人教中考数学压轴题之旋转(中考题型整理,突破提升)及答案
中考数学旋转压轴题解题方法(详解答案)
中考数学旋转压轴题解题方法
一、图形旋转知识与方法
1、图形的变换是新课标中“空间与图形”领域的一个主要内容,体现运动变换的理念与思想,是教材中的一大亮点.初中数学所学的图形变换包括平移、轴对称、旋转、位似。
2、旋转,它是一种数学变换.生活中的旋转也是随处可见,汽车的轮子,钟表的指针,游乐园里的摩天轮,都是旋转现象.
3、图形的旋转有三个要素:
①旋转中心;
②旋转方向;
③旋转角度.
三要素中只要任意改变一个,图形就会不一样.
4、旋转具有以下性质:
①对应点到旋转中心的距离相等,即边相等。
②对应点与旋转中心所连线段的夹角等于旋转角,即角相等
③旋转前、后的图形全等。
5、旋转是近几年中考数学的热点题型,对旋转的特例“中心对称”的考查多以选择题或填空题的形式出现,题目比较简单,大多数属于送分题;利用旋转作图,是格点作图题中的重点。利用旋转构造复杂几何图形,通常将旋转融合在综合题中,题目难度中等,在选择题、填空题、解答题中都有出现。有旋转点的,有旋转线段的,更多的是旋转图形的。旋转三角形,旋转平行四边形,旋转矩形,旋转正方形,其中,近两年的各地中考试题中,旋转矩形出现的最频繁,深受出题老师的青睐。其实旋转的题目还有一个好听的名字就是“手拉手问题”,本文将对这一类问题分类汇总,以这三个性质为突破口,就能快速解决问题。
二、典例精讲
典例.在△ABC中,AC=BC,∠ACB=α,点D为直线BC上一动点,过点D作DF∥AC 交直线AB于点F,将AD绕点D顺时针旋转α得到ED,ED交直线AB于点O,连接BE.
(1)问题发现:
中考数学总复习《图形变换综合压轴题》专项提升练习题(附答案)
中考数学总复习《图形变换综合压轴题》专项提升练习题(附答案)学校:___________班级:___________姓名:___________考号:___________
1.如图1,在Rt△ABC中∠C=90°,AC=BC=5,等腰直角三角形BDE的顶点点D是边BC上的一点,且
α(0°≤α<360°).
的值为________,直线AE,CD相交形成的较小角的度数为________;(1)【问题发现】当α=0°时,AE
CD
(2)【拓展探究】试判断:在旋转过程中,(1)中的两个结论有无变化?请仅就图2的情况给出证明;
(3)【问题解决】当△BDE旋转至A,D,E三点在同一条直线上时,请直接写出△ACD的面积.
2.已知等边三角形ABC,过A点作AC的垂线l,点P为l上一动点(不与点A重合),连接CP,把线段CP绕点C逆时针方向旋转60°得到CQ,连QB.
(1)如图1,判断线段AP与BQ的数量关系,并说明理由;
(2)如图2,当点P、B在AC同侧且AP=AC时,求证:直线PB垂直平分线段CQ;
(3)如图3,若等边三角形ABC的边长为4,点P、B分别位于直线AC异侧,且△APQ的面积等于√3
,请直接
4
写出线段AP的长度.
3.在中Rt△ABC中∠ABC=90°,AB=BC点E在射线CB上运动.连接AE,将线段AE绕点E顺时针旋转90°得到EF,连接CF.
(1)如图1,点E在点B的左侧运动;
①当BE=2,BC=2√3时,则∠EAB=_________°;
②猜想线段CA,CF与CE之间的数量关系为_________.
中考数学压轴题之旋转(中考题型整理,突破提升)及详细答案
【答案】(1)详见解析;(2)FE·sin( -90°) 【解析】 【分析】 (1)由四边形 ABCD 是平行四边形得 AF∥ BE,所以∠ FAE=∠ BEA,由折叠的性质得 ∠ BAE=∠ FAE,∠ BEA=∠ FEA,所以∠ BAE=∠ FEA,故有 AB∥ FE,因此四边形 ABEF 是平行四 边形,又 BE=EF,因此可得结论; (2)根据点 M 在线段 BE 上和 EC 上两种情况证明∠ ENG=90°- ,利用菱形的性质得到
【答案】(1)证明见解析 (2)当旋转角等于 30°时,AB 与 A1B1 垂直. (3)理由见解析 【解析】 试题分析:(1)由等边三角形的性质得 AB=BB1,又因为 BB1=2BC,得出 AB=2BC; (2) 利用 AB 与 A1B1 垂直得∠ A1ED=90°,则∠ A1DE=90°-∠ A1=60°,根据对顶角相等得 ∠ BDC=60°,由于∠ B=60°,利用三角形内角和定理得∠ A1CB=180°-∠ BDC-∠ B=60°,所以 ∠ ACA1=90°-∠ A1CB=30°,然后根据旋转的定义得到旋转角等于 30°时,AB 与 A1B1 垂直; (3)由于 AB∥ CB1,∠ ACB1=90°,根据平行线的性质得∠ ADC=90°,在 Rt△ ADC 中,根据含
2020初中数学突破中考压轴题几何模型之旋转模型(5、26)
WORD 格式可编写
旋转提高专题
知识点一旋转结构全等
旋转中的基本图形
几何变换——旋转
利用旋转思想结构协助线
(一)共极点旋转模型( 证明基本思想“ SAS”)
等边三角形共极点
共极点等腰直角三角形
共极点等腰三角形
共极点等腰三角形
以上给出了各样图形连续变化图形,图中出现的两个暗影部分的三角形是全等三角形,此模型
需要注意的是利用“全等三角形”的性质进行边与角的转变
二利用旋转思想结构协助线
(1)依据相等的边先找出被旋转的三角形
(2)依据对应边找出旋转角度
(3)依据旋转角度画出对应的旋转的三角形
三旋转变换前后拥有以下性质:
(1)对应线段相等,对应角相等
(2)对应点地点的摆列序次同样
(3)随意两条对应线段所在直线的夹角都等于旋转角.
【例题精讲】
例1. 在四边形ABCD中,∠ADC=∠ABC=90°,AD=CD,DP⊥AB于P,若S ABCD=25,求DP的长。
例2. 如图,四边形ABCD是正方形,ABE是等边三角形,M为对角线BD上随意一点,将BM 绕点 B 逆时针旋转60获得BN,连结 AM 、CM、EN. A D
⑴求证: AMB ≌ ENB
N
⑵①当 M 点在哪处时,AM CM 的值最小;E
M
②当 M 点在哪处时,AM BM CM 的值最小,并说明原因;
B C
⑶当 AM BM CM 的最小值为 3 1 时,求正方形的边长.
方法总结 :
1、共极点的等线段中,最常用旋转思路,但也不能够思想定势,协助线表达顶用一般语言
2、旋转变换还用于办理:
①几何最值问题:几何最值两个重要公义依照是:两点之间线段最短和垂线段最短;
2020年中考九年级数学旋转压轴题专题复习(WORD版,包含答案)
四川省渠县三中 2020 年中考九年级数学旋转压轴题专题复习练习
1、填空或解答:点 B、C、E 在同一直线上,点 A、D 在直线 CE 的同侧,AB=AC,EC=ED,∠BAC=∠CED,直线 AE、BD 交于点 F.
(1)如图①,若∠BAC=60°,则∠AFB=;如图②,若∠BAC=90°,则∠ AFB= ;
(2)如图③,若∠BAC=α,则∠AFB=(用含α的式子表示);
(3)将图③中的△ABC绕点 C 旋转(点 F 不与点 A、B 重合),得图④或图⑤.在图④中,∠AFB与∠α的数量关系是∠AFB=90°;在图⑤中,∠AFB与∠ α的数量关系是.请你任选其中一个结论证明.
2、如图,等腰直角△ABC中,∠ABC=90°,点P 在AC 上,将△ABP绕顶点 B 沿顺时针方向旋转90°后得到△CBQ.
(1)求∠PCQ的度数;
(2)当AB=4,AP:PC=1:3 时,求 PQ 的大小;
(3)当点 P 在线段 AC 上运动时(P 不与 A 重合),请写出一个反映PA2,PC2,PB2之间关系的等式,并加以证明.
3、如图 1,已知△ABC中,AB=BC=1,∠ABC=90°,把一块含30°角的三角板 DEF 的直角顶点 D 放在AC 的中点上(直角三角板的短直角边为 DE,长直角边为 DF),将直角三角板 DEF 绕D 点按逆时针方向旋转.
(1)在图 1 中,DE 交AB 于M,DF 交BC 于N.①证明 DM=DN;②在这一过程中,直角三角板 DEF 与△ABC的重叠部分为四边形 DMBN,请说明四边形 DMBN 的面积是否发生变化?若发生变化,请说明是如何变化的;若不发生变化,求出其面积;(2)继续旋转至如图 2 的位置,延长 AB 交DE 于M,延长 BC 交DF 于N,DM=DN 是否仍然成立?若成立,请给出证明;若不成立,请说明理由;
中考数学压轴题100题精选及答案(全)
(2)已知点 在第一象限的抛物线上,求点 关于直线 对称的点的坐标;
(3)在(2)的条件下,连接 ,点 为抛物线上一点,且 ,求点 的坐标.
【019】如图所示,将矩形OABC沿AE折叠,使点O恰好落在BC上F处,以CF为边作正方形CFGH,延长BC至M,使CM=|CF—EO|,再以CM、CO为边作矩形CMNO
(3)在该二次函数的图象上是否存在点D,使四边形ABCD为直角梯形?若存在,求出点D的坐标;若不存在,请说明理由。
【007】如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(-3,4),
点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H.
(1)求直线AC的解析式;
【025】如图12,直线 与两坐标轴分别相交于A、B点,点M是线段AB上任意一点(A、B两点除外),过M分别作MC⊥OA于点C,MD⊥OB于D.
【013】如图,抛物线经过 三点.
(1)求出抛物线的解析式;
(2)P是抛物线上一动点,过P作 轴,垂足为M,是否存在P点,使得以A,P,M为顶点的三角形与 相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;
(3)在直线AC上方的抛物线上有一点D,使得 的面积最大,求出点D的坐标.
【014】在平面直角坐标中,边长为2的正方形 的两顶点 、 分别在 轴、 轴的正半轴上,点 在原点.现将正方形 绕 点顺时针旋转,当 点第一次落在直线 上时停止旋转,旋转过程中, 边交直线 于点 , 边交 轴于点 (如图).
中考数学压轴题100题精选及答案(全)
【006】如图13,二次函数 的图象与x轴交于A、B两点,与y轴交于点C(0,-1),ΔABC的面积为 。
(1)求该二次函数的关系式;
(2)过y轴上的一点M(0,m)作y轴的垂线,若该垂线与ΔABC的外接圆有公共点,求m的取值范围;
(2)连接BM,如图2,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围);
(3)在(2)的条件下,当t为何值时,∠MPB与∠BCO互为余角,并求此时直线OP与直线AC所夹锐角的正切值.
(1)图1中,四边形PEOF的面积S1=▲(用含k1、k2的式子表示);
(2)图2中,设P点坐标为(-4,3).
①判断EF与AB的位置关系,并证明你的结论;
②记 ,S2是否有最小值?若有,求出其最小值;若没有,请说明理由。
【022】一开口向上的抛物线与x轴交于A(m-2,0),B(m+2,0)两点,记抛物线顶点为C,且AC⊥BC.
【025】如图12,直线 与两坐标轴分别相交于A、B点,点M是线段AB上任意一点(A、B两点除外),过M分别作MC⊥OA于点C,MD⊥OB于D.
(1)试比较EO、EC的大小,并说明理由
中考数学中考数学压轴题知识点及练习题含答案(3)
一、中考数学压轴题
1.如图,在平面直角坐标系中,矩形ABCD 的顶点,A D 在坐标轴上,两点的坐标分别是点()0,,A m 点(),0,D m 且m 满足:322m m -+62=边AB 与x 轴交于点,E 点F 是边AD 上一动点,连接FB ,分别与x 轴,y 轴交于点,P 点,H 且FD BE =.
(1)求m 的值;
(2)若45,APF ∠=︒求证:AHF HFA ∠=∠;
(3)若点F 的纵坐标为,n 则线段HF 的长为 .(用含n 的代数式表示)
2.在平面直角坐标系中,抛物线2
4y mx mx n =-+(m >0)与x 轴交于A ,B 两点,点B 在点A 的右侧,顶点为C ,抛物线与y 轴交于点D ,直线CA 交y 轴于E ,且:3:4∆∆=ABC BCE S S .
(1)求点A ,点B 的坐标;
(2)将△BCO 绕点C 逆时针旋转一定角度后,点B 与点A 重合,点O 恰好落在y 轴上, ①求直线CE 的解析式;
②求抛物线的解析式.
3.如图1,已知,⊙O 是△ABC 的外接圆,AB=AC=10,BC=12,连接AO 并延长交BC 于点H .
(1)求外接圆⊙O 的半径;
(2)如图2,点D 是AH 上(不与点A ,H 重合)的动点,以CD ,CB 为边,作平行四边形CDEB ,DE 分别交⊙O 于点N ,交AB 边于点M .
①连接BN ,当BN ⊥DE 时,求AM 的值;
②如图3,延长ED 交AC 于点F ,求证:NM ·NF=AM ·MB ;
③设AM=x ,要使2ND -22DM <0成立,求x 的取值范围.
中考数学压轴题之初中数学 旋转(中考题型整理,突破提升)及详细答案
中考数学压轴题之初中数学旋转(中考题型整理,突破提升)及详细答案
一、旋转
1.阅读材料:小胖同学发现这样一个规律:两个顶角相等的等腰三角形,如果具有公共的顶角的顶点,并把它们的底角顶点连接起来则形成一组旋转全等的三角形.小胖把具有这个规律的图形称为“手拉手”图形.如图1,在“手拉手”图形中,小胖发现若∠BAC=
∠DAE,AB=AC,AD=AE,则BD=CE.
(1)在图1中证明小胖的发现;
借助小胖同学总结规律,构造“手拉手”图形来解答下面的问题:
(2)如图2,AB=BC,∠ABC=∠BDC=60°,求证:AD+CD=BD;
(3)如图3,在△ABC中,AB=AC,∠BAC=m°,点E为△ABC外一点,点D为BC中点,∠EBC=∠ACF,ED⊥FD,求∠EAF的度数(用含有m的式子表示).
【答案】(1)证明见解析;(2)证明见解析;(3)∠EAF =1
2 m°.
【解析】
分析:(1)如图1中,欲证明BD=EC,只要证明△DAB≌△EAC即可;
(2)如图2中,延长DC到E,使得DB=DE.首先证明△BDE是等边三角形,再证明
△ABD≌△CBE即可解决问题;
(3)如图3中,将AE绕点E逆时针旋转m°得到AG,连接CG、EG、EF、FG,延长ED到
M,使得DM=DE,连接FM、CM.想办法证明△AFE≌△AFG,可得∠EAF=∠FAG=1
2 m°.
详(1)证明:如图1中,
∵∠BAC=∠DAE,
∴∠DAB=∠EAC,
在△DAB和△EAC中,
AD AE DAB EAC AB AC ⎧⎪∠∠⎨⎪⎩
===,
中考数学(初中数学 旋转提高练习题)压轴题训练及详细答案
中考数学(初中数学旋转提高练习题)压轴题训练及详细答案
一、旋转
1.操作与证明:如图1,把一个含45°角的直角三角板ECF和一个正方形ABCD摆放在一起,使三角板的直角顶点和正方形的顶点C重合,点E、F分别在正方形的边CB、CD上,连接AF.取AF中点M,EF的中点N,连接MD、MN.
(1)连接AE,求证:△AEF是等腰三角形;
猜想与发现:
(2)在(1)的条件下,请判断MD、MN的数量关系和位置关系,得出结论.
结论1:DM、MN的数量关系是;
结论2:DM、MN的位置关系是;
拓展与探究:
(3)如图2,将图1中的直角三角板ECF绕点C顺时针旋转180°,其他条件不变,则(2)中的两个结论还成立吗?若成立,请加以证明;若不成立,请说明理由.
【答案】(1)证明参见解析;(2)相等,垂直;(3)成立,理由参见解析.
【解析】
试题分析:(1)根据正方形的性质以及等腰直角三角形的知识证明出CE=CF,继而证明出△ABE≌△ADF,得到AE=AF,从而证明出△AEF是等腰三角形;(2)DM、MN的数量关系是相等,利用直角三角形斜边中线等于斜边一半和三角形中位线定理即可得出结论.位置关系是垂直,利用三角形外角性质和等腰三角形两个底角相等性质,及全等三角形对应角相等即可得出结论;(3)成立,连接AE,交MD于点G,标记出各个角,首先证明出
MN∥AE,MN=AE,利用三角形全等证出AE=AF,而DM=AF,从而得到DM,MN数量相等的结论,再利用三角形外角性质和三角形全等,等腰三角形性质以及角角之间的数量关系得到∠DMN=∠DGE=90°.从而得到DM、MN的位置关系是垂直.
2020年全国各地中考数学压轴题按题型分类汇编平移旋转对称三大变换(解析版)
全国各地中考压轴题(选择、填空)按题型整理:
七、平移旋转对称三大变换
1.(2019•宜昌)如图,平面直角坐标系中,点B在第一象限,点A在x轴的正半轴上,∠
AOB=∠B=30°,OA=2,将△AOB绕点O逆时针旋转90°,点B的对应点B'的坐标是()
A.(﹣1,2+)B.(﹣,3)C.(﹣,2+)D.(﹣3,)解:如图,作B′H⊥y轴于H.
由题意:OA′=A′B′=2,∠B′A′H=60°,
∴∠A′B′H=30°,
∴AH′=A′B′=1,B′H=,
∴OH=3,
∴B′(﹣,3),
故选:B.
2.(2019•邵阳)如图,在Rt△ABC中,∠BAC=90°,∠B=36°,AD是斜边BC上的中
线,将△ACD沿AD对折,使点C落在点F处,线段DF与AB相交于点E,则∠BED 等于()
A.120°B.108°C.72°D.36°
解:∵在Rt△ABC中,∠BAC=90°,∠B=36°,
∴∠C=90°﹣∠B=54°.
∵AD是斜边BC上的中线,
∴AD=BD=CD,
∴∠BAD=∠B=36°,∠DAC=∠C=54°,
∴∠ADC=180°﹣∠DAC﹣∠C=72°.
∵将△ACD沿AD对折,使点C落在点F处,
∴∠ADF=∠ADC=72°,
∴∠BED=∠BAD+∠ADF=36°+72°=108°.
故选:B.
3.(2019•株洲)如图所示,在平面直角坐标系xOy中,在直线x=1处放置反光镜Ⅰ,在y
轴处放置一个有缺口的挡板Ⅱ,缺口为线段AB,其中点A(0,1),点B在点A上方,且AB=1,在直线x=﹣1处放置一个挡板Ⅲ,从点O发出的光线经反光镜Ⅰ反射后,通过缺口AB照射在挡板Ⅲ上,则落在挡板Ⅲ上的光线的长度为 1.5.
2020-2021大连中考数学压轴题之初中数学 旋转(中考题型整理,突破提升)
2020-2021大连中考数学压轴题之初中数学旋转(中考题型整理,突破提升)
一、旋转
1.(1)如图①,在矩形ABCD中,对角线AC与BD相交于点O,过点O作直线EF⊥BD,交AD于点E,交BC于点F,连接BE、DF,且BE平分∠ABD.
①求证:四边形BFDE是菱形;
②直接写出∠EBF的度数;
(2)把(1)中菱形BFDE进行分离研究,如图②,点G、I分别在BF、BE边上,且BG=BI,连接GD,H为GD的中点,连接FH并延长,交ED于点J,连接IJ、IH、IF、IG.试探究线段IH与FH之间满足的关系,并说明理由;
(3)把(1)中矩形ABCD进行特殊化探究,如图③,当矩形ABCD满足AB=AD时,点E是对角线AC上一点,连接DE、EF、DF,使△DEF是等腰直角三角形,DF交AC于点G.请直接写出线段AG、GE、EC三者之间满足的数量关系.
【答案】(1)①详见解析;②60°.(2)IH=3FH;(3)EG2=AG2+CE2.
【解析】
【分析】
(1)①由△DOE≌△BOF,推出EO=OF,∵OB=OD,推出四边形EBFD是平行四边形,再证明EB=ED即可.
②先证明∠ABD=2∠ADB,推出∠ADB=30°,延长即可解决问题.
(2)IH=3FH.只要证明△IJF是等边三角形即可.
(3)结论:EG2=AG2+CE2.如图3中,将△ADG绕点D逆时针旋转90°得到△DCM,先证明△DEG≌△DEM,再证明△ECM是直角三角形即可解决问题.
【详解】
(1)①证明:如图1中,
∵四边形ABCD是矩形,
2022年中考数学复习之挑战压轴题(填空题):图像的平移、折叠、旋转(含答案)
2022年中考数学复习之挑战压轴题(填空题):图像的平移、折
叠、旋转
一.填空题(共10小题)
1.(2021秋•鼓楼区校级期末)如图,在△ABC中,AB=AC,BC=6,tan∠ACB=2,点P在边AC上运动(可与点A,C重合),将线段BP绕点P逆时针旋转120°,得到线段DP,连接BD,CD,则CD长的最小值为.
2.(2021秋•历城区期末)如图,在矩形ABCD中,AB=3,AD=9,点E,F分别在边AD,BC上,且AE=2,沿直线EF翻折,点A的对应点A′恰好落在对角线AC上,点B的对应点为B′,分别在线段EF,A′B′上取点M,N,沿直线MN二次翻折,使点F与点E重合,则线段MN的长为.
3.(2021•綦江区校级三模)如图,在矩形ABCD中,E为AB边上的一点,将△ADE沿DE 翻折,得到△DEF,且F在BC边上,G为AD边上的一点,过点G作AD的垂线交DF 于点H,连接AH交DE于点P,连接AF,若AB=7,BF=3,HA平分∠GHF,则AG 的长度为.
4.(2021•马鞍山模拟)如图,将边长为4的正方形ABCD纸片沿EF折叠,点C落在AB
边上的点G处,点D与点H重合,CG与EF交于点P,取GH的中点Q连接PQ,则△GPQ的周长最小值是.
5.(2020•海安市模拟)如图,矩形ABCD中,AB=3,BC=4,点E是AB边上一点,且AE=,点F是边BC上的任意一点,把△BEF沿EF翻折,点B的对应点为G,连接AG,CG,则四边形AGCD的面积的最小值为.
6.(2021春•东阳市期末)在综合实践课上,小明把边长为2cm的正方形纸片沿着对角线AC剪开,如图1所示.然后固定纸片△ABC,把纸片△ADC沿AC的方向平移得到△A′D′C′,连A′B,D′B,D′C,在平移过程中:
人教备战中考数学压轴题之旋转(备战中考题型整理,突破提升)及详细答案
一、旋转真题与模拟题分类汇编(难题易错题)
1.如图l,在AABC中,∠ACB=90°,点P为ΔABC内一点.
(1)连接PB,PC,将ABCP沿射线CA方向平移,得到ΔDAE,点B,C,P的对应点分别为点D、A、E,连接CE.
①依题意,请在图2中补全图形;②如果BP⊥CE,BP=3,AB=6,求CE的长
(2)如图3,以点A为旋转中心,将ΔABP顺时针旋转60°得到△AMN,连接PA、PB、PC,当AC=3,AB=6时,根据此图求PA+PB+PC的最小值.
【答案】(1)①补图见解析;②;(2)
【解析】
(1)①连接PB、PC,将△BCP沿射线CA方向平移,得到△DAE,点B、C、P的对应点分别为点D、A、E,连接CE,据此画图即可;②连接BD、CD,构造矩形ACBD和
Rt△CDE,根据矩形的对角线相等以及勾股定理进行计算,即可求得CE的长;
(2)以点A为旋转中心,将△ABP顺时针旋转60°得到△AMN,连接BN,根据△PAM、△ABN都是等边三角形,可得PA+PB+PC=CP+PM+MN,最后根据当C、P、M、N四点共射线,PA+PB+PC的值最小,此时△CBN是直角三角形,利用勾股定理即可解决问题.
解:(1)①补全图形如图所示;
②如图,连接BD、CD
∵△BCP沿射线CA方向平移,得到△DAE,
∴BC∥AD且BC=AD,
∵∠ACB=90°,
∴四边形BCAD是矩形,∴CD=AB=6,
∵BP=3,∴DE=BP=3,
∵BP⊥CE,BP∥DE,∴DE⊥CE,
∴在Rt△DCE中,;
(2)证明:如图所示,
中考数学中考数学压轴题知识点-+典型题及答案(1)
一、中考数学压轴题
1.如图,在矩形ABCD 中,6AB cm =,8AD cm =,连接BD ,将ABD △绕B 点作顺时针方向旋转得到A B D '''△(B ′与B 重合),且点D '刚好落在BC 的延长上,A D ''与CD 相交于点E .
(1)求矩形ABCD 与A B D '''△重叠部分(如图1中阴影部分A B CE '')的面积; (2)将A B D '''△以每秒2cm 的速度沿直线BC 向右平移,如图2,当B ′移动到C 点时停止移动.设矩形ABCD 与A B D '''△重叠部分的面积为y ,移动的时间为x ,请你直接写出y 关于x 的函数关系式,并指出自变量x 的取值范围;
(3)在(2)的平移过程中,是否存在这样的时间x ,使得AA B ''△成为等腰三角形?若存在,请你直接写出对应的x 的值,若不存在,请你说明理由.
2.如图,在四边形ABCD 中,∠B=90°,AD//BC ,AD=16,BC=21,CD=13.
(1)求直线AD 和BC 之间的距离;
(2)动点P 从点B 出发,沿射线BC 以每秒2个单位长度的速度运动,动点Q 从点A 出发,在线段AD 上以每秒1个单位长度的速度运动,点P 、Q 同时出发,当点Q 运动到点D 时,两点同时停止运动,设运动时间为t 秒.试求当t 为何值时,以P 、Q 、D 、C 为顶点的四边形为平行四边形?
(3)在(2)的条件下,是否存在点P ,使△PQD 为等腰三角形?若存在,请直接写出相应的t 值,若不存在,请说明理由.
3.如图,AB ∥CD ,定点E ,F 分别在直线AB ,CD 上,平行线AB ,CD 之间有一动点P . (1)如图1,当P 点在EF 的左侧时,∠AEP ,∠EPF ,∠PFC 满足数量关系为 ,如图2,当P 点在EF 的右侧时,∠AEP ,∠EPF ,∠PFC 满足数量关系为 . (2)如图3,当∠EPF =90°,F P 平分∠EFC 时,求证:EP 平分∠AEF ;
2023学年人教中考数学重难点题型分类 专题05 旋转重难点题型分类
专题05 旋转重难点题型分类
专题简介:本份资料包含《旋转》这一章在各次期中、期末考试中常考的填空、选则题和主流中档大题,具体包含的题型有中心对称图形、利用旋转的性质求角度和边长、坐标系中的图形旋转、旋转的中档大题、旋转的综合压轴题这五类题型。
题型一:中心对称图形
1.随着人民生活水平的提高,我国拥有汽车的居民家庭也越来越多,下列汽车标志中,是中心对称图形的是()
A. B. C.
D.
【解答】解:A、是轴对称图形,也是中心对称图形,故本选项正确;
B、是轴对称图形,不是中心对称图形,故本选项错误;
C、是轴对称图形,不是中心对称图形,故本选项错误;
D、不是轴对称图形,是中心对称图形,故本选项错误.
故选:A.
2.下列美丽的图案中,既是轴对称图形又是中心对称图形的个数有()
A.1个B.2个C.3个
D.4个
【解答】解:从左数第一、四个是轴对称图形,也是中心对称图形.第二是轴对称图形,不是中心对称图形,第三个图形是中心对称图形不是轴对称图形.
故选:B.
3.下列图案中既是中心对称图形,又是轴对称图形的是()
A. B.
C. D.
【解答】解:A、是轴对称图形,不是中心对称图形,故本选项不合题意;
B、不是轴对称图形,是中心对称图形,故本选项不合题意;
C、既是轴对称图形,又是中心对称图形,故
本选项符合题意;
D、是轴对称图形,不是中心对称图形,故本选项不合题意.
故选:C.
4.下列图形中,既是轴对称又是中心对称的图形是()
A.正三角形B.矩形C.平行四边形D.正五边形
【解答】解:A、正三角形是轴对称图形,不是中心对称图形,故此选项错误;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、旋转真题与模拟题分类汇编(难题易错题)
1.(1)如图①,在矩形ABCD中,对角线AC与BD相交于点O,过点O作直线EF⊥BD,交AD于点E,交BC于点F,连接BE、DF,且BE平分∠ABD.
①求证:四边形BFDE是菱形;
②直接写出∠EBF的度数;
(2)把(1)中菱形BFDE进行分离研究,如图②,点G、I分别在BF、BE边上,且BG=BI,连接GD,H为GD的中点,连接FH并延长,交ED于点J,连接IJ、IH、IF、IG.试探究线段IH与FH之间满足的关系,并说明理由;
(3)把(1)中矩形ABCD进行特殊化探究,如图③,当矩形ABCD满足AB=AD时,点E是对角线AC上一点,连接DE、EF、DF,使△DEF是等腰直角三角形,DF交AC于点G.请直接写出线段AG、GE、EC三者之间满足的数量关系.
【答案】(1)①详见解析;②60°.(2)IH=3FH;(3)EG2=AG2+CE2.
【解析】
【分析】
(1)①由△DOE≌△BOF,推出EO=OF,∵OB=OD,推出四边形EBFD是平行四边形,再证明EB=ED即可.
②先证明∠ABD=2∠ADB,推出∠ADB=30°,延长即可解决问题.
(2)IH=3FH.只要证明△IJF是等边三角形即可.
(3)结论:EG2=AG2+CE2.如图3中,将△ADG绕点D逆时针旋转90°得到△DCM,先证明△DEG≌△DEM,再证明△ECM是直角三角形即可解决问题.
【详解】
(1)①证明:如图1中,
∵四边形ABCD是矩形,
∴AD∥BC,OB=OD,
∴∠EDO=∠FBO,
在△DOE和△BOF中,
EDO FBO OD OB
EOD BOF ∠∠⎧⎪⎨⎪∠∠⎩
=== , ∴△DOE ≌△BOF ,
∴EO =OF ,∵OB =OD ,
∴四边形EBFD 是平行四边形,
∵EF ⊥BD ,OB =OD ,
∴EB =ED ,
∴四边形EBFD 是菱形.
②∵BE 平分∠ABD ,
∴∠ABE =∠EBD ,
∵EB =ED ,
∴∠EBD =∠EDB ,
∴∠ABD =2∠ADB ,
∵∠ABD +∠ADB =90°,
∴∠ADB =30°,∠ABD =60°,
∴∠ABE =∠EBO =∠OBF =30°,
∴∠EBF =60°.
(2)结论:IH
=3FH .
理由:如图2中,延长BE 到M ,使得EM =EJ ,连接MJ .
∵四边形EBFD 是菱形,∠B =60°,
∴EB =BF =ED ,DE ∥BF ,
∴∠JDH =∠FGH ,
在△DHJ 和△GHF 中,
DHG GHF DH GH
JDH FGH ∠∠⎧⎪⎨⎪∠∠⎩
=== , ∴△DHJ ≌△GHF ,
∴DJ =FG ,JH =HF ,
∴EJ =BG =EM =BI ,
∴BE =IM =BF ,
∵∠MEJ =∠B =60°,
∴△MEJ 是等边三角形,
∴MJ =EM =NI ,∠M =∠B =60°
在△BIF 和△MJI 中,
BI MJ B M BF IM ⎧⎪∠∠⎨⎪⎩
===,
∴△BIF ≌△MJI ,
∴IJ =IF ,∠BFI =∠MIJ ,∵HJ =HF ,
∴IH ⊥JF ,
∵∠BFI +∠BIF =120°,
∴∠MIJ +∠BIF =120°,
∴∠JIF =60°,
∴△JIF 是等边三角形,
在Rt △IHF 中,∵∠IHF =90°,∠IFH =60°,
∴∠FIH =30°,
∴IH
=3FH .
(3)结论:EG 2=AG 2+CE 2.
理由:如图3中,将△ADG 绕点D 逆时针旋转90°得到△DCM ,
∵∠FAD +∠DEF =90°,
∴AFED 四点共圆,
∴∠EDF =∠DAE =45°,∠ADC =90°,
∴∠ADF +∠EDC =45°,
∵∠ADF =∠CDM ,
∴∠CDM +∠CDE =45°=∠EDG ,
在△DEM 和△DEG 中,
DE DE EDG EDM DG DM ⎧⎪∠∠⎨⎪⎩
=== , ∴△DEG ≌△DEM ,
∴GE =EM ,
∵∠DCM =∠DAG =∠ACD =45°,AG =CM ,
∴∠ECM =90°
∴EC 2+CM 2=EM 2,
∵EG =EM ,AG =CM ,
∴GE 2=AG 2+CE 2.
【点睛】
考查四边形综合题、矩形的性质、正方形的性质、菱形的判定和性质,等边三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形,学会转化的思想思考问题.
2.在平面直角坐标中,边长为2的正方形OABC的两顶点A、C分别在y轴、x轴的正半轴上,点O在原点.现将正方形OABC绕O点顺时针旋转,当A点一次落在直线y x
=上时停止旋转,旋转过程中,AB边交直线y x
=于点M,BC边交x轴于点N(如图).
(1)求边OA在旋转过程中所扫过的面积;
(2)旋转过程中,当MN和AC平行时,求正方形OABC旋转的度数;
(3)设MBN
∆的周长为p,在旋转正方形OABC的过程中,p值是否有变化?请证明你的结论.
【答案】(1)π/2(2)22.5°(3)周长不会变化,证明见解析
【解析】
试题分析:(1)根据扇形的面积公式来求得边OA在旋转过程中所扫过的面积;
(2)解决本题需利用全等,根据正方形一个内角的度数求出∠AOM的度数;
(3)利用全等把△MBN的各边整理到成与正方形的边长有关的式子.
试题解析:(1)∵A点第一次落在直线y=x上时停止旋转,直线y=x与y轴的夹角是45°,
∴OA旋转了45°.
∴OA在旋转过程中所扫过的面积为
2
452
3602ππ
⨯
=.
(2)∵MN∥AC,
∴∠BMN=∠BAC=45°,∠BNM=∠BCA=45°.
∴∠BMN=∠BNM.∴BM=BN.
又∵BA=BC,∴AM=CN.
又∵OA=OC,∠OAM=∠OCN,∴△OAM≌△OCN.
∴∠AOM=∠CON=1
2(∠AOC-∠MON)=
1
2
(90°-45°)=22.5°.
∴旋转过程中,当MN和AC平行时,正方形OABC旋转的度数为45°-22.5°=22.5°.(3)在旋转正方形OABC的过程中,p值无变化.
证明:延长BA交y轴于E点,