第5章塑性成形工艺

合集下载

第五章刚塑性有限元法基本理论与模拟方法

第五章刚塑性有限元法基本理论与模拟方法
❖ 由于刚塑性模型假设,对一般的体积不可压缩材料,因为其静 水压力与体积应变率无关,如要计算应力张量,还必须进行应 力计算的处理。
塑性成形过程 计算机数值模拟
第五章 刚塑性有限元法基本理论与模拟方法
❖ 从数学的角度来讲,有限元法是解微分方程的一种数值方法。它的 基本思想是:在整个求解区域内要解某一微分方程很困难(即求出 原函数)时,先用适当的单元将求解区域进行离散化,在单元内假 定一个满足微分方程的简单函数作为解,求出单元内各点的解;然 后,再考虑各单元间的相互影响,最后求出整个区域的场量。
两个或一个事先得到满足,而将其余的一个或两个,通过拉格朗日
乘子引入泛函中,组成新的泛函,真实解使泛函取驻值,这就是不
完全广义变分原理。
❖ 在选择速度场时应变速率与速度的关系(1)式和速度边界条(3)式容 易满足,而体积不可压缩条件(2)式难于满足。因此,可以把体积 不可压缩条件用拉格朗日乘子入引入到泛函中,得到新泛函:
够的工程精度的前提下,可提高计算效率。
塑性成形过程 计算机数值模拟
第五章 刚塑性有限元法基本理论与模拟方法
❖ 由于刚塑性有限元法采用率方程表示,材料变形后的构形可通 过在离散空间对速度的积分而获得,从而避开了应变与位移之 间的几何非线性问题。
❖ 由于忽略了弹性变形,刚塑性有限元法仅适合于塑性变形区的 分析,不能直接分析弹性区的变形和应力状态,也无法处理卸 载和计算残余应力与变形。
在满足: (1) 速度-应变速率关系
ij
1 2
ui, j
u j,i
(2) 体积不可压缩条件 (3) 速度边界条件
V kk 0
ui ui
(在 Su 上)
的一切动可容场
ui*j

塑性应力学---第五章 真实应力-应变曲线

塑性应力学---第五章 真实应力-应变曲线
概念:
准静态塑性变形:塑性变形速率小于 2 103 妙 时 变形过程称 为准静态塑性变形。
拉伸图:简单拉伸实验中记录下来的拉伸力和试件所发生的绝 对伸长量之间的关系曲线称为拉伸图。
条件应力:单拉实验中拉伸力除以试件原始横截面积。
工程应变:单拉实验中伸长量除以试件的原始长度(标距部 分)。
真实应力:单拉实验中某一时刻的载荷除以此刻试件的横截面 积。 沈阳航空工业学院 主讲人:韩志仁
塑性成形力学基础
p
强度极限
弹性变形阶段oe(线性和非线性);
屈服应力 屈服平台 弹性极限 比例极限
均匀塑性变形阶段eb;
集中变形阶段bk;
e
沈阳航空工业学院
主讲人:韩志仁
塑性成形力学基础
5.2拉伸时真实应力-应变曲线
真实应力与条件应力(工程应力)的关系:
0(1 )
真实应变(对数应变)的特性:
塑性成形力学基础
第五章 真实应力-应变曲线
沈阳航空工业学院
主讲人:韩志仁
塑性成形力学基础
本章主要内容
• • • • 拉伸图和条件应力-应变曲线 拉伸时真实应力-应变曲线 拉伸真实应力-应变曲线塑性失稳点的特点 真实应力-应变曲线的简化模型
沈阳航空工业学院
主讲人:韩志仁
塑性成形力学基础
5.1拉伸图和条件应力-应变曲线
σ
b
1Leabharlann 沈阳航空工业学院主讲人:韩志仁
塑性成形力学基础
5.4真实应力-应变曲线的简化模型
1.理想全弹性材料
沈阳航空工业学院
主讲人:韩志仁
塑性成形力学基础 2.理想刚塑性材料
沈阳航空工业学院
主讲人:韩志仁
塑性成形力学基础

《高分子材料成形工艺学》各章复习思考题汇总

《高分子材料成形工艺学》各章复习思考题汇总

绪论1.简述塑料、化学纤维和橡胶的分类和主要品种。

2.简述塑料、化学纤维和橡胶所涉及的主要特异性品质指标名称。

3.简要说明化学纤维的线密度和相对强度概念。

4.简述超细纤维的特点和复合纺丝制造方法。

5.简要说明高分子材料成形基本过程和成形过程中的变化。

6.成形制品时选择材料及其成形工艺应遵循哪些基本原则?并简要说明。

第一篇高分子成形基础理论第一章高分子材料的成形品质1. 高分子的可挤出性受哪些因素的影响?通常如何评价高分子的可挤出性?2. 挤出细流类型有哪些类型?什么类型是正常纺丝的细流类型?如何实现?3. 可纺性与哪些因素相关?如何相关?4. 可纺性理论包括哪两种断裂机理?请简要说明。

5. 什么是模塑性?试画图并说明高分子的最佳模塑区域。

6. 评价模塑性通常采用什么方法?请简要说明方法原理。

7. 聚合物的拉伸曲线有哪三种基本类型?哪两种拉伸曲线具有可延性?如何获得该两种拉伸曲线?8. 什么是可延性?高分子为什么具有可延性?如何评价可延性?9. 可延性的影响因素有哪些?如何影响?10. 试分析高分子成形过程中应如何对待高分子的粘弹性。

11. 试说明高分子成形过程中应如何利用高分子的松弛特性?12. 高分子应变硬化的物理基础是什么?高分子成形中哪些工艺利用了应变硬化?13. 合成纤维的成形中经常采用多级拉伸,试问有什么意义?多级拉伸应如何实施?14. 高分子的热膨胀系数随温度的变化表现出什么样的规律?15. 简要说明高分子比热容随温度的变化关系?16. 为什么非晶聚合物的导热系数随温度的变化规律在玻璃态和高弹态不同?第二章高分子成形流变学基础1. 区别三组概念:①剪切流动和拉伸流动;②稳态流动与非稳态流动;③等温流动与非等温流动。

2. 非牛顿流体有几种类型?分别表现出怎样的流动行为?3. 高分子流体在宽剪切速率范围内为什么往往会出现第一牛顿区、非牛顿区和第二牛顿区三个区域的流变特征?4. 什么是宾汉流体?有什么样的流动特征?为什么表现出那样的流动特征?5. 什么是幂律方程?幂律方程的K 和n 有什么特征?6. 时间依赖性流体有哪两种?它们为什么会出现时间依赖性?7. 测得一种热塑性聚合物熔体在注射成形条件下的流体稠度K=64,n=0.65,该熔体通过直径4mm 、长75mm 圆形等截面喷孔时的体积流率为5×10-5m 3·s -1,试计算管壁处的剪应力、剪切速率和整个圆管中的流速分布函数。

设计材料及加工工艺+答案

设计材料及加工工艺+答案

2014设计材料及加工工艺期末总结第一章概论1.产品造型设计的三个要素及相互关系。

产品设计的三要素:产品的功能、产品的形态、材料与工艺功能与形态建立在材料与工艺基础上,各种材料的的特性因加工特性不同而体现出不同的材质美,从而影响产品造型设计。

2.材料的特性有哪些?固有特性:物理特性:(1)物理性能:密度、硬度(2)(力学)机械性能:强度、弹性和塑性、脆性和韧性、刚度、耐磨性等(3)热性能:导热性、耐热性、热胀性、耐燃性、耐火性(4)电性能:导电性、电绝缘性(5)磁性能:铁磁性、顺磁性、抗磁性(6)光性能:对光的反射、折射、透射化学特性:(1)抗氧化性(2)耐腐蚀性(3)耐候性派生特性:(1)加工特性(2)感觉特性(3)环境特性(4)经济性第二章材料的工艺特性1 什么是材料的工艺性?材料适应各种工艺处理要求的能力。

材料的工艺性包括成型加工工艺、连接工艺、表面处理工艺2 材料成型加工工艺的选择。

(1)去除成形(减法成形)在坯料成形过程中,将多余部分去除而获得所需形态,如车削、铣削、刨削、磨削等。

(2)堆积成形(加法成形)通过原料堆积获得所需形态。

如铸造、焙烧、压制、注射成型。

(3)塑性成形坯料在成形过程中不发生重量变化,只有形状的变化,如弯曲、压制、压延等。

3 材料表面处理的目的、工艺类型及选择。

表面处理的目的:(1)保护产品(2) 赋予产品一定的感觉特性工艺类型及选择A 表面精加工工艺技术:研磨、抛光、喷砂、蚀刻效果:平滑、光亮、肌理B 表面层改质工艺技术:化学处理、阳极氧化效果:特定的色彩、光泽C 表面被覆技术:镀层、涂层(PVD、CVD)、珐琅、表面覆贴效果:覆盖产品材料,表面呈现覆贴材料的效果。

4 快速成型的原理及特点,了解几种快速成型技术。

快速成型的原理:是基于离散、堆积原理而实现快速加工原型或零件的加工技术。

过程:1)利用计算机辅助设计(CAD)技术,建立零件的三维模型;2)对该三维(3D)模型进行分层离散处理,将三维模型数据变成二维(2D)平面数据。

第10章_锻造成形分析

第10章_锻造成形分析

第一节 塑性成形理论基础
三、冷变形、热变形、温变形
1.冷变形 金属在回复温度以下进行的塑性 变形称为冷变形。变形过程中会出现加工硬化。 2.热变形 在再结晶温度以上进行的塑性变 形称为热变形。金属在热变形过程中既有加工硬 化又有再结晶,但加工硬化会被回复和再结晶完 全消除 3.温变形 即金属在高于回复温度和低于再 结晶温度范围内进行的塑性成形过程,温变形过 程中有加工硬化及回复现象,但无再结晶,硬化 只得到部分消除。
第一节 塑性成形理论基础
二、加工硬化、回复和再结晶
1.加工硬化(Process Induration) 金属在冷变形(低于再结晶温度)加工时,随 着变形量的增加,金属材料的强度、硬度提高,但 塑性、韧性下降,这种现象称为加工硬化。如图53所示。 2.回复(Revert)和再结晶(Recrystal) (1) 回复 将冷成形后的金属加热至一定温度 后,使原子回复到平衡位置,晶内残余应力大大减 小的现象,称为回复,如图5-4c所示。回复温度约 为(0.25-0.3)T熔(K)。 (2) 再结晶 塑性变形后金属被拉长了的晶粒 出现重新生核、结晶,变为等轴晶粒的现象,称为 再结晶,如图5-4d所示。再结晶温度一般为0.4T熔 (K)以上。
第二节 金属塑性成形方法
(一)自由锻基本工序 4 错移 错移是指将坯料的一部分相对于另一部分平移错开, 但仍保持轴线平行的锻造工序。
5 锻接
锻接是指将坯料在炉内加热至高温后用锤快击,使两 坯料在固相状态下结合的方法。
6 弯曲 弯曲是指采用一定的工模具将坯料弯成规定外形的锻 造工序。
第二节 金属塑性成形方法
第五章 塑性成形工艺
第十章 锻压成形
塑性成形 (Plasticity Forming) (锻压成形)是 金属材料成形方法之一。它是指对金属材料施加外力 作用,利用金属的塑性使其产生塑性变形,从而获得 具有一定的形状、尺寸、组织和性能的工件或毛坯的 加工方法,也称为塑性加工或压力加工。常见的塑性 成形方法有:锻造、冲压、挤压 (3) 、轧制、拉拔等 ( 图5-1)。

金属塑性成形原理及工艺

金属塑性成形原理及工艺

2
4.锻造
锻造的示意图如图 4 所示。 锻造可以分为自由锻造和模锻。自由锻造一般是在锤锻或者水压机上,利用简单的工具 将金属锭或者块料锤成所需要形状和尺寸的加工方法。 自由锻造不需要专用模具, 因而锻件 的尺寸精度低、生产效率不高。模锻是在模锻锤或者热模锻压力机上利用模具来成形的。金 属的成形受到模具的控制,因而其锻件的外形和尺寸精度高,生产效率高,适用于大批量生 产,模锻又可以分为开式模锻和闭式模锻。
4
变形问题和轴对程问题; (5)屈服准则:屈雷斯加屈服准则、密席斯屈服准则、屈服准则的几何表达、平面问 题和轴对程问题中屈服准则的简化; (6)本构方程:弹性应力应变关系、塑性变形时应力应变关系的特点、塑性变形的增 量理论、塑性变形的全量理论;
六、课程要求
金属塑性加工原理的任务是研究塑性成形中共同的规律性问题, 就是在阐述应力、 应变 理论以及屈服准则等塑性理论的基础上, 研究塑性加工中有关力学问题的各种解法, 分析变 形体内的应力和应变分布,确定变形力和变形功,为选择设备和模具设计提供依据。所以, 要求大家: (1) 掌握金属塑性变形的金属学基础, 具体的说就是金属的结构和金属塑性变形机理。 (2)了解影响金属塑性和塑性成形的主要因素。 (3)掌握塑性变形的力学基础:包括应力分析、应变分析、屈服准则和应力应变关系。 (4)掌握塑性成形力学问题的各种解法以及其在具体工艺中的应用。
图4
5.冲压
冲压又可以分为拉深、弯曲、剪切等等。其示意图见图 5。 拉深等成形工序是在曲柄压力机上或者油压机上用凸模把板料拉进凹模中成形, 用以生 产各种薄壁空心零件。 弯曲是坯料在弯矩的作用下成形,如板料在模具中的弯曲成形、板带材的折弯成形、钢 材的矫直等等。 剪切是指坯料在剪切力作用下进行剪切变形,如板料在模具中的冲孔、落料、切边、板 材和钢材的剪切等等。

第五章金属的塑性和变形抗力

第五章金属的塑性和变形抗力

第五章 金属的塑性和变形抗力从金属成形工艺的角度出发,我们总希望变形的金属或合金具有高的塑性和低的变形抗力。

随着生产的发展,出现了许多低塑性、高强度的新材料,需要采取相应的新工艺进行加工。

因此研究金属的塑性和变形抗力,是一个十分重要的问题。

本章的目的在于阐明金属塑性和变形抗力的概念,讨论各种因素对它们的影响。

§5.1 塑性、塑性指标、塑性图和变形抗力的概念所谓塑性,是指固体材料在外力作用下发生永久变形而又不破坏其完整性的能力。

人们常常容易把金属的塑性和硬度看作成反比的关系,即认为凡是硬度高的金属其塑性就差。

当然,有些金属是这样的,但并非都是如此,例如下列金属的情况: Fe HB =80 ψ=80%Ni HB =60 ψ=60%Mg HB =8 ψ=3%Sb HB =30 ψ=0%可见Fe 、Ni 不但硬度高,塑性也很好;而Mg 、Sb 虽然硬度低,但塑性也很差。

塑性是和硬度无关的一种性能。

同样,人们也常把塑性和材料的变形抗力对立起来,认为变形抗力高塑性就低,变形抗力低塑性就高,这也是和事实不符合的。

例如奥氏体不锈钢在室温下可以经受很大的变形而不破坏,既这种钢具有很高的塑性,但是使它变形却需要很大的压力,即同时它有很高的变形抗力。

可见,塑性和变形抗力是两个独立的指标。

为了衡量金属塑性的高低,需要一种数量上的指标来表示,称塑性指标。

塑性指标是以金属材料开始破坏时的塑性变形量来表示。

常用的塑性指标是拉伸试验时的延伸率δ和断面缩小率ψ,δ和ψ由下式确定: %100l l l 00k ×−=δ (5.1) %100F F F 0K 0×−=ψ (5.2) 式中l 0、F 0——试样的原始标距长度和原始横截面积;l K 、F K ——试样断裂后标距长度和试样断裂处最小横截面积。

实际上,这两个指标只能表示材料在单向拉伸条件下的塑性变形能力。

金属的塑性指标除了用拉伸试验之外,还可以用镦粗试验、扭转试验等来测定。

塑性成型

塑性成型

第一章1.什么是金属的塑性?什么是塑性成形?塑性成形有何特点?塑性----在外力作用下使金属材料发生塑性变形而不破坏其完整性的能力;塑性变形----当作用在物体上的外力取消后,物体的变形不能完全恢复而产生的残余变形;塑性成形----金属材料在一定的外力作用下,利用其塑性而使其成型并获得一定力学性能的加工方法,也称塑性加工或压力加工;塑性成形的特点:①组织、性能好②材料利用率高③尺寸精度高④生产效率高2.试述塑性成形的一般分类。

Ⅰ.按成型特点可分为块料成形(也称体积成形)和板料成型两大类1)块料成型是在塑性成形过程中靠体积转移和分配来实现的。

可分为一次成型和二次加工。

一次加工:①轧制----是将金属坯料通过两个旋转轧辊间的特定空间使其产生塑性变形,以获得一定截面形状材料的塑性成形方法。

分纵轧、横轧、斜轧;用于生产型材、板材和管材。

②挤压----是在大截面坯料的后端施加一定的压力,将金属坯料通过一定形状和尺寸的模孔使其产生塑性变形,以获得符合模孔截面形状的小截面坯料或零件的塑性成形方法。

分正挤压、反挤压和复合挤压;适于(低塑性的)型材、管材和零件。

③拉拔----是在金属坯料的前端施加一定的拉力,将金属坯料通过一定形状、尺寸的模孔使其产生塑性变形,以获得与模孔形状、尺寸相同的小截面坯料的塑性成形方法。

生产棒材、管材和线材。

二次加工:①自由锻----是在锻锤或水压机上,利用简单的工具将金属锭料或坯料锻成所需的形状和尺寸的加工方法。

精度低,生产率不高,用于单件小批量或大锻件。

②模锻----是将金属坯料放在与成平形状、尺寸相同的模腔中使其产生塑性变形,从而获得与模腔形状、尺寸相同的坯料或零件的加工方法。

分开式模锻和闭式模锻。

2)板料成型一般称为冲压。

分为分离工序和成形工序。

分离工序:用于使冲压件与板料沿一定的轮廓线相互分离,如冲裁、剪切等工序;成型工序:用来使坯料在不破坏的条件下发生塑性变形,成为具有要求形状和尺寸的零件,如弯曲、拉深等工序。

金属塑性成形

金属塑性成形

1、金属塑性成形的定义
改变形状 金属坯料
产生
塑性变形
达到
改变尺寸 改善性能
外力
得到 毛坯 零件
又称为压力加工。
2、塑性成形加工的特点及应用
(1)特点 优点: a)与铸造相比:力学性能高,内部缺陷被压合, 晶粒显著细化。 b)与切削加工比:材料的利用率和生产率高。 缺点: a) 形状不能太复杂 b) 坯料塑性要好 (2)应用 汽车、拖拉机、宇航、军工、电器、桥梁、建筑等
回复只能部分消除加工硬化
3、再结晶 温度上升到一定温度时,开始以某些 碎晶或杂质为核心生长成新的晶粒,加工 硬化完全消除,这个过程称为再结晶。 (1)再结晶的结果 a)原子热振动加剧 b)以某些质点为核心重结晶 c)加工硬化全部消除 (2)再结晶温度 金属经大量塑性变形后开始再结晶的 最低温度。
T再=(0.4-0.5)T熔
自由锻、模锻、胎模

(4)冲压
利用冲模将金属板料切离或变形为各种冲压件。
(5)拉拔
将金属坯料从拉模的模孔中拉出而成形为各种线 材、薄壁管材、特殊截面型材等
第一节
金属塑性变形
• 塑性变形的实质 • 冷变形和热变形 • 金属的可锻性及影响因素
一、金属塑性成形的实质
塑性:金属在外力作用下,产生永久变形而不破 坏的能力。 金属变形过程: a)金属材料在外力作用下发生弹性变形 b)当外力超过一定值后产生塑性变形 c)外力继续加大,发生断裂 金属塑性变形的实质: a)晶粒内部滑移和孪生
纤维组织合理分布
(1)零件最大拉应 力方向应与锻造流线平 行 (2)零件最大剪切 应力方向应与锻造流线 垂直 (3)零件外形轮廓 应与锻造纤维的分布相 符合而不被切断。
三、冷变形和热变形

材料成形工艺基础最新精品课件第五章金属塑性成形理论基础

材料成形工艺基础最新精品课件第五章金属塑性成形理论基础
图5-3孪生变形示意图
2. 多晶体的塑性变形
多晶体的塑性变形是由于晶界的存在和 各晶粒晶格位向的不同,其塑性变形过程比 单晶体的塑性变形复杂得多。在外力作用下, 多晶体的塑性变形首先在晶格方向有利于滑 移的晶粒A内开始,然后,才在晶格方向较 为不利的晶粒B、C内滑移。由于多晶体中 各晶粒的晶格位向不同,滑移方向不一致, 各晶粒间势必相互牵制阻扰。为了协调相邻 晶粒之间的变形,使滑移得以继续进行,便 图5-4 多晶体塑性变形过程示意图 会出现晶粒彼此间相对的移动和转动。因此, 多晶体的塑性变形,除晶粒内部的滑移和转 动外,晶粒与晶粒之间也存在滑移和转动。
图5-6 回复和再结晶示意图
(3)晶粒长大 在结晶退火后的金属组织一般为细小均匀的等 轴晶。如果温度继续升高,或延长保温时间,则在结晶后的晶粒 又会长大而形成粗大晶粒,从而使金属的强度、硬度和塑性降低。 所以要正确选择再结晶温度和加热时间的长短。
5.2.2 冷变形和热变形后金属的组织与性能
金属在再结晶温度以下进行的塑性变形称为冷变形,在再结晶以 上进行的塑性变形称为热变形。
图5-7 冲压件的制耳
(4)残余内应力 残余内应力是指去除外力后,残留在金属内 部的应力,它主要是由于金属在外力作用下变形不均匀而造成的。 残余内应力的存在,使金属原子处于一种高能状态,具有自发恢 复到平衡状态的倾向。在低温下,原子活动能力较低,这种恢复 现象难以觉察,但是,当温度升高到某一程度后,金属原子获得 热能而加剧运动。金属组织和性能将会发生一系列变化。
1. 锻造比 锻造比是锻造生产中代表金属变形程度大小的一个参数,一 般是用锻造过程中的典型工序的变形程度来表示(Y)。如拔长时, 锻造比Y拔=F0/F;镦粗时,锻造比Y镦=H0/H。(式中,H0、F0分别为坯 料变形前的高度和横截面积,H、F分别为坯料变形后的高度和横截面 积)。

塑性力学知识点13

塑性力学知识点13

《塑性力学及成形原理》知识点汇总第一章绪论1.塑性的基本概念2.了解塑性成形的特点第二章金属塑性变形的物理基础1.塑性和柔软性的区别和联系2.塑性指标的表示方法和测量方法3.磷、硫、氮、氢、氧等杂质元素对金属塑性的影响4.变形温度对塑性的影响;超低温脆区、蓝脆区、热脆区、高温脆区的温度范围补充扩展:1.随着变形程度的增加,金属的强度硬度增加,而塑性韧性降低的现象称为:加工硬化2.塑性指标是以材料开始破坏时的塑性变形量来表示,通过拉伸试验可以的两个塑性指标为:伸长率和断面收缩率3.影响金属塑性的因素主要有:化学成分和组织、变形温度、应变速率、应力状态(变形力学条件)4.晶粒度对于塑性的影响为:晶粒越细小,金属的塑性越好5.应力状态对于塑性的影响可描述为(静水压力越大):主应力状态下压应力个数越多,数值越大时,金属的塑性越好6.通过试验方法绘制的塑性——温度曲线,成为塑性图第三章金属塑性变形的力学基础第一节应力分析1.塑性力学的基本假设2.应力的概念和点的应力状态表示方法3.张量的基本性质4.应力张量的分解;应力球张量和应力偏张量的物理意义;应力偏张量与应变的关系5.主应力的概念和计算;主应力简图的画法公式(...3.-.14..)应力张量不变量的计算...........122222223()2() x y zx y y z z x xy yz zx x y z xy yz zx x yz y zx z xyJ J Jσσσσσσσσστττσσστττστστστ=++=-+++++=+-++公式(...3.-.15..)应力状态特征方程.........321230J J J σσσ---= (当已知一个面上的应力为主应力时,另外两个主应力可以采用简便计算公式(...3.-.35..).的形式计算)6.主切应力和最大切应力的概念计算公式..(.3.-.25..).最大切应力.....)(21min max max σστ-= 7.等效应力的概念、特点和计算主轴坐标系中......公式..(.3.-.31..).8σ=== 任意坐标系中......公式..(.3.-.31a ...).σ=8.单元体应力的标注;应力莫尔圆的基本概念、画法和微分面的标注 9.应力平衡微分方程 第二节 应变分析1.塑性变形时的应变张量和应变偏张量的关系及其原因 2.应变张量的分解,应变球张量和应变偏张量的物理意义 2.对数应变的定义、计算和特点,对数应变与相对线应变的关系 3.主应变简图的画法 3.体积不变条件公式(...3.-.55..).用线应变....0x y z θεεε=++=;用对数应变.....(主轴坐标系中)........0321=∈+∈+∈ 4.小应变几何方程公式(...3.-.66..).1;()21;()21;()2x xy yx y yzzy z zx xz u u v x y x v v w y z yw w u z x zεγγεγγεγγ∂∂∂===+∂∂∂∂∂∂===+∂∂∂∂∂∂===+∂∂∂ 第三节 平面问题和轴对称问题1.平面应变状态的应力特点;纯切应力状态的应力特点、单元体及莫尔圆公式(...3.-.8.6.).12132()z m σσσσσ==+= 第四节 屈服准则1.四种材料的真实应力应变曲线 2.屈雷斯加屈服准则 公式(...3.-.96..).max 2s K στ== 3.米塞斯屈服准则公式(...3.-.10..1.).2222222262)(6)()()(K s zx yz xy x z z y y x ==+++-+-+-στττσσσσσσ 2221323222162)()()(K s ==-+-+-σσσσσσσ公式(...3.-.102...).s sσσσσ==== 4.两个屈服准则的相同点和差别点5.13s σσβσ-=,表达式中的系数β的取值范围 第五节 塑性变形时应力应变关系 1.塑性变形时应力应变关系特点 2.应变增量的概念,增量理论公式(...3.-.125...).'ij ij d d εσλ= 公式(...3.-.129...).)](21[z y x x d d σσσσεε+-=;xy xy d d τσεγ23= )](21[z x y y d d σσσσεε+-=;yz yz d d τσεγ23=)](21[y x z z d d σσσσεε+-=;zx zx d d τσεγ23=3.比例加载的定义及比例加载须满足的条件 第六节 塑性变形时应力应变关系 1.真实应力应变曲线的类型第四章 金属塑性成形中的摩擦1.塑性成形时摩擦的特点和分类;摩擦机理有哪些?影响摩擦系数的主要因素 2.两个摩擦条件的表达式3.塑性成形中对润滑剂的要求;塑性成形时常用的润滑方法 第五章 塑性成形件质量的定性分析 1.塑性成形件中的产生裂纹的两个方面2.晶粒度的概念;影响晶粒大小的主要因素及细化晶粒的主要途径 3.塑性成形件中折叠的特征 第六章 滑移线场理论简介1.滑移线与滑移线场的基本概念;滑移线的方向角和正、负号的确定 2.平面应变应力莫尔圆中应力的计算;公式(...7.-.1.).ωτωσσωσσ2cos 2sin 2sin K K K xy m y m x =+=-= 3.滑移线的主要特性;亨盖应力方程公式(...7.-.5.).2ma mb ab K σσω-=± 4.塑性区的应力边界条件;滑移线场的建立练习题一、应力1、绘制⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=410140002ij σ的单元体和应力莫尔圆,并标注微分面。

塑性成形原理课后答案

塑性成形原理课后答案

第一章1-10. 已知一点的应力状态10100015520⨯⎪⎪⎪⎭⎫ ⎝⎛--=ij σMPa ,试求该应力空间中122=+-z y x 的斜截面上的正应力n σ和切应力n τ为多少?解:若平面方程为Ax+By+Cz+D=0,则方向余弦为:222CB A A ++=l ,222CB A B ++=m ,222CB AC n ++=因此:312)(-211222=++=l ,322)(-212-222-=++=m ;322)(-212n 222=++= S x =σx l +τxy m +τxz n=3100325031200=⨯-⨯S y =τxy l +σy m +τzy n = 3350321503150=⨯+⨯S z =τxz l +τyz m +σz n=320032100-=⨯-11191000323200323350313100S S S -=-=⨯-⨯-⨯=++=n m l z y x σ125003200335031002222222=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=++=z y x S S S S4.1391000125002=⎪⎭⎫⎝⎛-=τ1-11已知OXYZ 坐标系中,物体内某点的坐标为(4,3,-12),其应力张量为:⎪⎪⎪⎭⎫⎝⎛--=1030205040100 ij σ,求出主应力,应力偏量及球张量,八面体应力。

解:=1J z y x σσσ++=100+50-10=140=2J 222xy xz yz y x z x z y τττσσσσσσ---++=100×50+50×(-10)+100×(-10)-402-(-20)2-302=600=3J 321σσσ=2222xy z xz y yz x xz yz xy z y x τστστστττσσσ---+ =-192000019200060014023=-+-σσσσ1=122.2,σ2=31.7,σ3=49.5 σm=140/3=46.7;7.5630203.3403.53⎪⎪⎪⎭⎫ ⎝⎛--=' ij σ ;7.460007.4607.46m ⎪⎪⎪⎭⎫ ⎝⎛=i σσ8=σm =46.71.39)()()(312132322218=-+-+-±=σσσσσστ 1-12设物体内的应力场为3126x c xy x +-=σ,2223xy c y -=σ,y x c y c xy 2332--=τ,0===zx yz z ττσ,试求系数c 1,c 2,c 3。

《材料工程基础》课件——第五章 金属的塑性加工(第5、6、7节)

《材料工程基础》课件——第五章 金属的塑性加工(第5、6、7节)
脂肪酸皂 石蜡等
3.5.4 拉拔工具
拉拔工具主要包括拉拔模和芯头。此二者的结构、 形状尺寸、表面质量与材质对制品的质量、产量、 成本等具有重要影响。
拉拔模
拉拔模
旋转模
辊式模 普通模(应用最多 )
弧线模:只用于细线的拉拔
锥形模:管、棒、型材和较粗的 线材拉拔
图 普通拉拔模的基本结构 (a)锥形模 (b)弧线模
空拉时壁厚增加或减少,主要取决于两个因素:
①圆周方向压应力:促使金属沿径向流动,导致管材壁厚增 加
②轴向拉应力:促使金属产生轴向延伸,并导致壁厚减薄。
这两个因素作用的强弱取决于各种变形条件。
③固定短芯头拉拔变形
变形分三部分:
AB C D
AB段:空拉区,主要是减径 变形,壁厚一般有所增加, 又称减径区。应力应变特点 与空拉时一样。 BC段:减壁区,此阶段外径 减小,内径不变,壁厚减薄。 应力应变特点与棒材拉拔时 一样。 CD段:定径区,为弹性变形 区。
②空拉时的应力与变形
应力状态:与圆棒拉拔时类似,即:周向、径向为
压,轴向为拉,但 ,且有

径向压应力的数值由管材外表面至内表面逐渐减小, 在内表面上为零。
周向应力由外表面向内逐渐增大。
轴向应力由变形区入口为零逐渐增加,在变形区出
口(模孔出口)处达到最大。
变形
按目的不同有: 减径空拉:目的是减径,主要用于中间道次,一般 认为拉拔后壁厚不变; 整径空拉:目的是精确控制制品的尺寸,减径量不 大(0.5~1),一般在最后道次进行; 定型空拉:目的是控制形状,主要用于异型管材拉 拔,即用于圆截面向异型截面过渡拉拔。
拉拔加工的特点
①拉拔制品的尺寸精度高,表面粗糙度低 ②工具与设备简单,维护方便,一机多用 ③适用于连续高速生产断面尺寸小的长尺产品(Al、

第5章-其他精密塑性成形技术

第5章-其他精密塑性成形技术
钛合金、铝合金、镁合金等零件的精密成形。
§5.5 超塑性模锻
5.5.1超塑性
超塑性是指材料在一定的内部条件和外部条件下,呈现
出异常低的流变抗力、异常高的流变性能的现象。超塑性通
常分为三类,即微细晶粒超塑性、相变超塑性、和其他超塑 性。后两者由于实现技术较复杂,应用受到限制,通常所讲 的超塑性多指前者。 微细晶粒超塑性应具有三个条件:材料具有等轴稳定
§5.1 多向模锻
实例:三通管接头成形过程中金属的流动变形情况
如图5.2所示,第一阶段金属 的流动特点主要是反挤、镦粗和 径向挤压成形。棒料在封闭模腔 中,由冲头Ⅰ和冲头Ⅱ首先加压, 在反挤成孔的同时,棒料被镦粗, 直至与模壁接触。随着冲头Ⅰ、 Ⅱ的继续流动,坯料金属开始向凹模的旁通型腔流动,形成单纯的径向挤压。 当挤入旁通的金属与冲头Ⅲ接触时,冲头Ⅲ对其进行反挤压和镦粗,直至金 属充满模膛。 第二阶段金属的流动主要是形成飞边。经过第一阶段后,坯料已极少再 有变形,只有当模压力极大的情况下冲头附近金属才会有少量的流动变形, 金属的流向与冲头的1)平面精压
平面精压由于摩擦力的影响,引起不均匀的应力分布,如图5.13
所示是精压件和精压平板均产生不均匀的弹性变形,造成精压后平面 中部有凸起现象。因此为提高精压质量,需采取下列工艺措施。 采用热精压,适当进行润滑,以降低精压时 工件的平均压力分布。
尽量减少精压面积,如有中间孔的精压面,
§5.2 径向锻造
图5.7所示为部分典型径向锻造件。
5.2.4两种典型应用
(1)实心台阶轴
CA6140卧式车床主轴(图5.8),可采用墩头和径向锻
造杆部联合工艺锻制成型。毛坯为Φ115x730mm的45钢。
§5.2 径向锻造
首先在1t自由锻锤上镦出直径为Φ205mm的头部,然后夹持头部

第5章 塑性成形新技术 PPT课件

第5章 塑性成形新技术 PPT课件
➢ 超塑性状态下的金属在拉伸变形过程中不产生缩颈现象, 金属的变形应力可比常态下降低几倍至几十倍。因此, 超塑性金属极易成形,可采用多种工艺方法制出复杂零 件。
34
五、微成形
概念:指以塑性加工的方式生产至少在二维方向上尺寸处于 亚毫米量级的零件或结构的工艺技术。
实际应用:主要源于电子工业的兴起,随着大规模集成电路 制造技术和以计算机为代表的微电子工艺的发展,而且 还来自技术的需要,例如医疗器械、传感器及电子器械 的发展。越来越多的电子元件、电器组件及计算机配件 等相关零件开始采用这一工艺方法进行生产。随着制造 领域中微型化趋势的不断发展,微型零件的需求量越来 越大,特别是在微型机械和微型机电系统中。
3
二)高速高能成形的类型 1、爆炸成形
1)概念 爆炸瞬间释放出巨大的化学能,对金属毛坯 进行加工的高速高能成形。
2)原理 爆炸成形时,爆炸物质的化学能在极短时间内 转化为周围介质(空气或水)中的高压冲击波,并以脉 冲波的形式作用于毛坯,使其产生塑性变形。 冲击波对毛坯的作用时间为微秒级,仅占毛坯变形时 间的一小部分。这种异乎寻常的高速变形条件,使爆 炸成型的变形机理及过程与常规冲压加工有着根本性 的差别。
2
4)可提高材料的塑性变形能力 与常规成形方法相比,高速高能成形可提高材料的 塑性变形能力。因此,对于塑性差的难成形材料, 高速高能成形是一种较理想的工艺方法。
5)利于采用复合工艺 用常规成形方法需多道工序才能成形的零件,采用 高速高能成形方法可在一道工序中完成。因此,可 以有效地缩短生产周期,降低成本
8
4)原理 该装置主要由充电回路及放电回路组成。
交流电经过变压器及整流 器后,变为高压直流并向电 容器4充电。
当充电电压达到所需值之 后,导通辅助间隙5,高压电 瞬时加到两放电电极9所形成 的主放电间隙上,并使间隙 击穿,在其间产生高压放电, 在放电回路中形成强大的冲 击电流,使电极周围介质中 形成冲击波及液流冲击而使 金属毛坯成形。

《金属塑性成型原理》(俞汉清主编)课后习题及答案

《金属塑性成型原理》(俞汉清主编)课后习题及答案

第一章1.什么是金属的塑性?什么是塑性成形?塑性成形有何特点?塑性----在外力作用下使金属材料发生塑性变形而不破坏其完整性的能力;塑性变形----当作用在物体上的外力取消后,物体的变形不能完全恢复而产生的残余变形;塑性成形----金属材料在一定的外力作用下,利用其塑性而使其成型并获得一定力学性能的加工方法,也称塑性加工或压力加工;塑性成形的特点:①组织、性能好②材料利用率高③尺寸精度高④生产效率高2.试述塑性成形的一般分类。

Ⅰ.按成型特点可分为块料成形(也称体积成形)和板料成型两大类1)块料成型是在塑性成形过程中靠体积转移和分配来实现的。

可分为一次成型和二次加工。

一次加工:①轧制----是将金属坯料通过两个旋转轧辊间的特定空间使其产生塑性变形,以获得一定截面形状材料的塑性成形方法。

分纵轧、横轧、斜轧;用于生产型材、板材和管材。

②挤压----是在大截面坯料的后端施加一定的压力,将金属坯料通过一定形状和尺寸的模孔使其产生塑性变形,以获得符合模孔截面形状的小截面坯料或零件的塑性成形方法。

分正挤压、反挤压和复合挤压;适于(低塑性的)型材、管材和零件。

③拉拔----是在金属坯料的前端施加一定的拉力,将金属坯料通过一定形状、尺寸的模孔使其产生塑性变形,以获得与模孔形状、尺寸相同的小截面坯料的塑性成形方法。

生产棒材、管材和线材。

二次加工:①自由锻----是在锻锤或水压机上,利用简单的工具将金属锭料或坯料锻成所需的形状和尺寸的加工方法。

精度低,生产率不高,用于单件小批量或大锻件。

②模锻----是将金属坯料放在与成平形状、尺寸相同的模腔中使其产生塑性变形,从而获得与模腔形状、尺寸相同的坯料或零件的加工方法。

分开式模锻和闭式模锻。

2)板料成型一般称为冲压。

分为分离工序和成形工序。

分离工序:用于使冲压件与板料沿一定的轮廓线相互分离,如冲裁、剪切等工序;成型工序:用来使坯料在不破坏的条件下发生塑性变形,成为具有要求形状和尺寸的零件,如弯曲、拉深等工序。

塑性理论 第五章 应变分析

塑性理论  第五章 应变分析

u y x
dx
u y y
dy
u y z
dz
x
uz
'
uz
(x
dx,
y
dy,
z
dz)
uz (x,
y, z)
uz x
dx
uz y
dy
uz z
dz
z
ui
M
' 1
ui ui
M1
uz
M(xi)
uy
ux
0
u
' z
u'
M (x dxi )
y
u
' x
y
变形体内无限接近两点的位移分量
——M’点位移到M’1点
z
第五章 应变分析
radius 3/8 in.
diameter, 0.5 in.
diameter, 0.75 in.
gauge length, 2 in.
reduced section, 2.25 in.
主要内容
5.1 应变的基本概念 5.2 几何方程 5.3 一点附近的应变分析 5.4 主应变、应变张量不变量 5.5 主剪应变,最大剪应变 5.6 应变速率 5.7 变形表示法 5.8 应力一应变曲线 5·9 变形体模型 5.10 变形协调方程 5.11 平面变形问题和轴对称问题
crack propagation
(in shear)
单元体均匀变形:直线—→直线,平行—→平行
小变形:
大变形:
103 ~ 102
102 ~ 101
例:将矩形六面体在千锤下进行撤粗,其塑性变形前后物体的形状:
图 矩形件塑性变形前后形状
第一类变形:诸棱边的相对变化,其下标表示伸长的方向或与棱边平行的轴向。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一节 塑性成形理论基础
加工硬化、 二、加工硬化、回复和再结晶
1.加工硬化(Process Induration) 加工硬化(Process 金属在冷变形(低于再结晶温度)加工时, 金属在冷变形(低于再结晶温度)加工时,随 着变形量的增加,金属材料的强度、硬度提高, 着变形量的增加,金属材料的强度、硬度提高,但 塑性、韧性下降,这种现象称为加工硬化。 塑性、韧性下降,这种现象称为加工硬化。如图5所示。 3所示。 回复(Revert)和再结晶(Recrystal) (Revert)和再结晶 2.回复(Revert)和再结晶(Recrystal) (1) 回复 将冷成形后的金属加热至一定温度 使原子回复到平衡位置, 后,使原子回复到平衡位置,晶内残余应力大大减 小的现象,称为回复, 所示。 小的现象,称为回复,如图5-4c所示。回复温度约 25)T熔 为(0.25-0.3)T熔(K)。 (2) 再结晶 塑性变形后金属被拉长了的晶粒 出现重新生核、结晶,变为等轴晶粒的现象, 出现重新生核、结晶,变为等轴晶粒的现象,称为 再结晶, 所示。再结晶温度一般为0 再结晶,如图5-4d所示。再结晶温度一般为0.4T熔 (K)以上 以上。 (K)以上。
第二节 金属塑性成形方法
(二)自由锻工艺规程的制定
1.绘制锻件图 典型的锻件图如图 16所示 所示。 典型的锻件图如图5-16所示。 ( 1 ) 加工余量 自由锻件表面留有供机械加工 用的金属层,称为加工余量。 用的金属层,称为加工余量。 在实际生产中, ( 2 ) 锻造公差 在实际生产中 , 由于各种因素 的影响, 的影响,锻件的实际尺寸不可能达到锻件的公称尺寸 允许有一定限度的误差,叫做锻造公差。 ,允许有一定限度的误差,叫做锻造公差。 ( 3 ) 余块 为了简化锻件外形或根据锻造工艺 需要, 需要,在零件的某些地方添加一部分大于余量的金属 这部分附加的金属叫做锻造余块,简称余块。 ,这部分附加的金属叫做锻造余块,简称余块。 2.确定锻造成形工艺方案
第二节 金属塑性成形方法
第二节 金属塑性成形方法
Forging) 一、自由锻(Free Forging) 自由锻(
锻造是在加压设备及工( 具的作用下, 锻造是在加压设备及工 ( 模 ) 具的作用下 , 通过 金属体积的转移和分配,使坯料、 金属体积的转移和分配, 使坯料、铸锭产生局部或全 部的塑性变形,以获得具有一定几何尺寸、 部的塑性变形 ,以获得具有一定几何尺寸、形状和质 量的锻件的加工方法。自由锻是在自由锻设备上利用 量的锻件的加工方法。 简单的通用性工具(如砧子、型砧、胎模等) 简单的通用性工具( 如砧子、型砧、 胎模等)使坯料 变形而获得所需的几何形状及内部质量的锻件的加工 方法。 方法。 自由锻的工序包括基本工序、 自由锻的工序包括基本工序 、辅助工序和修整工 工序简图见表 序。工序简图见表5-1。 常用的自由锻设备有空气锤、蒸汽—空气自由锻 常用的自由锻设备有空气锤、蒸汽 空气自由锻 液压机等。 锤、液压机等。
第二节 金属塑性成形方法
3. 计算毛坯重量和尺寸
(1)计算毛坯重量 毛坯重量为锻件重量与锻造时各种金属损 耗的重量之和。计算公式如下: 耗的重量之和。计算公式如下: m坯=m锻+m损=m锻+m烧+m芯+m切 =m锻+m损=m锻+m烧+m芯+m切 ( 5-2) 式中的m 坯 、、m 烧 、 m 芯 、 m 切分别是坯料 式中的 m 、、 m 锻件、 加热时坯料表面氧化而烧损、 、 锻件 、 加热时坯料表面氧化而烧损 、 冲孔时 芯料和修切部分的重量。 芯料和修切部分的重量。m锻等于锻件的体积与 金属比重的乘积。 金属比重的乘积。
第五章 塑性成形工艺
第五章 塑性成形工艺
塑性成形(Plasticity Forming)是金属材料成形 塑性成形 (Plasticity Forming) 是金属材料成形 方法之一。它是指对金属材料施加外力作用,利用金 方法之一。 它是指对金属材料施加外力作用, 属的塑性使其产生塑性变形, 属的塑性使其产生塑性变形, 从而获得具有一定的形 尺寸、组织和性能的工件或毛坯的加工方法, 状 、尺寸、组织和性能的工件或毛坯的加工方法 ,也 称为塑性加工或压力加工。常见的塑性成形方法有: 称为塑性加工或压力加工 。常见的塑性成形方法有: 锻造、冲压、挤压、轧制、拉拔等( 锻造、冲压、挤压、轧制、拉拔等(图5-1)。
第二节 金属塑性成形方法
(2)确定毛坯尺寸 采用镦粗方法锻造时, 采用镦粗方法锻造时, 为避免镦粗时产生弯 曲现象, 毛坯高径比( Ho/ Do) 不得超过2 曲现象 , 毛坯高径比 ( Ho / Do ) 不得超过 2.5 , 同时为了在下料时便于操作,毛坯高径比(Ho/ 同时为了在下料时便于操作, 毛坯高径比( Ho/ Do)还应大于1 25, Do)还应大于1.25,即: 1.25 Do≤Ho ≤2.5Do ( 5-3) 由于毛坯重量已知,便可算出毛坯体积V 由于毛坯重量已知,便可算出毛坯体积V坯 V坯=G坯/ρ ( 5-4) 钢的密度( 式中 ρ——钢的密度(kN/m3)。 钢的密度 kN/ 4. 确定锻造温度范围 17为碳钢的锻造温度范围 为碳钢的锻造温度范围。 图 5-17为碳钢的锻造温度范围。 常用金属的 始锻温度与终锻温度见表 始锻温度与终锻温度见表5-2。 5. 制订自由锻工艺规程卡
第二节 金属塑性成形方法
(一)自由锻基本工序
1. 镦粗 使坯料高度减小而横截面积增大的锻造工序 称为镦粗, 10所示 所示。 11为圆柱坯料镦粗变形 称为镦粗,如图5-10所示。图5-11为圆柱坯料镦粗变形 分布。 分布。 2.拔长 使坯料横截面减小而长度增加的锻造工序叫拔 12所示 所示。 长,如图5-12所示。 (1)拔长变形的特点 拔长方法矩形断面拔长如图 12所示 所示。 (2)拔长方法矩形断面拔长如图5-12所示。圆形断面拔 长如图 13所示 所示。 长如图5-13所示。 (3)影响拔长质量的工艺因素 1)送进量的影响 。 2)压下量的影响 。 14为拔长砧子形状及其 3)砧子形状的影响 ,图5-14为拔长砧子形状及其 对变形区分布的影响。 对变形区分布的影响。 3.冲孔 将坯料冲出透孔或不透孔的锻造工序称为冲孔。 将坯料冲出透孔或不透孔的锻造工序称为冲孔。 实心冲子冲孔过程如图 15所示 所示。 实心冲子冲孔过程如图5-15所示。
ቤተ መጻሕፍቲ ባይዱ
第二节 金属塑性成形方法
(2)模锻件图的制订 1)分模面位置的选择 2)加工余量、公差和余块的确定 加工余量、 为便于锻件从模膛中取出, 3)模锻斜度的选择 为便于锻件从模膛中取出, 模锻件上垂直于分模面的侧壁要有一定的斜度, 模锻件上垂直于分模面的侧壁要有一定的斜度,称为 模锻斜度, 20。 模锻斜度,见图5-20。 4)圆角半径的确定 为了便于金属在模膛中流动 ,防止锻模开裂,保证锻造流线的连续性,提高锻模 防止锻模开裂, 保证锻造流线的连续性, 寿命,锻件上所有尖锐棱角都必须做成圆弧, 寿命,锻件上所有尖锐棱角都必须做成圆弧,圆弧的 半径称为圆角半径( 21) 半径称为圆角半径(图5-21)。 5)冲孔连皮 具有通孔的锻件在模锻时不能锻出 通孔,故孔内必须留有一定厚度的金属, 通孔,故孔内必须留有一定厚度的金属,称为冲孔连 22) 皮(图5-22)。 6)锻件图的技术条件
第一节 塑性成形理论基础
四、锻造比与锻造流线
1.锻造比 在塑性成形时,常用锻造比(Y)来表示变形程度。 (Y)来表示变形程度 在塑性成形时 , 常用锻造比 (Y) 来表示变形程度 。 锻 造比的计算公式与变形方式有关, 造比的计算公式与变形方式有关,通常用变形前后的截面 长度比或高度比来表示: 比、长度比或高度比来表示: 拔长时的锻造比: 拔长时的锻造比:Y拔=F0/F ( 5-1) 镦粗时的锻造比: 镦粗时的锻造比:Y镦=H0/H ( 5-2) 式中 F0、F--毛坯变形前后的截面积; H0、H--毛坯 --毛坯变形前后的截面积; --毛坯 毛坯变形前后的截面积 变形前后的高度。 变形前后的高度。 2.锻造流线 锻造时,金属的脆性杂质被打碎, 锻造时,金属的脆性杂质被打碎,顺着金属主要伸长 方向呈碎粒状或链状分布; 方向呈碎粒状或链状分布;塑性杂质随着金属变形沿主要 伸长方向呈带状分布, 伸长方向呈带状分布,这样热锻后的金属组织就具有一定 的方向性,通常称为锻造流线,也称流纹。 的方向性,通常称为锻造流线,也称流纹。 如图5-5所示 为两种加工方法加工的曲轴的流线分布比较。 。 图5-6为两种加工方法加工的曲轴的流线分布比较。
第一节 塑性成形理论基础
五、塑性成形基本定律
1.最小阻力定律 金属受外力作用发生塑性变形时, 金属受外力作用发生塑性变形时,如果某质点有 向各种方向移动的可能性时, 向各种方向移动的可能性时,则质点将沿着阻力最小 的方向移动, 的方向移动,故宏观上变形阻力最小的方向上变形量 最大,这就叫做最小阻力定律。 最大,这就叫做最小阻力定律。 中的a) b)、 c)分别为圆形 方形、 a)、 分别为圆形、 图 5-7 中的 a) 、 b) 、 c) 分别为圆形 、 方形 、 矩形 截面上各质点在镦粗时的流动方向, 截面上各质点在镦粗时的流动方向 , d) 是矩形截面 镦粗后的截面形状。 镦粗后的截面形状。 2.体积不变条件 由于塑性变形时金属密度的变化很小,物体主要 由于塑性变形时金属密度的变化很小, 发生形状的改变,虽然体积也有微量的变化, 发生形状的改变,虽然体积也有微量的变化,但与塑 性变形相比是很小的,可以忽略不计, 性变形相比是很小的,可以忽略不计,可认为变形前 后的体积相等,这就是塑性变形时的体积不变条件。 后的体积相等,这就是塑性变形时的体积不变条件。
第二节 金属塑性成形方法
模型锻造( Forging) 二、模型锻造(Model Forging)
利用模具使毛坯变形获得锻件的锻造方法称 为模型锻造。 为模型锻造。 模锻成形的典型零件如图 18所示 所示。 模锻成形的典型零件如图5-18所示。 1. 锤上模锻 在锻锤上进行的模锻称为锤上模锻, 在锻锤上进行的模锻称为锤上模锻,见 图519。 19。 (1)锻模结构 常见的模膛形式见表 常见的模膛形式见表5-3。
相关文档
最新文档