2 绿色化学-绿色化学原理
绿色化学
Draths K M, Frost J W , JACS 1990, 112:9630; 1991, 113: 9361
以可再生资源为原料
150年前,大多数工业 有机化学品都来自植 物提供的生物质,仅 有少数来自动物。 工业革命采用煤为化工 原料,目前95%以上 有机化学品都是由石油 加工得到。
煤和石油:不可再生资源 生物质:可再生资源
第二章 绿色化学原理
第二章 绿色化学原理
第一节 绿色化学内涵 第二节 化学反应的原子经济学 第三节 原子经济学与环境效益 第四节 绿色化学的任务 第五节 绿色化学十二原则
绿色化学就是利用化学原理和 方法来减少或消除对人类健康、 社区安全、生态环境有害的反应 原料、催化剂、溶剂和试剂、产 物、副产物的使用和产生的新兴 学科 ,是一门从源头上减少或消 除污染的化学。
用生物质作化学化工原料是保护环境和实现可 持续发展的长远和重要发展方向,是绿色化学 的重要研究方向之一。
淀粉 ( 玉米、小麦、 土豆等)
生物质 (Biomass)
木质纤维素 (农业废料、 森林废物、草 类等)
木质纤维素是地球上最丰富的生物质,每年以
1640108吨的速度不断再生,但至今人类仅利 用了不足1.5%。
(一)催化等离子体法
Example 由二氧化碳和甲烷合成燃料油 Traditional way
CO2 + CH4
镍催化剂 高能耗,催化剂易失活 费-托合成
2CO + 2H2
合成气
燃料油
New greener way
CO2 + CH4
(天津大学,刘昌俊)
催化等离子体法
燃料油
(二)电化学方法
绿色化学与化工的原理及应用
绿色化学与化工的原理及应用1. 绿色化学的原理绿色化学是指通过避免或减少有害物质的使用和生成,同时降低对环境和人体的影响的化学研究方法。
其原理主要包括以下几个方面:1.1 原料选择绿色化学中,选择环境友好的原料是至关重要的一步。
优先选择可再生资源,避免使用有毒有害的化学品和高能消耗的原料。
例如,可使用天然材料、农业副产品等作为原料,同时减少对稀有资源的依赖。
1.2 绿色反应条件绿色化学注重减少反应的能耗和环境污染。
通过优化反应条件,如降低反应温度和压力、采用催化剂等,可以提高反应效率,减少废弃物的产生,并降低对环境和人体的影响。
1.3 原子经济性绿色化学强调最大限度地利用原料中的全部原子,以提高反应的原子经济性。
通过合理设计反应路径和选择合适的催化剂,可以实现更高的产率和选择性,减少废弃物的生成。
2. 绿色化工的应用绿色化工的应用广泛涉及多个行业,以下列举了几个典型的应用领域:2.1 绿色溶剂的开发传统溶剂中常含有有机溶剂,而有机溶剂对环境和人体有一定的危害。
绿色溶剂是指可再生、可降解且对环境友好的溶剂。
其应用可以用于涂料、油墨、胶粘剂等多个领域,减少对环境的污染。
2.2 绿色催化剂的研发绿色催化剂是指具有高效、高选择性和环境友好性的催化剂。
绿色催化剂的研发可以提高反应的效率,减少副产物的生成,并在有机合成中发挥重要作用。
2.3 绿色能源的开发绿色能源是指能够满足人类需求的可再生能源,如太阳能、风能和生物质能。
绿色化学在绿色能源的开发过程中发挥重要作用,如太阳能电池的制备、生物质能的转化等。
2.4 绿色废弃物处理技术绿色废弃物处理技术是指利用环境友好的方法处理废弃物,实现资源的回收和再利用。
例如,利用生物降解技术将有机废弃物转化为有机肥料,减少对环境的污染。
2.5 绿色纳米材料的合成绿色纳米材料的合成是指利用环境友好的方法合成纳米材料。
通过绿色合成方法,可以减少有害物质的使用和生成,并具有潜在的应用前景,如催化、传感和能量领域。
绿色化学原理部分
定义:绿色化学就是研究利用一套原理在化学产品的设计、开发和加工生产过程中减少或消除使用或产生对人类健康和环境有害物质的科学。
解释:按照美国《绿色化学》(GreenChemistry)杂志的定义,绿色化学是指:在制造和应用化学产品时应有效利用(最好可再生)原料,消除废物和避免使用有毒的和危险的试剂和溶剂。
而今天的绿色化学是指能够保护环境的化学技术.它可通过使用自然能源,避免给环境造成负担、避免排放有害物质.利用太阳能为目的的光触媒和氢能源的制造和储藏技术的开发,并考虑节能、节省资源、减少废弃物排放量。
绿色化学又称“环境无害化学”、“环境友好化学”、“清洁化学”,绿色化学是近十年才产生和发展起来的,是一个“新化学婴儿”。
它涉及有机合成、催化、生物化学、分析化学等学科,内容广泛。
绿色化学的最大特点是在始端就采用预防污染的科学手段,因而过程和终端均为零排放或零污染。
世界上很多国家已把“化学的绿色化”作为新世纪化学进展的主要方向之一。
绿色化学又称环境友好化学,它的主要特点是:1.充分利用资源和能源,采用无毒、无害的原料;2.在无毒、无害的条件下进行反应,以减少废物向环境排放;3.提高原子的利用率,力图使所有作为原料的原子都被产品所消纳,实现“零排放”;4.生产出有利于环境保护、社区安全和人体健康的环境友好的产品。
绿色化学的十二条原则:1. 防止污染优于污染治理:防止废物的产生而不是产生后再来处理;2. 提高原子经济性:合成方法应设计成能将所有的起始物质嵌入到最终产物中;3. 尽量减少化学合成中的有毒原料、产物:只要可能,反应中使用和生成的物质应对人类健康和环境无毒或毒性很小;4. 设计安全的化学品:设计的化学产品应在保护原有功效的同时尽量使其无毒或毒性很小;5. 使用无毒无害的溶剂和助剂:尽量不使用辅助性物质(如溶剂、分离试剂等),如果一定要用,也应使用无毒物质;6. 合理使用和节省能源,合成过程应在环境温度和压力下进行:能量消耗越小越好,应能为环境和经济方面的考虑所接受;7. 原料应该可再生而非耗尽:只要技术上和经济上可行,使用的原材料应是能再生的;8. 减少不必要的衍生化步骤:应尽量避免不必要的衍生过程(如基团的保护,物理与化学过程的临时性修改等)9. 采用高选择性催化剂:尽量使用选择性高的催化剂,而不是提高反应物的配料比;10. 产物应设计为发挥完作用后可分解为无毒降解产物:设计化学产品时,应考虑当该物质完成自己的功能后,不再滞留于环境中,而可降解为无毒的产品;11. 应进一步发展分析技术对污染物实行在线监测和控制:分析方法也需要进一步研究开发,使之能做到实时、现场监控,以防有害物质的形成;12. 减少使用易燃易爆物质,降低事故隐患:化学过程中使用的物质或物质的形态,应考虑尽量减少实验事故的潜在危险,如气体释放、爆炸和着火等。
绿色化学的原理和应用实例
绿色化学的原理和应用实例1. 绿色化学的概述•定义:绿色化学是指在化学研究和应用过程中,以合理利用资源、减少或避免对环境和健康的危害为目标,提倡使用更安全、更环保的化学品和工艺的一种方法。
•背景:随着环境问题的日益凸显和可持续发展的倡导,绿色化学作为一种新型的化学研究和应用方法逐渐受到重视。
2. 绿色化学的原理绿色化学的原理是基于以下几个方面: - 原子经济性:倡导最大限度地利用原料的所有原子,减少废物和副产物的产生。
- 原料的选择:选择可再生资源,减少对有限资源的依赖。
- 能源效率:优化反应条件,提高反应效率,减少能源的消耗和浪费。
- 合成路径的最优化:通过合理的合成路径设计来减少废物产生。
- 无毒性和低毒性:选择无毒性和低毒性的物质,降低对环境和健康的影响。
- 废物的处理:通过可再生利用、回收和高效处理等方法减少废物对环境的影响。
3. 绿色化学的应用实例3.1 绿色溶剂•传统溶剂的问题:传统的有机溶剂如苯、甲苯等对人体健康和环境造成较大的危害。
•绿色溶剂的特点:绿色溶剂是一种对环境友好、无毒性或低毒性的溶剂,如水、乙醇等。
•应用实例:绿色溶剂在有机合成、反应催化、涂料和清洗剂等领域得到广泛应用。
3.2 绿色催化剂•传统催化剂的问题:传统催化剂如过渡金属催化剂使用中存在环境和健康的问题。
•绿色催化剂的特点:绿色催化剂是指对人体和环境友好的催化剂,如生物催化剂和金属有机骨架材料等。
•应用实例:绿色催化剂在化学合成、环境修复和能源转化等领域有广泛的应用前景。
3.3 绿色合成方法•传统合成方法的问题:传统合成方法常常使用大量的有机溶剂和反应副产物,造成环境污染。
•绿色合成方法的特点:绿色合成方法是指使用更环保、更高效的合成方法,如微波辅助合成、超临界流体合成等。
•应用实例:绿色合成方法在药物合成、材料制备和能源开发等领域有重要的应用潜力。
3.4 绿色分析技术•传统分析技术的问题:传统的分析技术往往需要使用大量的有机溶剂和荧光物质,对环境造成污染。
绿色化学的原理
绿色化学的原理
绿色化学是一种以最小化对环境和人类健康的危害为目标的化学方法。
它的原理在于减少或完全消除对有毒化学品的使用,最大限度地提高化学反应的效率和产物的可持续性。
绿色化学的设计基于以下原则:
1. 原子经济性:绿色化学鼓励最大限度地利用化学反应中的原子,减少废物的产生。
2. 使用可再生材料:优先选择可再生资源,如植物提取物或生物可降解聚合物,以减少对有限资源的依赖。
3. 使用无毒或低毒物质:避免使用有害的化学物质,使用对人体和环境影响较小的替代品。
4. 节能减排:采用低温、低压和非有害溶剂等条件,减少能源消耗和废气排放。
5. 设计环境友好的反应条件:通过调整反应条件,如温度、压力和催化剂的选择,最大限度地提高反应的选择性和产率。
6. 减少废物产生:优化反应路径和产品回收技术,以最大限度地减少废物生成并最大程度地回收和循环利用废物。
7. 生物降解性:设计可生物降解的产物,减少对环境的持久性影响。
通过应用绿色化学的原理,化学家们可以设计出更加环境友好和可持续的化学过程和产品,从而减少对环境的破坏并保护人类健康。
绿色化学原理
相转移催化剂PTC(Phase Transfer Catalysis ) 超临界水
二氧化碳(CO2)
超临界流体( supercritical fluid ) CO2的临界温度:31℃ 临界压力:7.38MPa
抽提剂 反应介质 稀释剂 溶解度大、选择性高、易分离
离子液体(ionic liqudis)
CH2=CH2 + Cl2 + Ca(OH)2 aska 28 71 74
ashsska ashsska
C2H4O + CaCl2 + H2O
44
44
ashs ska
111
18
111+ 18 = 129 44 ╳ 100% = 25% ╳ 100% = = 28+ 71 + 74 111+ 18 + 44 44
传统方法(Traditional way)
CH3CH=CH2 + Cl2 + Ca(OH)2 ka 42 71 asha 74 ashsska C3H6O + CaCl2 + H2O 18 58 asha 111 58
asha
asha
111+ 18 = 129
58
=
╳
111+ 18 + 58
100% =
苯佐卡因
2.5 采用安全的溶剂和助剂
常用有机溶剂及危害
烷烃、苯类芳香烃、醇、酮、醚、卤代烃等。 挥发>2000×104吨/年,环境污染。
替代品要求
低危害性 对人体健康无害 环境友好 水、CO2、离子液体、固定化溶剂、无溶剂
水(H2O)
绿色化学的基本原理与应用
绿色化学的基本原理与应用1. 绿色化学的概念绿色化学是一种以环境友好为目标的化学学科,其目的是开发和使用能够在化学过程中减少或消除对环境和人类健康的不利影响的方法和材料。
绿色化学的基本原理是尽量减少或避免使用对环境有害的化学物质和过程,并提倡使用可再生资源和能效高的方法。
2. 绿色化学的原则绿色化学需要遵循以下几个原则:•原子经济性:最大限度地利用化学反应中的原子,尽量减少废物产生。
•能源效率:寻找节约能源的生产方法,减少化学反应的能量消耗。
•材料选择:选择环境友好的材料,尽量避免使用对环境有害的化学物质。
•先进催化:使用高效率的催化剂,减少化学反应的时间和温度。
•减少废物产生:尽量减少废物的生成,通过循环利用和废物处理来减少其对环境的影响。
3. 绿色化学的应用绿色化学在各个领域都有广泛的应用,以下是一些典型的应用领域:3.1 化学合成•使用可再生资源进行化学合成,如使用生物质废弃物作为原料,减少对化石能源的依赖。
•优化反应条件,减少有害废物的生成,提高反应产物的选择性。
3.2 能源•开发新型高效能源,如太阳能、风能等可再生能源。
•研究新型储能材料,提高能源存储效率。
3.3 材料•绿色合成高性能材料,如使用可再生材料代替传统石化材料。
•开发可降解材料,减少塑料等废物对环境的污染。
3.4 废物处理•开发高效环保的废物处理方法,如生物降解、催化氧化等方法。
•利用废物资源化,实现废物的再利用和能量回收。
4. 绿色化学的意义绿色化学是可持续发展的重要组成部分,其具有以下几个意义:•保护环境:绿色化学能够减轻化学反应对环境的不利影响,减少废物和有害物质的排放,保护生态环境。
•提高资源利用效率:绿色化学通过优化反应条件和选择可再生资源,实现对资源的高效利用。
•促进经济发展:绿色化学的技术和产品可以推动绿色经济的发展,创造就业机会。
•保障人类健康:绿色化学减少了对人类健康有害的化学物质的使用,使生产和生活环境更加安全和健康。
绿色化学的原理和应用
绿色化学的原理和应用随着环境问题越来越受到关注,绿色化学也逐渐成为了一个热门话题。
绿色化学是指在生产和使用化学品过程中尽可能减少对环境和人类健康的影响,同时确保产品质量和效益。
绿色化学的核心原则是最大化原始资源的有效利用,最小化废弃物和污染的排放。
那么绿色化学的原理和应用是什么呢?一、绿色化学原理1. 原子经济性:亦称为“有效性”,是指过程中循环利用原子的多减少废弃物的生成。
这一原则要求在化学反应中,力求不生成废弃物或少生成废弃物。
2. 考虑来源:指从石油开采到化学品生产,再到环境污染处理等全过程,逐环节捕捉碳足迹,优化使用过程,尽量降低环境污染的同时降低碳排放的数量。
3. 精准化设计:精准化设计要求在产品和过程设计时考虑真正需要的功能,调整化学反应、工艺流程等,以减少步骤和耗费的时间和原材料。
从而减少对环境的污染和对人体健康的危害。
4. 生物可降解性:生物可降解性是指化学品在大自然中被自然微生物分解成无害的物质,而不是堆积在环境中。
绿色化学中使用的化学品应该具备良好的生物可降解性,避免环境污染。
5. 无毒性:绿色化学要求使用无毒性、低毒性的化学品,减少或消除对健康和环境的危害。
二、绿色化学应用1. 替代性物质:绿色化学使得可替代性物质越来越流行。
例如,用植物酯替代有害溶剂。
同时绿色化学技术改进了对金属的提取和分离方法,使得电子行业中有害物的使用量减少了。
2. 高效利用资源:生物质资源是绿色化学需要运用的一个积极的从来。
例如,制备可生物降解塑料的纤维素。
生物质包括农业副产品(如废弃物、食品加工副产物等)和纤维素等。
这些资源可以高效利用,减少对自然资源的开发。
3. 环保催化剂:绿色化学的另一个应用方面是环保催化剂。
催化剂是一种增加反应速率和选择性的物质,使得反应可进行和减少废弃物,避免对环境的污染。
4. 真空技术:在提取、分离过程中,使用绿色化学的真空技术。
使用真空技术可以使提取和分离的过程减少,减少对环境的损害。
绿色化学的原理与应用
绿色化学的原理与应用绿色化学是一种注重环境、可持续性和可再生性的化学方法,其目的在于让化学合成变得更加环保。
绿色化学不仅可以提高合成过程的效率和经济性,还可以减少废弃物和污染物的生成,尽可能地节约能源和资源。
在这篇文章中,我将探讨绿色化学的原理和应用,以及它对我们社会和环境的重要性。
一、绿色化学的原理1.1 最小逆境原则在绿色合成中,最小逆境原则是一个非常重要的原则。
它要求尽可能在温和的条件下使用少量的化学品,减少有害废物或过程的排放,并在分离、纯化、垃圾处理等方面采用环保方法。
1.2 可再生性资源的使用绿色化学还注重使用可再生性资源,例如生物基化合物。
这些化合物可以替代从石油中提取的化学品,并且更加环保和可持续。
1.3 无毒无害和可降解的化学品绿色化学致力于使用无毒无害和可降解的化学品。
这意味着在合成过程中,使用的化学品应该对人体和环境无害,并且尽可能在合成结束后可以迅速降解。
1.4 原子经济学原子经济学是一种重要的绿色化学原则。
它强调将化学反应设计为使用较少的原子,从而减少原材料的浪费和废弃物的生成。
二、绿色化学的应用2.1 转化废物为资源绿色化学的应用有很多,其中之一是转化废物为资源。
通过使用环保的化学方法,可以对含有农药或重金属的污染废物进行处理。
这些污染物可以通过化学反应转化为相对无害的物质,并转化为有价值的产品,实现资源的再利用。
2.2 生物基化学品的制备随着对环境友好型材料需求的不断增加,生物基化学品的制备成为一个非常重要的研究领域。
这些化合物可以用于替代传统的石油基材料,例如塑料,从而减少对石油的使用,达到环境友好、可持续的目标。
2.3 医药品研发绿色化学在医药品研发方面也得到广泛应用。
绿色化学方法的使用可以减少对生物学制品(例如蛋白质、核酸等)的使用,改善合成过程的效率和纯度,从而提高医药品的质量和可靠性。
三、绿色化学的重要性绿色化学的原则和应用已经在全球范围内获得了广泛的重视。
有机合成中的绿色化学原理与实践
有机合成中的绿色化学原理与实践随着环境保护和可持续发展意识的增强,绿色化学作为一种环境友好型的合成化学方法逐渐被广泛应用于有机合成领域。
本文将介绍有机合成中的绿色化学原理与实践,并探讨其在减少环境污染和资源消耗方面的重要作用。
一、绿色化学的基本原理绿色化学是一种以降低或消除对环境和人体健康的危害为目标的合成化学方法。
其基本原理包括以下几个方面。
1. 最小化废物产生:传统的有机合成过程中常常伴随着大量的废弃物生成,给环境带来严重污染。
绿色化学通过精确控制反应条件、合理选择反应物和催化剂,最大程度地减少废物产生。
2. 节约原料和能源:有机合成常常依赖于大量的原料和能源输入,造成资源的浪费。
绿色化学倡导从可再生资源中获取原料,通过优化反应条件和催化剂的设计,提高反应效率,减少能源消耗。
3. 使用可再生的溶剂:传统有机合成常常使用有机溶剂,如二氯甲烷、二甲基甲酰胺等,这些溶剂具有毒性和污染性。
绿色化学鼓励使用可再生的溶剂,如水、离子液体等,减少对环境的负面影响。
二、绿色合成方法的应用绿色化学的原理在有机合成中得到了广泛应用,下面将介绍几种常见的绿色合成方法及其应用。
1. 催化剂的应用:催化合成是一种高效的有机合成方法,它可以在较低的温度和压力下实现化学反应。
与传统合成方法相比,催化合成方法显著减少了废物产生和能源消耗。
常见的催化剂包括金属催化剂、生物催化剂等。
2. 微波辐射合成:微波辐射在有机合成中的应用已经成为一种绿色、高效的合成方法。
微波辐射具有快速、高效、选择性强等特点,可以缩短反应时间,提高产率,减少副产物的生成。
3. 绿色溶剂的选择:选择合适的溶剂对于绿色合成至关重要。
例如,水作为一种无毒、廉价、可再生的绿色溶剂,在许多有机合成反应中取得了显著的应用。
此外,离子液体等可再生溶剂也成为绿色合成的研究热点。
4. 生物催化合成:生物催化合成是一种利用生物催化剂(如酶)催化有机化合物合成的方法。
与传统的有机合成方法相比,生物催化合成可避免使用有机溶剂和高温高压条件,减少废物产生,具有环境友好性和高效性。
绿色化学原理及应用
绿色化学原理及应用绿色化学是一种注重可持续发展的理念和方法,旨在通过减少或消除对环境和健康的不良影响,促进化学行业的可持续发展。
它包括了绿色化学原理和应用两个方面。
绿色化学的原理是在化学品设计、合成、使用和处理的每个阶段中,尽量减少对环境和人体健康的危害。
具体来说,它包括以下几个方面:第一,预防污染。
绿色化学通过对化学品和过程的设计进行优化,减少或避免对环境和人体健康的影响。
例如,选择低毒、可再生和可降解的原料,并降低废物和污染物的产生。
第二,最大限度地利用原料。
绿色化学倡导高效利用原料,减少浪费。
通过合理设计反应路线和选择优化催化剂,可以提高产物的收率和选择性,减少副产物的生成,从而减少资源的消耗和环境的负担。
第三,减少能量消耗。
绿色化学通过降低化学合成过程中的能量需求,促进可持续发展。
例如,采用低温、低压和环境友好的反应条件,以及使用可再生能源作为能源来源。
第四,降低风险和环境影响。
绿色化学致力于减少和消除对环境和人体健康的危害。
它提倡提供更安全、更可靠的替代品和技术,以及减少有害废物和污染物的产生。
绿色化学在许多领域都有广泛的应用。
以下是几个例子:第一,可再生能源。
绿色化学可以促进可再生能源的开发和利用。
例如,通过设计和合成高效催化剂,可以提高太阳能和风能的转化效率,从而实现清洁能源的可持续利用。
第二,清洗和消毒剂。
绿色化学可以提供更环境友好和健康的清洗和消毒产品。
通过选用更安全、更可持续的原料,并减少或消除有害物质,可以降低对水和土壤的污染风险。
第三,农药和肥料。
绿色化学可以推动农业的可持续发展。
通过设计和合成更安全、更高效的农药和肥料,并结合农业管理实践,可以减少农药和肥料对环境和人体健康的影响。
第四,药物合成。
绿色化学可以改进药物合成过程,减少对环境的影响。
例如,通过设计更可持续、更环保的反应路线和合成方法,可以提高药物的产率和纯度,减少有害副产品的生成。
总之,绿色化学作为一种可持续发展的理念和方法,致力于减少或消除对环境和人体健康的不良影响,促进化学行业的可持续发展。
绿色化学的原理和应用
绿色化学的原理和应用1. 绿色化学的概述•绿色化学是一种以可持续发展理念为基础的化学研究和应用方法。
它旨在减少对环境的污染和资源的消耗,同时提高化学过程的效率和安全性。
•绿色化学强调使用环境友好的溶剂、催化剂以及实现废物无害化处理等方面的技术。
•绿色化学的应用领域包括有机合成、能源转换、材料科学等,对于推动可持续发展具有重要意义。
2. 绿色化学的原理绿色化学的原理是通过改变传统化学反应的条件、催化剂和溶剂等要素,实现高效率反应、废物转化和环境友好的化学过程。
具体包括以下几个方面:2.1 替代有毒物质•绿色化学中的一个重要原则是尽量替代有毒的化学物质。
通过研究和开发更环保的替代品,可以减少对环境和健康的危害。
2.2 最大限度地利用原料•绿色化学追求尽量利用原料,减少废物产生和资源浪费。
例如,利用废弃物或副产物作为原料进行再利用,达到资源的最大化利用效果。
2.3 优化反应条件•绿色化学考虑到反应条件对环境和能源的影响,通过改进反应条件来提高反应效率。
例如,降低反应温度和压力,减少能源的消耗。
2.4 使用可再生能源•绿色化学倡导使用可再生能源来驱动化学反应,减少对传统能源的依赖,从而减少对环境的污染和资源的消耗。
3. 绿色化学的应用3.1 有机合成•绿色化学在有机合成领域的应用非常广泛。
例如,利用催化剂和溶剂的选择来实现高选择性和高收率的有机反应。
同时,利用可再生原料和废物转化技术来减少废物产生。
3.2 药物研发•绿色化学在药物研发中的应用可以减少对大量有机溶剂和有毒试剂的使用,降低对环境和人体的风险。
研究人员通过改进合成路线、优化反应条件和使用环境友好的催化剂等手段来实现绿色药物研发。
3.3 能源转换•绿色化学在能源转换领域的应用包括太阳能电池、燃料电池等领域。
通过研究新型催化剂和光敏材料,实现能源的高效转换和储存,以减少对传统能源的依赖。
3.4 材料科学•绿色化学在材料科学中的应用旨在研发环境友好的材料,减少对环境的污染。
绿色化学原理与应用
绿色化学原理与应用环境污染日益加剧,人类已经意识到保护环境的重要性。
绿色化学是为了在化学过程中减少对环境的负面影响而开发的一种新型化学。
它通过最大限度地减少废弃物的产生、使用天然而非有毒的化合物及促进可持续发展来达到这一目标。
本文将介绍绿色化学的原理和应用。
一、绿色化学原理绿色化学的基本原理是维持原子经济性、代谢良性、避免污染、安全性和可持续性。
具体来说,绿色化学从以下四个方面来实现自己的宗旨。
1. 在反应过程中最大限度地利用原料传统的化学反应经常采用大量的溶剂及其它原料,而绿色化学则通过反应中尽可能多的物质被转化成有用的物质,从而减少无意义的氧化还原反应,从而最大限度地使用原料。
2. 优化化学反应工艺绿色化学通过优化反应工艺,尽可能地减少工业化反应所产生的废弃物。
比如,采用绿色的催化剂,在复杂的反应中,针对亲核性或亲电性体系的选择性催化剂的使用是一个不错的选择。
此外,微反应技术、高速球磨技术等也成为优化化学反应工艺的发展方向。
3. 替代有毒化学试剂绿色化学反对使用由于分解产生有毒污染物或有毒中间体的试剂,提倡使用可再生或可生物降解的溶剂或化学试剂。
很多绿色溶剂如水,可轻易地生物併成 CO2 与 H2O,有助于实现目标。
4. 结合环境影响的化学度量绿色化学认为,度量化学反应对环境的影响是实现环保化学的关键。
因此,化学反应必须具有环境评估方法以评估实施过程对环境的影响。
基于 LCA 理论系统,应该确定分析评估方法,用以评估资源循环、能源效率与环保情况。
二、绿色化学的应用能源和工业界在使用绿色化学技术方面领先,但这种技术也被应用于医学、食品和日常清洁等领域。
1. 能源绿色化学技术被广泛应用于石化、燃料和光伏等能源产业。
通过使用可再生原料进行生产,可以降低化石燃料的使用,这可以在未来的能源供应中发挥重要作用。
2. 工业绿色化学技术已被应用于诸如颜料、聚合物、胶体或纤维等许多领域,例如环保装备、可生物降解的塑料和水净化系统等,这些工业生产的产品能带来更少的污染。
简述绿色化学的12条原理
简述绿色化学的12条原理
绿色化学是一种环境友好型化学,旨在减少和消除化学物质对环境和人类健康的负面影响。
绿色化学的12条原则如下:
1. 预防:预防污染比治理污染更重要。
2. 原子经济:最大限度地利用原材料和最小化废物。
3. 合成设计:尽可能设计出环境友好型的合成路线。
4. 无毒性:化学物质应该设计为无毒性或低毒性。
5. 低能耗:化学反应应该尽可能地使用低能耗的方法。
6. 可再生材料:使用可再生的原材料和资源。
7. 可降解:化学物质应该可降解为无害的物质。
8. 催化剂:使用催化剂可以减少化学反应的能量消耗。
9. 简化操作:尽可能简化化学反应和操作流程。
10. 安全性:化学反应和产品应该设计为最小化对人类健康和环境的危害。
11. 分析方法:开发环境友好型的分析方法。
12. 实时分析:在化学反应中应用实时分析技术可以提高反应的效率和减少废物产生。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.4 设计安全化学品 Design safer chemicals and products Chemical products should be designed to preserve efficacy of function while reducing toxicity.
1 什么是绿色化学产品
原子利用率越低,生产过程产生的废物就越多,E因子就越大,造成的资源浪费和环境污染就越大。
6.1.2 E-因子的概念
其中废弃物是指预期产物以外的任何副产物。常见的废弃 物 有无机盐如氯化钠、硫酸钠、硫酸镁等,重金属化合物和 各种反应中间体。 实际E-因子除理论的副产物外,还有由于化学平衡转化率 小于100%造成的废弃物;为充分利用某一昂贵的反应物,而 加入的大量过量的另一反应;分离产物时中和等操作步骤, 加入的酸碱等物;同一产物的不同旋光异构体;分离效果不 完全造成的产物的流失;分离过程加入的溶剂等。
绿色化学产品的两个特征: a. 产品本身不会引起环境污染和健康问题,包括不会对野生生物、有益 昆虫或植物造成损害; b. 当产品被使用后,应能再循环或易于在环境中降解为无害物质。
2 绿色化学品的评价原则
a. 对人体的毒性 致毒途径有三种
接触致毒 生物吸收致毒 物质的固有毒性致毒
毒性作用的效力
评估毒性大小的三个指标 毒性的作用点 毒性的可消除性 建立毒性测试数据库
―内部”效应原则 –防止毒性
4、 设计安全化学品的实施基础
5、绿色化学产品设计的成功范例
海洋船舶防垢剂 : Rohm & Haas公司研究出 Sea-Nine(tm)抗浮游生 物剂 汽油添加剂----无铅汽油的开发: 甲基叔丁基醚(MTBE) 、 甲基叔戊基醚(TAME)
2.5 采用安全的溶剂和助剂 Use safer solvents and auxiliaries
Cl
Cl
⑶ 取代反应 反应的原子经济性降低。包括烷基化、芳基化、酰 化、磺化等反应。其通式为: A—B + C—D → A—C + B—D
例如丙酸乙脂与甲胺的取代反应
⑷ 消除反应。
原子经济性最低的反应。包括脱氢、脱水、脱氨、脱 卤化氢、脱醇、脱羧基、脱酰基以及降解等反应。
2.2.3 提高化学反应原子经济性的途径及反应实例
1.采用新合成原料提高反应的原子经济性 传统工艺
绿色工艺
投资成本降低
2009 13
2.开发新催化材料提高化学反应原子经济性 TS-1分子筛催化有机氧化反应---环氧丙烷的生产
氯醇法
2CH3 CH CH2
CH3 CH CH2 OH Cl
2HOCl + 次氯酸
CH3 CH CH2 Cl OH
CH3 CH CH2 OH Cl
克莱森重排:烯醇或酚的烯丙基醚当加热到一定温度时,可发生分子内 重排。苯酚的烯丙基醚在200℃时,不用催化剂顺利的重排。
原子利用率100%
反应类型及其原子经济性
⑴ 分子重排反应。原子利用率100% 重排反应是构成分子的原子通过改变相互的位置、连接、键 的形式等产生一个新的分子的反应。 比克曼重排:酮污转化为酰胺。
2.1 防止污染优于污染治理 Prevent waste
It is better to prevent waste than to treat or clean up waste after it is formed.
污染治理 污染防止 从源头 绿色化学及其应用技术 可持续发展
2.2 提高原子经济性 Maximize atom economy Synthetic methods should be designed to maximize the incorporation of all materials used in the process into the final product.
产率 理论产量 实际产量
原子经济性:1991年,美国Stanford大学的B.M.Trost教授首次 提出了反应的“原子经济性”(Atom Economy)的概念。他 认为高效的化学反应应最大限度地利用原料分子的每一个原子, 使之结合成目标产物。原子经济性可用原子利用率衡量:
原子利用率越高,反应产生的废弃物越少, 对环境造成的污染也越少。
CH2=CH2 + Cl2 + H2O →
ClCH2CH2OH + Ca(OH)2 +HCl → C2H4O + 2CaCl2+2H2O C2H4 + Cl2 + Ca(OH)2→C2H4O+CaCl2+H2O
28
71
74
44 28 71 74
44
25.4%
原子利用率
①原子利用率只有25%。生产1kg的目标产物的同时产生 3kg的废物。 ②Cl2是有害物质,腐蚀设备且对人体具有伤害,需要特殊 的设备和保护措施。 ③为了得到产品,需要分离和纯化步骤。
2.6 提高能源经济性 Increase energy efficiency Energy requirements should be recognized for their environmental and economic impacts and should be minimized. Synthetic methods should be conducted at ambient temperature and pressure.
(2)新方法
一步法 C2 H4 O 44
44 28 16 100%
C2 H4 + ½ O2 28 16
原子利用率
绿色化学评价:
①原子利用率100%,是原子经济反应。
②O2是对人体和环境都无害的物质。 ③不需要分离纯化步骤。
反应类型及其原子经济性 ⑴分子重排反应。原子利用率100%
重排反应是构成分子的原子通过改变相互的位置、连接、键 的形式等产生一个新的分子的反应。
R1 R2 O C N OH 酸 R1 C NHR2
原子利用率100%
⑵ 加成反应。是原子经济反应,原子利用率100%. 加成反应一般分为亲电加成、亲核加成、催化加氢和环 加成等类型。 CH2=CH2+HBr ---->CH3CH2Br
原子利用率100%
Cl Cl Cl Cl
Cl Cl
Cl Cl
Cl Cl
原子经济性 ~40%
2009
16
BHC公司新发明 的绿色方法
原子经济性
~99%
获1997年美国总统 “绿色化学挑战奖” 简单!
2009
17
抗帕金森药物Lazabemide的绿色合成
(1)从2-甲基-5-乙基吡啶出发
(2)从2,5-二氯吡啶出发用钯催化羰基化反应 Nhomakorabea2009
原子利用率达100%
18
己二晴的生产
2 绿色化学的基本原理
⑴防止污染优于污染治理 Prevent waste ⑵提高原子经济性 Maximize atom economy ⑶无害化学合成 Design less hazardous chemical syntheses ⑷设计安全化学品 Design safer chemicals and products ⑸采用安全的溶剂和助剂 Use safer solvents and reaction conditions ⑹提高能源经济性 Increase energy efficiency ⑺利用可再生资源合成化学品 Use renewable feedstocks ⑻减少衍生物 Avoid chemical derivatives ⑼采用高选择性的催化剂 Use catalysts, not stoichiometric reagents ⑽设计可降解化学品Design chemicals and products to degrade after use ⑾预防污染的现场实时分析 Analyze in real time to prevent pollution ⑿防止生产事故的安全工艺 Minimize the potential for accidents
采用无毒无害的原料---- 绿色原料包括:有毒原料替代品, 石油替代品,天然可再生资源等 无害化学合成 减少化学品的暴露 减少反应的毒害程度 降低化学品的危害
环境商(EQ):用来衡量反应副产物对环境的影响因子。 EQ=E×Q
E-------E-因子
Q---------环境不兼容度(或环境不友好度); 根据废物在环境中的行为所给出的对环境不友好度。
以前的合成方法:
CH2 CH CH CH2
Cl2 HCN Cu(CN)2 H2 Pd
NC
CH2 CH2 CH2 CH2 CN
DuPont公司的新方法
CH2 CH CH CH2 2 HCN
Ni,Complex 30~50℃
NC CH2 CH2 CH2 CH2 CN
其原子利用率为100%。
乙酸合成
Kolbe合成法:
Wittig反应:
O 98
Ph3P 276
CH2 96
CH2
Ph3 P O 278
原子利用率仅为26%
Witing 反应是一个精细合成中非常有用的反应, Witing因此于1979年获得诺贝尔化学奖。Witing反应 过程为:
2009
5
计算由乙烯制备环氧乙烷反应的原子利用率。 (1)经典方法 二步法 ClCH2CH2OH + HCl
思考题
1 什么是原子经济性?以一个化学反应为例计算反应的原子 经济性。
2 什么是环境因子?环境因子与原子利用率之间有什么关系? 3 原子经济性与产率有什么区别? 4 通过哪些途径可以提高反应的原子经济性,举例说明之。