GH=12GM=3.MH3=3∴BH=BG+GH=4+3=7.∴BM22227(33)BH MH+=+19当点M在AC的左侧时.如图4.将△ACM绕点A顺时针旋转60°得到△ABG.连接BM.同图3理可证.点G、B、M三点共线.GM=AM=6.BG=CM=4.∴BM=GM﹣BG=6﹣4=2.综上所述.BM的长为219或2.故答案为:219或2.8.(2021·重庆八中九年级期中)在△ABC中.CA=CB.CA⊥CB.点D是射线AC上一动点.连接BD.将BD绕点D逆时针旋转90°得ED.连接CE.(1)如图1.当点D在线段AC上时.若DE=10.BC=3.求△ABD的周长.(2)如图2.点D在AC延长线上.作点C关于AB边的对称点F.连接FE.FD.将FD绕点D 顺时针旋转90°得GD.连接AG.求证:AG=CE.(3)如图3.点D在AC延长线上运动过程中.延长EC交AG于H.当BH最大时.直接写出CD AB的值.【答案】(1)32102.(2)见解析.(3102+【详解】(1)解:如图1.在Rt△BCD中.BC=3.BD=DE=10.∴CD=1.∴AD=AC﹣CD=BC﹣AD=3﹣1=2.∵CA=CB.CA⊥CB.∴AB=22+=32.CA CB∴△ABD的周长是:3210++2.(2)证明:如图2.连接BG交EF于N.连接CF交AB于M.AB与EF交于点P.DF与BG交于O. ∵∠BDE=∠GDF=90°.∴∠BDE+∠ADF=∠GDF+∠ADF.即:∠BDG=∠FDE.∵DE=BD.DG=DF.∴△BDG≌△EDF(SAS).∴BG=EF.∴∠BGD=∠DFE.∵∠DOG=∠FOB.∴∠BNP=∠ONF=∠GDO=90°.∵∠BPN=∠MPF.∴∠CFE=∠ABG.∵CF=2CM=2AM=AB.∴△GAB≌△ECF(SAS).∴AG=CE.(3)如图3.由(2)得.△GAD≌△ECF.∴∠GAB=∠ECF.∴∠GAB﹣∠CAB=∠ECF﹣∠BCM. ∴∠CAB=∠BCM=45°.∴∠GAC=∠ECB.∵∠ACB=90°.∴∠ACH+∠ECB=90°.∴∠ACH+∠GAC=90°.∴∠AHC=90°.∴点H在以AC为直径的⊙I运动.如图4.当BH 过I 时.BH 最大.不妨设半径AI =CI =HI =1.∴BC =AC =2.∴IB 22IC BC +5作HT ⊥AC 于T .作EK ⊥AD 于K .∴∠HTI =∠ACB =90°.∴HT ∥BC .∴△HTI ∽△BCI . ∴HT BC =TI IC =HI IB . ∴2HT =1TI 5∴HT 25.TI 5∵∠BCD =∠BDE =∠K =90°.BD =DE .由“一线三等角”得.△BCD ≌△DKE .∴CD =EK .BC =DK =2.∵tan ∠KCE =tan ∠HCT . ∴EK CK =HT CT. ∴CD CD BC +25551+2555+∴CD BC 2555-2AB 2555-∴CD AB 102+ 9.(2021·河南汝阳·九年级期中)如图1.矩形AEGH 的顶点E 、H 在矩形ABCD 的边上.且AD :AB =AH :AE =1:2.(1)请直接写出HD :GC :EB 的结果(不必写计算过程).(2)如图2.矩形AEGH 绕点A 旋转一定角度.此时HD :GC :EB 的结果与(1)的结果有变化吗?如有变化.写出变化后结果并说明理由.若无变化.请说明理由.【答案】(1)HD :GC :EB =1:5:2.(2)无变化.见解析【详解】解:(1)如图1.作GF ⊥CD 于点F .连接AG .则∠DFG =∠GFC =90°.∵四边形AEGH 和四边形ABCD 都是矩形.∴∠D =∠AHG =∠EGH =90°.AB =DC .AE =HG .∴∠DHG =180°﹣∠AHG =90°. ∴四边形DFGH 是矩形.∴HG =DF .HD =GF .∠FGH =90°. ∴12AD AH AB AE ==. ∴G D DC A AH H =. ∴AH HD DF FC ++=AH HG . ∴AH GF HG FC ++=AH HG. 整理得GF AH=FC HG . ∵∠GFC =∠AHG .∴△GFC ∽△AHG .∴∠FGC =∠HAG .∴∠FGC +∠HGA =∠HAG +∠HGA =90°.∴∠FGC +∠HGA +∠FGH =180°.∴点A 、G 、C 在同一条直线上.∴点G 在矩形ABCD 的对角线AC 上.由GF AH =FC HG 得GF FC =AH HG =AH AE =12. ∴FC =2GF .∴GC =22(2)GF GF +=5GF .∴GF :GC :FC =GF :5GF :2GF =1:5:2.∵∠FGH +∠EGH =180°.∴点E 、G 、F 在同一条直线上.∵∠B =∠BCF =∠CFE =90°.∴FC =EB .∴HD :GC :EB =1:5:2.(2)无变化.理由:由(1)得:AH AD =AG AC =AE AB . ∴AH AG =AD AC .AG AE =AC AB. ∵AE =HG =2AH .∴AG =22(2)AH AH +=5AH .∴AH :AG :AE =AH :5AH :2AH =1:5:2.如图2.由旋转得.∠DAH =∠CAG =∠BAE .∴△DAH ∽△CAG ∽△BAE .∴HD GC =AH AG=15.GC EB =AG AE =52. ∴HD :GC :EB =1:5:2.∴HD :GC :EB 的结果无变化..10.(2021·湖北汉川·九年级期中)如图.若抛物线2y ax bx c =++(a 、b 、c 为常数.且0a ≠)与直线l 交于点()1,0A -.()2,3C -.与x 轴另一交点为()3,0B .(1)则抛物线的解析式为______.(2)若将直线AC 绕点A 逆时针旋转90°交抛物线于点P .①求点P 的坐标.此时AC AP的值为______. ②若M 是抛物线上一动点.过点M 作x 轴的垂线.垂足为N .连接BM .是否存在点M 使MN AC BN AP=若存在.请求出点M 的坐标.若不存在.请说明理由. 【答案】(1)223y x x =--.(2)①35.②存在.251,525⎛⎫-- ⎪⎝⎭.869,525⎛⎫- ⎪⎝⎭. 【详解】解:(1)将A 、B 、C 三个点的坐标代入可得:0930423a b c a b c a b C -+=⎧⎪++=⎨⎪++=-⎩. 解得:123a b c =⎧⎪=-⎨⎪=-⎩. ∴解析式为:223y x x =--.(2)①作点C 关于x 轴的对称点C '.交x 轴为点D .则()2,3C '.作直线AC '与抛物线交与点P .则点P 为所求.根据题意中可得:3CD =.3AD =. ∴45CAD ∠=︒.∴'90CAC ∠=︒.设直线AC '的解析式为y mx n =+.由题意得:032m n m n =-+⎧⎨=+⎩. 解得:11m n =⎧⎨=⎩. ∴直线AC '的解析式为1y x =+.将直线和抛物线的解析式联立得:2123y x y x x =+⎧⎨=--⎩. 解得1110x y =-⎧⎨=⎩(舍去)或2245x y =⎧⎨=⎩. ∴点P 的坐标为(4.5).根据图象可得:223332AC =+=225552AP +=∴此时35AC AP =. ②假设存在点M 使MN AC BN AP=. 设点()2,23M m m m --. ∵35AC AP =. ∴35MN BN =. ∴223335m m m --=-.解得25m=-或85m=-.3m=(舍去)当25m=-时.2512325m m--=-.∴251,525M⎛⎫--⎪⎝⎭.当85m=-.2692325m m--=.∴869,525M⎛⎫-⎪⎝⎭.∴存在符合条件的点M.M的坐标为251,525⎛⎫--⎪⎝⎭.869,525⎛⎫-⎪⎝⎭.。

2023年九年级数学中考专题:旋转综合压轴题(倍长中线法)

2023年九年级数学中考专题:旋转综合压轴题(倍长中线法)

2023年九年级数学中考专题:旋转综合压轴题(倍长中线法)1.(1)阅读理解:如图1,在ABC 中,若3AB =,5AC =.求BC 边上的中线AD 的取值范围,小聪同学是这样思考的:延长AD 至E ,使DE AD =,连接BE .利用全等将边AC 转化到BE ,在BAE 中利用三角形三边关系即可求出中线AD 的取值范围,在这个过程中小聪同学证三角形全等用到的判定方法是___________,中线AD 的取值范围是___________;(2)问题解决:如图2,在ABC 中,点D 是BC 的中点,DM DN ⊥.DM 交AB 于点M ,DN 交AC 于点N .求证:BM CN MN +>;(3)问题拓展:如图3,在ABC 中,点D 是BC 的中点,分别以AB AC ,为直角边向ABC 外作Rt ABM 和Rt ACN △,其中90BAM NAC ∠=∠=︒,AB AM =,AC AN =,连接MN ,请你探索AD 与MN 的数量与位置关系,并直接写出AD 与MN 的关系.2.(1)如图1,在ABC 中,AB =4,AC =6,AD 是BC 边上的中线,延长AD 到点E 使DE =AD ,连接CE ,把AB ,AC ,2AD 集中在ACE 中,利用三角形三边关系可得AD 的取值范围是 ;(2)如图2,在ABC 中,AD 是BC 边上的中线,点E ,F 分别在AB ,AC 上,且DE ⊥DF ,求证:BE +CF >EF ;(3)如图3,在四边形ABCD 中,∠A 为钝角,∠C 为锐角,∠B +∠ADC =180°,DA =DC ,点E ,F 分别在BC ,AB 上,且∠EDF =12∠ADC ,连接EF ,试探索线段AF ,EF ,CE 之间的数量关系,并加以证明.3.(1)阅读理解:如图①,在ABC 中,若85AB AC =,=,求BC 边上的中线AD 的取值范围.可以用如下方法:将ACD △绕着点D 逆时针旋转180得到EBD △,在ABE △中,利用三角形三边的关系即可判断中线AD 的取值范围是_______;(2)问题解决:如图②,在ABC 中,D 是BC 边上的中点,DE DF ⊥于点D ,DE 交AB 于点E ,DF 交AC 于点F ,连接EF ,求证:BE CF EF +>;(3)问题拓展:如图③,在四边形ABCD 中,180B D ∠+∠︒=,CB CD =,100BCD ∠︒=,以C 为顶点作一个50︒的角,角的两边分别交AB AD 、于E 、F 两点,连接EF ,探索线段BE DF EF ,,之间的数量关系,并说明理由.4.如图,在锐角ABC ∆中,60A ∠=︒,点D ,E 分别是边,AB AC 上一动点,连接BE 交直线CD 于点F .(1)如图1,若AB AC >,且,BD CE BCD CBE =∠=∠,求CFE ∠的度数;(2)如图2,若=AB AC ,且=BD AE ,在平面内将线段AC 绕点C 顺时针方向旋转60°得到线段CM ,连接MF ,点N 是MF 的中点,连接CN .在点D ,E 运动过程中,猜想线段,,BF CF CN 之间存在的数量关系,并证明你的猜想.5.某数学兴趣小组在一次活动中进行了探究试验活动,请你来加入.【探究与发现】如图1,延长△ABC 的边BC 到D ,使DC =BC ,过D 作DE ∥AB 交AC 延长线于点E ,求证:△ABC ≌△EDC .【理解与应用】如图2,已知在△ABC 中,点E 在边BC 上且∠CAE =∠B ,点E 是CD 的中点,若AD 平分∠BAE .(1)求证:AC =BD ;(2)若BD =3,AD =5,AE =x ,求x 的取值范围.6.如图1,在△ABC 中,若AB =10,BC =8,求AC 边上的中线BD 的取值范围.(1)小聪同学是这样思考的:延长BD 至E ,使DE =BD ,连接CE ,可证得△CED ≌△ABD .①请证明△CED ≌△ABD ;②中线BD 的取值范围是 .(2)问题拓展:如图2,在△ABC 中,点D 是AC 的中点,分别以AB ,BC 为直角边向△ABC 外作等腰直角三角形ABM 和等腰直角三角形BCN ,其中,AB =BM ,BC =BN ,∠ABM =∠NBC =∠90°,连接MN .请写出BD 与MN 的数量关系,并说明理由.7.已知ABC 中,(1)如图1,点E 为BC 的中点,连AE 并延长到点F ,使=FE EA ,则BF 与AC 的数量关系是________.(2)如图2,若AB AC =,点E 为边AC 一点,过点C 作BC 的垂线交BE 的延长线于点D ,连接AD ,若DAC ABD ∠=∠,求证:AE EC =.(3)如图3,点D 在ABC 内部,且满足AD BC =,BAD DCB ∠=∠,点M 在DC 的延长线上,连AM 交BD 的延长线于点N ,若点N 为AM 的中点,求证:DM AB =.8.在△ABM 中,AM ⊥BM ,垂足为M ,AM =BM ,点D 是线段AM 上一动点.(1)如图1,点C 是BM 延长线上一点,MD =MC ,连接AC ,若BD =17,求AC 的长;(2)如图2,在(1)的条件下,点E 是△ABM 外一点,EC =AC ,连接ED 并延长交BC 于点F ,且点F 是线段BC 的中点,求证:∠BDF =∠CEF .(3)如图3,当E 在BD 的延长上,且AE ⊥BE ,AE =EG 时,请你直接写出∠1、∠2、∠3之间的数量关系.(不用证明)9.已知:等腰Rt ABC 和等腰Rt ADE △中,AB AC =,AE AD =,90BAC EAD ∠=∠=︒.(1)如图1,延长DE 交BC 于点F ,若68BAE ∠=︒,则DFC ∠的度数为;(2)如图2,连接EC 、BD ,延长EA 交BD 于点M ,若90AEC ∠=︒,求证:点M 为BD 中点; (3)如图3,连接EC 、BD ,点G 是CE 的中点,连接AG ,交BD 于点H ,9AG =,5HG =,直接写出AEC △的面积.10.(1)阅读理解:如图1,在△ABC 中,若AB =10,BC =8.求AC 边上的中线BD 的取值范围,小聪同学是这样思考的:延长BD至E,使DE=BD,连接CE.利用全等将边AB转化到CE,在△BCE中利用三角形三边关系即可求出中线BD的取值范围,在这个过程中小聪同学证三角形全等用到的判定方法是;中线BD的取值范围是.(2)问题拓展:如图2,在△ABC中,点D是AC的中点,分别以AB,BC为直角边向△ABC外作等腰直角三角形ABM和等腰直角三角形BCN,其中∠ABM=∠NBC=90°,连接MN,探索BD与MN的关系,并说明理由.11.(1)方法学习:数学兴趣小组活动时,张老师提出了如下问题:如图1,在△ABC中,AB=8,AC=6,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法(如图2),①延长AD到M,使得DM=AD;②连接BM,通过三角形全等把AB、AC、2AD转化在△ABM中;③利用三角形的三边关系可得AM的取值范围为AB﹣BM<AM<AB+BM,从而得到AD的取值范围是;方法总结:上述方法我们称为“倍长中线法”.“倍长中线法”多用于构造全等三角形和证明边之间的关系.(2)请你写出图2中AC与BM的数量关系和位置关系,并加以证明.(3)深入思考:如图3,AD是△ABC的中线,AB=AE,AC=AF,∠BAE=∠CAF=90°,请直接利用(2)的结论,试判断线段AD与EF的数量关系,并加以证明.12.如图,点P是∠MON内部一点,过点P分别作P A∥ON交OM于点A,PB∥OM交ON于点B(P A≥PB),在线段OB上取一点C,连接AC,将△AOC沿直线AC翻折,得到△ADC,延长AD交PB于点E,延长CD 交PB于点F.(1)如图1,当四边形AOBP是正方形时,求证:DF=PF;(2)如图2,当C为OB中点时,试探究线段AE,AO,BE之间满足的数量关系,并说明理由;(3)如图3,在(2)的条件下,连接CE,∠ACE的平分线CH交AE于点H,设OA=a,BE=b,若∠CAO =∠CEB,求△CDH的面积(用含a,b的代数式表示).13.(1)基础应用:如图1,在△ABC中,AB=5,AC=7,AD是BC边上的中线,延长AD到点E使DE =AD,连接CE,把AB,AC,2AD利用旋转全等的方式集中在△ACE中,利用三角形三边关系可得AD的取值范围是;(2)推广应用:应用旋转全等的方式解决问题如图2,在△ABC中,AD是BC边上的中线,点E,F分别在AB,AC上,且DE⊥DF,求证:BE+CF>EF;∠BAD,试问线段(3)综合应用:如图3,在四边形ABCD中,AB=AD,∠B+∠ADC=180°且∠EAF=12EF、BE、FD具有怎样的数量关系,并证明.14.(1)阅读理解:如图1,在△ABC中,若AB=5,AC=8,求BC边上的中线AD的取值范围.小聪同学是这样思考的:延长AD至E,使DE=AD,连接BE.利用全等将边AC转化到BE,在△BAE中利用三角形三边关系即可求出中线AD的取值范围.在这个过程中小聪同学证三角形全等用到的判定方法是_________,中线AD的取值范围是_________;(2)问题解决:如图2,在△ABC中,点D是BC的中点,点M在AB边上,点N在AC边上,若DM⊥DN.求证:BM+CN>MN;(3)问题拓展:如图3,在△ABC中,点D是BC的中点,分别以AB,AC为直角边向△ABC外作Rt△ABM 和Rt△ACN,其中∠BAM=∠NAC=90°,AB=AM,AC=AN,连接MN,探索AD与MN的关系,并说明理由.15.如图,在等边△ABC 中,点D ,E 分别是AC ,AB 上的动点,且AE =CD ,BD 交CE 于点P .(1)如图1,求证:∠BPC =120°;(2)点M 是边BC 的中点,连接P A ,PM ,延长BP 到点F ,使PF =PC ,连接CF ,①如图2,若点A ,P ,M 三点共线,则AP 与PM 的数量关系是 .②如图3,若点A ,P ,M 三点不共线,问①中的结论还成立吗?若成立,请给出证明,若不成立,说明理由.16.(1)方法呈现:如图①:在ABC 中,若6AB =,4AC =,点D 为BC 边的中点,求BC 边上的中线AD 的取值范围. 解决此问题可以用如下方法:延长AD 到点E 使DE AD =,再连接BE ,可证ACD EBD △≌△,从而把AB 、AC ,2AD 集中在ABE 中,利用三角形三边的关系即可判断中线AD 的取值范围是_______________,这种解决问题的方法我们称为倍长中线法;(2)探究应用:如图②,在ABC 中,点D 是BC 的中点,DE DF ⊥于点D ,DE 交AB 于点E ,DF 交AC 于点F ,连接EF ,判断BE CF +与EF 的大小关系并证明;(3)问题拓展:如图③,在四边形ABCD 中,//AB CD ,AF 与DC 的延长线交于点F 、点E 是BC 的中点,若AE 是BAF ∠的角平分线.试探究线段AB ,AF ,CF 之间的数量关系,并加以证明.17.阅读下面的题目及分析过程,并按要求进行证明.已知:如图,点E 是BC 的中点,点A 在DE 上,且∠BAE =∠CDE .求证:AB =CD .分析:证明两条线段相等,常用的方法是应用全等三角形或等腰三角形的判定和性质,观察本题中要证明的两条线段,它们不在同一个三角形中,且它们分别所在的两个三角形也不全等,因此,要证AB =CD ,必须添加适当的辅助线,构造全等三角形或等腰三角形.(1)现给出如下两种添加辅助线的方法,请任意选出其中一种,对原题进行证明.①如图1,延长DE 到点F ,使EF =DE ,连接BF ;②如图2,分别过点B 、C 作BF ⊥DE ,CG ⊥DE ,垂足分别为点F ,G .(2)请你在图3中添加不同于上述的辅助线,并对原题进行证明.18.【阅读理解】课外兴趣小组活动时,老师提出了如下问题:如图1,ABC 中,若8AB =,6AC =,求BC 边上的中线AD 的取值范围.小明在组内经过合作交流,得到了如下的解决方法:延长AD 到点E ,使DE AD =,请根据小明的方法思考:(1)由已知和作图能得到ADC △≌EDB △的理由是______.(2)求得AD 的取值范围是______.【感悟】解题时,条件中若出现“中点”“中线”字样,可以考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.【问题解决】⊥,求证:(3)如图2,在ABC中,点D是BC的中点,点M在AB边上,点N在AC边上,若DM DNBM CN MN+>.。

几何难题精选-中考压轴题-带答案和详细解析

几何难题精选-中考压轴题-带答案和详细解析

几何难题精选解答题(共30小题)1.(2015•)如图1,在Rt△ABC中,∠B=90°,BC=2AB=8,点D、E分别是边BC、AC的中点,连接DE,将△EDC绕点C按顺时针方向旋转,记旋转角为α.(1)问题发现①当α=0°时,=;②当α=180°时,=.(2)拓展探究试判断:当0°≤α<360°时,的大小有无变化?请仅就图2的情形给出证明.(3)问题解决当△EDC旋转至A,D,E三点共线时,直接写出线段BD的长.2.(2015•)如图1,在△ABC中,∠ACB=90°,AC=BC,∠EAC=90°,点M为射线AE上任意一点(不与A重合),连接CM,将线段CM绕点C按顺时针方向旋转90°得到线段,直线NB分别交直线CM、射线AE于点F、D.(1)直接写出∠NDE的度数;(2)如图2、图3,当∠EAC为锐角或钝角时,其他条件不变,(1)中的结论是否发生变化?如果不变,选取其中一种情况加以证明;如果变化,请说明理由;(3)如图4,若∠EAC=15°,∠ACM=60°,直线CM与AB交于G,BD=,其他条件不变,求线段AM的长.3.(2015•)已知直线m∥n,点C是直线m上一点,点D是直线n上一点,CD与直线m、n不垂直,点P为线段CD的中点.(1)操作发现:直线l⊥m,l⊥n,垂足分别为A、B,当点A与点C重合时(如图①所示),连接PB,请直接写出线段PA与PB的数量关系:.(2)猜想证明:在图①的情况下,把直线l向上平移到如图②的位置,试问(1)中的PA 与PB的关系式是否仍然成立?若成立,请证明;若不成立,请说明理由.(3)延伸探究:在图②的情况下,把直线l绕点A旋转,使得∠APB=90°(如图③所示),若两平行线m、n之间的距离为2k.求证:PA•PB=k•AB.4.(2015•)在△ABC中,AB=AC,∠A=60°,点D是线段BC的中点,∠EDF=120°,DE与线段AB相交于点E.DF与线段AC(或AC的延长线)相交于点F.(1)如图1,若DF⊥AC,垂足为F,AB=4,求BE的长;(2)如图2,将(1)中的∠EDF绕点D顺时针旋转一定的角度,DF仍与线段AC相交于点F.求证:BE+CF=AB;(3)如图3,将(2)中的∠EDF继续绕点D顺时针旋转一定的角度,使DF与线段AC的延长线相交于点F,作DN⊥AC于点N,若DN⊥AC于点N,若DN=FN,求证:BE+CF=(BE ﹣CF).5.(2015•)【问题提出】如图①,已知△ABC是等腰三角形,点E在线段AB上,点D在直线BC上,且ED=EC,将△BCE绕点C顺时针旋转60°至△ACF连接EF试证明:AB=DB+AF【类比探究】(1)如图②,如果点E在线段AB的延长线上,其他条件不变,线段AB,DB,AF之间又有怎样的数量关系?请说明理由(2)如果点E在线段BA的延长线上,其他条件不变,请在图③的基础上将图形补充完整,并写出AB,DB,AF之间的数量关系,不必说明理由.6.(2015•)在Rt△ACB和Rt△AEF中,∠ACB=∠AEF=90°,若点P是BF的中点,连接PC,PE.特殊发现:如图1,若点E,F分别落在边AB,AC上,则结论:PC=PE成立(不要求证明).问题探究:把图1中的△AEF绕着点A顺时针旋转.(1)如图2,若点E落在边CA的延长线上,则上述结论是否成立?若成立,请给予证明;若不成立,请说明理由;(2)如图3,若点F落在边AB上,则上述结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由;(3)记=k,当k为何值时,△CPE总是等边三角形?(请直接写出k的值,不必说明理由)7.(2015•区模拟)如图,正方形ABCO的边OA、OC在坐标轴上,点B坐标为(3,3).将正方形ABCO绕点A顺时针旋转角度α(0°<α<90°),得到正方形ADEF,ED交线段OC 于点G,ED的延长线交线段BC于点P,连AP、AG.(1)求证:△AOG≌△ADG;(2)求∠PAG的度数;并判断线段OG、PG、BP之间的数量关系,说明理由;(3)当∠1=∠2时,求直线PE的解析式;(4)在(3)的条件下,直线PE上是否存在点M,使以M、A、G为顶点的三角形是等腰三角形?若存在,请直接写出M点坐标;若不存在,请说明理由.8.(2015•校级一模)已知,四边形ABCD是正方形,点P在直线BC上,点G在直线AD 上(P、G不与正方形顶点重合,且在CD的同侧),PD=PG,DF⊥PG于点H,DF交直线AB 于点F,将线段PG绕点P逆时针旋转90°得到线段PE,连结EF.(1)如图1,当点P与点G分别在线段BC与线段AD上时,若PC=1,计算出DG的长;(2)如图1,当点P与点G分别在线段BC与线段AD上时,证明:四边形DFEP为菱形;(3)如图2,当点P与点G分别在线段BC与线段AD的延长线上时,(2)的结论:四边形DFEP为菱形是否依然成立?若成立,请给出证明;若不成立,请说明理由.9.(2015•房山区二模)在△ABC中,AB=BC=2,∠ABC=90°,BD为斜边AC上的中线,将△ABD绕点D顺时针旋转α(0°<α<180°)得到△EFD,其中点A的对应点为点E,点B的对应点为点F.BE与FC相交于点H.(1)如图1,直接写出BE与FC的数量关系:;(2)如图2,M、N分别为EF、BC的中点.求证:MN=;(3)连接BF,CE,如图3,直接写出在此旋转过程中,线段BF、CE与AC之间的数量关系:.10.(2015•校级模拟)图1是边长分别为4和2的两个等边三角形纸片ABC和ODE叠放在一起(C与O重合).(1)操作:固定△ABC,将△0DE绕点C顺时针旋转30°后得到△ODE,连结AD、BE,CE 的延长线交AB于F(图2);探究:在图2中,线段BE与AD之间有怎样的大小关系?试证明你的结论.(2)在(1)的条件下将的△ODE,在线段CF上沿着CF方向以每秒1个单位的速度平移,平移后的△CDE设为△PQR,当点P与点F重合时停止运动(图3)探究:设△PQR移动的时间为x秒,△PQR与△ABC重叠部分的面积为y,求y与x之间的函数解析式,并写出函数自变量x的取值围.(3)将图1中△0DE固定,把△ABC沿着OE方向平移,使顶点C落在OE的中点G处,设为△ABG,然后将△ABG绕点G顺时针旋转,边BG交边DE于点M,边AG交边DO于点N,设∠BGE=α(30°<α<90°);(图4)探究:在图4中,线段ON•EM的值是否随α的变化而变化?如果没有变化,请你求出ON•EM 的值,如果有变化,请你说明理由.11.(2015•武义县模拟)(1)将矩形OABC放在平面直角坐标系中,顶点O为原点,顶点C、A分别在x轴和y轴上,OA=8,OC=10,点E为OA边上一点,连结CE,将△EOC沿CE 折叠.①如图1,当点O落在AB边上的点D处时,求点E的坐标;②如图2,当点O落在矩形OABC部的点D处时,过点E作EG∥x轴交CD于点H,交BC于点G,设H(m,n),求m与n之间的关系式;(2)如图3,将矩形OABC变为边长为10的正方形,点E为y轴上一动点,将△EOC沿CE 折叠.点O落在点D处,延长CD交直线AB于点T,若=,求AT的长.12.(2015•校级模拟)如图1,在菱形ABCD中,AC=6,BD=6,AC,BD相交于点O.(1)求边AB的长;(2)如图2,将一个足够大的直角三角板60°角的顶点放在菱形ABCD的顶点A处,绕点A 左右旋转,其中三角板60°角的两边分别于边BC,CD相交于E,F,连接EF与AC相交于点G.①判断△AEF是哪一种特殊三角形,并说明理由;②旋转过程中是否存在线段EF最短,若存在,求出最小值,若不存在,请说明理由.13.(2015春•校级期中)如图,正方形OEFG绕着边长为30的正方形ABCD的对角线的交点O旋转,边OE、OG分别交边AD、AB于点M、N.(1)求证:OM=ON;(2)设正方形OEFG的对角线OF与边AB相交于点P,连结PM.若PM=13,试求AM的长;(3)连接MN,求△AMN周长的最小值,并指出此时线段MN与线段BD的关系.14.(2014•XX)在平面直角坐标系中,O为原点,点A(﹣2,0),点B(0,2),点E,点F分别为OA,OB的中点.若正方形OEDF绕点O顺时针旋转,得正方形OE′D′F′,记旋转角为α.(Ⅰ)如图①,当α=90°时,求AE′,BF′的长;(Ⅱ)如图②,当α=135°时,求证AE′=BF′,且AE′⊥BF′;(Ⅲ)若直线AE′与直线BF′相交于点P,求点P的纵坐标的最大值(直接写出结果即可).15.(2014春•青山区期末)已知正方形ABCD和正方形EBGF共顶点B,连AF,H为AF的中点,连EH,正方形EBGF绕点B旋转.(1)如图1,当F点落在BC上时,求证:EH=FC;(2)如图2,当点E落在BC上时,连BH,若AB=5,BG=2,求BH的长;(3)当正方形EBGF绕点B旋转到如图3的位置时,求的值.16.(2013•)阅读材料如图①,△ABC与△DEF都是等腰直角三角形,∠ACB=∠EDF=90°,且点D在AB边上,AB、EF的中点均为O,连结BF、CD、CO,显然点C、F、O在同一条直线上,可以证明△BOF≌△COD,则BF=CD.解决问题(1)将图①中的Rt△DEF绕点O旋转得到图②,猜想此时线段BF与CD的数量关系,并证明你的结论;(2)如图③,若△ABC与△DEF都是等边三角形,AB、EF的中点均为O,上述(1)中的结论仍然成立吗?如果成立,请说明理由;如不成立,请求出BF与CD之间的数量关系;(3)如图④,若△ABC与△DEF都是等腰三角形,AB、EF的中点均为0,且顶角∠ACB=∠EDF=α,请直接写出的值(用含α的式子表示出来)17.(2013•)用如图①,②所示的两个直角三角形(部分边长及角的度数在图中已标出),完成以下两个探究问题:探究一:将以上两个三角形如图③拼接(BC和ED重合),在BC边上有一动点P.(1)当点P运动到∠CFB的角平分线上时,连接AP,求线段AP的长;(2)当点P在运动的过程中出现PA=FC时,求∠PAB的度数.探究二:如图④,将△DEF的顶点D放在△ABC的BC边上的中点处,并以点D为旋转中心旋转△DEF,使△DEF的两直角边与△ABC的两直角边分别交于M、N两点,连接MN.在旋转△DEF的过程中,△AMN的周长是否存在有最小值?若存在,求出它的最小值;若不存在,请说明理由.18.(2015•)如图,点P是⊙O外一点,PA切⊙O于点A,AB是⊙O的直径,连接OP,过点B作BC∥OP交⊙O于点C,连接AC交OP于点D.(1)求证:PC是⊙O的切线;(2)若PD=,AC=8,求图中阴影部分的面积;(3)在(2)的条件下,若点E是的中点,连接CE,求CE的长.19.(2015•永州)问题探究:(一)新知学习:圆接四边形的判断定理:如果四边形对角互补,那么这个四边形接于圆(即如果四边形EFGH 的对角互补,那么四边形EFGH的四个顶点E、F、G、H都在同个圆上).(二)问题解决:已知⊙O的半径为2,AB,CD是⊙O的直径.P是上任意一点,过点P分别作AB,CD的垂线,垂足分别为N,M.(1)若直径AB⊥CD,对于上任意一点P(不与B、C重合)(如图一),证明四边形PMON接于圆,并求此圆直径的长;(2)若直径AB⊥CD,在点P(不与B、C重合)从B运动到C的过程中,证明MN的长为定值,并求其定值;(3)若直径AB与CD相交成120°角.①当点P运动到的中点P1时(如图二),求MN的长;②当点P(不与B、C重合)从B运动到C的过程中(如图三),证明MN的长为定值.(4)试问当直径AB与CD相交成多少度角时,MN的长取最大值,并写出其最大值.20.(2015•)如图1,△ABC和△AED都是等腰直角三角形,∠BAC=∠EAD=90°,点B在线段AE上,点C在线段AD上.(1)请直接写出线段BE与线段CD的关系:;(2)如图2,将图1中的△ABC绕点A顺时针旋转角α(0<α<360°),①(1)中的结论是否成立?若成立,请利用图2证明;若不成立,请说明理由;②当AC=ED时,探究在△ABC旋转的过程中,是否存在这样的角α,使以A、B、C、D四点为顶点的四边形是平行四边形?若存在,请直接写出角α的度数;若不存在,请说明理由.21.(2015•)问题:如图(1),在Rt△ACB中,∠ACB=90°,AC=CB,∠DCE=45°,试探究AD、DE、EB满足的等量关系.[探究发现]小聪同学利用图形变换,将△CAD绕点C逆时针旋转90°得到△CBH,连接EH,由已知条件易得∠EBH=90°,∠ECH=∠ECB+∠BCH=∠ECB+∠ACD=45°.根据“边角边”,可证△CEH≌,得EH=ED.在Rt△HBE中,由定理,可得BH2+EB2=EH2,由BH=AD,可得AD、DE、EB之间的等量关系是.[实践运用](1)如图(2),在正方形ABCD中,△AEF的顶点E、F分别在BC、CD边上,高AG与正方形的边长相等,求∠EAF的度数;(2)在(1)条件下,连接BD,分别交AE、AF于点M、N,若BE=2,DF=3,BM=2,运用小聪同学探究的结论,求正方形的边长及MN的长.22.(2015•)在△ABC中,AB=AC=5,cos∠ABC=,将△ABC绕点C顺时针旋转,得到△A1B1C.(1)如图①,当点B1在线段BA延长线上时.①求证:BB1∥CA1;②求△AB1C的面积;(2)如图②,点E是BC边的中点,点F为线段AB上的动点,在△ABC绕点C顺时针旋转过程中,点F的对应点是F1,求线段EF1长度的最大值与最小值的差.23.(2015•)两个三角板ABC,DEF,按如图所示的位置摆放,点B与点D重合,边AB与边DE在同一条直线上(假设图形中所有的点,线都在同一平面).其中,∠C=∠DEF=90°,∠ABC=∠F=30°,AC=DE=6cm.现固定三角板DEF,将三角板ABC沿射线DE方向平移,当点C落在边EF上时停止运动.设三角板平移的距离为x(cm),两个三角板重叠部分的面积为y(cm2).(1)当点C落在边EF上时,x=cm;(2)求y关于x的函数解析式,并写出自变量x的取值围;(3)设边BC的中点为点M,边DF的中点为点N.直接写出在三角板平移过程中,点M与点N之间距离的最小值.24.(2015•)在Rt△ABC中,∠A=90°,AC=AB=4,D,E分别是边AB,AC的中点,若等腰Rt△ADE绕点A逆时针旋转,得到等腰Rt△AD1E1,设旋转角为α(0<α≤180°),记直线BD1与CE1的交点为P.(1)如图1,当α=90°时,线段BD1的长等于,线段CE1的长等于;(直接填写结果)(2)如图2,当α=135°时,求证:BD1=CE1,且BD1⊥CE1;(3)求点P到AB所在直线的距离的最大值.(直接写出结果)25.(2015•)如图,四边形ABCD是边长为2,一个锐角等于60°的菱形纸片,小芳同学将一个三角形纸片的一个顶点与该菱形顶点D重合,按顺时针方向旋转三角形纸片,使它的两边分别交CB、BA(或它们的延长线)于点E、F,∠EDF=60°,当CE=AF时,如图1小芳同学得出的结论是DE=DF.(1)继续旋转三角形纸片,当CE≠AF时,如图2小芳的结论是否成立?若成立,加以证明;若不成立,请说明理由;(2)再次旋转三角形纸片,当点E、F分别在CB、BA的延长线上时,如图3请直接写出DE 与DF的数量关系;(3)连EF,若△DEF的面积为y,CE=x,求y与x的关系式,并指出当x为何值时,y有最小值,最小值是多少?26.(2015•)如图,菱形ABCD中,点P是CD的中点,∠BCD=60°,射线AP交BC的延长线于点E,射线BP交DE于点K,点O是线段BK的中点.(1)求证:△ADP≌△ECP;(2)若BP=n•PK,试求出n的值;(3)作BM丄AE于点M,作KN丄AE于点N,连结MO、NO,如图2所示,请证明△MON 是等腰三角形,并直接写出∠MON的度数.27.(2015•)在正方形ABCD中,对角线AC与BD交于点O;在Rt△PMN中,∠MPN=90°.(1)如图1,若点P与点O重合且PM⊥AD、PN⊥AB,分别交AD、AB于点E、F,请直接写出PE与PF的数量关系;(2)将图1中的Rt△PMN绕点O顺时针旋转角度α(0°<α<45°).①如图2,在旋转过程中(1)中的结论依然成立吗?若成立,请证明;若不成立,请说明理由;②如图2,在旋转过程中,当∠DOM=15°时,连接EF,若正方形的边长为2,请直接写出线段EF的长;③如图3,旋转后,若Rt△PMN的顶点P在线段OB上移动(不与点O、B重合),当BD=3BP 时,猜想此时PE与PF的数量关系,并给出证明;当BD=m•BP时,请直接写出PE与PF的数量关系.28.(2015•)已知AC,EC分别是四边形ABCD和EFDC的对角线,点E在△ABC,∠CAE+∠CBE=90°.(1)如图①,当四边形ABCD和EFCG均为正方形时,连接BF.(i)求证:△CAE∽△CBF;(ii)若BE=1,AE=2,求CE的长;(2)如图②,当四边形ABCD和EFCG均为矩形,且==k时,若BE=1,AE=2,CE=3,求k的值;(3)如图③,当四边形ABCD和EFCG均为菱形,且∠DAB=∠GEF=45°时,设BE=m,AE=n,CE=p,试探究m,n,p三者之间满足的等量关系.(直接写出结果,不必写出解答过程)29.(2015•)如图①,∠QPN的顶点P在正方形ABCD两条对角线的交点处,∠QPN=α,将∠QPN绕点P旋转,旋转过程中∠QPN的两边分别与正方形ABCD的边AD和CD交于点E 和点F(点F与点C,D不重合).(1)如图①,当α=90°时,DE,DF,AD之间满足的数量关系是;(2)如图②,将图①中的正方形ABCD改为∠ADC=120°的菱形,其他条件不变,当α=60°时,(1)中的结论变为DE+DF=AD,请给出证明;(3)在(2)的条件下,若旋转过程中∠QPN的边PQ与射线AD交于点E,其他条件不变,探究在整个运动变化过程中,DE,DF,AD之间满足的数量关系,直接写出结论,不用加以证明.30.(2014•)如图1,矩形ABCD中,AB=4,AD=3,把矩形沿直线AC折叠,使点B落在点E处,AE交CD于点F,连接DE.(1)求证:△DEC≌△EDA;(2)求DF的值;(3)如图2,若P为线段EC上一动点,过点P作△AEC的接矩形,使其顶点Q落在线段AE上,定点M、N落在线段AC上,当线段PE的长为何值时,矩形PQMN的面积最大?并求出其最大值.几何难题精选(1) 旋转圆四边形参考答案与试题解析一.解答题(共30小题)1.(2015•)如图1,在Rt△ABC中,∠B=90°,BC=2AB=8,点D、E分别是边BC、AC的中点,连接DE,将△EDC绕点C按顺时针方向旋转,记旋转角为α.(1)问题发现①当α=0°时,=;②当α=180°时,=.(2)拓展探究试判断:当0°≤α<360°时,的大小有无变化?请仅就图2的情形给出证明.(3)问题解决当△EDC旋转至A,D,E三点共线时,直接写出线段BD的长.【考点】几何变换综合题.【专题】压轴题.【分析】(1)①当α=0°时,在Rt△ABC中,由勾股定理,求出AC的值是多少;然后根据点D、E分别是边BC、AC的中点,分别求出AE、BD的大小,即可求出的值是多少.②α=180°时,可得AB∥DE,然后根据,求出的值是多少即可.(2)首先判断出∠ECA=∠DCB,再根据,判断出△ECA∽△DCB,即可求出的值是多少,进而判断出的大小没有变化即可.(3)根据题意,分两种情况:①点A,D,E所在的直线和BC平行时;②点A,D,E所在的直线和BC相交时;然后分类讨论,求出线段BD的长各是多少即可.【解答】解:(1)①当α=0°时,∵Rt△ABC中,∠B=90°,∴AC=,∵点D、E分别是边BC、AC的中点,∴,∴.②如图1,,当α=180°时,可得AB∥DE,∵,∴=.故答案为:.(2)如图2,,当0°≤α<360°时,的大小没有变化,∵∠ECD=∠ACB,∴∠ECA=∠DCB,又∵,∴△ECA∽△DCB,∴.(3)①如图3,,∵AC=4,CD=4,CD⊥AD,∴AD==,∵AD=BC,AB=DC,∠B=90°,∴四边形ABCD是矩形,∴.②如图4,连接BD,过点D作AC的垂线交AC于点Q,过点B作AC的垂线交AC于点P,,∵AC=4,CD=4,CD⊥AD,∴AD==,∵点D、E分别是边BC、AC的中点,∴DE==2,∴AE=AD﹣DE=8﹣2=6,由(2),可得,∴BD==.综上所述,BD的长为4或.【点评】(1)此题主要考查了几何变换综合题,考查了分析推理能力,考查了分类讨论思想的应用,考查了数形结合思想的应用,要熟练掌握.(2)此题还考查了相似三角形、全等三角形的判定和性质的应用,要熟练掌握.(3)此题还考查了线段长度的求法,以及矩形的判定和性质的应用,要熟练掌握.2.(2015•)如图1,在△ABC中,∠ACB=90°,AC=BC,∠EAC=90°,点M为射线AE上任意一点(不与A重合),连接CM,将线段CM绕点C按顺时针方向旋转90°得到线段,直线NB分别交直线CM、射线AE于点F、D.(1)直接写出∠NDE的度数;(2)如图2、图3,当∠EAC为锐角或钝角时,其他条件不变,(1)中的结论是否发生变化?如果不变,选取其中一种情况加以证明;如果变化,请说明理由;(3)如图4,若∠EAC=15°,∠ACM=60°,直线CM与AB交于G,BD=,其他条件不变,求线段AM的长.【考点】几何变换综合题.【专题】压轴题.【分析】(1)根据题意证明△MAC≌△NBC即可;(2)与(1)的证明方法相似,证明△MAC≌△NBC即可;(3)作GK⊥BC于K,证明AM=AG,根据△MAC≌△NBC,得到∠BDA=90°,根据直角三角形的性质和已知条件求出AG的长,得到答案.【解答】解:(1)∵∠ACB=90°,∠M=90°,∴∠ACM=∠B,在△MAC和△NBC中,,∴△MAC≌△NBC,∴∠NBC=∠MAC=90°,又∵∠ACB=90°,∠EAC=90°,∴∠NDE=90°;(2)不变,在△MAC≌△NBC中,,∴△MAC≌△NBC,∴∠N=∠AMC,又∵∠MFD=∠NFC,∠MDF=∠F=90°,即∠NDE=90°;(3)作GK⊥BC于K,∵∠EAC=15°,∴∠BAD=30°,∵∠ACM=60°,∴∠GCB=30°,∴∠AGC=∠ABC+∠GCB=75°,∠AMG=75°,∴AM=AG,∵△MAC≌△NBC,∴∠MAC=∠NBC,∴∠BDA=∠BCA=90°,∵BD=,∴AB=+,AC=BC=+1,设BK=a,则GK=a,CK=a,∴a+a=+1,∴a=1,∴KB=KG=1,BG=,AG=,∴AM=.【点评】本题考查的是矩形的判定和性质以及三角形全等的判定和性质,正确作出辅助线、利用方程的思想是解题的关键,注意旋转的性质的灵活运用.3.(2015•)已知直线m∥n,点C是直线m上一点,点D是直线n上一点,CD与直线m、n不垂直,点P为线段CD的中点.(1)操作发现:直线l⊥m,l⊥n,垂足分别为A、B,当点A与点C重合时(如图①所示),连接PB,请直接写出线段PA与PB的数量关系:PA=PB .(2)猜想证明:在图①的情况下,把直线l向上平移到如图②的位置,试问(1)中的PA 与PB的关系式是否仍然成立?若成立,请证明;若不成立,请说明理由.(3)延伸探究:在图②的情况下,把直线l绕点A旋转,使得∠APB=90°(如图③所示),若两平行线m、n之间的距离为2k.求证:PA•PB=k•AB.【考点】几何变换综合题.【专题】压轴题.【分析】(1)根据三角形CBD是直角三角形,而且点P为线段CD的中点,应用直角三角形的性质,可得PA=PB,据此解答即可.(2)首先过C作CE⊥n于点E,连接PE,然后分别判断出PC=PE、∠PCA=∠PEB、AC=BE;然后根据全等三角形判定的方法,判断出△PAC∽△PBE,即可判断出PA=PB仍然成立.(3)首先延长AP交直线n于点F,作AE⊥BD于点E,然后根据相似三角形判定的方法,判断出△AEF∽△BPF,即可判断出AF•BP=AE•BF,再个AF=2PA,AE=2k,BF=AB,可得2PA•PB=2k.AB,所以PA•PB=k•AB,据此解答即可.【解答】解:(1)∵l⊥n,∴BC⊥BD,∴三角形CBD是直角三角形,又∵点P为线段CD的中点,∴PA=PB.(2)把直线l向上平移到如图②的位置,PA=PB仍然成立,理由如下:如图②,过C作CE⊥n于点E,连接PE,,∵三角形CED是直角三角形,点P为线段CD的中点,∴PD=PE,又∵点P为线段CD的中点,∴PC=PD,∴PC=PE;∵PD=PE,∴∠CDE=∠PEB,∵直线m∥n,∴∠CDE=∠PCA,∴∠PCA=∠PEB,又∵直线l⊥m,l⊥n,CE⊥m,CE⊥n,∴l∥CE,∴AC=BE,在△PAC和△PBE中,∴△PAC≌△PBE,∴PA=PB.(3)如图③,延长AP交直线n于点F,作AE⊥BD于点E,,∵直线m∥n,∴,∴AP=PF,∵∠APB=90°,∴BP⊥AF,又∵AP=PF,∴BF=AB;在△AEF和△BPF中,∴△AEF∽△BPF,∴,∴AF•BP=AE•BF,∵AF=2PA,AE=2k,BF=AB,∴2PA•PB=2k.AB,∴PA•PB=k•AB.【点评】(1)此题主要考查了几何变换综合题,考查了分析推理能力,考查了分类讨论思想的应用,考查了数形结合思想的应用,考查了从图象中获取信息,并能利用获取的信息解答相应的问题的能力.(2)此题还考查了直角三角形的性质和应用,要熟练掌握.(3)此题还考查了全等三角形的判定和性质的应用,以及相似三角形的判定和性质的应用,要熟练掌握.4.(2015•)在△ABC中,AB=AC,∠A=60°,点D是线段BC的中点,∠EDF=120°,DE与线段AB相交于点E.DF与线段AC(或AC的延长线)相交于点F.(1)如图1,若DF⊥AC,垂足为F,AB=4,求BE的长;(2)如图2,将(1)中的∠EDF绕点D顺时针旋转一定的角度,DF仍与线段AC相交于点F.求证:BE+CF=AB;(3)如图3,将(2)中的∠EDF继续绕点D顺时针旋转一定的角度,使DF与线段AC的延长线相交于点F,作DN⊥AC于点N,若DN⊥AC于点N,若DN=FN,求证:BE+CF=(BE ﹣CF).【考点】几何变换综合题;全等三角形的判定与性质;等边三角形的判定与性质;锐角三角函数的定义.【专题】压轴题.【分析】(1)如图1,易求得∠B=60°,∠BED=90°,BD=2,然后运用三角函数的定义就可求出BE的值;(2)过点D作DM⊥AB于M,作DN⊥AC于N,如图2,易证△MBD≌△NCD,则有BM=,DM=DN,进而可证到△EMD≌△FND,则有EM=FN,就可得到BE+CF=BM+EM+CF=BM+FN+CF=BM+=2BM=2BD×cos60°=BD=BC=AB;(3)过点D作DM⊥AB于M,如图3.同(1)可得:∠B=∠ACD=60°,同(2)可得:BM=,DM=DN,EM=FN.由DN=FN可得DM=DN=FN=EM,从而可得BE+CF=BM+EM+CF=+DM+CF=NF+DM=2DM,BE﹣CF=BM+EM﹣CF=BM+NF﹣CF=BM+NC=2BM.然后在Rt△BMD中,运用三角函数就可得到DM=BM,即BE+CF=(BE﹣CF).【解答】解:(1)如图1,∵AB=AC,∠A=60°,∴△ABC是等边三角形,∴∠B=∠C=60°,BC=AC=AB=4.∵点D是线段BC的中点,∴BD=DC=BC=2.∵DF⊥AC,即∠AFD=90°,∴∠AED=360°﹣60°﹣90°﹣120°=90°,∴∠BED=90°,∴BE=BD×cos∠B=2×cos60°=2×=1;(2)过点D作DM⊥AB于M,作DN⊥AC于N,如图2,则有∠AMD=∠BMD=∠AND=∠D=90°.∵∠A=60°,∴∠MDN=360°﹣60°﹣90°﹣90°=120°.∵∠EDF=120°,∴∠MDE=∠NDF.在△MBD和△NCD中,,∴△MBD≌△NCD,∴BM=,DM=DN.在△EMD和△FND中,,∴△EMD≌△FND,∴EM=FN,∴BE+CF=BM+EM+CF=BM+FN+CF=BM+=2BM=2BD×cos60°=BD=BC=AB;(3)过点D作DM⊥AB于M,如图3.同(1)可得:∠B=∠ACD=60°.同(2)可得:BM=,DM=DN,EM=FN.∵DN=FN,∴DM=DN=FN=EM,∴BE+CF=BM+EM+CF=+DM+CF=NF+DM=2DM,BE﹣CF=BM+EM﹣CF=BM+NF﹣CF=BM+NC=2BM.在Rt△BMD中,DM=BM•tanB=BM,∴BE+CF=(BE﹣CF).【点评】本题主要考查了等边三角形的判定与性质、四边形的角和定理、全等三角形的判定与性质、三角函数的定义、特殊角的三角函数值等知识,通过证明三角形全等得到BM=,DM=DN,EM=FN是解决本题的关键.5.(2015•)【问题提出】如图①,已知△ABC是等腰三角形,点E在线段AB上,点D在直线BC上,且ED=EC,将△BCE绕点C顺时针旋转60°至△ACF连接EF试证明:AB=DB+AF【类比探究】(1)如图②,如果点E在线段AB的延长线上,其他条件不变,线段AB,DB,AF之间又有怎样的数量关系?请说明理由(2)如果点E在线段BA的延长线上,其他条件不变,请在图③的基础上将图形补充完整,并写出AB,DB,AF之间的数量关系,不必说明理由.【考点】几何变换综合题.【专题】压轴题.【分析】首先判断出△CEF是等边三角形,即可判断出EF=EC,再根据ED=EC,可得ED=EF,∠CAF=∠BAC=60°,所以∠EAF=∠BAC+∠CAF=120°,∠DBE=120°,∠EAF=∠DBE;然后根据全等三角形判定的方法,判断出△EDB≌△FEA,即可判断出BD=AE,AB=AE+BF,所以AB=DB+AF.(1)首先判断出△CEF是等边三角形,即可判断出EF=EC,再根据ED=EC,可得ED=EF,∠CAF=∠BAC=60°,所以∠EFC=∠FGC+∠FCG,∠BAC=∠FGC+∠FEA,∠FCG=∠FEA,再根据∠FCG=∠EAD,∠D=∠EAD,可得∠D=∠FEA;然后根据全等三角形判定的方法,判断出△EDB ≌△FEA,即可判断出BD=AE,EB=AF,进而判断出AB=BD﹣AF即可.(2)首先根据点E在线段BA的延长线上,在图③的基础上将图形补充完整,然后判断出△CEF是等边三角形,即可判断出EF=EC,再根据ED=EC,可得ED=EF,∠CAF=∠BAC=60°,再判断出∠DBE=∠EAF,∠BDE=∠AEF;最后根据全等三角形判定的方法,判断出△EDB≌△FEA,即可判断出BD=AE,EB=AF,进而判断出AF=AB+BD即可.【解答】证明:ED=EC=CF,∵△BCE绕点C顺时针旋转60°至△ACF,∴∠ECF=60°,∠BCA=60°,BE=AF,EC=CF,∴△CEF是等边三角形,∴EF=EC,∠CEF=60°,又∵ED=EC,∴ED=EF,∵△ABC是等腰三角形,∠BCA=60°,∴△ABC是等边三角形,∴∠CAF=∠CBA=60°,∴∠EAF=∠BAC+∠CAF=120°,∠DBE=120°,∠EAF=∠DBE,∵∠CAF=∠CEF=60°,∴A、E、C、F四点共圆,∴∠AEF=∠ACF,又∵ED=EC,∴∠D=∠BCE,∠BCE=∠ACF,∴∠D=∠AEF,在△EDB和△FEA中,(AAS)∴△EDB≌△FEA,∴DB=AE,BE=AF,∵AB=AE+BE,∴AB=DB+AF.(1)AB=BD+AF;延长EF、CA交于点G,∵△BCE绕点C顺时针旋转60°至△ACF,∴∠ECF=60°,BE=AF,EC=CF,∴△CEF是等边三角形,∴EF=EC,又∵ED=EC,∴ED=EF,∠EFC=∠BAC=60°,∵∠EFC=∠FGC+∠FCG,∠BAC=∠FGC+∠FEA,∴∠FCG=∠FEA,又∵∠FCG=∠ECD,∠D=∠ECD,∴∠D=∠FEA,由旋转的性质,可得∠CBE=∠CAF=120°,∴∠DBE=∠FAE=60°,在△EDB和△FEA中,(AAS)∴△EDB≌△FEA,∴BD=AE,EB=AF,∴BD=FA+AB,即AB=BD﹣AF.(2)如图③,,ED=EC=CF,∵△BCE绕点C顺时针旋转60°至△ACF,∴∠ECF=60°,BE=AF,EC=CF,BC=AC,∴△CEF是等边三角形,∴EF=EC,又∵ED=EC,∴ED=EF,∵AB=AC,BC=AC,∴△ABC是等边三角形,∴∠ABC=60°,又∵∠CBE=∠CAF,∴∠CAF=60°,∴∠EAF=180°﹣∠CAF﹣∠BAC=180°﹣60°﹣60°=60°∴∠DBE=∠EAF;∵ED=EC,∴∠ECD=∠EDC,∴∠BDE=∠ECD+∠DEC=∠EDC+∠DEC,又∵∠EDC=∠EBC+∠BED,∴∠BDE=∠EBC+∠BED+∠DEC=60°+∠BEC,∵∠AEF=∠CEF+∠BEC=60°+∠BEC,∴∠BDE=∠AEF,在△EDB和△FEA中,(AAS)∴△EDB≌△FEA,∴BD=AE,EB=AF,∵BE=AB+AE,∴AF=AB+BD,即AB,DB,AF之间的数量关系是:AF=AB+BD.【点评】(1)此题主要考查了几何变换综合题,考查了分析推理能力,考查了空间想象能力,考查了数形结合方法的应用,要熟练掌握.(2)此题还考查了全等三角形的判定和性质的应用,要熟练掌握.6.(2015•)在Rt△ACB和Rt△AEF中,∠ACB=∠AEF=90°,若点P是BF的中点,连接PC,PE.特殊发现:如图1,若点E,F分别落在边AB,AC上,则结论:PC=PE成立(不要求证明).问题探究:把图1中的△AEF绕着点A顺时针旋转.(1)如图2,若点E落在边CA的延长线上,则上述结论是否成立?若成立,请给予证明;若不成立,请说明理由;(2)如图3,若点F落在边AB上,则上述结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由;(3)记=k,当k为何值时,△CPE总是等边三角形?(请直接写出k的值,不必说明理由)【考点】几何变换综合题.【专题】压轴题.【分析】(1)首先过点P作PM⊥CE于点M,然后根据EF⊥AE,BC⊥AC,可得EF∥MP∥CB,推得,再根据点P是BF的中点,可得EM=MC,据此推得PC=PE即可.(2)首先过点F作FD⊥AC于点D,过点P作PM⊥AC于点M,连接PD,然后根据全等三角形判定的方法,判断出△DAF≌△EAF,即可判断出AD=AE;再判断出△DAP≌△EAP,即可判断出PD=PE;最后根据FD⊥AC,BC⊥AC,PM⊥AC,可得FD∥BC∥PM,再根据点P是BF的中点,推得PC=PD,再根据PD=PE,即可推得PC=PE.(3)首先根据△CPE总是等边三角形,可得将△AEF绕着点A顺时针旋转180°,△CPE仍是等边三角形;然后根据∠BCF=∠BEF=90°,点P是BF的中点,可得点C、E在以点P为圆心,BF为直径的圆上;最后根据圆周角定理,求出∠CBE的度数,即可求出当△CPE总是等边三角形时,k的值是多少.【解答】解:(1)如图2,过点P作PM⊥CE于点M,,PC=PE成立,理由如下:∵EF⊥AE,BC⊥AC,∴EF∥MP∥CB,∴,∵点P是BF的中点,∴EM=MC,又∵PM⊥CE,∴PC=PE.(2)如图3,过点F作FD⊥AC于点D,过点P作PM⊥AC于点M,连接PD,,PC=PE成立,理由如下:∵∠DAF=∠EAF,∠FDA=∠FEA=90°,在△DAF和△EAF中,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

旋转问题考查三角形全等、相似、勾股定理、特殊三角形和四边形的性质与判定等。

旋转性质----对应线段、对应角的大小不变,对应线段的夹角等于旋转角。

注意旋转过程中三角形与整个图形的特殊位置。

一、直线的旋转1、(2009年浙江省嘉兴市)如图,已知A 、B 是线段MN 上的两点,4=MN ,1=MA ,1>MB .以A 为中心顺时针旋转点M ,以B 为中心逆时针旋转点N ,使M 、N两点重合成一点C ,构成△ABC ,设x AB =. (1)求x 的取值范围;(2)若△ABC 为直角三角形,求x 的值; (3)探究:△ABC 的最大面积?2、(2009年河南)如图,在Rt △ABC 中,∠ACB =90°, ∠B =60°,BC =2.点0是AC 的中点,过点0的直线l 从与AC 重合的位置开始,绕点0作逆时针旋转,交AB 边于点D .过点C 作CE ∥AB 交直线l 于点E ,设直线l 的旋转角为α.(1)①当α=________度时,四边形EDBC 是等腰梯形,此时AD 的长为_________; ②当α=________度时,四边形EDBC 是直角梯形,此时AD 的长为_________; (2)当α=90°时,判断四边形EDBC 是否为菱形,并说明理由.CABNM(第1题)解:(1)①当四边形EDBC是等腰梯形时,∠EDB=∠B=60°,而∠A=30°,根据三角形的外角性质,得α=∠EDB-∠A=30,此时,AD=1;②当四边形EDBC是直角梯形时,∠ODA=90°,而∠A=30°,根据三角形的内角和定理,得α=90°-∠A=60,此时,AD=1.5.(2)当∠α=90°时,四边形EDBC是菱形.∵∠α=∠ACB=90°,∴BC‖ED,∵CE‖AB,∴四边形EDBC是平行四边形.在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,∴∠A=30度,∴AB=4,AC=2 ,∴AO= = .在Rt△AOD中,∠A=30°,∴AD=2,∴BD=2,∴BD=BC.又∵四边形EDBC是平行四边形,∴四边形EDBC是菱形.3、(2009年北京市)中,过点C作CE⊥CD交AD于点E,将线段EC绕点E逆时针旋转90 得到线段EF(如图1) 在ABCD(1)在图1中画图探究:①当P为射线CD上任意一点(P1不与C重合)时,连结EP1绕点E逆时针旋转90 得到线段EC1.判断直线FC1与直线CD的位置关系,并加以证明;②当P2为线段DC的延长线上任意一点时,连结EP2,将线段EP2绕点E逆时针旋转90 得到线段EC2.判断直线C1C2与直线CD的位置关系,画出图形并直接写出你的结论.(2)若AD=6,tanB=43,AE=1,在①的条件下,设CP1=x,S11P FC=y,求y与x之间的函数关系式,并写出自变量x的取值范围.提示:(1)运用三角形全等,(2)按CP=CE=4将x取值分为两段分类讨论;发现并利用好EC、EF相等且垂直。

4、(2009 黑龙江大兴安岭) 已知:在ABC ∆中,AC BC >,动点D 绕ABC ∆的顶点A 逆时针旋转,且BC AD =,连结DC .过AB 、DC 的中点E 、F 作直线,直线EF 与直线AD 、BC 分别相交于点M 、N . (1)如图1,当点D 旋转到BC 的延长线上时,点N 恰好与点F 重合,取AC 的中点H ,连结HE 、HF ,根据三角形中位线定理和平行线的性质,可得结论BNE AMF ∠=∠(不需证明).(2)当点D 旋转到图2或图3中的位置时,AMF ∠与BNE ∠有何数量关系?请分别写出猜想,并任选一种情况证明.图2 图3图1 H M F E A B C D M NF E A B C D MN FEA B C D (N)二、角的旋转 5、(2009年中山)(1)如图1,圆心接ABC △中,AB BC CA ==,OD 、OE 为O ⊙的半径,OD BC ⊥于点F ,OE AC ⊥于点G ,求证:阴影部分四边形OFCG 的面积是ABC △的面积的13. (2)如图2,若DOE ∠保持120°角度不变,求证:当DOE ∠绕着O 点旋转时,由两条半径和ABC △的两条边围成的图形(图中阴影部分)面积始终是ABC △的面积的13.ADCBP MQ606、(2009襄樊市)如图,在梯形ABCD 中,24AD BC AD BC ==∥,,,点M 是AD 的中点,MBC △是等边三角形.(1)求证:梯形ABCD 是等腰梯形;(2)动点P 、Q 分别在线段BC 和MC 上运动,且60MPQ =︒∠保持不变.设PC x MQ y ==,,求y 与x 的函数关系式; (3)在(2)中:①当动点P 、Q 运动到何处时,以点P 、M 和点A 、B 、C 、D 中的两个点为顶点的四边形是平行四边形?并指出符合条件的平行四边形的个数;②当y 取最小值时,判断PQC △的形状,并说明理由.6、(2009年重庆市)已知:如图,在平面直角坐标系xOy 中,矩形OABC 的边OA 在y 轴的正半轴上,OC 在x 轴的正半轴上,OA =2,OC =3.过原点O 作∠AOC 的平分线交AB 于点D ,连接DC ,过点D 作DE ⊥DC ,交OA 于点E .(1)求过点E 、D 、C 的抛物线的解析式;(2)将∠EDC 绕点D 按顺时针方向旋转后,角的一边与y 轴的正半轴交于点F ,另一边与线段OC 交于点G .如果DF 与(1)中的抛物线交于另一点M ,点M 的横坐标为65,那么EF =2GO 是否成立?若成立,请给予证明;若不成立,请说明理由;(3)对于(2)中的点G ,在位于第一象限内的该抛物线上是否存在点Q ,使得直线GQ 与AB 的交点P 与点C 、G 构成的△PCG 是等腰三角形?若存在,请求出点Q 的坐标;若不存在,请说明理由.6题图yxDBCA EO7、(2009年邵阳市)如图,将Rt △ABC(其中∠B =340,∠C =900)绕A 点按顺时针方向旋转到△AB 1 C 1的位置,使得点C 、A 、B 1 在同一条直线上,那么旋转角最小等于( ) A.560B.680C.1240D.18008、(2009年包头)如图,已知ACB △与DFE △是两个全等的直角三角形,量得它们的斜边长为10cm ,较小锐角为30°,将这两个三角形摆成如图(1)所示的形状,使点B C F D 、、、在同一条直线上,且点C 与点F 重合,将图(1)中的ACB △绕点C 顺时针方向旋转到图(2)的位置,点E 在AB 边上,AC 交DE 于点G ,则线段FG 的长为 cm (保留根号).9、(2009河池)如图9,ABC △的顶点坐标分别为(36)(13)A B ,,,,(42)C ,.若将ABC △绕C 点顺时针旋转90,得到A B C '''△,则点A 的对应点A '的坐标为 .C (F ) D图(2)340 BCB ACB 'A 'C A B10、(2009年郴州市)如图,桌面上平放着一块三角板和一把直尺,小明将三角板的直角顶点紧靠直尺的边缘,他发现无论是将三角板绕直角顶点旋转,还是将三角板沿直尺平移,1Ð与2Ð的和总是保持不变,那么1Ð与2Ð的和是_______度.11、(2009年台州市)如图,三角板ABC 中,︒=∠90ACB ,︒=∠30B ,6=BC .三角板绕直角顶点C 逆时针旋转,当点A 的对应点'A 落在AB 边的起始位置上时即停止转动,则B 点转过的路径长为 .1 2 3 4 5 6 7 8 912 3 4 5 6 7 O AB Cyx图92112、(2009年凉山州)将ABC △绕点B 逆时针旋转到A BC ''△使A B C '、、在同一直线上,若90BCA ∠=°,304cm BAC AB ∠==°,,则图中阴影部分面积为 cm 2.13、(2009年郴州市)如图6,在下面的方格图中,将△ABC 先向右平移四个单位得到△A 1B 1C 1,再将△A 1B 1C 1绕点A 1逆时针旋转90°得到D A 1B 2C 2,请依次作出△A 1B 1C 1和△A 1B 2C 2。

图ABC30°A ' CBC ' A 30°(12题)14、(2009年达州)如图7,在△ABC 中,AB =2BC ,点D 、点E 分别为AB 、AC 的中点,连结DE ,将△ADE 绕点E 旋转180︒得到△CFE .试判断四边形BCFD 的形状,并说明理由.15、(2009襄樊市)如图所示,在Rt ABC △中,90ABC =︒∠.将Rt ABC △绕点C 顺时针方向旋转60︒得到DEC △,点E 在AC 上,再将Rt ABC △沿着AB 所在直线翻转180︒得到ABF △.连接AD . (1)求证:四边形AFCD 是菱形; (2)连接BE 并延长交AD 于G ,连接CG ,请问:四边形ABCG 是什么特殊平行四边形?为什么?ADGECB16、(2009年株洲市)如图,在Rt OAB ∆中,90OAB ∠=︒,6OA AB ==,将O AB ∆绕点O 沿逆时针方向旋转90︒得到11OA B ∆.(1)线段1OA 的长是 ,1AOB ∠的度数是 ;(2)连结1AA ,求证:四边形11OAA B 是平行四边形; (3)求四边形11OAA B 的面积.ADFCEGBB 1AO BA117、(2009烟台市)如图,直角梯形ABCD 中,BC AD ∥,90BCD ∠=°,且2t a n 2C D A D A B C =∠=,,过点D 作AB DE ∥,交BCD ∠的平分线于点E ,连接BE . (1)求证:BC CD =;(2)将BCE △绕点C ,顺时针旋转90°得到DCG △,连接EG..求证:CD 垂直平分EG .(3)延长BE 交CD 于点P .求证:P 是CD 的中点.即BC CD=.18、(2009年山西省)在ABC △中,2120AB BC ABC ==∠=,°,将ABC △绕点B 顺时针旋转角α(0<°α90)<°得A BC AB 111△,交AC 于点E ,11A C 分别交AC BC 、于D F 、两点.(1)如图1,观察并猜想,在旋转过程中,线段1EA 与FC 有怎样的数量关系?并证明你的结论; (2)如图2,当α30=°时,试判断四边形1BC DA 的形状,并说明理由; (3)在(2)的情况下,求ED 的长.ADBECF1A 1CADBECF1A 1C AEC F BD 图1 图3ADFECBA D BC E 图2 F20、(2009年常德市)如图9,若△ABC 和△ADE 为等边三角形,M ,N 分别EB ,CD 的中点,易证:CD=BE ,△AMN 是等边三角形.(1)当把△ADE 绕A 点旋转到图10的位置时,CD=BE是否仍然成立?若成立请证明,若不成立请图9 图10 图11说明理由;(2)当△ADE绕A点旋转到图11的位置时,△AMN是否还是等边三角形?若是,请给出证明,并求出当AB=2AD时,△ADE与△ABC及△AMN的面积之比;若不是,请说明理由.21、(2009东营)已知正方形ABCD 中,E 为对角线BD 上一点,过E 点作EF ⊥BD 交BC 于F ,连接DF ,G 为DF 中点,连接EG ,CG .(1)求证:EG =CG ;(2)将图①中△BEF 绕B 点逆时针旋转45º,如图②所示,取DF 中点G ,连接EG ,CG .问(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.(3)将图①中△BEF 绕B 点旋转任意角度,如图③所示,再连接相应的线段,问(1)中的结论是否仍然成立?通过观察你还能得出什么结论?(均不要求证明)提示:考查三角形的中线、三角形全等、矩形的性质等。

相关文档
最新文档