中考数学第二章整式知识点总结
2020年中考数学考点02 整式及因式分解-数学考点一遍过
考点02整式及因式分解一、代数式代数式的书写要注意规范,如乘号“×”用“·”表示或省略不写;分数不要用带分数;除号用分数线表示等.二、整式1.单项式:由数与字母或字母与字母相乘组成的代数式叫做单项式,所有字母指数的和叫做单项式的次数,数字因数叫做单项式的系数.2.多项式:由几个单项式相加组成的代数式叫做多项式,多项式里次数最高的项的次数叫做这个多项式的次数,其中不含字母的项叫做常数项.3.整式:单项式和多项式统称为整式.4.同类项:多项式中所含字母相同并且相同字母的指数也相同的项,叫做同类项.5.整式的加减:一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项.6.幂的运算:a m·a n=a m+n;(a m)n=a mn;(ab)n=a n b n;a m÷a n=m na .7.整式的乘法:(1)单项式与单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.(2)单项式与多项式相乘:m(a+b+c)=ma+mb+mc.(3)多项式与多项式相乘:(m+n)(a+b)=ma+mb+na+nb.8.乘法公式:(1)平方差公式:22()()a b a b a b +-=-.(2)完全平方公式:222()2a b a ab b ±=±+.9.整式的除法:(1)单项式除以单项式,把系数、同底数的幂分别相除,作为商的因式:对于只在被除式含有的字母,则连同它的指数作为商的因式.(2)多项式除以单项式:先把这个多项式的每一项除以单项式,再把所得的商相加. 三、因式分解1.把一个多项式化成几个因式积的形式,叫做因式分解,因式分解与整式乘法是互逆运算. 2.因式分解的基本方法:(1)提取公因式法:()ma mb mc m a b c ++=++. (2)公式法:运用平方差公式:²²()()a b a b a b -=+-. 运用完全平方公式:22²2()a ab b a b ±+=±. 3.分解因式的一般步骤:(1)如果多项式各项有公因式,应先提取公因式; (2)如果各项没有公因式,可以尝试使用公式法:为两项时,考虑平方差公式; 为三项时,考虑完全平方公式;为四项时,考虑利用分组的方法进行分解;(3)检查分解因式是否彻底,必须分解到每一个多项式都不能再分解为止. 以上步骤可以概括为“一提二套三检查”.考向一代数式及相关问题1.用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连接而成的式子叫做代数式.2.用数值代替代数式里的字母,按照代数式里的运算关系,计算后所得的结果叫做代数式的值.典例1某商品进价为每件x 元,销售商先以高出进价50%销售,因库存积压又降价20%出售,则现在的售价为元.A .()()150%120%x ++B .()150%20%x +⋅C .()()150%120%x +-D .()150%20%x +-【答案】C【解析】根据题意:销售商先以高出进价50%销售后的售价为:()150%x +,然后又降价20%出售,此时的售价为:()()150%120%x +-.故选C.【名师点睛】此题考查的是列代数式,解决此题的关键是找到各个量之间的关系,列代数式.1.(2019•海南)当m =–1时,代数式2m +3的值是 A .–1 B .0C .1D .22.下列式子中,符合代数式书写格式的是 A .a c ÷ B .5a ⨯C .2n mD .112x考向二整式及其相关概念单项式与多项式统称整式.观察判断法:要准确理解和辨认单项式的次数、系数;判断是否为同类项时,关键要看所含的字母是否相同,相同字母的指数是否相同.多项式的次数是指次数最高的项的次数.同类项一定要先看所含字母是否相同,然后再看相同字母的指数是否相同.考虑特殊性:单独一个数或字母也是单项式;单项式的次数是指单项式中所有字母指数的和,单独的一个常数的次数是0.典例2下列说法中正确的是A .25xy -的系数是–5 B .单项式x 的系数为1,次数为0C .222xyz -的次数是6D .xy +x –1是二次三项式 【答案】D【解析】A.25xy -的系数是–15,则A 错误;B.单项式x 的系数为1,次数为1,则B 错误;C.222xyz -的次数是1+1+2=4,则C 错误;D.xy +x –1是二次三项式,正确,故选D.3.按某种标准把多项式分类,334x -与2221a b ab +-属于同一类,则下列多项式中也属于这一类的是 A .1abc - B .53x y -+ C .22x x +D .222a ab b -+4.下列说法正确的是 A .2a 2b 与﹣2b 2a 的和为0B .223a πb 的系数是23π,次数是4次 C .2x 2y ﹣3y 2﹣1是三次三项式 D .3x 2y 3与﹣3213x y 是同类项 考向三规律探索题解决规律探索型问题的策略是:通过对所给的一组(或一串)式子及结论,进行全面细致地观察、分析、比较,从中发现其变化规律,并由此猜想出一般性的结论,然后再给出合理的证明或加以应用.典例3(2019•十堰)一列数按某规律排列如下:11212312341213214321,,,,,,,,,,…,若第n 个数为57,则n = A .50 B .60 C .62D .71【答案】B【解析】11212312341213214321,,,,,,,,,,…,可写为:1121231234()()()1213214321,,,,,,,,,,…,∴分母为11开头到分母为1的数有11个,分别为1234566789101111109877554321,,,,,,,,,,,,∴第n 个数为57,则n =1+2+3+4+…+10+5=60,故选B .【名师点睛】本题考查数字的变化类,解答本题的关键是明确题意,发现题目中数字的变化规律.5.(2019•武汉)观察等式:2+22=23-2;2+22+23=24-2;2+22+23+24=25-2,…,已知按一定规律排列的一组数:250、251、252、…、299、2100.若250=a ,用含a 的式子表示这组数的和是 A .2a 2-2a B .2a 2-2a -2 C .2a 2-aD .2a 2+a6.(2019•滨州)观察下列一组数:a 1=13,a 2=35,a 3=69,a 4=1017,a 5=1533,…, 它们是按一定规律排列的,请利用其中规律,写出第n 个数a n =__________.(用含n 的式子表示)典例4如图,用棋子摆成的“上”字:第一个“上”字第二个“上”字第三个“上”字如果按照以上规律继续摆下去,那么通过观察,可以发现: (1)第四、第五个“上”字分别需用 和 枚棋子. (2)第n 个“上”字需用 枚棋子.(3)如果某一图形共有102枚棋子,你知道它是第几个“上”字吗?【答案】(1)18,22;(2)4n+2;(3)102.【解析】(1)∵第一个“上”字需用棋子4×1+2=6枚;第二个“上”字需用棋子4×2+2=10枚;第三个“上”字需用棋子4×3+2=14枚;∴第四个“上”字需用棋子4×4+2=18枚,第五个“上”字需用棋子4×5+2=22枚,故答案为:18,22;(2)由(1)中规律可知,第n个“上”字需用棋子4n+2枚,故答案为:4n+2;(3)根据题意,得:4n+2=102,解得n=25,答:第25个“上”字共有102枚棋子.7.如图,用黑白两种颜色的菱形纸片,按黑色纸片数逐渐增加1的规律拼成下列图案,若第n个图案中有2017个白色纸片,则n的值为A.672 B.673C.674 D.6758.如图,图案均是用长度相等的小木棒,按一定规律拼搭而成,第一个图案需4根小木棒,则第6个图案需小木棒的根数是A.54 B.63C.74 D.84考向四幂的运算幂的运算法则是进行整式乘除法的基础,要熟练掌握,解题时要明确运算的类型,正确运用法则;在运算的过程中,一定要注意指数、系数和符号的处理.典例5下列运算错误的是 A .(m 2)3=m 6 B .a 10÷a 9=aC .x 3·x 5=x 8D .a 4+a 3=a 7【答案】D【解析】A 、(m 2)3=m 6,故此选项正确,不符合题意; B 、a 10÷a 9=a ,故此选项正确,不符合题意; C 、x 3·x 5=x 8,故此选项正确,不符合题意;D 、a 4和a 3不是同类项不能合并,故此选项错误,符合题意. 故选D .【名师点睛】本题考查了幂的乘方、同底数幂的乘法和除法法则,熟记法则是解决此题的关键,注意此题是选择错误的,不用误选.9.下列计算中,结果是a 7的是 A .a 3–a 4 B .a 3·a 4C .a 3+a 4D .a 3÷a 410.阅读下面的材料,并回答后面的问题材料:由乘方的意义,我们可以得到2351010(1010)(101010)101010101010⨯=⨯⨯⨯⨯=⨯⨯⨯⨯=, 347(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)-⨯-=-⨯-⨯-⨯-⨯-⨯-⨯-=-.于是,就得到同底数幂乘法的运算性质:问题:(1)计算:①4611()()22-⨯-;②233(3)⨯-.(2)将33332222+++写成底数是2的幂的形式;(3)若252018()()()()p x y x y x y x y -•-•-=-,求p 的值.考向五整式的运算整式的加减,实质上就是合并同类项,有括号的,先去括号,只要算式中没有同类项,就是最后的结果;多项式乘多项式的运算中要做到不重不漏,应用乘法公式进行简便计算,另外去括号时,要注意符号的变化,最后把所得式子化简,即合并同类项.典例6 已知a ﹣b =5,c +d =﹣3,则(b +c )﹣(a ﹣d )的值为 A .2 B .﹣2 C .8D .﹣8【答案】D【解析】根据题意可得:(b +c )﹣(a ﹣d )=(c +d )﹣(a ﹣b )=﹣3﹣5=﹣8,故选D .11.一个长方形的周长为68a b +,相邻的两边中一边长为23a b +,则另一边长为A . 45a b +B .a b +C . 2a b +D .7a b +12.已知213x a b 与15y ab 的和是815x y a b ,则x y -等于 A .–1 B .1 C .–2D .2典例7 若(x +2)(x –1)=x 2+mx –2,则m 的值为A.3 B.–3C.1 D.–1【答案】C【解析】因为(x+2)(x–1)=x2–x+2x–2=x2+x–2=x2+mx–2,所以m=1,故选C.13.已知(x+3)(x2+ax+b)的积中不含有x的二次项和一次项,求a,b的值.考向六因式分解因式分解的概念与方法步骤①看清形式:因式分解与整式乘法是互逆运算.符合因式分解的等式左边是多项式,右边是整式乘积的形式.②方法:(1)提取公因式法;(2)运用公式法.③因式分解的步骤为:一提公因式;二看公式.公式包括平方差公式与完全平方公式,要能用公式法分解必须有平方项,如果是平方差就用平方差公式来分解,如果是平方和需要看还有没有两数乘积的2倍,如果没有两数乘积的2倍还不能分解.一“提”(取公因式),二“用”(公式).要熟记公式的特点,两项式时考虑平方差公式,三项式时考虑完全平方公式.典例8下列从左边到右边的变形,属于因式分解的是A.(x+1)(x–1)=x2–1 B.x2–2x+1=x(x–2)+1C.x2–4y2=(x–2y)2D.x2+2x+1=(x+1)2【答案】D【解析】A、右边不是积的形式,故本选项错误;B、右边不是积的形式,故本选项错误;C 、x 2–4y 2=(x +2y )(x –2y ),故本项错误;D 、是因式分解,故本选项正确. 故选D .14.下列因式分解正确的是A .x 2–9=(x +9)(x –9)B .9x 2–4y 2=(9x +4y )(9x –4y )C .x 2–x +14=(x −14)2 D .–x 2–4xy –4y 2=–(x +2y )2典例9把多项式x 2﹣6x +9分解因式,结果正确的是 A .(x ﹣3)2B .(x ﹣9)2C .(x +3)(x ﹣3)D .(x +9)(x ﹣9)【答案】A【解析】x 2﹣6x +9=(x ﹣3)2,故选A .15.分解因式:()2224a a +--=_________________.16.已知a ﹣b =1,则a 3﹣a 2b +b 2﹣2ab 的值为A .﹣2B .﹣1C .1D .21.已知长方形周长为20cm ,设长为x cm ,则宽为 A .20x - B .202x- C .202x -D .10x -2.已知3a ﹣2b =1,则代数式5﹣6a +4b 的值是 A .4B .3C .﹣1D .﹣33.在0,﹣1,﹣x ,13a ,3﹣x ,12x -,1x中,是单项式的有 A .1个 B .2个 C .3个D .4个4.若多项式()2215134mx y m y -+-是三次三项式,则m 等于 A .-1 B .0 C .1D .25.如果2x 3m y 4与–3x 9y 2n 是同类项,那么m 、n 的值分别为 A .m =–3,n =2 B .m =3,n =2 C .m =–2,n =3D .m =2,n =36.下列算式的运算结果正确的是 A .m 3•m 2=m 6B .m 5÷m 3=m 2(m ≠0)C .(m −2)3=m −5D .m 4﹣m 2=m 27.计算(﹣ab 2)3的结果是 A .﹣3ab 2 B .a 3b 6 C .﹣a 3b 5D .﹣a 3b 68.已知x +y =–1,则代数式2019–x –y 的值是 A .2018 B .2019C .2020D .20219.三种不同类型的纸板的长宽如图所示,其中A 类和C 类是正方形,B 类是长方形,现A 类有1块,B 类有4块,C 类有5块.如果用这些纸板拼成一个正方形,发现多出其中1块纸板,那么拼成的正方形的边长是A .m +nB .2m +2nC .2m +nD .m +2n10.把多项式ax 3-2ax 2+ax 分解因式,结果正确的是A .ax (x 2-2x )B .ax 2(x -2)C .ax (x +1)(x -1)D .ax (x -1)211.观察下图“”形中各数之间的规律,根据观察到的规律得出n 的值为A .241B .113C .143D .27112.如图,从左到右在每个小格子中填入一个整数,使得其中任意三个相邻格子中所填整数之和都相等.若前m 个格子中所填整数之和是1684,则m 的值可以是9a bc—51…A .1015B .1010C .1012D .101813.若229a kab b +-是完全平方式,则常数k 的值为 A .±6 B .12 C .±2D .614.若有理数a ,b 满足225a b +=,2()9a b +=,则4ab -的值为A .2B .–2C .8D .–815.下列说法中,正确的个数为①倒数等于它本身的数有0,±1;②绝对值等于它本身的数是正数;③–32a 2b 3c 是五次单项式;④2πr 的系数是2,次数是2;⑤a 2b 2–2a +3是四次三项式;⑥2ab 2与3ba 2是同类项. A .4 B .3 C .2D .116.按照如图所示的计算机程序计算,若开始输入的x 值为2,第一次得到的结果为1,第二次得到的结果为4,…第2017次得到的结果为A .1B .2C .3D .417.已知单项式1312a x y --与23b xy -是同类项,那么a b -的值是___________. 18.分解因式:3x 3﹣27x =__________.19.某种商品的票价为x 元,如果按标价的六折出售还可以盈利20元,那么这种商品的进价为__________元(用含x 的代数式表示).20.下面是按一定规律排列的代数式:a 2、3a 4、5a 6、7a 8、…,则第10个代数式是__________. 21.如图,每一图中有若干个大小不同的菱形,第1幅图中有1个菱形,第2幅图中有3个菱形,第3幅图中有5个菱形,如果第n 幅图中有2019个菱形,那么n =__________.22.观察下列等式:第1个等式:a 1=11111323⎛⎫=⨯- ⎪⨯⎝⎭; 第2个等式:a 2=111135235⎛⎫=⨯- ⎪⨯⎝⎭; 第3个等式:a 3=111157257⎛⎫=⨯- ⎪⨯⎝⎭; …请按以上规律解答下列问题:(1)列出第5个等式:a 5=_____________; (2)求a 1+a 2+a 3+…+a n =4999,那么n 的值为______________. 23.已知21a =+,求代数式223a a -+的值.24.已知2210x x +-=,求432441x x x ++-的值.25.如图,在一块长为a ,宽为2b 的长方形铁皮中,以2b 为直径分别剪掉两个半圆.(1)求剩下的铁皮的面积(用含a ,b 的式子表示); (2)当a =4,b =1时,求剩下的铁皮的面积是多少(π取3).26.已知:2277A B a ab -=-,且2467B a ab =-++.(1)求A 等于多少;(2)若21(2)0a b ++-=,求A 的值.27.定义新运算:对于任意数a,b,都有a⊕b=(a﹣b)(a2+ab+b2)+b3,等式右边是通常的加法、减法、乘法及乘方运算,比如5⊕2=(5﹣2)(52+5×2+22)+23=3×39+8=117+8=125.(1)求3⊕(﹣2)的值;(2)化简(a﹣b)(a2+ab+b2)+b3.28.阅读材料:把形如ax2+bx+c的二次三项式(或其一部分)配成完全平方式的方法叫配方法.配方法的基本形式是完全平方公式的逆写,即a2±2ab+b2=(a±b)2.请根据阅读材料解决下列问题:(1)填空:a2﹣4a+4=__________.(2)若a2+2a+b2﹣6b+10=0,求a+b的值.(3)若a、b、c分别是△ABC的三边,且a2+4b2+c2﹣2ab﹣6b﹣2c+4=0,试判断△ABC的形状,并说明理由.1.(2019•锦州)下列运算正确的是A.x6÷x3=x2B.(-x3)2=x6 C.4x3+3x3=7x6D.(x+y)2=x2+y2 2.(2019•上海)下列运算正确的是A.3x+2x=5x2B.3x-2x=xC.3x·2x=6x D.3x÷2x2 33.(2019•滨州)若8x m y与6x3y n的和是单项式,则(m+n)3的平方根为A.4 B.8C.±4 D.±8 4.(2019•毕节市)如果3ab2m-1与9ab m+1是同类项,那么m等于A.2 B.1C.-1 D.0 5.(2019•海南)当m=-1时,代数式2m+3的值是A.-1 B.0C.1 D.2 6.(2019•台州)计算2a-3a,结果正确的是A.-1 B.1C.-a D.a 7.(2019•怀化)单项式-5ab的系数是A.5 B.-5C.2 D.-28.(2019•黄石)化简13(9x-3)-2(x+1)的结果是A.2x-2 B.x+1C.5x+3 D.x-39.(2019•连云港)计算下列代数式,结果为x5的是A.x2+x3B.x·x5C.x6-x D.2x5-x510.(2019•眉山)下列运算正确的是A.2x2y+3xy=5x3y2B.(-2ab2)3=-6a3b6C.(3a+b)2=9a2+b2D.(3a+b)(3a-b)=9a2-b2 11.(2019•绥化)下列因式分解正确的是A.x2-x=x(x+1)B.a2-3a-4=(a+4)(a-1)C.a2+2ab-b2=(a-b)2D.x2-y2=(x+y)(x-y)12.(2019•湘西州)因式分解:ab-7a=__________.13.(2019•常德)若x2+x=1,则3x4+3x3+3x+1的值为__________.14.(2019•南京)分解因式(a-b)2+4ab的结果是__________.15.(2019•赤峰)因式分解:x3-2x2y+xy2=__________.16.(2019•绥化)计算:(-m3)2÷m4=__________.17.(2019•湘潭)若a+b=5,a-b=3,则a2-b2=__________.18.(2019•乐山)若3m=9n=2.则3m+2n=__________.19.(2019•怀化)合并同类项:4a2+6a2-a2=__________.20.(2019•绵阳)单项式x-|a-1|y与2x1b-y是同类项,则a b=__________.21.(2019•兰州)化简:a(1-2a)+2(a+1)(a-1).22.(2019•凉山州)先化简,再求值:(a+3)2-(a+1)(a-1)-2(2a+4),其中a12 =-.23.(2019•安徽)观察以下等式:第1个等式:211 111 =+,第2个等式:211 326 =+,第3个等式:211 5315 =+,第4个等式:211 7428 =+,第5个等式:211 9545 =+,……按照以上规律,解决下列问题:(1)写出第6个等式:__________;(2)写出你猜想的第n个等式:__________(用含n的等式表示),并证明.24.(2019•自贡)阅读下列材料:小明为了计算1+2+22+…+22017+22018的值,采用以下方法:设S=1+2+22+…+22017+22018①,则2S=2+22+…+22018+22019②,②-①得2S-S=S=22019-1,∴S=1+2+22+…+22017+22018=22019-1.请仿照小明的方法解决以下问题:(1)1+2+22+…+29=__________;(2)3+32+…+310=__________;(3)求1+a+a2+…+a n的和(a>0,n是正整数,请写出计算过程).1.【答案】C【解析】把m =–1代入代数式2m +3中,得2m +3=2×(–1)+3=1.故选C . 2.【答案】C【解析】A .正确的格式为:ac,即A 项不合题意, B .正确的格式为:5a ,即B 项不合题意, C .符合代数式的书写格式,即C 项符合题意, D .正确的格式为:32x ,即D 项不合题意, 故选C .【名师点睛】本题考查了代数式,正确掌握代数式的书写格式是解题的关键. 3.【答案】A【解析】334x -与2221a b ab +-都是三次多项式,只有A 是三次多项式,故选A . 4.【答案】C【解析】A 、2a 2b 与-2b 2a 不是同类项,不能合并,此选项错误; B 、23πa 2b 的系数是23π,次数是3次,此选项错误; C 、2x 2y -3y 2-1是三次三项式,此选项正确; D 、3x 2y 3与﹣3213x y 不是同类项,此选项错误; 故选C . 5.【答案】C变式拓展【解析】∵2+22=23-2;2+22+23=24-2;2+22+23+24=25-2;… ∴2+22+23+…+2n =2n +1-2,∴250+251+252+…+299+2100=(2+22+23+…+2100)-(2+22+23+…+249)=(2101-2)-(250-2)=2101-250, ∵250=a ,∴2101=(250)2·2=2a 2,∴原式=2a 2-a .故选C .【名师点睛】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于得出规律:2+22+23+…+2n =2n +1-2. 6.【答案】1(1)22n n n +++【解析】观察分母,3,5,9,17,33,…,可知规律为2n +1, 观察分子的,1,3,6,10,15,…,可知规律为(1)2n n +, ∴a n =1(1)(1)22122n n n n n n +++=++,故答案为:1(1)22n n n +++. 【名师点睛】此题考查了规律型:数字的变化类,弄清题中的规律是解本题的关键. 7.【答案】A【解析】当有1个黑色纸片时,有4个白色纸片; 当有2个黑色纸片时,有437+=个白色纸片; 当有3个黑色纸片时,有43310++=个白色纸片; 以此类推,当有n 个黑色纸片时,有()431n +-个白色纸片. 当()4312017n +-=时,化简得32016n =,解得672n =.故选A. 故选C . 8.【答案】A【解析】拼搭第1个图案需4=1×(1+3)根小木棒, 拼搭第2个图案需10=2×(2+3)根小木棒, 拼搭第3个图案需18=3×(3+3)根小木棒, 拼搭第4个图案需28=4×(4+3)根小木棒, …拼搭第n 个图案需小木棒n (n +3)=n 2+3n 根. 当n =6时,n 2+3n =62+3×6=54. 故选A.【名师点睛】本题考查图形的变化规律,找出图形之间的关系,得出数字之间的运算规律,利用规律解决问题.9.【答案】B【解析】A 、不是同类项不能合并,故此选项错误;B 、a 3·a 4=a 3+4=a 7,故此选项正确;C 、不是同类项不能合并,故此选项错误;D 、a 3÷a 4=a 3–4=a –1=1a ,故此选项错误. 故选B .【名师点睛】本题考查了同底数幂的乘法和除法法则,熟记法则是解决此题的关键. 10.【解析】(1)①4646101011111()()()()()22222+-⨯-=-=-=; ②23232353(3)3333+⨯-=-⨯=-=-;(2)33333325222224222+++=⨯=⨯=;(3)∵252018()()()()p x y x y x y x y -⋅-⋅-=-,∴2+p +5=2018,解得:p =2011.【名师点睛】本题主要考查的是同底数幂的乘法,正确理解材料中同底数幂乘法的运算性质是解题的关键.11.【答案】B【解析】∵长方形的周长为68a b +,∴相邻的两边的和是34a b +,∵一边长为23a b +,∴另一边长为342334()23a b a b a b a b a b +-+=+--=+,故选B.【名师点睛】由长方形的周长=(长+宽)×2,可求出相邻的两边的和是3a +4b ,再用3a +4b 减去2a +3b ,即可求出另一边的长.12.【答案】A 【解析】∵213x a b 与15y ab 的和是815x y a b ,∴213x a b 与15y ab 是同类项,∴1,2x y ==,∴121x y -=-=-.故选A.13.【解析】原式=x 3+ax 2+bx +3x 2+3ax +3b =x 3+ax 2+3x 2+3ax +bx +3b=x 3+(a +3)x 2+(3a +b )x +3b ,由题意可知:a +3=0,3a +b =0,解得a =–3,b =9.14.【答案】D 【解析】A .原式=(x +3)(x –3),选项错误;B .原式=(3x +2y )(3x –2y ),选项错误;C .原式=(x –12)2,选项错误; D .原式=–(x 2+4xy +4y 2)=–(x +2y )2,选项正确.故选D .15.【答案】(a +4)(a -2)【解析】()2224a a +--=228(4)2()a a a a +-=+-. 16.【答案】C【解析】a 3﹣a 2b +b 2﹣2ab =a 2(a ﹣b )+b 2﹣2ab =a 2+b 2﹣2ab =(a ﹣b )2=1.故选C . 1.【答案】D【解析】∵矩形的宽=2矩形周长−长,∴宽为:(10-x )cm .故选D . 2.【答案】B【解析】∵3a ﹣2b =1,∴5﹣6a +4b =5﹣2(3a ﹣2b )=5﹣2×1=3, 故选:B .3.【答案】D 【解析】根据单项式的定义可知,只有代数式0,﹣1,﹣x,13a,是单项式,一共有4个.故选D. 考点冲关4.【答案】C 【解析】由题意可得,()123,104m m +=-+≠,解得1m =±且1m ≠-. 则m 等于1,故选C .5.【答案】B【解析】∵2x 3m y 4与–3x 9y 2n 是同类项,∴3m =9,4=2n ,∴m =3,n =2.故选:B.6.【答案】B【解析】A 、m 3•m 2=m 5,故此选项错误;B 、m 5÷m 3=m 2(m ≠0),故此选项正确;C 、(m −2)3=m −6,故此选项错误;D 、m 4-m 2,无法计算,故此选项错误;故选:B .7.【答案】D【解析】(﹣ab 2)3=﹣a 3b 6,故选:D .8.【答案】C【解析】∵–x –y =–(x +y ),∴2019–x –y =2019–(x +y )=2019–(–1)=2020,故选C .【名师点睛】此题考查代数式求值,难度不大.9.【答案】D【解析】∵所求的正方形的面积等于一张正方形A 类卡片、4张正方形B 类卡片和4张长方形C 类卡片的和,∴所求正方形的面积=m 2+4mn +4n 2=(m +2n )2,∴所求正方形的边长为m +2n .故选:D.10.【答案】D【解析】原式=ax (x 2﹣2x +1)=ax (x ﹣1)2,故选:D .11.【答案】A【解析】∵15=2×8﹣1,∴m =28=256,则n =256﹣15=241,故选A .【名师点睛】本题主要考查数字的变化类,解题的关键是得出第n 个图形中最上方的数字为2n ﹣1,左下数字为2n ,右下数字为2n ﹣(2n ﹣1).12.【答案】B【解析】由题意可知:9+a +b =a +b +c ,∴c =9.∵9-5+1=5,1684÷5=336…4, 且9-5=4,∴m =336×3+2=1010.故选:B . 13.【答案】A【解析】由完全平方公式可得:236kab a b k -=±⨯=±,.故选A.【名师点睛】做此类问题的重点在于判断完全平方式的结构特点.14.【答案】D【解析】由()²9a b +=,得²²29a b ab ++=,又²²5a b +=,则2954ab =-=,所以(2)448ab -=⨯-=-.故选D.15.【答案】D【解析】①倒数等于它本身的数有±1,故①错误, ②绝对值等于它本身的数是非负数,故②错误, ③2332a b c -是六次单项式,故③错误, ④2πr 的系数是2π,次数是1,故④错误,⑤2223a b a -+是四次三项式,故⑤正确,⑥22ab 与23ba 不是同类项,故⑥错误.故选D.【名师点睛】单项式中的数字因数就是单项式的系数,所有字母的指数的和就是多项式的次数. 16.【答案】A【解析】当x =2时,第一次输出结果=12×2=1;第二次输出结果=1+3=4;第三次输出结果=4×12=2,; 第四次输出结果=12×2=1, …2017÷3=672…1.所以第2017次得到的结果为1.故选A .17.【答案】3 【解析】∵1312a x y --与23b xy -是同类项, ∴1132a b-=⎧⎨=-⎩, 解得21a b =⎧⎨=-⎩, ∴a b -=3.故答案为3.18.【答案】3x (x +3)(x ﹣3)【解析】3x 3﹣27x =3x (x 2﹣9)=3x (x +3)(x ﹣3).【名师点睛】本题考查用提公因式法和公式法进行因式分解的能力.一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止. 19.【答案】0.6x –20【解析】根据题意进价为:0.6x –20.故答案为0.6x –20.【名师点睛】此题考查列代数式,难度不大.20.【答案】19a 20【解析】∵a 2,3a 4,5a 6,7a 8,…∴单项式的次数是连续的偶数,系数是连续的奇数,∴第10个代数式是:(2×10﹣1)a 2×10=19a 20.故答案为:19a 20.【名师点睛】此题主要考查了单项式,正确得出单项式次数与系数的变化规律是解题关键. 21.【答案】1010【解析】根据题意分析可得:第1幅图中有1个.第2幅图中有2×2﹣1=3个. 第3幅图中有2×3﹣1=5个. 第4幅图中有2×4﹣1=7个. ….可以发现,每个图形都比前一个图形多2个.故第n 幅图中共有(2n ﹣1)个.当图中有2019个菱形时,2n ﹣1=2019,解得n =1010,故答案为:1010.【名师点睛】本题考查规律型中的图形变化问题,难度适中,要求学生通过观察,分析、归纳并发现其中的规律.22.【答案】11119112911⎛⎫=⨯- ⎪⨯⎝⎭,49【解析】(1)观察等式,可得以下规律:()()1111212122121n a n n n n ⎛⎫==- ⎪-+-+⎝⎭, ∴51111.9112911a ⎛⎫==⨯- ⎪⨯⎝⎭(2)1231111111111112323525722121n a a a a n n ⎛⎫⎛⎫⎛⎫⎛⎫+++⋯+=⨯-+⨯-+⨯-++- ⎪ ⎪ ⎪ ⎪-+⎝⎭⎝⎭⎝⎭⎝⎭L1149122199n ⎛⎫=-= ⎪+⎝⎭,解得:n =49.故答案为(1)11119112911⎛⎫=⨯- ⎪⨯⎝⎭;(2)49.23.【解析】223a a -+=221a a -++2=(a −1)2+2当a =2+1时,原式=(2+11-)2+2=(2)2+2=2+2=4.24.【解析】由已知,得221x x +=,则432441x x x ++-=222241x x x x ++-()=2241x x +-=2221x +-()=2–1=1.【名师点睛】本题考查了因式分解的应用:利用因式分解解决证明问题.用因式分解的方法将式子变形时,根据已知条件,变形的可以是整个代数式,也可以是其中的一部分.25.【解析】(1)长方形的面积为:a ×2b =2ab ,两个半圆的面积为:π×b 2=πb 2,∴阴影部分面积为:2ab –πb 2.(2)当a =4,b =1时,∴2ab –πb 2=2×4×1–3×1=5.【名师点睛】本题考查列代数式,涉及代入求值,有理数运算等知识,解题的关键是根据题意正确列出代数式.26.【解析】(1)∵2277A B a ab -=-,2 467B a ab =-++,∴()222246777A B A a ab a ab -=--++=-,∴()()22227724677781214A a ab a ab a ab a ab =-+-++=--++ 2514a ab =-++.(2)依题意得:10a +=,20b -=,∴1a =-,2b =.∴22514(1)5(1)2143A a ab =-++=--+⨯-⨯+=.【名师点睛】考查了整式的化简求值、非负数的性质、绝对值、平方根的知识.整式的加减运算实际上就是去括号、合并同类项.27.【解析】(1)3⊕(﹣2)=(3+2)×[32+3×(﹣2)+(﹣2)2]+(﹣2)3=5×7﹣8=27.(2)(a ﹣b )(a 2+ab +b 2)+b 3=a 3+a 2b +ab 2﹣a 2b ﹣ab 2﹣b 3+b 3=a 3.【名师点睛】此题考查有理数的混合运算,掌握运算法则是解题关键.28.【解析】(1)2244(2)a a a -+=-Q ,故答案为:2(2)a -;(2)2226100a a b b ++-+=Q ,22(1)(3)0a b ∴++-=,1a ∴=-,3b =,2a b ∴+=;(3)ABC △为等边三角形.理由如下:222426240a b c ab b c ++---+=Q ,222()(1)3(1)0a b c b ∴-+-+-=,0a b ∴-=,10c -=,10b -=1a b c ∴===,ABC ∴△为等边三角形.【名师点睛】本题考查配方法的运用,非负数的性质,完全平方公式,等边三角形的判定.解题的关键是构建完全平方式,根据非负数的性质解题.1.【答案】B【解析】∵x 6÷x 3=x 3,∴选项A 不符合题意; ∵(-x 3)2=x 6,∴选项B 符合题意;∵4x 3+3x 3=7x 3,∴选项C 不符合题意; ∵(x +y )2=x 2+2xy +y 2,∴选项D 不符合题意.故选B .【名师点睛】此题主要考查了同底数幂的除法的运算方法,幂的乘方与积的乘方的运算方法,合并同类项的方法,以及完全平方公式的应用,要熟练掌握.2.【答案】B【解析】A .原式=5x ,故A 错误;C .原式=6x 2,故C 错误;D .原式32=,故D 错误,故选B . 【名师点睛】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型. 3.【答案】D【解析】由8x m y 与6x 3y n 的和是单项式,得m =3,n =1.(m +n )3=(3+1)3=64,64的平方根为±8.故选D . 直通中考【名师点睛】本题考查了同类项,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.4.【答案】A【解析】根据题意可得:2m-1=m+1,解得m=2,故选A.【名师点睛】此题考查同类项问题,关键是根据同类项的定义得出m的方程.5.【答案】C【解析】将m=-1代入2m+3=2×(-1)+3=1,故选C.【名师点睛】本题考查代数式求值;熟练掌握代入法求代数式的值是解题的关键.6.【答案】C【解析】2a-3a=-a,故选C.【名师点睛】本题考查了合并同类项法则的应用,能熟记合并同类项法则的内容是解此题的关键.7.【答案】B【解析】单项式-5ab的系数是-5,故选B.【名师点睛】本题考查单项式,注意单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.8.【答案】D【解析】原式=3x-1-2x-2=x-3,故选D.【名师点睛】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.9.【答案】D【解析】A、x2与x3不是同类项,故不能合并同类项,故选项A不合题意;B、x·x5=x6,故选项B不合题意;C、x6与x不是同类项,故不能合并同类项,故选项C不合题意;D、2x5-x5=x5,故选项D符合题意.故选D.【名师点睛】本题主要考查了合并同类项的法则:系数下降减,字母以及其指数不变.10.【答案】D【解析】A.2x2y和3xy不是同类项,故不能合并,故选项A不合题意;B.(-2ab2)3=-8a3b6,故选项B不合题意;C.(3a+b)2=9a2+6ab+b2,故选项C不合题意;D.(3a+b)(3a-b)=9a2-b2,故选项D符合题意.故选D.【名师点睛】本题主要考查了合并同类项的法则、幂的运算性质以及乘法公式,熟练掌握相关公式是解答本题的关键.11.【答案】D【解析】A、原式=x(x-1),错误;B、原式=(a-4)(a+1),错误;C、a2+2ab-b2,不能分解因式,错误;D、原式=(x+y)(x-y),正确.故选D.【名师点睛】此题考查了提公因式法、十字相乘法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.12.【答案】a(b-7)【解析】原式=a(b-7),故答案为:a(b-7).【名师点睛】此题主要考查了提公因式法分解因式,关键是正确找出公因式.13.【答案】4【解析】∵x2+x=1,∴3x4+3x3+3x+1=3x2(x2+x)+3x+1=3x2+3x+1=3(x2+x)+1=3+1=4,故答案为:4.【名师点睛】本题考查了因式分解的应用;把所求多项式进行灵活变形是解题的关键.14.【答案】(a+b)2【解析】(a-b)2+4ab=a2-2ab+b2+4ab=a2+2ab+b2=(a+b)2.故答案为:(a+b)2.【名师点睛】此题主要考查了运用公式法分解因式,正确应用公式是解题关键.15.【答案】x(x-y)2【解析】原式=x(x2-2xy+y2)=x(x-y)2,故答案为:x(x-y)2.【名师点睛】此题考查了提公因式与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.16.【答案】m2【解析】(-m3)2÷m4=m6÷m4=m2.故答案为:m2.【名师点睛】此题主要考查了积的乘方运算以及整式的除法运算,正确掌握相关运算法则是解题关键.17.【答案】15【解析】∵a+b=5,a-b=3,∴a2-b2=(a+b)(a-b)=5×3=15,故答案为:15.【名师点睛】本题考查了平方差公式,能够正确分解因式是解此题的关键.18.【答案】4【解析】∵3m=32n=2,∴3m+2n=3m·32n=2×2=4,故答案为:4.【名师点睛】此题考查幂的乘方与积的乘方,关键是根据幂的乘方与积的乘方解答.19.【答案】9a 2【解析】原式=a 2(4+6-1)=9a 2,故答案为:9a 2.【名师点睛】本题考查合并同类项,合并同类项时要注意以下三点:①要掌握同类项的概念,会辨别同类项,并准确地掌握判断同类项的两条标准:带有相同系数的代数项;字母和字母指数;②明确合并同类项的含义是把多项式中的同类项合并成一项,经过合并同类项,式的项数会减少,达到化简多项式的目的;③“合并”是指同类项的系数的相加,并把得到的结果作为新的系数,要保持同类项的字母和字母的指数不变.20.【答案】1【解析】由题意知-|a -1|1b =-≥0,∴a =1,b =1,则a b =(1)1=1,故答案为:1.【名师点睛】此题考查了同类项的知识,属于基础题,解答本题的关键是掌握同类项的定义,难度一般.21.【解析】原式=a -2a 2+2(a 2-1)=a -2a 2+2a 2-2=a -2.【名师点睛】本题主要考查平方差公式及单项式的乘法,熟练运用公式及运算规则是解题的关键.22.【解析】原式=a 2+6a +9-(a 2-1)-4a -8=2a +2.将a 12=-代入原式=2×(12-)+2=1. 【名师点睛】本题主要考查整式的混合运算,灵活运用两条乘法公式:完全平方公式和平方差公式是解题的关键,同时,在去括号的过程中要注意括号前的符号,若为负号,去括号后,括号里面的符号要改变.23.【解析】(1)第6个等式为:21111666=+,故答案为:21111666=+. (2)21121(21)n n n n =+--, 证明:∵右边=112112(21)(21)21n n n n n n n -++==---=左边.∴等式成立, 故答案为:21121(21)n n n n =+--. 【名师点睛】本题主要考查数字的变化规律,解题的关键是根据已知等式得出21121(21)n n n n =+--的规律,并熟练加以运用. 24.【解析】(1)设S =1+2+22+…+29①,则2S =2+22+…+210②,②-①得2S -S =S =210-1,∴S =1+2+22+…+29=210-1,故答案为:210-1.(2)设S =3+3+32+33+34+…+310①,则3S =32+33+34+35+…+311②,②-①得2S =311-1,所以S =11312-, 即3+32+33+34+…+310=11312-, 故答案为:11312-. (3)设S =1+a +a 2+a 3+a 4+…+a n ①,则aS =a +a 2+a 3+a 4+…+a n +a n +1②,②-①得:(a -1)S =a n +1-1,a =1时,不能直接除以a -1,此时原式等于n +1,a 不等于1时,a -1才能做分母,所以S =111n a a +--, 即1+a +a 2+a 3+a 4+…+a n =111n a a +--. 【名师点睛】本题考查了规律型:数字的变化类:认真观察、仔细思考,善用联想,利用类比的方法是解决这类问题的方法.。
中考备考:初中数学知识点总结整式的运算
2019中考备考:初中数学知识点总结-整式的运算
1.同类项所含字母相同 ,并且相同字母的次数也相同的项叫做同类项 ,几个常数项也叫同类项。
同类项与系数无关 ,与字母排列的顺序也无关。
2.合并同类项:把多项式中的同类项合并成一项叫做合并同类项。
即同类项的系数相加 ,所得结果作为系数 ,字母和字母的指数不变。
3.整式的加减:有括号的先算括号里面的 ,然后再合并同类项。
4.幂的运算:
5.整式的乘法:
1〕单项式与单项式相乘法那么:把它们的系数、同底数幂分别相乘 ,其余只在一个单项式里含有的字母连同它的指数作为积的因式。
2〕单项式与多项式相乘法那么:用单项式去乘多项式的每一项 ,再把所得的积相加。
3〕多项式与多项式相乘法那么:先用一个多项式的每一项乘另一个多项式的每一项 ,再把所得的积相加。
6.整式的除法
1〕单项式除以单项式:把系数与同底数幂分别相除作为上的因式 ,对于只在被除式里含有的字母 ,那么连同它的指数作为商的一个因式。
2〕多项式除以单项式:把这个多项式的每一项除以单项式 ,再把所得的商相加。
四、因式分解把一个多项式化成几个整式的积的形式
1〕提公因式法:〔公因式多项式各项都含有的公共因式〕吧公因式提到括号外面 ,将多项式写成因式乘积的形式。
取各项系数的最大公约数作为因
式的系数 ,取相同字母最低次幂的积。
公因式可以是单项式 ,也可以是多项式。
2〕公式法:A.平方差公式;B.完全平方公式。
中考数学考前满分计划:整式、分式、二次根式、因式分解(含解析)
○热○点○考○点○解○读一、整式1.单项式与多项式单独的一个数或一个字母也是单项式.2.合并同类项合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母连同它的指数不变,例如:合并同类项3x 2y 和4x 2y 为3x 2y +4x 2y =(3+4)x 2y =7x 2y .3.整式的运算(1)整式的加减运算实际就是合并同类项.(2)整式的乘法:()()a b m n am an bm bn ++=+++.(3)整式的除法:单项式除以单项式时,把系数、相同字母的幂分别相除,作为商的因式,对于只在被除式中含有的字母,则照抄下来;多项式除以单项式时,用多项式的每一项分别除以单项式,再把所得的商相加.(4)乘法公式①平方差公式:22()()a b a b a b +-=-.②完全平方公式:222()2a b a ab b ±=±+.4.幂的运算性质(1)同底数幂相乘法则:m n m n a a a +⋅=(,m n 为整数,0a ≠)(2)幂的乘方法则:()m n mn a a =(,m n 为整数,0a ≠)(3)积的乘方法则:()n n n ab a b =(n 为整数,0ab ≠)整式、分式、二次根式、因式分解常识必背语言叙述:两个数的平方和加上(或减去)这两个数的积的2倍,等于这两个数的和(或差)的平方.5.用十字相乘法分解因式利用十字相乘法分解因式,实质上是逆用(ax +b )(cx +d )乘法法则.它的一般规律是:(1)对于二次项系数为1的二次三项式,如果能把常数项q 分解成两个因数a ,b 的积,并且a +b 为一次项系数p ,那么它就可以运用公式(2)对于二次项系数不是1的二次三项式(a ,b ,c 都是整数且a ≠0)来说,如果存在四个整数,使,,且,那么.一个式子是分式需满足的三个条件:q px x ++2))(()(2b x a x ab x b a x ++=+++c bx ax ++22121,,,c c a a a a a =⋅21c c c =⋅21b c a c a =+1221c bx ax ++2))(()(2211211221221c x a c x a c c x c a c a x a a ++=+++=易错易混2.约分(1)分式约分时,要注意不注意符号导致的错误.(2)要注意约分不彻底导致的错误.(3)约分时需注意分式的分子、分母都是乘积形式时才能进行约分;分子、分母是多项式时,通常先将分子、分母分解因式,再约分.(4)约分的结果是整式或最简分式.(5)分式的约分是恒等变形,约分前后分式的值不变.3.分解因式要彻底.方法必知1.同类项(1)几个项是不是同类项,一看所含字母是否完全相同.二看相同字母的指数是否相同.“二同”缺一不可.(2)同类项与单项式的系数无关,与字母顺序无关,几个常数项也是同类项.(3)同类项不一定是两项,也可以是三项,四项……但至少为两项.2.合并同类项(1)合并同类项时,注意合并的只是系数,字母部分不变,不要漏掉.(2)合并同类项时,注意各项系数的符号,尤其系数为负数时,不要遗漏负号,同时不要丢项.(3)如果两个同类项的系数互为相反数,合并同类项的结果为0.3.整式的加减的最后结果的要求:(1)不能含有同类项,即要合并到不能再合并为止;(2)一般按照某一字母的降幂或升幂排列;(3)不能出现带分数,带分数必须要化为假分数.4.整式的化简求值(1)化简求值题一般先按整式的运算法则进行化简,然后再代入求值.(2)在求整式的值时,代入负数时应用括号括起来,作为底数的分数也应用括号括起来5.约分时需要注意的问题:(1)如果分子、分母中至少有一个是多顶式,就应先分解因式,然后找出分子、分母的公因式,再约分.(2)注意发现分式的分子和分母的一些隐含的公因式,如a﹣5与5﹣a表面虽不相同,但通过提取“﹣”可发现含有公因式(a﹣5).(3)当分式的分子或分母的系数是负数时,可利用分式的基本性质,把负号提到分式的前面.通分时确定了分母乘什么,分子也必须随之乘什么,要防止只对分母变形而忽略了分子,导致变形前后分式的值发生变化而出错.6.分式的混合运算,关键是弄清运算顺序,与分数的加、减、乘、除及乘方的混合运算一样,先算乘方,再算乘除,最后算加减,有括号要先算括号里面的,在运算过程中要注意正确地运用运算法则,灵活地运用运算律,使运算尽量简便.7.因式分解(1)因式分解是针对多项式而言的,一个单项式本身就是数与字母的积,不需要再分解因式;(2)因式分解的结果是整式的积的形式,积中几个相同因式的积要写成幂的形式;(3)因式分解必须分解到每一个因式都不能再分解为止;(4)因式分解与整式乘法是方向相反的变形,二者不是互为逆运算.因式分解是一种恒等变形,而整式乘法是一种运算.8.提公因式法(1)多项式的公因式提取要彻底,当一个多项式提取公因式后,剩下的另一个因式中不能再有公因式.(2)提公因式后括号内的项数应与原多项式的项数一样.(3)若多项式首项系数为负数时,通常要提出负因数.9.十字相乘法这类式子在许多问题中经常出现,其特点是:(1)二次项系数是1;(2)常数项是两个数之积;(3)一次项系数是常数项的两个因数之和.◇以◇练◇带◇学1.(鞍山)下列运算正确的是( )A .222(4)8ab a b =B .22423a a a +=C .642a a a ÷=D .222()a b a b +=+2.(攀枝花)我们可以利用图形中的面积关系来解释很多代数恒等式.给出以下4组图形及相应的代数恒等式:其中,图形的面积关系能正确解释相应的代数恒等式的有( )A .1个B .2个C .3个D .4个3.(邵阳)下列计算正确的是( )A .623a a a =B .235()a a =C .22()()a ba ba b a b +=+++D .01()13-=4.(内蒙古)下列运算正确的是( )A+=B .236()a a -=C .11223a a a+=D .21133b ab a b÷=5.(成都)若23320ab b --=,则代数式2222(1)ab b a ba a b---÷的值为 .6.x 的取值范围是 .7.(扬州)分解因式:24xy x -= .8.(内蒙古)分解因式:34x x -= .9.(盐城)先化简,再求值:2(3)(3)(3)a b a b a b +++-,其中2a =,1b =-.10.(滨州)先化简,再求值:22421()244a a a a a a a a -+-÷---+,其中a 满足211(6cos6004a a --⋅+︒=.1.(官渡区校级模拟)按一定规律排列的式子:a ,32a ,54a ,78a ,916a ,⋯,则第2024个式子为( )A .202320252a B .20244047(21)a -C .202340472a D .202440492a 2.(济南一模)下列运算正确的是( )A .22a b ab+=B .2222a b a b a b-=C .238()a a =D .84222a a a ÷=3.(金山区二模)单项式22a b -的系数和次数分别是( )A .2-和2B .2-和3C .2和2D .2和34.(龙岗区模拟)下列计算正确的是( )A .236a a a ⋅=B .2323a a a +=C .2234(3)218ab ab a b -⋅=-D .326(2)3ab ab b ÷-=-5.(中山市校级一模)下列各式从左到右的变形,因式分解正确的是( )A .2()a a b a ab+=+B .23()3a ab a a b +-=+-C .22282(4)ab a a b -=-D .228(2)(4)a a a a --=+-6.(钱塘区一模)下列因式分解正确的是( )A .241(41)(41)a a a -=+-B .225(5)(5)a a a -+=+-C .22269(3)a ab b a b --=-D .22816(8)a a a -+=-7.(新乡一模)化简2422a a a ---的结果是( )A .2a +B .2a -C .12a +D .12a -8.(东莞市校级模拟)分式23x x --的值为0时,x 的值是( )A .0x =B .2x =C .3x =D .2x =或3x =9.(碑林区校级一模)先化简,再求值:2[(2)(2)(2)](4)a b b a b a a --+-÷,其中12a =,2b =.10.(龙湖区校级一模)先化简,再求值:2344(111x x x x -+-÷++,其中3x =.1.按一定规律排列的单项式:3x ,54x -,79x ,916x -,⋯,第n 个单项式是( )A .1221(1)n n n x ---B .1221(1)n n n x ++-C .1221(1)(1)n n n x ---+D .1221(1)(1)n n n x ++-+2.下列运算正确的是( )A .22(4)16x x -=-B .325x y xy +=C .432x x x ÷=D .2224()xy x y =3.下列语句正确的是( )A .5-不是单项式B .a 可以表示负数C .25a b -的系数是5,次数是2D .221a ab ++是四次三项式4.下列因式分解正确的一项是( )A .222()x y x y +=+B .24(2)(2)x x x -=+-C .2221(1)x x x --=-D .242(2)xy x xy x +=+5.要使分式11x x -+有意义,则x 应满足的条件是( )A .1x ≠-B .1x ≠C .1x <-D .1x >-6.下列二次根式中,属于最简二次根式的是( )AB C D7.计算:0|1tan 60|(2024-︒+.8.先化简,再求值:2344(111x x x x -+-÷++,其中3x =.9.先化简,再求值:2(2)(4)a a a -++,其中a =.10.先化简,再求值:(2)(2)4()a b a b a a b -+--,其中2a =-,1b =.1.【答案】C【分析】根据积的乘方,合并同类项,同底数幂的除法法则,完全平方公式进行计算,逐一判断即可解答.【解答】解:A 、222(4)16ab a b =,故A 不符合题意;B 、22223a a a +=,故B 不符合题意;C 、642a a a ÷=,故C 符合题意;D 、222()2a b a ab b +=++,故D 不符合题意;故选:C .2.【答案】D【分析】观察各个图形及相应的代数恒等式即可得到答案.【解答】解:图形的面积关系能正确解释相应的代数恒等式的有①②③④,故选:D .3.【答案】D【分析】分别根据分式的加减法则、幂的乘方与积的乘方法则、零指数幂的运算法则对各选项进行逐一计算即可.【解答】解:A 、633a a a=,原计算错误,不符合题意;B 、236()a a =,原计算错误,不符合题意;C 、221()()a b a b a b a b+=+++,原计算错误,不符合题意;D 、01()13-=,正确,符合题意.故选:D .4.【答案】D【分析】根据二次根式的加法、幂的乘法与积的乘方以及分式的运算的计算方法解题即可.【解答】解:A +=≠B .2366()a a a -=-≠,故该选项不正确,不符合题意;C .11123222223a a a a a a+=+=≠,故该选项不正确,不符合题意;21131.333b a D ab a ab b b ÷=⨯=,故该选项正确,符合题意;故选:D .5.【答案】23.【分析】先根据分式的减法法则进行计算,再根据分式的除法法则把除法变成乘法,算乘法,最后代入求出答案即可.【解答】解:2222(1ab b a b a a b---÷2222(2)a ab b a b a a b--=⋅-222()a b a b a a b-=⋅-()b a b =-2ab b =-,23320ab b --= ,2332ab b ∴-=,223ab b ∴-=,∴原式23=.故答案为:23.6.【答案】3x >.【分析】根据记二次根式的被开方数是非负数、分母不为0列出不等式,解不等式得到答案.【解答】解:由题意得:30x ->,解得:3x >,故答案为:3x >.7.【分析】原式提取x ,再利用平方差公式分解即可.【解答】解:原式2(4)(2)(2)x y x y y =-=+-,故答案为:(2)(2)x y y +-8.【分析】应先提取公因式x ,再对余下的多项式利用平方差公式继续分解.【解答】解:34x x -,2(4)x x =-,(2)(2)x x x =+-.故答案为:(2)(2)x x x +-.9.【分析】依据题意,利用平方差公式和完全平方公式将原式进行化简,再将a ,b 的值代入计算即可求解.【解答】解:2(3)(3)(3)a b a b a b +++-2222699a ab b a b =+++-226a ab =+.当2a =,1b =-时,原式22262(1)=⨯+⨯⨯-812=-4=-.10.【答案】244a a -+,1.【分析】将括号里面通分运算,再利用分式的混合运算法则计算,结合负整数指数幂的性质、特殊角的三角函数值化简,整体代入得出答案.【解答】解:原式2421[(2)(2)a a a a a a a -+-=÷---224(2)(2)(1)[](2)(2)a a a a a a a a a a -+--=÷---22244(2)a a a a a a a ---+=÷-24(2)4a a a a a --=⋅-2(2)a =-244a a =-+, 211()6cos6004a a --⋅+︒=,2430a a ∴-+=,243a a ∴-=-,∴原式341=-+=.1.【答案】C【分析】由题目可得式子的一般性规律:第n 个式子为:1212n n a --⋅,当2024n =时,第2024个式子为:202340472a ⋅,即可得出答案.【解答】解:式子的系数为1,2,4,8,16, ,则第n 个式子的系数为:12n -;式子的指数为1,3,5,7,9, ,则第n 个式子的指数为:21n -,∴第n 个式子为:1212n n a --⋅,当2024n =时,第2024个式子为:202340472a ⋅,故选:C .2.【答案】B【分析】根据合并同类项法则、幂的乘方法则、单项式除以单项式法则分别判断即可.【解答】解:A 、2a 与b 不是同类项,不能合并,故此选项不符合题意;B 、2222a b a b a b -=,故此选项符合题意;C 、236()a a =,故此选项不符合题意;D 、84422a a a ÷=,故此选项不符合题意;故选:B.3.【答案】B【分析】数字与字母的积叫做单项式,其中数字因数叫做单项式的系数,所有字母的指数之和叫做单项式的次数;由此计算即可.【解答】解:单项式22a b -的系数和次数分别是2-和3,故选:B .4.【答案】D【分析】根据整式相关运算法则逐项判断即可.【解答】解:235a a a ⋅=,故A 错误,不符合题意;a 与22a 不能合并,故B 错误,不符合题意;2234(3)218ab ab a b -⋅=,故C 错误,不符合题意;326(2)3ab ab b ÷-=-,故D 正确,符合题意;故选:D .5.【答案】D【分析】根据因式分解的定义逐个判断即可.【解答】解:A .从左到右的变形属于整式乘法,不属于因式分解,故本选项不符合题意;B .从左到右的变形不属于因式分解,故本选项不符合题意;C .22282(4)2(2)(2)ab a a b a b b -=-=+-,分解不彻底,从左到右的变形不属于因式分解,故本选项不符合题意;D .从左到右的变形属于因式分解,故本选项符合题意.故选:D .6.【答案】B【分析】根据平方差公式和完全平方公式逐个判断即可.【解答】解:A .241(21)(21)a a a -=+-,故本选项不符合题意;B .225(5)(5)a a a -+=+-,故本选项符合题意;C .22269(3)a ab b a b -+=-,故本选项不符合题意;D .22816(4)a a a -+=-,故本选项不符合题意;故选:B .7.【答案】A【分析】根据分式的加减法运算法则计算即可.【解答】解:2244(2)(2)22222a a a a a a a a a --+-===+----,故选:A .8.【分析】分式的值为零时:分子等于零且分母不为零.据此求得x 的值.【解答】解:依题意得:20x -=,解得2x =.经检验当2x =时,分母30x -≠,符合题意.故选:B .9.【答案】2a b -,1-.【分析】先利用平方差公式和完全平方公式进行计算,再根据多项式除以单项式的法则进行计算,最后把12a =,2b =代入计算即可.【解答】解:原式2222[44(4)](4)a ab b b a a =-+--÷2222(444)(4)a ab b b a a =-+-+÷2(84)(4)a ab a =-÷2a b =-,当12a =,2b =时,原式12212=⨯-=-.10.【答案】12x -,1.【分析】先算小括号里面的,然后算括号外面的,最后代入求值.【解答】解:原式213(2)()111x x x x x +-=-÷+++2211(2)x x x x -+=⋅+-12x =-,当3x =时,原式1132==-.1.【答案】B【分析】根据单项式的数字系数的符号,数字系数和指数的变化规律即可得出结果.【解答】解:在上述单项式中,可以发现:奇数项的数字系数的符号为正,偶数项的数字系数的符号为负,∴可得:第n 个单项式的数字系数的符号为:1(1)n --或1(1)n +-,单项式的数字系数为:1,4,9,16, ,∴第n 个单项式的数字系数为:2n ,单项式的指数为:3,5,7,9, ,∴第n 个单项式的指数为:21n +,∴第n 个单项式是1221(1)n n n x ++-,故选:B .2.【答案】D【分析】根据整式的运算法则逐项分析判断即可.【解答】解:A 、22(4)816x x x -=-+,原计算错误,不符合题意;B 、3x 与2y 不是同类项,不能合并,故原计算错误,不符合题意;C 、43x x x ÷=,原计算错误不符合题意;D 、2224()xy x y =,正确,符合题意;故选:D .3.【答案】B【分析】根据单项式的定义可判断A ,根据字母表示数的意义可判断B ,根据单项式系数和次数的定义可判断C ,根据多项式的项和次数的定义可判断D ,进而可得答案.【解答】解:A 、5-是单项式,故本选项错误,不符合题意;B 、a可以表示负数,故本选项正确,符合题意;C 、25a b -的系数是5-,次数是3,故本选项错误,不符合题意;D 、221a ab ++是二次三项式,故本选项错误,不符合题意;故选:B .4.【答案】B【分析】根据因式分解的定义进行判断即可.【解答】解:A 、222()x y x y +≠+不符合因式分解的定义,故本选项不符合题意;B 、24(2)(2)x x x -=+-符合因式分解的定义,且因式分解正确,故本选项符合题意;C 、2221(1)x x x --≠-,不符合因式分解的定义,故本选项不符合题意;D 、242(2)xy x x y +=+,原因式分解错误,故本选项不符合题意;故选:B .5.【分析】先根据分式有意义的条件列出关于x 的不等式,求出x 的取值范围即可.【解答】解:由题意,得10x +≠,解得1x ≠-,故选:A .6.【分析】直接利用最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.我们把满足上述两个条件的二次根式,叫做最简二次根式,进而得出答案.【解答】解:A =,不是最简二次根式,故此选项错误;B ,是最简二次根式,故此选项正确;C 2=,不是最简二次根式,故此选项错误;D =故选:B .7..【分析】根据二次根式的混合运算法则和零指数幂与特殊的三角函数值等知识点计算即可.【解答】解:原式11=---+11=-+=.8.【答案】12x -,1.【分析】先算小括号里面的,然后算括号外面的,最后代入求值.【解答】解:原式213(2)()111x x x x x +-=-÷+++2211(2)x x x x -+=⋅+-12x =-,当3x =时,原式1132==-.9.【答案】224a +,原式8=.【分析】先利用完全平方公式,单项式乘多项式的法则进行计算,然后把a 的值代入化简后的式子进行计算,即可解答.【解答】解:2(2)(4)a a a -++22444a a a a=-+++224a =+,当a =224224448=⨯+=⨯+=+=.10.【答案】24ab b -,原式9=-.【分析】先利用平方差公式,单项式乘多项式的法则进行计算,然后把a ,b 的值代入化简后的式子进行计算,即可解答.【解答】解:(2)(2)4()a b a b a a b -+--222444a b a ab=--+24ab b =-,当2a =-,1b =时,原式24(2)11819=⨯-⨯-=--=-.。
初中数学中考总复习——整式(合并同类项整式加减乘法除法混合运算分解因式图文详解)
四 代入 求值
=-16+2+1
=-13
注意:求代数式值,能化简的,要先化简,再代入求值
初中数学总复习整式
小结:
降如:-4m3-3m2+m+7 .
升幂排列: 按照某字母的指数从小到大的顺序排列.
如:7 +m -3m2 -4m3.
初中数学总复习整式
练习题 把多项式x2- x4+2- 5x 按x
初中数学总复习整式
单项式的定义练习题
例1,下列各式子中,是单项式的有_① __、__②__、_④__、__⑦__ (填序号)
①a;② 1 ;③x y;④xy;⑤ 2 ;⑥ x 1 ;⑦ x ;
2
x
2
初中数学总复习整式
小结: 1,单个的字母或数字也是单项式; 2,用加减号把数字或字母连接在一起 的式子不是单项式; 3,只用乘号把数字或字母连接在一起 的式子仍是单项式; 4,当式子中出现分母时,要留意分母里有 没有字母,有字 母的就不是单项式,如果分母没有字母的仍有可能是单项式
注意的问题:
1.当单项式的系数是1或-1时,“1”通常省略不写。 2.当式子分母中出现字母时不是单项式。 3.圆周率π是常数,不要看成字母。 4.当单项式的系数是带分数时,通常写成假分数。
5.单项式的系数应包括它前面的性质符号。 6.单项式次数是指所有字母的次数的和,与数字的次数没有关系。
7.单独的数字不含字母, 规定它的次数是零次.
注后的意结:果结最果简中.正有确m的, 12写m法, 是它( 3们m是同5)类. 项,应合并以保证最
2
初中数学总复习整式
4.同类项
同类项定义: 多项式中,所含字母相同,并且相同字母的指
数也相同的项叫做同类项。
精品 中考数学一轮综合复习 第02课 整式(整式的加减乘除及因式分解)
8.若 m+n=3,则 2m 2 4mn 2n 2 6 的值为( A.12 B.6
C.3
D.0
9.若将代数式中的任意两个字母交换,代数式不变,则称这个代数式为完全对称式 ,如 a b c 就是完 ..... 全对称式.下列三个代数式:① ( a b) ;② ab bc ca ;③ a 2b b 2 c c 2 a .其中是完全对称式的是
例 3.当 x=1 时,代数式 ax 3 bx 2014 等于 2013,则当 x=-1 时,代数式 ax 3 bx 2014 值为多少?
例 4.若多项式 4 x 2 6 xy 2 x 3 y 与 ax 2 bxy 3ax 2by 的和不含二次项,求 a、b 的值。
5
7.若 2 x 3,4 y 5 ,则 2 x 2 y 的值为( A.
3 5
9 3
B.-2
2
3 5 5
D.
6 5
8.已知 a=1.610 ,b=410 ,则 a 2b=(
7 A.210
)
5 C.3.210 14 D.3.210
B.410
14
9.把多项式 ax 2 ax 2a 分解因式,下列结果正确的是( A. a ( x 2)( x 1) B. a ( x 2)( x 1) C. a( x 1) 2
第 4 页 共 8 页
2 (5) 27 x 18 x 3
2 2 (6) 3a 6ab 3b
3 (7) 2 x 8 x
2 (8) x 5 x 6
(9) x 2 12 x 35
(10) ax 2 3ax 28a
(11) x 2 6 x 16
中考数学整式知识点归纳总结
中考数学整式知识点归纳总结一、名词定义1、单项式:用数或字母的乘积表示的式子叫做单项式。
单独的一个数或一个字母也是单项式。
单项式中的数字因数叫做这个单项式的系数。
一个单项式中,所有字母的指数的和叫做这个单项式的次数。
2、多项式:几个单项式的和叫做多项式。
其中,每个单项式叫做多项式的项,不含字母的项叫做常数项。
多项式里,次数最高项的次数,叫做这个多项式的次数。
单项式与多项式统称整式。
3、同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类4、合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。
合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母连同它的指数不变。
二、整式的运算1、整式的加减:几个整式相加减,如有括号就先去括号,然后再合并同类项。
2、去括号法则:同号得正,异号得负。
即括号外的因数的符号决定了括号内的符号是否改变:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。
3、3、整式的乘除运算同底数幂的乘法:a m·a n=a m+n。
同底数幂相乘,底数不变,指数相加。
幂的乘方:(a m)n=a mn。
幂的乘方,底数不变,指数相乘。
积的乘方:(ab)n=a n b n。
积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。
单项式与单项式的乘法:单项式与单项式相乘,把它们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
单项式与多项式的乘法:p(a+b+c)=pa+pb+pc。
单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。
多项式与多项式的乘法:(a+b)(p+q)=ap+aq+bp+bq。
多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
平方差公式:(a+b)(a-b)=a2-b2。
2011中考数学代数式、整式、分式、二次根式知识点
2. 代数式(分类)2.1. 整式(包含题目总数:15); ; ; ; ; ; ; ; ; ; ; ; ; ; ;2.1.1. 整式的有关概念用运算符号(加、减、乘、除、乘方、开方)把数或表示数的字母连结而成的式子叫代数式.单独的一个数或一个字母也是代数式.只含有数与字母的积的代数式叫单项式. 注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如:b a 2314-这种表示就是错误的,应写成:b a 2313-.一个单项式中,所有字母的指数的和叫做这个单项式的次数.如:c b a 235-是六次单项式.几个单项式的和叫多项式.其中每个单项式叫做这个多项式的项.多项式中不含字母的项叫做常数项.多项式里次数最高的项的次数,叫做这个多项式的次数.单项式和多项式统称整式.用数值代替代数式中的字母,按照代数式指明的运算,计算出的结果,叫代数式的值.注意:(1)求代数式的值,一般是先将代数式化简,然后再将字母的取值代入.(2)求代数式的值,有时求不出其字母的值,需要利用技巧,利用“整体”代入.2.1.2. 同类项、合并同类项所含字母相同,并且相同字母的指数也分别相同的项叫做同类项.几个常数项也是同类项.注意:(1)同类项与系数大小没有关系;(2)同类项与它们所含字母的顺序没有关系.把多项式中的同类项合并成一项,叫做合并同类项.合并同类项的法则是:同类项的系数相加,所得的结果作为系数,字母和字母的指数不变.2.1.3. 去括号法则去括号法则1:括号前是“+” ,把括号和它前面的“+”号一起去掉,括号里各项都不变号.去括号法则2:括号前是“-” ,把括号和它前面的“-”号一起去掉,括号里各项都变号.2.1.4. 整式的运算法则整式的加减法:整式的加减法运算的一般步骤:(1)去括号;(2)合并同类项.整式的乘法:同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加.如:n m n m a a a +=⋅(n m ,都是正整数).幂的乘方法则:幂的乘方,底数不变,指数相乘.如:()mn nm a a =(n m ,都是正整数). 积的乘方法则:积的乘方,等于把积的每一个因式分别乘方,再把所有的幂相乘.如:()n n n b a ab =(n 为正整数).单项式的乘法法则:单项式乘以单项式,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.注意:单项式乘以单项式的结果仍然是单项式.单项式与多项式相乘的运算法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.如:()mc mb ma c b a m ++=++(c b a m ,,,都是单项式).注意:①单项式与多项式相乘,结果是一个多项式,其项数与因式中多项式的项数相同. ②计算时要注意符号问题,多项式的每一项都包括它前面的符号,同时还要注意单项式的符号.多项式乘法法则:多项式与多项式相乘,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加.注意:多项式与多项式相乘的展开式中,有同类项的要合并同类项.乘法公式:①平方差公式:22))((b a b a b a -=-+;②完全平方公式:2222)(b ab a b a ++=+,2222)(b ab a b a +-=-;③立方和公式:3322))((b a b ab a b a +=+-+;④立方差公式:3322))((b a b ab a b a -=++-;⑤ac bc ab c b a c b a 222)(2222+++++=++.注意:公式中的字母可以表示数,也可以表示单项式或多项式.整式的除法:同底数幂的除法法则:同底数幂相除,底数不变,指数相减.如:n m n m a a a -=÷(n m ,为正整数,0≠a ).注意:10=a (0≠a );p a aa p p ,0(1≠=-为正整数). 单项式的除法法则:单项式相除,把系数和同底数幂分别相除,作为商的因式,对于只在被除式里面含有的字母,则连同它的指数作为商的一个因式.多项式除以单项式的运算法则:多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加.注意:这个法则的适用范围必须是多项式除以单项式,反之,单项式除以多项式是不能这么计算的.2.2. 因式分解(包含题目总数:14); ; ; ; ; ; ; ; ; ; ; ; ; ;2.2.1. 因式分解的概念把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.注意:(1)因式分解专指多项式的恒等变形,即等式左边必须是多项式.例如:23248a ab b a ⨯=; ()111+=+a aa a 等,都不是因式分解. (2)因式分解的结果必须是几个整式的积的形式.例如:()cb ac b a ++=++222,不是因式分解.(3)因式分解和整式乘法是互逆变形.(4)因式分解必须在指定的范围内分解到不能再分解为止.如:4425b a -在有理数范围内应分解为:()()222255b a b a -+;而在实数范围内则应分解为:()()()b a b a b a 55522-++. 2.2.2. 因式分解的常用方法1、提公因式法:如果多项式的各项都含有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法.提公因式法的关键在于准确的找到公因式,而公因式并不都是单项式;公因式的系数应取多项式整数系数的最大公约数;字母取多项式各项相同的字母;各字母指数取次数最低的.2、运用公式法:把乘法公式反过来,可以把符合公式特点的多项式分解因式,这种分解因式的方法叫做运用公式法.平方差公式:()()b a b a b a -+=-22.完全平方公式:()2222b a b ab a +=++;()2222b a b ab a -=+-.立方和公式:()()2233b ab a b a b a +-+=+.立方差公式:()()2233b ab a b a b a ++-=-.注意:运用公式分解因式,首先要对所给的多项式的项数,次数,系数和符号进行观察,判断符合哪个公式的条件.公式中的字母可表示数,字母,单项式或多项式.3、分组分解法:利用分组来分解因式的方法叫做分组分解法.分组分解法的关键是合理的选择分组的方法,分组时要预先考虑到分组后是否能直接提公因式或直接运用公式.4、十字相乘法:()()()q x p x pq x q p x ++=+++2.5、求根法:当二次三项式c bx ax ++2不易或不能写成用公式法或十字相乘法分解因式时,可先用求根公式求出一元二次方程02=++c bx ax 的两个根21,x x ,然后写成:()()212x x x x a c bx ax --=++.运用求根法时,必须注意这个一元二次方程02=++c bx ax 要有两个实数根.2.2.3. 因式分解的一般步骤因式分解的一般步骤是:(1)如果多项式的各项有公因式,那么先提取公因式;(2)在各项提出公因式以后或各项没有公因式的情况下,观察多项式的次数:二项式可以尝试运用公式法分解因式;三项式可以尝试运用公式法、十字相乘法或求根法分解因式;四项式及四项式以上的可以尝试分组分解法分解因式;(3)分解因式必须分解到每一个因式都不能再分解为止.2.3. 分式(包含题目总数:16); ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;2.3.1. 分式及其相关概念分式的概念:一般的,用B A ,表示两个整式,B A 就可以表示成B A 的形式.如果B 中含有字母,式子BA 就叫做分式.其中,A 叫做分式的分子,B 叫做分式的分母.分式和整式通称为有理式. 注意:(1)分母中含有字母是分式的一个重要标志,它是分式与分数、整式的根本区别;(2)分式的分母的值也不能等于零.若分母的值为零,则分式无意义;(3)当分子等于零而分母不等于零时,分式的值才是零.分式的相关概念:把一个分式的分子与分母的公因式约去,把分式化成最简分式,叫做分式的约分. 一个分式约分的方法是:当分子、分母是单项式时,直接约分;当分子、分母是多项式时,把分式的分子和分母分解因式,然后约去分子与分母的公因式.一个分式的分子和分母没有公因式时,叫做最简分式,也叫既约分式.把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分. 取各分母所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.2.3.2. 分式的性质分式的基本性质:分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变.用式子表示是:MB M A M B M A B A ÷÷=⨯⨯=(其中M 是不等于零的整式).分式的变号法则:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变.如: BA B A B A B A --=--=--=. 2.3.3. 分式的系数化整问题分式的系数化整问题,是利用分式的基本性质,将分子、分母都乘以一个适当的不等于零的数,使分子、分母中的系数全都化成整数.当分子、分母中的系数都是分数时,这个“适当的数”应该是分子和分母中各项系数的所有分母的最小公倍数;当分子、分母中各项系数是小数时,这个“适当的数”一般是n 10,其中n 等于分子、分母中各项系数的小数点后最多的位数.例、不改变分式的值,把下列各分式分子与分母中各项的系数都化为整数,且使各项系数绝对值最小.(1)b a b a 41313121-+;(2)22226.0411034.0y x y x -+. 分析:第(1)题中的分子、分母的各项的系数都是分数,应先求出这些分数所有分母的最小公倍数,然后把原式的分子、分母都乘以这个最小公倍数,即可把系数化为整数;第(2)题的系数有分数,也有小数,应把它们统一成分数或小数,再确定这个适当的数,一般情况下优先考虑转化成分数.解:(1)b a b a b a b a b a b a 344612413112312141313121-+=⨯⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛+=-+;(2)()()()2222222222222222125568560253040100)6.025.0(1003.04.06.0411034.0y x y x y x y x y x y x y x y x -+=-+=⨯-⨯+=-+ 222212568y x y x -+=. 2.3.4. 分式的运算法则1、分式的乘除法则:分式乘以分式,用分子的积做积的分子,分母的积做积的分母;分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.用式子表示是:bd ac d c b a =⨯;bcad c d b a d c b a =⨯=÷. 2、分式的乘方法则:分式乘方是把分子、分母各自乘方.用式子表示是:n n nb a b a =⎪⎭⎫ ⎝⎛(n 为整数). 3、分式的加减法则:①同分母的分式相加减,分母不变,把分子相加减.用式子表示是:cb ac b c a ±=±; ②异分母的分式相加减,先通分,变为同分母的分式,然后再加减.用式子表示是:bdbc ad d c b a ±=±. 分式的混合运算关键是弄清运算顺序,分式的加、减、乘、除混合运算也是先进行乘、除运算,再进行加、减运算,遇到括号,先算括号内的. 例、计算78563412+++++-++-++x x x x x x x x .分析:对于这道题,一般采用直接通分后相加、减的方法,显然较繁,注意观察到此题的每个分式的分子都是一个二项式,并且每个分子都是分母与1的和,所以可以采取“裂项法” . 解:原式7175********+++++++-+++-+++=x x x x x x x x ⎪⎭⎫ ⎝⎛+++⎪⎭⎫ ⎝⎛++-⎪⎭⎫ ⎝⎛++-++=711511311111x x x x ⎪⎭⎫ ⎝⎛+-+-+-+=71513111x x x x ()()()()752312++-++=x x x x()()()()()()()()7531312752++++++-++=x x x x x x x x ()()()()75316416+++++=x x x x x . 点评:本题考查在分式运算中的技巧问题,要认真分析题目特点,找出简便的解题方法,此类型的题在解分式方程中也常见到. 2.4. 二次根式(包含题目总数:15); ; ; ; ; ; ; ; ; ; ; ; ; ; ;2.4.1. 二次根式及其相关概念2.4.1.1. 二次根式的概念式子)0(≥a a 叫做二次根式,二次根式必须满足:①含有二次根号“” ;②被开方数a 必须是非负数.如5,2)(b a -,)3(3≥-a a 都是二次根式.2.4.1.2. 最简二次根式若二次根式满足:①被开方数的因数是整数,因式是整式;②被开方数中不含能开得尽方的因数或因式,这样的二次根式叫最简二次根式,如a 5,223y x +,22b a +是最简二次根式,而b a ,()2b a +,248ab ,x1就不是最简二次根式. 化二次根式为最简二次根式的方法和步骤:①如果被开方数是分数(包括小数)或分式,先利用商的算术平方根的性质把它写成分式的形式,然后利用分母有理化进行化简.②如果被开方数是整数或整式,先将它分解因数或因式,然后把能开得尽方的因数或因式开出来. 2.4.1.3. 同类二次根式几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫同类二次根式.注意:当几个二次根式的被开方数相同时,也可以直接看出它们是同类二次根式.如24和243一定是同类二次根式.合并同类二次根式就是把几个同类二次根式合并成一个二次根式.合并同类二次根式的方法和合并同类项类似,把根号外面的因式相加,根式指数和被开方数都不变.2.4.1.4. 分母有理化把分母中的根号化去,叫分母有理化.如=+131 )13)(13(13-+-2131313-=--=. 两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,那么这两个代数式互为有理化因式.如1313-+和;2323-+和;a 和a ;a b a a b a -+和都是互为有理化因式.注意:二次根式的除法,往往是先写成分子、分母的形式,然后利用分母有理化来运算.如22133)7(32133)73)(73()73(3733)73(322+=-+=+-+=-=-÷. 2.4.2. 二次根式的性质(1))0()(2≥=a a a . (2)⎩⎨⎧<-≥==.,)0()0(2a a a a a a (3))0,0(≥≥⋅=b a b a ab .(4))0,0(>≥=b a b ab a.2.4.3. 二次根式的运算法则二次根式的运算法则:二次根式的加减法法则:(1)先把各个二次根式化成最简二次根式;(2)找出其中的同类二次根式;(3)再把同类二次根式分别合并.二次根式的乘法法则: 两个二次根式相乘,被开方数相乘,根指数不变.即:ab b a =⋅(0,≥b a ).此法则可以推广到多个二次根式的情况.二次根式的除法法则: 两个二次根式相除,被开方数相除,根指数不变,即:ba b a=(0,0>≥b a ).此法则可以推广到多个二次根式的情况.二次根式的混合运算:二次根式的混合运算与实数中的运算顺序一样,先乘方,再乘除,最后加减,有括号的先算括号里的(或先去掉括号).例1、计算:6321263212--+++--. 分析:此题一般的做法是先分母有理化,再计算,但由于6321+--分母有理化比较麻烦,我们应注意到6321+--()()1312--=;()()13126321-+-=--+,这样做起来就比较简便. 解:6321263212--+++-- ()()()()1312213122-+---= ()()()()213122213122+--++=()()131212++-+= ()132+= 232+=.例2、计算:()()()()751755337533225++++-+++-. 分析:按一般的方法做起来比较麻烦,注意题目的结构特点,逆用分式加、减法的运算法则“aba b b a ±=±11”进行变换,进而运用“互为相反数的和为零”的性质来化简. 解:()233525+-+=- ;()355737+-+=-,∴原式751751531531321+++-+++-+=321+=23-=.例3、已知273-=x ,a 是x 的整数部分,b 是x 的小数部分,求b a b a +-的值. 分析:先将x 分母有理化,求出b a ,的值,再求代数式的值.解: 27273+=-=x , 又372<< ,54<<∴x .27427,4-=-+==∴b a .()()()()()()272727762776274274-+--=+-=-+--=+-∴b a b a 31978-=.。
中考数学 第2讲 代数式及整式的运算(解析版)
【解答】解:A.2m3+3m2=5m5,不是同类项,不能合并,故错误;
B.m3÷m2=m,正确;
C.m•(m2)3=m7,故错误;
D.(m﹣n)(n﹣m)=﹣(m﹣n)2=﹣n2﹣m2+2mn,故错误.
故选:B. 【一领三通 3-3】(2019•河北石家庄中考模拟)先化简,再求值:
(5a2+2a+1)﹣4(3﹣8a+2a2)+(3a2﹣a),其中 .
A.4a+2b
B.4a+4b
C.8a+6b
D.8a+12b
中考数学复习资料
【答案】C. 【分析】根据已知条件即可得到结论. 【解答】解:∵正三角形面积为 a,矩形面积为 b, ∴图 2 中直角柱的表面积=2×4a+6b=8a+6b, 故选:C. 【一领三通 1-3】(2019•台湾)小宜跟同学在某餐厅吃饭,如图为此餐厅的菜单.若他们所点的餐点总共 为 10 份意大利面,x 杯饮料,y 份沙拉,则他们点了几份 A 餐?( )
C.1
D.2
【答案】C.
【分析】将 m=﹣1 代入代数式即可求值;
【解答】解:将 m=﹣1 代入 2m+3=2×(﹣1)+3=1;
故选:C.
【一领三通 1-1】(2019.云南中考)按一定规律排列的单项式:x3,﹣x5,x7,﹣x9,x11,……,第 n 个单项
式是( )
A.(﹣1)n﹣1x2n﹣1 C.(﹣1)n﹣1x2n+1
A.a•a2=a3
B.a6÷a2=a3
C.2a2﹣a2=2
D.(3a2)2=6a4
【答案】A.
【分析】根据同底数幂乘除法的运算法则,合并同类项法则,幂的乘方与积的乘方法则即可求解;
中考数学专题训练第2讲整式(知识点梳理)
整式知识点梳理考点01 代数式1.代数式的概念:用运算符号把数和字母连接而成的式子叫作代数式。
单独一个数或一个字母也是代数式.运算符号是指加、减、乘、除、乘方等。
2.代数式的书写规则:(1)含有乘法运算的代数式的书写规则:字母与字母相乘,乘号一般可以省略不写,字母的排列顺序不变.数字与字母相乘,乘号一般也可以省略,但数字一定要写在字母的前面,且当数字是带分数时,必须写成假分数的形式.数字与数字相乘,乘号不能省略.带括号的式子与字母的地位相同。
(2)含有除法运算的代数式的书写规则:当代数式中含有除法运算时,一般不用“÷”,而改用分数线.因为分数线具有括号的作用,所以分数线又称括线。
(3)含有单位名称的代数式的书写规则:若代数式是和或差的形式,如需注明单位,则必须用括号把整个式子括起来后再写单位.若代数式是积或商的形式,则无需加括号,直接在代数式后面写出单位即可。
3.代数式的值(1)代数式的值:一般地,用具体数值代替代数式中的字母,按照代数式中指明的运算计算出的结果,叫作代数式的值。
(2)求代数式的值的步骤:第1步:代入,用具体数值代替代数式里的字母.第2步:计算,按照代数式里指明的运算,计算出结果。
(3)求代数式的值时要注意:一个代数式中的同一个字母,只能用同一个数值去代替.如果代数式里省略了乘号,那么字母用数值代替时要添上乘号,代入负数和分数时要加括号.代入数值时,不能改变原式中的运算符号及数字。
(4)运算时,要注意运算顺序。
(先算乘方,再算乘除,最后算加减,有括号的要求先算括号里面的)考点02 单项式和多项式一、单项式1.单项式的概念:如3、a 、xy 、ab 31-等这些代数式都是数字、字母、数字与字母的积、字母与字母的积,像这样的式子叫单项式,单独的一个数或一个字母也是单项式。
2.单项式中不能含有加减法运算,但可以含有除法运算。
3.单项式的系数:单项式中的数字因数叫作这个单项式的系数,确定单项式的系数的注意事项:(1)确定单项式的系数时,最好现将单项式写成数与字母的乘积的形式,在确定系数.(2)圆周率π是常数,单项式中出现π时,应看作系数.(3)当一个单项式的系数是1或-1时,1通常省略不写,负数做系数应包括前面的符号.(4)单项式的系数是带分数时,通常写成假分数。
2023年中考数学考点总结+题型专训专题03 整式篇(原卷版)
知识回顾微专题专题03 整式考点一:整式之代数式1. 代数式的定义:由数与字母通过“+,-,×,÷”以及乘方、开方等运算符号连接的式子叫做代数式。
2. 列代数式:把问题中与数量有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式。
3. 代数式求值:①单个字母带入求代数式的值。
②整体代入法求代数式的值。
(找已知式子与所求式子的倍数关系)1.(2022•长沙)为落实“双减”政策,某校利用课后服务开展了主题为“书香满校园”的读书活动.现需购买甲,乙两种读本共100本供学生阅读,其中甲种读本的单价为10元/本,乙种读本的单价为8元/本,设购买甲种读本x 本,则购买乙种读本的费用为( )A .8x 元B .10(100﹣x )元C .8(100﹣x )元D .(100﹣8x )元2.(2022•杭州)某体育比赛的门票分A 票和B 票两种,A 票每张x 元,B 票每张y 元.已知10张A 票的总价与19张B 票的总价相差320元,则( )A .y x 1910=320B .xy 1910=320 C .|10x ﹣19y |=320 D .|19x ﹣10y |=3203.(2022•吉林)篮球队要购买10个篮球,每个篮球m 元,一共需要 元.(用含m 的代数式表示)4.(2022•梧州)若x =1,则3x ﹣2= .5.(2022•广西)阅读材料:整体代值是数学中常用的方法.例如“已知3a ﹣b =2,求代数式6a ﹣2b ﹣1的值.”可以这样解:6a ﹣2b ﹣1=2(3a ﹣b )﹣1=2×2﹣1=3.根据阅读材料,解决问题:若x =2是关于x 的一元一次方程ax +b =3的解,则代数式4a 2+4ab +b 2+4a +2b ﹣1的值是 .6.(2022•邵阳)已知x 2﹣3x +1=0,则3x 2﹣9x +5= .知识回顾微专题 知识回顾微专题7.(2022•郴州)若32=-b b a ,则ba = . 考点二:整式之单项式1. 单项式的定义:由数与字母的乘积组成的式子叫做单项式。
中考数学专题复习专题02 代数式与整式(课件)
知识点梳理
知识点4 :幂的运算
1. 同底数幂乘法:底数不变,指数相加,am·an= am+n ,如 a3 ·a-2= a . 2. 同底数幂除法: 底数不变,指数相减 ,am÷an= am-n (a≠0) 3. 幂的乘方: 底数不变,指数相乘 ,(am)n= amn . 4. 积的乘方: 各因式乘方的积 ,(ambn)p= ampbnp ,如(-2a2b)3= -8a6b3 , (-ab)2= a2b2 .
典型例题
知识点4 :幂的运算
【例12】(2022•南充)比较大小:2-2 30.(选填>,=,<)
【考点】零指数幂;负整数指数幂
【解答】解:∵2-2= 1 ,30=1,
4
∴2-2<30, 故答案为:<. 【点评】本题考查了负整数指数幂,零指数幂,掌握负整数指数幂的意义, 零指数幂的意义是解决问题的关键.
知识点梳理
知识点5 :整式的乘除
4.(1)乘法公式:(a+b)(a-b)= a2-b2 ; (a+b)2= a2+2ab+b2 ;
(2)常见的变形有:a2+b2=(a+b)2-2ab; (-a-b)2=(a+b)2;
(a-b)2= a2-2ab+b2 ; (a-b)2=(a+b)2-4ab; (-a+b)2=(a-b)2
“书香满校园”的读书活动.现需购买甲,乙两种读本共100本供学生阅读,
其中甲种读本的单价为10元/本,乙种读本的单价为8元/本,设购买甲种读本x
本,则购买乙种读本的费用为( )
A.8x元
B.10(100-x)元 C.8(100-x)元 D.(100-8x)元
【考点】列代数式. 【解答】【解答】解:设购买甲种读本x本,则购买乙种读本的费用为:8(100-x)元. 故选:C.
新最中考初中数学有理数与整式必考点难点总结
新最中考初中数学有理数与整式必考点难点总结一、有理数的概念与性质1.有理数的定义:有理数是整数和分数的统称,可表示为a/b的形式,其中a为整数,b为非零整数。
2.有理数的分类:正数、负数、零。
3.有理数的比较:可使用大小比较法则、绝对值法则等进行比较。
4.有理数的运算:加法、减法、乘法、除法。
5.有理数的四则运算性质:封闭性、可逆性、交换律、结合律、分配律等。
6.有理数的乘方:有理数的乘方等于将该有理数连乘若干次。
二、整式的概念与性质1.整式的定义:由常数、变量及其乘积、乘方及其和、差组成的代数式。
2.整式的运算:加法、减法、乘法法则。
3.整式的乘方:整式的乘方等于将该整式连乘若干次。
4.整式的因式分解:将整式表示为若干个因式的乘积。
5. 二次整式的因式分解:将形如ax^2+bx+c的二次整式表示为两个一次整式的乘积。
三、有理数的运算1.四则运算:加法、减法、乘法、除法。
时需注意:有理数相加减时,同号为正,异号为负;有理数相乘除时,同号为正,异号为负。
分数相加减乘除时,需找到最小公倍数进行计算。
2.有理数的乘方运算。
四、整式的运算1.四则运算:加法、减法、乘法、除法。
时需注意:变量的指数相加减时,同底数的幂要进行分配率;2.整式的因式分解。
五、较难的考点1.有理数的分数形式与小数形式的转化。
2.有理数的比较。
3.有理数的四则运算法则的应用。
4.小数的除法运算。
5.整式的乘法运算。
6.有理数及整式的因式分解。
7.分数的计算。
六、解题思路与方法1.深刻理解有理数与整式的概念与性质,掌握其应用方法。
2.通过各种练习题,对有理数与整式的运算法则有充分的掌握。
3.理解思想方法,能灵活应用,举一反三4.注意计算方法与步骤的正确性,同时注重换位思考,寻找不同的解决途径。
5.善于总结归纳,将知识点进行梳理、分类,形成完整的知识体系。
七、题目解析与例题1.题目解析(1)明确题目要求与考点。
(2)理解题目的意思与背景,分析解题需要运用的知识与方法。
中考数学总复习——2.代数式和整式
7.【2019·厦门集美区二模·4 分】下列计算正确的是( C )
A.a8+a2=a10
B.a8·a2=a16
C.(a8)2=a16
D.a8÷a2=a4
8.【2019·福建·4 分】分解因式:x2-9=_(_x_-__3_)(_x_+__3_)__.
9.【2020·福州质检·4 分】若 m(m-2)=3,则(m-1)2 的值是 ____4______.
考点1 求代数式的值
例1【2020·漳州质检·4分】若a是方程x2+x-1=0的根, 则代数式2 020-a2-a的值是__2__0_1_9____.
考点2 整式的化简求值
例 2【2019·宁德质检·8 分】先化简,再求值:(x-3)2+x(2-x) -9,其中 x=- 3. 解:原式=x2-6x+9+2x-x2-9=-4x. ∵x=- 3, ∴原式=-4×(- 3)=4 3.
考点3整式的概念
例3【2020·厦门质检·4分】将单项式3m与m合并同类项, 结果是( B ) A.4 B.4m C.3m2 D.4m2
例 4【2020·厦门质检·4 分】若多项式 x2+2x+n 是完全平方式,
则常数 n 是( D )
A.-1
B.14
1 C.2
D.1
【点拨】本题考查完全平方式的概念,完全平方式必须满 足“a2+2ab+b2”或“a2-2ab+b2”的结构特征,解答 时容易出错.
考点4 整式的运算
例5【2020·三明质检·4分】下列运算正确的是( C )
A.(a2)3=a5
B.3a2+a=3a3
C.a5÷ a2=a3(a≠0) D.a(a+1)=a2+1
考点5 因式分解
例6【2020·宁德质检·4分】下列多项式能用完全平方公式
中考数学一轮教材梳理复习课件:第2课整式(含因式分解)
首页
下一页
11.(2019·广东)如图 1 所示的图形是一个轴对称 图形,且每个角都是直角,长度如图所示,小 明按图 2 所示方法玩拼图游戏,两两相扣,相 互间不留空隙,那么小明用 9 个这样的图形(图 1)拼出来的图形的总长度是__a_+__8_b__(结果用含 a,b 代数式表示).
首页
下一页
9.(1)(2020·金华)下列多项式中,能运用平方差公式分解因
式的是( C )
A.a2+b2
B.2a-b2
C.a2-b2
D.-a2-b2
(2)(2020·自贡)分解因式:3a2-6ab+3b2=__3_(_a_-__b_)_2_;
(3)(2020·贵州)把多项式 xy2-4x 分解因式,结果是
首页
下一页
三、解答题
14.(2020·随州)先化简,再求值:a(a+2b)- 2b(a+b),其中 a= 5 ,b= 3 .
解:原式=a2+2ab-2ab-2b2=a2-2b2. 当 a= 5 ,b= 3 时, 原式=( 5 )2-2×( 3 )2=5-6=-1.
首页
下一页
15.(2020·深圳)先化简,再求值:a2-a+2a1+1
首页
下一页
12.(2020·海口)已知 x-2y=-1,则代数式 1-2x +4y 的值为__3__.
首页
下一页
13.(2019·甘肃)如图,每一幅图中有若干个大小不 同的菱形,第 1 幅图中有 1 个菱形,第 2 幅图中 有 3 个菱形,第 3 幅图中有 5 个菱形,如果第 n 幅图中有 2 019 个菱形,则 n=___1_0_1_0___.
中考数学总复习 第2讲 整式及因式分解二次函数(基础讲
第2讲整式及因式分解考标要求考查角度1.明确字母表示数的真实内涵及其规范的书写格式,能用代数式探索有关的规律.2.会用语言文字叙述代数式的意义,同时掌握求代数式的值的方法.3.理解同类项的概念,掌握合并同类项的法则和去括号的法则以及乘法公式,能准确地进行整式的加、减、乘、除、乘方等混合运算.4.能对多项式进行因式分解.整式作为初中数学的基础内容之一,在中考试题中多以填空题和选择题的形式命题,重点考查其基本概念及运算法则,同时也会设计一些新颖的探索与数、式有关的规律性问题.知识梳理一、整式的有关概念1.整式整式是单项式与__________的统称.2.单项式单项式是指由数字或字母的乘积组成的式子;单项式中的________因数叫做单项式的系数;单项式中所有字母指数的____叫做单项式的次数.3.多项式几个单项式的______叫做多项式;多项式中,每一个________叫做多项式的项,其中不含字母的项叫做常数项;多项式中__________项的次数就是这个多项式的次数.二、整数指数幂的运算正整数指数幂的运算法则:a m·a n=______,(a m)n=______,(ab)n=a n b n,a ma n=a m-n(m,n是正整数).三、同类项与合并同类项1.同类项所含字母相同,并且相同字母的______也分别相同的项叫做同类项.2.合并同类项把多项式中的同类项合并成一项叫做____________,合并的法则是系数相加,所得的结果作为合并后的______,字母和字母的指数不变.四、求代数式的值1.代数式的值一般地,用数值代替代数式里的字母,按照代数式指明的运算关系计算出的结果就叫做代数式的值.2.求代数式的值的基本步骤(1)代入:一般情况下,先对代数式进行化简,再将数值代入;(2)计算:按代数式指明的运算关系计算出结果.五、整式的运算1.整式的加减(1)整式的加减实质就是合并同类项;(2)整式加减的步骤:有括号,先去括号;有同类项,再合并同类项.注意去括号时,如果括号前面是负号,括号里各项的符号要______.2.整式的乘除(1)整式的乘法.①单项式与单项式相乘:把______、__________分别相乘,作为积的因式,只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.②单项式与多项式相乘:m (a +b +c )=ma +mb +mc .③多项式与多项式相乘:(m +n )(a +b )=ma +mb +na +nB . (2)整式的除法.①单项式除以单项式:把系数、同底数幂相除,作为商的因式,对于只在被除式里含有的字母,则连同它的______作为商的一个因式.②多项式除以单项式:(a +b )÷m =a ÷m +b ÷m . 3.乘法公式(1)平方差公式:(a +b )(a -b )=a 2-b 2;(2)完全平方公式:(a ±b )2=a 2±2ab +b 2. 六、因式分解1.因式分解的概念把一个多项式化成几个整式的____的形式,叫做多项式的因式分解. 2.因式分解的方法 (1)提公因式法.公因式的确定:第一,确定系数(取各项整数系数的最大公约数);第二,确定字母或因式底数(取各项的相同字母);第三,确定字母或因式的指数(取各相同字母的最低次幂).(2)运用公式法.①运用平方差公式:a 2-b 2=__________.②运用完全平方公式:a 2±2ab +b 2=________. 3.因式分解的一般步骤一提(提取公因式法);二套(套公式法).一直分解到不能分解为止. 自主测试1.(2012福建福州)下列计算正确的是( )A .a +a =2aB .b 3·b 3=2b 3C .a 3÷a =a 3D .(a 5)2=a 72.下列各式中,与x 2y 是同类项的是( )A .xy 2B .2xyC .-x 2yD .3x 2y 23.(2012四川绵阳)图(1)是一个长为2m ,宽为2n (m >n )的长方形,用剪刀沿图中虚线(对称轴)剪开,把它分成四块形状和大小都一样的小长方形,然后按图(2)那样拼成一个正方形,则中间空白部分的面积是( )A .2mnB .(m +n )2C .(m -n )2D .m 2-n 24.(2012四川宜宾)分解因式:3m 2-6mn +3n 2=__________.5.单项式-3π5m 2n 的系数是______,次数是______.考点一、整数指数幂的运算【例1】 (2012湖南郴州)下列计算正确的是( )A .a 2·a 3=a 6B .a +a =a 2C .(a 2)3=a 6D .a 8÷a 2=a 4解析:A 项是同底数幂的乘法,a 2·a 3=a 2+3=a 5,故A 项错误;B 项是整式的加减运算,a +a =2a ,故B 项错误;C 项是幂的乘方,(a 2)3=a 2×3=a 6,故C 项正确;D 项是同底数幂的除法,a 8÷a 2=a 8-2=a 6,故D 项错误.答案:C方法总结 幂的运算问题除了注意底数不变外,还要弄清幂与幂之间的运算是乘、除还是乘方,以便确定结果的指数是相加、相减还是相乘.触类旁通1下列运算中,正确的是( )A .x 3·x 2=x 5B .x +x 2=x3C .2x 3÷x 2=xD .⎝ ⎛⎭⎪⎫x 23=x 32考点二、同类项与合并同类项【例2】 单项式-13x a +b y a -1与3x 2y 是同类项,则a -b 的值为( )A .2B .0C .-2D .1解析:本题主要考查了同类项的概念及方程组的解法,由-13x a +b y a -1与3x 2y 是同类项,得⎩⎪⎨⎪⎧a +b =2,a -1=1,解得⎩⎪⎨⎪⎧a =2,b =0.所以a -b =2-0=2. 答案:A方法总结 1.同类项必须具备以下两个条件:(1)所含字母相同;(2)相同字母的指数分别相同.二者必须同时具备,缺一不可;2.同类项与项的系数无关,与项中字母的排列顺序无关,如xy 2与-y 2x 也是同类项. 3.根据同类项概念,相同字母的指数相同,列方程(组)是解此类题的一般方法.触类旁通2如果3x 2n -1y m 与-5x m y 3是同类项,则m 和n 的取值是( ) A .3和-2 B .-3和2 C .3和2 D .-3和-2 考点三、整式的运算【例3】 先化简,再求值:(a +b )(a -b )+(a +b )2-2a 2,其中a =3,b =-13.解:(a +b )(a -b )+(a +b )2-2a 2=a 2-b 2+a 2+2ab +b 2-2a 2=2ab ,当a =3,b =-13时,2ab =2×3×⎝ ⎛⎭⎪⎫-13=-2. 方法总结 整式的乘法法则和除法法则是整式运算的依据,必须在理解的基础上加强记忆,并在运算时灵活运用法则进行计算.使用乘法公式时,要认清公式中a ,b 所表示的两个数及公式的结构特征,注意套用公式.触类旁通3 已知2x -1=3,求代数式(x -3)2+2x (3+x )-7的值. 考点四、因式分解【例4】 (2012湖南常德)分解因式:m 2-n 2=__________. 答案:(m +n )(m -n )方法总结 (1)因式分解时有公因式的要先提取公因式,再考虑是否应用公式法或其他方法继续分解.(2)提取公因式时,若括号内合并的项有公因式,应再次提取;注意符号的变换y -x =-(x -y ),(y -x )2=(x -y )2.(3)应用公式法因式分解时,要牢记平方差公式和完全平方公式及其特点. (4)因式分解要分解到每一个多项式不能分解为止.1.(2012湖南常德)下列运算中,结果正确的是( )A .a 3·a 4=a 12B .a 10÷a 2=a 5C .a 2+a 3=a 5D .4a -a =3a 2.(2012湖南益阳)下列计算正确的是( )A .2a +3b =5abB .(x +2)2=x 2+4C .(ab 3)2=ab 6D .(-1)0=13.(2012湖南湘潭)因式分解:m 2-mn =__________.4.(2012湖南益阳)写出一个在实数范围内能用平方差公式分解因式的多项式:__________.5.(2012湖南怀化)当x =1,y =15时,3x (2x +y )-2x (x -y )=__________.6.(2012湖南株洲)一组数据为:x ,-2x 2,4x 3,-8x 4,…观察其规律,推断第n 个数据应为__________.1.将代数式x 2+4x -1化成(x +p )2+q 的形式为( )A .(x -2)2+3B .(x +2)2-4C .(x +2)2-5D .(x +2)2+42.如图所示,在边长为a 的正方形中剪去一个边长为b 的小正方形(a >b ),把剩下的部分拼成一个梯形,分别计算这两个图形阴影部分的面积,验证了公式( )A .(a +b )2=a 2+2ab +b 2B .(a -b )2=a 2-2ab +b 2C .a 2-b 2=(a +b )(a -b )D .(a ±b )2=a 2±2ab +b 23.多项式__________与m 2+m -2的和是m 2-2m .4.若3x m +5y 2与x 3y n 的和是单项式,则n m=__________.5.若m -n =2,m +n =5,则m 2-n 2的值为__________.6.若2x =3,4y =5,则2x -2y的值为__________.7.给出3个整式:x 2,2x +1,x 2-2x .(1)从上面3个整式中,选择你喜欢的两个整式进行加法运算,若结果能因式分解,请将其因式分解;(2)从上面3个整式中,任意选择两个整式进行加法运算,其结果能因式分解的概率是多少?参考答案 【知识梳理】一、1.多项式 2.数字 和 3.和 单项式 次数最高二、a m +n a mn三、1.指数 2.合并同类项 系数 五、1.(2)变号2.(1)①系数 同底数幂 (2)①指数 六、1.积2.(2)①(a +b )(a -b ) ②(a ±b )2导学必备知识 自主测试1.A a +a =2a ,A 项正确;b 3·b 3=b 6,B 项错误;a 3÷a =a 2,C 项错误;(a 5)2=a 10,D 项错误.2.C 只有C 选项中相同字母的指数与x 2y 分别相同.3.C 因为长方形的长为2m ,宽为2n (m >n ),则小长方形的长为m ,宽为n ,小正方形的边长为(m -n ),所以面积是(m -n )2.4.3(m -n )2 原式=3(m 2-2mn +n 2)=3(m -n )2.5.-3π53探究考点方法触类旁通1.A A 项是同底数幂相乘,x 3·x 2=x3+2=x 5,B 项中的两项不是同类项,不能合并,C 项是单项式相除,2x 3÷x 2=(2÷1)x 3-2=2x ,D 项⎝ ⎛⎭⎪⎫x 23=x 323=x38.触类旁通 2.C 此题考查同类项概念和二元一次方程组的解法,由题意得⎩⎪⎨⎪⎧ 2n -1=m ,m =3,解得⎩⎪⎨⎪⎧m =3,n =2. 触类旁通3.分析:本题需先把2x -1=3进行整理,得出x 的值,把代数式进行化简,再把x 的值代入即可求出结果.解:由2x -1=3得x =2,又(x -3)2+2x (3+x )-7=x 2-6x +9+6x +2x 2-7=3x 2+2,∴当x =2时,原式=14.品鉴经典考题1.D a 3·a 4=a 7,所以A 项不正确;a 10÷a 2=a 8,所以B 项不正确;a 2与a 3不是同类项,不能合并,所以C 项不正确;4a -a =3a ,D 项正确.2.D 2a 与3b 不能合并,A 项不正确;(x +2)2=x 2+4x +4,B 项不正确;(ab 3)2=a 2b 6,C 项不正确;由任何一个不等于零的数的零次幂等于1,知D 项正确.3.m (m -n ) m 2-mn =m (m -n ).4.答案不唯一,如x 2-1.5.5 3x (2x +y )-2x (x -y )=6x 2+3xy -2x 2+2xy =4x 2+5xy .当x =1,y =15时,原式=4×12+5×1×15=4+1=5.6.(-2)n -1x n x 的系数为1=(-2)1-1,次数为1;-2x 2的系数为-2=(-2)2-1,次数为2;4x 3的系数为4=(-2)3-1,次数为3;-8x 4的系数为-8=(-2)4-1,次数为4;….所以第n 个数据的系数为(-2)n -1,次数为n ,即(-2)n -1x n.研习预测试题1.C x 2+4x -1=(x 2+4x +4)-4-1=(x +2)2-5.2.C 因为第一个图是一个大的正方形挖去了一个小的正方形,其面积表达式为a 2-b 2.第二个图是一个梯形,下底为2a ,上底为2b ,高为(a -b ),其面积为12(2a +2b )(a -b )=(a+b )(a -b ),所以两个图验证了公式:a 2-b 2=(a +b )(a -b ).3.2-3m 由题意得此多项式为(m 2-2m )-(m 2+m -2)=m 2-2m -m 2-m +2=2-3m . 4.14 由题意得m +5=3,n =2,所以m =-2,所以n m =2-2=122=14. 5.10 m 2-n 2=(m +n )(m -n )=5×2=10. 6.35 2x -2y =2x ÷22y =2x ÷4y =3÷5=35. 7.解:(1)x 2+(2x +1)=x 2+2x +1=(x +1)2或x 2+(x 2-2x )=2x 2-2x =2x (x -1)或(2x+1)+(x 2-2x )=2x +1+x 2-2x =x 2+1.(2)由(1)可知,概率为23.。
专题02 整式与因式分解(讲义)(原卷版)-备战2024年中考数学一轮复习考点帮(全国通用)
专题02整式与因式分解的核心知识点精讲1.能用幂的性质解决简单问题,会进行简单的整式乘法与加法的混合运算.2.能用平方差公式、完全平方公式进行简单计算.3.了解因式分解的意义及其与整式乘法之间的关系,会用提公因式法和公式法进行因式分解.4.能选用恰当的方法进行相应的代数式的变形,并通过代数式的适当变形求代数式的值.5.会列代数式表示简单的数量关系;能解释一些简单代数式的实际背景或几何意义,会求代数式的值,并能根据代数式的值或特征推断代数式反映的规律.考点1:代数式定义:用运算符号把数或表示数的字母连结而成的式子,叫做代数式。
单独的一个数或字母也是代数式。
考点2:整式的相关概念考点3:整式加减运算1.实质:合并同类项2.合并同类项:同类项的系数相加,所得结果作为系数,字母和字母的指数不变。
3.去括号(1)a+(b+c)=a+b+c;(2)a-(b+c)=a-b-c考点4:幂运算(1)幂的乘法运算口诀:同底数幂相乘,底数不变,指数相加。
即a m ×a n =a (m+n )(a≠0,m,n 均为正整数,并且m>n)(2)幂的乘方运算口诀:幂的乘方,底数不变,指数相乘。
即amnnm=)(a (m,n 都为正整数)(3)积的乘方运算口诀:等于将积的每个因式分别乘方,再把所得的幂相乘。
即ba ab mnnnm=)((m,n 为正整数)(4)幂的除法运算口诀:同底数幂相除,底数不变,指数相减。
即a m ÷a n =a (m-n )(a≠0,m,n 均为正整数,并且m>n)考点5:整式乘法运算(1)单项式乘单项式单项式相乘,把系数、同底数幂分别相乘,作为积的因式;对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.(2)单项式乘多项式单项式与多项式相乘,用单项式和多项式的每一项分别相乘,再把所得的积相加.(3)多项式乘多项式多项式与多项式相乘,先用一个多项式的每一项与另一个多项式的每一项相乘,再把所得的积相加.(4)乘法公式①平方差公式:22()()a b a b a b+--②完全平方公式:()222a b a ab b +=++2222)(b ab a b a +-=-(5)除法运算①单项式的除法:把系数、同底数幂分别相除,作为商的因式:对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.②多项式除以单项式:先把这个多项式的每一项除以这个单项式,再把所得的商相加.考点6:因式分解【题型1:代数式及其求值】【典例1】(2023•南通)若a2﹣4a﹣12=0,则2a2﹣8a﹣8的值为()A.24B.20C.18D.161.(2023•雅安)若m2+2m﹣1=0,则2m2+4m﹣3的值是()A.﹣1B.﹣5C.5D.﹣3 2.(2023•常德)若a2+3a﹣4=0,则2a2+6a﹣3=()A.5B.1C.﹣1D.0 3.(2023•巴中)若x满足x2+3x﹣5=0,则代数式2x2+6x﹣3的值为()A.5B.7C.10D.﹣13【题型2:整式的相关概念及加减】【典例2】(2022•湘潭)下列整式与ab2为同类项的是()A.a2b B.﹣2ab2C.ab D.ab2c1.(2021•河池)下列各式中,与a b为同类项的是()A.﹣2a2b B.﹣2ab C.2ab2D.2a2 2.(2022•泰州)下列计算正确的是()A.3ab+2ab=5ab B.5y2﹣2y2=3C.7a+a=7a2D.m2n﹣2mn2=﹣mn23.(2022•包头)若一个多项式加上3xy+2y2﹣8,结果得2xy+3y2﹣5,则这个多项式为.【题型3:幂运算】【典例3】(2023•株洲)计算:(3a)2=()A.5a B.3a2C.6a2D.9a21.(2023•丹东)下列运算正确的是()A.(3xy)2=9x2y2B.(y3)2=y5C.x2•x2=2x2D.x6÷x2=x32.(2023•陕西)计算:=()A.B.C.D.3.(2023•温州)化简a4•(﹣a)3的结果是()A.a12B.﹣a12C.a7D.﹣a7【题型4:整式的乘除及化简求值】【典例4】(2023•盐城)先化简,再求值:(a+3b)2+(a+3b)(a﹣3b),其中a=2,b=﹣1.1.(2023•长沙)先化简,再求值:(2﹣a)(2+a)﹣2a(a+3)+3a2,其中a=﹣.2.(2023•常州)先化简,再求值:(x+1)2﹣2(x+1),其中x=.3.(2022•盐城)先化简,再求值:(x+4)(x﹣4)+(x﹣3)2,其中x2﹣3x+1=0.【题型5:因式分解】【典例5】(2023•北京)分解因式:x2y﹣y3=.1.(2023•盐城)因式分解:x2﹣xy=.2.(2023•陕西)分解因式:3x2﹣12=.3.(2023•怀化)分解因式:2x2﹣4x+2=.1.单项式mxy3与x n+2y3的和是5xy3,则m﹣n=()2.下列计算正确的是()A.2ab+3ab=5ab B.7y2﹣2y2=5C.4a+2a=6a2D.3m2n﹣2mn2=mn23.如图是由连续的奇数1,3,5,7,……排成的数阵,用如图所示的T字框框住其中的四个数,设竖列中间的数为x,则这四个数的和为()A.3x+1B.3x+2C.4x+1D.4x+24.某商品标价为m元,商店以标价7折的价格开展促销活动,这时一件商品的售价为()A.0.3m元B.1.7m元C.7m元D.0.7m元5.如图是一组有规律的图案,它们由边长相等的等边三角形组成,第1个图案有4个三角形,第2个图案有7个三角形,第3个图案有10个三角形,…,照此规律,摆成第6个图案需要的三角形个数是()A.19个B.22个C.25个D.26个6.若代数2x2+3x的值为5,则代数式4x2+6x﹣9的值是()A.1B.﹣1C.4D.﹣47.下列计算正确的是()A.(a3)2=a8B.a2•a3=a6C.(2ab2)3=8a3b6D.8.多项式3x2﹣2x+5的各项分别是()A.3x2,﹣2x,5B.x2,x,5C.3x2,2x,5D.3,2,59.下列各整式中是三次单项式的是()A.5a3b B.32a2b C.﹣a2b3D.9a2+b310.如果二次三项式x2+ax﹣2可分解为(x﹣2)(x+b),那么a+b的值为()A.﹣2B.﹣1C.1D.011.将长、宽分别为x、y的四个完全一样的长方形,拼成如图所示的两个正方形,则这个图形可以用来解释的代数恒等式是()A.(x+y)2=x2+2xy+y2B.(x﹣y)2=x2﹣2xy+y2C.(x+y)(x﹣y)=x2﹣y2D.(x+y)2﹣(x﹣y)2=4xy12.(﹣x3)2的运算结果是()A.﹣x5B.﹣x6C.x6D.x913.单项式﹣的系数和次数分别是()A.﹣,4B.﹣,5C.D.14.若M和N都是三次多项式,则M+N一定是()A.次数低于三次的整式B.六次多项式C.三次多项式D.次数不高于三次的整式15.多项式x2+mx+25是完全平方式,那么m的值是()A.10B.20C.±10D.±2016.要使多项式2x2﹣2(7+3x﹣2x2)+mx2化简后不含x的二次项,则m的值是()A.2B.0C.﹣2D.﹣617.先化简,再求值:(a+2)(a﹣2)+a(1﹣a),其中a=2023.18.甲、乙两个长方形的边长如图所示(m为正整数),其面积分别为S1,S2.(1)填空:S1﹣S2=(用含m的代数式表示);(2)若一个正方形的周长等于甲、乙两个长方形的周长之和.①设该正方形的边长为x,求x的值(用含m的代数式表示);②设该正方形的面积为S3,试探究:S3与2(S1+S2)的差是否是常数?若是常数,求出这个常数,若不是常数,请说明理由.1.已知有2个完全相同的边长为a、b的小长方形和1个边长为m、n的大长方形,小明把这2个小长方形按如图所示放置在大长方形中,小明经过推理得知,要求出图中阴影部分的周长之和,只需知道a、b、m、n中的一个量即可,则要知道的那个量是()A.a B.b C.m D.n2.已知8m=a,16n=b,其中m,n为正整数,则23m+12n=()A.ab2B.a+b2C.ab3D.a+b33.比较344,433,522的大小正确的是()A.344<433<522B.522<433<344C.522<344<433D.433<344<5224.若(a+2b)•_____=a2﹣4b2,则横线内应填的代数式是()A.﹣a﹣2b B.a+2b C.a﹣2b D.2b﹣a5.同号两实数a,b满足a2+b2=4﹣2ab,若a﹣b为整数,则ab的值为()A.1或B.1或C.2或D.2或6.我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形解释二项式(a+b)n的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”设(a+b)n的展开式中各项系数的和为a n,若21010=x,则a1+a2+a3+…+a2020的值为()A.2x2B.2x2﹣2C.2020x﹣2D.2020x7.下列表格中的四个数都是按照规律填写的,则表中x的值是()A.135B.170C.209D.252故选:C.8.定义运算“★”:a★b=,关于x的方程(2x+1)★(2x﹣3)=t恰好有两个不相等的实数根,则t的取值范围是.9.计算:已知:a+b=3,ab=1,则a2+b2=.10.如图,边长分别为a、b的两个正方形并排放在一起,当a+b=8,ab=10时,阴影部分的面积为.11.因式分解:2x2﹣4x+2=.12.已知xy=2,x+y=3,则x2y+xy2=.13.如图,点C是线段AB上的一点,以AC,BC为边向两边作正方形,设AB=9,两正方形的面积和S1+S2=51,则图中阴影部分面积为.14.若实数a,b满足a﹣b=1,则代数式a2﹣b2﹣2b+5的值为.15.我国南宋数学家杨辉用三角形解释二项和的乘方规律,称之为“杨辉三角”这个三角形给出了(a+b)n (n=1,2,3,4,…)的展开式的系规律(按a的次数由大到小的顺序).请根据规律,写出(x+1)2022的展开式中含x2021项的系数是.16.观察下列一组数:a1=,a2=,a3=,a4=,a5=,…,它们是按一定规律排列的,请利用其中规律,写出第n个数a n=(用含n的式子表示)17.先化简,再求值:(2a+1)(2a﹣1)﹣4a(a﹣1),其中a=﹣1.18.已知多项式A=2x2﹣xy+my﹣8,B=﹣nx2+xy+y+7,A﹣2B中不含有x2项和y项,求n m+mn的值.19.我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”就是一例.如图,这个三角形的构造法则:两腰上的数都是1,其余每个数均为其上方左右两数之和,它给出了(a+b)n(n为正整数)的展开式(按a的次数由大到小的顺序排列)的系数规律.例如,在三角形中第三行的三个数1,2,1,恰好对应(a+b)2=a2+2ab+b2展开式中的系数;第四行的四个数1,3,3,1,恰好对应着(a+b)3=a3+3a2b+3ab2+b3展开式中的系数等等.(1)根据上面的规律,写出(a+b)5的展开式.(2)利用上面的规律计算:25﹣5×24+10×23﹣10×22+5×2﹣1.20.我们知道,对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数字等式,例如图1,可以得到(a+2b)(a+b)=a2+3ab+2b2.请解答下列问题:(1)写出图2中所表示的数学等式;(2)利用(1)中所得到的结论,解决下面的问题:已知a+b+c=9,ab+bc+ac=26,求a2+b2+c2的值;(3)小明同学用2张边长为a的正方形、3张边长为b的正方形、5张边长为a、b的长方形纸片拼出了一个长方形,那么该长方形较长一边的边长为多少?(4)小明同学又用x张边长为a的正方形,y张边长为b的正方形,z张边长分别为a、b的长方形纸片拼出了一个面积为(25a+7b)(2a+5b)长方形,求9x+10y+6.21.阅读理解:若x满足(9﹣x)(x﹣4)=4,求(4﹣x)2+(x﹣9)2的值.解:设9﹣x=a,x﹣4=b,则(9﹣x)(x﹣4)=ab=4,a+b=(9﹣x)+(x﹣4)=5,∴(9﹣x)2+(x﹣4)2=a2+b2=(a+b)2﹣2ab=52﹣2×4=17.迁移应用:(1)若x满足(2020﹣x)2+(x﹣2022)2=10,求(2020﹣x)(x﹣2022)的值;(2)如图,点E,G分别是正方形ABCD的边AD、AB上的点,满足DE=k,BG=k+1(k为常数,且k>0),长方形AEFG的面积是,分别以GF、AG作正方形GFIH和正方形AGJK,求阴影部分的面积.22.如图①所示是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀均分成相等的四个小长方形,然后按图②的方式拼成一个正方形.(1)图②中阴影部分的正方形的边长等于;(2)请用两种不同的方法列代数式表示图②中阴影部分的面积:方法一:;方法二:;(3)根据(2)写出(m﹣n)2,(m+n)2,mn这三个代数式之间的等量关系及推理过程.1.(2023•西藏)下列计算正确的是()A.2a2b﹣3a2b=﹣a2b B.a3•a4=a12C.(﹣2a2b)3=﹣6a6b3D.(a+b)2=a2+b22.(2023•攀枝花)我们可以利用图形中的面积关系来解释很多代数恒等式.给出以下4组图形及相应的代数恒等式:其中,图形的面积关系能正确解释相应的代数恒等式的有()A.1个B.2个C.3个D.4个3.(2022•永州)若单项式3x m y与﹣2x6y是同类项,则m=.4.(2020•黔西南州)若7a x b2与﹣a3b y的和为单项式,则y x=.5.(2023•丽水)分解因式:x2﹣9=.6.(2023•淄博)分解因式:2a2﹣8b2=.7.(2022•广西)阅读材料:整体代值是数学中常用的方法.例如“已知3a﹣b=2,求代数式6a﹣2b﹣1的值.”可以这样解:6a﹣2b﹣1=2(3a﹣b)﹣1=2×2﹣1=3.根据阅读材料,解决问题:若x=2是关于x的一元一次方程ax+b=3的解,则代数式4a2+4ab+b2+4a+2b﹣1的值是.8.(2023•长春)先化简,再求值:(a+1)2+a(1﹣a),其中.9.(2023•邵阳)先化简,再求值:(a﹣3b)(a+3b)+(a﹣3b)2,其中a=﹣3,b=.10.(2023•河北)现有甲、乙、丙三种矩形卡片各若干张,卡片的边长如图所示(a>1).某同学分别用6张卡片拼出了两个矩形(不重叠无缝隙),如表2和表3,其面积分别为S1,S2.表2表3(1)请用含a的式子分别表示S1,S2,当a=2时,求S1+S2的值;(2)比较S1与S2的大小,并说明理由.。
中考数学 专题02 代数式和整数(知识点串讲)(原卷版)
专题 02 代数式与整式
中考数学复习资料
【知识要点】 知识点一 代数式 概念:用基本的运算符号(运算包括加、减、乘、除、乘方与开方)把数和表示数的字母连接起来的式子叫做 代数式.单独的一个数或一个字母也是代数式. 【注意】 1.代数式中除了含有字母、数字、运算符号外还可以有括号。 2.代数式中不含有=、<、>、≠ 等 3.对于用字母表示的数,如果没有特别说明,就应理解为它可以表示任何一个数。 代数式的分类:
3a m 2 b与
1 2
ab n 1
是同类项,则
m
n
(
)
A. 2
B.2
C.1
D. 1
5.(2013·四川中考真题)如果单项式 ‒ xa + 1y3与12yb������2是同类项,那么a、b的值分别为( )
A.a = 2,b = 3 B.a = 1,b = 2 C.a = 1,b = 3 D.a = 2,b = 2
苹果每千克的价格是( )
a A. 20%
a B. 1 20%
C. 20%a
1 20% a
D.
2.(2014·江西中考真题)如图 1,将一个边长为 a 的正方形纸片剪去两个小矩形,得到一个“ ”的图案,如 图 2 所示,再将剪下的两个小矩形拼成一个新的矩形,如图 3 所示,则新矩形的周长可表示为( )
1 A.系数是 3 ,次数是 6
1 B.系数是- 3 ,次数是 5
1 C.系数是 3 ,次数是 5
1 D.系数是- 3 ,次数是 6
3 x2 y 4 xy
5.(2017·重庆中考模拟)在式子-4,0,x-2y, 4 , m , 3 中,单项式有(
中考知识点整式
中考知识点整式整式是中考数学中的一个重要知识点,理解和掌握整式的相关概念、运算和应用对于中考取得好成绩至关重要。
首先,我们来了解一下整式的定义。
整式是单项式和多项式的统称。
单项式是指由数字和字母的积组成的代数式,单独的一个数或一个字母也叫做单项式。
比如,5、x、3xy 等都是单项式。
多项式则是几个单项式的和或差,比如 2x + 3y、x² 2x + 1 等。
在整式中,单项式的系数是指单项式中的数字因数,比如 5x 中的系数是 5。
单项式的次数是指单项式中所有字母的指数和,比如 3x²y中 x 的指数是 2,y 的指数是 1,所以次数是 3。
对于多项式,每一个单项式叫做多项式的项,不含字母的项叫做常数项。
比如在多项式 2x²+ 3x 1 中,2x²、3x、-1 分别是它的项,-1 是常数项。
多项式中次数最高的项的次数,叫做这个多项式的次数。
整式的加减运算,其实就是合并同类项。
同类项是指所含字母相同,并且相同字母的指数也相同的项。
比如 2x 和 5x 是同类项,3xy²和-7xy²是同类项。
合并同类项时,把同类项的系数相加,字母和字母的指数不变。
整式的乘法运算包括单项式乘以单项式、单项式乘以多项式、多项式乘以多项式。
单项式乘以单项式,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
例如,3x²y × 2xy³= 6x³y⁴。
单项式乘以多项式,用单项式去乘多项式的每一项,再把所得的积相加。
比如,2x(3x + 4) = 6x²+ 8x。
多项式乘以多项式,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
比如,(x + 2)(x 3) = x² 3x + 2x 6 =x² x 6 。
整式的除法运算主要是单项式除以单项式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【知识考点】
1. 代数式:用运算符号(加、减、乘、除、乘方、开方)把或表示连
接而成的式子叫做代数式.
2. 代数式的值:用代替代数式里的字母,按照代数式里的运算关系,计算后所得的
叫做代数式的值.
3. 整式
(1)单项式:由数与字母的组成的代数式叫做单项式(单独一个数或也是单项式).单项式中的叫做这个单项式的系数;单项式中的所有字母的叫做这个单项式的次数.
(2) 多项式:几个单项式的叫做多项式.在多项式中,每个单项式叫做多
项式的 ,其中次数最高的项的叫做这个多项式的次数.不含字母的项叫做 .
(3) 整式:与统称整式.
4. 同类项:在一个多项式中,所含相同并且相同字母的也分别相等的项叫做同类
项. 合并同类项的法则是 ___.
5. 去括号法则
(1)括号前是“+”,把括号和它前面的“+”号一起去掉,括号里各项都不变号。
(2)括号前是“﹣”,把括号和它前面的“﹣”号一起去掉,括号里各项都变号。
第二章有两大内容:
一、概念;二、整式加减
主线:
1、代数式:列代数式、给代数式以解释、代数式书写要求、代数式的值---单项式:单项式的系数;单项式的次数-------多项式:几项式;多项式次数;升幂排列、降幂排列-------整式
2、同类项----合并同类项-----合并同类项法则-----去括号------整式的加减
常出题型:
1、代数式书写是否规范
2、求代数式的值(注意格式)
3、解释代数式
4、列代数式,如:偶数、奇数,被3除余2的数等怎样表示(注意条件)
5、判别单项式(抓住1、分母中有字母的都不是单项式,2、看能否写成数与字母的积)
6、判别多项式(单项式的和,不含字母项叫常数项)
7、多项式是几次几项式
8、多项式重新排列(排列后仍是多项式,抓住要求进行排列)
9、同类项的定义(1、判别同类项,2、已知两个单项式是同类项,求指数中字母取值,
3、已知单项式的和是单项式,求指数中字母的值)
10、合并同类项是把同类项的系数相加,字母和字母的指数不变
11、去括号时候注意符号的变化
12、两个四次多项式相加或相减,结果的次数不高于四次
13、多项式求值,要先化简,再求值,注意解题格式
14、添括号按要求先写好括号,再按照要求把各项放进相应括号内。