2021年中考数学压轴题精选含答案

合集下载

2021届中考数学压轴题专项训练 一次函数【含答案】

2021届中考数学压轴题专项训练 一次函数【含答案】

2021届中考数学压轴题专项训练一次函数【含答案】1.甲、乙两车从A城出发匀速行驶至B城,在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与行驶时间x(小时)之间的函数关系如图所示,已知甲对应的函数关系式为y=60x,根据图象提供的信息,解决下列问题:(1)求乙离开A城的距离y与x的关系式;(2)求乙出发后几小时追上甲车?解:(1)设乙对应的函数关系式为y=kx+b将点(4,300),(1,0)代入y=kx+b得:解得:,∴乙对应的函数关系式y=100x﹣100;(2)易得甲车对应的函数解析式为y=60x,联立,解得:,2.5﹣1=1.5(小时),∴乙车出发后1.5小时追上甲车.2.如图①所示,甲、乙两车从A地出发,沿相同路线前往同一目的地,途中经过B地.甲车先出发,当甲车到达B地时,乙车开始出发.当乙车到达B地时,甲车与B地相距km 设甲、乙两车与B地之间的距离为,y1(km),y2(km),乙车行驶的时间为x(h),y1,y2与x的函数关系如图②所示.(1)A,B两地之间的距离为20 km;(2)当x为何值时,甲、乙两车相距5km?解:(1)A,B两地之间的距离为20km.故答案为:20;(2)乙车的速度为:20÷=120(km/h),甲车的速度为:=100(km/h),甲比乙早出发的时间为:20÷100=0.2(h),相遇前:(20+100x)﹣120x=5,解得x=0.75;相遇后:120x﹣(20+100x)=5,解得x=1.25;答:当x为0.75或1.25时,甲、乙两车相距5km.3.在平面直角坐标系中,直线y=x+2与x轴,y轴分别交于点A,B,点D的坐标为(0,3),点E是线段AB上的一点,以DE为腰在第二象限内作等腰直角△DEF,∠EDF=90°.(1)请直接写出点A,B的坐标:A(﹣2 ,0 ),B(0 , 2 );(2)设点F的坐标为(a,b),连接FB并延长交x轴于点G,求点G的坐标.解:(1)∵直线y=x+2与x轴,y轴分别交于点A,B,∴点A(﹣2,0),点B(0,2)故答案为:(﹣2,0),(0,2)(2)如图,过点F作FM⊥y轴,过点E作EN⊥y轴,∴∠FMD=∠EDF=90°∴∠FDM+∠DFM=90°,∠FDM+∠EDN=90°,∴∠DFM=∠EDN,且FD=DE,∠FMD=∠END=90°,∴△DFM≌△EDN(AAS)∴EN=DM,FM=BN,∵点F的坐标为(a,b),∴FM=DN=﹣a,DM=b﹣3,∴点E坐标(﹣b+3,3+a),∵点E是线段AB上的一点,∴3+a=﹣b+3+2∴a+b=2,∴点F(a,2﹣a)设直线BF的解析式为y=kx+2,∴2﹣a=ka+2∴k=﹣1,∴直线BF的解析式为y=﹣x+2,∴点G(2,0)4.某学校甲、乙两名同学去爱国主义教育基地参观,该基地与学校相距2400米.甲从学校步行去基地,出发5分钟后乙再出发,乙从学校骑自行车到基地.乙骑行到一半时,发现有东西忘带,立即返回,拿好东西之后再从学校出发.在骑行过程中,乙的速度保持不变,最后甲、乙两人同时到达基地.已知,乙骑行的总时间是甲步行时间的.设甲步行的时间为x(分),图中线段OA表示甲离开学校的路程y(米)与x(分)的函数关系的图象.图中折线B﹣C﹣D和线段EA表示乙离开学校的路程y(米)与x(分)的函数关系的图象.根据图中所给的信息,解答下列问题:(1)甲步行的速度和乙骑行的速度;(2)甲出发多少时间后,甲、乙两人第二次相遇?(3)若s(米)表示甲、乙两人之间的距离,当15≤x≤30时,求s(米)关于x(分)的函数关系式.解:(1)由题意得:(米/分),=240(米/分);(2)由题意可得:C(10,1200),D(15,0),A(30,2400),设线段CD的解析式为:y=kx+b,则,解得∴线段CD的解析式为:y=﹣240x+3600,易知线段OA的解析式为:y=80x,根据题意得240x+3600=80x,解得:x=,∴甲出发分后,甲、乙两人第二次相遇;(3)∵E(20,0),A(30,2400),设线段EA的解析式为:y=mx+n,,解得,∴线段EA的解析式为:y=240x﹣4800,∴当15≤x≤20时,s=y OA﹣0=80x,当20<x≤30时,s=y OA﹣y EA=80x﹣(240x﹣4800)=﹣160x+4800,∴.5.对于给定的△ABC,我们给出如下定义:若点M是边BC上的一个定点,且以M为圆心的半圆上的所有点都在△ABC的内部或边上,则称这样的半圆为BC边上的点M关于△ABC的内半圆,并将半径最大的内半圆称为点M关于△ABC的最大内半圆.若点M是边BC上的一个动点(M不与B,C重合),则在所有的点M关于△ABC的最大内半圆中,将半径最大的内半圆称为BC关于△ABC的内半圆.(1)在Rt△ABC中,∠BAC=90°,AB=AC=2,①如图1,点D在边BC上,且CD=1,直接写出点D关于△ABC的最大内半圆的半径长;②如图2,画出BC关于△ABC的内半圆,并直接写出它的半径长;(2)在平面直角坐标系xOy中,点E的坐标为(3,0),点P在直线y=x上运动(P不与O重合),将OE关于△OEP的内半圆半径记为R,当≤R≤1时,求点P的横坐标t的取值范围.解:(1)①如图1,过D作DE⊥AC于E,∵Rt△ABC中,∠BAC=90°,AB=AC=2,∴∠C=∠B=45°,∵CD=1,∴BD=2﹣1>CD,∴D到AC的距离小于到AB的距离,∵△DEC是等腰直角三角形,∴DE=,即点D关于△ABC的最大内半圆的半径长是;②当D为BC的中点时,BC关于△ABC的内半圆为⊙D,如图2,∴BD=BC=,同理可得:BC关于△ABC的内半圆半径DE=1.(2)过点E作EF⊥OE,与直线y=x交于点F,设点M是OE上的动点,i)当点P在线段OF上运动时(P不与O重合),OE关于△OEP的内半圆是以M为圆心,分别与OP,PE相切的半圆,如图3,连接PM,∵直线OF:y=x∴∠FOE=30°由(1)可知:当M为线段中点时,存在OE关于△OEP的内半圆,∴当R=时,如图3,DM=,此时PM⊥x轴,P的横坐标t=OM=;如图4,当P与F重合时,M在∠EFO的角平分线上,⊙M分别与OF,FE相切,此时R=1,P的横坐标t=OE=3;∴当≤R≤1时,t的取值范围是≤t≤3.ii)当点P在OF的延长线上运动时,OE关于△OEP的内半圆是以M为圆心,经过点E 且与OP相切的半圆,如图5.∴当R=1 时,t的取值范围是t≥3.iii)当点P在OF的反向延长上运动时(P不与O重合),OE关于△OEP的内半圆是以M为圆心,经过点O且与EP相切的半圆,如图6.∵∠FOE=∠OPE+∠OEP=30°,∴∠OEP<30°,∴OM<1,当R=时,如图6,过P作PA⊥x轴于A,N是切点,连接MN,MN⊥PE,此时OM =MN=,ME=3﹣=,∴EN===,Rt△OPA中,∠POA=30°,OA=﹣t,∴PA=﹣t,∵∠ENM=∠EAP=90°,∠MEN=∠AEP,∴△EMN∽△EPA,∴,即=解得:t=﹣,∴当≤R<1时,t的取值范围是t≤﹣.综上,点P在直线y=x上运动时(P不与O重合),当≤R≤1时,t的取值范围是t≤﹣或t≥.6.已知,一次函数y=﹣x+6的图象与x轴、y轴分别交于点A、点B,与直线y=x 相交于点C.过点B作x轴的平行线l.点P是直线l上的一个动点.(1)求点A,点B的坐标.(2)若S△AOC=S△BCP,求点P的坐标.(3)若点E是直线y=x上的一个动点,当△APE是以AP为直角边的等腰直角三角形时,求点E的坐标.解:(1)一次函数y=﹣x+6的图象与x轴、y轴分别交于点A、点B,则点A、B的坐标分别为:(8,0)、(0,6);(2)联立y=﹣x+6、y=x并解得:x=3,故点C(3,),S△AOC=8×=15=S△BCP=BP×(yP﹣yC)=BP×(6﹣),解得:BP=,故点P(,6)或(﹣,6)(3)设点E(m,m)、点P(n,6);①当∠EPA=90°时,如左图,∵∠MEP+∠MPE=90°,∠MPE+∠NPA=90°,∴∠MEP=∠NPA,AP=PE,∵△EMP≌△PNA(AAS),则ME=PN=6,MP=AN,即|m﹣n|=6,m﹣6=8﹣n,解得:m=或16,故点E(,)或(14,);②当∠EAP=90°时,如右图,同理可得:△AMP≌△ANE(AAS),故MP=EN,AM=AN=6,即m=n﹣8,|8﹣m|=6,解得:m=2或14,故点E(2,)或(16,20);上,E(,)或(14,)或;(2,)或(16,20).7.如图,A,B是直线y=x+4与坐标轴的交点,直线y=﹣2x+b过点B,与x轴交于点C.(1)求A,B,C三点的坐标;(2)当点D是AB的中点时,在x轴上找一点E,使ED+EB的和最小,画出点E的位置,并求E点的坐标.(3)若点D是折线A﹣B﹣C上一动点,是否存在点D,使AACD为直角三角形,若存在,直接写出D点的坐标;若不存在,请说明理由.解:(1)在y=x+4中,令x=0,得y=4,令y=0,得x=﹣4,∴A(﹣4,0),B(0,4).把B(0,4)代入,y=﹣2x+b,得b=4∴直线BC为:y=﹣2x+4.在y=﹣2x+4中,令y=0,得x=2,∴C点的坐标为(2,0);(2)如图点E为所求点D是AB的中点,A(﹣4,0),B(0,4).∴D(﹣2,2).点B关于x轴的对称点B1的坐标为(0,﹣4).设直线DB1的解析式为y=kx+b.把D(﹣2,2),B1(0,﹣4)代入一次函数表达式并解得:故该直线方程为:y=﹣3x﹣4.令y=0,得E点的坐标为.(3)存在,D点的坐标为(﹣1,3)或.①当点D在AB上时,由OA=OB=4得到:∠BAC=45°,由等腰直角三角形求得D点的坐标为(﹣1,3);②当点D在BC上时,如图,设AD交y轴于点F.在△AOF与△BOC中,∠FAO=∠CBO,∠AOF=∠BOD,AO=BO,∴△AOF≌△BOC(ASA).∴OF=OC=2,∴点F的坐标为(0,2),易得直线AD的解析式为,与y=﹣2x+4组成方程组并解得:x=,∴交点D的坐标为.8.(1)模型建立:如图1,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过A 作AD⊥ED于D,过B作BE⊥ED于E.求证:△BEC≌△CDA;(2)模型应用:①如图2,一次函数y=﹣2x+4的图象分别与x轴、y轴交于点A、B,以线段AB为腰在第一象限内作等腰直角三角形ABC,则C点的坐标为C(4,6)或C(6,2)(直接写出结果)②如图3,在△ABC和△DCE中,CA=CB,CD=CE,∠CAB=∠CED=45°,连接BD、AE,作CM⊥AE于M点,延长MC与BD交于点N,求证:N是BD的中点.解:(1)∵AD⊥ED,BE⊥ED,∴∠D=∠E=90°,∠ACD=∠CAD=90°,∵∠ACB=90°,∴∠ACD=∠BCE=90°,∴∠BCE=∠CAD,在△BEC和△CDA中,∴△BEC≌△CDA(AAS);(2)①根据题意可得点C的坐标为C(4,6)或C(6,2);故答案为:C(4,6)或C(6,2);②如图,作BP⊥MN交MN的延长线于P,作DQ⊥MN于Q∵∠BCP+∠BCA=∠CAM+∠AMC,∵∠BCA=∠AMC,∴∠BCP=∠CAM,在△CBP与△ACM中,,∴△CBP≌△ACM(AAS),∴MC=BP,同理,CM=DQ,∴DQ=BP在△BPN与△DQN中,,∵△BPN≌△DQN(AAS),∴BN=ND,∴N是BD的中点.9.如图,在平面直角坐标系xOy中,直线l:y=﹣x+4与x轴、y轴分别相交于B、A 两点,点C是AB的中点,点E、F分别为线段AB、OB上的动点,将△BEF沿EF折叠,使点B的对称点D恰好落在线段OA上(不与端点重合).连接OC分别交DE、DF于点M、N,连接FM.(1)求tan∠ABO的值;(2)试判断DE与FM的位置关系,并加以证明;(3)若MD=MN,求点D的坐标.解:(1)直线l:y=﹣x+4与x轴、y轴分别相交于B、A两点,则点A、B的坐标分别为:(0,4)、(3,0);tan∠ABO===tanα;(2)DE与FM的位置关系为相互垂直,理由:点C是AB的中点,则∠COB=∠CBO=∠EDF=α,∠ONF=∠DNM,∴∠DMN=∠DFO,∴O、F、M、D四点共圆,∴∠DMF+∠DOF=180°,∴∠DOF=90°,即:DE⊥FM;(3)MD=MN,∴∠MDN=∠MND=α,而∠COB=α,∠DNM=∠ONF=α,即△OCF为以ON为底,底角为α的等腰三角形,则tan∠NFO===tanβ,则cosβ=(证明见备注);设OF=m,则DF=FB=3﹣m,cos∠DFO=cosβ=,解得:m=,OD2=DF2﹣OF2=(3﹣m)2﹣m2=;则OD=,故点D(0,).备注:如下图,过点N作HN⊥OF于点H,tanα=,则sinα=,作FM⊥ON于点M,设FN=OF=5a,则FN=4a,则ON=6a,同理可得:NH=,tan∠NFO===tanβ,则cosβ=.10.如图,直线l1:y=x+与y轴的交点为A,直线l1与直线l2:y=kx的交点M的坐标为M(3,a).(1)求a和k的值;(2)直接写出关于x的不等式x+<kx的解集;(3)若点B在x轴上,MB=MA,直接写出点B的坐标.解:(1)∵直线l1与直线l2的交点为M(3,a),∴M(3,a)在直线y=x+上,也在直线y=kx上,∴a=×3+=3,∴M(3,3),∴3=3k,解得k=1;(2)不等式x+<kx的解集为x>3;(3)作MN⊥x轴于N,∵直线l1:y=x+与y轴的交点为A,∴A(0,),∵M(3,3),∴AM2=(3﹣0)2+(3﹣)2=,∵MN=3,MB=MA,∴BN==,∴B(,0)或B(,0).11.如图,长方形OBCD的OB边在x轴上,OD在y轴上,把OBC沿OC折叠得到OCE,OE与CD交于点F.(1)求证:OF=CF;(2)若OD=4,OB=8,写出OE所在直线的解析式.解:(1)∵四边形OBCD为矩形,∴DO=BC,∠OBC=∠ODC.由翻折的性质可知∠E=∠OBC,CE=BC,∴OD=CE,∠E=∠ODC.在△ODF和△CEF中,∴△ODF≌△CEF(AAS),∴OF=CF.(2)∵OF=CF.设DF=x,则OF=CF=8﹣x.在Rt△ODF中,OD=4,根据勾股定理得,OD2+DF2=OF2,∴42+x2=(8﹣x)2,解得x=3,∴F(3,4),设直线OE的解析式为y=kx,把F(3,4)代入得4=3k,解得k=,∴OE所在直线的解析式y=x.12.如图,在平面直角坐标系中,直线y=﹣x+m过点A(5,﹣2)且分别与x轴、y轴交于点B、C,过点A画AD∥x轴,交y轴于点D.(1)求点B、C的坐标;(2)在线段AD上存在点P,使BP+CP最小,求点P的坐标.解:(1)∵y=﹣x+m过点A(5,﹣2),∴﹣2=﹣5+m,∴m=3,∴y=﹣x+3,令y=0,∴x=3,∴B(3,0),令x=0,∴y=3,∴C(0,3);(2)过C作直线AD对称点Q,可得Q(0,﹣7),连结BQ,交AD与点P可得直线BQ:,令y′=﹣2,∴,∴.13.如图,直线l1的函数表达式为y=3x﹣2,且直线l1与x轴交于点D.直线l2与x轴交于点A,且经过点B(4,1),直线l1与l2交于点C(m,3).(1)求点D和点C的坐标;(2)求直线l2的函数表达式;(3)利用函数图象写出关于x,y的二元一次方程组的解.解:(1)在y=3x﹣2中令y=0,即3x﹣2=0 解得x=,∴D(,0),∵点C(m,3)在直线y=3x﹣2上,∴3m﹣2=3,∴m=,∴C(,3);(2)设直线l2的函数表达式为Y=KX+B(K≠0),由题意得:,解得:,∴y=﹣x+;(3)由图可知,二元一次方程组的解为.14.如图,在平面直角坐标系中,一次函数y=kx+b的图象与x轴交于点A(﹣3,0),与y轴交于点B,且与正比例函数y=x的图象交点为C(m,4).(1)求一次函数y=kx+b的解析式;(2)求△BOC的面积;(3)若点D在第二象限,△DAB为等腰直角三角形,则点D的坐标为(﹣2,5)或(﹣5,3)或(,).解:(1)∵点C在正比例函数图象上,∴m=4,解得:m=3,∵点C(3,4)、A(﹣3,0)在一次函数图象上,∴代入一次函数解析式可得,解这个方程组得,∴一次函数的解析式为y=x+2;(2)在中,令x=0,解得y=2,∴B(0,2)∴S△BOC=×2×3=3;(3)过点D1作D1E⊥y轴于点E,过点D2作D2F⊥x轴于点F,如图,∵点D在第二象限,△DAB是以AB为直角边的等腰直角三角形,∴AB=BD2,∵∠D1BE+∠ABO=90°,∠ABO+∠BAO=90°,∴∠BAO=∠EBD1,∵在△BED1和△AOB中,∴△BED1≌△AOB(AAS),∴BE=AO=3,D1E=BO=2,即可得出点D的坐标为(﹣2,5);同理可得出:△AFD2≌△AOB,∴FA=BO=2,D2F=AO=3,∴点D的坐标为(﹣5,3),∵∠D1AB=∠D2BA=45°,∴∠AD3B=90°,∴D3(,),综上可知点D的坐标为(﹣2,5)或(﹣5,3)或(,).故答案为:(﹣2,5)或(﹣5,3)或(,).15.如图1中的三种情况所示,对于平面内的点M,点N,点P,如果将线段PM绕点P 顺时针旋转90°能得到线段PN,就称点N是点M关于点P的“正矩点”.(1)在如图2所示的平面直角坐标系xOy中,已知S(﹣3,1),P(1,3),Q(﹣1,﹣3),M(﹣2,4).①在点P,点Q中,点P是点S关于原点O的“正矩点”;②在S,P,Q,M这四点中选择合适的三点,使得这三点满足:点S是点P关于点M的“正矩点”,写出一种情况即可;(2)在平面直角坐标系xOy中,直线y=kx+3(k<0)与x轴交于点A,与y轴交于点B,点A关于点B的“正矩点”记为点C,坐标为C(x c,y c).①当点A在x轴的正半轴上且OA小于3时,求点C的横坐标x c的值;②若点C的纵坐标y c满足﹣1<y c≤2,直接写出相应的k的取值范围.解:(1)①在点P,点Q中,点S绕点O顺时针旋转90°能得到线段OP,故S关于点O的“正矩点”为点P,故答案为点P;②点S是点P关于点M的“正矩点”(答案不唯一);故答案为:S,P,M;(2)①如图1,作CE⊥x轴于点E,作CF⊥y轴于点F,∠BFC=∠AOB=90°,点B(0,3),点A(﹣,0),∵∠ABO+∠CBO=90°,∠CBO+∠BCF=90°,∴∠BCF=∠ABO,BC=BA,∴△BCF≌△AOB(AAS),∴FC=OB=3,故点C的坐标为:(﹣3,3+),即点C的横坐标x c的值为﹣3;②点C(﹣3,3+),如图2,﹣1<y c≤2,即:﹣1<3+≤2,则﹣3≤k.。

2021中考数学压轴题满分训练 – 圆的专题含答案解析

2021中考数学压轴题满分训练 – 圆的专题含答案解析

2021中考数学压轴题满分训练–圆的专题1.如图,AB为⊙O直径,C为⊙O上的一点,过点C的切线与AB的延长线相交于点D,CA=CD.(1)连接BC,求证:BC=OB;(2)E是中点,连接CE,BE,若BE=4,求CE的长.2.如图,AB为⊙O的直径,点C在⊙O上,AD与过点C的切线互相垂直,垂足为D.连接BC并延长,交AD的延长线于点E.(1)求证:AE=AB;(2)若AB=20,BC=16,求CD的长.3.如图,在△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,过点D作⊙O的切线DE交AB于E.(1)求证:DE⊥AB;(2)如果tan B=,⊙O的直径是5,求AE的长.4.阅读以下材料,并按要求完成相应的任务:莱昂哈德•欧拉(LeonhardEuler)是瑞士数学家,在数学上经常见到以他的名字命名的重要常数,公式和定理,下面就是欧拉发现的一个定理:在△ABC中,R和r分别为外接圆和内切圆的半径,O和I分别为其中外心和内心,则OI2=R2﹣2Rr.如图1,⊙O和⊙I分别是△ABC的外接圆和内切圆,⊙I与AB相切于点F,设⊙O的半径为E,⊙I的半径为r,外心O(三角形三边垂直平分线的交点)与内心I(三角形三条角平分线的交点)之间的距离OI=d,则有d2=R2﹣2Rr.下面是该定理的证明过程(部分):延长AI交⊙O于点D,过点I作⊙O的直径MN,连接DM,AN.∵∠D=∠N,∴∠DMI=∠NAI(同弧所对的圆周角相等).∴△MDI∽△ANI.∴=,∴IA•ID=IM•IN,①如图2,在图1(隐去MD,AN)的基础上作⊙O的直径DE,连接BE,BD,BI,IF.∵DE是⊙O的直径,∴∠DBE=90°.∵⊙I与AB相切于点F,∴∠AFI=90°,∴∠DBE=∠IFA.∵∠BAD=∠E(同弧所对的圆周角相等),∴△AIF∽△EDB,∴=.∴IA•BD=DE•IF②任务:(1)观察发现:IM=R+d,IN=(用含R,d的代数式表示);(2)请判断BD和ID的数量关系,并说明理由.(3)请观察式子①和式子②,并利用任务(1),(2)的结论,按照上面的证明思路,完成该定理证明的剩余部分;(4)应用:若△ABC的外接圆的半径为6cm,内切圆的半径为2cm,则△ABC的外心与内心之间的距离为cm.5.【发现】如图(1),AB为⊙O的一条弦,点C在弦AB所对的优弧上,根据圆周角性质,我们知道∠ACB的度数(填“变”或“不变”);若∠AOB=150°,则∠ACB =°.爱动脑筋的小明猜想,如果平面内线段AB的长度已知,∠ACB的大小确定,那么点C是不是在某一个确定的圆上运动呢?【研究】为了解决这个问题,小明先从一个特殊的例子开始研究.如图(2),若AB=2,直线AB上方一点C满足∠ACB=45°,为了画出点C所在的圆,小明以AB为底边构造了一个等腰Rt△AOB,再以O为圆心,OA为半径画圆,则点C在⊙O上.请根据小明的思路在图(2)中完成作图(要求尺规作图,不写作法,保留作图痕迹,并用2B 铅笔或黑色水笔加黑加粗).后来,小明通过逆向思维及合情推理,得出一个一般性的结论,即:若线段AB的长度已知,∠ACB的大小确定,则点C一定在某一个确定的圆上,即定弦定角必定圆,我们把这样的几何模型称之为“定弦定角”模型.【应用】(1)如图(3),AB=2,平面内一点C满足∠ACB=60°,则△ABC面积的最大值为.(2)如图(4),已知正方形ABCD,以AB为腰向正方形内部作等腰△BAE,其中BE =BA,过点E作EF⊥AB于点F,点P是△BEF的内心.①∠BPE=°,∠BPA=°;②连接CP,若正方形ABCD的边长为2,则CP的最小值为.6.如图,BE为⊙O的直径,C为线段BE延长线上一点,CA为⊙O的切线,A为切点,连接AB,AE,AO.∠C=30°.(1)求∠ABC的度数;(2)求证:BO=CE;(3)已知⊙O的半径为6,求图中阴影部分的面积.(结果保留π)7.如图,在△ABC中,点D是AC边上一点,以AD为直径的⊙O与边BC切于点E,且AB=BE.(1)求证:AB是⊙O的切线;(2)若BE=3,BC=7,求⊙O的半径长;(3)求证:CE2=CD•CA.8.如图,AB是⊙O的直径,AC⊥AB,BC交⊙O于点D,点E在劣弧BD上,DE的延长线交AB的延长线于点F,连接AE交BD于点G.(1)求证:∠AED=∠CAD;(2)若点E是劣弧BD的中点,求证:ED2=EG•EA;(3)在(2)的条件下,若BO=BF,DE=1.5,求EF的长.9.定义:三角形一边上的点将该边分为两条线段,且这两条线段的积等于这个点到这边所对顶点连线的平方,则称这个点为三角形该边的“好点”.如图1,△ABC中,点D是BC边上一点,连接AD,若AD2=BD•CD,则称点D是△ABC中BC边上的“好点”.(1)如图2,△ABC的顶点是4×4网格图的格点,请仅用直尺画出(或在图中直接描出)AB边上的“好点”;(2)△ABC中,BC=14,tan B=,tan C=1,点D是BC边上的“好点”,求线段BD的长;(3)如图3,△ABC是⊙O的内接三角形,点H在AB上,连接CH并延长交⊙O于点D.若点H是△BCD中CD边上的“好点”.①求证:OH⊥AB;②若OH∥BD,⊙O的半径为r,且r=3OH,求的值.10.如图,DE是△DBC的外角∠FDC的平分线,交BC的延长线于点E,DE的延长线与△DBC的外接圆交于点A.(1)求证:AB=AC;(2)若∠DCB=90°,sin E=,AD=4,求BD的长.11.已知⊙O为△ABC的外接圆,点E是△ABC的内心,AE的延长线交BC于点F,交⊙O于点D.(1)如图1,求证:BD=ED.(2)如图2,AD为⊙O的直径.若BC=12,sin∠BAC=,求OE的长.12.如图,AB是大半圆O的直径.OA是小半圆O1的直径,点C是大半圆O上的一个动点(不与点A、B重合),AC交小半圆O1于点D,DE⊥OC,垂足为E.(1)求证:AD=DC;(2)求证:DE是半圆O1的切线;(3)如果OE=EC,请判断四边形O1OED是什么四边形,并证明你的结论.13.已知△ABC是⊙O的内接三角形,AB为⊙O的直径.点D是⊙O外一点,连接AD 和OD,OD与AC相交于点E,且OD⊥AC.(1)如图1,若AD是⊙O的切线,tan∠BAC=,证明:AD=AB;(2)如图2,延长DO交⊙O于点F,连接CD,CF,AF.当四边形ADCF为菱形,且∠BAC=30°,BC=1时,求DF的长.14.如图1,在△ABC中,AB=AC,⊙O是△ABC的外接圆,过C作CD∥AB,CD交⊙O于D,连接AD交BC于点E,延长DC至点F,使CF=AC,连接AF.(1)求证:AF是⊙O的切线;(2)求证:AB2﹣BE2=BE•EC;(3)如图2,若点G是△ACD的内心,BC•BE=64,求BG的长.15.已知:△ABC内接于⊙O,连接CO并延长交AB于点E,交⊙O于点D,满足∠BEC =3∠ACD.(1)如图1,求证:AB=AC;(2)如图2,连接BD,点F为弧BD上一点,连接CF,弧CF=弧BD,过点A作AG⊥CD,垂足为点G,求证:CF+DG=CG;(3)如图3,在(2)的条件下,点H为AC上一点,分别连接DH,OH,OH⊥DH,过点C作CP⊥AC,交⊙O于点P,OH:CP=1:,CF=12,连接PF,求PF的长.参考答案1.解:(1)如图,连接OC,AE,过点A作AM⊥CE,垂足为M,∵PC是⊙O的切线,∴∠CAB=∠DCB,又∵CA=CD,∴∠CAB=∠CDB,∴∠DCB=∠CDB,∴BC=BD,又∵AB是⊙O的直径,∴∠ACB=90°,∴∠CAB+∠CBA=90°,∵∠CBA=2∠CDB=2∠CAB,∴∠CBA=90°×=60°,∵OC=OB,∴△OBC是正三角形,∴BC=OB;(2)连接AE,过点A作AM⊥CE,垂足为M,∵E是中点,∴AE=BE=4,∠ACE=∠BCE=∠ACB=×90°=45°,在Rt△AEM中,AE=4,∠AEM=∠CBA=60°,∴EM=AE=2,AM=AE=2,在Rt△ACM中,AM=2,∠ACM=45°,∴CM=AM=2,∴CE=EM+CM=2+2,答:CE的长为2+2.2.(1)证明:连接OC,∵DC切⊙O于C,∴OC⊥CD,∵AE⊥CD,∴AE∥OC,∵AO=BO,∴EC=BC,∴OC=AE,∵OC=OA=OB=AB,∴AE=AB;(2)解:连接AC,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACE=90°,AC⊥BE,∵由(1)知:AB=AE,∴EC=BC,∵BC=16,∴EC=16,在RtACB中,由勾股定理得:AC===12,在Rt△ACE中,S△ACE==,∵AE=AB=20,∴=CD,解得:CD=9.6.3.(1)证明:连接AD,OD,∵AC为⊙O的直径,∴AD⊥BC,∵AB=AC,∴∠BAD=∠CAD,∵OA=OD,∴∠OAD=∠ODA,∴∠BAD=∠ODA,∴AB∥OD,∵DE是⊙O的切线,∴OD⊥DE,∴DE⊥AB;(2)解:∵tan B==,∴设AD=k,BD=2k,∴AB==k,∵AB=AC=5,∴k=,∴AD=,BD=2,∵S△ABD=AB•DE=AD•BD,∴DE==2,∴AE===1.4.解:(1)∵O、I、N三点共线∴OI+IN=ON∴IN=ON﹣OI=R﹣d故答案为:R﹣d.(2)BD=ID.理由如下:∵点I是△ABC的内心∴∠BAD=∠CAD,∠CBI=∠ABI∵∠DBC=∠CAD,∠BID=∠BAD+∠ABI ∠DBI=∠DBC+∠CBI∴∠BID=∠DBI∴BD=ID.(3)由(2)知BD=ID∴式子②可改写为IA•ID=DE•IF又∵IA•ID=IM•IN∴DE•IF=IM•IN∴2R•r=(R+d)(R﹣d)∴R2﹣d2=2Rr∴d2=R2﹣2Rr.(4)∵d2=R2﹣2Rr=62﹣2×6×2=12∴d=2.故答案为:2.5.解:【发现】根据圆周角性质,∠ACB的度数不变,∵∠AOB=150°,∴∠ACB=∠AOB=75°,故答案为:不变,75°;【研究】补全图形如图1所示,【应用】(1)如图2,记△ABC的外接圆的圆心为O,连接OA,OB,∵∠ACB=60°,∴∠AOB=2∠ACB=120°,∵OA=OB,∴∠OAB=30°,过点O作OH⊥AB于H,∴AH=AB=,在Rt△AHO中,设⊙O的半径为2r,则OH=r,根据勾股定理得,(2r)2﹣r2=3,∴r=1(舍去负数),∴OA=2,OH=1,∵点C到AB的最大距离h为r+OH=2+1=3,∴S△ABC最大=AB•h=×2×3=3,故答案为:3;(2)①∵EF⊥AB,∴∠EFB=90°,∴∠BEF+∠EBF=90°,∵点P是△BEF的内心,∴PE,PB分别是∠BEF和∠EBF的角平分线,∴∠BEP=∠BEF,∠EBP=∠ABP=∠ABE,∴∠BPE=180°﹣(∠BEP+∠EBP)=180°﹣(∠BEF+∠EBF)=180°﹣×90°=135°;在△BPE和△BPA中,,∴△BPE≌△BPA(SAS).∴∠BPA=∠BPE=135°,故答案为:135°,135°;②如图3,作△ABP的外接圆,圆心记作点O,连接OA,OB,在优弧AB上取一点Q,连接AQ,BQ,则四边形APBQ是⊙O的圆内接四边形,∴∠AQB=180°∠BPA=45°,∴∠AOB=2∠AQB=90°,∴OA=OB=AB=,连接OC,与⊙O相交于点P'此时,CP'是CP的最小值,过点O作OM⊥AB于M,ON⊥CB,交CB的延长线于N,则四边形OMBN是正方形,∴ON=BN=BM=AB=1,∴CN=BC+BN=3,在Rt△ONC中,OC==,∴CP 的最小值=CP'=OC﹣OP'=﹣,故答案为:﹣.6.(1)解:∵CA为⊙O的切线,∴∠OAC=90°,∴∠AOC=90°﹣∠C=60°,由圆周角定理得,∠ABC=∠AOC=30°;(2)证明:在Rt△AOC中,∠C=30°,∴OA=OC,∵OA=OB=OE,∴OB=CE;(3)解:在Rt△AOC中,AC==6,∴图中阴影部分的面积=×6×6﹣=18﹣6π.7.(1)证明:连接OB、OE,如图所示:在△ABO和△EBO中,,∴△ABO≌△EBO(SSS),∴∠BAO=∠BEO,∵⊙O与边BC切于点E,∴OE⊥BC,∴∠BEO=∠BAO=90°,即AB⊥AD,∴AB是⊙O的切线;(2)解:∵BE=3,BC=7,∴AB=BE=3,CE=4,∵AB⊥AD,∴AC===2,∵OE⊥BC,∴∠OEC=∠BAC=90°,∠ECO=∠ACB,∴△CEO∽△CAB,∴,即,解得:OE=,∴⊙O的半径长为.(3)证明:连接AE,DE,∵AD是⊙O的直径,∴∠AED=90°,∴∠AEB+∠DEC=90°,∵BA是⊙O的切线,∴∠BAC=90°,∴∠BAE+∠EAD=90°,∵AB=BE,∴∠BAE=∠BEA,∴∠DEC=∠EAD,∴△EDC∽△AEC,∴,∴CE2=CD•CA.8.(1)证明:∵AB是⊙O的直径,∴∠ADB=90°,∵AC⊥AB,∴∠CAB=90°,∴∠ABD=∠CAD,∵=,∴∠AED=∠ABD,∴∠AED=∠CAD;(2)证明:∵点E是劣弧BD的中点,∴=,∴∠EDB=∠DAE,∵∠DEG=∠AED,∴△EDG∽△EAD,∴,∴ED2=EG•EA;(3)解:连接OE,∵点E是劣弧BD的中点,∴∠DAE=∠EAB,∵OA=OE,∴∠OAE=∠AEO,∴∠AEO=∠DAE,∴OE∥AD,∴,∵BO=BF=OA,DE=,∴,∴EF=3.9.解:(1)如图:D即为△ABC边AB上的“好点”;(2)如答图1:过A作AH⊥BC于H,∵tan B=,tan C=1,∴,=1,设AH=3k,则BH=4k,CH=3k,∵BC=14,∴3k+4k=14,解得k=2,∴BH=8,AH=CH=6,设BD=x,则CD=14﹣x,DH=8﹣x,Rt△ADH中,AD2=AH2+DH2=62+(8﹣x)2,而点D是BC边上的“好点”,有AD2=BD•CD=x•(14﹣x),∴62+(8﹣x)2=x•(14﹣x),解得x=5或x=10,∴BD=5或BD=10;(3)①∵∠CAH=∠HDB,∠AHC=∠BHD,∴△ACH∽△DBH,∴,∴AH•BH=CH•DH,∵点H是△BCD中CD边上的“好点”,∴BH2=CH•DH,∴AH=BH,∴OH⊥AB;②如答图2:连接AD,∵OH⊥AB,OH∥BD,∴AB⊥BD,∴AD是直径,∵r=3OH,设OH=m,则OA=3m,BD=2m,Rt△AOH中,AH==2m,∴BH=2m,Rt△BHD中,HD==2m,∵点H是△BCD中CD边上的“好点”,∴BH2=CH•DH,∴CH==m,∴==.10.(1)证明:∵DE是△DBC的外角∠FDC的平分线,∴∠FDE=∠CDE,∵∠ADB=∠ACB=∠FDE,∠ABC=∠CDE,∴∠ABC=∠ACB,∴AB=AC;(2)解:∵∠DCB=90°,∴∠DCE=∠BAD=90°,∴∠E+∠CDE=∠ABD+∠ADB=90°,∵∠ADB=∠FDE=∠CDE,∴∠ABD=∠E,∵sin E=,∴sin∠ABD==,∵AD=4,∴BD=4.11.(1)证明:如图1,连接BE.∵E是△ABC的内心,∴∠ABE=∠CBE,∠BAD=∠CAD,∵∠DBC=∠CAD.∴∠DBC=∠BAD,∵∠BED=∠BAD+∠ABE,∴∠DBE=∠DEB,∴BD=ED;(2)如图2 所示;连接OB.∵AD是直径,AD平分∠BAC,∴AD⊥BC,且BF=FC=6,∵,∴OB=10.在Rt△BOF中,BF=6,OB=10,∴,∴DF=2,在Rt△BDF中,BF2+DF2=BD2,∴,∴,∴.12.证明:(1)连接OD,∵AO为圆O1的直径,则∠ADO=90°.∵AC为⊙O的弦,OD为弦心距,∴AD=DC.(2)证明:∵D为AC的中点,O1为AO的中点,∴O1D∥OC.又DE⊥OC,∴DE⊥O1D∴DE与⊙O1相切.(3)如果OE=EC,又D为AC的中点,∴DE∥O1O,又O1D∥OE,∴四边形O1OED为平行四边形.又∠DEO=90°,O1O=O1D,∴四边形O1OED为正方形.13.解:(1)证明:∵OD⊥AC,∴AE=EC=AC,∠DEA=90°,∵AB为⊙O的直径,∴∠ACB=90°,∵tan∠BAC==,∴BC=AC,∴AE=BC,∵AD是⊙O的切线,∴DA⊥AB,∴∠DAO=∠ACB=90°,∴∠DAE+∠CAB=∠ABC+∠CAB=90°,∴∠DAE=∠ABC,在△DAE和△ABC中,,∴△DAE≌△ABC(ASA),∴AD=AB;(2)在Rt△ABC中,∠BAC=30°,BC=1,∴AB=2,AC=,∵∠ABC=∠AFC=60°,∵四边形ADCF为菱形,∴AC=FC=,∴△AFC是等边三角形,∴∠DFC=AFC=30°,∴CE=FC=,∴EF=CE=,∴DF=2EF=3.14.解:(1)如图1,连接OA,∵AB=AC,∴=,∠ACB=∠B,∴OA⊥BC,∵CA=CF,∴∠CAF=∠CFA,∵CD∥AB,∴∠BCD=∠B,∴∠ACB=∠BCD,∴∠ACD=∠CAF+∠CFA=2∠CAF,∵∠ACB=∠BCD,∴∠ACD=2∠ACB,∴∠CAF=∠ACB,∴AF∥BC,∴OA⊥AF,∴AF为⊙O的切线;(2)∵∠BAD=∠BCD=∠ACB,∠B=∠B,∴△ABE∽△CBA,∴,∴AB2=BC•BE=BE(BE+CE)=BE2+BE•CE,∴AB2﹣BE2=BE•EC;(3)由(2)知:AB2=BC•BE,∵BC•BE=64,∴AB=8,如图2,连接AG,∴∠BAG=∠BAD+∠DAG,∠BGA=∠GAC+∠ACB,∵点G为内心,∴∠DAG=∠GAC,又∵∠BAD+∠DAG=∠GAC+∠ACB,∠BAD=∠ACB,∴∠BAG=∠BGA,∴BG=AB=8.15.(1)证明:如图1中,连接AD.设∠BEC=3α,∠ACD=α.∵∠BEC=∠BAC+∠ACD,∴∠BAC=2α,∵CD是直径,∴∠DAC=90°,∴∠D=90°﹣α,∴∠B=∠D=90°﹣α,∵∠ACB=180°﹣∠BAC﹣∠ABC=180°﹣2α﹣(90°﹣α)=90°﹣α.∴∠ABC=∠ACB,∴AB=AC.(2)证明:如图2中,连接AD,在CD上取一点Z,使得CZ=BD.∵=,∴DB=CF,∵∠DBA=∠DCA,CZ=BD,AB=AC,∴△ADB≌△AZC(SAS),∴AD=AZ,∵AG⊥DZ,∴DG=GZ,∴CG=CZ+GZ=BD+DG=CF+DG.(3)解:连接AD,PA,作OK⊥AC于K,OR⊥PC于R,CT⊥FP交FP的延长线于T.∵CP⊥AC,∴∠ACP=90°,∴PA是直径,∵OR⊥PC,OK⊥AC,∴PR=RC,∠ORC=∠OKC=∠ACP=90°,∴四边形OKCR是矩形,∴RC=OK,∵OH:PC=1:,∴可以假设OH=a,PC=2a,∴PR=RC=a,∴RC=OK=a,sin∠OHK==,∴∠OHK=45°,∵OH⊥DH,∴∠DHO=90°,∴∠DHA=180°﹣90°﹣45°=45°,∵CD是直径,∴∠DAC=90°,∴∠ADH=90°﹣45°=45°,∴∠DHA=∠ADH,∴AD=AH,∵∠COP=∠AOD,∴AD=PC,∴AH=AD=PC=2a,∴AK=AH+HK=2a+a=3a,在Rt△AOK中,tan∠OAK==,OA===a,∴sin∠OAK==,∵∠ADG+∠DAG=90°,∠ACD+∠ADG=90°,∴∠DAG=∠ACD,∵AO=CO,∴∠OAK=∠ACO,∴∠DAG=∠ACO=∠OAK,∴tan∠ACD=tan∠DAG=tan∠OAK=,∴AG=3DG,CG=3AG,∴CG=9DG,由(2)可知,CG=DG+CF,∴DG+12=9DG,∴DG=,AG=3DG=3×=,∴AD===,∴PC=AD=,∵sin∠F=sin∠OAK,∴sin∠F==,∴CT=×FC=×12=,FT===,PT===,∴PF=FT﹣PT=﹣=.。

2021年全国各地中考数学压轴题分类汇编(通用版)函数(二)(含答案与解析)

2021年全国各地中考数学压轴题分类汇编(通用版)函数(二)(含答案与解析)

2021年全国各地中考数学压轴题分类汇编(通用版)函数(二)参考答案与试题解析一.选择题(共7小题)1.(2021•丹东)如图,点A在曲线到y1=(x>0)上,点B在双曲线y2=(x<0)上,AB//x 轴,点C是x轴上一点,连接AC、BC,若△ABC的面积是6,则k的值()A.﹣6B.﹣8C.﹣10D.﹣12解:如图,连接OA,OB,AB与y轴交于点M,∵AB∥x轴,点A在曲线到y1=(x>0)上,点B在双曲线y2=(x<0)上,∴S△AOM=×|2|=1,S△BOM=×|k|=﹣k,∵S△ABC=S△AOB=6,∴1﹣k=6,∴k=﹣10.故选:C.2.(2021•丹东)已知抛物线y=ax2+bx+c(a>0),且a+b+c=﹣,a﹣b+c=﹣.判断下列结论:①abc<0;②2a+2b+c>0;③抛物线与x轴正半轴必有一个交点;④当2≤x≤3时,y最小=3a;⑤该抛物线与直线y=x﹣c有两个交点,其中正确结论的个数()A.2B.3C.4D.5解:∵a+b+c=﹣,a﹣b+c=﹣,∴两式相减得b=,两式相加得c=﹣1﹣a,∴c<0,∵a>0,b>0,c<0,∴abc<0,故①正确;∴2a+2b+c=2a+2×﹣1﹣a=a>0,故②正确;∵当x=1时,则y=a+b+c=﹣,当x=﹣1时,则有y=a﹣b+c=﹣,∴当y=0时,则方程ax2+bx+c=0的两个根一个小于﹣1,一个根大于1,∴抛物线与x轴必有一个交点,故③正确;由题意知抛物线的对称轴为直线x==,∴当2≤x≤3时,y随x的增大而增大,∴当x=2时,有最小值,即为y=4a+2b+c=4a+1﹣1﹣a=3a,故④正确;联立抛物线y=ax2+bx+c及直线y=x﹣c可得:x﹣c=ax2+bx+c,整理得:,∴Δ=,∴该抛物线与直线y=x﹣c有两个交点,故⑤正确;∴正确的个数有5个;故选:D.3.如图,在平面直角坐标系中,点A、B在函数y=(k>0,x>0)的图象上,过点A作x轴的垂线,与函数y=﹣(x>0)的图象交于点C,连结BC交x轴于点D.若点A的横坐标为1,BC =3BD,则点B的横坐标为()A.B.2C.D.3解:作BE⊥x轴于E,∴AC∥BE,∴△CDF∽△BDE,∴==,∵BC=3BD,∴==,∴CF=2BE,DF=2DE,设B(,b),∴C(1,﹣2b),∵函数y=﹣(x>0)的图象交于点C,∴﹣k=1×(﹣2b)=﹣2b,∴k=2b,∴B的横坐标为==2,故选:B.4.(2021•营口)如图,在平面直角坐标系中,菱形ABCD的边BC与x轴平行,A,B两点纵坐标分别为4,2,反比例函数y=经过A,B两点,若菱形ABCD面积为8,则k值为()A.﹣8B.﹣2C.﹣8D.﹣6解:∵四边形ABCD是菱形,∴AB=BC,AD∥BC,∵A、B两点的纵坐标分别是4、2,反比例函数y=经过A、B两点,∴x B=,x A=,即A(,4),B(,2),∴AB2=(﹣)2+(4﹣2)2=+4,∴BC=AB=,又∵菱形ABCD的面积为8,∴BC×(y A﹣y B)=8,即×(4﹣2)=8,整理得=4,解得k=±8,∵函数图象在第二象限,∴k<0,即k=﹣8,故选:A.5.(2021•陕西)在平面直角坐标系中,若将一次函数y=2x+m﹣1的图象向左平移3个单位后,得到一个正比例函数的图象,则m的值为()A.﹣5B.5C.﹣6D.6解:将一次函数y=2x+m﹣1的图象向左平移3个单位后,得到y=2(x+3)+m﹣1,把(0,0)代入,得到:0=6+m﹣1,解得m=﹣5.故选:A.6.(2021•本溪)如图,在矩形ABCD中,BC=1,∠ADB=60°,动点P沿折线AD→DB运动到点B,同时动点Q沿折线DB→BC运动到点C,点P,Q在矩形边上的运动速度为每秒1个单位长度,点P,Q在矩形对角线上的运动速度为每秒2个单位长度.设运动时间为t秒,△PBQ的面积为S,则下列图象能大致反映S与t之间函数关系的是()A.B.C.D.解:∵四边形ABCD是矩形,∴AD=BC=1,∠A=∠C=90°,AD∥BC,∴∠ADB=∠DBC=60°,∴∠ABD=∠CDB=30°,∴BD=2AD=2,当点P在AD上时,S=•(2﹣2t)•(1﹣t)•sin60°=(1﹣t)2(0<t<1),当点P在线段BD上时,S=(4﹣2t)•(t﹣1)=﹣t2+t﹣(1<t≤2),观察图象可知,选项D满足条件,故选:D.7.(2021•陕西)下表中列出的是一个二次函数的自变量x与函数y的几组对应值:x…﹣2013…y…6﹣4﹣6﹣4…下列各选项中,正确的是()A.这个函数的图象开口向下B.这个函数的图象与x轴无交点C.这个函数的最小值小于﹣6D.当x>1时,y的值随x值的增大而增大解:设二次函数的解析式为y=ax2+bx+c,由题知,解得,∴二次函数的解析式为y=x2﹣3x﹣4=(x﹣4)(x+1)=(x﹣)2﹣,∴(1)函数图象开口向上,(2)与x轴的交点为(4,0)和(﹣1,0),(3)当x=时,函数有最小值为﹣,(4)函数对称轴为直线x=,根据图象可知当x>时,y的值随x值的增大而增大,故选:C.二.填空题(共2小题)8.(2021•长春)如图,在平面直角坐标系中,点A(2,4)在抛物线y=ax2上,过点A作y轴的垂线,交抛物线于另一点B,点C、D在线段AB上,分别过点C、D作x轴的垂线交抛物线于E、F 两点.当四边形CDFE为正方形时,线段CD的长为﹣2+2.解:把A(2,4)代入y=ax2中得4=4a,解得a=1,∴y=x2,设点C横坐标为m,则CD=CE=2m,∴点E坐标为(m,4﹣2m),∴m2=4﹣2m,解得m=﹣1﹣(舍)或m=﹣1+.∴CD=2m=﹣2+2.故答案为:﹣2+2.9.(2021•陕西)若A(1,y1),B(3,y2)是反比例函数y=(m<)图象上的两点,则y1、y2的大小关系是y1<y2.(填“>”、“=”或“<”)解:∵2m﹣1<0(m<),∴图象位于二、四象限,在每一个象限内,y随x的增大而增大,又∵0<1<3,∴y1<y2,故答案为:<.三.解答题(共16小题)10.(2021•吉林)如图,在平面直角坐标系中,一次函数y=x﹣2的图象与y轴相交于点A,与反比例函数y=在第一象限内的图象相交于点B(m,2),过点B作BC⊥y轴于点C.(1)求反比例函数的解析式;(2)求△ABC的面积.解:(1)∵B点是直线与反比例函数交点,∴B点坐标满足一次函数解析式,∴,∴m=3,∴B(3,2),∴k=6,∴反比例函数的解析式为;(2)∵BC⊥y轴,∴C(0,2),BC∥x轴,∴BC=3,令x=0,则y=,∴A(0,﹣2),∴AC=4,∴,∴△ABC的面积为6.11.(2021•陕西)已知抛物线y=﹣x2+2x+8与x轴交于点A、B(点A在点B的左侧),与y轴交于点C.(1)求点B、C的坐标;(2)设点C′与点C关于该抛物线的对称轴对称.在y轴上是否存在点P,使△PCC′与△POB 相似,且PC与PO是对应边?若存在,求出点P的坐标;若不存在,请说明理由.解:(1)∵y=﹣x2+2x+8,取x=0,得y=8,∴C(0,8),取y=0,得﹣x2+2x+8=0,解得:x1=﹣2,x2=4,∴B(4,0);(2)存在点P,设P(0,y),若CC'是斜边,则PC>PO,不合题意,舍去,∵CC'∥OB,且PC与PO是对应边,∴,即:,解得:y1=16,,∴P(0,16)或P(0,).12.(2021•长春)在平面直角坐标系中,抛物线y=2(x﹣m)2+2m(m为常数)的顶点为A.(1)当m=时,点A的坐标是(,1),抛物线与y轴交点的坐标是(0,);(2)若点A在第一象限,且OA=,求此抛物线所对应的二次函数的表达式,并写出函数值y 随x的增大而减小时x的取值范围;(3)当x≤2m时,若函数y=2(x﹣m)2+2m的最小值为3,求m的值;(4)分别过点P(4,2)、Q(4,2﹣2m)作y轴的垂线,交抛物线的对称轴于点M、N.当抛物线y=2(x﹣m)2+2m与四边形PQNM的边有两个交点时,将这两个交点分别记为点B、点C,且点B的纵坐标大于点C的纵坐标.若点B到y轴的距离与点C到x轴的距离相等,直接写出m 的值.解:(1)当m=时,y=2(x﹣)2+1,∴顶点A(,1),令x=0,得y=,∴抛物线与y轴交点的坐标为(0,),故答案为:(,1),(0,);(2)∵点A(m,2m)在第一象限,且OA=,∴m2+(2m)2=()2,且m>0,解得:m=1,∴抛物线的解析式为y=2(x﹣1)2+2,当x<1时,函数值y随x的增大而减小;(3)∵当x≤2m时,若函数y=2(x﹣m)2+2m的最小值为3,∴分两种情况:2m<m,即m<0时,或2m>m,即m>0时,①当m<0时,2(2m﹣m)2+2m=3,解得:m=(舍)或m=﹣,②当m>0时,2(m﹣m)2+2m=3,解得:m=,综上所述,m的值为或﹣;(4)如图1,当m>0时,∵P(4,2)、Q(4,2﹣2m),∴M(m,2),N(m,2﹣2m),抛物线y=2(x﹣m)2+2m与四边形PQNM的边有两个交点,若点B在PM边上,点C在MN边上,∴令y=2,则2=2(x﹣m)2+2m,∴x=m+或x=m﹣(不合题意,应舍去),∴B(m+,2),C(m,2m),根据题意,得2m=m+,解得:m=或m=(不合题意,应舍去);若点B在PM边上,点C在NQ边上,则2﹣2m=m+,解得:m=,经检验,m=不符合题意,舍去,∴m=,若点B在PQ边上,点C在NQ边上,则4=2﹣2m,解得:m=﹣1<0,不合题意,舍去;当m<0时,如图2,若点B在NQ边上,点C在PM边上,则2﹣2m=2(x﹣m)2+2m,∴x=m+或x=m﹣(舍去),∴|m+|=2,当m+=2时,得m2﹣2m+3=0,∵Δ=(﹣2)2﹣4×1×3=﹣8<0,∴该方程无解;当m+=﹣2时,得m2﹣6m+3=0,解得:m=3﹣或m=3+,∵m<0,∴均不符合题意;若点B在NQ边上,点C在MN边上,则|m+|=|2m|,∴m+=﹣2m或m+=2m,∵m<0,∴m=﹣或m=﹣1﹣,经验证,m=﹣时,不符合题意;∴m=﹣1﹣;若点B在PQ边上,点C在PM边上,显然点B到y轴的距离为4,点C到x轴的距离为2,不符合题意;综上所述,m的值为或或﹣1﹣.13.(2021•丹东)某超市销售一种商品,每件成本为50元,销售人员经调查发现,销售单价为100元时,每月的销售量为50件,而销售单价每降低2元,则每月可多售出10件,且要求销售单价不得低于成本.(1)求该商品每月的销售量y(件)与销售单价x(元)之间的函数关系式;(不需要求自变量取值范围)(2)若使该商品每月的销售利润为4000元,并使顾客获得更多的实惠,销售单价应定为多少元?(3)超市的销售人员发现:当该商品每月销售量超过某一数量时,会出现所获利润反而减小的情况,为了每月所获利润最大,该商品销售单价应定为多少元?解:(1)∵依题意,得:y=50+(100﹣x)××10=﹣5x+550,∴y与x的函数关系式为y=﹣5x+550;(2)∵依题意得:y(x﹣50)=4000,即(﹣5x+550)(x﹣50)=4000,解得:x1=70,x2=90,∵70<90,∴当该商品每月销售利润为4000,为使顾客获得更多实惠,销售单价应定为70元;(3)设每月总利润为w,依题意得w=y(x﹣50)=(﹣5x+550)(x﹣50)=﹣5x2+800x﹣27500=﹣5(x﹣80)2+4500,∵﹣5<0,此图象开口向下,∴当x=80时,w有最大值为4500元,∴为了每月所获利润最大,该商品销售单价应定为80元.14.(2021•吉林)如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象经过点A(0,﹣),点B(1,).(1)求此二次函数的解析式;(2)当﹣2≤x≤2时,求二次函数y=x2+bx+c的最大值和最小值;(3)点P为此函数图象上任意一点,其横坐标为m,过点P作PQ∥x轴,点Q的横坐标为﹣2m+1.已知点P与点Q不重合,且线段PQ的长度随m的增大而减小.①求m的取值范围;②当PQ≤7时,直接写出线段PQ与二次函数y=x2+bx+c(﹣2≤x<)的图象交点个数及对应的m的取值范围.解:(1)将A(0,﹣),点B(1,)代入y=x2+bx+c得:,解得,∴y=x2+x﹣.(2)∵y=x2+x﹣=(x+)2﹣2,∵抛物线开口向上,对称轴为直线x=﹣.∴当x=﹣时,y取最小值为﹣2,∵2﹣(﹣)>﹣﹣(﹣2),∴当x=2时,y取最大值22+2﹣=.(3)①PQ=|﹣2m+1﹣m|=|﹣3m+1|,当﹣3m+1>0时,PQ=﹣3m+1,PQ的长度随m的增大而减小,当﹣3m+1<0时,PQ=3m﹣1,PQ的长度随m增大而增大,∴﹣3m+1>0满足题意,解得m<.②∵0<PQ≤7,∴0<﹣3m+1≤7,解得﹣2≤m<,如图,当x=﹣时,点P在最低点,PQ与图象有1交点,m增大过程中,﹣<m<,点P与点Q在对称轴右侧,PQ与图象只有1个交点,直线x=关于抛物线对称轴直线x=﹣对称后直线为x=﹣,∴﹣<m<﹣时,PQ与图象有2个交点,当﹣2≤m≤﹣时,PQ与图象有1个交点,综上所述,﹣2≤m≤﹣或﹣≤m时,PQ与图象交点个数为1,﹣<m<﹣时,PQ 与图象有2个交点.15.(2021•大连)某电商销售某种商品一段时间后,发现该商品每天的销售量y(单位:千克)和每千克的售价x(单位:元)满足一次函数关系(如图所示),其中50≤x≤80.(1)求y关于x的函数解析式;(2)若该种商品的成本为每千克40元,该电商如何定价才能使每天获得的利润最大?最大利润是多少?解:(1)设y=kx+b,将(50,100)、(80,40)代入,得:,解得:∴y=﹣2x+200 (50≤x≤80);(2)设电商每天获得的利润为w元,则w=(x﹣40)(﹣2x+200)=﹣2x2+280x﹣8000=﹣2(x﹣70)2+1800,∵﹣2<0,且对称轴是直线x=70,又∵50≤x≤80,∴当x=70时,w取得最大值为1800,答:该电商售价为70元时获得最大利润,最大利润是1800元.16.(2021•丹东)如图,已知点A(﹣8,0),点B(﹣5,﹣4),直线y=2x+m过点B交y轴于点C,交x轴于点D,抛物线y=ax2+x+c经过点A、C、D,连接AB、AC.(1)求抛物线的表达式;(2)判断△ABC的形状,并说明理由;(3)E为直线AC上方的抛物线上一点,且tan∠ECA=,求点E的坐标;(4)N为线段AC上的动点,动点P从点B出发,以每秒1个单位长度的速度沿线段BN运动到点N,再以每秒个单位长度的速度沿线段NC运动到点C,又以每秒1个单位长度的速度沿线段CO向点O运动,当点P运动到点O后停止,请直接写出上述运动时间的最小值及此时点N的坐标.解:(1)∵直线y=2x+m过点B(﹣5,4),交y轴于点C,∴﹣4=2×(﹣5)+m,解得:m=6,∴C(0,6),将A(﹣8,0)、C(0,6)代入,得:,解得:,∴抛物线的表达式为;(2)△ABC为直角三角形,且∠BAC=90°,理由如下:∵点A(﹣8,0),点B(﹣5,﹣4),点C(0,6),∴AB2=(﹣8+5)2+(0+4)2=25,AC2=(﹣8+0)2+(0﹣6)2=100,BC2=(﹣5+0)2+(﹣4﹣6)2=125,∴AC2+AB2=BC2,∴△ABC为直角三角形,且∠BAC=90°;(3)由(2)知AB=5,AC=10,∴tan∠BCA==tan∠ECA,∴∠BCA=∠ECA,如图1,延长BA至F,使AF=AB,连接CF,则点B、F关于点A对称,∴F(﹣11,4),∵∠BAC=∠F AC=90°,AF=AB,AC=AC,∴△F AC≌△BAC(SAS),∴∠BCA=∠FCA,∴点E为直线CF与抛物线的交点,设直线CF的解析式为y=kx+b,则,解得:,∴直线CF的解析式为,联立方程组,解得:或(舍去),故点E坐标为(,);(4)过N作MN⊥BC于M,过F作FM'⊥BC交AC于N',连接FN,则FN=BN,∵AB=5,BC=,∴sin∠BCA=,∴MN=,又CO=6,∴点P运动时间t==BN+MN+6=FN+MN+6≥FM'+6,当F、N、M三点共线时,t最小,∵AC=10,BC=,∴sin∠ABC=,∴FM'=,∴点P运动时间t的最小值为,由直线BC的表达式y=2x+6得点D坐标为(﹣3,0),∵FD=,∴点D与点M'重合,则点N(即N')为直线FD与直线AC的交点,由点A(﹣8,0)和C(0,6)得直线AC的表达式为,由点F(﹣11,4)和D(﹣3,0)得直线FD的表达式为,联立方程组,解得:,∴此时N坐标为(﹣6,).17.(2021•营口)某商家正在热销一种商品,其成本为30元/件,在销售过程中发现随着售价增加,销售量在减少.商家决定当售价为60元/件时,改变销售策略,此时售价每增加1元需支付由此产生的额外费用150元.该商品销售量y(件)与售价x(元/件)满足如图所示的函数关系(其中40≤x≤70,且x为整数).(1)直接写出y与x的函数关系式;(2)当售价为多少时,商家所获利润最大,最大利润是多少?解:(1)设线段AB的表达式为:y=kx+b(40≤x≤60),将点(40,300)、(60,100)代入上式得:,解得:,∴函数的表达式为:y=﹣10x+700(40≤x≤60),设线段BC的表达式为:y=mx+n(60<x≤70),将点(60,100)、(70,150)代入上式得:,解得:,∴函数的表达式为:y=5x﹣200(60<x≤70),∴y与x的函数关系式为:y=;(2)设获得的利润为w元,①当40≤x≤60时,w=(x﹣30)(﹣10x+700)=﹣10(x﹣50)2+4000,∵﹣10<0,∴当x=50时,w有值最大,最大值为4000元;②当60<x≤70时,w=(x﹣30)(5x﹣200)﹣150(x﹣60)=5(x﹣50)2+2500,∵5>0,∴当60<x≤70时,w随x的增大而增大,∴当x=70时,w有最大,最大值为:5(70﹣50)2+2500=4500(元),综上,当售价为70元时,该商家获得的利润最大,最大利润为4500元.18.(2021•大连)已知函数y=,记该函数图象为G.(1)当m=2时,①已知M(4,n)在该函数图象上,求n的值;②当0≤x≤2时,求函数G的最大值.(2)当m>0时,作直线x=m与x轴交于点P,与函数G交于点Q,若∠POQ=45°时,求m 的值;(3)当m≤3时,设图象与x轴交于点A,与y轴交与点B,过点B作BC⊥BA交直线x=m于点C,设点A的横坐标为a,C点的纵坐标为c,若a=﹣3c,求m的值.解:(1)当m=2时,y=,①∵M(4,n)在该函数图象上,∴n=42﹣2×4+2=10;②当0≤x<2时,y=﹣x2+x+2=﹣(x﹣)2+2,∵﹣<0,∴当x=时,y有最大值是2,当x=2时,y=22﹣2×2+2=2,∵2<2,∴当0≤x≤2时,函数G的最大值是2;(2)分两种情况:①如图1,当Q在x轴上方时,由题意得:OP=m,∵∠POQ=45°,∠OPQ=90°,∴△POQ是等腰直角三角形,∴OP=PQ,∴m=﹣+m+m,解得:m1=0,m2=6,∵m>0,∴m=6;②当Q在x轴下方时,同理得:m=﹣﹣m 解得:m1=0,m2=14,∵m>0,∴m=14;综上,m的值是6或14;(3)分两种情况:①如图2,当0≤m≤3时,过点C作CD⊥y轴于D,当x=0时,y=m,∴OB=m,∵CD=m,∴CD=OB,∵AB⊥BC,∴∠ABC=∠ABO+∠CBD=90°,∵∠CBD+∠BCD=90°,∴∠ABO=∠BCD,∵∠AOB=∠CDB=90°,∴△ABO≌△BCD(ASA),∴OA=BD,当x<m时,y=0,即﹣x2+x+m=0,x2﹣x﹣2m=0,解得:x1=,x2=,∴OA=,且﹣≤m≤3,∵点A的横坐标为a,C点的纵坐标为c,若a=﹣3c,∴OD=c=﹣a,∴BD=m﹣OD=m+a,∵OA=BD,∴=m+,解得:m1=0(此时,A,B,C三点重合,舍),m2=;②当m<0时,如图3,过点C作CD⊥y轴于D,同理得:OA=BD,当x≥m时,y=0,则x2﹣mx+m=0,解得:x1=,m2=(舍),∴OA==a,∴=c﹣m=﹣a﹣m,解得:m1=0,m2=﹣;综上,m的值是或﹣.19.(2021•营口)如图,在平面直角坐标系xOy中,抛物线y=3x2+bx+c过点A(0,﹣2),B(2,0),点C为第二象限抛物线上一点,连接AB,AC,BC,其中AC与x轴交于点E,且tan∠OBC =2.(1)求点C坐标;(2)点P(m,0)为线段BE上一动点(P不与B,E重合),过点P作平行于y轴的直线l与△ABC的边分别交于M,N两点,将△BMN沿直线MN翻折得到△B′MN,设四边形B′NBM的面积为S,在点P移动过程中,求S与m的函数关系式;(3)在(2)的条件下,若S=3S△ACB′,请直接写出所有满足条件的m值.解:(1)∵抛物线y=3x2+bx+c过点A(0,﹣2),B(2,0),∴,解得,∴抛物线的解析式为y=3x2﹣5x﹣2,如图1中,设BC交y轴于D.∵tan∠OBD=2=,OB=2,∴OD=4,∴D(0,4),设直线BD的解析式为y=kx+b,则有,解得,∴直线BD的解析式为y=﹣2x+4,由,解得(即点B)或,∴C(﹣1,6).(2)∵A(0,﹣2),B(2,0),C(﹣1,6),∴直线AB的解析式为y=x﹣2,直线AC的解析式为y=﹣8x﹣2,∴E(﹣,0),当0<m<2时,∵P(m,0),∴M(m,﹣2m+4),N(m,m﹣2),∴MN=﹣2m+4﹣m+2=﹣3m+6,∴S=•BB′•MN=×2(2﹣m)×(﹣3m+6)=3m2﹣12m+12.当﹣<m≤0时,如图2中,∵P(m,0),∴M(m,﹣2m+4),N(m,﹣8m﹣2),∴MN=﹣2m+4+8m+2=6m+6,∴S=•BB′•MN=×2(2﹣m)×(6m+6)=﹣6m2+6m+12.综上所述,S=.(3)∵直线AC交x轴于(﹣,0),B′(2m﹣2),当﹣6m2+6m+12=3××|2m﹣2+|×8,解得m=或(都不符合题意舍弃),当3m2﹣12m+12=3××|2m﹣2+|×8,解得m=1或11(舍弃)或﹣2+或﹣2﹣(舍弃),综上所述,满足条件的m的值为1或﹣2+.20.(2021•本溪)某网店销售一款市场上畅销的蒸蛋器,进价为每个40元,在销售过程中发现,这款蒸蛋器销售单价为60元时,每星期卖出100个.如果调整销售单价,每涨价1元,每星期少卖出2个,现网店决定提价销售,设销售单价为x元,每星期销售量为y个.(1)请直接写出y(个)与x(元)之间的函数关系式;(2)当销售单价是多少元时,该网店每星期的销售利润是2400元?(3)当销售单价是多少元时,该网店每星期的销售利润最大?最大利润是多少元?解:(1)由题意,得:y=100﹣2(x﹣60)=﹣2x+220,∴y=﹣2x+220;(3)W=﹣2x2+300x﹣8800=﹣2(x﹣75)2+2450,∵﹣2<0,∴当x=75时,W有最大值,最大值为2450元,答:每件定价为75元时利润最大,最大利润为2450元.21.(2021•吉林)疫苗接种,利国利民.甲、乙两地分别对本地各40万人接种新冠疫苗.甲地在前期完成5万人接种后,甲、乙两地同时以相同速度接种,甲地经过a天后接种人数达到25万人,由于情况变化,接种速度放缓,结果100天完成接种任务,乙地80天完成接种任务,在某段时间内,甲、乙两地的接种人数y(万人)与各自接种时间x(天)之间的关系如图所示.(1)直接写出乙地每天接种的人数及a的值;(2)当甲地接种速度放缓后,求y关于x的函数解析式,并写出自变量x的取值范围;(3)当乙地完成接种任务时,求甲地未接种疫苗的人数.解:(1)乙地接种速度为40÷80=0.5(万人/天),0.5a=25﹣5,解得a=40.(2)设y=kx+b,将(40,25),(100,40)代入解析式得:,解得,∴y=x+15(40≤x≤100).(3)把x=80代入y=x+15得y=×80+15=35,40﹣35=5(万人).22.(2021•山西)综合与探究如图,抛物线y=x2+2x﹣6与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,连接AC,BC.(1)求A、B,C三点的坐标并直接写出直线AC,BC的函数表达式.(2)点P是直线AC下方抛物线上的一个动点,过点P作BC的平行线l,交线段AC于点D.①试探究:在直线l上是否存在点E,使得以点D,C,B,E为顶点的四边形为菱形,若存在,求出点E的坐标,若不存在,请说明理由;②设抛物线的对称轴与直线l交于点M,与直线AC交于点N.当S△DMN=S△AOC时,请直接写出DM的长.解:(1)当y=0时,x2+2x﹣6=0,解得x1=﹣6,x2=2,∴A(﹣6,0),B(2,0),当x=0时,y=﹣6,∴C(0,﹣6),∵A(﹣6,0),C(0,﹣6),∴直线AC的函数表达式为y=﹣x﹣6,∵B(2,0),C(0,﹣6),∴直线BC的函数表达式为y=3x﹣6;(2)①存在:设点D的坐标为(m,﹣m﹣6),其中﹣6<m<0,∵B(2,0),C(0,﹣6),∴BD2=(m﹣2)2+(m+6)2,BC2=22+62=40,DC2=m2+(﹣m﹣6+6)2=2m2,∵DE∥BC,∴当DE=BC时,以点D,C,B,E为顶点的四边形为平行四边形,分两种情况:如图,当BD=BC时,四边形BDEC为菱形,∴BD2=BC2,∴(m﹣2)2+(m+6)2=40,解得:m1=﹣4,m2=0(舍去),∴点D的坐标为(﹣4,﹣2),∴点E的坐标为(﹣6,﹣8);如图,当CD=CB时,四边形CBED为菱形,∴CD2=CB2,∴2m2=40,解得:m1=﹣2,m2=2(舍去),∴点D的坐标为(﹣2,2﹣6),∴点E的坐标为(2﹣2,2);综上,存在点E,使得以点D,C,B,E为顶点的四边形为菱形,点E的坐标为(﹣6,﹣8)或(2﹣2,2);②设点D的坐标为(m,﹣m﹣6),其中﹣6<m<0,∵A(﹣6,0),B(2,0),∴抛物线的对称轴为直线x=﹣2,∵直线BC的函数表达式为y=3x﹣6,直线l∥BC,∴设直线l的解析式为y=3x+b,∵点D的坐标(m,﹣m﹣6),∴b=﹣4m﹣6,∴M(﹣2,﹣4m﹣12),∵抛物线的对称轴与直线AC交于点N.∴N(﹣2,﹣4),∴MN=﹣4m﹣12+4=﹣4m﹣8,∵S△DMN=S△AOC,∴(﹣4m﹣8)(﹣2﹣m)=×6×6,整理得:m2+4m﹣5=0,解得:m1=﹣5,m2=1(舍去),∴点D的坐标为(﹣5,﹣1),∴点M的坐标为(﹣2,8),∴DM==3,答:DM的长为3.23.(2021•本溪)如图,抛物线y=﹣x2+bx+c与x轴交于点A和点C(﹣1,0),与y轴交于点B(0,3),连接AB,BC,点P是抛物线第一象限上的一动点,过点P作PD⊥x轴于点D,交AB于点E.(1)求抛物线的解析式;(2)如图1,作PF⊥PD于点P,使PF=OA,以PE,PF为邻边作矩形PEGF.当矩形PEGF 的面积是△BOC面积的3倍时,求点P的坐标;(3)如图2,当点P运动到抛物线的顶点时,点Q在直线PD上,若以点Q、A、B为顶点的三角形是锐角三角形,请直接写出点Q纵坐标n的取值范围.解:(1)由题意得:,解得,故抛物线的表达式为y=﹣x2+x+3;(2)对于y=﹣x2+x+3,令y=﹣x2+x+3=0,解得x=4或﹣1,故点A的坐标为(4,0),则PF=2,由点A、B的坐标得,直线AB的表达式为y=﹣x+3,设点P的坐标为(x,﹣x2+x+3),则点E(x,﹣x+3),则矩形PEGF的面积=PF•PE=2×(﹣x2+x+3+x﹣3)=3S△BOC=3××BO•CO=×3×1,解得x=1或3,故点P的坐标为(1,)或(3,3);(3)由抛物线的表达式知,其对称轴为x=,故点Q的坐标为(,n),当∠ABQ为直角时,如图2﹣1,设BQ交x轴于点H,由直线AB的表达式知,tan∠BAO=,则tan∠BHO=,故设直线BQ的表达式为y=x+t,该直线过点B(0,3),故t=3,则直线BQ的表达式为y=x+3,当x=时,y=x+3=5,即n=5;②当∠BQA为直角时,过点Q作直线MN交y轴于点N,交过点A与y轴的平行线于点M,∵∠BQN+∠MQA=90°,∠MQA+∠MAQ=90°,∴∠BQN=∠MAQ,∴tan∠BQN=tan∠MAQ,即,则,解得n=;24.(2021•陕西)在一次机器“猫”抓机器“鼠”的展演测试中,“鼠”先从起点出发,1min后,“猫”从同一起点出发去追“鼠”,抓住“鼠”并稍作停留后,“猫”抓着“鼠”沿原路返回.“鼠”、“猫”距起点的距离y(m)与时间x(min)之间的关系如图所示.(1)在“猫”追“鼠”的过程中,“猫”的平均速度与“鼠”的平均速度的差是1m/min;(2)求AB的函数表达式;(3)求“猫”从起点出发到返回至起点所用的时间.解:(1)由图象知:“鼠”6min跑了30m,∴“鼠”的速度为:30÷6=5(m/min),“猫”5min跑了30m,∴“猫”的速度为:30÷5=6(m/min),∴“猫”的平均速度与“鼠”的平均速度的差是1(m/min),故答案为:1;(2)设AB的解析式为:y=kx+b,∵图象经过A(7,30)和B(10,18),把点A和点B坐标代入函数解析式得:,解得:,∴AB的解析式为:y=﹣4x+58;(3)令y=0,则﹣4x+58=0,∴x=14.5,∵“猫”比“鼠”迟一分钟出发,∴“猫”从起点出发到返回至起点所用的时间为14.5﹣1=13.5(min).答:“猫”从起点出发到返回至起点所用的时间13.5min.25.(2021•长春)《九章算术》中记载,浮箭漏(图①)出现于汉武帝时期,它由供水壶和箭壶组成,箭壶内装有箭尺,水匀速地从供水壶流到箭壶,箭壶中的水位逐渐上升,箭尺匀速上浮,可通过读取箭尺读数计算时间.某学校STEAM小组仿制了一套浮箭漏,并从函数角度进行了如下实验探究:【实验观察】实验小组通过观察,每2小时记录一次箭尺读数,得到如表:供水时间x(小时)02468箭尺读数y(厘米)618304254【探索发现】①建立平面直角坐标系,如图②,横轴表示供水时间x.纵轴表示箭尺读数y,描出以表格中数据为坐标的各点.②观察上述各点的分布规律,判断它们是否在同一条直线上,如果在同一条直线上,求出这条直线所对应的函数表达式,如果不在同一条直线上,说明理由.【结论应用】应用上述发现的规律估算:①供水时间达到12小时时,箭尺的读数为多少厘米?②如果本次实验记录的开始时间是上午8:00,那当箭尺读数为90厘米时是几点钟?(箭尺最大读数为100厘米)解:【探索发现】①如图②,②观察上述各点的分布规律,可得它们是否在同一条直线上,设这条直线所对应的函数表达式为y=kx+b,则,解得:,∴y=6x+6;【结论应用】应用上述发现的规律估算:①x=12时,y=6×12+6=78,∴供水时间达到12小时时,箭尺的读数为78厘米;②y=90时,6x+6=90,解得:x=14,∴供水时间为14小时,∵本次实验记录的开始时间是上午8:00,8:00+14=22:00,∴当箭尺读数为90厘米时是22点钟.。

2021年中考数学压轴题100题精选(附解析)

2021年中考数学压轴题100题精选(附解析)

中考数学压轴题100题精选含答案【001】如图,已知抛物线2(1)y a x =-+a ≠0)经过点(2)A -,0,抛物线的顶点为D ,过O 作射线OM AD ∥.过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结BC .(1)求该抛物线的解析式;(2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为()t s .问当t 为何值时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形? (3)若OC OB =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1个长度单位和2个长度单位的速度沿OC 和BO 运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t ()s ,连接PQ ,当t 为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ 的长.【002】如图16,在Rt △ABC 中,∠C =90°,AC = 3,AB = 5.点P 从点C 出发沿CA 以每秒1个单位长的速度向点A 匀速运动,到达点A 后立刻以原来的速度沿AC 返回;点Q 从点A 出发沿AB 以每秒1个单位长的速度向点B 匀速运动.伴随着P 、Q 的运动,DE 保持垂直平分PQ ,且交PQ 于点D ,交折线QB -BC -CP 于点E .点P 、Q 同时出发,当点Q 到达点B 时停止运动,点P 也随之停止.设点P 、Q 运动的时间是t 秒(t >0).(1)当t = 2时,AP = ,点Q 到AC 的距离是 ; (2)在点P 从C 向A 运动的过程中,求△APQ 的面积S 与t 的函数关系式;(不必写出t 的取值范围)(3)在点E 从B 向C 运动的过程中,四边形QBED为直角梯形?若能,求t (4)当DE 经过点C 时,请直接..写出t 的值.图16【003】如图,在平面直角坐标系中,已知矩形ABCD 的三个顶点B (4,0)、C (8,0)、D(8,8).抛物线y=ax 2+bx 过A 、C 两点.(1)直接写出点A 的坐标,并求出抛物线的解析式;(2)动点P 从点A 出发.沿线段AB 向终点B 运动,同时点Q 从点C 出发,沿线段CD 向终点D 运动.速度均为每秒1个单位长度,运动时间为t 秒.过点P 作PE ⊥AB 交AC 于点E ,①过点E 作EF ⊥AD 于点F ,交抛物线于点G.当t 为何值时,线段EG 最长?②连接EQ .在点P 、Q 运动的过程中,判断有几个时刻使得△CEQ 是等腰三角形? 请直接写出相应的t 值。

2021中考数学压轴题训练 –圆的专题含答案

2021中考数学压轴题训练 –圆的专题含答案

2021中考数学压轴题满分训练–(圆的专题)1.如图,AB为⊙O的直径,PQ切⊙O于E,AC⊥PQ于C,交⊙O于D.(1)求证:AE平分∠BAC;(2)若AD=EC=4,求⊙O的半径.2.AB是⊙O的直径,点C是⊙O上一点,连接AC、BC,直线MN过点C,满足∠BCM =∠BAC=α.(1)如图①,求证:直线MN是⊙O的切线;(2)如图②,点D在线段BC上,过点D作DH⊥MN于点H,直线DH交⊙O于点E、F,连接AF并延长交直线MN于点G,连接CE,且CE=,若⊙O的半径为1,cosα=,求AG•ED的值.3.如图,点O在直线l上,过点O作AO⊥l,AO=3.P为直线l上一点,连接AP,在直线l右侧取点B,∠APB=90°,且PA=PB,过点B作BC⊥l交l于点C.(1)求证:△AOP≌△PCB;(2)若CO=2,求BC的长;(3)连接AB,若点C为△ABP的外心,则OP=.4.如图,已知△ABC内接于⊙O,直径AD交BC于点E,连接OC,过点C作CF⊥AD,垂足为F.过点D作⊙O的切线,交AB的延长线于点G.(1)若∠G=50°,求∠ACB的度数;(2)若AB=AE,求证:∠BAD=∠COF;(3)在(2)的条件下,连接OB,设△AOB的面积为S1,△ACF的面积为S2,若,求tan∠CAF的值.5.如图,BC是⊙O的直径,AD是⊙O的弦,AD交BC于点E,连接AB,CD.过点E 作EF⊥AB,垂足为F,∠AEF=∠D.(1)求证:AD⊥BC;(2)点G在BC的延长线上,连接AG,∠DAG=2∠D.①求证:AG与⊙O相切;②当=,CE=3时,求AG的长.6.如图,AB是⊙O的直径,C为圆周上一点,∠ABC=30°,⊙O过点B的切线与CO 的延长线交于点D.(1)∠CAB=,∠BOD=;(2)求证:△ABC≌△ODB.(3)若BD=2,求弧BC的长.7.如图,已知AB是⊙O的直径,DO⊥AB于点O,CD是⊙O的切线,切点为C,连接AC,交OD于点E.(1)求证:∠DCE=∠DEC;(2)若AB=17,AC=15,求AE的长.8.如图,MN为半圆O的直径,半径OA⊥MN,D为OA的中点,过点D作BC∥MN.求证:(1)四边形ABOC为菱形;(2)∠MNB=∠BAC.9.如图,BD是⊙O的直径,过A点作CD的垂线交CD的延长线于点E,且DA平分∠BDE.(1)求证:AE是⊙O的切线;(2)若∠DBC=30°,DE=2cm,求的长.10.如图,△ABC中,∠ACB<2∠B,CO平分∠ACB交AB于O点,以OA为半径的⊙O与AC相切于点A,D为AC上一点且∠ODA=∠B.(1)求证:BC所在直线与⊙O相切;(2)若CD=1,AD=2,求⊙O的半径.11.如图,四边形ABCD内接于⊙O,∠BAD=90°,AD、BC的延长线交于点F,点E 在CF上,且∠DEC=∠BAC.(1)求证:DE是⊙O的切线;(2)若AB=AC,CE=10,EF=14,求CD.12.如图,△ABC内接于⊙O,且AB为⊙O的直径.∠ACB的平分线交⊙O于点D,过点D作直线l交CA的延长线于点P,且∠ADP=∠BCD,过点A作AE⊥CD于点E,过点B作BF⊥CD于点F.(1)求证:DP∥AB;(2)求证:PD是⊙O的切线;(3)若AC=6,BC=8,求线段PD的长.13.已知AB是⊙O的直径,C,D是⊙O上AB同侧两点,∠BAC=26°.(Ⅰ)如图1,若OD⊥AB,求∠ABC和∠ODC的大小;(Ⅱ)如图2,过点C作⊙O的切线,交AB的延长线于点E,若OD∥EC,求∠ACD 的大小.14.已知:如图,AB是⊙O的弦,AC是⊙O的切线,作OK⊥AB,垂足为K.求证:∠BAC=∠AOK.15.如图,AB为⊙O的直径,C为⊙O上一点,经过点C的切线交AB的延长线于点E,AD⊥EC交EC的延长线于点D,连接AC.(1)求证:AC平分∠DAE;(2)若cos∠DAE=,BE=2,求⊙O的半径.参考答案1.(1)证明:连接OE,∴OA=OE,∴∠OEA=∠OAE.∵PQ切⊙O于E,∴OE⊥PQ.∵AC⊥PQ,∴OE∥AC.∴∠OEA=∠EAC,∴∠OAE=∠EAC,∴AE平分∠BAC.(2)解:过点O作OM⊥AC于M,∴AM=MD==2;又∠OEC=∠ACE=∠OMC=90°,∴四边形OECM为矩形,∴OM=EC=4,在Rt△AOM中,OA===2;即⊙O的半径为2.2.(1)证明:连接OC,如图①,∵AB是⊙O的直径,∴∠ACB=90°,∴∠A+∠B=90°,∵OC=OB,∴∠B=∠OCB,∵∠BCM=∠A,∴∠OCB+∠BCM=90°,即OC⊥MN,∴MN是⊙O的切线;(2)解:如图②,∵AB是⊙O的直径,⊙O的半径为1,∴AB=2,∵cos∠BAC=,即,∴,∵∠AFE=∠ACE,∠GFH=∠AFE,∴∠GFH=∠ACE,∵DH⊥MN,∴∠GFH+∠AGC=90°,∵∠ACE+∠ECD=90°,∴∠ECD=∠AGC,又∵∠DEC=∠CAG,∴△EDC∽△ACG,∴,∴.3.解:(1)证明:∵∠APB=90°,∴∠APC+∠BPC=90°∵AO⊥l,BC⊥l,∴∠AOC=∠BCP=90°,∴∠OAC+∠APC=90°,∴∠OAC=∠BPC,在△AOP和△PCB中,∴△AOP≌△PCB(AAS);(2)∵△AOP≌△PCB(AAS)∴AO=PC=3,OP=BC,∴BC=OP=OC+CP=3+2=5;∴BC的长为5.(3)若点C为△ABP的外心,则点C位于斜边中点,又已知BC⊥l,故点C与点O 重合,如图所示:∵AP=BP,∴△APB为等腰直角三角形,∴∠A=∠B=45°,∵AO⊥l,∴△AOP为等腰直角三角形,∴OP=AO,∵AO=3,∴OP=3,故答案为:3.4.(1)解:连接BD,如图,∵DG为切线,∴AD⊥DG,∴∠ADG=90°,∵AD为直径,∴∠ABD=90°,而∠GDB+∠G=90°,∠ADB+∠GDB=90°,∴∠ADB=∠G=50°,∴∠ACB=∠ADB=50°;(2)证明:连接CD,如图,∵AB=AE,∴∠ABE=∠AEB,∵OD=OC,∴∠ODC=∠OCD,而∠ABC=∠ADC,∴∠ABE=∠AEB=∠ODC=∠OCD,∴∠BAD=∠DOC;(3)解:∵∠BAD=∠FOC,∠ABD=∠OFC,∴△ABD∽△OFC,∴=()2=4,∵,设S1=8x,S2=9x,则S△ABD=2S1=16x,∴S△OFC=•16x=4x,∴S△AOC=9x﹣4x=5x,∵===,∴设OF=4k,则OA=5k,在Rt△OCF中,OC=5k,CF==3k,∴tan∠CAF===.5.证明:(1)∵EF⊥AB,∴∠AFE=90°,∴∠AEF+∠EAF=90°,∵∠AEF=∠D,∠ABE=∠D,∴∠ABE+∠EAF=90°,∴∠AEB=90°,∴AD⊥BC;(2)①连接OA,AC,∵AD⊥BC,∴AE=ED,∴CA=CD,∴∠D=∠CAD,∵∠GAE=2∠D,∴∠CAG=∠CAD=∠D,∵OC=OA,∴∠OCA=∠OAC,∵∠CEA=90°,∴∠CAE+∠ACE=90°,∴∠CAG+∠OAC=90°,∴OA⊥AG,∴AG是⊙O的切线;②过点C作CH⊥AG于H.设CG=x,GH=y.∵CA平分∠GAE,CH⊥AG,CE⊥AE,∴CH=CE,∵∠AEC=∠AHC=90°,AC=AC,EC=CH,∴Rt△ACE≌Rt△ACH(HL),∴AE=AH,∵EF⊥AB,BC是直径,∴∠BFE=∠BAC,∴EF∥AC,∴==,∵CE=3,∴BE=,∵BC⊥AD,∴,∴∠CAE=∠ABC,∵∠AEC=∠AEB=90°,∴△AEB∽△CEA,∴,∴AE2=3×=,∵AE>0,∴AE=,∴AH=AE=,∵∠G=∠G,∠CHG=∠AEG=90°,∴△GHC∽△GEA,∴,∴=,解得x=7,y=2,∴AG=2+=.6.证明:(1)∵AB是⊙O的直径,∴∠ACB=90°,由∠ABC=30°,∴∠CAB=60°,又OB=OC,∴∠OCB=∠OBC=30°,∴∠BOD=60°.故答案为:60°,60°.(2)在Rt△ABC中,∠ABC=30°,得AC=AB,又OB=AB,∴AC=OB,由BD切⊙O于点B,得∠OBD=90°,在△ABC和△ODB中,,∴△ABC≌△ODB(ASA).(3)解:∵∠BOD=60°,BD=2,∴∠BOC=120°,OB=BD==2,∴弧BC的长为=.7.(1)证明:连接OC,∵CD是⊙O的切线,切点为C,∴OC⊥CD,即∠OCD=90°,∵OC=OA,∴∠A=∠OCA,∵OD⊥AB,∴∠DEC=∠AEO=90°﹣∠A,∵∠DCE=90°﹣∠OCA,∴∠DCE=∠DEC;(2)解:∵AB是⊙O的直径,∴∠ACB=90°,∵AB=17,∴OB=,∵∠AOE=∠ACB,∠A=∠A,∴△AEO∽△ABC,∴,∴,∴AE=.8.证明:(1)∵半径OA⊥MN,∴BD=CD,又∵AD=OD,AD⊥BC,∴四边形ABOC为菱形;(2)∵OA⊥BC,BC∥MN,∴OA⊥MN,∵四边形ABOC为菱形,∴AB=OC,∴AB=OA=OB,∴△ABO是等边三角形,∴∠BAO=∠AOB=60°,同理∠COA=60°,则∠BAC=120°,∵OA⊥MN,∴∠BOM=90°﹣60°=30°,∴∠MNB=∠BOM=15°,∴∠MNB=∠BAC.9.(1)证明:连接OA,如图:∵OA=OD,∴∠ODA=∠OAD.∵DA平分∠BDE,∴∠ODA=∠EDA.∴∠OAD=∠EDA,∴EC∥OA.∵AE⊥CD,∴OA⊥AE.∵点A在⊙O上,∴AE是⊙O的切线.(2)解:∵BD为⊙O的直径,∴∠C=90°,∴∠BDC=90°﹣∠DBC=90°﹣30°=60°,∴∠ODA=∠EDA=60°,在Rt△ADE中,∠DAE=90°﹣60°=30°,∴AD=2DE=4(cm),∵∠ODA=60°,OA=OD,∴△OAD为等边三角形,∴OD=AD=4cm,∠AOD=60°,∴的长==π.10.(1)证明:过O作OE⊥BC于E,如图所示:∵⊙O与AC相切于点A,∴OA⊥AC,∵CO平分∠ACB,OE⊥BC,∴OE=OA,∴BC所在直线与⊙O相切;(2)解:∵CD=1,AD=2,∴AC=CD+AD=3,∵AC、BC是⊙O的切线,∴EC=AC=3,在△OEB和△OAD中,,∴△OEB≌△OAD(AAS),∴EB=AD=2,OB=OD,∴BC=EC+EB=5,∴AB===4,设OA=x,则OD=OB=4﹣x,在Rt△AOD中,由勾股定理得:x2+22=(4﹣x)2,解得:x=,即⊙O的半径为.11.解:(1)如图,连接BD,∵∠BAD=90°,∴点O必在BD上,即:BD是直径,∴∠BCD=90°,∴∠DEC+∠CDE=90°,∵∠DEC=∠BAC,∴∠BAC+∠CDE=90°,∵∠BAC=∠BDC,∴∠BDC+∠CDE=90°,∴∠BDE=90°,即:BD⊥DE,∵点D在⊙O上,∴DE是⊙O的切线;(2)∵∠BAF=∠BDE=90°,∴∠F+∠ABC=∠FDE+∠ADB=90°,∵AB=AC,∴∠ABC=∠ACB,∵∠ADB=∠ACB,∴∠F=∠EDF,∴DE=EF=14,∵CE=10,∠BCD=90°,∴∠DCE=90°,∴CD==4.12.(1)证明:∵∠ADP=∠BCD,∠BCD=∠BAD,∴∠ADP=∠BAD,∴DP∥AB;(2)证明:连接OD,如图所示:∵AB为⊙O的直径,∴∠ACB=90°,∵∠ACB的平分线交⊙O于点D,∴∠ACD=∠BCD=45°,∴∠DAB=∠ABD=45°,∴△DAB是等腰直角三角形,∵OA=OB,∴OD⊥AB,∵DP∥AB,∴OD⊥PD,∴PD是⊙O的切线;(3)解:在Rt△ACB中,AB===10,∵△DAB为等腰直角三角形,∴AD=AB=5,∵AE⊥CD,∴△ACE为等腰直角三角形,∴AE=CE=AC=3,在Rt△AED中,DE===4,∴CD=CE+DE=3+4=7,∵∠PDA=∠PCD,∠P=∠P,∴△PDA∽△PCD,∴====,∴PA=PD,PC=PD,∵PC=PA+AC,∴PD+6=PD,解得:PD=.13.解:(Ⅰ)连接OC,∵AB是⊙O的直径,∴∠ACB=90°,∵∠BAC=26°,∴∠ABC=64°,∵OD⊥AB,∴∠AOD=90°,∴∠ACD=∠AOD=×90°=45°,∵OA=OC,∴∠OAC=∠OCA=26°,∴∠OCD=∠OCA+∠ACD=71°,∵OD=OC,∴∠ODC=∠OCD=71°;(Ⅱ)如图2,连接OC,∵∠BAC=26°,∴∠EOC=2∠A=52°,∵CE是⊙O的切线,∴∠OCE=90°,∴∠E=38°,∵OD∥CE,∴∠AOD=∠E=38°,∴∠ACD=AOD=19°.14.解:∵AC是⊙O的切线,∴OA⊥AC,∴∠OAC=90°,∴∠BAC+∠OAK=90°,∵OK⊥AB,∴∠OAK+∠AOK=90°,∴∠BAC=∠AOK.15.(1)证明:连接OC,∵DE是⊙O的切线,∴OC⊥DE,∵AD⊥DE,∴OC∥AD,∴∠OCA=∠DAC,∵OA=OC,∴∠OCA=∠OAC,∴∠DAC=∠OAC,∴AC平分∠DAE;(2)解:设⊙O的半径为r,∵OC∥AD,∴∠DAE=∠COE,∴cos∠DAE=cos∠COE=,BE=2,∴=,解得:r=4,即⊙O的半径为4.。

2021中考数学压轴题 – 圆的专题含答案解析

2021中考数学压轴题 – 圆的专题含答案解析

2021中考数学压轴题满分训练–圆的专题1.如图所示,AC与⊙O相切于点C,线段AO交⊙O于点B.过点B作BD∥AC交⊙O 于点D,连接CD、OC,且OC交DB于点E.若∠CDB=30°,DB=4cm.(1)求⊙O的半径长;(2)求由弦CD、BD与弧BC所围成的阴影部分的面积.(结果保留π)2.如图,△ABC内接于⊙O,且AB为⊙O的直径,OE⊥AB交AC于点E,在OE的延长线上取点D,使得DE=DC.(1)求证:CD是⊙O的切线;(2)若AC=2,BC=,求CD的长.3.如图,四边形ABCD内接于⊙O,BC为⊙O的直径,⊙O的切线AP与CB的延长线交于点P.(1)求证:∠PAB=∠ACB;(2)若AB=12,cos∠ADB=,求PB的长.4.如图,△ABC内接于⊙O,AH⊥BC于点H,若AC=24,AH=18,⊙O的半径OC =13,过点O作OD⊥AC于点D.(1)求证:∠B=∠COD;(2)求AB的长.5.如图,AB是⊙O的直径,AE是弦,C是弧AE的中点,过点C作⊙O的切线交BA 的延长线于点G,过点C作CD⊥AB于点D,交AE于点F.(1)求证:GC∥AE;(2)若sin∠EAB=,OD=3,求AE的长.6.如图,AD与⊙O相切于点D,点A在直径CB的延长线上.(1)求证:∠DCB=∠ADB;(2)若∠DCB=30°,AC=3,求AD的长.7.如图1,在⊙O中,弦AB⊥弦CD,垂足为点E,连接AD、BC、AO,AD=AB.(1)求证:∠CAO=2∠CDB;(2)如图2,过点O作OH⊥AD,垂足为点H,求证:2OH+CE=DE;(3)如图3,在(2)的条件下,延长DB、AC交于点F,过点D作DM⊥AC,垂足为M交AB于N,若BC=12,AF=3BF,求MN的长.8.如图,在△ABC中,∠ABC=90°,AB=8,BC=6.以BC为直径的⊙O交AC于D,E是AB的中点,连接ED并延长交BC的延长线于点F.(1)求证:DE是⊙O的切线;(2)求DB的长.9.如图,在Rt△ABC中,∠ACB=90°,AB=10,AC=6,点D为BC边上的一个动点,以CD为直径的⊙O交AD于点E,过点C作CF∥AB,交⊙O于点F,连接CE、CF、EF.(1)当∠CFE=45°时,求CD的长;(2)求证:∠BAC=∠CEF;(3)是否存在点D,使得△CFE是以EF为腰的等腰三角形,若存在,求出此时CD 的长;若不存在,试说明理由.10.直线l与⊙O相离,OB⊥l于点B,且OB=5,OB与⊙O交于点P,A为圆上一点,AP的延长线交直线l于点C,且AB=BC.(1)求证:AB是⊙O的切线;(2)若⊙O的半径为3,求线段AP的长.11.如图,已知直线l与⊙O无公共点,OA⊥l于点A,交⊙O于点P,点B是⊙O上一点,连接BP并延长交直线l于点C,使得AB=AC.(1)求证:AB是⊙O的切线;(2)若BP=2,sin∠ACB=,求AB的长.12.如图,在△ABC中,AB=AC.以AB为直径的⊙O分别与BC、AC相交于点D、E,连接AD.过点D作DF⊥AC,垂足为点F,(1)求证:DF是⊙O的切线;(2)若⊙O的半径为4,∠CDF=22.5°,求图中阴影部分的面积.13.如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交BC于点D,交CA的延长线于点E,过点D作DH⊥AC,垂足为点H,连接DE,交AB于点F.(1)求证:DH是⊙O的切线;(2)若⊙O的半径为4,①当AE=FE时,求的长(结果保留π);②当时,求线段AF的长.14.如图,AB是⊙O的直径,点C和点D分别在AB和⊙O上,且AC=AD,DC的延长线交⊙O于点E,过E作AC的平行线交⊙O于点F,连接AF,DF.(1)求证:四边形ACEF是平行四边形;(2)当sin∠EDF=,BC=4时,求⊙O的半径.15.如图,⊙O是△ABC的外接圆,AB为直径,∠BAC的平分线交⊙O于点D,过点D 作DE⊥AC,分别交AC、AB的延长线于点E,F.(1)求证:EF是⊙O的切线;(2)若AC=6,CE=2,求CB的长.参考答案1.解:(1)∵AC与⊙O相切于点C,∴∠ACO=90°.∵BD∥AC,∴∠BEO=∠ACO=90°,∴DE=EB=BD==2(cm)∵∠D=30°,∴∠O=2∠D=60°,在Rt△BEO中,sin60°=,=.∴OB=5,即⊙O的半径长为5cm.(2)由(1)可知,∠O=60°,∠BEO=90°,∴∠EBO=∠D=30°.在△CDE与△OBE中,.∴△CDE≌△OBE(AAS).∴S阴影=S扇OBC=π•42=(cm2),答:阴影部分的面积为cm2.2.(1)证明:连接OC,如图1,∵DC=DE,∴∠DCE=∠DEC,∵∠DEC=∠AEO,∴∠DCE=∠AEO,∵OA⊥OE,∴∠A+∠AEO=90°,∴∠DCE+∠A=90°,∵OA=OC,∴∠A=∠ACO,∴∠DCE+∠ACO=90°,∴OC⊥DC,∴CD是⊙O的切线;(2)如图2,过点D作DF⊥CE于点F,∵AC=2,BC=,∴AB===5,∵AB为⊙O的直径,∴∠ACB=90°,∴∠ACB=∠AOE,又∵∠A=∠A,∴△AOE∽△ACB,∴,∴,∴AE=,∴CE=AC﹣AE=2﹣=,∵CD=DE,∴CF=CE=,∠DEC=∠DCE,∵∠DEC=∠AEO,∠AEO=∠B,∴∠DCE=∠B,又∵∠DFC=∠ACB,∴△DFC∽△ACB,∴,∴,∴DC=.3.解:(1)证明:如图,连接OA,∵AP为⊙O的切线,∴OA⊥AP,∴∠OAP=90°,∴∠OAB+∠PAB=90°,∵OA=OB,∴∠OAB=∠OBA,∴∠OBA+∠PAB=90°,∵BC为⊙O的直径,∴∠ACB+∠OBA=90°,∴∠PAB=∠ACB;(2)由(1)知∵∠PAB=∠ACB,且∠ADB=∠ACB,∴∠PAB=∠ACB=∠ADB,∴,∵AB=12,∴AC=16,∴,∴OB=10,过B作BF⊥AP于F,∵∠ADB=∠FAB,,∴,∴,∴在Rt△ABF中,,∵OA⊥AP,BF⊥AP,∴BF∥OA,∴△PBF∽△POA,∴,∴,∴.答:PB的长为.4.解:(1)作直径AE,连接CE,∴∠ACE=90°,∴∠CAE+∠E=90°,∵OA=OC,∴∠CAE=∠OCD,∴∠OCD+∠E=90°,∵OD⊥AC,∴∠OCD+∠COD=90°,∴∠COD=∠E,∵∠B=∠E,∴∠B=∠COD;(2)∵AH⊥BC,∴∠AHB=90°,∴∠ACE=∠AHB,∵∠B=∠E,∴△ABH∽△AEC,∴=,∴AB=,∵AC=24,AH=18,AE=2OC=26,∴AB==.5.(1)证明:连接OC,交AE于点H.∵C是弧AE的中点,∴OC⊥AE.∵GC是⊙O的切线,∴OC⊥GC,∴∠OHA=∠OCG=90°,∴GC∥AE;(2)解:∵OC⊥GC,GC∥AE,∴OC⊥AE,∵CD⊥AB,∴∠CHF=∠FDA=90°,∵∠CFH=∠AFD,∴∠OCD=∠EAB.∴.在Rt△CDO中,OD=3,∴OC=5,∴AB=10,连接BE,∵AB是⊙O的直径,∴∠AEB=90°.在Rt△AEB中,∵,∴BE=6,∴AE=8.6.(1)证明:如图,连接OD,∵AD与⊙O相切于点D,∴OD⊥AD,∴∠ODB+∠ADB=90°,∵CB是直径,∴∠CDB=90°,∴∠ODB+∠ODC=90°,∴∠ODC=∠ADB,∵OD=OC,∴∠ODC=∠OCD,∴∠C=∠ADB;(2)解:∵∠DCB=∠ADB,∠DAC=∠CAD,∴△ADB∽△ACD,∴=,∵CB是直径,∴∠CDB=90°,∠DCB=30°,∴tan∠DCB==,∴=,∵AC=3,∴AD=3.7.解:(1)如图,连接AO、DO,∵AB=AD,∴,∴∠AOB=∠AOD,∴AO=OB,AO=OD,∴△AOB≌△AOD,∴∠BAO=∠DAO,延长AO交BD于点H,∵AB=AD,∴AH⊥BD,∴∠AHB=∠AHD=90°,∵,∴∠ACD=∠ABD,∴∠CAB=∠BAO=∠OAD,∴∠CAO=2∠CDB.(2)过点O作OT⊥CD,则CT=DT,∵CD⊥AB,CD⊥OT,OQ⊥AB,∴∠OQB=∠OTE=∠AED=90°,∴四边形OTEQ为矩形,∴OQ=ET,∵TD=CT=ET+CE,∵AB=AD,∴OQ=OH,∴2OH+CE=DE.(3)如图,∵∠ACB+∠ADB=180°,∠FCB+∠ACB=180°,∴∠ADB=∠FCB,∵∠F=∠F,∴△FCB∽△FDA,∴,∵CB=12,∴AB=AD=36,∵∠BCD=∠BAD,∠AEB=∠AED,∴△CEB∽△AED,∴,设BE=x,则AE=36﹣x,ED=3x,∵AB⊥CD,∴∠AED=90°,则在Rt△AED中,AE2+ED2=AD2,(36﹣x)2+(3x)2=362,解得:,∴BD=∵CD⊥AB,∴∠BED=90°,∠NMA=90°,∠ANM=∠END,∴∠NED=∠MAN,∴∠BDE=∠EDN,∵ED=ED,∴△BED≌△NED,∴,∵∠CDB=∠CAB,∠NMA=∠BED,∴△AMN∽△DEB,∴,∴,∴MN=.8.(1)证明:连接BD,DO,∵BC是⊙O的直径,∴∠ADB=90°.∴∠CDB=90°,又∵E为AB的中点,∴DE=EB=EA,∴∠EDB=∠EBD.∵OD=OB,∴∠ODB=∠OBD.∵∠ABC=90°,∴∠EDB+∠OBD=90°.即OD⊥DE.∴DE是⊙O的切线.(2)解:在Rt△ABC中,AB=8,BC=6,∴AC===10,∵,∴.9.解:(1)∵∠CFE=90°,∠CFE=∠CDE,∴∠CDE=45°,∵∠ACB=90°,∴∠DAC=45°,∴∠DAC=∠ADC,∴AC=CD=6;(2)证明:∵∠ACB=90°,∴∠BAC+∠B=90°,∵CF∥AB,∴∠B=∠FCB,又∵∠FCB=∠DEF,∴∠BAC+∠DEF=90°,∵CD为⊙O的直径,∴∠CED=90°,∴∠DEF+∠CEF=90°,∴∠BAC=∠CEF;(3)①如图1,当EF=CE时,则∠EFC=∠ECF,∵四边形CEDF为圆内接四边形,∴∠ADG=∠ECF,又∵∠CDE=∠CFE,∴∠ADG=∠CDE,∵CD为⊙O的直径,∴∠DFC=90°,∵FC∥AB,∴∠FGA=90°,∴∠FGA=∠ACD,∵AD=AD,∴△AGD≌△ACD(AAS),∴DG=CD,在Rt△BDG中,设CD=x,∵BG2+DG2=BD2,∴42+x2=(8﹣x)2,∴x=3,即CD=3;②如图2,当EF=CF时,则∠CEF=∠ECF,∵四边形CEDF为圆内接四边形,∴∠ADG=∠ECF,又∵∠CEF=∠CDF=∠BDG,∴∠ADG=∠BDG,∵FC∥AB,∠DFC=90°,∴∠FGA=90°,∴∠FGA=∠ACD,∵GD=GD,∴△BGD≌△AGD(ASA),∴BD=AD,在Rt△ACD中,设CD=x,∵CD2+AC2=AD2,∴x2+62=(8﹣x)2,∴x=,即CD=;综合以上可得CD的长为3或.10.证明:(1)连接OA,∵OA=OP,∴∠OPA=∠OAP=∠BPC,∵AB=BC,∴∠BAC=∠ACB,∵OB⊥l,∴∠ACB+∠BPC=90°,∴∠BAC+∠OAP=90°,即OA⊥AB,∴AB与⊙O相切;(2)解:如图,连接AO并延长交⊙O于D,连接PD,则∠APD=90°,∵OB=5,OP=3,∴PB=2,∴BC=AB==4,在Rt△PBC中,PC==2,∵∠DAP=∠CPB,∠APD=∠PBC=90°,∴△DAP∽△CPB,∴,即,解得,AP=.11.(1)证明:连接OB,如图1,∵AB=AC,∴∠ABC=∠ACB,∵OA⊥l,∴∠ACB+∠APC=90°,∵OB=OP,∴∠OBP=∠OPB,∵∠OPB=∠APC,∴∠OBP+∠ACB=90°,∴∠OBP+∠ABC=90°,即∠OBA=90°,∴OB⊥AB,∴AB是⊙O的切线;(2)解:作直径BD,连接PD,则∠BPD=90°,如图2,∵AB是⊙O的切线,∴∠ABC=∠D,∵∠ABC=∠ACB,∴∠D=∠ABC=∠ACB,∵sin∠ACB=,∴sin∠D==,∵BP=2,∴BD=10,∴OB=OP=5,∵sin∠ACB=,∴=,∴=,设PA=x,则AB=AC=2x,在Rt△AOB中,AB=2x,OB=5,OA=5+x,∴(2x)2+52=(5+x)2,解得x=,∴AB=2x=.12.(1)证明:连接AD.∵AB是⊙O的直径,∴∠ADB=90°,∴AD⊥BC.又AB=AC=13,BC=10,D是BC的中点,∴BD=5.连接OD;由中位线定理,知DO∥AC,又DF⊥AC,∴DF⊥OD.∴DF是⊙O的切线;(2)连接OE,∵DF⊥AC,∠CDF=22.5°,∴∠ABC=∠ACB=67.5°,∴∠BAC=45°,∵OA=OE,∴∠AOE=90°,∵⊙O的半径为4,∴S扇形AOE=4π,S△AOE=8∴S阴影=S扇形AOE﹣S△AOE=4π﹣8.13.证明:(1)连接OD,如图1,∵OB=OD,∴△ODB是等腰三角形,∠OBD=∠ODB①,在△ABC中,∵AB=AC,∴∠ABC=∠ACB②,由①②得:∠ODB=∠OBD=∠ACB,∴OD∥AC,∵DH⊥AC,∴DH⊥OD,∴DH是圆O的切线;(2)①∵AE=EF,∴∠EAF=∠EAF,设∠B=∠C=α,∴∠EAF=∠EFA=2α,∵∠E=∠B=α,∴α+2α+2α=180°,∴α=36°,∴∠B=36°,∴∠AOD=72°,∴的长==;②连接AD,∵AB为⊙O的直径,∴∠ADB=∠ADC=90°,∵⊙O的半径为4,∴AB=AC=8,∵,∴=,∴AD=2,∵AD⊥BC,DH⊥AC,∴△ADH∽△ACD,∴=,∴=,∴AH=3,∴CH=5,∵∠B=∠C,∠E=∠B,∴∠E=∠C,∴DE=DC,∵DH⊥AC,∴EH=CH=5,∴AE=2,∵OD∥AC,∴∠EAF=∠FOD,∠E=∠FDO,∴△AEF∽△ODF,∴=,∴=,∴AF=.14.(1)证明:∵AC=AD,∴∠ADC=∠ACD,∵AC∥EF,∴∠ACD=∠E,∴∠ADC=∠E,∴=,∴=,∴AD=EF,∵AD=AC,∴AC=EF,∵AC∥EF,∴四边形ACEF是平行四边形;(2)解:连接BD,∵四边形ACEF是平行四边形,∴AF∥CE,∴∠EDF=∠AFD,∵所对圆周角∠B和∠AFD,∴∠AFD=∠B,∴∠B=∠EDF,∵AB是⊙O的直径,∴∠ADB=90°,∵sin∠EDF=,∴sin B=sin∠EDF==,∴设AD=2x,AB=3x,∵AC=AD,BC=4,∴3x﹣2x=4,解得:x=4,即AB=3x=3×4=12,∵AB为⊙O的直径,∴⊙O的半径是6.15.(1)证明:连接OD交BC于H,如图所示:∵OA=OD,∴∠OAD=∠ODA,∵AD平分∠BAC,∴∠OAD=∠DAC,∴∠ODA=∠DAC,∴OD∥AE,∵DE⊥AC,∴OD⊥EF,∵OD是⊙O的半径,∴EF是⊙O的切线;(2)解:∵AB为⊙O的直径,∴∠ACB=90°,∴∠HCE=90°,又∵DE⊥AC,∴∠E=90°,由(1)得:OD⊥EF,∴∠HDE=90°,∴四边形CEDH是矩形,∴HD=CE=2,∴∠CHD=90°,∴∠OHB=90°,∴OD⊥BC,∴OH平分BC,∴OH是△ABC的中位线,∴OH=AC=3,∴OB=OD=OH+HD=5,∴AB=2OB=10,∴CB===8.。

2021中考数数学选择题压轴题含答案(共12页)

2021中考数数学选择题压轴题含答案(共12页)

2021中考数数学选择题压轴题1.如图,正方形ABCD的边长是3,BP=CQ,连接AQ,DP交于点O,并分别与边CD,BC交于点F,E,连接AE,下列结论:①AQ⊥DP;②OA2=OE•OP;③S△AOD=S四边形OECF;④当BP=1时,tan∠OAE =1316,其中正确结论的个数是()A.1B.2C.3D.4【答案】C.【解析】试题分析:解:∵四边形ABCD 是正方形,∴AD=BC,∠DAB=∠A BC=90°.∵BP=CQ,∴AP=BQ.在△DAP与△ABQ中,∵AD=AB,∠DAP=∠ABQ,AP=BQ,∴△DAP≌△ABQ,∴∠P=∠Q.∵∠Q+∠QAB=90°,∴∠P+∠QAB=90°,∴∠AOP=90°,∴AQ⊥DP;故①正确;∵∠DOA=∠AOP=90,∠ADO+∠P=∠ADO+∠DAO=90°,∴∠DAO=∠P,∴△DAO∽△APO,∴AO OPOD OA=,∴AO2=OD•OP.∵AE>AB,∴AE>AD,∴OD≠OE,∴OA2≠OE•OP;故②错误;在△CQF与△BPE中,∵∠FCQ=∠EBP,∠Q=∠P,CQ=BP,∴△CQF≌△BPE,∴CF=BE,∴DF=CE.在△ADF与△DCE中,∵AD=CD,∠ADC=∠DCE,DF=CE,∴△ADF≌△DCE,∴S△ADF﹣S△DFO=S△DCE﹣S△DOF,即S△AOD=S四边形OECF;故③正确;∵BP=1,AB=3,∴AP=4.∵∵△PBE∽△P AD,∴43PB PAEB DA==,∴BE=34,∴QE=134.∵△QOE∽△P AD,∴1345QO OE QEPA AD PD===,∴QO=135,OE=3920,∴AO=5﹣QO=125,∴tan∠OAE=OEOA=1316,故④正确.故选C.考点:相似三角形的判定与性质;全等三角形的判定与性质;正方形的性质;解直角三角形;综合题.2.若数a 使关于x 的分式方程2411a x x+=--的解为正数,且使关于y 的不等式组21322()0y y y a +⎧->⎪⎨⎪-≤⎩的解集为y <﹣2,则符合条件的所有整数a 的和为( ) A .10 B .12 C .14 D .16【答案】A .【解析】 试题解析:分式方程2411a x x +=--的解为x =64a -且x ≠1,∵关于x 的分式方程2411a x x +=--的解为正数,∴64a ->0且64a -≠1,∴a <6且a ≠2. 21322()0y y y a +⎧->⎪⎨⎪-≤⎩①②,解不等式①得:y <﹣2; 解不等式②得:y ≤a .∵关于y 的不等式组21322()0y y y a +⎧->⎪⎨⎪-≤⎩的解集为y <﹣2,∴a ≥﹣2,∴﹣2≤a <6且a ≠2. ∵a 为整数,∴a =﹣2、﹣1、0、1、3、4、5,(﹣2)+(﹣1)+0+1+3+4+5=10. 故选A .考点:分式方程的解;解一元一次不等式组;含待定字母的不等式(组);综合题.3.若数a 使关于x 的不等式组2122274x x x a-⎧≤-+⎪⎨⎪+>-⎩有且仅有四个整数解,且使关于y 的分式方程2222a y y+=--有非负数解,则所以满足条件的整数a 的值之和是( ) A .3 B .1 C .0 D .﹣3【答案】B .考点:分式方程的解;一元一次不等式组的整数解;含待定字母的不等式(组);综合题.4.右图是某商品的标志图案,AC 与BD 是⊙O 的两条直径,首尾顺次连接点A 、B 、C 、D ,得到四边形ABCD .若AC =10cm ,∠BAC =36°,则图中阴影部分的面积为( )A .25cm πB .210cm πC .215cm πD .220cm π【答案】B . 考点:矩形的性质;扇形面积的计算;圆周角定理5.已知正方形MNOK 和正六边形ABCDEF 边长均为1,把正方形放在正六边形中,使OK 边与AB 边重合,如图所示.按下列步骤操作:将正方形在正六边形中绕点B 顺时针旋转,使KM 边与BC 边重合,完成第一次旋转;再绕点C 顺时针旋转,使MN 边与CD 边重合,完成第二次旋转;……在这样连续6次旋转的过程中,点B ,M 间的距离可能是( )A.1.4B.1.1C.0.8D.0.5【答案】C.考点:正多边形的有关计算.6. 如图,将半径为2,圆心角为120︒的扇形OAB绕点A逆时针旋转60︒,点O,B的对应点分别为'O,'B,连接'BB,则图中阴影部分的面积是()A.23πB.233π- C.2233π- D.2433π-【答案】C.【解析】试题分析:连接O'O、'O B,根据旋转的性质及已知条件易证四边形AOB'O为菱形,且∠'O OB=∠O'O B=60°,又因∠A'O'B=∠A'O B=120°,所以∠B'O'B=120°,因∠O'O B+∠B'O'B=120°+60°=180°,即可得O、'O、'B三点共线,又因'O'B='O B,可得∠'O'B B=∠'O B 'B,再由∠O'O B=∠'O'B B+∠'O B 'B=60°,可得∠'O'B B=∠'O B 'B=30°,所以△OB'B为Rt三角形,由锐角三角函数即可求得B'B=23,所以2''16022 =S2232323603OBB BOOS Sππ⨯-=⨯⨯=阴影扇形,故选C.考点:扇形的面积计算.7. 周日,小涛从家沿着一条笔直的公路步行去报亭看报,看了一段时间后,他按原路返回家中,小涛离家的距离y(单位:m)与他所用的时间t(单位:min)之间的函数关系如图所示,下列说法中正确的是( )A.小涛家离报亭的距离是900mB.小涛从家去报亭的平均速度是60m/minC.小涛从报亭返回家中的平均速度是80m/minD.小涛在报亭看报用了15min【答案】D【解析】试题分析:A、由纵坐标看出小涛家离报亭的距离是1200m,故A不符合题意;B、由纵坐标看出小涛家离报亭的距离是1200m,由横坐标看出小涛去报亭用了15分钟,小涛从家去报亭的平均速度是80m/min,故B不符合题意;C、返回时的解析式为y=﹣60x+3000,当y=1200时,x=30,由横坐标看出返回时的时间是50﹣30=20min,返回时的速度是1200÷20=60m/min,故C不符合题意;D、由横坐标看出小涛在报亭看报用了30﹣15=15min,故D符合题意;故选D.考点:函数的图象.8.如图,网格纸上正方形小格的边长为1.图中线段AB 和点P 绕着同一个点做相同的旋转,分别得到线段A B ''和点P ',则点P '所在的单位正方形区域是( )A .1区B .2区C .3区D .4区【答案】D【解析】如图,根据题意可得旋转中心O ,旋转角是90°,旋转方向为逆时针,因此可知点P 的对应点落在了4区,故选D. O 点睛:本题主要考查图形的旋转,能根据题意正确地确定旋转中心、旋转方向、旋转角是解题的关键. 9.如图,在矩形ABCD 中,5AB =,3AD =.动点P 满足13PAB ABCDS S ∆=矩形.则点P 到A ,B 两点距离之和PA PB +的最小值为( )A .29B .34 C.5241【答案】D【解析】 E 试题解析:点P 在平行于AB 的直线上,先作点B 关于该直线的对称点,再利用勾股定理求出AE 的长度.则45BE AB ==, 162541AE ∴=+= ,故选答案D.考点: “小马吃草问题”求极小值.10. 0a ≠,函数a y x=与2y ax a =-+在同一直角坐标系中的大致图象可能是( )【答案】D【解析】试题分析:如果a >0,则反比例函数a y x =图象在第一、三象限,二次函数2y ax a =-+图象开口向下,排除A ;二次函数图象与Y 轴交点(0,a )在y 轴正半轴,排除B ;如果a <0,则反比例函数a y x=图象在第二、四象限,二次函数2y ax a =-+图象开口向上,排除C ;故选D 。

2021年中考数学压轴题专项训练07 综合探究类(含解析)

2021年中考数学压轴题专项训练07 综合探究类(含解析)

综合探究类1.综合与实践问题背景:综合与实践课上,同学们以两个全等的三角形纸片为操作对象,进行相一次相关问题的研究.下面是创新小组在操作过程中研究的问题,如图一,△ABC≌△DEF,其中∠ACB=90°,BC=2,∠A=30°.操作与发现:(1)如图二,创新小组将两张三角形纸片按如图示的方式放置,四边形ACBF的形状是,CF= ;(2)创新小组在图二的基础上,将△DEF纸片沿AB方向平移至图三的位置,其中点E 与AB的中点重合.连接CE,BF.四边形BCEF的形状是,CF= .操作与探究:(3)创新小组在图三的基础上又进行了探究,将△DEF纸片绕点E逆时针旋转至DE与BC平行的位置,如图四所示,连接AF,BF.经过观察和推理后发现四边形ACBF也是矩形,请你证明这个结论.【解析】(1)如图所示:△ABC ≌△DEF , 其中∠ACB =90°,BC =2,∠A =30°,∴60,2ABC FED BC EF ∠=∠=︒==, ∴90C F FAC ∠=∠=∠=︒,∴四边形ACBF 是矩形,AB=4∴,∴AB=CF=4;故答案为:矩形,4 ; (2)如图所示:△ABC ≌△DEF , 其中∠ACB =90°,BC =2,∠A =30°,∴60,2ABC FED BC EF ∠=∠=︒==, ∴//BC EF ,∴四边形ECBF 是平行四边形,点E 与AB 的中点重合,∴CE=BE ,∴CBE △是等边三角形,∴EC=BC ,∴四边形ECBF 是菱形,∴CF 与EB 互相垂直且平分,∴OC EC ==∴CF =,故答案为:菱形,(3)证明:如图所示:∵90,3060C A ABC ∠=︒∠=︒∴∠=︒ ∵//,DE BC DEF ABC ≌ ∴60DEB DEF ABC ∠=∠=∠=︒ ∴60AEF ∠=︒∵24,2AB BC AE ==∴= ∵2EF BC AE EF ==∴= ∴AEF ∆为等边三角形 ∴60FAE ABC ∠=︒=∠ ∴//BC AF ∵AE EF BC ==∴四边形ACBF 为平行四边形 ∵90C ∠=︒∴四边形ACBF 为矩形.2.如图,在每个小正方形的边长为1的网格中,A ,B ,C 为格点,D 为小正方形边的中点.(1)AC的长等于_________;+取得最小值时,请在如图所示(2)点P,Q分别为线段BC,AC上的动点,当PD PQ的网格中,用无刻度...的直尺,画出线段PD,PQ,并简要说明点P和点Q的位置是如何找到的(不要求证明).【解析】解:(1)由图可得:5=,故答案为:5;(2)如图,BC与网格线相交,得点P;取格点E,F,连接EF,与网格线相交,得点G,取格点M,N,连接MN,与网格线相交,得点H,连接GH,与AC相交,得点Q.连接PD,PQ.线段PD,PQ即为所求.如图,延长DP,交网格线于点T,连接AB,GH与DP交于点S,由计算可得:,,AC=5,∴△ABC为直角三角形,∠ABC=90°,∴tan∠ACB=2,∵tan∠BCT=PT:TC=2,∴∠ACB=∠BCT,即BC平分∠ACT,根据画图可知:GH∥BC,∴∠ACB=∠CQH,∠BCT=∠GHC,∵∠BCT=∠BCA,∴∠CQH=∠GHC,∴CQ=CH,由题意可得:BS=CH,∴BS=CQ,又∵BP=CP,∠PBS=∠PCQ,∴△BPS≌△CPQ,∴∠PSB=∠PHC=90°,即PQ⊥AC,∴PD+PQ的最小值即为PD+PT,∴所画图形符合要求.3.数学实验室:制作4张全等的直角三角形纸片(如图1),把这4张纸片拼成以弦长c为边长的正方形构成“弦图”(如图2),古代数学家利用“弦图”验证了勾股定理.探索研究:(1)小明将“弦图”中的2个三角形进行了运动变换,得到图3,请利用图3证明勾股定理; 数学思考:(2)小芳认为用其它的方法改变“弦图”中某些三角形的位置,也可以证明勾股定理.请你想一种方法支持她的观点(先在备用图中补全图形,再予以证明). 【解析】(1)解:如图3所示,图形的面积表示为:2222122a b ab a b ab ++⨯=++, 图形的面积也可表示:22122c ab c ab +⨯=+, ∴a 2b 2ab c 2ab ,∴a2b2c 2(2)解:如图4所示,大正方形的面积表示为:a b2,大正方形的面积也可以表示为:221422c ab c ab +⨯=+,∴22a b c ab+=+,()2∴a2b22ab c22ab,∴a2b2c2;4.综合与探究(实践操作)三角尺中的数学数学实践活动课上,“奋进”小组将一副直角三角尺的直角顶点叠放在一起,如图1,使直角顶点重合于点C.(问题发现)(1)①填空:如图1,若∠ACB=145°,则∠ACE的度数是,∠DCB的度数,∠ECD的度数是.②如图1,你发现∠ACE与∠DCB的大小有何关系?∠ACB与∠ECD的大小又有何关系?请直接写出你发现的结论.(类比探究)(2)如图2,当△ACD与△BCE没有重合部分时,上述②中你发现的结论是否还依然成立?请说明理由.【解析】解:(1)①1459055∠=∠︒︒︒=﹣=,ACE DCB==﹣;∠∠-∠︒︒=︒ECD BCE BCD905535②结论:ACE DCB=;∠+∠︒ACB ECD∠=∠,180证明:∵90∠=∠-∠=∠-︒DCB ACB ACD ACB∠=∠-∠=∠-︒,90ACE ACB BCE ACB∴ACE DCB∠=∠∵9090180∠=∠+∠-∠=︒+︒-∠=︒-∠ACB ACD BCE ECD ECD ECD∴180=ACB ECD∠+∠︒(2)结论:当ACD与BCE没有重合部分时,上述②中发现的结论依然成立.理由:∵90∠=∠=︒,ACD ECB∴ACD DCE ECB DCE∠+∠=∠+∠,∴ACE DCB∠=∠,∵90∠=∠=︒,ACD ECB∴180=,∠+∠︒ACD ECB∵360=,ACD ECD ECB ACB∠+∠+∠+∠︒∴180ACB ECD=,∠+∠︒∴ACE DCB∠+∠︒=.ACB ECD∠=∠,180∴上述②中发现的结论依然成立.故答案为:(1)①55°,55°,35°;②∠ACE=∠DCB,∠ACB+∠ECD=180°;(2)当△ACD与△BCE没有重合部分时,上述②中发现的结论依然成立,理由详见解析5.操作:将一把三角尺放在如图①的正方形ABCD中,使它的直角顶点P在对角线AC 上滑动,直角的一边始终经过点B,另一边与射线DC相交于点Q,探究:=.(1)如图②,当点Q在DC上时,求证:PQ PB(2)如图③,当点Q在DC延长线上时,①中的结论还成立吗?简要说明理由.【解析】(1)证明:过点P作//BCMN,分别交AB于点M,交CD于点N,则四边形AMND和四边形BCNM都是矩形,△AMP和△CNP都是等腰直角三角形.∴NP=NC=MB∵∠BPQ=90°∴∠QPN+∠BPM=90°,而∠BPM+∠PBM=90° ,∴∠QPN=∠PBM,又∠QNP=∠PMB=90°,在△QNP和△BMP中,∠QNP=∠PMB,MB=NP,∠QPN=∠PBM∴△QNP≌△PMB(ASA),∴PQ=BP.(2)成立.过点P作PN AB⊥于N,PN交CD于点M在正方形ABCD中//AB CD,45∠=ACD∴90∠=∠=∠=PMQ PNB CBN∴CBNM是矩形,∴CM BN=,∴CMP∆是等腰直角三角形,∴PM CM BN ==,∵90PBN BPN ∠+∠=,90BPN MPQ ∠+∠=∴MPQ PBN ∠=∠, 在PMQ ∆和BNP ∆中,90MPQ PBN PNB PMQ BN PM ∠=∠⎧⎪∠=∠=⎨⎪=⎩, ∴()PMQ BNP AAS ∆≅∆, ∴BP QP =;6.实践操作:第一步:如图1,将矩形纸片ABCD 沿过点D 的直线折叠,使点A 落在CD 上的点A '处,得到折痕DE ,然后把纸片展平.第二步:如图2,将图1中的矩形纸片ABCD 沿过点E 的直线折叠,点C 恰好落在AD 上的点C '处,点B 落在点B '处,得到折痕EF ,B C ''交AB 于点M ,C F '交DE 于点N ,再把纸片展平.问题解决:(1)如图1,填空:四边形AEA D '的形状是_____________________;(2)如图2,线段MC '与ME 是否相等?若相等,请给出证明;若不等,请说明理由;(3)如图2,若2cm,'4cm AC DC '==,求:DN EN 的值.【解析】(1)解:∵ABCD 是平行四边形, ∴'////AD BC EA ,'//AE DA ∴四边形'AEA D 是平行四边形∵矩形纸片ABCD 沿过点D 的直线折叠,使点A 落在CD 上的点A '处 ∴'AED A ED ≌ ∴'AE A E = ∵90A ∠=∴四边形AEA D '的形状是正方形故最后答案为:四边形AEA D '的形状是正方形; (2)MC ME '=理由如下:如图,连接EC ',由(1)知:AD AE = ∵四边形ABCD 是矩形, ∴90AD BC EAC B '=∠=∠=︒, 由折叠知:B C BC B B '''=∠=∠, ∴90AE B C EAC B ''''=∠=∠=︒, 又EC C E ''=, ∴Rt EC A Rt C EB '''≌ ∴C EA EC B '''∠=∠ ∴MC ME '=(3)∵Rt EC A Rt C EB '''≌,∴AC B E ''= 由折叠知:B E BE '=,∴AC BE '= ∵2(cm)4(cm)AC DC ''==, ∴()2428cm AB CD ==++=设cm DF x =,则()8cm FC FC x '==-在Rt DC F '中,由勾股定理得:2224(8)x x +=- 解得:3x =,即()3cm DF =如图,延长BA FC ',交于点G ,则AC G DC F ''∠=∠ ∴3tan tan 4AG DF AC G DC F AC DC ''∠=∠==='' ∴3(cm)2AG = ∴3156(cm)22EG =+= ∵//DF EG ,∴DNF ENG ∽ ∴152::3:25DN EN DF EG === 7.综合与实践在线上教学中,教师和学生都学习到了新知识,掌握了许多新技能.例如教材八年级下册的数学活动﹣﹣折纸,就引起了许多同学的兴趣.在经历图形变换的过程中,进一步发展了同学们的空间观念,积累了数学活动经验.实践发现:对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平;再一次折叠纸片,使点A落在EF上的点N处,并使折痕经过点B,得到折痕BM,把纸片展平,连接AN,如图①.(1)折痕BM(填“是”或“不是”)线段AN的垂直平分线;请判断图中△ABN 是什么特殊三角形?答:;进一步计算出∠MNE=°;(2)继续折叠纸片,使点A落在BC边上的点H处,并使折痕经过点B,得到折痕BG,把纸片展平,如图②,则∠GBN=°;拓展延伸:(3)如图③,折叠矩形纸片ABCD,使点A落在BC边上的点A'处,并且折痕交BC边于点T,交AD边于点S,把纸片展平,连接AA'交ST于点O,连接AT.求证:四边形SATA'是菱形.解决问题:(4)如图④,矩形纸片ABCD中,AB=10,AD=26,折叠纸片,使点A落在BC边上的点A'处,并且折痕交AB边于点T,交AD边于点S,把纸片展平.同学们小组讨论后,得出线段AT的长度有4,5,7,9.请写出以上4个数值中你认为正确的数值.【解析】解:(1)如图①∵对折矩形纸片ABCD,使AD与BC重合,∴EF垂直平分AB,∴AN=BN,AE=BE,∠NEA=90°,∵再一次折叠纸片,使点A落在EF上的点N处,∴BM垂直平分AN,∠BAM=∠BNM=90°,∴AB=BN,∴AB=AN=BN,∴△ABN是等边三角形,∴∠EBN=60°,∴∠ENB=30°,∴∠MNE=60°,故答案为:是,等边三角形,60;(2)∵折叠纸片,使点A落在BC边上的点H处,∴∠ABG=∠HBG=45°,∴∠GBN=∠ABN﹣∠ABG=15°,故答案为:15°;(3)∵折叠矩形纸片ABCD,使点A落在BC边上的点A'处,∴ST垂直平分AA',∴AO=A'O,AA'⊥ST,∵AD∥BC,∴∠SAO=∠TA'O,∠ASO=∠A'TO,∴△ASO≌△A'TO(AAS)∴SO=TO,∴四边形ASA 'T 是平行四边形, 又∵AA '⊥ST ,∴边形SATA '是菱形;(4)∵折叠纸片,使点A 落在BC 边上的点A '处, ∴AT =A 'T ,在Rt△A 'TB 中,A 'T >BT , ∴AT >10﹣AT , ∴AT >5, ∵点T 在AB 上,∴当点T 与点B 重合时,AT 有最大值为10, ∴5<AT ≤10,∴正确的数值为7,9, 故答案为:7,9. 8.综合与实践 问题情境数学活动课上,老师让同学们以“三角形平移与旋转”为主题开展数学活动,ACD 和BCE 是两个等边三角形纸片,其中,52AC cm BC cm ==,.解决问题(1)勤奋小组将ACD 和BCE 按图1所示的方式摆放(点,,A C B 在同一条直线上) ,连接,AE BD .发现AE DB =,请你给予证明;(2)如图2,创新小组在勤奋小组的基础上继续探究,将BCE 绕着点C 逆时针方向旋转,当点E 恰好落在CD 边上时,求ABC 的面积;拓展延伸(3)如图3,缜密小组在创新小组的基础上,提出一个问题: “将BCE 沿CD 方向平移acm 得到''',B C E 连接''AB B C ,,当'AB C △恰好是以'AB 为斜边的直角三角形时,求a 的值.请你直接写出a 的值.【解析】(1)∵ACD 和BCE 是两个等边三角形, ∴AC=CD,BC=CE ,∠ACD=∠ECB=60°, ∴∠ACD+∠DCE=∠ECB+∠DCE, 即∠ACE=∠DCB, ∴△ACE≌△DCB, ∴AE=BD;(2)由题意得∠ACD=∠ECB=60°, 过点B 作BF⊥AC,交AC 的延长线于F ,∴∠BCF=180°-∠ACD -∠ECB=60°,∠F=90°, ∴∠CBF=30°, ∴CF=12BC=1cm ,=cm ,∴11522ABCSAC BF =⋅=⨯;(3)由题意得∠ACD=E C B '''∠=60°, ∵∠ACB '=90°, ∴30C CB ''∠=,∵C CB C B C E C B '''''''∠+∠=∠, ∴30C B C ''∠=, ∴C C C B '''==2cm , ∴a=2.9.动手做一做:某校教具制作车间有等腰三角形正方形、平行四边形的塑料若干,数学兴趣小组的同学利用其中7块恰好拼成一个矩形(如图1),后来又用它们拼出了XYZ等字母模型(如图2、图3、图4),每个塑料板保持图1的标号不变,请你参与: (1)将图2中每块塑料板对应的标号填上去;(2)图3中,点画出了标号7的塑料板位置,请你适当画线,找出其他6块塑料板, 并填上标号;(3)在图4中,找出7块塑料板,并填上标号.【解析】(1)如下图(2)如下图(3)如下图10.已知:如图1,在O 中,弦2AB =,1CD =,AD BD ⊥.直线,AD BC 相交于点E . (1)求E ∠的度数;(2)如果点,C D 在O 上运动,且保持弦CD 的长度不变,那么,直线,AD BC 相交所成锐角的大小是否改变?试就以下三种情况进行探究,并说明理由(图形未画完整,请你根据需要补全).①如图2,弦AB与弦CD交于点F;②如图3,弦AB与弦CD不相交:③如图4,点B与点C重合.【解析】解:(1)连接OC、OD,如图:∵AD BD⊥∴AB是直径∴1===OC OD CD∴OCD是等边三角形∴60∠=︒COD∴30∠=︒DBE∴60∠=︒E(2)①结论:直线AD、BC相交所成锐角的大小不发生改变依然是60︒证明:连接OD、OC、AC,如图:∵1===OD OC CD∴OCD为等边三角形∴60∠=︒COD∴30DAC∠=︒∴30∠=︒EBD∵90∠=︒ADB∴903060E∠=︒-︒=︒②结论:直线AD、BC相交所成锐角的大小不发生改变依然是60︒证明:连接OC、OD,如图:∵AD BD⊥∴AB是直径∴1===OC OD CD∴OCD是等边三角形∴60∠=︒COD∴30∠=︒DBE∴903060∠=︒-︒=︒BED③结论:直线AD、BC相交所成锐角的大小不发生改变依然是60︒证明:如图:∵当点B与点C重合时,则直线BE与O只有一个公共点∴EB恰为O的切线∴90∠=︒ABE∵90CD=,2∠=︒,1ADBAD=∴30A∠=︒∴60∠=︒.E故答案是:(1)60∠=︒(2)①结论:直线AD、BC相交所成锐角的大小不发生改变,E依然是60︒;证明过程见详解.②结论:直线AD、BC相交所成锐角的大小不发生改变,依然是60︒;证明过程见详解.③结论:直线AD、BC相交所成锐角的大小不发生改变,依然是60︒;证明过程见详解.11.综合与实践:折纸中的数学问题背景在数学活动课上,老师首先将平行四边形纸片ABCD按如图①所示方式折叠,使点C与点A重合,点D落到D′处,折痕为EF.这时同学们很快证得:△AEF是等腰三角形.接下来各学习小组也动手操作起来,请你解决他们提出的问题.操作发现(1) “争先”小组将矩形纸片ABCD 按上述方式折叠,如图②,发现重叠部分△AEF 恰好是等边三角形,求矩形ABCD 的长、宽之比是多少?实践探究(2)“励志”小组将矩形纸片ABCD 沿EF 折叠,如图③,使B 点落在AD 边上的B ′处;沿B ′G 折叠,使D 点落在D ′处,且B ′D ′过F 点.试探究四边形EFGB ′是什么特殊四边形?(3)再探究:在图③中连接BB ′,试判断并证明△BB ′G的形状.【解析】解:(1)矩形ABCD证明:设BE a =,AEF ∆等边三角形,60EAF ∴∠=︒,四边形ABCD 为矩形,90BAD ABE ∴∠=∠=︒,30BAE BAD EAF ∠=∠-∠=︒.在Rt ABE ∆中,90ABE ∠=︒,30BAE ∠=︒,BE a =,2sin BEAE a BAE ∴==∠,tan BEAB BAE ==∠,AE EC =,3BC BE EC a ∴=+=,∴BCAB .(2)四边形B EFG '是平行四边形. 证明:四边形ABCD 为矩形,//AD BC ∴,B EF BFE ∴∠'=∠,EB F GFB ∠'=∠',DB G FGB ∠'=∠'.由翻折的特性可知:BFE B FE ∠=∠',DB G FB G ∠'=∠',B EF B FE ∴∠'=∠',FB G FGB ∠'=∠',又EB F GFB ∠'=∠',B FE FB G ∴∠'=∠',//EF B G ∴',又//B E FG ',∴四边形B EFG '是平行四边形.(3)△BB G '为直角三角形.证明:连接BB '交EF 于点M ,如图所示.//AD BC ,EB B FBB ∴∠'=∠',BF B F =',FBB FB B ∴∠'=∠',EB B FB B ∴∠'=∠'.B EF B FE ∠'=∠',∴△B EF '为等腰三角形,B M EF ∴'⊥,90∴∠=︒.BMFEF B G',//∴∠'=∠=︒,90BB G BMF∴△BB G'为直角三角形.12.综合与实践问题情境:在综合与实践课上,老师让同学们以“等腰三角形的剪拼”为主题开展数学活动.如图1,在△ABC中,AB=AC=10cm,BC=16cm.将△ABC沿BC边上的中线AD剪开,得到△ABD和△ACD.操作发现:(1)乐学小组将图1中的△ACD以点D为旋转中心,按逆时针方向旋转,使得A'C'⊥AD,得到图2,A'C'与AB交于点E,则四边形BEC'D的形状是.(2)缜密小组将图1中的△ACD沿DB方向平移,A'D'与AB交于点M,A'C'与AD交于点N,得到图3,判断四边形MNDD'的形状,并说明理由.实践探究:(3)缜密小组又发现,当(2)中线段DD'的长为acm时,图3中的四边形MNDD'会成为正方形,求a的值.(4)创新小组又把图1中的△ACD放到如图4所示的位置,点A的对应点A'与点D重合,点D的对应点D'在BD的延长线上,再将△A'C'D'绕点D逆时针旋转到如图5所示的位置,DD'交AB于点P,DC'交AB于点Q,DP=DQ,此时线段AP的长是cm.【解析】解:操作发现:(1)如图1:∵AB=AC=10cm,BC=16cm.∴∠B=∠C,BD=CD=8cm,∠BAD=∠CAD,∵△ACD以点D为旋转中心,按逆时针方向旋转,∴C'D=BD,∵AD⊥BD,A'C'⊥AD,∴A'C'∥BD,∠ADC'=90°﹣∠C',∴∠ADC'=90°﹣∠B,且∠BAD=90°﹣∠B,∴∠ADC'=∠BAD,∴AB∥C'D,∴四边形BDC'E是平行四边形,∵BD=C'D,∴四边形BEC'D是菱形,故答案为:菱形;(2)如图3,四边形MNDD'是矩形,理由如下:∵BD=CD,∴BD'=CD,且∠B=∠C',∠MD'B=∠NDC'∴△MDB'≌△NDC'(ASA)∴MD'=ND,∵△ACD 沿DB 方向平移,∴MD '∥DN ,∴四边形MNDD '是平行四边形,∵∠BD 'M =90°,∴四边形MNDD '是矩形;(3)由图形(1)可得AB =10cm ,BD =8cm , ∴AD6cm ,∵四边形MNDD '为正方形,∴D 'M ∥DN ,D 'M =D 'D =acm ,∴△BD 'M ∽△BDA , ∴BD MD BD AD''=, ∴886a a -=, ∴a =247; (4)如图5,过点D 作DG ⊥AB 于点G ,∵DP =DQ ,∴∠DQP =∠DPQ ,QG =PG ,又∵∠A =∠PDQ ,∴△DQP ∽△AQD ,∴∠ADQ =∠DPQ ,2021年中考数学压轴题专项训练07 综合探究类(含解析)∴∠ADQ=∠AQD,∴AQ=AD=6,∵∠A=∠A,∠DGA=∠BDA,∴△DGA∽△BDA,∴AG AD AD AB=,∴6 610 AG=,∴AG=185,∴GQ=AQ﹣AG=6﹣185=125,∴PG=QG=125,∴AP=AG﹣PG=185﹣125=65,故答案为:65.。

2021年全国各地中考数学压轴题分类汇编(通用版)几何综合(二)(含答案与解析)

2021年全国各地中考数学压轴题分类汇编(通用版)几何综合(二)(含答案与解析)

2021年全国各地中考数学压轴题分类汇编(通用版)几何综合(二)参考答案与试题解析一.选择题(共4小题)1.(2021•长春)在△ABC中,∠BAC=90°,AB≠AC.用无刻度的直尺和圆规在BC边上找一点D,使△ACD为等腰三角形.下列作法不正确的是()A.B.C.D.解:A、由作图可知AD是△ABC的角平分线,推不出△ADC是等腰三角形,本选项符合题意.B、由作图可知CA=CD,△ADC是等腰三角形,本选项不符合题意.C、由作图可知DA=CD,△ADC是等腰三角形,本选项不符合题意.D、由作图可知BD=CD,推出AD=DC=BD,△ADC是等腰三角形,本选项不符合题意.故选:A.2.(2021•丹东)如图,在矩形ABCD中,连接BD,将△BCD沿对角线BD折叠得到△BDE,BE 交AD于点O,BE恰好平分∠ABD,若AB=2,则点O到BD的距离为()A.B.2C.D.3解:如图,作OF⊥BD于点F,则OF的长为点O到BD的距离.∵四边形ABCD为矩形,∴∠A=∠ABC=90°,∵将△BCD沿对角线BD折叠得到△BDE,∴∠EBD=∠CBD,∵BE平分∠ABD,∴∠ABO=∠EBD,OA=OF,∴∠EBD=∠CBD=∠ABO,∴∠ABO=30°,∵AB=2,∴OF=OA=AB•tan30°=2×=2,故选:B.3.(2021•大连)如图,在△ABC中,∠ACB=90°,∠BAC=α,将△ABC绕点C顺时针旋转90°得到△A'B'C,点B的对应点B'在边AC上(不与点A,C重合),则∠AA'B'的度数为()A.αB.α﹣45°C.45°﹣αD.90°﹣α解:∵将△ABC绕点C顺时针旋转90°得到△A'B'C,∴AC=A'C,∠BAC=∠CA'B',∠ACA'=90°,∴△ACA'是等腰直角三角形,∴∠CA'A=45°,∵∠BAC=α,∴∠CA'B'=α,∴∠AA'B'=45°﹣α.故选:C.4.(2021•本溪)如图,在△ABC中,AB=BC,由图中的尺规作图痕迹得到的射线BD与AC交于点E,点F为BC的中点,连接EF,若BE=AC=2,则△CEF的周长为()A.+1B.+3C.+1D.4解:由图中的尺规作图得:BE是∠ABC的平分线,∵AB=BC,∴BE⊥AC,AE=CE=AC=1,∴∠BEC=90°,∴BC===,∵点F为BC的中点,∴EF=BC=BF=CF,∴△CEF的周长=CF+EF+CE=CF+BF+CE=BC+CE=+1,故选:C.二.填空题(共8小题)5.(2021•丹东)如图,在△ABC中,∠B=45°,AB的垂直平分线交AB于点D,交BC于点E(BE >CE),点F是AC的中点,连接AE、EF,若BC=7,AC=5,则△CEF的周长为8.解:∵DE是AB的垂直平分线,∴∠BAE=∠ABE=45°,BE=AE,∴∠BEA=90°,∵BC=7,∴BE+CE=7,∴AE+CE=7,AE=7﹣CE,又∵AC=5,在△AEC中,AE2+CE2=AC2,(7﹣CE)2+CE2=52,解得:CE=3,又∵点F是AC的中点,∴,∴△CEF的周长=CF+CE+FE=.故答案为:8.6.(2021•大连)如图,在菱形ABCD中,∠BAD=60°,点E在边BC上,将△ABE沿直线AE翻折180°,得到△AB′E,点B的对应点是点B′.若AB′⊥BD,BE=2,则BB′的长是2.解:∵菱形ABCD,∴AB=AD,AD∥BC,∵∠BAD=60°,∴∠ABC=120°,∵AB′⊥BD,∴∠BAB'=,∵将△ABE沿直线AE翻折180°,得到△AB′E,∴BE=B'E,AB=AB',∴∠ABB'=,∴∠EBB'=∠ABE﹣∠ABB'=120°﹣75°=45°,∴∠EB'B=∠EBB'=45°,∴∠BEB'=90°,在Rt△BEB'中,由勾股定理得:BB'=,故答案为:2.7.(2021•丹东)如图,在矩形ABCD中,连接BD,过点C作∠DBC平分线BE的垂线,垂足为点E,且交BD于点F;过点C作∠BDC平分线DH的垂线,垂足为点H,且交BD于点G,连接HE,若BC=2,CD=,则线段HE的长度为.解:∵BE平分∠DBC,∴∠CBE=∠FBE,∵CF⊥BE,∴∠BEC=∠BEF=90°,又∵BE=BE,∴△BEC≌△BEF(ASA),∴CE=FE,BF=BC=2,同理:CH=GH,DG=CD=,∴HE是△CGF的中位线,∴HE=,在矩形ABCD中,,,由勾股定理得:BD=,∴GF=BF+DG﹣BD=,∴HE=,故答案为:.8.(2021•营口)如图,DE是△ABC的中位线,F为DE中点,连接AF并延长交BC于点G,若S=1,则S△ABC=24.△EFG解:∵DE是△ABC的中位线,∴D、E分别为AB、BC的中点,如图过D作DM∥BC交AG于点M,∵DM∥BC,∴∠DMF=∠EGF,∵点F为DE的中点,∴DF=EF,在△DMF和△EGF中,,∴△DMF≌△EGF(ASA),∴S△DMF=S△EGF=1,GF=FM,DM=GE,∵点D为AB的中点,且DM∥BC,∴AM=MG,∴FM=AM,∴S△ADM=2S△DMF=2,∵DM为△ABG的中位线,∴=,∴S△ABG=4S△ADM=4×2=8,∴S梯形DMGB=S△ABG﹣S△ADM=8﹣2=6,∴S△BDE=S梯形DMGB=6,∵DE是△ABC的中位线,∴S△ABC=4S△BDE=4×6=24,故答案为:24.9.(2021•本溪)如图,将正方形纸片ABCD沿PQ折叠,使点C的对称点E落在边AB上,点D 的对称点为点F,EF交AD于点G,连接CG交PQ于点H,连接CE.下列四个结论中:①△PBE~△QFG;②S△CEG=S△CBE+S四边形CDQH;③EC平分∠BEG;④EG2﹣CH2=GQ•GD,正确的是①③④(填序号即可).解:①∵四边形ABCD是正方形,∴∠A=∠B=∠BCD=∠D=90°.由折叠可知:∠GEP=∠BCD=90°,∠F=∠D=90°.∴∠BEP+∠AEG=90°,∵∠A=90°,∴∠AEG+∠AGE=90°,∴∠BEP=∠AGE.∵∠FGQ=∠AGE,∴∠BEP=∠FGQ.∵∠B=∠F=90°,∴△PBE~△QFG.故①正确;②过点C作CM⊥EG于M,由折叠可得:∠GEC=∠DCE,∵AB∥CD,∴∠BEC=∠DCE,∴∠BEC=∠GEC,在△BEC和△MEC中,,∴△BEC≌△MEC(AAS).∴CB=CM,S△BEC=S△MEC.∵CG=CG,∴Rt△CMG≌Rt△CDG(HL),∴S△CMG=S△CDG,∴S△CEG=S△BEC+S△CDG>S△BEC+S四边形CDQH,∴②不正确;③由折叠可得:∠GEC=∠DCE,∵AB∥CD,∴∠BEC=∠DCE,∴∠BEC=∠GEC,即EC平分∠BEG.∴③正确;④连接DH,MH,HE,如图,∵△BEC≌△MEC,△CMG≌△CDG,∴∠BCE=∠MCE,∠MCG=∠DCG,∴∠ECG=∠ECM+∠GCM=∠BCD=45°,∵EC⊥HP,∴∠CHP=45°.∴∠GHQ=∠CHP=45°.由折叠可得:∠EHP=∠CHP=45°,∴EH⊥CG.∴EG2﹣EH2=GH2.由折叠可知:EH=CH.∴EG2﹣CH2=GH2.∵CM⊥EG,EH⊥CG,∴∠EMC=∠EHC=90°,∴E,M,H,C四点共圆,∴∠HMC=∠HEC=45°.在△CMH和△CDH中,,∴△CMH≌△CDH(SAS).∴∠CDH=∠CMH=45°,∵∠CDA=90°,∴∠GDH=45°,∵∠GHQ=∠CHP=45°,∴∠GHQ=∠GDH=45°.∵∠HGQ=∠DGH,∴△GHQ∽△GDH,∴.∴GH2=GQ•GD.∴GE2﹣CH2=GQ•GD.∴④正确;综上可得,正确的结论有:①③④.故答案为:①③④.10.(2021•营口)如图,矩形ABCD中,AB=5,BC=4,点E是AB边上一点,AE=3,连接DE,点F是BC延长线上一点,连接AF,且∠F=∠EDC,则CF=6.解:如图,连接EC,过点D作DH⊥EC于H.∵四边形ABCD是矩形,∴∠BAD=∠BCD=90°,AD=BC=4,AB=CD=5,∵AE=3,∴DE===5,∴DE=DC,∵DH⊥EC,∴∠CDH=∠EDH,∵∠F=∠EDC,∠CDH=∠EDC,∴∠CDH=∠F,∵∠BCE+∠DCH=90°,∠DCH+∠CDH=90°,∴∠BCE=∠CDH,∴∠BCE=∠F,∴EC∥AF,∴=,∴=,∴CF=6,故答案为:6.11.(2021•山西)如图,在△ABC中,点D是AB边上的一点,且AD=3BD,连接CD并取CD的中点E,连接BE,若∠ACD=∠BED=45°,且CD=6,则AB的长为4.解:如图,取AD中点F,连接EF,过点D作DG⊥EF于G,DH⊥BE于H,设BD=a,∴AD=3BD=3a,AB=4a,∵点E为CD中点,点F为AD中点,CD=6,∴DF=a,EF∥AC,DE=3,∴∠FED=∠ACD=45°,∵∠BED=45°,∴∠FED=∠BED,∠FEB=90°,∵DG⊥EF,DH⊥BE,∴四边形EHDG是矩形,DG=DH,∴四边形DGEH是正方形,∴DE=DG=3,DH∥EF,∴DG=DH=3,∵DH∥EF,∴△BDH∽△BFE,∴,∴=,∴BH=2,∴BD===,∴AB=4,故答案为:4.12.(2021•陕西)如图,正方形ABCD的边长为4,⊙O的半径为1.若⊙O在正方形ABCD内平移(⊙O可以与该正方形的边相切),则点A到⊙O上的点的距离的最大值为3+1.解:当⊙O与CB、CD相切时,点A到⊙O上的点Q的距离最大,如图,过O点作OE⊥BC于E,OF⊥CD于F,∴OE=OF=1,∴OC平分∠BCD,∵四边形ABCD为正方形,∴点O在AC上,∵AC=BC=4,OC=OE=,∴AQ=OA+OQ=4﹣+1=3+1,即点A到⊙O上的点的距离的最大值为3+1,故答案为3+1.三.解答题(共18小题)13.(2021•吉林)如图①,在Rt△ABC中,∠ACB=90°,∠A=60°,CD是斜边AB上的中线,点E为射线BC上一点,将△BDE沿DE折叠,点B的对应点为点F.(1)若AB=a.直接写出CD的长(用含a的代数式表示);(2)若DF⊥BC,垂足为G,点F与点D在直线CE的异侧,连接CF,如②,判断四边形ADFC 的形状,并说明理由;(3)若DF⊥AB,直接写出∠BDE的度数.解:(1)如图①,在Rt△ABC中,∠ACB=90°,∵CD是斜边AB上的中线,AB=a,∴CD=AB=a.(2)四边形ADFC是菱形.理由如下:如图②∵DF⊥BC于点G,∴∠DGB=∠ACB=90°,∴DF∥AC;由折叠得,DF=DB,∵DB=AB,∴DF=AB;∵∠ACB=90°,∠A=60°,∴∠B=90°﹣60°=30°,∴AC=AB,∴DF=AC,∴四边形ADFC是平行四边形;∵AD=AB,∴AD=DF,∴四边形ADFC是菱形.(3)如图③,点F与点D在直线CE异侧,∵DF⊥AB,∴∠BDF=90°;由折叠得,∠BDE=∠FDE,∴∠BDE=∠FDE=∠BDF=×90°=45°;如图④,点F与点D在直线CE同侧,∵DF⊥AB,∴∠BDF=90°,∴∠BDE+∠FDE=360°﹣90°=270°,由折叠得,∠BDE=∠FDE,∴∠BDE+∠BDE=270°,∴∠BDE=135°.综上所述,∠BDE=45°或∠BDE=135°.14.(2021•长春)如图,在菱形ABCD中,对角线AC与BD相交于点O,AC=4,BD=8,点E在边AD上,AE=AD,连结BE交AC于点M.(1)求AM的长.(2)tan∠MBO的值为.解:(1)在菱形ABCD中,AD∥BC,AD=BC,∴△AEM∽△CBM,∴=,∵AE=AD,∴AE=BC,∴==,∴AM=CM=AC=1.(2)∵AO=AC=2,BO=BD=4,AC⊥BD,∴∠BOM=90°,AM=OM=AO=1,∴tan∠MBO==.故答案为:.15.(2021•吉林)如图,在矩形ABCD中,AB=3cm,AD=cm.动点P从点A出发沿折线AB ﹣BC向终点C运动,在边AB上以1cm/s的速度运动;在边BC上以cm/s的速度运动,过点P 作线段PQ与射线DC相交于点Q,且∠PQD=60°,连接PD,BD.设点P的运动时间为x(s),△DPQ与△DBC重合部分图形的面积为y(cm2).(1)当点P与点A重合时,直接写出DQ的长;(2)当点P在边BC上运动时,直接写出BP的长(用含x的代数式表示);(3)求y关于x的函数解析式,并写出自变量x的取值范围.解:(1)如图,在Rt△PDQ中,AD=,∠PQD=60°,∴tan60°==,∴DQ=AD=1.(2)点P在AB上运动时间为3÷1=3(s),∴点P在BC上时PB=(x﹣3).(3)当0≤x≤3时,点P在AB上,作PM⊥CD于点M,PQ交AB于点E,作EN⊥CD于点N,同(1)可得MQ=AD=1.∴DQ=DM+MQ=AP+MQ=x+1,当x+1=3时x=2,∴0≤x≤2时,点Q在DC上,∵tan∠BDC==,∴∠DBC=30°,∵∠PQD=60°,∴∠DEQ=90°.∵sin30°==,∴EQ=DQ=,∵sin60°==,∴EN=EQ=(x+1),∴y=DQ•EN=(x+1)×(x+1)=(x+1)2=x2+x+(0≤x≤2).当2<x≤3时,点Q在DC延长线上,PQ交BC于点F,如图,∵CQ=DQ﹣DC=x+1﹣3=x﹣2,tan60°=,∴CF=CQ•tan60°=(x﹣2),∴S△CQF=CQ•CF=(x﹣2)×(x﹣2)=x2﹣2x+2,∴y=S△DEQ﹣S△CQF=x2+x+﹣(x2﹣2x+2)=﹣x2+x﹣(2<x≤3).当3<x≤4时,点P在BC上,如图,∵CP=CB﹣BP=﹣(x﹣3)=4﹣x,∴y=DC•CP=×3(4﹣x)=6﹣x(3<x≤4).综上所述,y=16.(2021•长春)实践与探究操作一:如图①,已知正方形纸片ABCD,将正方形纸片沿过点A的直线折叠,使点B落在正方形ABCD的内部,点B的对应点为点M,折痕为AE,再将纸片沿过点A的直线折叠,使AD与AM重合,折痕为AF,则∠EAF=45度.操作二:如图②,将正方形纸片沿EF继续折叠,点C的对应点为点N.我们发现,当点E的位置不同时,点N的位置也不同.当点E在BC边的某一位置时,点N恰好落在折痕AE上,则∠AEF=60度.在图②中,运用以上操作所得结论,解答下列问题:(1)设AM与NF的交点为点P.求证:△ANP≌△FNE;(2)若AB=,则线段AP的长为2﹣2.操作一:解:∵四边形ABCD是正方形,∴∠C=∠BAD=90°,由折叠的性质得:∠BAE=∠MAE,∠DAF=∠MAF,∴∠MAE+∠MAF=∠BAE+∠DAF=∠BAD=45°,即∠EAF=45°,故答案为:45;操作二:解:∵四边形ABCD是正方形,∴∠B=∠C=90°,由折叠的性质得:∠NFE=∠CFE,∠ENF=∠C=90°,∠AFD=∠AFM,∴∠ANF=180°﹣90°=90°,由操作一得:∠EAF=45°,∴△ANF是等腰直角三角形,∴∠AFN=45°,∴∠AFD=∠AFM=45°+∠NFE,∴2(45°+∠NFE)+∠CFE=180°,∴∠NFE=∠CFE=30°,∴∠AEF=90°﹣30°=60°,故答案为:60;(1)证明:∵△ANF是等腰直角三角形,∴AN=FN,∵∠AMF=∠ANF=90°,∠APN=∠FPM,∴∠NAP=∠NFE=30°,在△ANP和△FNE中,,∴△ANP≌△FNE(ASA);(2)由(1)得:△ANP≌△FNE,∴AP=FE,PN=EN,∵∠NFE=∠CFE=30°,∠ENF=∠C=90°,∴∠NEF=∠CEF=60°,∴∠AEB=60°,∵∠B=90°,∴∠BAE=30°,∴BE=AB=1,∴AE=2BE=2,设PN=EN=a,∵∠ANP=90°,∠NAP=30°,∴AN=PN=a,AP=2PN=2a,∵AN+EN=AE,∴a+a=2,解得:a=﹣1,∴AP=2a=2﹣2,故答案为:2﹣2.17.(2021•丹东)如图,⊙O是△ABC的外接圆,点D是的中点,过点D作EF//BC分别交AB、AC的延长线于点E和点F,连接AD、BD,∠ABC的平分线BM交AD于点M.(1)求证:EF是⊙O的切线;(2)若AB:BE=5:2,AD=,求线段DM的长.解:(1)证明:连接OD,如图,∵点D是的中点,∴,∴OD⊥BC,∵BC∥EF,∴OD⊥EF,∴EF为⊙O的切线;(2)设BC、AD交于点N,∵AB:BE=5:2,,EF∥BC,∴,∴DN=,∵点D是的中点,∴∠BAD=∠CAD=∠CBD,又∵∠BDN=∠ADB,∴△BDN∽△ADB,∴,即:,∴BD=2,∵∠ABC的平分线BM交AD于点M,∴∠ABM=∠CBM,∴∠ABM+∠BAD=∠CBM+∠CBD,即:∠BMD=∠DBM,∴DM=BD=2.18.(2021•长春)如图,在△ABC中,∠C=90°,AB=5,BC=3,点D为边AC的中点.动点P 从点A出发,沿折线AB﹣BC以每秒1个单位长度的速度向点C运动,当点P不与点A、C重合时,连结PD.作点A关于直线PD的对称点A′,连结A′D、A′A.设点P的运动时间为t秒.(1)线段AD的长为2;(2)用含t的代数式表示线段BP的长;(3)当点A′在△ABC内部时,求t的取值范围;(4)当∠AA′D与∠B相等时,直接写出t的值.解:(1)在Rt△ABC中,由勾股定理得:AC==4,∴AD=AC=2.故答案为:2.(2)当0<t≤5时,点P在线段AB上运动,PB=AB﹣AP=5﹣t,当5<t<8时,点P在BC上运动,PB=t﹣5.综上所述,PB=.(3)如图,当点A'落在AB上时,DP⊥AB,∵AP=t,AD=2,cos A=,∴在Rt△APD中,cos A===,∴t=.如图,当点A'落在BC边上时,DP⊥AC,∵AP=t,AD=2,cos A=,∴在Rt△APD中,cos A===,∴t=.如图,点A'运动轨迹为以D为圆心,AD长为半径的圆上,∴<t<时,点A'在△ABC内部.(4)如图,0<t<5时,∵∠AA'D=∠B=∠A'AD,∠ADP+∠A'AD=∠BAC+∠B=90°,∴∠ADP=∠BAC,∴AE=AD=1,∵cos A===,∴t=.如图,当5<t<8时,∵∠AA'B=∠B=∠A'AD,∠BAC+∠B=90°,∴∠BAC+∠A'AD=90°,∴PE∥BA,∴∠DPC=∠B,∵在Rt△PCD中,CD==2,CP=8﹣t,tan∠DPC=,∴tan∠DPC===,∴t=.综上所述,t=或.19.(2021•大连)如图1,△ABC内接于⊙O,直线MN与⊙O相切于点D,OD与BC相交于点E,BC∥MN.(1)求证:∠BAC=∠DOC;(2)如图2,若AC是⊙O的直径,E是OD的中点,⊙O的半径为4,求AE的长.(1)证明:连接OB,如图1,∵直线MN与⊙O相切于点D,∴OD⊥MN,∵BC∥MN,∴OD⊥BC,∴=,∴∠BOD=∠COD,∵∠BAC=∠BOC,∴∠BAC=∠COD;(2)∵E是OD的中点,∴OE=DE=2,在Rt△OCE中,CE===2,∵OE⊥BC,∴BE=CE=2,∵AC是⊙O的直径,∴∠ABC=90°,∴AB===4,在Rt△ABE中,AE===2.20.(2021•丹东)已知,在正方形ABCD中,点M、N为对角线AC上的两个动点,且∠MBN=45°,过点M、N分别作AB、BC的垂线相交于点E,垂足分别为F、G,设△AFM的面积为S1,△NGC 的面积为S2,△MEN的面积为S3.(1)如图(1),当四边形EFBG为正方形时,①求证:△AFM≌△CGN;②求证:S3=S1+S2.(2)如图(2),当四边形EFBG为矩形时,写出S1,S2,S3三者之间的数量关系,并说明理由;(3)在(2)的条件下,若BG:GC=m:n(m>n),请直接写出AF:FB的值.解:(1)①在正方形ABCD和正方形EFBG中,AB=CB,BF=BG,∠F AM=∠GCN=45°,∠AFM=∠CGN=90°,∴AB﹣BF=CB﹣BG,即AF=CG,∴△AFM≌△CGN(ASA)②如图1,连接BD,则BD过点E,且BD⊥AC,∠ABD=∠CBD=45°,由①知△AFM≌△CGN,∴AM=CN,∵∠BAM=∠BCN,AB=BC,∴△ABM≅△CBN(SAS),∴BM=BN,∠ABM=∠CBN,∵∠MBN=45°=∠ABD,∴∠FBM+∠MBO=∠MBO+∠OBN,∴∠FBM=∠OBN,∵∠BFM=∠BON=90°,∴△FBM≅△OBN(AAS),∴FM=ON,∵∠AFM=∠EON=90°,∠F AM=∠OEN=45°,∴△AFM≅△EON(AAS),同理△CGN≌△EOM(AAS),∴S△EOM=S△CGN,S△EON=S△AFM,∵S3=S△MEN=S△EOM+S△EON=S△CGN+S△AFM,∴S3=S1+S2.(2)S3=S1+S2,理由如下:如图2,连接BD交AC于点O,∵四边形ABCD是正方形,四边形EFBG为矩形,∴BD⊥AC,∠BFM=∠BON=90°,∠ABD=∠CBD=45°,AC=BD=2OB,∵∠MBN=45°,∠FBM=∠OBN=45°﹣∠MBO,∴△FBM∽△OBN,∴,同理△BOM∽△BGN,∴,∴,∴OB2=BF⋅BG,∵,S矩形EFBG=BF⋅BG,∴S矩形EFBG=S△ABC,∴S1+S2=S△ABC﹣S五边形MFBGN,S3=S矩形EFBG﹣S五边形MFBGN,∴S3=S1+S2.(3)根据题意可设BG=mx,GC=nx,AB=BC=(m+n)x,∴,即,∴BF===,∴,∴AF:BF=:=(m﹣n):(m+n).21.(2021•大连)如图,四边形ABCD为矩形,AB=3,BC=4,P、Q均从点B出发,点P以2个单位每秒的速度沿BA﹣AC的方向运动,点Q以1个单位每秒的速度沿BC﹣CD运动,设运动时间为t秒.(1)求AC的长;(2)若S△BPQ=S,求S关于t的解析式.解:(1)∵四边形ABCD为矩形,∴∠B=90°,在Rt△ABC中,由勾股定理得:AC=,∴AC的长为5;(2)当0<t≤1.5时,如图,S=;当1.5<t≤4时,如图,作PH⊥BC于H,∴CP=8﹣2t,∵sin∠BCA=,∴,∴,∴S==﹣;当4<t≤7时,如图,点P与点C重合,S=.综上所述:S=.22.(2021•营口)如图,AB是⊙O直径,点C,D为⊙O上的两点,且=,连接AC,BD交于点E,⊙O的切线AF与BD延长线相交于点F,A为切点.(1)求证:AF=AE;(2)若AB=8,BC=2,求AF的长.(1)证明:连接AD,∵AB是⊙O直径,∴∠ADB=∠ADF=90°,∴∠F+∠DAF=90°,∵AF是⊙O的切线,∴∠F AB=90°,∴∠F+∠ABF=90°,∴∠DAF=∠ABF,∵=,∴∠ABF=∠CAD,∴∠DAF=∠CAD,∴∠F=∠AEF,∴AF=AE;(2)解:∵AB是⊙O直径,∴∠C=90°,∵AB=8,BC=2,∴AC===2,∵∠C=∠F AB=90°,∠CEB=∠AEF=∠F,∴△BCE∽△BAF,∴=,即=,∴CE=AF,∵AF=AE,∴CE=AE,∵AE+CE=AC=2,∴AE=,∴AF=AE=.23.(2021•大连)已知AB=BD,AE=EF,∠ABD=∠AEF.(1)找出与∠DBF相等的角并证明;(2)求证:∠BFD=∠AFB;(3)AF=kDF,∠EDF+∠MDF=180°,求.解:(1)如图1,∠BAE=∠DBF,证明:∵∠DBF+∠ABF=∠ABD,∠ABD=∠AEF,∴∠DBF+∠ABF=∠AEF,∵∠AEF=∠BAE+∠ABF,∴∠BAE+∠ABF=∠DBF+∠ABF,∴∠BAE=∠DBF.(2)证明:如图2,连接AD交BF于点G,∵AB=BD,AE=EF,∴,∵∠ABD=∠AEF,∴△ABD∽△AEF,∴∠BDG=∠AFB,∵∠BGD=∠AGF,∴△BGD∽△AGF,∴,∴,∵∠AGB=∠FGD,∴△AGB∽△FGD,∴∠BAD=∠BFD,∵∠BAD=∠BDG=∠AFB,∴∠BFD=∠AFB.(3)如图3,作点D关于直线BF的对称点D′,连接MD′、DD′,作EH∥MD′交AC于点H,则BF垂直平分DD′,∴D′F=DF,D′M=DM,∵MF=MF,∴△D′MF≌△DMF,∴∠EHF=∠MD′F=∠MDF,∵∠EDF+∠MDF=180°,∠EHA+∠EHF=180°,∴∠EDF=∠EHA,∵∠EFD=∠AFB=∠EAH,EF=AE,∴△EFD≌△EAH(AAS),∴DF=AH,∵,D′F=DF,∴,∵AF=kDF,∴,∴.24.(2021•本溪)如图,在Rt△ABC中,∠ACB=90°,延长CA到点D,以AD为直径作⊙O,交BA的延长线于点E,延长BC到点F,使BF=EF.(1)求证:EF是⊙O的切线;(2)若OC=9,AC=4,AE=8,求BF的长.证明:(1)连接OE,∵OA=OE,∴∠OEA=∠OAE,在Rt△ABC中,∠ACB=90°,∴∠BAC+∠B=90°,∵BF=EF,∴∠B=∠BEF,∵∠OAE=∠BAC,∴∠OEA=∠BAC,∴∠OEF=∠OEA+∠BEF=∠BAC+∠B=90°,∴OE⊥EF,∵OE是⊙O的半径,∴EF是⊙O的切线;(2)解:连接DE,∵OC=9,AC=4,∴OA=OC﹣AC=5,∵AD=2OA,∴AD=10,∵AD是⊙O的直径,∴∠AED=90°,在Rt△ADE中,∵DE===6,∴cos∠DAE===,在Rt△ABC中,cos∠BAC==,∵∠BAC=∠DAE,∴=,∴AB=5,∴BE=AB+AE=5+8=13,∵OD=OE,∴∠ODE=∠OED,∵EF是⊙O的切线,∴∠FEO=90°,∵∠OED+∠OEA=90°,∠FEB+∠OEA=90°,∴∠FEB=∠OED,∴∠B=∠FEB=∠OED=∠ODE,∴△FBE∽△ODE,∴=,∴=,∴BF=.25.(2021•营口)如图,△ABC和△DEF都是等腰直角三角形,AB=AC,∠BAC=90°,DE=DF,∠EDF=90°,D为BC边中点,连接AF,且A、F、E三点恰好在一条直线上,EF交BC于点H,连接BF,CE.(1)求证:AF=CE;(2)猜想CE,BF,BC之间的数量关系,并证明;(3)若CH=2,AH=4,请直接写出线段AC,AE的长.(1)证明:连接AD.∵AB=AC,∠BAC=90°,BD=CD,∴AD⊥CB,AD=DB=DC.∵∠ADC=∠EDF=90°,∴∠ADF=∠CDE,∵DF=DE,∴△ADF≌△CDE(SAS),∴AF=CE.(2)结论:CE2+BF2=BC2.理由:∵△ABC,△DEF都是等腰直角三角形,∴AC=BC,∠DFE=∠DEF=45°,∵△ADF≌△CDE(SAS),∴∠AFD=∠DEC=135°,∠DAF=∠DCE,∵∠BAD=∠ACD=45°,∴∠BAD+∠DAF=∠ACD+∠DCE,∴∠BAF=∠ACE,∵AB=CA,AF=CE,∴△BAF≌△ACE(SAS),∴BF=AE,∵∠AEC=∠DEC﹣∠DEF=135°﹣45°=90°,∴AE2+CE2=AC2,∴BF2+CE2=BC2.(3)解:设EH=m.∵∠ADH=∠CEH=90°,∠AHD=∠CHE,∴△ADH∽△CEH,∴====2,∴DH=2m,∴AD=CD=2m+2,∴EC=m+1,在Rt△CEH中,CH2=EH2+CE2,∴22=m2+(m+1)2,∴2m2+2m﹣3=0,∴m=或(舍弃),∴AE=AH+EH=,∴AD=1+,∴AC=AD=+.26.(2021•本溪)在▱ABCD中,∠BAD=α,DE平分∠ADC,交对角线AC于点G,交射线AB于点E,将线段EB绕点E顺时针旋转α得线段EP.(1)如图1,当α=120°时,连接AP,请直接写出线段AP和线段AC的数量关系;(2)如图2,当α=90°时,过点B作BF⊥EP于点,连接AF,请写出线段AF,AB,AD之间的数量关系,并说明理由;(3)当α=120°时,连接AP,若BE=AB,请直接写出△APE与△CDG面积的比值.解:(1)方法一:如图1,连接PB,PC,∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,AD=BC,∵α=120°,即∠BAD=120°,∴∠B=∠ADC=60°,∴∠BEP=60°=∠B,由旋转知:EP=EB,∴△BPE是等边三角形,∴BP=EP,∠EBP=∠BPE=60°,∴∠CBP=∠ABC+∠EBP=120°,∵∠AEP=180°﹣∠BEP=120°,∴∠AEP=∠CBP,∵DE平分∠ADC,∴∠ADE=∠CDE=30°,∴∠AED=∠CDE=30°=∠ADE,∴AD=AE,∴AE=BC,∴△APE≌△CPB(SAS),∴AP=CP,∠APE=∠CPB,∴∠APE+∠CPE=∠CPB+∠CPE,即∠APC=∠BPE=60°,∴△APC是等边三角形,∴AP=AC;方法二:如图1,延长PE交CD于点Q,连接AQ,∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∵α=120°,即∠BAD=120°,∴∠B=∠ADC=60°,∴∠BEP=60°=∠B,∴PE∥BC∥AD,∴四边形ADQE和四边形BCQE是平行四边形,∵DE平分∠ADC,∴∠ADE=∠CDE=30°,∴∠AED=∠CDE=30°=∠ADE,∴AD=AE,∴四边形ADQE是菱形,∴∠EAQ=∠AEQ=60°,∴△AEQ是等边三角形,∴AE=AQ,∠AQE=60°,∵四边形BCQE是平行四边形,∴PE=BE=CQ,∠B=∠CQE=60°,∵∠AEP=120°,∠AQC=∠AQE+∠CQE=120°,∴∠AEP=∠AQC,∴△AEP≌△AQC(SAS),∴AP=AC;(2)AB2+AD2=2AF2,理由:如图2,连接CF,在▱ABCD中,∠BAD=90°,∴∠ADC=∠ABC=∠BAD=90°,AD=BC,∵DE平分∠ADC,∴∠ADE=∠CDE=45°,∴∠AED=∠ADE=45°,∴AD=AE,∴AE=BC,∵BF⊥EP,∴∠BFE=90°,∵∠BEF=α=∠BAD=×90°=45°,∴∠EBF=∠BEF=45°,∴BF=EF,∵∠FBC=∠FBE+∠ABC=45°+90°=135°,∠AEF=180°﹣∠FEB=135°,∴∠CBF=∠AEF,∴△BCF≌△EAF(SAS),∴CF=AF,∠CFB=∠AFE,∴∠AFC=∠AFE+∠CFE=∠CFB+∠CFE=∠BFE=90°,∴∠ACF=∠CAF=45°,∵sin∠ACF=,∴AC====AF,在Rt△ABC中,AB2+BC2=AC2,∴AB2+AD2=2AF2;(3)方法一:由(1)知,BC=AD=AE=AB﹣BE,∵BE=AB,AB=CD,∴AB=CD=2BE,设BE=a,则PE=AD=AE=a,AB=CD=2a,①当点E在AB上时,如图3,过点G作GM⊥AD于点M,作GN⊥CD于点N,过点C作CK⊥AD于点K,过点A作AH⊥PE的延长线于点H,当α=120°时,∠B=∠ADC=60°,∵DE平分∠ADC,GM⊥AD,GN⊥CD,∴GM=GN,∵S△ACD=AD•CK=a•2a•sin60°=a2,====2,∴S△CDG=2S△ADG,∴S△CDG=S△ACD=a2,由(1)知PE∥BC,∴∠AEH=∠B=60°,∵∠H=90°,∴AH=AE•sin60°=a,∴S△APE=PE•AH=a•a=a2,∴==.②如图4,当点E在AB延长线上时,由①同理可得:S△CDG=•S△ACD=××2a××3a=a2,S△APE=PH•AE=×a×3a=a2,∴==,综上所述,△APE与△CDG面积的比值为或.方法二:如图3,∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,AB=CD,∴△AEG∽△CDG,∴=()2,=,①当点E在AB上时,∵BE=AB,∴AE=BE=AB=CD,∴=()2=,又∵==,∴=,即=3,∴==3,当α=120°时,∠B=∠ADC=60°,∵DE平分∠ADC,∴∠ADE=30°,∴∠AED=180°﹣∠BAD﹣∠ADE=30°=∠ADE,∴AE=AD,∵EP=EB=AE,EP∥AD,∴EP=AD=AE,∠AEP=∠DAE=120°,∴△AED≌△EAP(SAS),∴S△AED=S△EAP,∴=•=•=3×=;②如图4,当点E在AB延长线上时,∵BE=AB,∴AE=AB=CD,由①知,AD=AE=CD,∵EP=BE=AE=AD,EP∥AD,∴==,∵==,∴=,∴==,∵=()2=()2=,∴=••=××=;综上所述,△APE与△CDG面积的比值为或.27.(2021•山西)阅读与思考请阅读下列科普材料,并完成相应的任务.图算法图算法也叫诺模图,是根据几何原理,将某一已知函数关系式中的各变量,分别编成有刻度的直线(或曲线),并把它们按一定的规律排列在一起的一种图形,可以用来解函数式中的未知量.比如想知道10摄氏度相当于多少华氏度,我们可根据摄氏温度与华氏温度之间的关系:F=C+32得出,当C=10时,F=50.但是如果你的温度计上有华氏温标刻度,就可以从温度计上直接读出答案,这种利用特制的线条进行计算的方法就是图算法.再看一个例子:设有两只电阻,分别为5千欧和7.5千欧,问并联后的电阻值是多少?我们可以利用公式求得R的值,也可以设计一种图算法直接得出结果:我们先来画出一个120°的角,再画一条角平分线,在角的两边及角平分线上用同样的单位长度进行刻度,这样就制好了一张算图.我们只要把角的两边刻着7.5和5的两点连成一条直线,这条直线与角平分线的交点的刻度值就是并联后的电阻值.图算法得出的数据大多是近似值,但在大多数情况下是够用的,那些需要用同一类公式进行计算的测量制图人员,往往更能体会到它的优越性.任务:(1)请根据以上材料简要说明图算法的优越性;(2)请用以下两种方法验证第二个例子中图算法的正确性:①用公式计算:当R1=7.5,R2=5时,R的值为多少;②如图,在△AOB中,∠AOB=120°,OC是△AOB的角平分线,OA=7.5,OB=5,用你所学的几何知识求线段OC的长.解:(1)图算法方便、直观,不用公式计算即可得出结果;(答案不唯一).(2)①当R1=7.5,R2=5时,,∴R=3.②过点A作AM∥CO,交BO的延长线于点M,如图∵OC是∠AOB的角平分线,∴∠COB=∠COA=∠AOB=×120°=60°.∵AM∥CO,∴∠MAO=∠AOC=60°,∠M=∠COB=60°.∴∠MAO=∠M=60°.∴OA=OM.∴△OAM为等边三角形.∴OM=OA=AM=7.5.∵AM∥CO,∴△BCO∽△BAM.∴.∴.∴OC=3.综上,通过计算验证第二个例子中图算法是正确的.28.(2021•陕西)如图,AB是⊙O的直径,点E、F在⊙O上,且=2,连接OE、AF,过点B作⊙O的切线,分别与OE、AF的延长线交于点C、D.(1)求证:∠COB=∠A;(2)若AB=6,CB=4,求线段FD的长.(1)证明:取的中点M,连接OM、OF,∵=2,∴==,∴∠COB=∠BOF,∵∠A=∠BOF,∴∠COB=∠A;(2)解:连接BF,如图,∵CD为⊙O的切线,∴AB⊥CD,∴∠OBC=∠ABD=90°,∵∠COB=∠A,∴△OBC∽△ABD,∴=,即=,解得BD=8,29.(2021•山西)综合与实践问题情境:数学活动课上,老师出示了一个问题:如图①,在▱ABCD中,BE⊥AD,垂足为E,F 为CD的中点,连接EF,BF,试猜想EF与BF的数量关系,并加以证明.独立思考:(1)请解答老师提出的问题;实践探究:(2)希望小组受此问题的启发,将▱ABCD沿着BF(F为CD的中点)所在直线折叠,如图②,点C的对应点为C′,连接DC′并延长交AB于点G,请判断AG与BG的数量关系,并加以证明.问题解决:(3)智慧小组突发奇想,将▱ABCD沿过点B的直线折叠,如图③,点A的对应点为A′,使A′B⊥CD于点H,折痕交AD于点M,连接A′M,交CD于点N.该小组提出一个问题:若此▱ABCD的面积为20,边长AB=5,BC=2,求图中阴影部分(四边形BHNM)的面积.请你思考此问题,直接写出结果.解:(1)结论:EF=BF.理由:如图①中,作FH∥AD交BE于H.∵四边形ABCD是平行四边形,∴AD∥BC,∵FH∥AD,∴DE∥FH∥CB,∵DF=CF,∴==1,∴EH=HB,∴BE⊥AD,FH∥AD,∴FH⊥EB,∴EF=BF.(2)结论:AG=BG.理由:如图②中,连接CC′.∵△BFC′是由△BFC翻折得到,∴BF⊥CC′,FC=FC′,∵DF=FC,∴DF=FC=FC′,∴∠CC′D=90°,∴CC′⊥GD,∴DG∥BF,∵DF∥BG,∴四边形DFBG是平行四边形,∴DF=BG,∵AB=CD,DF=CD,∴BG=AB,∴AG=GB.(3)如图③中,过点D作DJ⊥AB于J,过点M作MT⊥AB于T.∵S平行四边形ABCD=AB•DJ,∴DJ==4,∵四边形ABCD是平行四边形,∴AD=BC=2,AB∥CD,∴AJ===2,∵A′B⊥AB,DJ⊥AB,∴∠DJB=∠JBH=∠DHB=90°,∴四边形DJBH是矩形,∴BH=DJ=4,∴A′H=A′B﹣BH=5﹣4=1,∵tan A===2,设AT=x,则MT=2x,∵∠ABM=∠MBA′=45°,∴MT=TB=2x,∴3x=5,∴x=,∴MT=,∵tan A=tan A′==2,∴NH=2,∴S△ABM=S△A′BM=×5×=,∴S四边形BHNM=S△A′BM﹣S△NHA′=﹣×1×2=.30.(2021•陕西)问题提出(1)如图1,在▱ABCD中,∠A=45°,AB=8,AD=6,E是AD的中点,点F在DC上,且DF=5,求四边形ABFE的面积.(结果保留根号)问题解决(2)某市进行河滩治理,优化美化人居生态环境.如图2所示,现规划在河畔的一处滩地上规划一个五边形河畔公园ABCDE.按设计要求,要在五边形河畔公园ABCDE内挖一个四边形人工湖OPMN,使点O、P、M、N分别在边BC、CD、AE、AB上,且满足BO=2AN=2CP,AM=OC.已知五边形ABCDE中,∠A=∠B=∠C=90°,AB=800m,BC=1200m,CD=600m,AE=900m.为满足人工湖周边各功能场所及绿化用地需要,想让人工湖面积尽可能小.请问,是否存在符合设计要求的面积最小的四边形人工湖OPMN?若存在,求四边形OPMN面积的最小值及这时点N到点A的距离;若不存在,请说明理由.解:(1)如图1,过点A作AH⊥CD交CD的延长线于H,过点E作EG⊥CH于G,∴∠H=90°,∵四边形ABCD是平行四边形,∴CD=AB=8,AB∥CD,∴∠ADH=∠BAD=45°,在Rt△ADH中,AD=6,(2)存在,如图2,分别延长AE与CD,交于点K,则四边形ABCK是矩形,∴AK=BC=1200米,AB=CK=800米,设AN=x米,则PC=x米,BO=2x米,BN=(800﹣x)米,AM=OC=(1200﹣2x)米,∴MK=AK﹣AM=1200﹣(1200﹣2x)=2x米,PK=CK﹣CP=(800﹣x)米,∴S四边形OPMN=S矩形ABCK﹣S△AMN﹣S△BON﹣S△OCP﹣S△PKM=800×1200﹣x(1200﹣2x)﹣•2x(800﹣x)﹣x(1200﹣2x)﹣•2x(800﹣x)=4(x﹣350)2+470000,∴当x=350时,S四边形OPMN最小=470000(平方米),AM=1200﹣2x=1200﹣2×350=500<900,CP=x=350<600,∴符合设计要求的四边形OPMN面积的最小值为470000平方米,此时,点N到点A的距离为350米.。

2021年江苏中考数学压轴题精练试卷(解析版)

2021年江苏中考数学压轴题精练试卷(解析版)

最新 Word中考数学压轴题优选精练一、选择题1.如图,在 ? ABCD 中, CD = 8,BC =10,按以下步骤作图: ① 以点 C 为圆心,适合长度 为半径作弧,分别交BC , CD 于 M , N 两点; ② 分别以点M , N 为圆心,以大于MN的长为半径画弧,两弧在 ? ABCD 的内部交于点 P ;③ 连结 CP 并延伸交 AD 于点 E ,交BA 的延伸线于点 F ,则 AF 的长为()A .2B .3C .4D .52.如图 ① ,在 Rt △ABC 中,∠ ACB = 90°,∠ A = 30°,动点 D 从点 A 出发,沿 A → C → B以 1cm/s 的速度匀速运动到点B ,过点 D 作 DE ⊥ AB 于点 E ,图 ② 是点 D 运动时, △ ADE的面积 y ( cm 2)随时间 x ( s )变化的关系图象,则AB 的长为()A .4cmB .6cmC . 8cmD . 10cm3.如图,在△ ABC 中,点 D 、 E 、 F 分别在 AB 、 AC 、 BC 边上, DE ∥BC , EF ∥ AB ,则下列比率式中错误的选项是( )A .B .C .D .第3题 第4题4.如图,在平面直角坐标系xOy 中, A(﹣ 3,0), B(3, 0),若在直线y=﹣ x+m 上存在点 P 知足∠ APB= 60°,则 m 的取值范围是()A.C.﹣2≤m≤≤ m≤+2B.﹣D.﹣﹣5﹣2≤ m≤≤ m≤+5+25.如图, A、 C 两点在反比率函数 y=象上,AB⊥ x 轴于点 E,CD ⊥ x 轴于点的图象上, B、 D 两点在反比率函数y=F ,AB= 3,CD= 2,EF =,则k1﹣k2的值为(的图)A.﹣3 B.﹣ 2 C.D.﹣ 16.如图,以矩形ABCD 对角线AC 为底边作等腰直角△ACE,连结BE,分别交AD ,AC于点 F, N, CD= AF,AM均分∠BAN.以下结论:① EF⊥ ED;②∠ BCM=∠ NCM;③FM ,此中正确结论的个数是()AC=EM;④BN2+EF2= EN2;⑤AE?AM= NE?A .2B .3 C.4D. 5二、填空题1.如图,在扇形AOB 中,∠ AOB= 120°,连结AB,以OA 为直径作半圆 C 交AB 于点D ,若 OA= 4,则暗影部分的面积为.2.在△ ABC 中, AB= 4,∠ C= 60°,∠ A≠∠ B,则 BC 的长的取值范围是________.3.如图,点于 F,若G 是矩形 ABCD 的对角线BD 上一点,过点G 作 EF∥ ABEG= 5, BF =2,则图中暗影部分的面积为.交AD于E,交BC第 3 题第 4 题4.如图为二次函数2y= t( t> 0)与抛物线交于A, B 两点, A,B y= ax +bx+c 图象,直线两点横坐标分别为m,n.依据函数图象信息有以下结论:① abc> 0;②若对于 t>0 的随意值都有m<﹣ 1,则 a≥1;③m+n= 1;④ m<﹣ 1;⑤当 t 为定值时,若 a 变大,则线段 AB 变长.此中,正确的结论有(写出全部正确结论的序号)5.如图,在Rt△ ABC 中,∠ C= 90°, AC= BC.将△ ABC 绕点 A 逆时针旋转15°获得 Rt △ AB′ C′,B′ C′交 AB 于点 E,若图中暗影部分面积为2,则B′ E的长为.第5题第6题6.如图,在矩形ABCD 中,已知 AB =3, BC=4,点 P 是边 BC 上一动点(点C 重合),连结 AP,作点 B 对于直线AP 的对称点M,连结 MP ,作∠ MPC交边 CD 于点 N.则线段 MN 的最小值为.P 不与点 B,的角均分线三、解答题1.如图 1,平行四边形 ABCD 中, AB⊥ AC,AB= 6,AD = 10,点 P 在边 AD 上运动,以 P 为圆心, PA 为半径的⊙ P 与对角线 AC 交于 A, E 两点.(1)线段 AC 的长度是 ________.(2)如图 2,当⊙ P 与边 CD 相切于点 F 时,求 AP 的长;(3)不难发现,当⊙ P 与边 CD 相切时,⊙ P 与平行四边形 ABCD 的边有三个公共点,随着 AP 的变化,⊙ P 与平行四边形 ABCD 的边的公共点的个数也在变化,若共点的个数为4,直接写出相对应的 AP 的值的取值范围 ________________ .2.阅读理【分析】解:在平面直角坐标系中,若两点P、Q的坐标分别是P( x1, y1)、Q(x2,y2),则P、Q 这两点间的距离为|PQ|=.如P( 1, 2),Q( 3,4),则 | PQ| ==2 .对于某种几何图形给出以下定义:切合必定条件的动点形成的图形,叫做切合这个条件的点的轨迹.如平面内到线段两个端点距离相等的点的轨迹是这条线段的垂直均分线.解决问题:如图,已知在平面直角坐标系xOy 中,直线y=kx+交 y 轴于点A,点A 对于x 轴的对称点为点B,过点B 作直线 l 平行于 x 轴.(1)到点 A 的距离等于线段AB 长度的点的轨迹是(2)若动点 C( x,y)知足到直线l 的距离等于线段式;____________.CA 的长度,求动点C 轨迹的函数表达问题拓展:( 3)若(2)中的动点C 的轨迹与直线y= kx+交于E、F两点,分别过E、 F作直线l 的垂线,垂足分别是M、 N,求证:①EF 是△AMN外接圆的切线;②+为定值.5.如图,已知点 A( 1, 0), B( 0, 3),将△ AOB 绕点 O 逆时针旋转 90°,获得△ COD ,设E为AD的中点.( 1)若 F 为 CD 上一动点,求出当△DEF 与△ COD 相像时点 F 的坐标;( 2)过 E 作 x 轴的垂线 l ,在直线 l 上能否存在一点 Q,使∠ CQO=∠ CDO ?若存在,求出Q 点的坐标;若不存在,请说明原因.6.如图 1,在平面直角坐标系中,直线y= x+4 与抛物线y=﹣x2+bx+c( b,c 是常数)交于 A、 B 两点,点 A 在 x 轴上,点 B 在 y 轴上.设抛物线与x 轴的另一个交点为点C.( 1)求该抛物线的分析式;( 2)P 是抛物线上一动点(不与点A、 B 重合),①如图 2,若点 P 在直线 AB 上方,连结OP 交 AB 于点 D ,求的最大值;②如图 3,若点 P 在 x 轴的上方,连结PC,以 PC 为边作正方形CPEF,跟着点P 的运动,正方形的大小、地点也随之改变.当极点 E 或 F 恰巧落在 y 轴上,直接写出对应的点 P 的坐标.5.定义:在平面内,我们把既有大小又有方向的量叫做平面向量.平面向量能够用有向线段表示,有向线段的长度表示向量的大小,有向线段的方向表示向量的方向.此中大小相等,方向同样的向量叫做相等向量.如以正方形ABCD 的四个极点中某一点为起点,另一个极点为终点作向量,能够作出8 个不一样的向量:、、、、、、、(因为和是相等向量,所以只算一个).(1)作两个相邻的正方形(如图一).以此中的一个极点为起点,另一个极点为终点作向量,能够作出不一样向量的个数记为f (2),试求 f(2)的值;(2)作 n 个相邻的正方形(如图二)“一字型”排开.以此中的一个极点为起点,另一个极点为终点作向量,能够作出不一样向量的个数记为f( n),试求 f( n)的值;( 3)作 2× 3 个相邻的正方形(如图三)排开.以此中的一个极点为起点,另一个极点为终点作向量,能够作出不一样向量的个数记为f(2× 3),试求 f( 2× 3)的值;( 4)作 m× n 个相邻的正方形(如图四)排开.以此中的一个极点为起点,另一个极点为终点作向量,能够作出不一样向量的个数记为f(m×n),试求 f (m× n)的值.2 订交于点 A(﹣ 1, 0)和点 B( 2, m)两6.如图,已知直线 y= x+1 与抛物线 y= ax +2x+c点( 1)求抛物线的函数表达式;( 2)若点 P 是位于直线 AB 上方抛物线上的一动点,当△PAB 的面积 S 最大时,求此时△ PAB 的面积 S 及点 P 的坐标;( 3)在 x 轴上能否存在点 Q,使△ QAB 是等腰三角形?若存在,直接写出点Q 的坐标(不用说理);若不存在,请说明原因.【答案与分析】一、选择题1.【剖析】 依据角均分线的定义以及平行四边形的性质,即可获得BF ,BA 的长,从而获得AF 的长.【解答】 解:由题可得, CF 是∠ ACD 的均分线,∴∠ BCF =∠ DCF ,∵四边形 ABCD 是平行四边形,∴ AB ∥ CD ,AB = CD = 8,∴∠ F =∠ DCF ,∴∠ BCF =∠ F ,∴ BF = BC = 10,∴ AF = BF ﹣ AB = 10﹣ 8= 2.应选: A .2.【剖析】 依据题意可得,△ ADE 的最大面积是 6 三角形 ADE 的面积即可求出 DE = 2 ,再依据【解答】 解:依据题意可知:2( cm ),此时点 D 与点 C 重合,依据30 度特别角即可求出 AB 的长.△ ADE 的最大面积是 6 ( cm 2),此时点 D 与点 C 重合,如图,在 Rt △ADE 中,∠ A = 30°,设 DE = x ,则 AE =x ,∴ S △ADE = AE ?DE= ×x?x=x 2,∴x 2= 6 ,解得 x=2(负值舍去),∴DE= 2,∴ AD= AC= 2DE= 4,在 Rt△ABC 中,∠ A= 30°,∴ cos30°==,∴=,∴AB= 8cm.应选: C.3.【剖析】依据平行线分线段成比率定理列出比率式,再分别对每一项进行判断即可.【解答】 A.∵ EF ∥AB,∴=,故本选项正确,B.∵ DE∥ BC,∴=,∵EF∥ AB,∴DE=BF,∴=,∴=,故本选项正确,C.∵ EF∥ AB,∴=,∵CF≠ DE,∴≠ ,故本选项错误,D .∵ EF∥ AB,∴=,∴=,故本选项正确,应选: C.4.【剖析】作等边三角形ABE,而后作外接圆,求得直线y=﹣ x+m 与外接圆相切时的m 的值,即可求得 m 的取值范围.【解答】解:如图,作等边三角形ABE,∵A(﹣ 3, 0), B( 3,0),∴ OA= OB= 3,∴ E 在 y 轴上,当 E 在 AB 上方时,作等边三角形 ABE 的外接圆 ⊙ Q ,设直线 y =﹣ x+m 与 ⊙ Q 相切,切点为 P ,当 P 与 P 1 重合时 m 的值最大,当 P 与 P 1 重合时,连结 QP 1,则 QP 1⊥直线 y =﹣ x+m , ∵ OA = 3, ∴ OE =3 ,设 ⊙ Q 的半径为 x ,则 x 2= 32+(3﹣ x )2,解得 x =2 ,∴ EQ = AQ =PQ = 2 ,∴ OQ = ,由直线 y =﹣ x+m 可知 OD = OC = m , ∴ DQ =m ﹣ , CD = m ,∵∠ ODC =∠ P 1DQ ,∠ COD =∠ QP 1D , ∴△ QP 1D ∽△ COD ,∴=,即 = ,解得 m =+2,当 E 在 AB 下方时,作等边三角形ABE 的外接圆 ⊙ Q ,设直线 y =﹣ x+m 与 ⊙ Q 相切,切点为 P ,当 P 与 P 2 重合时 m 的值最小,当 P 与 P 2 重合时,同理证得 m =﹣ ﹣ 2 , ∴ m 的取值范围是﹣﹣ 2 ≤ m ≤+2 ,应选: D .1.【剖析】 直接利用反比率函数的性质和k 的意义剖析得出答案.【解答】 解:过点 A 作 AM ⊥ y 轴, BN ⊥ y 轴, DQ ⊥ y 轴, CN ⊥y 轴垂足分别为 M , N , Q ,R ,由题意可得: S 矩形 AMEQ = S 矩形 FCRO =﹣ k 1, S 矩形 EBNO = S 矩形 QDFO = k 2, 则 S 矩形 AMEQ +S 矩形 EBNO =S 矩形 FCRO +S 矩形 QDFO =﹣ k 1+k 2, ∵ AB = 3, CD = 2, ∴设 EO =2x ,则 FO =3x ,∵EF =,∴ EO = 1,FO =,最新 Word∴S 矩形ABNM=1× 3= 3,则﹣ k1+k2= 3,故 k1﹣ k2=﹣3.应选: A.2.【剖析】①正确,只需证明A, B,C,D , E 五点共圆即可解决问题;②正确,只需证明点M 是△ ABC 的心里即可;③正确,想方法证明EM=AE ,即可解决问题;④正确.如图 2 中,将△ ABN 逆时针旋转 90°获得△ AFG ,连结 EG.想方法证明△ GEF 是直角三角形,利用勾股定理即可解决问题;⑤ 错误.利用反证法证明即可;【解答】解:如图 1 中,连结BD 交 AC 于 O,连结 OE.∵四边形ABCD 是矩形,∴OA= OC=OD = OB,∵∠ AEC= 90°,∴OE= OA=OC,∴OA= OB=OC= OD = OE,∴A, B, C, D, E 五点共圆,∵ BD 是直径,∴∠ BED= 90°,∴EF⊥ ED ,故①正确,∵CD = AB=AF ,∠ BAF = 90°,∴∠ ABF =∠ AFB =∠ FBC =45°,∴BM 均分∠ ABC ,∵ AM 均分∠ BAC ,∴点 M 是△ ABC 的心里,∴CM 均分∠ ACB,最新 Word∴∠ MCB =∠ MCA ,故②正确,∵∠ EAM=∠ EAC+∠ MAC ,∠ EMA =∠ BAM+∠ ABM ,∠ ABM =∠ EAC = 45°,∴∠ EAM=∠ EMA ,∴EA= EM ,∵△ EAC 是等腰直角三角形,∴ AC=EA=EM ,故③正确,EG,如图 2 中,将△ ABN 绕点 A 逆时针旋转90°,获得△AFG ,连结∵∠ NAB=∠ GAF ,∴∠ GAN=∠ BAD= 90°,∵∠ EAN= 45°,∴∠ EAG=∠ EAN=45°,∵AG= AN,AE = AE,∴△ AEG≌△ AEN(SAS),∴EN= EG,GF = BN,∵∠ AFG=∠ ABN=∠ AFB = 45°,∴∠ GFB=∠ GFE= 90°,2 2 2,∴ EG = GF +EF22 2∴BN +EF =EN ,故④正确,∵ AE= EC,∴=,∴只有△ ECN ∽△ MAF 才能建立,∴∠ AMF =∠ CEN,∴CE∥ AM,∵ AE⊥ CE,∴MA ⊥AE(矛盾),∴假定不建立,故⑤ 错误,应选:C.二、填空题1.【剖析】连结 OD、CD ,依据圆周角定理获得OD⊥ AB,依据等腰三角形的性质获得AD = DB,∠ OAD = 30°,依据扇形面积公式、三角形的面积公式计算即可.【解答】解:连结OD 、 CD ,∵ OA 为圆 C 的直径,∴ OD ⊥AB,∵ OA= OB,∠ AOB = 120°,∴ AD= DB,∠ OAD =30°,∴OD=OA= 2,由勾股定理得,AD==2,∴△ AOB 的面积=×AB×OD=4,∵OC= CA,BD = DA,∴ CD ∥ OB,CD = OB,∴∠ ACD=∠ AOB= 120°,△ ACD 的面积=×△ AOB的面积=,∴暗影部分的面积=﹣△ AOB 的面积﹣(﹣△ ACD的面积)=π﹣4﹣π+=4π﹣ 3 ,故答案为: 4π﹣ 3 .2.解:作△ ABC 的外接圆,以下图:当∠BAC= 90°时, BC 是直径最长,∵∠ C=60°,∴∠ ABC= 30°,∴ BC= 2AC, AB=3 AC=4,∴AC=4 3,∴BC=2AC=8 3,3 3当∠ A=∠ B 时,△ ABC 为等边三角形,∴BC =AB= 4,则 BC 的长的取值范围是0< BC≤83且BC≠4,3故答案为: 0< BC≤83且BC≠4.33.【剖析】由矩形的性质可证明S 矩形AEGM= S 矩形CFGN=2× 5= 10,即可求解.【解答】解:作 GM ⊥AB 于 M,延伸 MG 交 CD 于 N.则有四边形AEGM ,四边形DEGN ,四边形CFGN ,四边形BMGF 都是矩形,∴AE= BF = 2,S△ADB= S△DBC, S△BGM= S△BGF, S△DEG= S△DNG,∴S 矩形AEGM= S 矩形CFGN= 2× 5=10,∴ S 阴=S 矩形CFGN= 5,故答案为: 5.4.【剖析】由图象分别求出a> 0, c=﹣ 2, b=﹣ a< 0,则函数分析式为y= ax2﹣ ax﹣2,则对称轴 x=,由张口向上的函数的图象张口与 a 的关系可得:当 a 变大,函数 y= ax2 ﹣ ax﹣2 的张口变小,依照这个性质判断m 的取值状况.【解答】解:由图象可知,a> 0, c=﹣ 2,∵对称轴 x=﹣=,∴b=﹣ a< 0,∴abc>0;∴① 正确;A、B 两点对于x=对称,∴m+n= 1,∴③ 正确;2a> 0 时,当 a 变大,函数y= ax ﹣ ax﹣ 2 的张口变小,∴ ⑤ 不正确;若 m<﹣ 1,n> 2,由图象可知n>1,∴ ④ 不正确;当 a =1 时,对于 t >0 的随意值都有 m <﹣ 1, 当 a >1 时,函数张口变小,则有 m >﹣ 1 的时候,∴ ② 不正确; 故答案 ①③ .5.【剖析】 求出∠ C ′ AE = 30°,推出 AE = 2C ′E , AC ′=C ′ E ,依据暗影部分面积为2得出×C ′E ×C ′E =2,求出C ′ E = 2,即可求出C ′ B ′,即可求出答案.【解答】 解:∵将 Rt △ ACB 绕点 A 逆时针旋转 15°获得 Rt △ AB ′ C ′, ∴△ ACB ≌△ AC ′ B ′,∴ AC = AC ′, CB =C ′ B ′,∠ CAB =∠ C ′ AB ′,∵在 Rt △ ABC 中,∠ C =90°, AC = BC ,∴∠ CAB = 45°, ∵∠ CAC ′= 15°, ∴∠ C ′ AE = 30°,∴ AE = 2C ′ E ,AC ′=C ′ E , ∵暗影部分面积为 2 ,∴ × C ′E × C ′E = 2 , ∴ C ′ E = 2,∴ AC = BC = C ′ B ′=C ′ E = 2 ,∴ B ′E = 2 ﹣2, 故答案为: 2﹣ 2.6.【剖析】 过 N 作 NH ⊥ PM 交直线 PM 于 H ,则 MN 2= NH 2+MH 2,得出当点 M 与点 H 重合时, MN 长最小,易证 NH =NC ,∠ HPN =∠ CPN ,由 AAS 证得△ PNH ≌△ PNC ,得出 PC = PH ,NC = NH ,由点 B 对于直线 AP 的对称点 M ,得出 BP = PM ,∠ BPA =∠ MPA ,当点 M 与点 H 重合时, BP = PH =PC = BC = 2,由∠ HPN +∠ CPN+∠ BPA+∠ MPA =180°,推出∠ APN = 90°,证明△ ABP ∽△ PCN ,得出 = ,得出 NC = ,即可得出结果.【解答】 解:过 N 作 NH ⊥ PM 交直线 PM 于 H ,以下图:则 MN 2= NH 2+MH 2,∴当点 M 与点 H 重合时, MN 长最小, ∵四边形 ABCD 是矩形, ∴∠ B =∠ C = 90°,∵ PN 是∠ MPC 的角均分线, ∴ NH = NC ,∠ HPN =∠ CPN ,在△ PNH 和△ PNC 中,,△PNH≌△ PNC( AAS),∴ PC= PH,NC= NH,∵点 B 对于直线 AP 的对称点 M,∴BP= PM ,∠ BPA=∠ MPA,∴当点 M 与点 H 重合时, BP= PH= PC=BC= 2,∵∠ HPN+∠ CPN+∠ BPA+∠MPA= 180°,∴∠ APN= 90°,∴∠ APB+∠ NPC= 90°,∵∠ APB+∠ PAB= 90°,∴∠ PAB=∠ NPC ,∵∠ B=∠ C= 90°,∴△ ABP∽△ PCN ,∴=,∴NC===,∴当点 M 与点 H 重合时, MN =NC=,故答案为:.三、解答题1.解:( 1)∵平行四边形ABCD 中, AB = 6, AD= 10,∴ BC= AD = 10,∵AB ⊥AC,∴在 Rt△ ABC 中,由勾股定理得:AC=BC2AB2=102-62=8,故答案为: 8;(2)如图 2 所示,连结 PF,设 AP= x,则 DP = 10- x, PF= x,∵⊙ P 与边 CD 相切于点 F,∴ PF⊥ CD ,∵四边形 ABCD 是平行四边形,∴ AB∥ CD ,∵AB ⊥AC,∴ AC⊥ CD ,∴ AC∥ PF,∴△ DPF ∽△ DAC ,∴PFPD ,∴ x10 x,∴ x=40,即 AP=40;AC AD81099(3)当⊙ P 与 BC 相切时,设切点为G,如图 3,□ABCD =1 24 ,S ×××= 10PG,∴ PG=52 40<AP<24,①当⊙ P 与边 AD 、 CD 分别有两个公共点时,9 5 即此时⊙ P 与平行四边形 ABCD 的边的公共点的个数为4;②⊙ P 过点 A、C、D 三点,如图 4,⊙ P 与平行四边形ABCD 的边的公共点的个数为4,此时 AP=5,综上所述, AP 的值的取值范围是:40<AP<24或 AP= 5,9 5故答案为:40<AP<24或AP=5.9 52.解:( 1)设到点 A 的距离等于线段 AB 长度的点 D 坐标为( x,y),∴AD 2=x2+( y﹣) 2,∵直线y= kx+交 y 轴于点A,∴ A( 0,),∵点A 对于x 轴的对称点为点B,∴B( 0,﹣),∴ AB= 1,∵点D 到点 A 的距离等于线段AB 长度,∴x2+( y﹣)2= 1,故答案为: x2+( y﹣)2= 1;(2)∵过点 B 作直线 l 平行于 x 轴,∴直线l 的分析式为y=﹣,∵C( x, y), A(0,),∴AC 2= x2+( y﹣)2,点C到直线l的距离为:(y+),∵动点 C( x, y)知足到直线l 的距离等于线段CA 的长度,∴x2+( y﹣)2=(y+)2,∴动点 C 轨迹的函数表达式y=x2,(3)连结 AM, AN,取 MN 的中点 Q,连结 AQ.①设 E( x1,y1),F ( x2, y2),由( 2)得, EA= EM, FA= FN,∴,∴x2﹣2kx﹣ 1= 0,∴ x1+ x2= 2k, x1x2=﹣ 1,∵BM · BN= |x1x2|= 1, AB= 1,∴AB 2= BM· BN,又∠ ABM=∠ NBA,∴△ ABM∽△ NBA,∴∠ MAB=∠ ANB,而∠ NAB+∠ ANB= 90°,∴∠ NAB+∠ MAB = 90°,即∠ MAN =90° .∴AQ= QN,∴∠ QAN=∠ QNA,∵F A=FN,∴∠ FAN=∠ FNA ,∴∠ FAG=∠ FNG =90°,∴所以EF 是△ AMN 外接圆的切线 .②证明:∵点E(m, a)点 F (n, b)在直线 y= kx+上,∴a= mk+, b= nk+,∵ME , NF , EF 是△ AMN 的外接圆的切线,∴AE =ME = a+=mk+1,AF=NF=b+=nk+1,∴+=+====2,即:+为定值,定值为2.5.【剖析】( 1)当△ DEF ∽△ COD 时,=,DF=DEcos∠ CDO=,据此求出EF 的长度和点 F 的坐标即可;(2)第一以 CD 为直径作圆,设其圆心为 P,交直线由圆周角定理,可得∠ CQO =∠ CQ′ O=∠ CDO ,在a 于点 Q、Q′,连结 PQ,P Q′,Rt△ CDO 中,由勾股定理可得 CD=,则 PQ=CD=;而后求出点P 的坐标是多少;设Q(﹣ 1, a),则()2+( a﹣)2=,据此求出 a 的值是多少,从而求出Q 点坐标是多少即可.【解答】解:( 1)∵ A(1, 0),B( 0, 3),∴OA= 1,OB= 3,∵将△ AOB 绕点 O 逆时针旋转90°,获得△ COD ,∴OC=1,OD =3,∴C( 0, 1),D (﹣ 3, 0),如图 1,当△ DEF ∽△ COD 时,=∴EF=,∴F(﹣ 1,);当△ DEF ∽△ COD 时, DF = DE cos∠ CDO =,作 FK⊥OD 于 K,则 FK = DF sin∠ CDO =,DK=DF cos∠ CDO=,∴F(﹣,);(2)如图 2,以 CD 为直径作圆,设其圆心为 P,交直线 a 于点 Q、Q′,连结 PQ,P Q′,由圆周角定理,可得∠ CQO =∠ CQ′ O=∠ CDO ,在 Rt△CDO 中,由勾股定理可得CD=,则 PQ=CD=,又∵P为 CD中点, P(﹣,),设 Q(﹣ 1,a),则()2+(a﹣)2=,解得 a= 2 或﹣ 1,∴ Q(﹣ 1,2)或(﹣ 1,﹣ 1).6.【剖析】( 1)利用直线分析式求出点A、 B 的坐标,再利用待定系数法求二次函数分析式解答;( 2)作 PF∥ BO 交 AB 于点 F ,证△ PFD ∽△ OBD,得比率线段,则PF取最大值时,求得的最大值;( 3)( i )点 F 在 y 轴上时, P 在第一象限或第二象限,如图2,3,过点 P 作 PH ⊥x 轴于 H,依据正方形的性质可证明△CPH≌△ FCO ,依据全等三角形对应边相等可得PH =CO= 2,而后利用二次函数分析式求解即可;(ii)点E在y轴上时,过点PK ⊥ x 轴于 K ,作 PS⊥ y 轴于 S,同理可证得△EPS≌△ CPK ,可得 PS= PK ,则 P 点的横纵坐标互为相反数,可求出P 点坐标;点 E 在 y 轴上时,过点PM ⊥ x 轴于 M,作 PN⊥ y 轴于 N,同理可证得△PEN≌△PCM ,可得 PN= PM,则 P 点的横纵坐标相等,可求出P 点坐标.由此即可解决问题.【解答】解:( 1)直线 y=x+4 与坐标轴交于A、 B 两点,当 x= 0 时, y= 4,x=﹣ 4 时, y=0,∴ A(﹣ 4, 0), B( 0, 4),把 A, B 两点的坐标代入分析式得,,解得,,∴抛物线的分析式为;(2)如图 1,作 PF ∥BO 交 AB 于点 F,∴△ PFD ∽△ OBD,∴,∵ OB 为定值,∴当 PF 取最大值时,有最大值,设 P( x,),此中﹣4<x<0,则F(x,x+4),∴PF==,∵且对称轴是直线x=﹣ 2,∴当 x=﹣ 2 时, PF 有最大值,此时 PF=2,;( 3)∵点 C(2, 0),∴CO=2,( i)如图 2,点 F 在 y 轴上时,若 P 在第二象限,过点 P 作 PH ⊥x 轴于 H,在正方形 CPEF 中, CP= CF,∠ PCF = 90°,∵∠ PCH+∠ OCF= 90°,∠ PCH +∠ HPC = 90°,∴∠ HPC=∠ OCF,在△ CPH 和△ FCO 中,,∴△ CPH≌△ FCO( AAS),∴PH= CO=2,∴点 P 的纵坐标为 2,∴,解得,, x=﹣ 1+(舍去).∴,如图 3,点 F 在 y 轴上时,若P 在第一象限,同理可得点 P 的纵坐标为2,此时 P2点坐标为(﹣ 1+ ,2)( ii )如图 4,点 E 在 y 轴上时,过点 PK⊥x 轴于 K,作 PS⊥ y 轴于S,同理可证得△EPS≌△ CPK ,∴PS= PK ,∴P 点的横纵坐标互为相反数,∴,解得 x=2(舍去),x=﹣2,∴,如图 5,点 E 在 y 轴上时,过点PM ⊥ x 轴于 M,作 PN⊥ y 轴于 N,同理可证得△ PEN ≌△ PCM ,∴ PN = PM ,∴ P 点的横纵坐标相等,∴,解得,(舍去),∴,综合以上可得P 点坐标为,,.5.【剖析】( 1)依据图形,即可求得 f ( 2)的值;( 2)第一求 f ( 1),f ( 2), f ( 3), f ( 4),所以获得规律为: f (n )= 6n+2; ( 3)依据图形,即可求得f (2× 3)的值;( 4)先剖析特别状况,再求得规律:f ( m ×n )= 2(m+n ) +4mn .【解答】 解:( 1)作两个相邻的正方形,以此中的一个极点为起点,另一个极点为终点 作向量,能够作出不一样向量的个数 f ( 2)= 14; ( 2)分别求出作两个、三个、四个相邻的正方形(如图1).以此中的一个极点为起点,另一个极点为终点作向量,能够作出不一样的向量个数,找出规律,∵ f (1 )= 6× 1+2 = 8, f ( 2)= 6× 2+2 = 14, f ( 3)= 6× 3+2= 20, f ( 4)= 6× 4+2 = 26,∴ f ( n )= 6n+2 ;( 3) f ( 2×3)= 34;( 4)∵ f ( 2× 2)= 24, f ( 2× 3)= 34, f ( 2× 4)= 44, f ( 3× 2)= 34, f ( 3× 3)= 48, f ( 3×4)= 62∴ f ( m × n )= 2( m+n ) +4mn .6.【剖析】( 1)先依据点 B 在直线 y = x+1 求出其坐标,再将 A , B 坐标代入抛物线分析式求解可得;( 2)作 PM ⊥ x 轴于点 M ,交 AB 于点 N ,设点 P 的坐标为( m ,﹣ m 2+2m+3),点 N 的坐标为( m , m+1),依照 S △ PAB = S △ PAN +S △PBN 列出函数分析式,利用二次函数的性质求解可得;( 3)设点 Q 坐标为( n ,0),联合各点坐标得出 QA 2=(﹣ 1﹣ n )2,QB 2=( 2﹣n )2 +9,AB 2= 18,再依据等腰三角形的定义分三种状况分别求解可得.【解答】 解:( 1)∵点 B ( 2, m )在直线 y = x+1 上, ∴ m = 2+1 =3,∴点 B 坐标为( 2, 3),∵点 A (﹣ 1,0)和点 B ( 2, 3)在抛物线y = ax 2+2x+c 上,最新 Word∴,解得,∴所求抛物线分析式为 y =﹣ x 2+2 x+3;( 2)过点 P 作 PM ⊥ x 轴于点 M ,交 AB 于点 N ,设点 P 的横坐标为 m ,则点 P 的坐标为( m ,﹣ m 2+2 m+3),点 N 的坐标为( m , m+1 ), ∵点 P 是位于直线 AB 上方,∴ PN = PM ﹣MN =﹣ m 2+2m+3﹣( m+1)=﹣ m 2+m+2 ,∴ S △PAB = S △ PAN +S △PBN=×(﹣ m 2+m+2)( m+1) + ×(﹣ m 2+m+2)( 2﹣ m )= (﹣ m 2+m+2)=﹣( m ﹣ ) 2+,∵﹣< 0,∴抛物线张口向下, 又﹣ 1< m <2,∴当 m =时,△ PAB 的面积的最大值是,此时点 P 的坐标为(,).( 3)设点 Q 坐标为( n , 0),∵ A (﹣ 1, 0), B ( 2, 3),∴ QA 2=(﹣ 1﹣ n )2, QB 2=( 2﹣n ) 2+9,AB 2=18,① 当 QA 2=QB 2 时,(﹣ 1﹣n ) 2=( 2﹣ n ) 2+9,解得 n = 2,即 Q ( 2,0);② 当 QA 2=AB 2时,(﹣ 1﹣ n ) 2=18,解得: n =﹣ 1±3,即 Q (﹣ 1+3, 0)或(﹣ 1﹣ 3, 0);2=AB 22= 18,③当QB 时,( 2﹣ n ) +9解得: n =﹣ 1(舍)或 n = 5,即 Q ( 5,0);综上, Q 的坐标为( 2, 0)或(﹣ 1+3 , 0)或(﹣ 1﹣3, 0)或( 5,0).。

2021年中考数学压轴题答案解析

2021年中考数学压轴题答案解析

2021年中考数学压轴题1.如图,已知⊙O的直径AC与弦BD相交于点F,点E是DB延长线上的一点,∠EAB=∠ADB;(1)求证:AE是⊙O的切线;(2)已知点B是EF的中点,求证:△EAF∽△CBA.(3)已知AF=4,CF=2,在(2)的条件下,求AE的长.(1)证明:如图1,连接CD,∵AC是⊙O的直径,∴∠ADC=90°,∴∠ADB+∠EDC=90°,∵∠BAC=∠EDC,∠EAB=∠ADB,∴∠EAC=∠EAB+∠BAC=90°,∴AE是⊙O的切线.(2)证明:如图2,连接BC,∵AC 是⊙O 的直径,∴∠ABC =90°,∴∠CBA =∠ABC =90°∵B 是EF 的中点,∴在Rt △EAF 中,AB =BF ,∴∠BAC =∠AFE ,∴△EAF ∽△CBA .(3)解:∵△EAF ∽△CBA ,∴AB AF =AC EF ,∵AF =4,CF =2.∴AC =6,EF =2AB ,∴AB 4=62AB ,解得AB =2√3.∴EF =4√3,∴AE =√EF 2−AF 2=√(4√3)2−42=4√2,2.解决问题:(1)如图①,半径为4的⊙O 外有一点P ,且PO =7,点A 在⊙O 上,则P A 的最大值和最小值分别是 11 和 3 .(2)如图②,扇形AOB的半径为4,∠AOB=45°,P为弧AB上一点,分别在OA边找点E,在OB边上找一点F,使得△PEF周长的最小,请在图②中确定点E、F的位置并直接写出△PEF周长的最小值;拓展应用(3)如图③,正方形ABCD的边长为4√2;E是CD上一点(不与D、C重合),CF⊥BE于F,P在BE上,且PF=CF,M、N分别是AB、AC上动点,求△PMN周长的最小值.解:(1)如图①,∵圆外一点P到这个圆上所有点的距离中,最大距离是和最小距离都在过圆心的直线OP上,此直线与圆有两个交点,圆外一点与这两个交点的距离个分别最大距离和最小距离.∴P A的最大值=P A2=PO+OA2=7+4=11,P A的最小值=P A1=PO﹣OA1=7﹣4=3,故答案为11和3;(2)如图②,以O为圆心,OA为半径,画弧AC和弧BD,作点P关于直线OA的对称点P1,作点P关于直线OB的对称点P2,连接P1、P2,与OA、OB分别交于点E、F,点E、F即为所求.连接OP1、OP2、OP、PE、PF,由对称知识可知,∠AOP1=∠AOP,∠BOP2=∠BOP,PE=P1E,PF=P2F∴∠AOP1+∠BOP2=∠AOP+∠BOP=∠AOB=45°∠P1OP2=45°+45°=90°,∴△P1OP2为等腰直角三角形,∴P1P2=√2OP1=4√2,△PEF 周长=PE +PF +EF =P 1E +P 2F +EF =P 1P 2=4√2,此时△PEF 周长最小. 故答案为4√2;(3)作点P 关于直线AB 的对称P 1,连接AP 1、BP 1,作点P 关于直线AC 的对称P 2, 连接P 1、P 2,与AB 、AC 分别交于点M 、N .由对称知识可知,PM =P 1M ,PN =P 2N ,△PMN 周长=PM +PN +MN =PM 1+P 2N +MN =P 1P 2,此时,△PMN 周长最小=P 1P 2.由对称性可知,∠BAP 1=∠BAP ,∠EAP 2=∠EAP ,AP 1=AP =AP 2,∴∠BAP 1+∠EAP 2=∠BAP +∠EAP =∠BAC =45°∠P 1AP 2=45°+45°=90°,∴△P 1AP 2为等腰直角三角形,∴△PMN 周长最小值P 1P 2=√2AP ,当AP 最短时,周长最小.连接DF .∵CF ⊥BE ,且PF =CF ,∴∠PCF =45°,PC CF =√2∵∠ACD =45°,∴∠PCF =∠ACD ,∠PCA =∠FCD又AC CD =√2,∴在△APC 与△DFC 中,AC CD =PC CF ,∠PCA =∠FCD ∴△APC ∽△DFC ,∴AP DF =AC CD =√2,∴AP =√2DF∵∠BFC =90°,取BC 中点O .∴点F 在以BC 为直径的圆上运动,当D 、F 、O 三点在同一直线上时,DF 最短. DF =DO ﹣FO =√OC 2+CD 2−OC =√(2√2)2+(4√2)2−2√2=2√10−2√2, ∴AP 最小值为AP =√2DF∴此时,△PMN 周长最小值P 1P 2=√2AP =√2⋅√2DF =√2⋅√2(2√10−2√2)=4√10−4√2.。

2021年中考数学压轴题专项训练 四边形(含解析)

2021年中考数学压轴题专项训练  四边形(含解析)

2021年中考数学压轴题专项训练《四边形》1.如图①,在矩形ABCD中,已知BC=8cm,点G为BC边上一点,满足BG=AB=6cm,动点E以1cm/s的速度沿线段BG从点B移动到点G,连接AE,作EF⊥AE,交线段CD于点F.设点E移动的时间为t(s),CF的长度为y(cm),y与t的函数关系如图②所示.(1)图①中,CG= 2 cm,图②中,m= 2 ;(2)点F能否为线段CD的中点?若可能,求出此时t的值,若不可能,请说明理由;(3)在图①中,连接AF,AG,设AG与EF交于点H,若AG平分△AEF的面积,求此时t 的值.解:(1)∵BC=8cm,BG=AB=6cm,∴CG=2cm,∵EF⊥AE,∴∠AEB+∠FEC=90°,且∠AEB+∠BAE=90°,∴∠BAE=∠FEC,且∠B=∠C=90°,∴△ABE∽△ECF,∴,∵t=6,∴BE=6cm,CE=2cm,∴∴CF=2cm,∴m=2,故答案为:2,2;(2)若点F是CD中点,∴CF=DF=3cm,∵△ABE∽△ECF,∴,∴∴EC2﹣8EC+18=0∵△=64﹣72=﹣8<0,∴点F不可能是CD中点;(3)如图①,过点H作HM⊥BC于点M,∵∠C=90°,HM⊥BC,∴HM∥CD,∴△EHM∽△EFC,∴∵AG平分△AEF的面积,∴EH=FH,∴EM=MC,∵BE=t,EC=8﹣t,∴EM=CM=4﹣t,∴MG=CM﹣CG=2﹣,∵,∴∴CF=∵EM=MC,EH=FH,∴MH=CF=∵AB=BG=6,∴∠AGB=45°,且HM⊥BC,∴∠HGM=∠GHM=45°,∴HM=GM,∴=2﹣,∴t=2或t=12,且t≤6,∴t=2.2.问题提出:(1)如图1,△ABC的边BC在直线n上,过顶点A作直线m∥n,在直线m上任取一点D,连接BD、CD,则△ABC的面积=△DBC的面积.问题探究:(2)如图2,在菱形ABCD和菱形BGFE中,BG=6,∠A=60°,求△DGE的面积;问题解决:(3)如图3,在矩形ABCD中,AB=12,BC=10,在矩形ABCD内(也可以在边上)存在一点P,使得△ABP的面积等于矩形ABCD的面积的,求△ABP周长的最小值.解:问题提出:(1)∵两条平行线间的距离一定,∴△ABC与△DBC同底等高,即△ABC的面积=△DBC的面积,故答案为:=;问题探究:(2)如图2,连接BD,∵四边形ABCD,四边形BGFE是菱形,∴AD∥BC,BC∥EF,AD=AB,BG=BE,∴∠A=∠CBE=60°,∴△ADB是等边三角形,△BGE是等边三角形,∴∠ABD=∠GBE=60°,∴BD∥GE,∴S△DGE=S△BGE=BG2=9;(3)如图3,过点P作PE∥AB,交AD于点E,∵△ABP的面积等于矩形ABCD的面积的,∴×12×AE=×12×10∴AE=8,作点A关于PE的对称点A',连接A'B交PE于点P,此时△ABP周长最小,∴A'E=AE=8,∴AA'=16,∴A'B===20,∴△ABP周长的最小值=AP+AB+PB=A'P+PB+AB=20+12=32.3.(1)方法感悟:如图①,在正方形ABCD中,点E、F分别为DC、BC边上的点,且满足∠EAF=45°,连接EF.将△ADE绕点A顺时针旋转90°得到△ABG,易证△GAF≌△EAF,从而得到结论:DE+BF=EF.根据这个结论,若CD=6,DE=2,求EF的长.(2)方法迁移:如图②,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是BC、CD上的点,且∠EAF=∠BAD,试猜想DE,BF,EF之间有何数量关系,证明你的结论.(3)问题拓展:如图③,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E、F分别是边BC、CD延长线上的点,且∠EAF=∠BAD,试探究线段EF、BE、FD之间的数量关系,请直接写出你的猜想(不必说明理由).解:(1)方法感悟:∵将△ADE绕点A顺时针旋转90°得到△ABG,∴GB=DE=2,∵△GAF≌△EAF∴GF=EF,∵CD=6,DE=2∴CE=4,∵EF2=CF2+CE2,∴EF2=(8﹣EF)2+16,∴EF=5;(2)方法迁移:DE+BF=EF,理由如下:如图②,将△ADE绕点A顺时针旋转90°得到△ABH,由旋转可得,AH=AE,BH=DE,∠1=∠2,∠D=∠ABH,∵∠EAF=∠DAB,∴∠HAF=∠1+∠3=∠2+∠3=∠BAD,∴∠HAF=∠EAF,∵∠ABH+∠ABF=∠D+∠ABF=180°,∴点H、B、F三点共线,在△AEF和△AHF中,∴△AEF≌△AHF(SAS),∴EF=HF,∵HF=BH+BF,∴EF=DE+BF.(3)问题拓展:EF=BF﹣FD,理由如下:在BC上截取BH=DF,∵∠B+∠ADC=180°,∠ADC+∠ADF=180°,∴∠B=∠ADF,且AB=AD,BH=DF,∴△ABH≌△ADF(SAS)∴∠BAH=∠DAF,AH=AD,∵∠EAF=∠BAD,∴∠DAE+∠BAH=∠BAD,∴∠HAE=∠BAD=∠EAF,且AE=AE,AH=AD,∴△HAE≌△FAE(SAS)∴HE=EF,∴EF=HE=BE﹣BH=BE﹣DF.4.如图1,在▱ABCD中,AB=3cm,BC=5cm,AC⊥AB,△ACD沿AC的方向匀速平移得到△PNM,速度为1cm/s;同时,点Q从点C出发,沿CB方向匀速移动,速度为1cm/s,当△PNM停止平移时,点Q也停止移动,如图2,设移动时间为t(s)(0<<4),连结PQ,MQ,解答下列问题:(1)当t为何值时,PQ∥MN?(2)当t为何值时,∠CPQ=45°?(3)当t为何值时,PQ⊥MQ?解:(1)∵AB=3cm,BC=5cm,AC⊥AB,∴AC==4cm,∵MN∥AB,PQ∥MN,∴PQ∥AB,∴,∴,∴t=s(2)如图2,过点Q作QE⊥AC,则QE∥AB,∴,∴,∴CE=,QE=t,∵∠CPQ=45°,∴PE=QE=t,∴t+t+t=4,∴t=s(3)如图2,过点P作PF⊥BC于F点,过点M作MH⊥BC,交BC延长线于点H,∴四边形PMHF是矩形,∴PM=FH=5,∵∠A=∠PFC=90°,∠ACB=∠PCF,∴△ABC∽△FPC,∴,∴=∴PF=,CF=,∴QH=5﹣FQ=5﹣(CF﹣CQ)=,∵PQ⊥MQ,∴∠PQF+∠MQH=90°,且∠PQF+∠FPQ=90°,∴∠FPQ=∠MQH,且∠PFQ=∠H=90°,∴△PFQ∽△QHM,∴,∴∴t=s.5.问题背景:如图1,在正方形ABCD的内部,作∠DAE=∠ABF=∠BCG=∠CDH,根据三角形全等的条件,易得△DAE≌△ABF≌△BCG≌△CDH,从而得四边形EFGH是正方形.类比探究:如图2,在正△ABC的内部,作∠1=∠2=∠3,AD,BE,CF两两相交于D,E,F三点(D,E,F三点不重合).(1)△ABD,△BCE,△CAF是否全等?如果是,请选择其中一对进行证明;(2)△DEF是否为正三角形?请说明理由;(3)如图3,进一步探究发现,△ABD的三边存在一定的等量关系,设BD=a,AD=b,AB=c,请探索a,b,c满足的等量关系.(1)△ABD≌△BCE≌△CAF;理由如下:∵△ABC是正三角形,∴∠CAB=∠ABC=∠BCA=60°,AB=BC=AC,又∵∠1=∠2=∠3,∴∠ABD=∠BCE=∠CAF,在△ABD、△BCE和△CAF中,,∴△ABD≌△BCE≌△CAF(ASA);(2)△DEF是正三角形;理由如下:∵△ABD≌△BCE≌△CAF,∴∠ADB=∠BEC=∠CFA,∴∠FDE=∠DEF=∠EFD,∴△DEF是正三角形;(3)c2=a2+ab+b2.作AG⊥BD于G,如图所示:∵△DEF是正三角形,∴∠ADG=60°,在Rt△ADG中,DG=b,AG=b,在Rt△ABG中,c2=(a+b)2+(b)2,∴c2=a2+ab+b2.6.如图,在四边形ABCD中,AC是对角线,∠ABC=∠CDA=90°,BC=CD,延长BC交AD 的延长线于点E.(1)求证:AB=AD;(2)若AE=BE+DE,求∠BAC的值;(3)过点E作ME∥AB,交AC的延长线于点M,过点M作MP⊥DC,交DC的延长线于点P,连接PB.设PB=a,点O是直线AE上的动点,当MO+PO的值最小时,点O与点E是否可能重合?若可能,请说明理由并求此时MO+PO的值(用含a的式子表示);若不可能,请说明理由.(1)证明:∵∠ABC=∠CDA=90°,∵BC=CD,AC=AC,∴Rt△ABC≌Rt△ADC(HL).∴AB=AD.(2)解:∵AE=BE+DE,又∵AE=AD+DE,∴AD=BE.∵AB=AD,∴AB=BE.∴∠BAD=∠BEA.∵∠ABC=90°,∴∠BAD═45°.∵由(1)得△ABC≌△ADC,∴∠BAC=∠DAC.∴∠BAC═22.5°.(3)解:当MO+PO的值最小时,点O与点E可以重合,理由如下:∵ME∥AB,∴∠ABC=∠MEC=90°,∠MAB=∠EMA.∵MP⊥DC,∴∠MPC=90°.∴∠MPC=∠ADC=90°.∴PM∥AD.∴∠EAM=∠PMA.由(1)得,Rt△ABC≌Rt△ADC,∴∠EAC=∠MAB,∴∠EMA=∠AMP.即MC平分∠PME.又∵MP⊥CP,ME⊥CE,∴PC=EC.如图,连接PB,连接PE,延长ME交PD的延长线于点Q.设∠EAM=α,则∠MAP=α.在Rt△ABE中,∠BEA=90°﹣2α.在Rt△CDE中,∠ECD=90°﹣∠BEA=2α.∵PC=EC,∴∠PEB=∠EPC=∠ECD=α.∴∠PED=∠BEA+∠PEB=90°﹣α.∵ME∥AB,∴∠QED=∠BAD=2α.当∠PED=∠QED时,∵∠PDE=∠QDE,DE=DE,∴△PDE≌△QDE(ASA).∴PD=DQ.即点P与点Q关于直线AE成轴对称,也即点M、点E、点P关于直线AE的对称点Q,这三点共线,也即MO+PO的值最小时,点O与点E重合.因为当∠PED=∠QED时,90°﹣α=2α,也即α=30°.所以,当∠ABD=60°时,MO+PO取最小值时的点O与点E重合.此时MO+PO的最小值即为ME+PE.∵PC=EC,∠PCB=∠ECD,CB=CD,∴△PCB≌△ECD(SAS).∴∠CBP=∠CDE=90°.∴∠CBP+∠ABC=180°.∴A,B,P三点共线.当∠ABD=60°时,在△PEA中,∠PAE=∠PEA=60°.∴∠EPA=60°.∴△PEA为等边三角形.∵EB⊥AP,∴AP=2AB=2a.∴EP=AE=2a.∵∠EMA=∠EAM=30°,∴EM=AE=2a.∴MO+PO的最小值为4a.7.已知:如图,在正方形ABCD中,点E在AD边上运动,从点A出发向点D运动,到达D 点停止运动.作射线CE,并将射线CE绕着点C逆时针旋转45°,旋转后的射线与AB边交于点F,连接EF.(1)依题意补全图形;(2)猜想线段DE,EF,BF的数量关系并证明;(3)过点C作CG⊥EF,垂足为点G,若正方形ABCD的边长是4,请直接写出点G运动的路线长.解:(1)补全图形如图1所示:(2)线段DE,EF,BF的数量关系为:EF=DE+BF.理由如下:延长AD到点H,使DH=BF,连接CH,如图2所示:∵四边形ABCD是正方形,∴∠BCD=∠ADC=∠B=90°,BC=DC,∴∠CDH=90°=∠B,在△CDH和△CBF中,,∴△CDH≌△CBF(SAS).∴CH=CF,∠DCH=∠BCF.∵∠ECF=45°,∴∠ECH=∠ECD+∠DCH=∠ECD+∠BCF=45°.∴∠ECH=∠ECF=45°.在△ECH和△ECF中,,∴△EC H≌△ECF(SAS).∴EH=EF.∵EH=DE+DH,∴EF=DE+BF;(3)由(2)得:△ECH≌△ECF(SAS),∴∠CEH=∠CEF,∵CD⊥AD,CG⊥EF,∴CD=CG=4,∴点G的运动轨迹是以C为圆心4为半径的弧DB,∴点G运动的路线长==2π.8.如图,在正方形ABCD中,P是边BC上的一动点(不与点B,C重合),点B关于直线AP的对称点为E,连接AE.连接DE并延长交射线AP于点F,连接BF.(1)若∠BAP=α,直接写出∠ADF的大小(用含α的式子表示);(2)求证:BF⊥DF;(3)连接CF,用等式表示线段AF,BF,CF之间的数量关系,并证明.(1)解:由轴对称的性质得:∠EAP=∠BAP=α,AE=AB,∵四边形ABCD是正方形,∴∠BAD=90°,AB=AD,∴∠DAE=90°﹣2α,AD=AE,∴∠ADF=∠AED=(180°﹣∠DAE)=(90°+2α)=45°+α;(2)证明:∵四边形ABCD是正方形,∴∠BAD=90°,AB=AD,∵点E与点B关于直线AP对称,∴∠AEF=∠ABF,AE=AB.∴AE=AD.∴∠ADE=∠AED.∵∠AED+∠AEF=180°,∴在四边形ABFD中,∠ADE+∠ABF=180°,∴∠BFD+∠BAD=180°,∴∠BFD=90°∴BF⊥DF;(3)解:线段AF,BF,CF之间的数量关系为AF=BF+CF,理由如下:过点B作BM⊥BF交AF于点M,如图所示:∵四边形ABCD是正方形,∴AB=CB,∠ABC=90°,∴∠ABM=∠CBF,∵点E与点B关于直线AP对称,∠BFD=90°,∴∠MFB=∠MFE=45°,∴△BMF是等腰直角三角形,∴BM=BF,FM=BF,在△AMB和△CFB中,,∴△AMB≌△CFB(SAS),∴AM=CF,∵AF=FM+AM,∴AF=BF+CF.9.如图1,已知等腰Rt△ABC中,E为边AC上一点,过E点作EF⊥AB于F点,以为边作正方形,且AC=3,EF=.(1)如图1,连接CF,求线段CF的长;(2)将等腰Rt△ABC绕点旋转至如图2的位置,连接BE,M点为BE的中点,连接MC,MF,求MC与MF关系.解:(1)如图1,∵△ABC是等腰直角三角形,AC=3,∴AB=3,过点C作CM⊥AB于M,连接CF,∴CM=AM=AB=,∵四边形AGEF是正方形,∴AF=EF=,∴MF=AM﹣AF=﹣,在Rt△CMF中,CF===;(2)CM=FM,CM⊥FM,理由:如图2,过点B作BH∥EF交FM的延长线于H,连接CF,CH,∴∠BHM=∠EFM,∵四边形AGEF是正方形,∴EF=AF∵点M是BE的中点,∴BM=EM,在△BMH和△EMF中,,∴△BMH≌△EMF(AAS),∴MH=MF,BH=EF=AF∵四边形AGEF是正方形,∴∠FAG=90°,EF∥AG,∵BH∥EF,∴BH∥AG,∴∠BAG+∠ABH=180°,∴∠CBH+∠ABC+∠BAC+∠CAG=180°.∵△ABC是等腰直角三角形,∴BC=AC,∠ABC=∠BAC=45°,∴∠CBH+∠CAG=90°,∵∠CAG+∠CAF=90°,∴∠CBH=∠CAF,在△BCH和△ACF中,,∴△BCH≌△ACF(SAS),∴CH=CF,∠BCH=∠ACF,∴∠HCF=∠BCH+∠BCF=∠ACF+∠BCF=90°,∴△FCH是等腰直角三角形,∵MH=MF,∴CM=FM,CM⊥FM;10.如图将正方形ABCD绕点A顺时针旋转角度α(0°<α<90°)得到正方形AB′C′D′.(1)如图1,B′C′与AC交于点M,C′D′与AD所在直线交于点N,若MN∥B′D′,求α;(2)如图2,C′B′与CD交于点Q,延长C′B′与BC交于点P,当α=30°时.①求∠DAQ的度数;②若AB=6,求PQ的长度.解:(1)如图1中,∵MN∥B′D′,∴∠C′MN=∠C′B′D′=45°,∠C′NM=∠C′D′B′=45°,∴∠C′MN=∠C′NM,∴C′M=C′N,∵C′B′=C′D′,'∴MB′=ND′,∵AB′=AD′,∠AB′M=∠AD′N=90°,∴△AB′M≌△AD′N(SAS),∴∠B′AM=∠D′AN,∵∠B′AD′=90°,∠MAN=45°,∴∠B′AM=∠D′AN=22.5°,∵∠BAC=45°,∴∠BAB′=22.5°,∴α=22.5°.(2)①如图2中,∵∠AB′Q=∠ADQ=90°,AQ=AQ,AB′=AD,∴Rt△AQB′≌Rt△AQD(HL),∴∠QAB′=∠QAD,∵∠BAB′=30°,∠BAD=90°,∴∠B′AD=30°,∴∠QAD=∠B′AD=30°.②如图2中,连接AP,在AB上取一点E,使得AE=EP,连接EP.设PB=a.∵∠ABP=∠AB′P=90°,AP=AP,AB=AB′,∴Rt△APB≌Rt△APB′(HL),∴∠BAP=∠PAB′=15°,∵EA=EP,∴∠EAP=∠EPA=15°,∴∠BEP=∠EAP+∠EPA=30°,∴PE=AE=2a,BE=a,∵AB=6,∴2a+a=6,∴a=6(2﹣).∴PB=6(2﹣),∴PC=BC﹣PB=6﹣6(2﹣)=6﹣6,∵∠CPQ+∠BPB′=180°,∠BAB′+∠BPB′=180°,∴∠CPQ=∠BAB′=30°,∴PQ===12﹣4.11.已知,如图1,在边长为2的正方形ABCD中,E是边AB的中点,点F在边AD上,过点A作AG⊥EF,分别交线段CD、EF于点G、H(点G不与线段CD的端点重合).(1)如图2,当G是边CD中点时,求AF的长;(2)设AF=x,四边形FHGD的面积是y,求y关于x的函数关系式,并写出x的取值范围;(3)联结ED,当∠FED=45°时,求AF的长.解:(1)∵E是AB的中点,AB=2,∴AE=AB=1,同理可得DG=1,∵AG⊥EF,∴∠AHF=∠HAF+∠AFH=90°,∵四边形ABCD是正方形,∴∠ADG=90°=∠DAG+∠AGD,∴∠AFH=∠AGD,∵∠EAF=∠ADG=90°,∴△EAF∽△ADG,∴,即,∴AF=;(2)如图1,由(1)知:△EAF∽△ADG,∴,即,∴DG=2x,∵∠HAF=∠DAG,∠AHF=∠ADG=90°,∴∠AHF∽△ADG,∴=,∴=,∴AH==,FH==,∴y=S△ADG﹣S△AFH,=,=2x﹣,如图2,当G与C重合时,∵EF⊥AG,∴∠AHE=90°,∵∠EAH=45°,∴∠AEH=45°,∴AF=AE=1,∴0<x<1;∴y关于x的函数关系式为:y=2x﹣(0<x<1);(3)如图3,过D作DM⊥AG,交BC于M,连接EM,延长EA至N,使AN=CM,连接DN,设CM=a,则AN=a,∵AD=CD,∠NAD=∠DCM=90°,∴△NAD≌△MCD(SAS),∴∠ADN=∠CDM,DN=DM,∵EF⊥AG,DM⊥AG,∴EF∥DM,∴∠EDM=∠FED=45°,∴∠ADE+∠CDM=∠EDM=45°,∴∠NDA+∠ADE=∠NDE=∠EDM,∵ED=ED,∴△NDE≌△MDE(SAS),∴EN=EM=a+1,∵BM=2﹣a,在Rt△EBM中,由勾股定理得:BE2+BM2=EM2,∴12+(2﹣a)2=(a+1)2,a=,∵∠AEF+∠EAG=∠EAG+∠DAG,∴∠AEF=∠DAG=∠CDM,∴tan∠AEF=tan∠CDM,∴,∴,∴AF=.12.如图1,对角线互相垂直的四边形叫做垂美四边形.(1)概念理解:如图2,在四边形ABCD中,AB=AD,CB=CD,问四边形ABCD是垂美四边形吗?请说明理由;(2)性质探究:如图1,四边形ABCD的对角线AC、BD交于点O,AC⊥BD.试证明:AB2+CD2=AD2+BC2;(3)解决问题:如图3,△ACB中,∠ACB=90°,AC⊥AG且AC=AG,AB⊥AE且AE=AB,连结CE、BG、GE.已知AC=4,AB=5,求GE的长.解:(1)四边形ABCD是垂美四边形,理由如下:连接AC,BD,∵AB=AD,∴点A在线段BD的垂直平分线上,∵CB=CD,∴点C在线段BD的垂直平分线上,∴AC是线段BD的垂直平分线,∴四边形ABCD是垂美四边形;(2)∵AC⊥BD,∴∠AOD=∠AOB=∠BOC=∠COD=90°,由勾股定理得,AD2+BC2=AO2+DO2+BO2+CO2,AB2+CD2=AO2+BO2+CO2+DO2,∴AD2+BC2=AB2+CD2;故答案为:AB2+CD2=AD2+BC2;(3)∵∠CAG=∠BAE=90°,∴∠CAG+∠BAC=∠BAE+∠BAC,即∠GAB=∠CAE,在△GAB和△CAE中,,∴△GAB≌△CAE(SAS),∴∠ABG=∠AEC,又∠AEC+∠AME=90°,∴∠ABG+∠AME=90°,即CE⊥BG,∴四边形CGEB是垂美四边形,由(2)得,CG2+BE2=CB2+GE2,∵AC=4,AB=5,∴BC=3,CG=4,BE=5,∴GE2=CG2+BE2﹣CB2=73,∴GE=.13.如图1,四边形ACEB,连接BC,∠ACB=∠BEC=90°,D在AB上,连接CD,∠ACD=∠ABC,BE=CD.(1)求证:四边形CDBE为矩形;(2)如图2,连接DE,DE交BC于点O,若tan∠A=2,在不添加任何辅助线和字母的情况下,请直接写出图中所有长度与AD的长度相等的线段.(1)证明:∵∠ACB=90°,∴∠A+∠ABC=90°,∵∠ACD=∠ABC,∴∠A+∠ACD=90°,∴∠ADC=90°,∴∠BDC=180°﹣90°=90°=∠BEC,在Rt△BCD和Rt△CBE中,,∴Rt△BCD≌Rt△CBE(HL),∴BD=CE,∵CD=BE,∴四边形CDBE是平行四边形,又∵∠BEC=90°,∴四边形CDBE为矩形;(2)解:图中所有长度与AD的长度相等的线段为AC=OC=OB=OD=OE=AD.理由如下:由(1)得:四边形CDBE为矩形,∠ADC=90°,∴BC=DE,OD=OE,OB=OC,∴OC=OB=OD=OE=BC,∵∠ADC=∠ACB=90°,∴tan∠A=2==,∴CD=2AD,BC=2AC,∴AC===AD,∴DE=BC=2AC,∴OC=OB=OD=OE=BC=AC=AD,∴AC=OC=OB=OD=OE=AD.14.如图在直角坐标系中,四边形ABCO为正方形,A点的坐标为(a,0),D点的坐标为(0,b),且a,b满足(a﹣3)2+|b﹣|=0.(1)求A点和D点的坐标;(2)若∠DAE=∠OAB,请猜想DE,OD和EB的数量关系,说明理由.(3)若∠OAD=30°,以AD为三角形的一边,坐标轴上是否存在点P,使得△PAD为等腰三角形,若存在,直接写出有多少个点P,并写出P点的坐标,选择一种情况证明.解:(1)∵(a﹣3)2+|b﹣|=0,∴a=3,b=,∴D(0,),A(3,0);(2)DE=OD+EB;理由如下:如图1,在CO的延长线上找一点F,使OF=BE,连接AF,在△AOF和△ABE中,,∴△AOF≌△ABE(SAS),∴AF=AE,∠OAF=∠BAE,又∵∠OAB=90°,∠DAE=,∴∠BAE+∠DAO=45°,∴∠DAF=∠OAF+∠DAO=45°,∴∠DAF=∠EAD,在△AFD和△AED中,,∴△AFD≌△AED(SAS),∴DF=DE=OD+EB;(3)有3种情况共6个点:①当DA=DP时,如图2,Rt△ADO中,OD=,OA=3,∴AD===2,∴P1(﹣3,0),P2(0,3),P3(0,﹣);②当AP4=DP4时,如图3,∴∠ADP4=∠DAP4=30°,∴∠OP4D=60°,Rt△ODP4中,∠ODP4=30°,OD=,∴OP4=1,∴P4(1,0);③当AD=AP时,如图4,∴AD=AP5=AP6=2,∴P5(3+2,0),P6(3﹣2,0),综上,点P的坐标为:∴P(﹣3,0)或(0,3)或(0,﹣)或(1,0)或(3+2,0)或(3﹣2,0).证明:P5(3+2,0),∵∠OAD=30°且△ADO是直角三角形,又∵AO=3,DO=,∴DA=2,而P5A=|3+2﹣3|=2,∴P5A=DA,∴△P5AD是等腰三角形.15.已知,在四边形ABCD中,点M、N、P、Q分别为边AB、AD、CD、BC的中点,连接MN、NP、PQ、MQ.(1)如图1,求证:四边形MNPQ为平行四边形;(2)如图2,连接AC,AC分别交MN、PQ于点E、F,连接BD,BD分别交MQ、NP于点G、H,AC与BD交于点O,且AC⊥BD,若tan∠ADB=,在不添加任何辅助线的情况下,请直接写出图2中所有长度等于OD的线段.(1)证明:如图1,连接BD.∵Q,P分别是BC,CD的中点,所以PQ∥BD,PQ=BD.∵M,N分别是AB,AD的中点.∴MN∥BD,MN=BD.∴PQ∥MN,且PQ=MN.∴四边形MNPQ是平行四边形.(2)解:∵四边形MNPQ是平行四边形,AC⊥BD,∴四边形MNPQ是矩形,∴四边形NHOE和四边形EOGM都是矩形,∴NH=OE=MG=AE=,∵tan∠ADB=,∴,∴NH=OE=MG=AE=.即长度等于OD的线段有NH,OE,MG,AE.。

2021届中考数学压轴题型专练01(选择题-函数类)【含答案】

2021届中考数学压轴题型专练01(选择题-函数类)【含答案】

2021届中考数学压轴题型专练 专练01(选择题-函数类)(20道)1.已知抛物线y =ax 2+3x+c (a ,c 为常数,且a≠0)经过点(﹣1,﹣1),(0,3),有下列结论: ①ac <0;②当x >1时,y 的值随x 值的增大而减小; ③3是方程ax 2+2x+c =0的一个根; ④当﹣1<x <3时,ax 2+2x+c >0 其中正确结论的个数是( ) A .1 B .2 C .3 D .4【答案】C 【解析】把点(﹣1,﹣1),(0,3)代入y =ax 2+3x+c 得:{−1=a −3+c 3=c∴{a =−1c =3∴y =﹣x 2+3x+3 ∴∴ac <0正确;该抛物线的对称轴为:x =−b2a =32,∴∴当x >1时,y 的值随x 值的增大而减小是错误的; 方程ax 2+2x+c =0可化为:方程ax 2+3x+c =x , 把x =3代入y =﹣x 2+3x+3得y =3, ∴﹣x 2+2x+3=0, 故∴正确;∴(3,3)在该抛物线上,又∴抛物线y =ax 2+3x+c (a ,c 为常数,且a≠0)经过点(﹣1,﹣1), ∴抛物线y =ax 2+3x+c 与y =x 的交点为(﹣1,﹣1)和(3,3), 当﹣1<x <3时,ax 2+3x+c >x ,即ax 2+2x+c >0 ∴当﹣1<x <3时,ax 2+2x+c >0,故∴正确. 综上,∴∴∴正确. 故选C .【点睛】本题考查了二次函数解析式、二次函数的对称轴、二次函数与方程、二次函数与不等式的关系,综合性较强,难度较大.2.已知二次函数2y ax bx c =++(0a ≠)的图象如图所示,对称轴是直线1x =-,下列结论:①abc <0;①2a+b=0;①a ﹣b+c >0;①4a ﹣2b+c <0 其中正确的是( )A .①①B .只有①C .①①D .①①【答案】D 【解析】试题分析:∴抛物线的开口向上,∴a >0,∴02ba-<,∴b >0,∴抛物线与y 轴交于负半轴,∴c <0,∴abc <0,∴正确;∴对称轴为直线1x =-,∴12ba-=-,即2a ﹣b=0,∴错误; ∴1x =-时,y <0,∴a ﹣b+c <0,∴错误; ∴x=﹣2时,y <0,∴4a ﹣2b+c <0,∴正确; 故选D .3.如图,已知直线5555x 轴、y 轴于点B①A 两点,C①3①0①①D①E 分别为线段AO 和线段AC 上一动点,BE 交y 轴于点H,且AD①CE ,当BD①BE 的值最小时,则H 点的坐标为( ①A .①0①4①B .①0①5①C .①0①552① D .55【答案】A 【解析】解:由题意A 55B ∴-3∴0∴∴C ∴3∴0∴∴ ∴AB =AC =8∴作EF ∴BC 于F ,设AD =EC =x ∴∴EF ∴AO ∴ ∴CE EF CFCA AO CO==∴ ∴EF 55x ∴CF =38x ∴∴OH ∴EF ∴ ∴OH BO EF BF=∴ ∴OH 55x∴ ∴BD +BE 223(55)x +-22355(6)()88x x -+223(55)x +-229355()()44x -+要求BD +BE 的最小值,相当于在x 轴上找一点M ∴x ∴0),使得点M 到K 55G ∴94∴3554)的距离之和最小.设G关于x轴的对称点G′∴94∴355∴,直线G′K的解析式为y=kx+b∴则有9355 44553k bk b⎧+=⎪⎪+=⎩解得k=7555768799∴b=172876855799+-∴∴直线G′K的解析式为y 7555768+x172876855+∴当y=0时,x 172876855 7687555++∴当x 1728768557687555++时,MG+MK的值最小,此时OH55x=422401728551056043255++=4∴∴当BD+BE的值最小时,则H点的坐标为(0∴4∴∴故选A∴【点睛】本题考查一次函数图象上的点的特征、轴对称最短问题、勾股定理、平行线分线段成比例定理等知识,解题的关键是学会用转化的思想思考问题,属于中考选择题中的压轴题.4.如图,A B、是函数12yx=上两点,P为一动点,作//PB y轴,//PA x轴,下列说法正确的是( )①AOP BOP ∆≅∆①②AOP BOP S S ∆∆=①③若OA OB =,则OP 平分AOB ∠①④若4BOP S ∆=,则16ABP S ∆=A .①③B .②③C .②④D .③④【答案】B 【解析】①显然AO 与BO 不一定相等,故△AOP 与△BOP 不一定全等,故①错误;②延长BP ,交x 轴于点E ,延长AP ,交y 轴于点F∴ ∵AP//x 轴,BP//y 轴,∴四边形OEPF 是矩形,S △EOP =S △FOP ∴ ∵S △BOE =S △AOF =12k=6∴∴S △AOP =S △BOP ,故②正确; ③过P 作PM ⊥BO ,垂足为M ,过P 作PN ⊥AO ,垂足为N∴ ∵S △AOP =12OA•PN∴S △BOP =12BO•PM∴S △AOP =S △BOP ∴AO=BO∴ ∴PM=PN∴∴PO 平分∠AOB ,即OP 为∠AOB 的平分线,故③正确; ④设P∴a∴b ),则B∴a∴12a∴∴A∴12b ∴b∴∴S △BOP =12BP•EO=112·2b a a ⎛⎫⨯-⎪⎝⎭=4∴ ∴ab=4∴ S △ABP =12AP•BP=11212·2b a a b ⎛⎫⎛⎫⨯-- ⎪ ⎪⎝⎭⎝⎭=8∴故④错误,综上,正确的为②③∴ 故选B.【点睛】本题考查了反比例函数的综合题,正确添加辅助线、熟知反比例函数k 的几何意义是解题的关键.5.抛物线()2y ax bx c a 0=++≠的部分图象如图所示,与x 轴的一个交点坐标为()4,0,抛物线的对称轴是x 1.=下列结论中:abc 0>①①2a b 0+=②①③方程2ax bx c 3++=有两个不相等的实数根;④抛物线与x 轴的另一个交点坐标为()2,0-①⑤若点()A m,n 在该抛物线上,则2am bm c a b c ++≤++① 其中正确的有( )A .5个B .4个C .3个D .2个【答案】B 【解析】①对称轴是y 轴的右侧,ab 0∴<∴抛物线与y 轴交于正半轴,c 0∴>∴abc 0∴<,故①错误;b12a-=②∴b 2a ∴=-∴2a b 0+=,故②正确;③由图象得:y 3=时,与抛物线有两个交点,∴方程2ax bx c 3++=有两个不相等的实数根,故③正确;④抛物线与x 轴的一个交点坐标为()4,0,抛物线的对称轴是x 1=∴ ∴抛物线与x 轴的另一个交点坐标为()2,0-,故④正确;⑤抛物线的对称轴是x 1=∴y ∴有最大值是a b c ++∴点()A m,n 在该抛物线上,2am bm c a b c ∴++≤++,故⑤正确,本题正确的结论有:②③④⑤∴4个, 故选B∴ 【点睛】本题考查了二次函数图象与系数的关系:对于二次函数()2y ax bx c a 0=++≠,二次项系数a 决定抛物线的开口方向和大小:当a 0>时,抛物线向上开口;当a 0<时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab 0)>,对称轴在y 轴左;当a 与b 异号时(即ab 0)<,对称轴在y 轴右;常数项c 决定抛物线与y 轴交点位置:抛物线与y 轴交于()0,c ;也考查了抛物线与x 轴的交点以及二次函数的性质.6.点A①B 的坐标分别为(﹣2①3)和(1①3),抛物线y=ax 2+bx+c①a①0)的顶点在线段AB 上运动时,形状保持不变,且与x 轴交于C①D 两点(C 在D 的左侧),给出下列结论:①c①3①②当x①①3时,y 随x 的增大而增大;③若点D 的横坐标最大值为5,则点C 的横坐标最小值为﹣5①④当四边形ACDB 为平行四边形时, 43a =- .其中正确的是( ① A .②④ B .②③C .①③④D .①②④【答案】A 【解析】∵点A ,B 的坐标分别为(−2,3)和(1,3)∴∴线段AB与y轴的交点坐标为(0,3)∴又∵抛物线的顶点在线段AB上运动,抛物线与y轴的交点坐标为(0,c)∴∴c⩽3,(顶点在y轴上时取“=”),故①错误;∵抛物线的顶点在线段AB上运动,∴当x<−2时,y随x的增大而增大,因此,当x<−3时,y随x的增大而增大,故②正确;若点D的横坐标最大值为5,则此时对称轴为直线x=1∴根据二次函数的对称性,点C的横坐标最小值为−2−4=−6,故③错误;根据顶点坐标公式,244ac ba-=3∴令y=0,则ax² +bx+c=0∴CD² =(−ba)² −4×ca=224b aca-∴根据顶点坐标公式,244ac ba-=3∴∴24b aca-=−12∴∴CD²=1a×(−12)=12a-∴∵四边形ACDB为平行四边形,∴CD=AB=1−(−2)=3∴∴12a-=3²=9∴解得a=−43,故④正确;综上所述,正确的结论有②④.故选A.7.如图是抛物线y 1=ax 2+bx +c (a ≠0)图象的一部分,抛物线的顶点坐标是A (1,3),与x 轴的一个交点B (4,0),直线y 2=mx +n (m ≠0)与抛物线交于A ,B 两点,下列结论:①2a +b =0;①m +n =3;①抛物线与x 轴的另一个交点是(﹣1,0);①方程ax 2+bx +c =3有两个相等的实数根;①当1≤x ≤4时,有y 2<y 1,其中正确的是( )A .①①①B .①①①C .①①①D .①①①【答案】B 【解析】由抛物线对称轴为直线x =﹣12ba,从而b =﹣2a ,则2a +b =0故①正确; 直线y 2=mx +n 过点A ,把A (1,3)代入得m +n =3,故②正确;由抛物线对称性,与x 轴的一个交点B (4,0),则另一个交点坐标为(2,0)故③错误;方程ax 2+bx +c =3从函数角度可以看做是y =ax 2+bx +c 与直线y =3求交点,从图象可以知道,抛物线顶点为(1,3),则抛物线与直线有且只有一个交点故方程ax 2+bx +c =3有两个相等的实数根,因而④正确;由图象可知,当1≤x ≤4时,有y 2≤y 1 故当x =1或4时y 2=y 1 故⑤错误. 故选B . 【点睛】本题选项较多,比较容易出错,因此要认真理解题意,明确以下几点是关键:①通常2a+b 的值都是利用抛物线的对称轴来确定;②抛物线与x 轴的交点个数确定其△的值,即b 2-4ac 的值:△=b 2-4ac >0时,抛物线与x 轴有2个交点;△=b 2-4ac=0时,抛物线与x 轴有1个交点;△=b 2-4ac <0时,抛物线与x 轴没有交点;③知道对称轴和抛物线的一个交点,利用对称性可以求与x 轴的另一交点.8.抛物线y=ax 2+bx+c 交x 轴于A①①1①0①①B①3①0),交y 轴的负半轴于C ,顶点为D .下列结论:①2a+b=0①①2c①3b①①当m≠1时,a+b①am 2+bm①①当①ABD 是等腰直角三角形时,则a=12①①当①ABC 是等腰三角形时,a 的值有3个.其中正确的有( )个①A.5B.4C.3D.2【答案】C【解析】解:①∵二次函数与x轴交于点A∴-1∴0∴∴B∴3∴0∴∴∴二次函数的对称轴为x=()132-+=1,即-b2a=1∴∴2a+b=0∴故①正确;②∵二次函数y=ax2+bx+c与x轴交于点A∴-1∴0∴∴B∴3∴0∴∴∴a-b+c=0∴9a+3b+c=0∴又∵b=-2a∴∴3b=-6a∴a-∴-2a∴+c=0∴∴3b=-6a∴2c=-6a∴∴2c=3b∴故②错误;③∵抛物线开口向上,对称轴是x=1∴∴x=1时,二次函数有最小值.∴m≠1时,a+b+c∴am2+bm+c∴即a+b∴am2+bm∴故③正确;∴∴AD=BD∴AB=4∴∴ABD是等腰直角三角形.∴AD2+BD2=42∴解得,AD2=8∴设点D坐标为(1∴y∴∴则[1-∴-1∴]2+y 2=AD 2∴ 解得y=±2∴∵点D 在x 轴下方. ∴点D 为(1∴-2∴∴∵二次函数的顶点D 为(1∴-2),过点A∴-1∴0∴∴ 设二次函数解析式为y=a∴x -1∴2-2∴ ∴0=a∴-1-1∴2-2∴ 解得a=12∴ 故④正确;⑤由图象可得,AC≠BC∴故△ABC 是等腰三角形时,a 的值有2个. 故⑤错误.故①③④正确,②⑤错误. 故选C∴ 【点睛】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.9.二次函数()20y ax bx c a =++≠的图象如图所示,有下列结论:①0abc >;②20a b +=;③若m 为任意实数,则2a b am bm +>+;④a -b+c>0;⑤若221122ax bx ax bx +=+,且12x x ≠,则122x x +=.其中,正确结论的个数为( )A .1B .2C .3D .4【答案】B 【解析】∵抛物线与y 轴交于正半轴,图象开口向上,∴a<0,c>0, ∵对称轴为x=2ba-=1>0, ∴b>0,b=-2a ,∴abc<0,2a+b=0,故①错误,②正确, ∵x=1时,y=a+b+c ,为二次函数的最大值,∴对任意实数m 有a+b+c≥am 2+bm+c ,即a+b≥am 2+bm ,故③错误, ∵(3,0)关于直线x=1的对称点为(-1,0),x=3时y<0, ∴x=-1时,y=a -b+c<0,故④错误,∵221122ax bx ax bx +=+, ∴221122ax bx c ax bx c ++=++ ∴x 1与x 2关于对称轴x=1对称, ∴122x x +=1 ∴x 1+x 2=2,故⑤正确,综上所述:正确的结论有②⑤,共2个, 故选B. 【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax 2+bx+c (a≠0),当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab>0),对称轴在y 轴左侧;当a 与b 异号时(即ab<0),对称轴在y 轴右侧;常数项c 决定抛物线与y 轴交点,抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△决定:△=b 2-4ac>0时,抛物线与x 轴有2个交点;△=b 2-4ac=0时,抛物线与x 轴有1个交点;△=b 2-4ac<0时,抛物线与x 轴没有交点. 10.函数y =4x 和y =1x在第一象限内的图象如图,点P 是y =4x 的图象上一动点,PC ⊥x 轴于点C ,交y =1x的图象于点B .给出如下结论:①△ODB 与△OCA 的面积相等;②PA 与PB 始终相等;③四边形PAOB 的面积大小不会发生变化;④CA =13AP .其中所有正确结论的序号是( )A.①②③B.②③④C.①③④D.①②④【答案】C【解析】解:∴A∴B是反比函数1yx=上的点,∴S△OBD=S△OAC=12,故∴正确;当P的横纵坐标相等时P A=PB,故∴错误;∴P是4yx=的图象上一动点,∴S矩形PDOC=4∴∴S四边形P AOB=S矩形PDOC∴S△ODB∴∴S△OAC=4∴12∴12=3,故∴正确;连接OP∴212POCOACS PCS AC∆∆===4∴∴AC=14PC∴P A=34PC∴∴PAAC=3∴∴AC=13AP;故∴正确;综上所述,正确的结论有∴∴∴∴故选C∴点睛:本题考查的是反比例函数综合题,熟知反比例函数中系数k的几何意义是解答此题的关键.11.如图,已知二次函数y=ax2+bx+c①a≠0)的图象与x轴交于点A①①1①0),与y轴的交点B在(0①①2)和(0①①1)之间(不包括这两点),对称轴为直线x=1.下列结论:①abc①0 ②4a+2b+c①0 ③4ac①b2①8a ④1 3①a①23⑤b①c.其中含所有正确结论的选项是()A .①③B .①③④C .②④⑤D .①③④⑤【答案】D 【解析】∴∴函数开口方向向上,∴a >0;∴对称轴在y 轴右侧,∴ab 异号,∴抛物线与y 轴交点在y 轴负半轴,∴c <0,∴abc >0,故∴正确;∴∴图象与x 轴交于点A (﹣1,0),对称轴为直线x=1,∴图象与x 轴的另一个交点为(3,0),∴当x=2时,y <0,∴4a+2b+c <0,故∴错误;∴∴图象与x 轴交于点A (﹣1,0),∴当x=﹣1时,y=()()211a b c -+⨯-+=0,∴a ﹣b+c=0,即a=b ﹣c ,c=b ﹣a ,∴对称轴为直线x=1,∴2ba-=1,即b=﹣2a ,∴c=b ﹣a=(﹣2a )﹣a=﹣3a ,∴4ac ﹣2b =4•a•(﹣3a )﹣()22a -=216a -<0,∴8a >0,∴4ac ﹣2b <8a ,故∴正确;∴∴图象与y 轴的交点B 在(0,﹣2)和(0,﹣1)之间,∴﹣2<c <﹣1,∴﹣2<﹣3a <﹣1,∴23>a >13,故∴正确;∴∴a >0,∴b ﹣c >0,即b >c ,故∴正确. 故选D . 【点睛】本题考查二次函数的图像与系数的关系,熟练掌握图像与系数的关系,数形结合来进行判断是解题的关键. 12.如图,抛物线y =ax 2+bx +c (a ≠0)的对称轴为直线x =﹣2,与x 轴的一个交点在(﹣3,0)和(﹣4,0)之间,其部分图象如图所示则下列结论:①4a ﹣b =0;②c <0;③c >3a ;④4a ﹣2b >at 2+bt (t 为实数);⑤点(﹣72,y 1),(﹣52,y 2),(312,y )是该抛物线上的点,则y 2<y 1<y 3,其中,正确结论的个数是( )A.1B.2C.3D.4【答案】C【解析】∵抛物线的对称轴为直线x=﹣2,∴4a﹣b=0,所以①正确;∵与x轴的一个交点在(﹣3,0)和(﹣4,0)之间,∴由抛物线的对称性知,另一个交点在(﹣1,0)和(0,0)之间,∴抛物线与y轴的交点在y轴的负半轴,即c<0,故②正确;∵由②知,x=﹣1时y>0,且b=4a,即a﹣b+c=a﹣4a+c=﹣3a+c>0,所以③正确;由函数图象知当x=﹣2时,函数取得最大值,∴4a﹣2b+c≥at2+bt+c,即4a﹣2b≥at2+bt(t为实数),故④错误;∵抛物线的开口向下,且对称轴为直线x=﹣2,∴抛物线上离对称轴水平距离越小,函数值越大,∴y2>y1>y3,故⑤错误;故选:C.【点睛】本题考查了二次函数与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x 轴没有交点.13.抛物线y=ax 2+bx+c 的顶点为D①①1①2),与x 轴的一个交点A 在点(﹣3①0)和(﹣2①0)之间,其部分图象如图,则以下结论:①b 2①4ac①0①②当x①①1时,y 随x 增大而减小;③a+b+c①0①④若方程ax 2+bx+c①m=0没有实数根,则m①2① ⑤3a+c①0.其中正确结论的个数是( )A .2个B .3个C .4个D .5个【答案】C 【解析】(1)∵抛物线与x 轴有两个交点, ∴b 2−4ac >0, ∴结论①不正确.(2)抛物线的对称轴x =−1, ∴当x >−1时,y 随x 增大而减小, ∴结论②正确.(3)∵抛物线与x 轴的一个交点A 在点(−3,0)和(−2,0)之间, ∴抛物线与x 轴的另一个交点在点(0,0)和(1,0)之间, ∴当x =1时,y <0, ∴a +b +c <0, ∴结论③正确.(4)∵y =ax 2+bx +c 的最大值是2, ∴方程ax 2+bx +c −m =0没有实数根,则m >2, ∴结论④正确.(5)∵抛物线的对称轴x =2ba=−1, ∴b =2a ,∵a +b +c <0, ∴a +2a +c <0, ∴3a +c <0, ∴结论⑤正确. 综上,可得正确结论的序号是:②③④⑤,正确的结论有4个. 故选C.14.如图,已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,对称轴为直线x =1.有下列4个结论:①abc >0;②4a +2b +c >0;③2c <3b ;④a +b >m (am +b )(m 是不等于1的实数).其中正确的结论个数有( )A .1个B .2个C .3个D .4个【答案】C 【解析】解:①由图象可知:a <0,c >0, ∵﹣2ba>0, ∴b >0,∴abc <0,故①错误;②由对称知,当x =2时,函数值大于0,即y =4a+2b+c >0,故②正确; ③当x =3时函数值小于0,y =9a+3b+c <0,且x =2ba-=1, 即a =2b -,代入得9(2b-)+3b+c <0,得2c <3b ,故③正确; ④当x =1时,y 的值最大.此时,y =a+b+c , 而当x =m 时,y =am 2+bm+c , 所以a+b+c >am 2+bm+c ,故a+b >am 2+bm ,即a+b >m (am+b ),故④正确.故选C.【点睛】本题考查了二次函数的图像和性质,属于简单题,熟悉函数的图像和性质是解题关键.15.如图,一次函数y=2x与反比例函数y=kx①k①0)的图象交于A①B两点,点P在以C①①2①0)为圆心,1为半径的⊙C上,Q是AP的中点,已知OQ长的最大值为32,则k的值为()A.4932B.2518C.3225D.98【答案】C【解析】如图,连接BP∴由对称性得:OA=OB∴∵Q是AP的中点,∴OQ=12BP∴∵OQ长的最大值为3 2∴∴BP长的最大值为32×2=3∴如图,当BP过圆心C时,BP最长,过B作BD⊥x轴于D∴∵CP=1∴∴BC=2∴∵B在直线y=2x上,设B∴t∴2t),则CD=t∴∴∴2∴=t+2∴BD=∴2t∴在Rt△BCD中,由勾股定理得:BC2=CD2+BD2∴∴22=∴t+2∴2+∴∴2t∴2∴t=0(舍)或t=∴4 5∴∴B∴∴45∴∴85∴∴ ∵点B 在反比例函数y=kx∴k∴0)的图象上, ∴k=∴45×∴-85∴=3225∴故选C∴【点睛】本题考查的是代数与几何综合题,涉及了反比例函数图象上点的坐标特征,中位线定理,圆的基本性质等,综合性较强,有一定的难度,正确添加辅助线,确定出BP 过点C 时OQ 有最大值是解题的关键. 16.如图,反比例函数(0)ky k x=>的图象与矩形AOBC 的边AC ,BC 分别相交于点E ,F ,点C 的坐标为(4,3)将△CEF 沿EF 翻折,C 点恰好落在OB 上的点D 处,则k 的值为( )A .214B .6C .3D .218【答案】D 【解析】如图,过点E 作EG ⊥OB 于点G ,∵将△CEF 沿EF 对折后,C 点恰好落在OB 上的D 点处, ∴∠EDF =∠ACB =90°,EC =ED ,CF =DF , ∴∠GDE +∠FDB =90°,而EG ⊥OB , ∴∠GDE +∠GED =90°,∴∠GED =∠FDB , ∴△GED ∽△BDF ; 又∵EC =AC ﹣AE =43k -,CF =BC ﹣BF =3﹣4k , ∴ED =43k -,DF =3﹣4k, ∴k4ED 43k DF334-==-∴EG :DB =ED :DF =4:3,而EG =3, ∴DB =94, 在Rt △DBF 中,DF 2=DB 2+BF 2,即22293444k k ⎛⎫⎛⎫⎛⎫-=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 解得k =218, 故选D .【点睛】本题考查的是折叠问题、反比例函数的性质、反比例函数图象上点的坐标特点、勾股定理以及三角形相似的判定与性质等知识,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.17.如图,矩形OABC 的顶点A 、C 都在坐标轴上,点B 在第二象限,矩形OABC 的面积为2.把矩形OABC 沿DE 翻折,使点B 与点O 重合.若反比例函数y =kx的图象恰好经过点E 和DE 的中点F .则OA 的长为( )A .2B 322C .2D 6【答案】D【解析】 连接BO 与ED 交于点Q ,过点Q 作QN ⊥x 轴,垂足为N ,如图所示,∵矩形OABC 沿DE 翻折,点B 与点O 重合,∴BQ =OQ ,BE =EO .∵四边形OABC 是矩形,∴AB ∥CO ,∠BCO =∠OAB =90°.∴∠EBQ =∠DOQ .在△BEQ 和△ODQ 中,EBQ DOQ BQ OQBQE OQD ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△BEQ ≌△ODQ (ASA ).∴EQ =DQ .∴点Q 是ED 的中点.∵∠QNO =∠BCO =90°,∴QN ∥BC .∴△ONQ ∽△OCB . ∴222ONQ OCB S OQ OQ S OB OQ ==()()=14∴S △ONQ =14S △OCB . ∵S 矩形OABC =2,∴S △OCB =S △OAB =2.∴S △ONQ 324∵点F 是ED 的中点,∴点F 与点Q 重合.∴S △ONF 324∵点E 、F 在反比例函数y =k x 上, ∴S △OAE =S △ONF 324∵S △OAB =2,∴AB =4AE .∴BE =3AE .由轴对称的性质可得:OE =BE .∴OE =3AE .OA 2222OE AE AE -=∴S △OAE =12AO •AE =12×2AE ×AE 324 ∴AE 3. ∴OA =2AE 6.故选D .【点睛】此题主要考查反比例函数的性质和图像,相似三角形的判定与性质以及全等三角形的性质18.已知:如图,在平面直角坐标系中,有菱形OABC ,点A 的坐标为(10,0),对角线OB 、AC 相交于点D ,双曲线y =k x (x >0)经过点D ,交BC 的延长线于点E ,且OB ·AC =160,有下列四个结论:①双曲线的解析式为y =40x (x >0);②点E 的坐标是(4,8);③sin ∠COA =45;④AC +OB =12√5.其中正确的结论有( )A .3个B .2个C .1个D .0个【答案】A【解析】 ① 过点C作CM ⊥x 轴于点M ,如图1所示.∵OB•AC=160,四边形OABC 为菱形,∴S △OCA =12OA•CM=14OB•AC=40,∵A 点的坐标为(10,0),∴OA=10∴CM=8,∴OM=√OC 2−CM 2=6,∴点C (6,8),∴点B (16,8).∵点D 为线段OB 的中点,∴点D (8,4),∵双曲线经过D 点,∴k=8×4=32,∴双曲线的解析式为y=32X∴①不正确;②∵点E 在双曲线y=32X 的图象上,且E 点的纵坐标为8,∴32÷8=4,∴点E (4,8),∴②正确;③∵sin ∠COA=CM OC =45,∴③正确;④在Rt △CMA 中,CM=8,AM=OA -OM=10-6=4,∴AC=√MC 2+AM 2=√82+42=4√5,∵OB•AC=160,∴OB=8√5∴AC+OB=12√5∴④成立.综上可知:②③④成立.故答案为:A【点睛】本题考查了菱形的性质、反比例函数图象上点的坐标特征以及勾股定理,解题的关键是求出反比例函数的解析式.本题属于中档题,难度不大,解决该题型题目时,结合菱形的性质以及三角形的面积公式找出点的坐标,再利用反比例函数图象上点的坐标特征求出反比例函数的解析式是关键.19.如图,两个反比例函数y 1=1k x (其中k 1>0)和y 2=3x在第一象限内的图象依次是C 1和C 2,点P 在C 1上.矩形PCOD 交C 2于A 、B 两点,OA 的延长线交C 1于点E ,EF ⊥x 轴于F 点,且图中四边形BOAP 的面积为6,则EF :AC 为( )A 3:1B .23C .2:1D .29:14【答案】A【解析】 首先根据反比例函数y 2=3x 的解析式可得到ODB OAC S S =12×3=32,再由阴影部分面积为6可得到PDOC S 矩形=9,从而得到图象C 1的函数关系式为y=6x,再算出∴EOF 的面积,可以得到∴AOC 与∴EOF 的面积比,然后证明∴EOF∴∴AOC ,根据对应边之比等于面积比的平方可得到EF ﹕3 故选A .20.如图,点P 是y 轴正半轴上的一动点,过点P 作AB ①x 轴,分别交反比例函数2y x=- ①x ①0)与1y x =①x ①0)的图象于点A ①B ,连接OA ①OB ,则以下结论:①AP =2BP ①①①AOP =2①BOP ①①①AOB 的面积为定值;①①AOB 是等腰三角形,其中一定正确的有( )个①A .1B .2C .3D .4【答案】B【解析】 解:设P 的坐标为(0∴b ∴∴b ∴0过点A ∴B 作AC ∴x 轴于点C ∴BD ∴x 轴于点D ,令y =m 分别代入2y x =-∴1y x =∴∴A ∴2b -∴b ∴∴B ∴1b ∴b ∴∴∴AB =3b ∴AP =2b ∴BP =1b∴∴AP =2AB ,故∴正确; tan∴AOP =AP OP =22b ∴tan∴BOP =BP OP =21b∴∴tan∴AOP =2tan∴BOP ,但∴AOP ≠BOP ,故∴错误; ∴ABO 的面积为:12AB •OP =12×3b ×b =32,故∴正确; 由勾股定理可知:OA 2=24b +b 2∴OB 2=b 2+21b ∴∴AB 2=29b ∴∴OA ∴OB ∴OA 三边不一定相等,故∴错误; 故选B∴点睛:本题考查反比例函数 的性质,解题的关键是熟练运用反比例函数的性质,勾股定理等知识.。

2021年中考数学压轴题专项训练14:相似三角形(含答案)

2021年中考数学压轴题专项训练14:相似三角形(含答案)

相似三角形1.已知,如图,△ABC 中,AB =2,BC =4,D 为BC 边上一点,BD =1,AD +AC =8.(1)找出图中的一对相似三角形并证明; (2)求AC 长.【解析】解:(1)△BAD△△BCA ,理由如下: AB =2,BC =4,BD =1,∴121,=242BD AB AB BC ==, ∴1=2BD AB AB BC =, 又△B=△B ,∴△BAD△△BCA ;(2)由(1)得:1=2AD AC ,即2AC AD =, AD +AC =8,∴28AD AD +=,解得:83AD =, ∴163AC =. 2.如图,在ABC ∆中,6AB AC ==,5BC =,D 是AB 上一点,2BD =,E 是BC 上一动点,连接DE ,作DEF B ∠=∠,射线EF 交线段AC 于F .(1)求证:DBE ECF ∆∆;(2)当F 是线段AC 中点时,求线段BE 的长; 【解析】(1)证明:△AB AC =, △B C ∠=∠;△DEF B ∠=∠,∠+∠=∠+∠CEF DEF B BDE , △BDE CEF ∠=∠. △DBEECF ∆∆.(2)△DBEECF ∆∆(已证).△::BD CE BE CF =; △F 为AC 的中点,6AC =, △3CF =.设BE x =,则5CE x =-;又2BD =, △()2:5:3x x -=,解得2x =或3. 故BE 长为2或3.3.如图,是一个照相机成像的示意图.(1)如果像高MN是35mm,焦距是50mm,拍摄的景物高度AB是4.9m,拍摄点离景物有多远?(2)如果要完整的拍摄高度是2m的景物,拍摄点离景物有4m,像高不变,则相机的焦距应调整为多少?【解析】解:根据物体成像原理知:△LMN△△LBA,△MN LC AB LD=.(1)△像高MN是35mm,焦距是50mm,拍摄的景物高度AB是4.9m,△35504.9LD=,解得:LD=7.△拍摄点距离景物7 m.(2)拍摄高度AB是2m的景物,拍摄点离景物LC=4m,像高MN不变,是35mm,△35LC24=,解得:LC=70.△相机的焦距应调整为70mm.4.如图,四边形ABCD和四边形AEFG都是矩形,C,F,G三点在一直线上,连接AF并延长交边CD于点M,若△AFG=△ACD.(1)求证:△△MFC△△MCA;△若AB=5,AC=8,求CFBE的值.(2)若DM=CM=2,AD=3,请直接写出EF长.【解析】(1)△证明:△△AFG=△ACD,△△FCA+△F AC=△FCA+△MCF,△△F AC=△MCF,△△FMC=△CMA,△△MFC△△MCA.△解:△四边形AEFG,四边形ABCD都是矩形,△FG△AE,CD△AB,△△AFG=△F AE,△ACD=△CAB,△△AFG=△ACD,△△F AE=△CAB,△△AEF=△ABC=90°,△△AEF△△ABC,△AFAC=AEAB,△AF AE =ACAB, △△F AE =△CAB , △△F AC =△EAB , △△F AC △△EAB , △FC EB=AC AB =85. (2)解:△四边形ABCD 是矩形, △△D =90°,AD =BC =3, △DM =MC =2,AD =3, △CD =4,AM 22AD DM +2232+13AC 22AD CD +2234+5,△△MFC △△MCA , △CM AM =FM CM, △FM =2CM AM =41313,△AF =AM ﹣FM 913, △△AEF △△ABC , △EF BC=AFAC , △3EF=913135,△EF27135.已知四边形ABCD的一组对边AD、BC的延长线交于点E.(1)如图1,若△ABC=△ADC=90°,求证:ED△EA=EC△EB;(2)如图2,若△ABC=120°,cos△ADC=35,CD=5,AB=12,△CDE的面积为6,求四边形ABCD的面积.【解析】解:(1)证明:△△ADC=90°,△△EDC=90°,△△ABE=△CDE.又△△AEB=△CED,△△EAB△△ECD,△EB EA ED EC=,△ED EA EC EB=.(2)过点C作CG△AD于点D,过点A作AH△BC于点H,△CD =5,cos△ADC =35, △DG =3,CG =4. △S △CED =6, △ED =3, △EG =6.△AB =12,△ABC =120°,则△BAH =30°, △BH =6,AH =63 由(1)得△ECG△△EAH ,△EG CGEH AH=, △EH =93△S 四边形ABCD =S △AEH -S △ECD -S △ABH =116393663622⨯-⨯=75183-. 6.如图,在ABC ∆中,90ACB ∠=︒,CD 是高,BE 平分ABC ∠,BE 分别与AC ,CD 相交于点E ,F .(1)求证:AEB CFB ∆∆∽.(2)求证:AE ABCE CB=. (3)若5CE =,25EF =6BD =,求AD 的长.【解析】证明:(1)90ACB ∠=︒90ACD BCD ∴∠+∠=︒CD 为AB 边上的高,90ADC ∴∠=︒90A ACD ∴∠+∠=︒A BCD ∴∠=∠, BE 是ABC ∠的平分线,ABE CBE ∴∠=∠AEB CFB ∴∆∆∽;(2)ABE CBE ∠=∠,A BCD ∠=∠,CFE BCD CBE A ABE ∴∠=∠+∠=∠+∠ CEF A ABE ∠=∠+∠,CEF CFE ∴∠=∠CE CF ∴=AEB CFB ∆∆∽AE ABCF CB ∴= AE ABCE CB∴=;(3)如图,作CH EF ⊥于HCE CF =,CH EF ⊥5EH FH ∴==22225(5)25CH EC EH ∴=-=-=由BFD CFH ∆∆∽,DF BDHF CH∴=, 525=3DF ∴=,8CD CF DF =+=,由ACD CBD ∆∆∽AD CDCD BD ∴= 886AD ∴= 323AD ∴=.7.如图,在平面直角坐标系x0y 中,直线BC 和直线OB 交于点B ,直线AC 与直线BC 交x 轴于点C ,OA=4, 11,2OC AB AB y ==⊥轴,垂足为点A ,AC 与OB 交于点M . (1)求直线BC 的解析式;(2)求阴影部分的面积.【解析】解:(1)14,12OA OC AB ===, 所以点A 坐标为(0,4),点C 坐标为(1,0), 又AB y ⊥轴,点B 坐标为(2,4),设直线BC 的表达式为y =kx +b ,将点B ,C 坐标代入表达式,得240k b k b +=⎧⎨+=⎩,解得:k =4,b =﹣4,所以直线的表达式为44y x =-. (2)AB y ⊥轴,△AB △x 轴,MOCMBA ∴△△,△12CM OC AM AB ==, △122AOCBOCS OC OA S =⨯⨯==,△1233MOCAOCSS ==, △S 阴影2102233OCA OCB OCMSS S=+-=+-=.8.在矩形ABCD的CD边上取一点E,将△BCE沿BE翻折,使点C恰好落在AD边上点F处.(1)如图1,若BC=2BA,求△CBE的度数;(2)如图2,当AB=5,且AF FD=10时,求BC的长;(3)如图3,延长EF,与△ABF的角平分线交于点M,BM交AD于点N,当NF=12AD时,求ABBC的值.【解析】解:(1)△四边形ABCD是矩形,△△C=90°,△将△BCE沿BE翻折,使点C恰好落在AD边上点F处,△BC=BF,△FBE=△EBC,△C=△BFE=90°,△BC=2AB,△BF=2AB,△△AFB=30°,△四边形ABCD是矩形,△AD//BC,△△AFB=△CBF=30°,△△CBE=12△FBC=15°;(2)△将△BCE沿BE翻折,使点C恰好落在AD边上点F处,△△BFE=△C=90°,CE=EF,又△矩形ABCD中,△A=△D=90°,△△AFB+△DFE=90°,△DEF+△DFE=90°,△△AFB=△DEF,△△FAB△△EDF,△AF AB DE DF=,△AF•DF=AB•DE,△AF•DF=10,AB=5,△DE=2,△CE=DC-DE=5-2=3,△EF=3,2222325EF DE-=-=255=△BC=AD=AF+DF=25535=.(3)过点N作NG△BF于点G,△NF=12AD△NF=12 BF,△△NFG=△AFB,△NGF=△BAF=90°,△△NFG△△BFA,△12 NG FG NFAB FA BF===,设AN=x,△BN平分△ABF,AN△AB,NG△BF,△AN=NG=x,AB=BG=2x,设FG=y,则AF=2y,△AB2+AF2=BF2,△(2x)2+(2y)2=(2x+y)2,解得y=43 x,△BF=BG+GF=410233x x x+=.△231053AB AB xBC BF x===.9.如图,抛物线y =﹣12(x+1)(x ﹣n )与x 轴交于A ,B 两点(点A 在点B 左侧),与y 轴交于点C ,△ABC 的面积为5.动点P 从点A 出发沿AB 方向以每秒1个单位的速度向点B 运动,过P 作PN△x 轴交BC 于M ,交抛物线于N .(1)求抛物线的解析式;(2)当MN 最大时,求运动的时间;(3)经过多长时间,点N 到点B 、点C 的距离相等?【解析】(1)△抛物线y =()()112x x n -+-与x 轴交于A ,B 两点(点A 在点B 左侧),与y 轴交于点C △A (﹣1,0),B (n ,0),C (0,2n),n >0 △AB =n+1,OC =12n 由S △ABC =12×AB×OC =5 △()1154n n += △()120n n += △取正根n =4 △y =()()1142x x -+-=12-x 2+32x+2; (2)由(1),B (4,0),C (0,2)△直线BC 为2y x =-+ 设M (m,12-m+2),N (m,12-m 2+32m+2) △MN =213122222m m m ⎛⎫⎛⎫-++--+ ⎪ ⎪⎝⎭⎝⎭=2122m m -+=()21222m --+△当m =2时,MN 最大 △OP =2△AP =3,即经过3s ,MN 最大;(3)如下图所示,作BC 的中垂线,与BC 交于点D ,与y 轴交于点E ,与抛物线交于点N ,△△CDE ~△COB △12CD CO DE OB == 由(2),得BC =5D (2,1)△DE =2CD =5△CE =5 △OE =3 △E (0,-3) △直线DE 为y =2x -3由12-x2+32x+2=2x-3移项整理得:12x2+12x-5=0△x2+x-10=0取正根x=1412-△OP141 -+△AP=1412141+N到点B、点C的距离相等.10.如图,四边形ABCD和四边形AEFG都是正方形,C,F,G三点在一直线上,连接AF并延长交边CD 于点M.(1)求证:△MFC△△MCA;(2)求证△ACF△△ABE;(3)若DM=1,CM=2,求正方形AEFG的边长.【答案】(1)证明见解析;(2)证明见解析;(3355.【解析】解:(1)四边形ABCD是正方形,四边形AEFG是正方形,45ACD AFG ∴∠=∠=︒, CFM AFG ∠=∠,CFM ACM ∴∠=∠, CMF AMC ∠=∠, MFC MCA ∴△∽△;(2)四边形ABCD 是正方形,90ABC ∴∠=︒,45BAC ∠=︒, 2AC AB ∴=,同理可得2AF AE =,∴2AF ACAE AB= 45EAF BAC ∠=∠=︒,CAF BAE ∴∠=∠,ACF ABE ∴△∽△;(3)1DM =,2CM =,123AD CD ∴==+=,22223110AM AD DM ∴=++,MFC MCA △∽△,∴CM FMAM CM =210FM =,210FM ∴=, 310AF AM FM ∴=-=, ∴2355AG AF ==即正方形AEFG 35511.如图,函数y =﹣x 2+bx +c 的图象经过点A (m ,0),B (0,n )两点,m ,n 分别是方程x 2﹣2x ﹣3=0的两个实数根,且m <n .(△)求m ,n 的值以及函数的解析式;(△)设抛物线y =﹣x 2+bx +c 与x 轴的另一个交点为C ,抛物线的顶点为D ,连接AB ,BC ,BD ,CD .求证:△BCD △△OBA ;(△)对于(△)中所求的函数y =﹣x 2+bx +c , (1)当0≤x ≤3时,求函数y 的最大值和最小值;(2)设函数y 在t ≤x ≤t +1内的最大值为p ,最小值为q ,若p ﹣q =3,求t 的值.【解析】(I )△m ,n 分别是方程x 2﹣2x ﹣3=0的两个实数根,且m <n ,用因式分解法解方程:(x +1)(x ﹣3)=0, △x 1=﹣1,x 2=3, △m =﹣1,n =3, △A (﹣1,0),B (0,3),把(﹣1,0),(0,3)代入得,103b c c --+=⎧⎨=⎩,解得23b c =⎧⎨=⎩,△函数解析式为y =﹣x 2+2x +3.( II )证明:令y =﹣x 2+2x +3=0,即x 2﹣2x ﹣3=0, 解得x 1=﹣1,x 2=3,△抛物线y =﹣x 2+2x +3与x 轴的交点为A (﹣1,0),C (3,0), △OA =1,OC =3, △对称轴为1312x -+==,顶点D (1,﹣1+2+3),即D (1,4), △223332BC =+=22112BD +=224225CD ,△CD 2=DB 2+CB 2,△△BCD 是直角三角形,且△DBC =90°, △△AOB =△DBC ,在Rt△AOB 和Rt△DBC 中,22AO BD ==,232BO BC ==△AO BOBD BC=,△△BCD△△OBA;(III)抛物线y=﹣x2+2x+3的对称轴为x=1,顶点为D(1,4),(1)在0≤x≤3范围内,当x=1时,y最大值=4;当x=3时,y最小值=0;(2)△当函数y在t≤x≤t+1内的抛物线完全在对称轴的左侧,当x=t时取得最小值q=﹣t2+2t+3,最大值p =﹣(t+1)2+2(t+1)+3,令p﹣q=﹣(t+1)2+2(t+1)+3﹣(﹣t2+2t+3)=3,即﹣2t+1=3,解得t=﹣1.△当t+1=1时,此时p=4,q=3,不合题意,舍去;△当函数y在t≤x≤t+1内的抛物线分别在对称轴的两侧,此时p=4,令p﹣q=4﹣(﹣t2+2t+3)=3,即t2﹣2t﹣2=0解得:t1=3,t2=13;或者p﹣q=4﹣[﹣(t+1)2+2(t+1)+3]=3,即3t=;△当t=1时,此时p=4,q=3,不合题意,舍去;△当函数y在t≤x≤t+1内的抛物线完全在对称轴的右侧,当x=t时取得最大值p=﹣t2+2t+3,最小值q=﹣(t+1)2+2(t+1)+3,令p﹣q=﹣t2+2t+3﹣[﹣(t+1)2+2(t+1)+3]=3,解得t=2.综上,t=﹣1或t=2.12.如图,在△ABC中,△ACB=90°,AC=BC,以C为顶点作等腰直角三角形CMN.使△CMN=90°,连接BN,射线NM交BC于点D.(1)如图1,若点A,M,N在一条直线上,△求证:BN+CM=AM;△若AM=4,BN=32,求BD的长;(2)如图2,若AB=4,CN=2,将△CMN绕点C顺时针旋转一周,在旋转过程中射线NM交AB于点H,当三角形DBH是直角三角形时,请你直接写出CD的长.【解析】证明:(1)△如图,过点C作CF△CN,交AN于点F,△△CMN是等腰直角三角形,△△CNM=45°,CM=MN,△CF△CN,△ACB=90°,△△FCN=△ACB,△CFN=△CNF=45°,△△ACF=△BCN,CF=CN,且AC=BC,△△ACF△△BCN(SAS),△AF=BN,△CF=CN,CM△MN,△MF=MN=CM,△AM=AF+FM=BN+CM△△AM=4,BN=32,BN+CM=AM,△CM=MN=52,△△ACF△△BCN,△△CAF=△CBN,△△CAF+△ACF=△CFN=45°,△BCN+△MCD=△MCN=45°△△CAF=△MCD,且△CAF=△CBN,△△MCD=△CBN△CM△BN△△MCD△△NBD,△CMD=△BND=90°△CM MDBN ND==53△MD=53 ND△MD+ND=MN=5 2△ND=15 16在Rt△DNB中,BD22NB DN+389(2)若△BDH=90°,如图,此时点M与点D重合,△△CMN是等腰直角三角形,CN=2△CM=MN2△CD2若△BHD=90°,如图,△△BHD=90°,△B=45°,△△BDH=45°△△CDN=45°=△N△CD=CN=2.。

2021年中考数学压轴题题型组合卷(四)【含答案】

2021年中考数学压轴题题型组合卷(四)【含答案】

2021年中考数学压轴题题型组合卷(四)(满分:30分)一、选择、填空题(共2小题,每小题3分,共6分)1.在平面直角坐标系中,将抛物线y=x2+2x+3绕着它与y轴的交点旋转180°,所得抛物线的解析式是()A.y=﹣(x+1)2+2B.y=﹣(x﹣1)2+4C.y=﹣(x﹣1)2+2D.y=﹣(x+1)2+42.如图所示,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,点E、F分别在菱形的边BC、CD上滑动,且E、F不与B、C、D重合.当点E、F在BC、CD上滑动时,则△CEF的面积最大值是.二、解答题(共2小题,每小题12分,共24分)3.如图,在平面直角坐标系xOy中,将抛物线y=x2平移,使平移后的抛物线经过点A(﹣3,0)、B(1,0).(1)求平移后的抛物线的表达式.(2)设平移后的抛物线交y轴与点C,在平移后的抛物线的对称轴上有一动点P,当BP与CP之和最小时,P 点坐标又是多少?(3)若y=x2与平移后的抛物线对称轴交于D点,那么,在平移后的抛物线的对称轴上,是否存在一点M,使得以M、O、D为顶点的三角形△BOD相似?若存在,求点M坐标;若不存在,说明理由.4.如图,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,将△DEF与△ABC重合在一起,△ABC不动,△DEF运动,并满足:点E在边BC上沿B到C的方向运动,且DE始终经过点A,EF与AC交于M点.(1)求证:△ABE∽△ECM;(2)探究:在△DEF运动过程中,重叠部分能否构成等腰三角形?若能,求出BE的长;若不能,请说明理由;(3)当线段AM最短时,求重叠部分的面积.参考答案一、选择、填空题(共2小题,每小题3分,共6分)1.在平面直角坐标系中,将抛物线y=x2+2x+3绕着它与y轴的交点旋转180°,所得抛物线的解析式是()A.y=﹣(x+1)2+2B.y=﹣(x﹣1)2+4C.y=﹣(x﹣1)2+2D.y=﹣(x+1)2+4【分析】先将原抛物线化为顶点式,易得出与y轴交点,绕与y轴交点旋转180°,那么根据中心对称的性质,可得旋转后的抛物线的顶点坐标,即可求得解析式.【解答】解:由原抛物线解析式可变为:y=(x+1)2+2,∴顶点坐标为(﹣1,2),与y轴交点的坐标为(0,3),又由抛物线绕着它与y轴的交点旋转180°,∴新的抛物线的顶点坐标与原抛物线的顶点坐标关于点(0,3)中心对称,∴新的抛物线的顶点坐标为(1,4),∴新的抛物线解析式为:y=﹣(x﹣1)2+4.故选:B.【点评】本题主要考查了抛物线一般形式及于y轴交点,同时考查了旋转180°后二次项的系数将互为相反数,难度适中.2.如图所示,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,点E、F分别在菱形的边BC、CD上滑动,且E、F不与B、C、D重合.当点E、F在BC、CD上滑动时,则△CEF的面积最大值是.【分析】先求证AB=AC,进而求证△ABC、△ACD为等边三角形,得∠4=60°,AC=AB进而求证△ABE≌△ACF,可得S△ABE=S△ACF,故根据S四边形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC即可解题;当正三角形AEF的边AE与BC垂直时,边AE最短.△AEF的面积会随着AE的变化而变化,且当AE最短时,正三角形AEF 的面积会最小,又根据S△CEF=S四边形AECF﹣S△AEF,则△CEF的面积就会最大.【解答】解:如图,连接AC,∵四边形ABCD为菱形,∠BAD=120°,∠1+∠EAC=60°,∠3+∠EAC=60°,∴∠1=∠3,∵∠BAD=120°,∴∠ABC=60°,∴△ABC和△ACD为等边三角形,∴∠4=60°,AC=AB,∴在△ABE和△ACF中,,∴△ABE≌△ACF(ASA),∴S△ABE=S△ACF,∴S四边形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC,是定值,作AH⊥BC于H点,则BH=2,∴S四边形AECF=S△ABC=BC•AH=BC•=4,由“垂线段最短”可知:当正三角形AEF的边AE与BC垂直时,边AE最短,∴△AEF的面积会随着AE的变化而变化,且当AE最短时,正三角形AEF的面积会最小,又∵S△CEF=S四边形AECF﹣S△AEF,则此时△CEF的面积就会最大,∴S△CEF=S四边形AECF﹣S△AEF=4﹣×2×=.故答案为:【点评】本题主要考查了菱形的性质、全等三角形判定与性质及三角形面积的计算,根据△ABE≌△ACF,得出四边形AECF的面积是定值是解题的关键.二、解答题(共2小题,每小题12分,共24分)3.如图,在平面直角坐标系xOy中,将抛物线y=x2平移,使平移后的抛物线经过点A(﹣3,0)、B(1,0).(1)求平移后的抛物线的表达式.(2)设平移后的抛物线交y轴与点C,在平移后的抛物线的对称轴上有一动点P,当BP与CP之和最小时,P点坐标又是多少?(3)若y=x2与平移后的抛物线对称轴交于D点,那么,在平移后的抛物线的对称轴上,是否存在一点M,使得以M、O、D为顶点的三角形△BOD相似?若存在,求点M坐标;若不存在,说明理由.【分析】(1)设平移后抛物线的表达式为y=a(x+3)(x﹣1).由题意可知平后抛物线的二次项系数与原抛物线的二次项系数相同,从而可求得a的值,于是可求得平移后抛物线的表达式;(2)先根据平移后抛物线解析式求得其对称轴,从而得出点C关于对称轴的对称点C′坐标,连接BC′,与对称轴交点即为所求点P,再求得直线BC′解析式,联立方程组求解可得;(3)先求得点D的坐标,由点O、B、E、D的坐标可求得OB、OE、DE、BD的长,从而可得到△EDO为等腰三角直角三角形,从而可得到∠MDO=∠BOD=135°,故此当=或=时,以M、O、D为顶点的三角形与△BOD相似.由比例式可求得MD的长,于是可求得点M的坐标.【解答】解:(1)设平移后抛物线的表达式为y=a(x+3)(x﹣1).∵由平移的性质可知原抛物线与平移后抛物线的开口大小与方向都相同,∴平移后抛物线的二次项系数与原抛物线的二次项系数相同.∴平移后抛物线的二次项系数为1,即a=1.∴平移后抛物线的表达式为y=(x+3)(x﹣1),整理得:y=x2+2x﹣3.(2)∵y=x2+2x﹣3=(x+1)2﹣4,∴抛物线对称轴为直线x=﹣1,与y轴的交点C(0,﹣3),则点C关于直线x=﹣1的对称点C′(﹣2,﹣3),如图1,连接B,C′,与直线x=﹣1的交点即为所求点P,由B(1,0),C′(﹣2,﹣3)可得直线BC′解析式为y=x﹣1,则,解得,所以点P坐标为(﹣1,﹣2);(3)如图2,由得,即D(﹣1,1),则DE=OE=1,∴△DOE为等腰直角三角形,∴∠DOE=∠ODE=45°,∠BOD=135°,OD=,∵BO=1,∴BD=,∵∠BOD=135°,∴点M只能在点D上方,∵∠BOD=∠ODM=135°,∴当=或=时,以M、O、D为顶点的三角形△BOD相似,①若=,则=,解得DM=2,此时点M坐标为(﹣1,3);②若=,则=,解得DM=1,此时点M坐标为(﹣1,2);综上,点M坐标为(﹣1,3)或(﹣1,2).【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了平移的性质、翻折的性质、二次函数的图象和性质、待定系数法求二次函数的解析式、等腰直角三角形的性质、相似三角形的判定,证得∠ODM=∠BOD =135°是解题的关键.4.如图,在△ABC中,已知AB=AC=5,BC=6,且△ABC≌△DEF,将△DEF与△ABC重合在一起,△ABC不动,△DEF运动,并满足:点E在边BC上沿B到C的方向运动,且DE始终经过点A,EF与AC交于M点.(1)求证:△ABE∽△ECM;(2)探究:在△DEF运动过程中,重叠部分能否构成等腰三角形?若能,求出BE的长;若不能,请说明理由;(3)当线段AM最短时,求重叠部分的面积.【分析】(1)由AB=AC,根据等边对等角,可得∠B=∠C,又由△ABC≌△DEF与三角形外角的性质,易证得∠CEM=∠BAE,则可证得:△ABE∽△ECM;(2)首先由∠AEF=∠B=∠C,且∠AME>∠C,可得AE≠AM,然后分别从AE=EM与AM=EM去分析,注意利用全等三角形与相似三角形的性质求解即可求得答案;(3)首先设BE=x,由△ABE∽△ECM,根据相似三角形的对应边成比例,易得CM=﹣+x=﹣(x﹣3)2+,继而求得AM的值,利用二次函数的性质,即可求得线段AM的最小值,继而求得重叠部分的面积.【解答】(1)证明:∵AB=AC,∴∠B=∠C,∵△ABC≌△DEF,∴∠AEF=∠B,又∵∠AEF+∠CEM=∠AEC=∠B+∠BAE,∴∠CEM=∠BAE,∴△ABE∽△ECM;(2)能.解:∵∠AEF=∠B=∠C,且∠AME>∠C,∴∠AME>∠AEF,∴AE≠AM;当AE=EM时,则△ABE≌△ECM,∴CE=AB=5,∴BE=BC﹣EC=6﹣5=1,当AM=EM时,则∠MAE=∠MEA,∴∠MAE+∠BAE=∠MEA+∠CEM,即∠CAB=∠CEA,又∵∠C=∠C,∴△CAE∽△CBA,∴,∴CE=,∴BE=6﹣=;∴BE=1或.(3)解:设BE=x,又∵△ABE∽△ECM,∴,即:,∴CM=﹣+x=﹣(x﹣3)2+,∴AM=5﹣CM═(x﹣3)2+,∴当x=3时,AM最短为,又∵当BE=x=3=BC时,∴点E为BC的中点,∴AE⊥BC,∴AE==4,此时,EF⊥AC,∴EM==,S△AEM=.【点评】此题考查了相似三角形的判定与性质、全等三角形的判定与性质以及二次函数的最值问题.此题难度较大,注意数形结合思想、分类讨论思想与函数思想的应用是解此题的关键.。

2021年中考数学二次函数压轴题集锦(50道含解析)(1)

2021年中考数学二次函数压轴题集锦(50道含解析)(1)

1.如图1,已知二次函数y=ax2+x+c(a≠0)的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),连接AB、AC.(1)请直接写出二次函数y=ax2+x+c的表达式;(2)判断△ABC的形状,并说明理由;(3)若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,请写出此时点N的坐标;(4)如图2,若点N在线段BC上运动(不与点B、C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求此时点N的坐标.2.对于平面直角坐标系xOy中的图形M,N,给出如下定义:P为图形M上任意一点,Q为图形N上任意一点,如果P,Q两点间的距离有最小值,那么称这个最小值为图形M,N间的“闭距离“,记作d(M,N).已知点A(﹣2,6),B(﹣2,﹣2),C(6,﹣2).(1)求d(点O,△ABC);(2)记函数y=kx(﹣1≤x≤1,k≠0)的图象为图形G.若d(G,△ABC)=1,直接写出k的取值范围;(3)⊙T的圆心为T(t,0),半径为1.若d(⊙T,△ABC)=1,直接写出t的取值范围.3.如图,在平面直角坐标系中,点A在抛物线y=﹣x2+4x上,且横坐标为1,点B与点A关于抛物线的对称轴对称,直线AB与y轴交于点C,点D为抛物线的顶点,点E的坐标为(1,1).(1)求线段AB的长;(2)点P为线段AB上方抛物线上的任意一点,过点P作AB的垂线交AB于点H,点F为y轴上一点,当△PBE的面积最大时,求PH+HF+FO的最小值;(3)在(2)中,PH+HF+FO取得最小值时,将△CFH绕点C顺时针旋转60°后得到△CF′H′,过点F'作CF′的垂线与直线AB交于点Q,点R为抛物线对称轴上的一点,在平面直角坐标系中是否存在点S,使以点D,Q,R,S为顶点的四边形为菱形,若存在,请直接写出点S的坐标,若不存在,请说明理由.4.如图,抛物线y=ax2+6x+c交x轴于A,B两点,交y轴于点C.直线y=x﹣5经过点B,C.(1)求抛物线的解析式;(2)过点A的直线交直线BC于点M.①当AM⊥BC时,过抛物线上一动点P(不与点B,C重合),作直线AM的平行线交直线BC于点Q,若以点A,M,P,Q为顶点的四边形是平行四边形,求点P的横坐标;②连接AC,当直线AM与直线BC的夹角等于∠ACB的2倍时,请直接写出点M 的坐标.5.如图,在平面直角坐标系xOy中,以直线x=对称轴的抛物线y=ax2+bx+c与直线l:y=kx+m(k>0)交于A(1,1),B两点,与y轴交于C(0,5),直线l 与y轴交于点D.(1)求抛物线的函数表达式;(2)设直线l与抛物线的对称轴的交点为F,G是抛物线上位于对称轴右侧的一点,若=,且△BCG与△BCD面积相等,求点G的坐标;(3)若在x轴上有且仅有一点P,使∠APB=90°,求k的值.6.如图,抛物线y=ax2+bx(a<0)过点E(10,0),矩形ABCD的边AB在线段OE上(点A在点B的左边),点C,D在抛物线上.设A(t,0),当t=2时,AD=4.(1)求抛物线的函数表达式.(2)当t为何值时,矩形ABCD的周长有最大值?最大值是多少?(3)保持t=2时的矩形ABCD不动,向右平移抛物线.当平移后的抛物线与矩形的边有两个交点G,H,且直线GH平分矩形的面积时,求抛物线平移的距离.7.抛物线L:y=﹣x2+bx+c经过点A(0,1),与它的对称轴直线x=1交于点B.(1)直接写出抛物线L的解析式;(2)如图1,过定点的直线y=kx﹣k+4(k<0)与抛物线L交于点M、N.若△BMN的面积等于1,求k的值;(3)如图2,将抛物线L向上平移m(m>0)个单位长度得到抛物线L1,抛物线L1与y轴交于点C,过点C作y轴的垂线交抛物线L1于另一点D.F为抛物线L1的对称轴与x轴的交点,P为线段OC上一点.若△PCD与△POF相似,并且符合条件的点P恰有2个,求m的值及相应点P的坐标.8.在平面直角坐标系中,点O(0,0),点A(1,0).已知抛物线y=x2+mx﹣2m (m是常数),顶点为P.(Ⅰ)当抛物线经过点A时,求顶点P的坐标;(Ⅱ)若点P在x轴下方,当∠AOP=45°时,求抛物线的解析式;(Ⅲ)无论m取何值,该抛物线都经过定点H.当∠AHP=45°时,求抛物线的解析式.9.如图1,四边形OABC是矩形,点A的坐标为(3,0),点C的坐标为(0,6),点P从点O出发,沿OA以每秒1个单位长度的速度向点A出发,同时点Q从点A出发,沿AB以每秒2个单位长度的速度向点B运动,当点P与点A重合时运动停止.设运动时间为t秒.(1)当t=2时,线段PQ的中点坐标为;(2)当△CBQ与△PAQ相似时,求t的值;(3)当t=1时,抛物线y=x2+bx+c经过P,Q两点,与y轴交于点M,抛物线的顶点为K,如图2所示,问该抛物线上是否存在点D,使∠MQD=∠MKQ?若存在,求出所有满足条件的D的坐标;若不存在,说明理由.10.如图①,在平面直角坐标系中,圆心为P(x,y)的动圆经过点A(1,2)且与x轴相切于点B.(1)当x=2时,求⊙P的半径;(2)求y关于x的函数解析式,请判断此函数图象的形状,并在图②中画出此函数的图象;(3)请类比圆的定义(圆可以看成是到定点的距离等于定长的所有点的集合),给(2)中所得函数图象进行定义:此函数图象可以看成是到的距离等于到的距离的所有点的集合.(4)当⊙P的半径为1时,若⊙P与以上(2)中所得函数图象相交于点C、D,其中交点D(m,n)在点C的右侧,请利用图②,求cos∠APD的大小.11.已知顶点为A抛物线经过点,点.(1)求抛物线的解析式;(2)如图1,直线AB与x轴相交于点M,y轴相交于点E,抛物线与y轴相交于点F,在直线AB上有一点P,若∠OPM=∠MAF,求△POE的面积;(3)如图2,点Q是折线A﹣B﹣C上一点,过点Q作QN∥y轴,过点E作EN ∥x轴,直线QN与直线EN相交于点N,连接QE,将△QEN沿QE翻折得到△QEN1,若点N1落在x轴上,请直接写出Q点的坐标.12.在平面直角坐标系xOy中(如图).已知抛物线y=﹣x2+bx+c经过点A(﹣1,0)和点B(0,),顶点为C,点D在其对称轴上且位于点C下方,将线段DC绕点D按顺时针方向旋转90°,点C落在抛物线上的点P处.(1)求这条抛物线的表达式;(2)求线段CD的长;(3)将抛物线平移,使其顶点C移到原点O的位置,这时点P落在点E的位置,如果点M在y轴上,且以O、D、E、M为顶点的四边形面积为8,求点M的坐标.13.如图1,图形ABCD是由两个二次函数y1=kx2+m(k<0)与y2=ax2+b(a>0)的部分图象围成的封闭图形.已知A(1,0)、B(0,1)、D(0,﹣3).(1)直接写出这两个二次函数的表达式;(2)判断图形ABCD是否存在内接正方形(正方形的四个顶点在图形ABCD上),并说明理由;(3)如图2,连接BC,CD,AD,在坐标平面内,求使得△BDC与△ADE相似(其中点C与点E是对应顶点)的点E的坐标14.小贤与小杰在探究某类二次函数问题时,经历了如下过程:求解体验:(1)已知抛物线y=﹣x2+bx﹣3经过点(﹣1,0),则b=,顶点坐标为,该抛物线关于点(0,1)成中心对称的抛物线表达式是.抽象感悟:我们定义:对于抛物线y=ax2+bx+c(a≠0),以y轴上的点M(0,m)为中心,作该抛物线关于点M对称的抛物线y′,则我们又称抛物线y′为抛物线y的“衍生抛物线”,点M为“衍生中心”.(2)已知抛物线y=﹣x2﹣2x+5关于点(0,m)的衍生抛物线为y′,若这两条抛物线有交点,求m的取值范围.问题解决:(3)已知抛物线y=ax2+2ax﹣b(a≠0)①若抛物线y的衍生抛物线为y′=bx2﹣2bx+a2(b≠0),两抛物线有两个交点,且恰好是它们的顶点,求a、b的值及衍生中心的坐标;②若抛物线y关于点(0,k+12)的衍生抛物线为y1,其顶点为A1;关于点(0,k+22)的衍生抛物线为y2,其顶点为A2;…;关于点(0,k+n2)的衍生抛物线为y n,其顶点为A n…(n为正整数).求A n A n+1的长(用含n的式子表示).15.如图,已知抛物线y=ax2+bx(a≠0)过点A(,﹣3)和点B(3,0).过点A作直线AC∥x轴,交y轴于点C.(1)求抛物线的解析式;(2)在抛物线上取一点P,过点P作直线AC的垂线,垂足为D.连接OA,使得以A,D,P为顶点的三角形与△AOC相似,求出对应点P的坐标;(3)抛物线上是否存在点Q,使得S△AOC =S△AOQ?若存在,求出点Q的坐标;若不存在,请说明理由.16.如图,已知抛物线y=x2﹣4与x轴交于点A,B(点A位于点B的左侧),C 为顶点,直线y=x+m经过点A,与y轴交于点D.(1)求线段AD的长;(2)平移该抛物线得到一条新拋物线,设新抛物线的顶点为C′.若新抛物线经过点D,并且新抛物线的顶点和原抛物线的顶点的连线CC′平行于直线AD,求新抛物线对应的函数表达式.17.如图①,在平面直角坐标系xOy中,抛物线y=ax2+bx+3经过点A(﹣1,0)、B(3,0)两点,且与y轴交于点C.(1)求抛物线的表达式;(2)如图②,用宽为4个单位长度的直尺垂直于x轴,并沿x轴左右平移,直尺的左右两边所在的直线与抛物线相交于P、Q两点(点P在点Q的左侧),连接PQ,在线段PQ上方抛物线上有一动点D,连接DP、DQ.(1)若点P的横坐标为﹣,求△DPQ面积的最大值,并求此时点D的坐标;(Ⅱ)直尺在平移过程中,△DPQ面积是否有最大值?若有,求出面积的最大值;若没有,请说明理由.18.已知抛物线y=ax2+bx+c过点A(0,2).(1)若点(﹣,0)也在该抛物线上,求a,b满足的关系式;(2)若该抛物线上任意不同两点M(x1,y1),N(x2,y2)都满足:当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0;当0<x1<x2时,(x1﹣x2)(y1﹣y2)<0.以原点O为心,OA为半径的圆与拋物线的另两个交点为B,C,且△ABC有一个内角为60°.①求抛物线的解析式;②若点P与点O关于点A对称,且O,M,N三点共线,求证:PA平分∠MPN.19.如图,在平面直角坐标系中,∠ACB=90°,OC=2OB,tan∠ABC=2,点B的坐标为(1,0).抛物线y=﹣x2+bx+c经过A、B两点.(1)求抛物线的解析式;(2)点P是直线AB上方抛物线上的一点,过点P作PD垂直x轴于点D,交线段AB于点E,使PE=DE.①求点P的坐标;②在直线PD上是否存在点M,使△ABM为直角三角形?若存在,求出符合条件的所有点M的坐标;若不存在,请说明理由.20.我们不妨约定:对角线互相垂直的凸四边形叫做“十字形”.(1)①在“平行四边形,矩形,菱形,正方形”中,一定是“十字形”的有;②在凸四边形ABCD中,AB=AD且CB≠CD,则该四边形“十字形”.(填“是”或“不是”)(2)如图1,A,B,C,D是半径为1的⊙O上按逆时针方向排列的四个动点,AC与BD交于点E,∠ADB﹣∠CDB=∠ABD﹣∠CBD,当6≤AC2+BD2≤7时,求OE的取值范围;(3)如图2,在平面直角坐标系xOy中,抛物线y=ax2+bx+c(a,b,c为常数,a>0,c<0)与x轴交于A,C两点(点A在点C的左侧),B是抛物线与y轴的交点,点D的坐标为(0,﹣ac),记“十字形”ABCD的面积为S,记△AOB,△COD,△AOD,△BOC的面积分别为S1,S2,S3,S4.求同时满足下列三个条件的抛物线的解析式;①=;②=;③“十字形”ABCD的周长为12.21.如图1,抛物线y1=ax2﹣x+c与x轴交于点A和点B(1,0),与y轴交于点C(0,),抛物线y1的顶点为G,GM⊥x轴于点M.将抛物线y1平移后得到顶点为B且对称轴为直线l的抛物线y2.(1)求抛物线y2的解析式;(2)如图2,在直线l上是否存在点T,使△TAC是等腰三角形?若存在,请求出所有点T的坐标;若不存在,请说明理由;(3)点P为抛物线y1上一动点,过点P作y轴的平行线交抛物线y2于点Q,点Q关于直线l的对称点为R,若以P,Q,R为顶点的三角形与△AMG全等,求直线PR的解析式.22.如图,已知直线y=﹣2x+4分别交x轴、y轴于点A、B,抛物线过A,B两点,点P是线段AB上一动点,过点P作PC⊥x轴于点C,交抛物线于点D.(1)若抛物线的解析式为y=﹣2x2+2x+4,设其顶点为M,其对称轴交AB于点N.①求点M、N的坐标;②是否存在点P,使四边形MNPD为菱形?并说明理由;(2)当点P的横坐标为1时,是否存在这样的抛物线,使得以B、P、D为顶点的三角形与△AOB相似?若存在,求出满足条件的抛物线的解析式;若不存在,请说明理由.23.如图,抛物线y=ax2+bx经过△OAB的三个顶点,其中点A(1,),点B (3,﹣),O为坐标原点.(1)求这条抛物线所对应的函数表达式;(2)若P(4,m),Q(t,n)为该抛物线上的两点,且n<m,求t的取值范围;(3)若C为线段AB上的一个动点,当点A,点B到直线OC的距离之和最大时,求∠BOC的大小及点C的坐标.24.如图,在平面直角坐标系中,抛物线C1:y=ax2+bx﹣1经过点A(﹣2,1)和点B(﹣1,﹣1),抛物线C2:y=2x2+x+1,动直线x=t与抛物线C1交于点N,与抛物线C2交于点M.(1)求抛物线C1的表达式;(2)直接用含t的代数式表示线段MN的长;(3)当△AMN是以MN为直角边的等腰直角三角形时,求t的值;(4)在(3)的条件下,设抛物线C1与y轴交于点P,点M在y轴右侧的抛物线C2上,连接AM交y轴于点K,连接KN,在平面内有一点Q,连接KQ和QN,当KQ=1且∠KNQ=∠BNP时,请直接写出点Q的坐标.25.在平面直角坐标系xOy中,已知抛物线的顶点坐标为(2,0),且经过点(4,1),如图,直线y=x与抛物线交于A、B两点,直线l为y=﹣1.(1)求抛物线的解析式;(2)在l上是否存在一点P,使PA+PB取得最小值?若存在,求出点P的坐标;若不存在,请说明理由.(3)知F(x0,y0)为平面内一定点,M(m,n)为抛物线上一动点,且点M 到直线l的距离与点M到点F的距离总是相等,求定点F的坐标.26.如图,在平面直角坐标系中,二次函数y=ax2+bx+c交x轴于点A(﹣4,0)、B(2,0),交y轴于点C(0,6),在y轴上有一点E(0,﹣2),连接AE.(1)求二次函数的表达式;(2)若点D为抛物线在x轴负半轴上方的一个动点,求△ADE面积的最大值;(3)抛物线对称轴上是否存在点P,使△AEP为等腰三角形?若存在,请直接写出所有P点的坐标,若不存在请说明理由.27.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(﹣4,0),B(2,0),与y轴交于点C(0,4),线段BC的中垂线与对称轴l交于点D,与x轴交于点F,与BC交于点E,对称轴l与x轴交于点H.(1)求抛物线的函数表达式;(2)求点D的坐标;(3)点P为x轴上一点,⊙P与直线BC相切于点Q,与直线DE相切于点R.求点P的坐标;(4)点M为x轴上方抛物线上的点,在对称轴l上是否存在一点N,使得以点D,P,M,N为顶点的四边形是平行四边形?若存在,则直接写出N点坐标;若不存在,请说明理由.28.如图,抛物线y=ax2+bx(a≠0)交x轴正半轴于点A,直线y=2x经过抛物线的顶点M.已知该抛物线的对称轴为直线x=2,交x轴于点B.(1)求a,b的值.(2)P是第一象限内抛物线上的一点,且在对称轴的右侧,连接OP,BP.设点P的横坐标为m,△OBP的面积为S,记K=.求K关于m的函数表达式及K的范围.29.抛物线y=﹣x2﹣x+与x轴交于点A,B(点A在点B的左边),与y轴交于点C,点D是该抛物线的顶点.(1)如图1,连接CD,求线段CD的长;(2)如图2,点P是直线AC上方抛物线上一点,PF⊥x轴于点F,PF与线段AC 交于点E;将线段OB沿x轴左右平移,线段OB的对应线段是O1B1,当PE+EC 的值最大时,求四边形PO1B1C周长的最小值,并求出对应的点O1的坐标;(3)如图3,点H是线段AB的中点,连接CH,将△OBC沿直线CH翻折至△O2B2C的位置,再将△O2B2C绕点B2旋转一周,在旋转过程中,点O2,C的对应点分别是点O3,C1,直线O3C1分别与直线AC,x轴交于点M,N.那么,在△O2B2C的整个旋转过程中,是否存在恰当的位置,使△AMN是以MN为腰的等腰三角形?若存在,请直接写出所有符合条件的线段O2M的长;若不存在,请说明理由.30.综合与探究如图,抛物线y=x﹣4与x轴交于A,B两点(点A在点B的左侧),与y 轴交于点C,连接AC,BC.点P是第四象限内抛物线上的一个动点,点P的横坐标为m,过点P作PM⊥x轴,垂足为点M,PM交BC于点Q,过点P作PE ∥AC交x轴于点E,交BC于点F.(1)求A,B,C三点的坐标;(2)试探究在点P运动的过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请直接写出此时点Q的坐标;若不存在,请说明理由;(3)请用含m的代数式表示线段QF的长,并求出m为何值时QF有最大值.31.如图,二次函数y=﹣+bx+2的图象与x轴交于点A、B,与y轴交于点C,点A的坐标为(﹣4,0),P是抛物线上一点(点P与点A、B、C不重合).(1)b=,点B的坐标是;(2)设直线PB与直线AC相交于点M,是否存在这样的点P,使得PM:MB=1:2?若存在,求出点P的横坐标;若不存在,请说明理由;(3)连接AC、BC,判断∠CAB和∠CBA的数量关系,并说明理由.32.如图,在平面直角坐标系中,二次函数y=(x﹣a)(x﹣3)(0<a<3)的图象与x轴交于点A、B(点A在点B的左侧),与y轴交于点D,过其顶点C作直线CP⊥x轴,垂足为点P,连接AD、BC.(1)求点A、B、D的坐标;(2)若△AOD与△BPC相似,求a的值;(3)点D、O、C、B能否在同一个圆上?若能,求出a的值;若不能,请说明理由.33.如图,已知二次函数y=ax2﹣(2a﹣)x+3的图象经过点A(4,0),与y 轴交于点B.在x轴上有一动点C(m,0)(0<m<4),过点C作x轴的垂线交直线AB于点E,交该二次函数图象于点D.(1)求a的值和直线AB的解析式;(2)过点D作DF⊥AB于点F,设△ACE,△DEF的面积分别为S1,S2,若S1=4S2,求m的值;(3)点H是该二次函数图象上位于第一象限的动点,点G是线段AB上的动点,当四边形DEGH是平行四边形,且▱DEGH周长取最大值时,求点G的坐标.34.已知,点M为二次函数y=﹣(x﹣b)2+4b+1图象的顶点,直线y=mx+5分别交x轴正半轴,y轴于点A,B.(1)判断顶点M是否在直线y=4x+1上,并说明理由.(2)如图1,若二次函数图象也经过点A,B,且mx+5>﹣(x﹣b)2+4b+1,根据图象,写出x的取值范围.(3)如图2,点A坐标为(5,0),点M在△AOB内,若点C(,y1),D(,y2)都在二次函数图象上,试比较y1与y2的大小.35.如图,在平面直角坐标系中,抛物线y=ax2+bx﹣5交y轴于点A,交x轴于点B(﹣5,0)和点C(1,0),过点A作AD∥x轴交抛物线于点D.(1)求此抛物线的表达式;(2)点E是抛物线上一点,且点E关于x轴的对称点在直线AD上,求△EAD的面积;(3)若点P是直线AB下方的抛物线上一动点,当点P运动到某一位置时,△ABP的面积最大,求出此时点P的坐标和△ABP的最大面积.36.已知抛物线F:y=x2+bx+c的图象经过坐标原点O,且与x轴另一交点为(﹣,0).(1)求抛物线F的解析式;(2)如图1,直线l:y=x+m(m>0)与抛物线F相交于点A(x1,y1)和点B(x2,y2)(点A在第二象限),求y2﹣y1的值(用含m的式子表示);(3)在(2)中,若m=,设点A′是点A关于原点O的对称点,如图2.①判断△AA′B的形状,并说明理由;②平面内是否存在点P,使得以点A、B、A′、P为顶点的四边形是菱形?若存在,求出点P的坐标;若不存在,请说明理由.37.直线y=﹣x+3交x轴于点A,交y轴于点B,顶点为D的抛物线y=﹣x2+2mx ﹣3m经过点A,交x轴于另一点C,连接BD,AD,CD,如图所示.(1)直接写出抛物线的解析式和点A,C,D的坐标;(2)动点P在BD上以每秒2个单位长的速度由点B向点D运动,同时动点Q 在CA上以每秒3个单位长的速度由点C向点A运动,当其中一个点到达终点停止运动时,另一个点也随之停止运动,设运动时间为t秒.PQ交线段AD于点E.①当∠DPE=∠CAD时,求t的值;②过点E作EM⊥BD,垂足为点M,过点P作PN⊥BD交线段AB或AD于点N,当PN=EM时,求t的值.38.如图1,在平面直角坐标系中,直线y=x﹣1与抛物线y=﹣x2+bx+c交于A、B两点,其中A(m,0)、B(4,n),该抛物线与y轴交于点C,与x轴交于另一点D.(1)求m、n的值及该抛物线的解析式;(2)如图2,若点P为线段AD上的一动点(不与A、D重合),分别以AP、DP 为斜边,在直线AD的同侧作等腰直角△APM和等腰直角△DPN,连接MN,试确定△MPN面积最大时P点的坐标;(3)如图3,连接BD、CD,在线段CD上是否存在点Q,使得以A、D、Q为顶点的三角形与△ABD相似,若存在,请直接写出点Q的坐标;若不存在,请说明理由.39.如图,点A,B,C都在抛物线y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<0)上,AB∥x轴,∠ABC=135°,且AB=4.(1)填空:抛物线的顶点坐标为(用含m的代数式表示);(2)求△ABC的面积(用含a的代数式表示);(3)若△ABC的面积为2,当2m﹣5≤x≤2m﹣2时,y的最大值为2,求m的值.40.如图1,在平面直角坐标系xOy中,已知点A和点B的坐标分别为A(﹣2,0),B(0,﹣6),将Rt△AOB绕点O按顺时针方向分别旋转90°,180°得到Rt △A1OC,Rt△EOF.抛物线C1经过点C,A,B;抛物线C2经过点C,E,F.(1)点C的坐标为,点E的坐标为;抛物线C1的解析式为.抛物线C2的解析式为;(2)如果点P(x,y)是直线BC上方抛物线C1上的一个动点.①若∠PCA=∠ABO时,求P点的坐标;②如图2,过点P作x轴的垂线交直线BC于点M,交抛物线C2于点N,记h=PM+NM+BM,求h与x的函数关系式,当﹣5≤x≤﹣2时,求h的取值范围.41.如图,抛物线y=ax2+bx+c与两坐标轴相交于点A(﹣1,0)、B(3,0)、C (0,3),D是抛物线的顶点,E是线段AB的中点.(1)求抛物线的解析式,并写出D点的坐标;(2)F(x,y)是抛物线上的动点:①当x>1,y>0时,求△BDF的面积的最大值;②当∠AEF=∠DBE时,求点F的坐标.42.如图,在平面直角坐标系中,矩形ABCD的对称中心为坐标原点O,AD⊥y 轴于点E(点A在点D的左侧),经过E、D两点的函数y=﹣x2+mx+1(x≥0)的图象记为G1,函数y=﹣x2﹣mx﹣1(x<0)的图象记为G2,其中m是常数,图象G1、G2合起来得到的图象记为G.设矩形ABCD的周长为L.(1)当点A的横坐标为﹣1时,求m的值;(2)求L与m之间的函数关系式;(3)当G2与矩形ABCD恰好有两个公共点时,求L的值;(4)设G在﹣4≤x≤2上最高点的纵坐标为y0,当≤y0≤9时,直接写出L的取值范围.43.已知抛物线y=ax2+bx+c过点A(0,2),且抛物线上任意不同两点M(x1,y1),N(x2,y2)都满足:当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0;当0<x1<x2时,(x1﹣x2)(y1﹣y2)<0.以原点O为圆心,OA为半径的圆与抛物线的另两个交点为B,C,且B在C的左侧,△ABC有一个内角为60°.(1)求抛物线的解析式;(2)若MN与直线y=﹣2x平行,且M,N位于直线BC的两侧,y1>y2,解决以下问题:①求证:BC平分∠MBN;②求△MBC外心的纵坐标的取值范围.44.如图,抛物线y=x2+bx+c与x轴交于A、B两点,B点坐标为(4,0),与y 轴交于点C(0,4).(1)求抛物线的解析式;(2)点P在x轴下方的抛物线上,过点P的直线y=x+m与直线BC交于点E,与y轴交于点F,求PE+EF的最大值;(3)点D为抛物线对称轴上一点.①当△BCD是以BC为直角边的直角三角形时,直接写出点D的坐标;②若△BCD是锐角三角形,直接写出点D的纵坐标n的取值范围.45.如图1,抛物线y=ax2+2x+c与x轴交于A(﹣4,0),B(1,0)两点,过点B的直线y=kx+分别与y轴及抛物线交于点C,D.(1)求直线和抛物线的表达式;(2)动点P从点O出发,在x轴的负半轴上以每秒1个单位长度的速度向左匀速运动,设运动时间为t秒,当t为何值时,△PDC为直角三角形?请直接写出所有满足条件的t的值;(3)如图2,将直线BD沿y轴向下平移4个单位后,与x轴,y轴分别交于E,F两点,在抛物线的对称轴上是否存在点M,在直线EF上是否存在点N,使DM+MN的值最小?若存在,求出其最小值及点M,N的坐标;若不存在,请说明理由.46.如图,已知抛物线y=ax2+bx﹣3与x轴交于点A(﹣3,0)和点B(1,0),交y轴于点C,过点C作CD∥x轴,交抛物线于点D.(1)求抛物线的解析式;(2)若直线y=m(﹣3<m<0)与线段AD、BD分别交于G、H两点,过G点作EG⊥x轴于点E,过点H作HF⊥x轴于点F,求矩形GEFH的最大面积;(3)若直线y=kx+1将四边形ABCD分成左、右两个部分,面积分别为S1,S2,且S1:S2=4:5,求k的值.47.如图,抛物线顶点P(1,4),与y轴交于点C(0,3),与x轴交于点A,B.(1)求抛物线的解析式.(2)Q是抛物线上除点P外一点,△BCQ与△BCP的面积相等,求点Q的坐标.(3)若M,N为抛物线上两个动点,分别过点M,N作直线BC的垂线段,垂足分别为D,E.是否存在点M,N使四边形MNED为正方形?如果存在,求正方形MNED的边长;如果不存在,请说明理由.48.如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线与x轴交于A、B两点,与y轴交于C点,其中A(1,0),C(0,3).(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;(2)在抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;(3)设点P为抛物线的对称轴x=﹣1上的一个动点,求使△BPC为直角三角形的点P的坐标.49.在平面直角坐标系中,二次函数y=ax2+x+c的图象经过点C(0,2)和点D (4,﹣2).点E是直线y=﹣x+2与二次函数图象在第一象限内的交点.(1)求二次函数的解析式及点E的坐标.(2)如图①,若点M是二次函数图象上的点,且在直线CE的上方,连接MC,OE,ME.求四边形COEM面积的最大值及此时点M的坐标.(3)如图②,经过A、B、C三点的圆交y轴于点F,求点F的坐标.50.如图,抛物线y=a(x﹣1)(x﹣3)(a>0)与x轴交于A、B两点,抛物线上另有一点C在x轴下方,且使△OCA∽△OBC.(1)求线段OC的长度;(2)设直线BC与y轴交于点M,点C是BM的中点时,求直线BM和抛物线的解析式;(3)在(2)的条件下,直线BC下方抛物线上是否存在一点P,使得四边形ABPC 面积最大?若存在,请求出点P的坐标;若不存在,请说明理由.一.解答题(共50小题)1.如图1,已知二次函数y=ax 2+x +c (a ≠0)的图象与y 轴交于点A (0,4),与x 轴交于点B 、C ,点C 坐标为(8,0),连接AB 、AC .(1)请直接写出二次函数y=ax 2+x +c 的表达式;(2)判断△ABC 的形状,并说明理由;(3)若点N 在x 轴上运动,当以点A 、N 、C 为顶点的三角形是等腰三角形时,请写出此时点N 的坐标;(4)如图2,若点N 在线段BC 上运动(不与点B 、C 重合),过点N 作NM ∥AC ,交AB 于点M ,当△AMN 面积最大时,求此时点N 的坐标.【分析】(1)根据待定系数法即可求得;(2)根据抛物线的解析式求得B 的坐标,然后根据勾股定理分别求得AB 2=20,AC 2=80,BC10,然后根据勾股定理的逆定理即可证得△ABC 是直角三角形.(3)分别以A 、C 两点为圆心,AC 长为半径画弧,与x 轴交于三个点,由AC 的垂直平分线与x 轴交于一个点,即可求得点N 的坐标;(4)设点N 的坐标为(n ,0),则BN=n +2,过M 点作MD ⊥x 轴于点D ,根据三角形相似对应边成比例求得MD=(n +2),然后根据S △AMN =S △ABN ﹣S △BMN 得出关于n 的二次函数,根据函数解析式求得即可.【解答】解:(1)∵二次函数y=ax 2+x +c 的图象与y 轴交于点A (0,4),与x 轴交于点B 、C ,点C 坐标为(8,0), ∴,解得.∴抛物线表达式:y=﹣x2+x+4;(2)△ABC是直角三角形.令y=0,则﹣x2+x+4=0,解得x1=8,x2=﹣2,∴点B的坐标为(﹣2,0),由已知可得,在Rt△ABO中AB2=BO2+AO2=22+42=20,在Rt△AOC中AC2=AO2+CO2=42+82=80,又∵BC=OB+OC=2+8=10,∴在△ABC中AB2+AC2=20+80=102=BC2∴△ABC是直角三角形.(3)∵A(0,4),C(8,0),∴AC==4,①以A为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为(﹣8,0),②以C为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为(8﹣4,0)或(8+4,0)③作AC的垂直平分线,交x轴于N,此时N的坐标为(3,0),综上,若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,点N的坐标分别为(﹣8,0)、(8﹣4,0)、(3,0)、(8+4,0).(4)如图,AB==2,BC=8﹣(﹣2)=10,AC==4,∴AB2+AC2=BC2,∴∠BAC=90°.∴AC⊥AB.∵AC∥MN,∴MN⊥AB.设点N的坐标为(n,0),则BN=n+2,∵MN∥AC,△BMN∽△BAC∴=,∴=,BM==,MN==,AM=AB﹣BM=2﹣==AM•MN∵S△AMN=××=﹣(n﹣3)2+5,当n=3时,△AMN面积最大是5,∴N点坐标为(3,0).∴当△AMN面积最大时,N点坐标为(3,0).【点评】本题是二次函数的综合题,解(1)的关键是待定系数法求解析式,解(2)的关键是勾股定理和逆定理,解(3)的关键是等腰三角形的性质,解(4)的关键是三角形相似的判定和性质以及函数的最值等.2.对于平面直角坐标系xOy中的图形M,N,给出如下定义:P为图形M上任意一点,Q为图形N上任意一点,如果P,Q两点间的距离有最小值,那么称这个最小值为图形M,N间的“闭距离“,记作d(M,N).已知点A(﹣2,6),B(﹣2,﹣2),C(6,﹣2).(1)求d(点O,△ABC);(2)记函数y=kx(﹣1≤x≤1,k≠0)的图象为图形G.若d(G,△ABC)=1,直接写出k的取值范围;(3)⊙T的圆心为T(t,0),半径为1.若d(⊙T,△ABC)=1,直接写出t的取值范围.【分析】(1)根据点A、B、C三点的坐标作出△ABC,利用“闭距离”的定义即可得;(2)由题意知y=kx在﹣1≤x≤1范围内函数图象为过原点的线段,再分别求得经过(1,﹣1)和(﹣1,﹣1)时k的值即可得;(3)分⊙T在△ABC的左侧、内部和右侧三种情况,利用“闭距离”的定义逐一判断即可得.【解答】解:(1)如图所示,点O到△ABC的距离的最小值为2,∴d(点O,△ABC)=2;(2)y=kx(k≠0)经过原点,在﹣1≤x≤1范围内,函数图象为线段,当y=kx(﹣1≤x≤1,k≠0)经过(1,﹣1)时,k=﹣1,此时d(G,△ABC)=1;当y=kx(﹣1≤x≤1,k≠0)经过(﹣1,﹣1)时,k=1,此时d(G,△ABC)=1;∴﹣1≤k≤1,∵k≠0,∴﹣1≤k≤1且k≠0;。

2021届中考数学压轴题提升训练:一次函数与反比例函数综合题【含答案】

2021届中考数学压轴题提升训练:一次函数与反比例函数综合题【含答案】

2021届中考数学压轴题提升训练:一次函数与反比例函数综合题【含答案】【例1】.如图,直线l:y=ax+b交x轴于点A(3,0),交y轴于点B(0,-3),交反比例函数y=kx于第一象限的点P,点P的横坐标为4.(1)求反比例函数y=kx的解析式;(2)过点P作直线l的垂线l1,交反比例函数y=kx的图象于点C,求△OPC的面积.【答案】见解析.【解析】解:(1)△y=ax+b交x轴于点A(3,0),交y轴于点B(0,-3),△3a+b=0,b=-3,解得:a=1,即l1的解析式为:y=x-3,当x=4时,y=1,即P(4,1),将P点坐标代入y=kx得:k=4,即反比函数的解析式为:y=4x;(2)设直线l1与x轴、y轴分别交于点E,D,△OA=OB=3,△△OAB=△OBA=45°,△l△l1,△△DPB=90°,△△ODP=45°,设直线l1的解析式为:y=-x+b,将点P(4,1)代入得:b=5,联立:y=-x+5,y=4x,解得:x=1,y=4或x=4,y=1,即C(1,4),△S△OPC=S△ODE-S△OCD-S△OPE=12×5×5-12×5×1-12×5×1=15 2.【变式1-1】.如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,A,C分别在坐标轴上,点B的坐标为(4,2),直线y=–12x+3交AB,BC于点M,N,反比例函数kyx=的图象经过点M,N.(1)求反比例函数的解析式;(2)若点P在x轴上,且△OPM的面积与四边形BMON的面积相等,求点P的坐标.【答案】见解析.【解析】解:(1)△B(4,2),四边形OABC为矩形,△OA=BC=2,在y=–12x+3中,y=2时,x=2,即M(2,2),将M(2,2)代入kyx=得:k=4,△反比例函数的解析式为:4 yx =.(2)在4yx=中,当x=4时,y=1,即CN=1,△S四边形BMON=S矩形OABC-S△AOM-S△CON=4×2-12×2×2-12×4×1=4,△S△OPM=4,即12·OP·OA=4,△OA=2,△OP=4,△点P的坐标为(4,0)或(-4,0).【例2】.已知:如图,一次函数y=kx+3 的图象与反比例函数y=mx(x>0)的图象交于点P,P A△x轴于点A,PB△y轴于点B,一次函数的图象分别交x轴、y轴于点C,D,且S△DBP=27,12 OCCA=.(1)求点D的坐标;(2)求一次函数与反比例函数的解析式;(3)根据图象写出x取何值时,一次函数y=kx+3 的值小于反比例函数y=mx的值.【答案】见解析.【解析】解:(1)△一次函数y =kx +3与y 轴相交, △令x =0,解得y =3, △D 的坐标为(0,3);(2)△OD △OA ,AP △OA ,△DCO =△ACP ,△DOC =△CAP =90°, △Rt △COD △Rt △CAP , △12OD OC AP AC ==,OD =3, △AP =OB =6, △DB =OD +OB =9, △S △DBP =27, 即2DP BP⋅=27, △BP =6, △P (6,-6),把P 坐标代入y =kx +3,得到k =32-, 则一次函数的解析式为:y =32-x +3; 把P 坐标代入反比例函数解析式得:m =-36, 则反比例解析式为:y =−36x; (3)联立y =−36x,y =32-x +3得:x =-4,y =9或x =6,y =-6,即直线与双曲线两个交点坐标为(-4,9),(6,-6),△当x >6或-4<x <0时,一次函数的值小于反比例函数的值.【变式2-1】.如图,在平面直角坐标系中,菱形 ABDC 的顶点 D ,C 在反比例函数y =kx 上(k >0,x>0),横坐标分别为12和2,对角线 BC △x 轴,菱形ABDC 的面积为 9.(1)求 k 的值及直线 CD 的解析式; (2)连接 OD ,OC ,求△OCD 的面积.【答案】见解析.【解析】解:(1)连接AD ,△菱形 ABDC 的顶点D ,C 在反比例函数y =k x 上,横坐标分别为12和2,△D (12,2k ),C (2, 2k),∵BC ∥x 轴,∴B (-1,2k ),A (12,-k ),∴BC =3,AD =3k , ∵S 菱形ABCD =9,∴12×3×3k =9,解得:k =2, △D (12,4),C (2, 1),设直线CD的解析式为y=mx+n,∴12m+n=4,2m+n=1,解得:m=-2,n=5,即直线CD的解析式为y=-2x+5.(2)设直线y=-2x+5交x轴、y轴于点F,E,则F(52,0),E(0,5),∴S△OCD=S△EOF-S△OED-S△OCF=12×5×52-12×5×12-12×1×52=154,即△OCD的面积为:15 4.【例3】.如图,在矩形OABC中,OA=3,OC=2,点F是AB上的一个动点(F不与A,B重合),过点F的反比例函数y=kx的图象与BC边交于点E.(1)当F为AB的中点时,求该函数的解析式;(2)当k为何值时,△EF A的面积最大,最大面积是多少?【答案】见解析.【解析】解:(1)∵矩形OABC中,OA=3,OC=2,∴B(3,2),∵F为AB的中点,∴F(3,1),∵点F在反比例函数y=kx的图象上,∴k=3,即函数的解析式为y=3x;(2)E ,F 两点坐标为:E (2k ,2),F (3,3k ), ∴S △EF A =12AF •BE =12×3k (3﹣2k ), =()2133124k --+, ∴当k =3时,S △EF A 有最大值,最大值34.【变式3-1】.如图,一次函数y =kx +b 的图象与反比例函数y =mx的图象交于A ,B 两点,与x 轴交于点C (﹣2,0),点A 的纵坐标为6,AC =3CB .(1)求反比例函数的解析式; (2)请直接写出不等式组mx<kx +b <4的解集; (3)点P (x ,y )是直线y =k +b 上的一个动点,且满足(2)中的不等式组,过点P 作PQ ⊥y 轴交y 轴于点Q ,若△BPQ 的面积记为S ,求S 的最大值.【答案】见解析.【解析】解:(1)过点A 作AD ⊥x 轴于D ,过B 作BE ⊥x 轴于E ,则∠ADC =∠BEC =90°, ∵∠ACD =∠BCE , ∴△ACD ∽△BCE ,∴AD AC CDBE BC CE==,即623CEBE CE+==,解得:BE=2,CE=1,∴A(1,6),∴反比例函数解析式为y=6x;(2)将A(1,6),C(﹣2,0)代入y=kx+b,得:620k bk b+=⎧⎨-+=⎩,解得:24kb=⎧⎨=⎩,即直线解析式为:y=2x+4,由B(﹣3,﹣2),得不等式组6x<2x+4<4的解集为:﹣3<x<0;(3)设P(m,2m+4)(﹣3<m<0),则PQ=﹣m,△BPQ中PQ边上的高为2m+4﹣(﹣2)=2m+6,∴S=12•(﹣m)(2m+6)=﹣m2﹣3m=﹣(m+32)2+94,∴当m=﹣32时,S取得最大值,最大值为94.1..如图所示,在平面直角坐标系中,直线l1:y=12-x与反比例函数y=kx的图象交于A、B两点,点A在点B左侧,已知A点的纵坐标为2.(1)求反比例函数的解析式;(2)根据图象直接写出12-x>kx的解集;(3)将直线y=12-x沿y轴向上平移后的直线l2与反比例函数y=kx在第二象限内交于点C,如果△ABC的面积为30,求平移后的直线l2的函数表达式.【答案】见解析.【解析】解:(1)在y=12-x中,y=2时,x=-4,即A(-4,2),△反比例函数y=kx的图象过点A,△k=-8,即反比例函数的解析式为:y=8x -;(2)联立y=8x-,y=12-x,解得:x=-4,y=2(点A);或x=4,y=-2,即B(4,-2),∴12-x>kx的解集为:x<-4或0<x<4;(3)设平移后的直线与x轴交于点D,连接AD、BD,△CD△AB,△△ABC的面积等于△ABD的面积,等于30,△S△AOD+S△BOD=30,△12·OD·|y A|+12·OD·|y B|=30,△OD=15,即D(15,0),设平移后直线的解析式为:y=12-x+m,将D(15,0)代入得:m=152,即平移后的直线函数表达式为:y=12x+152.2..如图,已知函数y=kx(x>0)的图象经过点A、B,点A的坐标为(1,2),过点A作AC△y轴,AC=1(点C在A点的下方),过点C作CD△x轴,与函数y=kx(x>0)的图象交于点D,过点B作BE△CD于E,E在线段CD上,连接OC、OD.(1)求△OCD的面积;(2)当BE=12AC时,求CE的长.【答案】见解析.【解析】解:(1)将A(1,2)代入y=kx得:k=2,△AC△y轴,AC=1,△C(1,1),△CD△x轴,D在y=2x上,△D(2,1),△S△OCD=12×1×1=12.(2)△BE=12 AC,△BE=1 2 ,△BE△CD,△点B的纵坐标为32,△B点在函数y=2x上,△B(43,32),△CH =43-1=13,△DH =1.5, △CD =23,在Rt △CDE 中,△CED =60°, △CE =°sin60CD3.3..如图,在矩形OABC 中,OA =3,OC =2,F 是AB 上的一个动点(不与A 、B 重合),过点F 的反比例函数y =kx(k >0)的图象与BC 边交于点E .(1)当F 为AB 边的中点时,求该函数的解析式;(2)当k 为何值时,△EF A 的面积为23?【答案】见解析.【解析】解:(1)由题意知,AB =OC =2,BC =OA =3, △F 是AB 中点, △F (3,1),将F (3,1)代入y =kx 得:k =3,即反比例函数的解析式为:y =3x.(2)由图象知,点F 位于B 点下方,B (3,2), △当x =3时,y <2, 即k <6, △0<k <6,由题意知,F 点横坐标为3,即F (3,3k ), 同理,得E 点坐标为(2k,2),△S △EF A =12AF BE ⋅⋅ 13232k k ⎛⎫=⨯⨯- ⎪⎝⎭△2313232k k ⎛⎫=⨯⨯- ⎪⎝⎭解得:k =2,或k =4,当k 为2或4时,△EF A 的面积为23.4..如图,A ,B 分别在反比例函数y =kx(x <0)和y 2x >0)的图象上,AB △x 轴,交 y 轴于点C .若△AOC 的面积是△BOC 面积的2倍.(1)求k 的值;(2)当△AOB =90°时,直接写出点A ,B 的坐标.【答案】见解析.【解析】解:(1)△AB △x 轴, △S △AOC =2k ,S △BOC 2,△△AOC 的面积是△BOC 面积的2倍, △2k2 △k 2(舍)或k =-2. 即k 的值为:-2.(2)△△AOB =90°,△ACO =90°, △△A +△ABO =△B +△BOC =90°, △△A =△BOC , △△AOC △△OBC ,△△AOC 的面积是△BOC 面积的2倍,△2OCBC= 设B (a 2, △2a2a ,解得:a 2或a =2(舍), 即B (1, 2),△A (-22).5.(2019·周口二模)如图,点A (-2,a ),C (3a -10,1)是反比例函数my x=(x <0)图象上的两点. (1)求m 的值;(2)过点A 作AP ⊥x 轴于点P ,若直线y =kx +b 经过点A ,且与x 轴交于点B ,当∠P AC =∠P AB 时,求直线AB 的解析式.【答案】见解析.【解析】解:(1)∵点A (-2,a ),C (3a -10,1)是反比例函数my x=上, ∴-2a =3a -10, 解得:a =2, ∴A (-2,2),C (-4,1), ∴m =-4;(2)分两种情况讨论: ①当点B 在AP 左侧时, ∵∠P AC =∠P AB , ∴A 、C 、B 三点共线,将A (-2,2),C (-4,1)代入y =kx +b ,并解得:k =12,b =3, yxOAPC即直线AB的解析式为:y=12x+3;②当点B在AP右侧时,∵∠P AC=∠P AB,∴此时直线AB与①中的直线AB关于直线AP成轴对称,此时k=-12,将(-2,2)代入y=-12x+b,得:b=1,即直线AB的解析式为:y=-12x+1;综上所述,直线AB的解析式为:y=12x+3,y=-12x+1.6.如图,已知双曲线y=kx经过点B(31),点A是双曲线第三象限上的动点,过B作BC⊥y轴,垂足为C,连接AC.(1)求k的值;(2)若△ABC的面积为3AB的解析式;(3)在(2)的条件下,写出反比例函数值大于一次函数值时x的取值范围.【答案】见解析.【解析】解:(1)把B(3,1)代入y=kx中得,∴k3(2)设△ABC中BC边上的高为h,∵BC⊥y轴,B(31),∴BC3,∵△ABC的面积为3,∴12BC•h3,解得:h=4,∴点A的纵坐标为﹣3,把y=﹣3代入y 33,得:x=3即A3,﹣3),设直线AB的解析式为:y=mx+n,把A3,﹣3)和B(31)代入y=mx+n,并解得:m 3,b=-2,∴直线AB的解析式为y 3x﹣2.(3)由图象可得:x30<x<37..如图,一次函数y=﹣12x+b与反比例函数y=kx(x>0)的图象交于点A(2,6)和B(m,1)(1)填空:一次函数的解析式为,反比例函数的解析式为;(2)点E为y轴上一个动点,若S△AEB=5,求点E的坐标.【答案】(1)y=﹣12x+7,y=12x;(2)见解析.【解析】解:(1)把点A(2,6)代入y=kx,得k=12,即反比函数解析式为:y=12x.∵点B(m,1)在y=12x上,∴m=12,即B(12,1).∵直线y=﹣12x+b过点A(2,6),∴b=7,∴一次函数的表达式为y=﹣12x+7.∴答案为:y=﹣12x+7,y=12x.(2)设直线AB与y轴交于点P,点E的坐标为(0,a),连接AE,BE,则点P的坐标为(0,7),∵S△AEB=S△BEP﹣S△AEP=5,∴12×|a﹣7|×(12﹣2)=5,∴|a﹣7|=1,解得:a=6或a=8,即点E的坐标为(0,6)或(0,8).8..如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,A、C分别在坐标轴上,点B的坐标为(4,2),直线y=﹣12x+3交AB,BC分别于点M,N,反比例函数y=kx的图象经过点M,N.(1)求反比例函数的解析式;(2)若点P在y轴上,且△OPM的面积与四边形BMON的面积相等,求点P的坐标.【答案】见解析.【解析】解:(1)∵B(4,2),四边形OABC是矩形,∴OA=BC=2,在y=﹣12x+3中,当y=2时,x=2,∴M(2,2),将x=4代入y=﹣12x+3得:y=1,∴N(4,1),∵反比例函数y=kx的图象经过点M(2,2),∴k=4,∴反比例函数的解析式是y=4x;(2)S四边形BMON=S矩形OABC﹣S△AOM﹣S△CON=4×2﹣12×2×2﹣12×4×1=4;∵△OPM的面积与四边形BMON的面积相等,∴12OP×AM=4,而AM=2,∴OP=4,∴点P的坐标是(0,4)或(0,﹣4).9..如图,直线y=kx+b与反比例函数y=mx的图象分别交于点A(﹣1,2),点B(﹣4,n),与x轴,y轴分别交于点C,D.(1)求此一次函数和反比例函数的解析式;(2)求△AOB的面积.【答案】见解析.【解析】解:(1)将点A(﹣1,2)代入y=mx,得m=﹣2,∴反比例函数解析式为:y=2x -.将B(﹣4,n)代入y=2x-中,得:n=12;B点坐标为(﹣4,12).将A(﹣1,2)、B(﹣4,12)代入y=kx+b中,得:-k+b=2,-4k+b=12,解得:k=12,b=52,∴一次函数的解析式为y=12x+52;(2)在y=12x+52中,当y=0时,x=﹣5,∴C(﹣5,0),即OC=5.S△AOC=S△AOC﹣S△BOC=12•OC•|y A|﹣12•OC•|y B|=154.10..如图,A(4,3)是反比例函数y=kx在第一象限图象上一点,连接OA,过A作AB∥x轴,截取AB=OA(B在A右侧),连接OB,交反比例函数y=kx的图象于点P.(1)求反比例函数y=kx的表达式;(2)求点B的坐标;(3)求△OAP的面积.【答案】见解析.【解析】解:(1)∵点A(4,3)在反比例函数y=kx的图象上,∴k=12,即反比例函数解析式为:y=12x;(2)如上图,过点A 作AC ⊥x 轴于点C , 则OC =4,AC =3,在Rt △OAC 中,由勾股定理得:OA =5, ∵AB ∥x 轴, AB =OA =5, ∴点B 的坐标为(9,3); (3)∵B (9,3),∴可得OB 所在直线解析式为y =13x ,联立:y =13x ,y =12x,解得:x =6,y =2或x =-6,y =-2(舍), ∴P (6,2),如上图所示,过点P 作PD ⊥x 轴于D , ∴S △OAP =S 梯形PDCA =5.11..如图,在平面直角坐标系中,反比例函数ky x=(k ≠0)与一次函数y =ax +b (a ≠0)交于第二、四象限的A ,B 两点,过点A 作AD ⊥y 轴于点D ,OD =3,S △AOD =3,点B 的坐标为(n ,-1).(1)求反比例函数和一次函数的解析式; (2)请根据图象直接写出kax b x+≥的自变量x 的取值范围.【答案】见解析.A BDO xy【解析】解:(1)∵AD⊥y轴,OD=3,∴S△AOD=12OD·AD,S△AOD=3∴AD=2,即A(-2,3),将A(-2,3)代入kyx=中,得:k=-6,即反比例函数解析式:6 yx =-.当y=-1时,x=6,即B(6,-1),将A(-2,3), B(6,-1)代入y=ax+b得:-2a+b=3,6a+b=-1,解得:a=12-,b=2,即一次函数的解析式为:y=12-x+2.(2)观察图象可知,kax bx+≥的解集为:x≤-2或0<x≤6.12..如图,在平面直角坐标系xOy中,直线y=x﹣2与双曲线y=kx(k≠0)相交于A,B两点,且点A的横坐标是3.(1)求k的值;(2)过点P(0,n)作直线,使直线与x轴平行,直线与直线y=x﹣2交于点M,与双曲线y=kx(k≠0)交于点N,若点M在N右边,求n的取值范围.【答案】见解析.【解析】解:(1)在y=x﹣2中,当x=3时,y=1,∴A(3,1),∵点A(3,1)在双曲线y=kx上,∴k=3;(2)联立y=x﹣2,y=3x,解得:31xy=⎧⎨=⎩或13xy=-⎧⎨=-⎩,即B(﹣1,﹣3),如下图所示:当点M在N右边时,n的取值范围是n>1或﹣3<n<0.13..如图,已知反比例函数y=mx(m≠0)的图象经过点(1,4),一次函数y=﹣x+b的图象经过反比例函数图象上的点Q(﹣4,n).(1)求反比例函数与一次函数的表达式;(2)一次函数的图象分别与x轴、y轴交于A、B两点,与反比例函数图象的另一个交点为P点,连结OP、OQ,求△OPQ的面积.【答案】见解析.【解析】解:(1)反比例函数y=mx图象经过点(1,4),∴m=4,即反比例函数的表达式为:y=4 x .∵反比例函数的图象过点Q(﹣4,n),∵一次函数y =﹣x +b 的图象过点Q (﹣4,-1), ∴b =-5,即一次函数的表达式为:y =﹣x ﹣5;(2)联立y =﹣x ﹣5,y =4x,解得:x =-4,y =-1或x =-1,y =-4, ∴P (﹣1,﹣4),在一次函数y =﹣x ﹣5中,当y =0时,x =﹣5, ∴点A (﹣5,0), ∴S △OPQ =S △OP A ﹣S △OAQ=11545122⨯⨯-⨯⨯ =152. 14..如图,一次函数y =k 1x +b 与反比例函数y =2k x的图象交于A (2,m ),B (n ,﹣2)两点.过点B 作BC ⊥x 轴,垂足为C ,且S △ABC =5.(1)求一次函数与反比例函数的解析式.(2)根据所给条件,请直接写出不等式k 1x +b >2k x的解集; (3)若P (p ,y 1),Q (﹣2,y 2)是函数y =2k x图象上的两点,且y 1≥y 2,求实数p 的取值范围.【答案】见解析.【解析】解:(1)∵S △ABC =12•BC •(x A -x B ) =12×2×(2﹣n ), ∴12×2×(2﹣n )=5,∴A (2,3),B (﹣3,﹣2), ∴k 2=6,即反比例函数的解析式是y =6x. 把A (2,3),B (﹣3,﹣2)代入y =k 1x +b 得:112332k b k b +=⎧⎨-+=-⎩,解得:k 1=1,b =1,即一次函数的解析式是y =x +1;(2)∵当﹣3<x <0或x >2时,一次函数图象在反比例函数图象上方, ∴不等式k 1x +b >2k x的解集是﹣3<x <0或x >2; (3)在y =6x中,当x >0时,y 随x 增大而减小;当x >0时,y >0,当x =-2时,y 2=-3,即Q (-2,-3)∴若y 1≥y 2,实数p 的取值范围是:p ≤﹣2或p >0.15..如图,在平面直角坐标系xOy 中,已知正比例函数y 1=﹣2x 的图象与反比例函数y 2=kx的图象交于A (﹣1,n ),B 两点.(1)求出反比例函数的解析式及点B 的坐标; (2)观察图象,请直接写出满足y ≤2的取值范围;(3)点P 是第四象限内反比例函数的图象上一点,若△POB 的面积为1,请直接写出点P 的横坐标.【答案】见解析. 【解析】解:解:(1)把A (﹣1,n )代入y 1=﹣2x ,得n =2, ∴A (﹣1,2),把A(﹣1,2)代入y2=kx,可得k=﹣2,∴反比例函数的表达式为y2=﹣2x,由反比例函数图象性质,知点B与点A关于原点对称,∴B(1,﹣2).(2)由图象可知,y≤2时自变量x的取值范围是:x<﹣1或x>0;(3)过B作BM⊥x轴于M,过P作PN⊥x轴于N,∵S梯形MBPN=S△POB=1,设P(m,﹣2m),则12(2+2m)|m﹣1|=1,解得:m 51+或m51-综上所述,P 51+51-16..如图,在平面直角坐标系中,菱形ABCD的顶点C与原点O重合,点B在y轴的正半轴上,点A在反比例函数y=kx(k>0,x>0)的图象上,点D的坐标为(4,3).(1)求k的值;(2)若将菱形ABCD沿x轴正方向平移,当菱形的顶点D落在函数y=kx(k>0,x>0)的图象上时,求菱形ABCD沿x轴正方向平移的距离.【答案】见解析.【解析】解:(1)过点D作DE⊥y轴于E,∵点D的坐标为(4,3),∴DE=4,OE=3,由勾股定理得:OD=5,∴AD=5,∴点A坐标为(4,8),∵点A在反比例函数y=kx的图象上,∴k=32;(2)由D(4,3)知,当平移后落在y=32x的图象上,则y=3,即32x=3,即x=323,∴平移的距离为:323-4=203,即菱形ABCD沿x轴正方向平移的距离为20 3.17..如图,点A的坐标为(3,0),点C的坐标为(0,4),OABC为矩形,反比例函数kyx=的图象过AB的中点D,且和BC相交于点E,F为第一象限的点,AF=12,CF=13.(1)求反比例函数kyx=和直线OE的函数解析式;(2)求四边形OAFC的面积?【答案】见解析.【解析】解:(1)由题意得:点B(3,4),点D(3,2),将D(3,2)代入kyx=,得k=6.即反比例函数的解析式为6yx =;在6yx=中,当y=4时,x=32,即E(32,4),设直线OE的解析式为:y=mx,将(32,4)代入得:m=83,即直线OE的解析式为y=83 x;(2)连接AC,在Rt△OAC中,OA=3,OC=4,由勾股定理得:AC=5,∵AF=12,CF=13.∴AC2+AF2=CF2,∴∠CAF=90°,∴S四边形OAFC=S△OAC+S△CAF=12×3×4+12×5×12=36.18..如图,直线y=12x与反比例函数y=kx(x>0)的图象交于点A,已知点A的横坐标为4.(1)求反比例函数的解析式;(2)将直线y=12x向上平移3个单位后的直线l与y=kx(x>0)的图象交于点C;①求点C的坐标;②记y=kx(x>0)的图象在点A,C之间的部分与线段OA,OC围成的区域(不含边界)为W,则区域W内的整点(横,纵坐标都是整数的点)的个数为.【答案】见解析.【解析】解:(1)将x=4代入y=12x,得:y=2,∴A(4,2),将A点代入y=kx,得:k=8,∴反比例函数的解析式y=8x;(2)①l的解析式为y=12x+3,联立:y=12x+3,y=8x得:∴x=2,y=4或x=-8,y=-1(舍),∴C(2,4);②4个;19..在平面直角坐标系中,一次函数y=﹣x+b的图象与反比例函数y=kx(k≠0)的图象交于A、B点,与y轴交于点C,其中点A的半标为(﹣2,3)(1)求一次函数和反比例函数的解析式;(2)如图,若将点C沿y轴向上平移4个单位长度至点F,连接AF、BF,求△ABF的面积.【答案】见解析.【解析】解:(1)将(﹣2,3)代入y=﹣x+b,得:b=1,将(﹣2,3)代入y=kx,得:k=-6,即:一次函数的解析式为y=﹣x+1,反比例函数的解析式为y=6x-;(2)在y=﹣x+1中,当x=0时,y=1,即C(0,1),由平移知:CF=4.联立y=﹣x+1,y=6x-,解得:x=3,y=-2或x=-2,y=3,∴B(3,-2),A(-2,3),∴S△ABF=12×4×(2+3)=10.20..如图,一次函数y=﹣x+b与反比例函数y=kx(k≠0)的图象相交于A、B两点,其中A(﹣1,4),直线l⊥x轴于点E(﹣4,0),与反比例函数和一次函数的图象分别相交于点C、D,连接AC、BC.(1)求出b和k;(2)判定△ACD的形状,并说明理由.【答案】见解析.【解析】解:(1)将A(﹣1,4)代入一次函数y=﹣x+b,得:b=3,将A(﹣1,4)代入反比例函数y=kx,得k=﹣4;(2)△ACD是等腰直角三角形.∵直线x=﹣4与一次函数y=﹣x+3交于点D,∴D(﹣4,7),同理,可得:C(﹣4,1),∵A(﹣1,4),C(﹣4,1),D(﹣4,7)∴CD=6,∵∠AFD=∠AFC=90°,由勾股定理得:AC=AD2,∵AD2+AC2= 36,CD2=36∴AD2+AC2=CD2∴△ACD是直角三角形,∵AD=AC∴△ACD是等腰直角三角形.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2021年中考数学压轴题精选含答案1.如图,正方形ABCD 的边长为8,M 是AB 的中点,P 是BC 边上的动点,连结PM ,以点P 为圆心,PM 长为半径作⊙P .(1)当BP = 时,△MBP ~△DCP ;(2)当⊙P 与正方形ABCD 的边相切时,求BP 的长;(3)设⊙P 的半径为x ,请直接写出正方形ABCD 中恰好有两个顶点在圆内的x 的取值范围.2.如图,已知抛物线()2y ax bx 2a 0=+-≠与x 轴交于A 、B 两点,与y 轴交于C 点,直线BD 交抛物线于点D ,并且()D 2,3,()B 4,0-.(1)求抛物线的解析式;(2)已知点M 为抛物线上一动点,且在第三象限,顺次连接点B 、M 、C ,求BMC 面积的最大值;(3)在(2)中BMC 面积最大的条件下,过点M 作直线平行于y 轴,在这条直线上是否存在一个以Q 点为圆心,OQ 为半径且与直线AC 相切的圆?若存在,求出圆心Q 的坐标;若不存在,请说明理由.3.已知抛物线217222y x mx m 的顶点为点C . (1)求证:不论m 为何实数,该抛物线与x 轴总有两个不同的交点;(2)若抛物线的对称轴为直线3x =,求m 的值和C 点坐标;(3)如图,直线1y x =-与(2)中的抛物线并于AB 、两点,并与它的对称轴交于点D ,直线x k =交直线AB 于点M ,交抛物线于点N .求当k 为何值时,以CD M N 、、、为顶点的四边形为平行四边形.4.如图,在四边形ABCD 中,∠B=90°,AD//BC ,AD=16,BC=21,CD=13.(1)求直线AD 和BC 之间的距离;(2)动点P 从点B 出发,沿射线BC 以每秒2个单位长度的速度运动,动点Q 从点A 出发,在线段AD 上以每秒1个单位长度的速度运动,点P 、Q 同时出发,当点Q 运动到点D 时,两点同时停止运动,设运动时间为t 秒.试求当t 为何值时,以P 、Q 、D 、C 为顶点的四边形为平行四边形?(3)在(2)的条件下,是否存在点P ,使△PQD 为等腰三角形?若存在,请直接写出相应的t 值,若不存在,请说明理由.5.如图,在菱形ABCD 中,AB a ,60ABC ∠=︒,过点A 作AE BC ⊥,垂足为E ,AF CD ⊥,垂足为F .(1)连接EF ,用等式表示线段EF 与EC 的数量关系,并说明理由;(2)连接BF ,过点A 作AK BF ⊥,垂足为K ,求BK 的长(用含a 的代数式表示); (3)延长线段CB 到G ,延长线段DC 到H ,且BG CH =,连接AG ,GH ,AH . ①判断AGH 的形状,并说明理由;②若12,(33)2ADH a S ==+,求sin GAB ∠的值.6.问题提出(1)如图①,在ABC 中,42,6,135AB AC BAC ==∠=,求ABC 的面积.问题探究(2)如图②,半圆O 的直径10AB =,C 是半圆AB 的中点,点D 在BC 上,且2CD BD =,点P 是AB 上的动点,试求PC PD +的最小值.问题解决(3)如图③,扇形AOB 的半径为20,45AOB ∠=在AB 选点P ,在边OA 上选点E ,在边OB 上选点F ,求PE EF FP ++的长度的最小值.7.如图,在ABC ∆中,14AB =,45B ∠=︒,4tan 3A =,点D 为AB 中点.动点P 从点D 出发,沿DA 方向以每秒1个单位长度的速度向终点A 运动,点P 关于点D 对称点为点Q ,以PQ 为边向上作正方形PQMN .设点P 的运动时间为t 秒.(1)当t =_______秒时,点N 落在AC 边上.(2)设正方形PQMN 与ABC ∆重叠部分面积为S ,当点N 在ABC ∆内部时,求S 关于t 的函数关系式.(3)当正方形PQMN 的对角线所在直线将ABC ∆的分为面积相等的两部分时,直接写出t 的值.8.对于平面直角坐标系xOy 中的图形W 1和图形W 2.给出如下定义:在图形W 1上存在两点A ,B (点A ,B 可以重合),在图形W 2上存在两点M ,N ,(点M 于点N 可以重合)使得AM=2BN ,则称图形W 1和图形W 2满足限距关系(1)如图1,点C(1,0),D(-1,0),E(03,点P 在线段DE 上运动(点P 可以与点D ,E 重合),连接OP ,CP .①线段OP 的最小值为_______,最大值为_______;线段CP 的取值范直范围是_____; ②在点O ,点C 中,点____________与线段DE 满足限距关系;(2)如图2,⊙O 的半径为1,直线3y x b =+(b>0)与x 轴、y 轴分别交于点F ,G .若线段FG 与⊙O 满足限距关系,求b 的取值范围;(3)⊙O 的半径为r(r>0),点H ,K 是⊙O 上的两个点,分别以H ,K 为圆心,1为半径作圆得到⊙H 和 K ,若对于任意点H ,K ,⊙H 和⊙K 都满足限距关系,直接写出r 的取值范围.9.如图,在平面直角坐标系中,点(1,2)A ,(5,0)B ,抛物线22(0)y ax ax a =->交x 轴正半轴于点C ,连结AO ,AB .(1)求点C 的坐标;(2)求直线AB 的表达式; (3)设抛物线22(0)y ax ax a =->分别交边BA ,BA 延长线于点D ,E .①若2AE AO =,求抛物线表达式;②若CDB △与BOA △相似,则a 的值为 .(直接写出答案)10.如图,射线AM 上有一点B ,AB =6.点C 是射线AM 上异于B 的一点,过C 作CD ⊥AM ,且CD =43AC .过D 点作DE ⊥AD ,交射线AM 于E . 在射线CD 取点F ,使得CF =CB ,连接AF 并延长,交DE 于点G .设AC =3x .(1) 当C 在B 点右侧时,求AD 、DF 的长.(用关于x 的代数式表示)(2)当x 为何值时,△AFD 是等腰三角形.(3)若将△DFG 沿FG 翻折,恰使点D 对应点'D 落在射线AM 上,连接'FD ,'GD .此时x 的值为 (直接写出答案)11.已知:如图,四边形ABCD ,AB DC ,CB AB ⊥,16AB cm =,6BC cm =,8CD cm =,动点Q 从点D 开始沿DA 边匀速运动,运动速度为1/cm s ,动点P 从点A 开始沿AB 边匀速运动,运动速度为2/cm s .点P 和点Q 同时出发,O 为四边形ABCD 的对角线的交点,连接 PO 并延长交CD 于M ,连接QM .设运动的时间为()t s ,08t <<.(1)当t 为何值时,PQ BD ?(2)设五边形QPBCM 的面积为()2S cm ,求S 与t 之间的函数关系式; (3)在运动过程中,是否存在某一时刻t ,使PQM 的面积等于五边形面积的1115?若存在,求出t 的值;若不存在,请说明理由; (4)在运动过程中,是否存在某一时刻t ,使点Q 在MP 的垂直平分线上?若存在,求出t 的值;若不存在,请说明理由.12.如图1,平面直角坐标系xoy 中,A (-4,3),反比例函数(0)k y k x=<的图象分别交矩形ABOC 的两边AC ,BC 于E ,F (E ,F 不与A 重合),沿着EF 将矩形ABOC 折叠使A ,D 重合.(1)①如图2,当点D 恰好在矩形ABOC 的对角线BC 上时,求CE 的长;②若折叠后点D落在矩形ABOC内(不包括边界),求线段CE长度的取值范围.(2)若折叠后,△ABD是等腰三角形,请直接写出此时点D的坐标.13.如图1,已知点B(0,9),点C为x轴上一动点,连接BC,△ODC和△EBC都是等边三角形.(1)求证:DE=BO;(2)如图2,当点D恰好落在BC上时.①求点E的坐标;②在x轴上是否存在点P,使△PEC为等腰三角形?若存在,写出点P的坐标;若不存在,说明理由;③如图3,点M是线段BC上的动点(点B,点C除外),过点M作MG⊥BE于点G,MH⊥CE于点H,当点M运动时,MH+MG的值是否发生变化?若不会变化,直接写出MH+MG的值;若会变化,简要说明理由.14.在综合与实践课上老师将直尺摆放在三角板上,使直尺与三角板的边分别交于点P、M、N、Q,(1)如图①所示.当∠CNG=42°,求∠HMC 的度数.(写出证明过程)(2)将直尺向下平移至图 2 位置,使直尺的边缘通过点 C,交 AB 于点 P,直尺另一侧与三角形交于 N、Q 两点。

请直接写出∠PQF、∠A、∠ACE 之间的关系.15.已知抛物线y=﹣x2﹣2x+3交x轴于点A、C(点A在点C左侧),交y轴于点B.(1)求A ,B ,C 三点坐标;(2)如图1,点D 为AC 中点,点E 在线段BD 上,且BE=2DE ,连接CE 并延长交抛物线于点M ,求点M 坐标;(3)如图2,将直线AB 绕点A 按逆时针方向旋转15°后交y 轴于点G ,连接CG ,点P 为△ACG 内一点,连接PA 、PC 、PG ,分别以AP 、AG 为边,在它们的左侧作等边△APR 和等边△AGQ ,求PA+PC+PG 的最小值,并求当PA+PC+PG 取得最小值时点P 的坐标(直接写出结果即可).16.已知:AB 为⊙O 的直径,点C 为弧AB 的中点,点D 为⊙O 上一点,连接CD ,交AB 于点M ,AE 为∠DAM 的平分线,交CD 于点E .(1)如图1,连接BE ,若∠ACD=22°,求∠MBE 的度数;(2) 如图2,连接DO 并延长,交⊙O 于点F ,连接AF ,交CD 于点N .①求证:DM 2+CN 2=CM 2;②如图3,当AD=1,AB=10时,请直接写出....线段ME 的长. 17.如图,平面直角坐标系中,抛物线228y ax ax a =--与x 轴交于B 、C 两点(点B 在点C 右侧),与y 轴交于点A ,连接AB ,25AB =.(1)求抛物线的解析式;(2)点P 在第二象限的抛物线上,连接PB 交y 轴于D ,取PB 的中点E ,过点E 作EH x ⊥轴于点H ,连接DH ,设点P 的横坐标为t .ODH 的面积为S ,求S 与t 的函数关系式(不要求写出自变量t 的取值范围);(3)在(2)的条件下,作PF y ⊥轴于F ,连接CP 、CD ,CP CD =,点S 为PF 上一点,连接BS 交y 轴于点T ,连接BF 并延长交抛物线于点R .SBC FBO 45∠+∠=︒,在射线CS 上取点Q.连接QF ,QF RF =,求直线TQ 的解析式.18.定义:将函数l 的图象绕点P (m ,0)旋转180°,得到新的函数l '的图象,我们称函数l '是函数关于点P 的相关函数.例如:当m =1时,函数y =(x +1)2+5关于点P (1,0)的相关函数为y =﹣(x ﹣3)2﹣5.(1)当m =0时①一次函数y =x ﹣1关于点P 的相关函数为 ;②点(12,﹣98)在二次函数y =﹣ax 2﹣ax +1(a ≠0)关于点P 的相关函数的图象上,求a 的值.(2)函数y =(x ﹣1)2+2关于点P 的相关函数y =﹣(x +3)2﹣2,则m = ; (3)当m ﹣1≤x ≤m +2时,函数y =x 2﹣mx ﹣12m 2关于点P (m ,0)的相关函数的最大值为6,求m 的值.19.如图,在▱ABCD 中,对角线AC ⊥BC ,∠BAC =30°,BC =23,在AB 边的下方作射线AG ,使得∠BAG =30°,E 为线段DC 上一个动点,在射线AG 上取一点P ,连接BP ,使得∠EBP =60°,连接EP 交AC 于点F ,在点E 的运动过程中,当∠BPE =60°时,则AF =_____.20.如图,在平面直角坐标系xOy 中,已知Rt ABC 的直角顶点()0,12C ,斜边AB 在x 轴上,且点A 的坐标为()9,0-,点D 是AC 的中点,点E 是BC 边上的一个动点,抛物线212y ax bx =++过D ,C ,E 三点.(1)当//DE AB 时,①求抛物线的解析式;②平行于对称轴的直线x m =与x 轴,DE ,BC 分别交于点F ,H ,G ,若以点D ,H ,F 为顶点的三角形与GHE △相似,求点m 的值.(2)以E 为等腰三角形顶角顶点,ED 为腰构造等腰EDG △,且G 点落在x 轴上.若在x 轴上满足条件的G 点有且只有一个时,请直接写出....点E 的坐标. 21.如图1,D 是等边△ABC 外一点,且AD =AC ,连接BD ,∠CAD 的角平分交BD 于E . (1)求证:∠ABD =∠D ;(2)求∠AEB 的度数;(3)△ABC 的中线AF 交BD 于G (如图2),若BG =DE ,求AF DE的值.22.在平面直角坐标系xOy 中,点A 、B 为反比例函数()4x 0x y =>的图像上两点,A 点的横坐标与B 点的纵坐标均为1,将()4x 0xy =>的图像绕原点O 顺时针旋转90°,A 点的对应点为A’,B 点的对应点为B’.(1)点A’的坐标是 ,点B’的坐标是 ; (2)在x 轴上取一点P ,使得PA+PB 的值最小,直接写出点P 的坐标. 此时在反比例函数()4x 0xy =>的图像上是否存在一点Q ,使△A’B’Q 的面积与△PAB 的面积相等,若存在,求出点Q 的横坐标;若不存在,请说明理由;(3)连接AB’,动点M 从A 点出发沿线段AB’以每秒1个单位长度的速度向终点B’运动;动点N 同时从B’点出发沿线段B’A’以每秒1个单位长度的速度向终点A’运动.当其中一个点停止运动时,另一个点也随之停止运动.设运动的时间为t 秒,试探究:是否存在使△MNB’为等腰直角三角形的t 值.若存在,求出t 的值;若不存在,说明理由.23.(操作发现)如图1,ABC ∆为等腰直角三角形,90ACB ∠=︒,先将三角板的90︒角与ACB ∠重合,再将三角板绕点C 按顺时针方向旋转(旋转角大于0︒且小于45︒),旋转后三角板的一直角边与AB 交于点D .在三角板另一直角边上取一点F ,使CF CD =,线段AB 上取点E ,使45DCE ∠=︒,连接AF ,EF .(1)请求出EAF ∠的度数?(2)DE 与EF 相等吗?请说明理由;(类比探究)如图2,ABC ∆为等边三角形,先将三角板中的60︒角与ACB ∠重合,再将三角板绕点C 按顺时针方向旋转(旋转角大于0︒且小于30).旋转后三角板的一直角边与AB 交于点D .在三角板斜边上取一点F ,使CF CD =,线段AB 上取点E ,使30DCE ∠=︒,连接AF ,EF .(3)直接写出EAF ∠=_________度;(4)若1AE =,2BD =,求线段DE 的长度.24.如图,平行四边形ABCD 中,AB ⊥AC ,AB =2,AC =4.对角线AC 、BD 相交于点O ,将直线AC 绕点O 顺时针旋转α°(0°<α<180°),分别交直线BC 、AD 于点E 、F .(1)当α=_____°时,四边形ABEF 是平行四边形;(2)在旋转的过程中,从A 、B 、C 、D 、E 、F 中任意4个点为顶点构造四边形, ①当α=_______°时,构造的四边形是菱形;②若构造的四边形是矩形,求该矩形的两边长. 25.如图,抛物线214y x bx c =++与x 轴交于点A (-2,0),交y 轴于点B (0,52-).直线32y kx =+过点A 与y 轴交于点C ,与抛物线的另一个交点是D .(1) 求抛物线214y x bx c =++与直线32y kx =+的解析式;(2)点P 是抛物线上A 、D 间的一个动点,过P 点作PM ∥CE 交线段AD 于M 点. ①过D 点作DE ⊥y 轴于点E ,问是否存在P 点使得四边形PMEC 为平行四边形?若存在,请求出点P 的坐标;若不存在,请说明理由;②作PN ⊥AD 于点N ,设△PMN 的周长为m ,点P 的横坐标为x ,求m 关于x 的函数关系式,并求出m 的最大值.【参考答案】***试卷处理标记,请不要删除一、中考数学压轴题 1.B解析:(1)83;(2)3或433)565x ≤<【解析】 【分析】(1)设BP=a ,则PC=8-a ,由△MBP ~△DCP 知MB BPDC CP=,代入计算可得; (2)分别求出⊙P 与边CD 相切时和⊙P 与边AD 相切时BP 的长即可得; (3)①当PM=5时,⊙P 经过点M ,点C ;②当⊙P 经过点M 、点D 时,由PC 2+DC 2=BM 2+PB 2,可求得BP=7,继而知227465PM =+=【详解】(1)设BP=a ,则PC=8-a ,∵AB=8,M是AB中点,∴AM=BM=4,∵△MBP~△DCP,∴MB BPDC CP=,即488aa=-,解得83a=,故答案为:83.(2)如图1,当⊙P与边CD相切时,设PC=PM=x,在Rt△PBM中,∵PM2=BM2+PB2,∴x2=42+(8-x)2,∴x=5,∴PC=5,BP=BC-PC=8-5=3.如图2,当⊙P与边AD相切时,设切点为K,连接PK,则PK⊥AD,四边形PKDC是矩形.∴PM=PK=CD=2BM,∴BM=4,PM=8,在Rt△PBM中,228443PB-==综上所述,BP的长为3或43(3)如图1,当PM=5时,⊙P经过点M,点C;如图3,当⊙P 经过点M 、点D 时,∵PC 2+DC 2=BM 2+PB 2, ∴42+BP 2=(8-BP )2+82, ∴BP=7, ∴227465PM+综上,565x < 【点睛】本题是圆的综合问题,主要考查切线的性质、正方形的性质、勾股定理等知识,解题的关键是学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题.2.B解析:(1)213y x x 222=+-;(2)4;(3)存在,Q 的坐标为()2,4-或()2,1-- 【解析】 【分析】()1根据题意将()D 2,3、()B 4,0-的坐标代入抛物线表达式,即可求解;()2由题意设点M 的坐标为213x,x x 222⎛⎫+- ⎪⎝⎭,则点1K x,x 22⎛⎫-- ⎪⎝⎭,BMC1SMK OB 2=⋅⋅,即可求解; ()3由题意和如图所示可知,1tan QHN 2∠=,在RtQNH 中,QH m 6=+,222QN OQ (2)m m 4==-+=+2QN m 4sin QHN QHm 65∠+===+,进行分析计算即可求解. 【详解】解:()1将()D 2,3、()B 4,0-的坐标代入抛物线表达式得:422316420a b a b +-=⎧⎨--=⎩,解得:1232ab⎧=⎪⎪⎨⎪=⎪⎩,则抛物线的解析式为:213y x x222=+-;()2过点M作y轴的平行线,交直线BC于点K,将点B、C的坐标代入一次函数表达式:y k'x b'=+得:04'''2k bb=-+⎧⎨=-⎩,解得:1'2'2kb⎧=-⎪⎨⎪=-⎩,则直线BC的表达式为:1y x22=--,设点M的坐标为213x,x x222⎛⎫+-⎪⎝⎭,则点1K x,x22⎛⎫--⎪⎝⎭,22BMC1113S MK OB2x2x x2x4x2222⎛⎫=⋅⋅=----+=--⎪⎝⎭,a10=-<,BMCS∴有最大值,当bx22a=-=-时,BMCS最大值为4,点M的坐标为()2,3--;()3如图所示,存在一个以Q点为圆心,OQ为半径且与直线AC相切的圆,切点为N,过点M作直线平行于y轴,交直线AC于点H,点M 坐标为()2,3--,设:点Q 坐标为()2,m -, 点A 、C 的坐标为()1,0、()0,2-,OA 1tan OCA OC 2∠==, QH //y 轴, QHN OCA ∠∠∴=, 1tan QHN 2∠∴=,则sin QHN 5∠=, 将点A 、C 的坐标代入一次函数表达式:y mx n =+得:02m n n +=⎧⎨=-⎩,则直线AC 的表达式为:y 2x 2=-,则点()H 2,6--,在Rt QNH 中,QH m 6=+,222QN OQ (2)m m 4==-+=+2QN m 4sin QHN QH m 65∠+===+, 解得:m 4=或1-,即点Q 的坐标为()2,4-或()2,1--. 【点睛】本题考查的是二次函数知识的综合运用,涉及到解直角三角形、圆的基本知识,本题难点是()3,核心是通过画图确定圆的位置,本题综合性较强.3.(1)详见解析;(2)3m =,点C 坐标为(3,2)-;(3)5k =或417k或417k时,可使得C D M N 、、、为顶点的四边形是平行四边形.【解析】 【分析】 (1)从2172022x mxm的判别式出发,判别式总大于等于3,而证得;(2)根据抛物线的对称轴32b xa来求m 的值;然后利用配方法把抛物线解析式转化为顶点式,由此可以写出点C 的坐标;(3)根据平行四边形的性质得到:215|1(3)|422MN k k kCD . 需要分类讨论:①当四边形CDMN 是平行四边形,2151(3)422MN k k k,通过解该方程可以求得k 的值;②当四边形CDNM 是平行四边形,2153(1)422NM k kk ,通过解该方程可以求得k 的值. 【详解】 解:(1)2217()4(2)(2)322m m m , ∵不论m 为何实数,总有2(2)0m -≥,2(2)30m ,∴无论m 为何实数,关于x 的一元二次方程2172022x mxm总有两个不相等的实数根,∴无论m 为何实数,抛物线217222y x mxm与x 轴总有两个不同的交点. (2)抛物线的对称轴为直线3x =,3122m ,即3m =,此时,抛物线的解析式为221513(3)2222y x xx ,∴顶点C 坐标为(3,2)-;(3)//,CD MN C D M N 、、、为顶点的四边形是平行四边形,∴四边形CDMN 是平行四边形(直线在抛物线的上方)或四边形CDMN (直线在抛物线的下方),如图所示,由已知215(3,2),(,1),(3)22D M k k N k k k,, (3,2)C ,4CD ∴=,2151(3)422MNk k kCD,①当四边形CDMN 是平行四边形, 2151(3)422MNk k k,整理得,28150k k -+=,解得13k =(不合题意,舍去),25k =; ②当四边形CDNM 是平行四边形, 2153(1)422NMk kk ,整理得2810k k ,解得,12417417k k ,,综上,5k =或417k或417k时,可使得C D M N 、、、为顶点的四边形是平行四边形. 【点睛】本题是二次函数的综合题型,其中涉及到的知识点有待定系数法求二次函数解析式,抛物线的顶点公式和平行四边形的判定与性质.在求有关动点问题时要注意分析题意分情况讨论结果.4.A解析:(1)12;(2)5s 或373s ;(3)163s 或685s 或72s 【解析】 【分析】(1)AD 与BC 之间的距离即AB 的长,如下图,过点D 作BC 的垂线,交BC 于点E ,在RtDEC 中可求得DE 的长,即AB 的长,即AD 与BC 间的距离; (2)四边形QDCP 为平行四边形,只需QD=CP 即可;(3)存在3大类情况,情况一:QP=PD ,情况二:PD=QD ,情况三:QP=QD ,而每大类中,点P 存在2种情况,一种为点P 还未到达点C ,另一种为点P 从点C 处返回. 【详解】(1)如下图,过点D 作BC 的垂线,交BC 于点E∵∠B=90°,AD ∥BC ∴AB ⊥BC ,AB ⊥AD∴AB 的长即为AD 与BC 之间的距离∵AD=16,BC=21, ∴EC=5 ∵DC=13∴在Rt DEC 中,DE=12同理,DE 的长也是AD 与BC 之间的距离 ∴AD 与BC 之间的距离为12 (2)∵AD ∥BC∴只需QD=PC ,则四边形QDCP 是平行四边形 QD=16-t ,PC=21-2t 或PC=2t -21 ∴16-t=21-2t 或16-t=2t -21 解得:t=5s 或t=373s (3)情况一:QP=PD图形如下,过点P 作AD 的垂线,交AD 于点F∵PQ=PD ,PF ⊥QD , ∴QF=FD∵AF ∥BP ,AB ∥FP ,∠B=90° ∴四边形ABPF 是矩形, ∴AF=BP由题意得:AQ=t ,则QD=16-t ,QF=8-2t ,AF=8+2t BP=2t 或BP=21-(2t -21)=42-2t ∵AF=BP ∴8+2t =2t 或8+2t=42-2t 解得:t=163或t=685情况二:PD=QD ,图形如下,过点P 作AD 的垂线,交AD 于点F同理QD=16-t ,PF=AB=12 BP=2t 或21-(2t -21)=42-2t则FD=AD -AF=AD -BP=16-2t 或FD=16-(42-2t)=2t -26∴在Rt PFD 中,()22212162PD t =+-或()22212226PD t =+-∵PD=QD , ∴22PD QD =∴()()22216t 12162t =+--或()()22216t 12226t =+--解得:2个方程都无解情况三:QP=QD ,图形如下,过点P 作AD 的垂线,交AD 于点F同理:QD=16-t ,FP=12 BP=2t 或BP=42-2tQF=AF -AQ=BP -AQ=2t -t=t 或QF=42-2t -t=42-3t在Rt QFP 中,22212PQ t =+或()22212423PQ t =+-∵PQ=QD , ∴22PQ QD =∴()22216t 12t =+-或()()22216t 12423t =+--第一个方程解得:t=72,第二个方程解得:无解 综上得:t=163或685或72 【点睛】本题考查四边形中的动点问题,用到了勾股定理、平行四边形的性质、矩形的性质,解题关键是根据点Q 运动的轨迹,得出BP 的长度.5.E解析:(1)3EF EC =,见解析;(2)277BK =;(3)①AGH 是等边三角形,见解析;②1(62)4【解析】 【分析】(1)连接EF ,AC ,由菱形的性质,可证Rt AEB Rt AFD ∆≅∆,然后得到AEF ∆为等边三角形,由解直角三角形得到3AE EC =,即可得到答案;(2)由菱形的性质和等边三角形的性质,求出AF 的长度,然后得到BF 的长度,然后由相似三角形的性质,得到AB BKFB BA=,即可求出答案; (3)①由等边三角形的性质,先证明ABG ACH ≅,然后得到AG AH =,然后得到60BAH GAB GAH ︒∠+∠=∠=,即可得到答案;②由三角形的面积公式得到31DH =+,然后得到AHF △为等腰直角三角形,再由解直角三角形的性质,即可求出答案. 【详解】解:(1)3EF EC =;理由:∵四边形ABCD 是菱形,60ABC ∠=︒,,60,//AB AD BC ABC ADC AD BC ︒∴==∠=∠=,120BAD ︒∴∠=,∵AE BC ⊥,垂足为E ,AF CD ⊥,垂足为F ,90AEB AFD ︒∴∠=∠=Rt AEB Rt AFD ∴∆≅∆,,30AE AF BAE DAF ∴=∠=∠=︒,60EAF ∴∠=︒,AEF ∴∆为等边三角形, EF AE ∴=.连接AC ,1602BAC BAD ︒∴∠=∠= 30EAC ︒∴∠=在Rt AEC ∆中,tan ECEAC AE∠=3AE EC ∴=, 3EF EC ∴=(2)如图:∵四边形ABCD 是菱形,60,ABC AB a ︒∠==,ACD ∴是等边三角形,//,,60AB CD AD CD a ADC ︒==∠=. AF CD ⊥,垂足为F , 1,902CF DF a BAF AFD ︒∴==∠=∠= 在Rt ADF 中,sin AFADF AD∠=, 3AF a ∴=在Rt ABF 中,22BF AB AF =+,7BF a ∴=AK BF ⊥,垂足为K ,90AKB FAB ︒∴∠=∠=ABK FBA ∠=∠~Rt AKB Rt FAB ∴∆∆, AB BKFB BA∴=, 27BK a ∴=, (3)如图:①AGH 是等边三角形. 理由:连接AC .,60AB BC ABC ︒=∠=,ABC ∴为等边三角形,,60AB AC ABC ACB ︒∴=∠=∠=,120ABG ︒∴∠=.//AB CD ,60BCH ABC ︒∴∠=∠=, 120ACH ︒∴∠=ABG ACH ∴∠=∠,又BG CH =,ABG ACH ∴≅, ,AG AH GAB HAC ∴=∠=∠. 60BAH HAC BAC ︒∠+∠=∠=, 60BAH GAB GAH ︒∴∠+∠=∠=,AGH ∴为等边三角形;②ADC 为等边三角形,2,1AD DC AC CF DF ∴=====,3AF ∴=.1(33)2ADHS=, 113(33)22DH ∴⨯=+, 31DH ∴=31CH DH CD ∴=-=,3HF DH DF =-=AF HF ∴=,AHF ∴为等腰直角三角形,45AHF ︒∴∠=.过点C 作CM AH ⊥,垂足为M . 在Rt CMH 中,sin CMCHM CH∠=, 1(62)2CM ∴=, 在Rt AMC 中,sin CMMAC AC∠=, 1sin (62)4MAC ∴∠=. 又GAB HAC ∠=∠,1sin sin (62)4GAB HAC ∴∠=∠=; 【点睛】本题考查了解直角三角形,相似三角形的判定和性质,等边三角形的判定和性质,菱形的性质,等腰三角形的判定和性质,全等三角形的判定和性质,解题的关键是熟练掌握所学的定理和性质,正确作出辅助线进行解题.6.B解析:(1)12;(2)53;(3)202. 【解析】 【分析】(1)如图1中,过点B 作BD CA ⊥,交CA 延长线于点D ,通过构造直角三角形,求出BD 利用三角形面积公式求解即可.(2)如图示,作点D 关于AB 的对称点Q ,交AB 于点H ,连接CQ ,交AB 于点P ,连接PD 、OD 、OC ,过点Q 作QM CO ⊥,交CO 延长线于点M ,确定点P 的位置,利用勾股定理与矩形的性质求出CQ 的长度即为答案.(3)解图3所示,在AB 上这一点作点P 关于OA 的对称点S ,作点P 关于OB 的对称点N ,连接SN ,交OA 于点E ,交OB 于点F ,连接OS ON OP EP FP 、、、、,通过轴对称性质的转化,最终确定最小值转化为SN 的长. 【详解】(1)如解图1所示,过点B 作BD CA ⊥,交CA 延长线于点D ,135BAC ∠=,180********BAD BAC ∴∠=-∠=-=,BD CA ⊥,交CA 延长线于点D ,BAD ∴为等腰直角三角形,且90BDA ∠=,BD AD ∴=,在BAD 中,,90BD AD BDA =∠=,222BD AD AB ∴+=,即222BD AB =,42AB =,2222(42)32BD AB ∴===,解得:4BD =,6AC =, 11641222ABCSAC BD ∴=⋅=⨯⨯=.(2)如解图2所示,作点D 关于AB 的对称点Q ,交AB 于点H ,连接CQ ,交AB 于点P ,连接PD 、OD 、OC ,过点Q 作QM CO ⊥,交CO 延长线于点M ,D 关于AB 的对称点Q ,CQ 交AB 于点P , PD PQ ∴=,PC PD PC PQ CQ ∴+=+=,点P 为AB 上的动点,PC PD CQ ∴+≥,∴当点P 处于解图2中的位置,PC PD +取最小值,且最小值为CQ 的长度,点C 为半圆AB 的中点,90COB ∴∠=,90BOD COD COB ∠+∠=∠=, 11903033BOD COB ∴∠=∠=⨯=,10AB =,1110522OD AB ∴==⨯=, 在Rt ODH △中,由作图知,90OHD ∠=,且30HOD BOD ∠=∠=,155,222DH OD QH DH ∴==∴==, 222255352OH OD DH ⎛⎫∴=-=-=⎪⎝⎭, 由作图知,四边形OMQH 为矩形,553,2OM QH MQ OH ∴====515522CM OM OC ∴=+=+=,222215535322CQ CM MQ ⎛⎫⎛⎫∴=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭PC PD ∴+的最小值为53.(3)如解图3所示,在AB 上这一点作点P 关于OA 的对称点S ,作点P 关于OB 的对称点N ,连接SN ,交OA 于点E ,交OB 于点F ,连接OS ON OP EP FP 、、、、, 点P 关于OA 的对称点S ,点P 关于OB 的对称点N ,连接SN ,交OA 于点E ,交OB 于点F ,PE SE ∴=,FP FN =,SOA POA ∠=∠, ,NOB POB OS OP ON ∠=∠==,.PE EF FP SE EF FN SN ∴++=++=,SOA NOB POA POB ∠+∠=∠+∠,E 为OA 上的点,F 为OB 上的点PE EF FP SN ∴++≥,∴当点E F 、处于解图3的位置时,PE EF FP ++的长度取最小值,最小值为SN 的长度,45POA POB AOB ∠+∠=∠=,45SOA NOB ∴∠+∠=,454590SON SOA AOB NOB ∴∠=∠+∠+∠=+=.扇形AOB 的半径为20,20OS ON OP ∴===,在Rt SON 中,90SON ∠=,20,90OS ON SON ==∠=PE EF FP ∴++的长度的最小值为202【点睛】本题主要考察了轴对称、勾股定理、圆、四边形等相关内容,理解题意,作出辅助线是做题的关键.7.A解析:(1)145;(2)2274,0314971421,2235t tSt t t⎧⎛⎫<≤⎪⎪⎪⎝⎭=⎨⎛⎫⎪-+-<<⎪⎪⎝⎭⎩;(3)t的值为477或727.【解析】【分析】(1)如下图,根据4tan3A=,可得出PN与AP的关系,从而求出t的值;(2)如下图,存在2种情况,一种是点M在△ABC内,另一种是点M在△ABC外部,分别根据正方形和三角形求面积的公式可求解;(3)如下图,存在2种情况,一种是PM所在的直线将△ABC的面积平分,另一种是QN 所在的直线将△ABC的面积平分.【详解】(1)如图1,点N在AC上图1由题意可知:PD=DQ=t ,AP=7-t ∴PN=PQ=2t ∵4tan 3A = ∴43NP AP =,即2473t t =- 解得:t=145(2)①如图2,图2四边形PQMN 是正方形,90BQM ∴∠=︒,45B ∠=︒,BQ MQ ∴=,即72t t -= 解得73t =, 故当0t <≤73时,22(2)4S t t ==;②如图3,图390BQF ∠=︒,45B ∠=︒,7BQ FQ t ∴==-,45BFQ MFE ∠=∠=︒,则37MF MQ QF t =-=-,90M ∠=︒, 37ME MF t ∴==-,则2221149(2)(37)21222S t t t t =--=-+-71435t ⎛⎫<< ⎪⎝⎭;综上,2274,0314971421,2235t t S t t t ⎧⎛⎫<≤ ⎪⎪⎪⎝⎭=⎨⎛⎫⎪-+-<< ⎪⎪⎝⎭⎩. (3)如下图,过点C 作AB 的垂线,交AB 于点G图4∵4tan 3A =∴设CG=4x ,则AG=3x ∵∠B=45°∴△CBG 是等腰直角三角形 ∴GB=GC=4x ∵AB=14∴3x+4x=14,解得:x=2 ∴1148562ABCS == ∴1282ABCS =情况一:PM 所在的直线平分△ABC 的面积,如下图,PM 与BC 交于点E图5则28PBES=∵四边形PQMN是正方形,∴∠EPB=45°∵∠B=45°∴△PBE是等腰直角三角形∵1282PBES PE PB==∴PE=PB=214∴PB=47∵PB=AB-PA=14-(7-t)=7+t∴7+t=47t=477-情况二:如下图,QN所在线段平分△ABC的面积,QF交AC于点F,过点F作AB的垂线,交AB于点H图6同理,28AFQS=∵四边形PQMN是正方形,∴∠EQH=45°∴△FHQ是等腰直角三角形∵4 tan3A=∴设FH=4y,则AH=3y,HQ=FH=4y,∴AQ=7y∴174282AFQS y y==,解得:2∵AQ=AB-QB=14-(7-t)=7+t∴2解得:27∴综上得:t的值为477或727.【点睛】本题考查动点问题,解题关键是根据动点的变化情况,适当划分为几种不同的形式分别分析求解.8.C解析:(1)①3,3,32CP ≤≤,②O;(2)13b ≥;(3)0<r≤3.【解析】 【分析】(1)①根据垂线段最短以及已知条件,确定OP ,CP 的最大值,最小值即可解决问题.②根据限距关系的定义判断即可.(2)直线3y x b =+与x 轴、y 轴分别交于点F ,G (0,b ),分三种情形:①线段FG 在⊙O 内部,②线段FG 与⊙O 有交点,③线段FG 与⊙O 没有交点,分别构建不等式求解即可.(3)如图3中,不妨设⊙K ,⊙H 的圆心在x 轴上位于y 轴的两侧,根据⊙H 和⊙K 都满足限距关系,构建不等式求解即可. 【详解】(1)①如图1中,∵D (-1,0),E(03, ∴OD=1,3OE = ∴3OEtan EDO OD∠== ∴∠EDO=60°,当OP ⊥DE 时,3•602OP OD sin =︒=,此时OP 的值最小, 当点P 与E 重合时,OP 3 当CP ⊥DE 时,CP 的值最小,最小值•603CD cos =︒= 当点P 与D 或E 重合时,PC 的值最大,最大值为2, 3332CP ≤≤. ②根据限距关系的定义可知,线段DE 上存在两点M ,N ,满足OM=2ON , 故点O 与线段DE 满足限距关系. 故答案为O .(2)直线3y x b =+与x 轴、y 轴分别交于点F ,G (0,b ), 当0<b <1时,线段FG 在⊙O 内部,与⊙O 无公共点,此时⊙O上的点到线段FG的最小距离为1-b,最大距离为1+b,∵线段FG与⊙O满足限距关系,∴1+b≥2(1-b),解得13b≥,∴b的取值范围为131b≤<.当1≤b≤2时,线段FG与⊙O有公共点,线段FG与⊙O满足限距关系,当b>2时,线段FG在⊙O的外部,与⊙O没有公共点,此时⊙O上的点到线段FG的最小距离为121b-,最大距离为b+1,∵线段FG与⊙O满足限距关系,∴11212b b⎛⎫+≥-⎪⎝⎭,而11212b b⎛⎫+≥-⎪⎝⎭总成立,∴b>2时,线段FG 与⊙O满足限距关系,综上所述,b的取值范围为13b≥.(3)如图3中,不妨设⊙K,⊙H的圆心在x轴上位于y轴的两侧,两圆的距离的最小值为2r-2,最大值为2r+2,∵⊙H和⊙K都满足限距关系,∴2r+2≥2(2r-2),解得r≤3,故r的取值范围为0<r≤3.【点睛】本题属于圆综合题,考查了解直角三角形,垂线段最短,直线与圆的位置关系,限距关系的定义等知识,解题的关键是理解题意,学会利用参数构建不等式解决问题,属于中考创新题型.9.C解析:(1)点C 的坐标为(2,0);(2)1522y x =-+;(3)①2481515y x x =-;②1013. 【解析】 【分析】(1)求得对称轴,由对称性可知C 点坐标; (2)利用待定系数法求解可得;(3)①由AE=3AO 的关系,建立K 型模型相似,求得点E 坐标代入解析式可得; ②若△CDB 与△BOA 相似,则∠OAB=∠CDB=90°,由相似关系可得点D 坐标,代入解析式y=ax 2-2ax 可得a 值. 【详解】解:(1)把0y =代入22y ax ax =-,得220ax ax -=, 解得:0x =,或2x =. ∵点C 在x 轴正半轴上, ∴点C 的坐标为(2,0).(2)设直线表达式为y kx b =+,把点(1,2)A ,(5,0)B 分别代入y kx b =+,得250k b k b +=⎧⎨+=⎩,解得1252k b ⎧=-⎪⎪⎨⎪=⎪⎩,∴直线AB 的表达式为:1522y x =-+. (3)①作AH x ⊥轴于点H ,EF AH ⊥于点F (如图),∵222125OA =+=,2222420AB ,22525OB ==,∴222OA AB OB +=.∴90EAO OAB ∠=∠=︒. 由EFA AHO △∽△,得2EF FA EA AH HO AO===, ∴4EF =,2FA =, ∴点E 坐标为()3,4-.把(3,4)E -代入22y ax ax =-,得964a a +=,解得:415a =. ∴2481515y x x =-. ②若△CDB 与△BOA 相似,如图,作DG ⊥BC ,∴CD BD BC AO AB BO==,∠OAB=∠CDB=90°, 35525==, ∴355CD =65BD =∵523BC =-=,∴356565535DG ==, ∴156225x -+=,解得:135x =, ∴点D 的坐标为:(135,65), 把点D 代入22y ax ax =-,即16913622555a a -⨯= 解得:1013a =; 故答案为:1013. 【点睛】本题是二次函数的综合问题,考查了二次函数的基本性质,数形结合与K 型模型的使用,以及相似存在性问题,内容综合较好,难度相当入门级压轴问题.10.A解析:(1)5AD x =,6DF x =+;(2)△ADF 为等腰三角形,x 的取值可以是4817,4831,12; (3)4或43【解析】【分析】(1)由已知条件可得:CD=4x ,根据勾股定理得:AD=5x ,由AB=6且C 在B 点右侧,可以依次表示BC 、CF 、DF 的长;(2)分两种情况:①当C 在B 点的右侧时,AF=DF ,②当C 在线段AB 上时,又分两种情况:i )当CF <CD 时,如图3,ii )当CF >CD 时,如图4,由AF=DF ,作等腰三角形的高线FN ,由等腰三角形三线合一得:AN=ND=2.5x ,利用同角的三角函数列比例式可求得x 的值;(3)由翻折性质得到DG='GD ,'DGF FGD ∠=∠,从而证出'ADG AGD △≌△,从而推出∠FAC=∠DAG ,即AF 平分∠DAC ,过F 作FN ⊥AD 于N ,分两种情况:当C 在AB 的延长线上时,当C 在AB 边上时,根据35sin CDA ∠=可列出关于x 的比例式,即可求解. 【详解】 ⑴∵CD=43AC ,AC=3x , ∴CD=4x, ∵CD⊥AM, ∴∠ACD=90°, 由勾股定理得:AD=5x , ∵AB=6,C 在B 点右侧, ∴BC=AC-AB=3x-6, ∵BC=FC=3x-6,∴DF=CD -FC=4x-(3x-6)=x+6; (2)分两种情况: ①当C 在B 点的右侧时, ∴AC >AB , ∴F 必在线段CD 上, ∵∠ACD=90°,∴∠AFD 是钝角,若△ADF 为等腰三角形,只可能AF=DF ,过F 作FN⊥AD 于N ,如图,∴AN=ND=2.5x , ∴DN DCcos ADC DF AD∠==, 即2.5465x xx x+=,解得,4817x =; ②当C 在线段AB 上时,同理可知若△ADF 为等腰三角形,只可能AF=DF , i )当CF <CD 时,过F 作FN⊥A D 于N ,如图,x 的取值可以是4817,4831,12; ∵AB=6,AC=3x , ∴BC=CF=6-3x , ∴DF=4x-(6-3x )=7x-6, ∵DN DCcos ADC DF AD∠==, ∴2.54765x xx x-=, 解得4831x =; ii )当CF >CD 时,如图4,BC=CF=6-3x ,∴FD=AD=6-3x-4x=6-7x , 则6-7x=5x ,x=12, 综上所述,x 的取值可以是4817,4831,12; (3)∵△DFG 沿FG 翻折得到'FD G △ ∴DG='GD ,'DGF FGD ∠=∠。

相关文档
最新文档