最新中考数学压轴题旋转问题带答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

旋转问题

考查三角形全等、相似、勾股定理、特殊三角形和四边形的性质与判定等。

旋转性质----对应线段、对应角的大小不变,对应线段的夹角等于旋转角。注意旋转过程中三角形与整个图形的特殊位置。

一、直线的旋转

1、(2009年浙江省嘉兴市)如图,已知A、B是线段MN上的两点,4

=

MN,1

=

MA,1

>

MB.以A为中心顺时针旋转点M,以B为中心逆时针旋转点N,使M、N

x

AB=.(1)求x的取值范围;

(2)若△ABC为直角三角形,求x的值;

(3)探究:△ABC的最大面积?

2、(2009年河南)如图,在Rt△ABC中,∠ACB=90°, ∠B=60°,BC=2.点0是AC的中点,过点0的直线l从与AC重合的位置开始,绕点0作逆时针旋转,交AB边于点D.过点C作CE∥AB交直线l于点E,设直线l的旋转角为α.

(1)①当α=________度时,四边形EDBC是等腰梯形,此时AD的长为_________;

②当α=________度时,四边形EDBC是直角梯形,此时AD的长为_________;

(2)当α=90°时,判断四边形EDBC是否为菱形,并说明理由.

C

(第1题)

解:(1)①当四边形EDBC是等腰梯形时,∠EDB=∠B=60°,而∠A=30°,

根据三角形的外角性质,得α=∠EDB-∠A=30,此时,AD=1;

②当四边形EDBC是直角梯形时,∠ODA=90°,而∠A=30°,

根据三角形的内角和定理,得α=90°-∠A=60,此时,AD=1.5.

(2)当∠α=90°时,四边形EDBC是菱形.

∵∠α=∠ACB=90°,

∴BC‖ED,

∵CE‖AB,

∴四边形EDBC是平行四边形.

在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,

∴∠A=30度,

∴AB=4,AC=2 ,

∴AO= = .

在Rt△AOD中,∠A=30°,

∴AD=2,

∴BD=2,

∴BD=BC.

又∵四边形EDBC是平行四边形,

∴四边形EDBC是菱形.

3、(2009年北京市)

在ABCD中,过点C作CE⊥CD交AD于点E,将线段EC绕点E逆时针旋转90得到线段EF(如图1)

(1)在图1中画图探究:

①当P为射线CD上任意一点(P1不与C重合)时,连结EP1绕点E逆时针旋转90得到线段EC1.判断直

线FC1与直线CD的位置关系,并加以证明;

②当P2为线段DC的延长线上任意一点时,连结EP2,将线段EP2绕点E逆时针旋转90得到线段EC2.判断直线C 1C2与直线CD的位置关系,画出图形并直接写出你的结论.

(2)若AD=6,tanB=4

3

,AE=1,在①的条件下,设CP1=x,S

11

P FC=y,求y与x之间的函数关系式,并

写出自变量x的取值范围.

提示:(1)运用三角形全等,

(2)按CP=CE=4将x取值分为两段分类讨论;发现并利用好EC、EF相等且垂直。

4、(2009 黑龙江大兴安岭) 已知:在ABC ∆中,AC BC >,动点D 绕ABC ∆的顶点A 逆时针旋转,且BC AD =,连结DC .过AB 、DC 的中点E 、F 作直线,直线EF 与直线AD 、BC 分别相交于点M 、N . (1)如图1,当点D 旋转到BC 的延长线上时,点N 恰好与点F 重合,取AC 的中点H ,连结HE 、HF ,根据三角形中位线定理和平行线的性质,可得结论BNE AMF ∠=∠(不需证明).

(2)当点D 旋转到图2或图3中的位置时,AMF ∠与BNE ∠有何数量关系?请分别写出猜想,并任选一种情况证明.

图2 图3

图1 H M F C D M N

F A C D M

N F

B C D (N)

二、角的旋转 5、(2009年中山)(1)如图1,圆心接ABC △中,AB BC CA ==,OD 、OE 为O ⊙的半径,OD BC ⊥于点F ,OE AC ⊥于点G ,求证:阴影部分四边形OFCG 的面积是ABC △的面积的

1

3

. (2)如图2,若DOE ∠保持120°角度不变,

求证:当DOE ∠绕着O 点旋转时,由两条半径和ABC △的两条边围成的图形(图中阴影部分)面积始终是ABC △的面积的

13

A

D

C

B

P M

Q

60

6、(2009襄樊市)如图,在梯形ABCD 中,24AD BC AD BC ==∥,,,点M 是AD 的中点,MBC △是等边三角形.

(1)求证:梯形ABCD 是等腰梯形;

(2)动点P 、Q 分别在线段BC 和MC 上运动,且60MPQ =︒∠保持不变.设PC x MQ y ==,,求y 与x 的函数关系式; (3)在(2)中:

①当动点P 、Q 运动到何处时,以点P 、M 和点A 、B 、C 、D 中的两个点为顶点的四边形是平行四边形?并指出符合条件的平行四边形的个数;

②当y 取最小值时,判断PQC △的形状,并说明理由.

6、(2009年重庆市)已知:如图,在平面直角坐标系xOy中,矩形OABC的边OA在y轴的正半轴上,OC 在x轴的正半轴上,OA=2,OC=3.过原点O作∠AOC的平分线交AB于点D,连接DC,过点D作DE⊥DC,交OA于点E.

(1)求过点E、D、C的抛物线的解析式;

(2)将∠EDC绕点D按顺时针方向旋转后,角的一边与y轴的正半轴交于点F,另一边与线段OC交于点G.如

相关文档
最新文档