光纤传感器基本原理2.

合集下载

光纤传感器

光纤传感器

光纤传感器光纤传感器技术在现代科技领域中扮演着重要的角色。

本文将介绍光纤传感器的原理、应用领域以及未来发展趋势。

光纤传感器是一种利用光纤输送光信号并将其转换为传感信号的装置。

其工作原理基于光纤的光学特性,利用光的传输和反射来检测物理量的变化。

光纤传感器可以实现高灵敏度、高分辨率、快速响应和远程感知等特点,因此在许多领域得到广泛应用。

一种常见的光纤传感器类型是光纤光栅传感器。

光纤光栅传感器利用光栅的干涉效应来实现对物理量的测量。

光栅是将光纤纤芯中周期性的折射率变化引入的装置,在光的传播过程中形成干涉。

当光栅受到外界物理量的作用时,其折射率发生变化,从而引起干涉的变化,进而实现对物理量的检测。

光纤传感器的应用领域非常广泛,其中之一是环境监测领域。

光纤传感器可以用于测量温度、湿度、压力等环境参数,用于监测大气污染、水质污染、土壤质量等环境指标。

通过将光纤传感器网络部署在不同地点,可以实现对环境状况的实时连续监测,为环境保护提供重要数据支持。

另外,光纤传感器在基础设施安全领域也起着关键作用。

例如,光纤传感器可以应用于石油管道、天然气管道、电力输电线路等重要设施的监测和安全保护。

通过光纤传感器可以实现对温度、压力、振动等参数的监测,及时发现异常情况并采取措施,避免事故的发生。

光纤传感器还在医疗领域发挥着重要作用。

例如,在手术中,医生可以使用光纤传感器来监测患者的生命体征,如心率、血压等,并及时作出反应。

此外,光纤传感器还可以用于光学成像,如光纤内窥镜等,帮助医生进行精确的病灶检测和治疗。

未来,光纤传感器技术有望进一步发展。

一方面,随着光纤技术的不断革新,光纤传感器的性能将得到进一步提升。

例如,光纤传感器的灵敏度和分辨率将更高,响应速度将更快,从而满足更多领域对传感器的需求。

另一方面,光纤传感器的应用范围也将不断扩大,如在机器人技术、智能交通、航空航天等领域的应用都将成为可能。

这些发展将进一步推动光纤传感器技术的应用和创新。

光纤传感技术基本原理课件

光纤传感技术基本原理课件
两个模的传播常数分别 为β和β′,当 Δβ= │β-β′│ = 2π/λ
相位失配为零,模间精 合达到最佳。
Institude of Lightwave Technology
一是作为领导干部一定要树立正确的 权力观 和科学 的发展 观,权 力必须 为职工 群众谋 利益, 绝不能 为个人 或少数 人谋取 私利
B、渐逝波耦合型
通常.渐逝波在光疏媒质中深人距 离有几个波长时.能量就可以忽略不计 了。如果采用一种办法使渐逝场能以较 大的振幅穿过光疏媒质,并伸展到附近 的折射率高的光密媒质材料中,能量就 能穿过间隙,这一过程称为受抑全反射 。
Institude of Lightwave Technology
一是作为领导干部一定要树立正确的 权力观 和科学 的发展 观,权 力必须 为职工 群众谋 利益, 绝不能 为个人 或少数 人谋取 私利
利用两个周期结构的光栅遮光屏传感器.通过一对光栅遮光屏的透 射率,从50%(当两个屏完全重叠时)变到零(当一个屏的不透明条完 全覆盖住另一个屏的透明部分)。在此周期性结构范围内,光的输 出强度是周期性的。而且它的分辨率在光珊条纹间距的10-6数量级 以内。这是能够构成很灵敏、很简单、高可靠的位移传感器的基础
Institude of Lightwave Technology
一是作为领导干部一定要树立正确的 权力观 和科学 的发展 观,权 力必须 为职工 群众谋 利益, 绝不能 为个人 或少数 人谋取 私利
微弯式光纤压力传感
基于光纤的微弯效应,即由压力引起变形器产 生位移,使光纤弯曲而调制光强度。
微 弯 式 光 纤 水 听 器 探 头
(1) 反射式强度调制
这是一种非功能型光纤传感器,光纤本身只起传光作用 .

光纤传感器的原理是

光纤传感器的原理是

光纤传感器的原理是光纤传感器是一种利用光学原理来进行物体检测和测量的设备。

它利用光纤中的光信号与外界物理量的相互作用,通过测量光的特性变化来获取物理量的信息。

光纤传感器具有高精度、快速响应、不受电磁干扰等优点,广泛应用于工业、生活、医疗等领域。

一、基本原理光纤传感器的基本原理是利用光的传输和载波调制技术。

通常,光纤传感器由光源、光纤、检测元件和信号处理模块组成。

光源产生光信号后,通过光纤传输至检测元件,光信号在物理量作用下发生变化,最后由信号处理模块将光信号转化为电信号输出。

二、工作原理光纤传感器的工作原理可以分为干涉型、散射型和吸收型。

1. 干涉型干涉型光纤传感器利用光的干涉现象来测量物理量。

它通过将光信号分为两个相干波束,一个作为参考光束,另一个经过检测元件后与参考光束发生干涉。

当外界物理量作用于光束时,光的相位和振幅会发生变化,通过测量干涉光信号的强度或相位差,获得物理量的信息。

2. 散射型散射型光纤传感器利用光在纤芯中的散射现象来测量物理量。

它通过纤芯中的光散射来判断外界物理量的变化。

光纤中的散射分为弹性散射和非弹性散射两种,其中弹性散射主要受到光纤材料的缺陷、晶格振动等因素影响,非弹性散射则由于外界物理量的作用引起光纤材料中电子的激发和产生。

通过测量散射光信号的强度、频谱等特性,可以获取物理量的信息。

3. 吸收型吸收型光纤传感器利用光在特定介质中的吸收现象来测量物理量。

它通过在光纤中引入吸收介质,当外界物理量作用于吸收介质时,吸收介质中的光吸收发生变化。

通过测量光的强度变化,可以获得物理量的信息。

三、应用领域光纤传感器在诸多领域有着广泛的应用。

1. 工业领域在工业自动化控制中,光纤传感器可用于测量温度、压力、液位、流量等物理量。

通过光纤传感器的应用,可以实现高精度、实时的物理量检测和测量,从而提高生产效率、保证产品质量。

2. 生活领域光纤传感器在生活中也有着广泛的应用,如煤气检测、火灾报警、安全防范等。

8.6(1、2、3) 光纤传感器的原理、组成、分类

8.6(1、2、3) 光纤传感器的原理、组成、分类
传光型光纤传感器 传感型光纤传感器
8 有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)
8.6.3 光纤传感器分类
传光型光纤传感器
也称为非功能型光纤传感器,多数使用多模光纤; 在传光型光纤传感器中,光纤仅作为传播光的介质,
对外界信息的“感觉”功能是依靠其它功能元件来 完成的; 传光型光纤传感器主要利用已有的其他敏感材料, 作为其敏感元件。
4
有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)
8.6.1 光纤传感原理
现有的光探测器都只能响应光的强度,而不能直接 响应光的频率、波长、相位和偏振态;
因此光的频率、波长、相位和偏振态调制信号都要 通过某种转换技术转换成强度信号,才能为光探测 器接收,实现对外界被测参数的检测。
8.6 光纤传感器
光纤传感原理 光纤传感系统组成 光纤传感器分类 典型光纤传感器
1
8.6.1 光纤传感原理
基本工作原理是利用光调制技术
在光调制区域内,被检测的信号通过不同的方式叠加到通过光纤 纤芯传输的载波光波上;
调制过程就是载波光波的振幅、相位、偏振态、波长、光谱特性 等参数随被检测信号变化而改变的过程
9
8.6.3 光纤传感器分类
10
8.6.3 光纤传感器分类
传感型光纤传感器
也称为功能型光纤传感器,常使用单模光纤; 传感型光纤传感器是利用对外界信息具有敏感能力和检测功
能的光纤(或特殊光纤)作传感元件,将“传”和“感”合为 一体的传感器; 在这类传感器中,光纤不仅起传光的作用,同时利用光纤在 外界因素(弯曲、相变)的作用下,使其某些光学特性发生变 化,对输入的光产生某种调制作用,使在光纤内传输的光的 强度、相位、偏振态等特性发生变化,从而实现传和感的功 能。

光纤传感器基本原理

光纤传感器基本原理

光纤传感器基本原理光纤传感器是一种利用光纤作为传感元件的传感器,它通过光纤中的光信号的强度、频率或相位的变化来感知和测量环境参数的传感器装置。

光纤传感器具有高可靠性、抗干扰能力强、响应速度快等优点,广泛应用于测量、通信、工业自动化等领域。

首先是光源部分:光源可以是激光器、LED等产生光信号的装置。

光源通过光纤传输光信号到目标位置,其中包括了传感器测量的环境参数。

然后是光纤部分:光纤是光信号传输的介质,通常由一根或多根光纤组成。

光纤可以是单模光纤或多模光纤,其核心材料通常是高纯度玻璃或塑料。

光信号通过光纤的内部反射来传输,通过改变光纤的长度、形状或者在光纤表面附加外界物质等方式,可以实现对环境参数的测量。

最后是光电检测器部分:光电检测器用于接收光信号并将其转化为电信号。

光电检测器可以是光电二极管、光电转换器等。

当光信号到达光电检测器时,光信号激发光电检测器产生电流变化,进而将光信号转化为电信号。

通过测量电信号的特征,如电流的强度、频率或相位的变化,可以获得环境参数的信息。

光纤传感器的工作原理有很多种,最常见的是基于光强度的测量。

当环境参数发生变化时(如温度、湿度、压力等),这些变化会导致光信号的强度发生变化。

光纤传感器通过测量光信号的强度变化来确定环境参数的变化情况。

另外一种常见的光纤传感器工作原理是基于光频率的测量。

当环境参数变化时,这些变化会引起光信号的频率移动。

通过测量光信号频率的变化,可以确定环境参数的变化情况。

还有一种光纤传感器工作原理是基于光相位的测量。

当环境参数变化时,这些变化会导致光信号的相位变化。

通过测量光信号相位的变化,可以确定环境参数的变化情况。

总之,光纤传感器利用光的传导性能来实现环境参数的测量和检测。

通过光源产生光信号,光信号经过光纤传输并最终转化为电信号。

根据光信号的强度、频率或相位的变化,可以获得环境参数的变化情况。

光纤传感器具有高可靠性、抗干扰能力强、响应速度快等优点,在各个领域得到广泛应用。

光纤传感器的原理及应用

光纤传感器的原理及应用

统外部观察 、 监视系统 内部情 况, 其原理 图如 下图 4所示 。它 由物镜 、 传像束 、 传光束、 目镜组成 。光源发出的光通过光束 照 射到被测物 体上 , 明视场 , 照 通过物镜和传像 束把 内部结构 图 像送出来, 以便观察或照相 。
接 收装置转换为 电信号 ,经过信 号处理电路处理后便 可 以正
聂 帅华 , , 西 南 昌 人 , 男 江 本科 在 读 。研 究方 向 : 子技 术 , 电 通信 工程 。
6 8—

应 用 技 术 与 研 究 囊
中的光强度产生调制。可直接连接光探测器变成 电信号 ( 即调 制的强度包括 电信号) 。
3 . 相 位 调 制 光 纤 传 感 器 .2 2

部分反射回纤芯。 但当入射角e 小于临界入射角e 时, 。 光线
反复逐 次全反射 , 呈锯齿波形状在纤芯 内向前传播 , 最后从光
纤 的 另一 端 射 出 , 就 是 光 纤 的 传 光 原理 【 这 2 _ 。
器解调后 , 获得被测参数 。
32 光 纤 传 感 器 分类 .
就 不 会 透 射 出 界面 , 全 部 被 反 射 , 在纤 芯 和 包 层 的 界 面 上 而 光
点介绍了光纤传 感器 的原理及 其在 各方面的广泛应用 。光 纤
传 感 器 的 应 用 远 不 止 于 此 , 了上 述 应 用 之 外 , 传 感 器 在 全 除 纤 光 网络 安 全 、 长 油 田使 用 、 物 传 感 、 联 网 等 各 方 面 也 有 延 生 物 重 要 应 用 , 且我 们 相 信 光 纤传 感 器 还 会 得 到进 一 步 的 发 展 , 并 应 用 到 人们 生活 的方 方 面 面 。

光纤传感器基本原理

光纤传感器基本原理

光纤传感器基本原理光纤传感器是一种利用光的特性进行测量和检测的传感器。

它通常由光纤、光源、光电探测器和信号处理器等组成。

其基本原理是利用光纤对光的传输、散射和反射等现象的特性,通过检测光的强度、频率、相位或波长等参数的变化来实现测量和检测。

变量光纤传感器是利用光纤对外界物理量的改变引起光信号的变化。

例如,光纤位移传感器利用光的总反射原理,当光纤发生位移时,入射角发生改变,导致反射光的强度和相位发生变化,通过测量光信号的变化来确定光纤的位移。

光纤压力传感器利用光纤的压力敏感特性,当外界施加力或压力时,光纤会发生形变,导致入射角、折射率或路径长度发生变化,从而引起反射光的强度和相位发生变化,进而实现压力的测量。

分布式光纤传感器是利用光在光纤中传输时的散射和反射现象来实现测量。

例如,布里渊散射传感器利用光纤中的布里渊散射现象,通过测量光信号受到的散射功率和频移来确定光纤传感区域的温度或应力分布。

拉曼散射传感器则利用光纤中的拉曼散射现象,通过测量光信号的频移来确定光纤周围介质的温度或应力。

1.高精度和高灵敏度。

光纤传感器能够测量微小的光信号变化,具有高精度和高灵敏度,可以满足对精确测量和检测的要求。

2.长距离和分布式测量。

光纤传感器可以在长距离范围内进行测量,并且可以实现对大范围区域的分布式测量,具有广泛的应用前景。

3.抗干扰能力强。

光纤传感器基于光的传输和反射原理,不受外界磁场、电场等干扰,具有较强的抗干扰能力。

4.无电磁辐射和隔离。

光纤传感器通过光的传输进行测量,无电磁辐射,安全可靠,并且能够实现电隔离。

目前,光纤传感器已广泛应用于工业控制、机械制造、军事安防、航天航空、医疗生物等领域。

随着光纤技术的不断发展和进步,光纤传感器将在更多领域展现出巨大的潜力,并为各行各业带来更多的应用和创新。

光纤传感器的原理

光纤传感器的原理

光纤传感器的原理光纤传感器是一种基于光纤技术的传感器,能够将光信号转换为电信号,用于测量、监测和控制各种物理量。

它具有高精度、高灵敏度、抗干扰性强等优点,被广泛应用于工业自动化、环境监测、医疗诊断等领域。

本文将介绍光纤传感器的工作原理及其应用。

一、光纤传感器的基本原理光纤传感器的基本原理是利用光的传播特性和传感物理量之间的相互作用来实现信号的转换。

光纤传感器由光源、光纤、光电探测器和信号处理电路等组成。

1. 光源:光源是产生光信号的装置,通常采用激光二极管或发光二极管。

通过控制光源的电流或电压,可以调节光源的亮度和光强。

2. 光纤:光纤是传输光信号的介质,通常由玻璃或塑料制成。

光纤具有高折射率和低损耗的特点,能够保持光信号的传播质量。

3. 光电探测器:光电探测器将光信号转换为电信号,常用的光电探测器包括光电二极管、光电倍增管和光电二极管阵列等。

光电探测器的选择取决于光信号的波长和强度。

4. 信号处理电路:信号处理电路用于放大、滤波和解调光电探测器输出的电信号。

根据不同的应用需求,信号处理电路可以包括模拟电路或数字电路。

二、不同类型的光纤传感器光纤传感器根据测量的物理量和工作原理的不同,可以分为多种类型。

下面将介绍几种常见的光纤传感器。

1. 光纤光栅传感器:光纤光栅传感器利用光栅结构对光信号进行调制和解调,实现对应变物理量的测量。

光纤光栅传感器可以测量温度、压力、应变、位移等参数。

2. 光纤陀螺仪:光纤陀螺仪是一种利用光纤的旋转效应实现角速度测量的设备。

它广泛应用于惯性导航系统、航天器姿态控制等领域。

3. 光纤压力传感器:光纤压力传感器利用光纤的弯曲效应来测量压力变化。

光纤压力传感器具有高灵敏度、快速响应、广泛测量范围等特点。

4. 光纤温度传感器:光纤温度传感器通过测量光纤的热导率或光纤中热致发光的变化来实现温度测量。

光纤温度传感器具有高分辨率、抗干扰性强等优点。

三、光纤传感器的应用领域光纤传感器具有广泛的应用领域,以下列举其中几个典型的应用。

光纤传感器基本原理

光纤传感器基本原理

多功能化
光纤传感器将更多地实现多功能的集成和使用, 以满足不断变化的应用需求和环境要求。
小型化
光纤传感器将越来越小型化,更方便实现在狭 小空间内的布置和使用,并且可以减少生产成 本和环境占用。
气象观测
光纤传感器可用于测量大气温度、 湿度、气压等气象参数,为天气 预报和气候研究提供重要数据。
光纤传感器的优势和局限性
1
优势
光纤传感器具有快速响应、高精确度、抗
局限性
2
干扰、安全可靠等优点,可以应用于复杂 的环境和电磁干扰场合。
光纤传感器也存在着灵敏度不足、温度漂
移、成本较高等局限性,还需要在实际应
• 布里渊光纤传感器 • 光纤干涉型传感器 • 光纤微扰型传感器 • 光纤拉曼散射传感器
光纤传感器的制造和安装
光纤的制备工艺
光纤传感器的安装方法
光纤传感器的制造是基于光纤的 制备工艺。通常包括预制棒制备、 拉拔成型、光纤涂覆等多个步骤。
光纤传感器的安装需要考虑传感 区域的位置、光源和检测器的安 装、信号处理器的连接等多个问 题。不同类型的光纤传感器安装 方法略有不同。
信号处理器
光纤传感器的信号处理器用于处理光纤中探测 到的光信号,并将其转化成电信号进行处理, 最终输出测量结果。
光源和光检测器
光纤传感器的光源和光检测器可以是激光器、 发光二极管、光电二极管等,主要用于探测光 纤中光信号的强度和相位变化。
工作模式
光纤传感器的工作模式包括反射型、透射型、 微扰型、直接式等。每种模式都有其特点和适 用范围。
光纤传感器具有快速响应、 高精确度、高灵敏度和免 于干扰等优点。它的应用 领域非常广泛,在能源、 交通、环保、医学等方面 有着重要的作用。

光纤传感器原理

光纤传感器原理

光纤传感器原理
光纤传感器是一种利用光纤作为传感元件的传感器,它能够将光信号转化为电信号,实现对光信号的检测和测量。

光纤传感器的工作原理主要包括两部分,即光纤的传输特性和光纤的敏感特性。

首先,光纤的传输特性是光纤传感器能够正常工作的基础。

光信号在光纤中传输时,会发生多种光学效应,如全反射、散射、吸收等。

这些效应会导致光信号的衰减和失真,影响到传感器的灵敏度和精度。

因此,在设计光纤传感器时,需要考虑光纤的传输特性,选择适合的光纤材料和结构,以及优化光纤的布局和连接方式,以提高传感器的性能。

其次,光纤的敏感特性是光纤传感器实现对光信号检测和测量的关键。

光纤中的光信号会与外界环境产生相互作用,例如温度、压力、形变、湿度等因素会改变光纤的折射率、传输损耗、频率等参数,从而影响光信号的特性。

光纤传感器利用这些特性,通过测量光信号的变化来实现对外界环境的监测和控制。

具体来说,可以利用光纤的布拉格光栅、光纤光栅、微弯光纤等结构,通过测量光信号的频率、幅度、相位等参数来实现对环境参数的测量。

综上所述,光纤传感器通过光纤的传输特性和敏感特性实现对光信号的检测和测量。

通过合理设计光纤的结构和布局,选择适合的光纤材料和光源,以及采用合适的测量方法和技术,能够实现对外界环境的高灵敏度和高精度的监测和控制。

光纤传感器基本原理

光纤传感器基本原理

特点
➢ 对引起光纤或连接器损耗增加的某些器件的 稳定性不敏感。
➢ 解调技术复杂,常常需要分光仪。 ➢ 通常采用比值测量(两个波长的测量值为基
准),要求校准以建立比值测量所需要的参 考点。 ➢ 探测的波长范围有限。
光纤传感器基本原理
典型应用
➢ 外界因素对传输光的光谱成分中,不同波长的 光吸收特性不同。 如:溶液浓度的化学分析等。
➢ 外界因素引起光的波长发生漂移。 如:光纤光栅应力传感器,光纤光栅温
度传感器等。
光纤传感器基本原理
三.频率调制
➢ 概念 利用外界因素改变光纤中光的频率,通过
测量光频率的变化来测量外界物理量。
光纤传感器基本原理
特点
➢ 外界因素以多普勒效应的形式影响光的频 率。
➢ 适用于对运动目标的探测。 ➢ 空间分辨率高,光束不干扰流动状态。
过外界因素的改变引起光纤包层折射率的大 小发生变化,从而使得其中传输光的强度发 生变化。
光纤传感器基本原理
➢ 典型图
光纤传感器基本原理
(六)利用光纤的吸收特性进行调制 利用射线的辐射使光纤的吸收损耗增加,光
纤的输出功率降低,从而构成强度调制的测量辐射 量的传感器。
光纤传感器基本原理
原理图
特点
➢ 测量各种辐射,例如x射线的大小。 ➢ 灵敏度高、线性范围大。 ➢ 实时性强。 ➢ 典型应用:卫星外层空间剂量的监测;核电
光纤传感器基本原理
多普勒效应
研究光源与观测者之间的相对运动对接收 到的光的频率产生的影响。 ➢ 如果频率为f的光入射到相对于探测器速度为v 的运动物体上,则从物体上反射到探测器的光 频率为:
f c为fs真空1中v的/c光速(1v/c)f
光纤传感器基本原理

光纤传感物理实验报告

光纤传感物理实验报告

一、实验目的1. 理解光纤传感的基本原理和特点。

2. 掌握光纤传感器的制作和测试方法。

3. 通过实验验证光纤传感器在测量压力、温度等物理量时的准确性和可靠性。

二、实验原理光纤传感器是利用光纤作为传感介质,通过光的传输特性来检测环境中的物理量。

其主要原理包括:1. 光干涉原理:当光通过光纤时,由于光纤的弯曲、拉伸或温度变化等因素,光的传播路径发生变化,导致光的干涉现象,从而引起光强的变化。

2. 光散射原理:当光通过光纤时,由于光纤内部或外部环境的变化,光在光纤中发生散射,散射光的强度或相位发生变化,从而反映环境的变化。

三、实验仪器与材料1. 光纤传感器实验仪2. 激光器及电源3. 光纤夹具4. 光纤剥线钳5. 宝石刀6. 激光功率计7. 五位调整架8. 显微镜9. 显示器四、实验步骤1. 光纤传感器的制作:- 使用光纤剥线钳剥去光纤外皮,露出光纤芯。

- 使用宝石刀切割光纤,形成传感区域。

- 将传感区域插入光纤夹具中,固定好。

2. 光纤传感器的测试:- 将光纤传感器连接到光纤传感器实验仪上。

- 调整实验仪参数,设置测试模式。

- 通过实验仪对光纤传感器进行测试,记录数据。

3. 压力测试:- 将光纤传感器置于压力容器中,逐渐增加压力。

- 观察实验仪显示的光强变化,记录数据。

- 分析数据,验证光纤传感器在压力变化下的灵敏度。

4. 温度测试:- 将光纤传感器置于温度变化环境中。

- 观察实验仪显示的光强变化,记录数据。

- 分析数据,验证光纤传感器在温度变化下的灵敏度。

五、实验结果与分析1. 压力测试结果:- 实验结果显示,随着压力的增加,光纤传感器的光强逐渐减小,表明光纤传感器对压力变化具有较好的灵敏度。

2. 温度测试结果:- 实验结果显示,随着温度的升高,光纤传感器的光强逐渐减小,表明光纤传感器对温度变化具有较好的灵敏度。

六、实验结论1. 光纤传感器具有抗电磁干扰、体积小、灵敏度高等优点,适用于测量压力、温度等物理量。

光纤传感器的原理和应用探究

光纤传感器的原理和应用探究

光纤传感器的原理和应用探究在现代科技日新月异的时代,光纤传感器作为一种新兴的传感器技术,其应用范围越来越广泛。

光纤传感器通过测量光的参数变化来检测环境、物理量、化学量等信息,具有响应快、抗干扰能力强、使用寿命长等优点。

本文将对光纤传感器的原理和应用进行探究。

一、光纤传感器的基本原理光纤传感器是利用光的物理特性进行测量的一种传感器。

它的基本原理是利用光纤中光的衍射、干涉、散射、吸收等现象,将周围环境产生的信号转换成光信号,通过传递、解调和处理,最终获得需要测量的物理量信息。

光纤传感器的工作原理可以分为两个部分:光纤传感部分和信号传递及处理部分。

1、光纤传感部分光纤传感部分是光纤传感器的重要组成部分,主要是通过利用光的散射、吸收等物理现象,将要测量的信号转换为光信号。

光纤传感部分主要由光源、光纤和光电器三个部分构成。

(1)光源光源是光纤传感器的初级部件,它主要是产生光信号的光波源。

在光纤传感器中,常使用激光diode LED、LED 这两种类型的光源。

它们的特点是光输出功率稳定、寿命长,对环境温度变化和机械振动等均有良好的适应性。

(2)光纤光纤是光纤传感器的核心部分,是将光信号转换为机械量或其它指标成分的传感器。

它作为光传输的介质,一般采用单模或多模光纤,常用的光纤有石英光纤和塑料光纤。

在光纤中,光信号会通过散射或吸收等方式受到外部环境作用,从而产生不同程度的衰减,物理量的变化会导致光纤中传输特性的变化,如光功率、相位和波长等。

(3)光电器光电器是光纤传感器中的一个重要组成部分,主要作用是将入射的光信号转换成电信号。

光电器一般包括光电二极管、光电倍增管和光栅等,其中光电倍增管能够把非常微弱的光信号转换成较大的电信号。

通过控制光源的强度和改变光纤的位置,光电器能够准确地检测出光强度和位置的变化,实现对环境变化量的测量。

2、信号传递及处理部分信号传递及处理部分是光纤传感器的重要组成部分,主要是将光纤传感产生的信号传递到处理器进行解调、滤波和数字化等处理,最终输出需要测量的参数值。

光纤光栅传感器基本原理之二,光纤光栅传感原理

光纤光栅传感器基本原理之二,光纤光栅传感原理

北诺®毛细®光纤光栅传感器基本原理之二,光纤光栅传感原理在上一篇《北诺®毛细®光纤光栅传感器基本原理之一,波的反射与叠加》文章中,我们通过声波来类比光波,给出了大家了解北京大成永盛科技有限公司生产的北诺®毛细®系列无缝钢管光纤光栅传感器基本原理所需的前置知识——波的反射与叠加(干涉)。

今天我们将以此为基础,介绍光纤光栅传感器的基本原理。

本篇文章同样为科普性文章,非科研性文章,如果哪位朋友觉得本文有错误,也请来信指正。

光纤光栅传感器(Fiber Grating Sensor)属于光纤传感器的一种,基于光纤光栅的传感过程是通过外界物理参量对光纤布拉格光栅(Bragg)波长的调制来获取传感信息,是一种波长调制型光纤传感器。

下图图1所示即为一根刻写了布拉格光纤光栅的光纤纤芯示意图(真实直径9微米)。

人们使用掩膜板、飞秒激光或者其它的加工方式,在光纤的纤芯部分形成无数条具有相同间距的弱反射面(我们在此暂不介绍更复杂的光栅),这些弱反射面被称为光纤光栅,各个弱反射面之间的距离被称为光栅栅距或光栅周期(我们一般用Λ这个符号来表示它——请记住这个符号,下文需要用到)。

图1利用上述光纤光栅就可以进行基本的传感测量,其原理如下图2所示:图2图2中间所示即是一根封装好的北诺®毛细®系列无缝钢管光纤光栅传感器:宽带入射光从传感器的一端进入光纤,遇到光纤光栅后,大部分波长的光作为透射光直接穿过光纤光栅,少部分特殊波长的光被反射了回去(请注意这个特殊波长,这就是我们每次要检测的对象,我们用λB来表示它)。

λB和我们前面所说的光栅栅距Λ有直接关系,表征其关系的数学表达式为:λB =2neffΛ,其中λ为反射波长,neff是光纤纤芯折射率,Λ是光栅栅距。

接下来反射光进入光纤光栅解调仪(图上未标),被解调出波长信号λB。

由于连着传感设备,因此我们每时每刻都能够得到一个不同的测试波长信号λB。

光纤温度传感器 原理

光纤温度传感器 原理

光纤温度传感器原理
光纤温度传感器是一种利用光纤中光的传输特性来实现温度测量的装置。

光纤传感器的主要原理是基于光学效应和光纤本身的热导特性。

光纤传感器中常用的原理之一是光纤布拉格光栅原理。

布拉格光栅是由许多周期性折射率变化组成的光栅结构,可以将光波分散为多个特定波长的反射光。

当光经过布拉格光栅时,如果有外部温度变化作用于光纤上,光纤的长度会发生微小变化,导致反射波长发生改变。

通过测量反射光的波长变化,可以确定温度的变化。

另一种常用的原理是基于光纤的热导特性。

光纤是一种具有热导性能的材料,当光纤受到外界温度变化时,其内部的热量会发生传导,并导致光纤的温度发生相应改变。

通过在光纤表面附加敏感材料,如热敏电阻或热电偶,可以测量光纤的温度变化。

光纤温度传感器具有高精度、抗干扰能力强、体积小、重量轻等优点,在许多领域被广泛应用。

例如,在工业生产中,光纤温度传感器可用于监测管道、容器、设备的温度变化,实现温度控制和安全监测。

在医疗领域,光纤温度传感器可以用于监测人体温度变化,辅助诊断和治疗。

此外,光纤温度传感器还可用于火灾预警、环境监测等领域。

五类光纤传感器基本原理和优点简介

五类光纤传感器基本原理和优点简介

五类光纤传感器基本原理和优点简介来源:与非网根据被调制的光波的性质参数不同,这两类光纤传感器都可再分为强度调制光纤传感器、相位调制光纤传感器、频率调制光纤传感器、偏振态调制光纤传感器和波长调制光纤传感器。

1)强度调制型光纤传感器基本原理是待测物理量引起光纤中传输光光强的变化,通过检测光强的变化实现对待测量的测量。

恒定光源发出的强度为I的光注入传感头,在传感头内,光在被测信号的作用下其强度发生了变化,即受到了外场的调制,使得输出光强的包络线与被测信号的形状一样,光电探测器测出的输出电流也作同样的调制,信号处理电路再检测出调制信号,就得到了被测信号。

这类传感器的优点是结构简单、成本低、容易实现,因此开发应用的比较早,现在已经成功的应用在位移、压力、表面粗糙度、加速度、间隙、力、液位、振动、辐射等的测量。

强度调制的方式很多,大致可分为反射式强度调制、透射式强度调制、光模式强度调制以及折射率和吸收系数强度调制等等。

一般反射式强度调制、透射式强度调制、折射率强度调制称为外调制式,光模式称为内调制式。

但是由于原理的限制,它易受光源波动和连接器损耗变化等的影响,因此这种传感器只能用于干扰源较小的场合。

2)相位调制型光纤传感器基本原理是:在被测能量场的作用下,光纤内的光波的相位发生变化,再用干涉测量技术将相位的变化转换成光强的变化,从而检测到待测的物理量。

相位调制型光纤传感器的优点是具有极高的灵敏度,动态测量范围大,同时响应速度也快,其缺点是对光源要求比较高同时对检测系统的精密度要求也比较高,因此成本相应较高。

目前主要的应用领域为:利用光弹效应的声、压力或振动传感器;利用磁致伸缩效应的电流、磁场传感器;利用电致伸缩的电场、电压传感器;利用赛格纳克效应的旋转角速度传感器(光纤陀螺)等。

3)频率调制型光纤传感器基本原理是利用运动物体反射或散射光的多普勒频移效应来检测其运动速度,即光频率与光接收器和光源间运动状态有关。

光纤传感器的基本原理

光纤传感器的基本原理
• 功能型光纤传感器是利用光纤本身的特 性把光纤作为敏感元件,所以也称传感 型光纤传感器,或全光纤传感器。
• 非功能型光纤传感器是利用其它敏感元 件感受被测量的变化,光纤仅作为传输 介质,传输来自远处或难以接近场所的 光信号.所以也称为传光型传感器.或 混合型传感器。
光纤传感器的基本原理
在光纤中传输的光波可用如下形式的方程描述:
采用双透镜系统使入射 光纤在出射光纤上聚焦, 遮光屏在垂直于两透镜 之间的光传播方向上下 移动。这种传感器光耦 合计算方法与反射式传 感器是一样的。在上述 的简化分析限定范围内, 比值δ/r与可移动遮光屏 及两透镜问半径为r的光 柱相交叠面积的百分比α。
光纤传感器的基本原理
不用透镜的两光 纤直接耦合系统, 结构虽然简单, 但也能很好地工 作。只是接收光 纤端面只占发射 光纤发出的光锥 底面的一部分, 使光耦合系数减 小,灵敏度也降 低一个数量级
第五章 光纤传感器基本原理步形成的。
光纤传感器与传统的各类传感器相比有一系列
独特的优点,如灵敏度高,抗电磁干扰、耐腐 蚀、电绝缘性好,防爆,光路有可挠曲性,便 于与计算机联接,结构简单,体积小,重量轻, 耗电少等。
光纤传感器的基本原理
• 光纤传感器按传感原理可分为功能型和 非功能型。
光纤传感器的基本原理
二、渐逝波耦合型 通常.渐逝波在光疏媒质中深人距离有几
个波长时.能量就可以忽略不计了。如 果采用一种办法使惭逝场能以较大的振 幅穿过光疏媒质,并伸展到附近的折射 率高的光密媒质材料中,能量就能穿过 间隙,这一过程称为受抑全反射。
光纤传感器的基本原理
L表示一对单模或多模光纤的相互作用长度,d表示纤芯之间的 距离。光纤包层被减薄或完全剥去,足以产生渐逝场耦合。 d、L或n2稍有变化,光探测器的接收光强就有明显变化、从而 实现光强调制、这一原理已应用于水听器。

光纤传感器基本原理

光纤传感器基本原理

光纤传感器基本原理
光纤传感器基本原理是利用光纤的特殊性质,将光信号转换为电信号。

在光纤传感器中,光源发出的光经过光纤传播,在光纤的某一点与外界的物理量进行相互作用后,光信号发生变化。

传感器的探测部分是光纤的一段,在传感区域内,光信号的幅度、相位、频率等参数会随着被测量的物理量发生变化。

光纤传感器的工作原理基于光的干涉、散射、吸收等现象。

其中,基于光纤干涉原理的传感器是最常见的类型。

这类光纤传感器一般采用法布里-珀罗特(F-P)干涉仪的结构。

当光纤中
的光信号遇到传感器传感区域的物理量变化时,传感区域的折射率发生改变,导致传感区中的干涉光程差发生变化。

这一变化会通过反射回到光纤,进而对干涉光信号产生影响。

通过测量干涉光信号的变化,可以推断出传感区域中物理量的变化情况。

除了光纤干涉原理外,还有其他一些基于光纤散射和吸收的传感器原理。

光纤散射传感器是利用光在光纤中发生散射的特性,通过测量光的散射强度或相位变化来得到物理量的信息。

光纤吸收传感器则是利用光在光纤中被介质吸收的特性,通过测量吸收光信号的强度变化来推断物理量的变化。

光纤传感器具有体积小、响应速度快、抗电磁干扰强等优点,广泛应用于温度、压力、拉力、位移等物理量的测量领域。

随着技术的不断进步,光纤传感器的精度和可靠性也在不断提高,为工业自动化、医疗、环境监测等领域的应用提供了可靠的检测手段。

光纤传感器的基本原理及在医学上的应用

光纤传感器的基本原理及在医学上的应用

2008年9月中国医学物理学杂志Sep .,2008第25卷第5期ChineseJournalofMedicalPhysicsVol.25.No.5光纤传感器的基本原理及在医学上的应用孙素梅1,陈洪耀2,3,尹国盛2(1.漯河医学高等专科学校,河南漯河462000;2.河南大学物理与电子学院,河南开封475004;3.中国科学院安徽光学精密机械研究所,安徽合肥230031)摘要:目的:本文的目的简要介绍光纤传感器的基本原理和简单分类,重点阐述传光型光纤传感器在医学的压力、流速、pH值等五方面的应用。

方法:光纤传感器基本原理是将光源发出的光经光纤送入调制区,在调制区内,外界被测参数与进入调制区的光相互作用,使光的强度、频率、相位、偏振等发生变化成为被调制的信号光,再经光纤送入光探测器、解调器而获得被测物理量。

光纤传感器按其传感原理可分为两大类:一类是传光型传感器,另一类是传感型传感器。

结果:目前在医学上应用的主要是传光型光纤传感器。

光纤传感器主要优点:小巧、绝缘、不受射频和微波干扰、测量精度高。

医疗上的图象传输是传输型光纤传感器应用中很有特色的一部分。

只需将许多光纤组成光纤束,就可以做成能有效地使图象空间量子化的传感器。

自从光导纤维引入到内窥镜以后,扩大了内窥镜的应用范围。

光导纤维柔软、自由度大、传输图象失真小、直径细等优点使得各种内窥镜检查人体的各个部位几乎都是可行的,且操作中不会引起病人的痛苦与不适。

其中光纤血管镜已应用于人类的心导管检查中。

在进行激光血管成形术时,血管镜可提供很多重要的信息,用以引导激光辐射的方向,选择激光的能量和持续时间,并可了解在成形术后的治疗效果。

光纤内窥镜不仅用于诊断,也正进入治疗领域中,例如用于做息肉切除手术等。

微波加温治疗技术是当前治疗癌症的有效途径,但微波加温治疗癌症技术的温度难以控制,而光纤温度传感器恰可以对微波加温治疗癌症的有效温度进行监测,从而使温度不致于过高杀死人体的正常细胞,也不会过低达不到治疗目的,使癌细胞进一步扩散。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.光纤多普勒系统的局限性 光纤多普勒系统的主要局限性是检测媒质的穿透范围小, 原因是发射光纤端面和入射进光纤的数值孔径太小,可用下 图的透镜系统可解决这一问题。
2n时,干涉光强有最大值 I0
1 R 2 两者之比为 ( ) 1 R
(2n 1)时,干涉光强有最小值 (
1 R 2 ) I0 1 R
▲法布里-珀罗光纤干涉仪:
四、频率调制机理
它主要是利用运动物体反射或散射光的多普勒频移 效应来检测其运动速度。 多普勒效应是指当光源和观察者作相对运动时,观 察者按收到的光频率和光源发射的频率不同的现象。
v f 2 f [1 (cos1 cos 2 )] c
1.光纤多普勒技术 激光通过偏振分束器和输入光学装置射入多模光纤,光 纤的另一端插入流体中以便测量流体或其中粒子运动速度。 光在流体中散射,其中一部分散射光被光纤收集,沿光纤返 回。散射光是随机偏振光,因此返回光有一部分被偏振分束 器反射到光探测器。
2.光纤干涉仪 —敏感光纤完成相位调制任务,干涉仪完成相 位—光强的转换任务。
设有光振幅分别为A1和A2的两个相干光束。 如果其中一束光的相位由于某种因素的影响受到 调制,则在干涉域中产生干涉。干涉场中各点的 光强可表示为:
2 A2 A12 A2 2 A1 A2 cos( )
式中,△φ是相位调制引起的两相干光之间的相位差。
(1)迈克尔逊(Michlson)光纤干涉仪
2k 0 l 两相干光的相位差为:
当可移动反射镜每移动△l=λ/2长度,光探测器 的输出就从最大值变到最小值,再变到最大值,变化 一个周期。
▲迈克尔逊全光纤干涉仪的结构:
(2)马赫-泽德(Mach-Zehnder)光纤干涉 仪
与迈克尔逊干涉仪之区别: 1.它没有光返回到激光器,利于激光器减少不稳定噪声; 2.从分束器上也可以获得两束光,一为参考光的反射,一 为信号光的透射,若需要,可利用这两束光获得第二个输出 信号。
1.相位调制 相位调制是通过干涉仪进行的,在光纤干涉仪中,以 敏感光纤作为相位调制元件。敏感光纤置于被测能量场中, 由于被测场与敏感光纤的相互作用,导致光纤中光相位的 调制。 (1)应力应变效应 光波通过长度为L的光纤后,出射光波的相位延迟为

2
光波在外界因素的作用下,相位的变化可以写成如下形式 L L L L L n L a L n a
8A 0 c
▲光纤陀螺仪的结构:
8NA 其相移表达式为:
0 c
(4)法布里-珀罗(Febry-Perot)光纤干涉仪
这种干涉仪与前几种干涉仪的根本区别是,前几种千涉仪都是双光束 干涉,而法布里一琅罗干涉仪是多光束干涉。根据多光束干涉的原理,探 测器上探测到的干涉光强的变化为 4R I I 0 /[1 sin( )] 2 2 (1 R)
设光源和观察者处于同一位置。如果频率为f的光照射 在相对光速度为v的运动物体上,那么观察者接收的运动物 体反射光频率f1为 1/ 2
v2 v f1 f [1 ( ) cos ] 1 c 2 c v f [1 ( ) cos ] c
式中,θ是光源至观察着方向与运动方向的夹角。
▲马赫-泽德全光纤干涉仪的基本结构:
保证全光纤干涉仪的工作点稳定是比较困难的。在 零差检测方式中,需要保证两光纤臂间的正交状态。所 谓“正交状态”,是指于涉仪的两臂光波间的相对相位 为90o。正交检测方式的优点是探测相位灵敏度最高。
(3)赛格纳克(Sagnac)光纤干涉仪
当把这种干涉仪装在一个 可绕垂直于光束平面轴旋转的 平台上,且平台以角速度Ω转 动时,根据赛格纳克效应,两 束传播方向相反的光束到达光 探测器的延迟不同。若平台以 顺时针方向旋转,则在顺时针 方向传播的光较逆时针方向传 播的光延迟。这个相位延迟量 可表示为
式中,a为光纤芯的半径; 第一项表示由光纤长度变化引起的相位延迟(应变效应); 第二项表示感应折射率变化引起的相位延迟(光隙效应); 第三项表示光纤的半径改变所产生的相位延迟(泊松效应)。

L L
纵向应变引起的相位变化 径向应变引起的相位变化 光弹效应引起的相位变化 一般形式的相位变化
实现纵向、径向应变最简便的方法是采用一个空心的 压电陶瓷圆柱筒(PZT),在这个圆柱筒上缠绕一圈或多圈 光纤,并在其径向或轴向施加驱动信号,由于PZT筒的直 径随驱动信号变化,故缠绕在其上的光纤也随之伸缩。光 纤承受到应力,光波相位随之变化。
(2)温度应变效应 若光纤放置在变化的温度场中,并把温度场变化等效 为作用力F时,那么作用力F将第一项表示折射率变化引起的相位变化;第二项 表示光纤几何长度变化引起的相位变化,式中没有考虑光 纤直径变化对相位变化的影响。若上式用温度变化△T和相 位变化描述,则有
当光源和观察者处于相对静止的二个位置时,可 当作双重多普勒效应来考虑。先考虑从光源到运动体, 再考虑从运动体到观察者。
v 在P点, f1 f [1 ( ) cos 1 ] c
v 在Q处, f 2 f1 [1 ( ) cos 2 ] c
根据上述两式,并考虑v<<c,可近似把双重 多普勒频率方程表示为
第八章、光纤传感器基本原理
三、相位调制机理
相位调制光纤传感器的基本传感原理:通过被测能 量场的作用,使光纤内传播的光波相位发生变化,再用 干涉测量技术把相位变化转换为光强变化,从而检测出 待恻的物理量。 光纤中光的相位由光纤波导的物理长波、折射率及 其分布、波导横向几何尺寸所决定,可以表示为k0nL, 其中k0为光在真空中的波数,n为传播路径上的折射率, L为传播路径的长度。一般说,应力、应变、温度等外界 物理量能直接改变上述三个波导参数,产生相位变化, 实现光纤的相位调制。
相关文档
最新文档