化工原理干燥器34页PPT
合集下载
固体物料的干燥PPT(化工原理)
新型的干燥技术如微波干燥、真空冷冻干燥等正在逐步推广应用,这些技术具有节能、高效、环保等优点,为未来的干燥技 术发展提供了新的方向。
03 干燥过程分析
干燥过程的物理变化
01
02
03
去除水分
通过蒸发或升华的方式, 将固体物料中的水分去除, 使其达到所需的干燥程度。
形态变化
随着水分的去除,固体物 料的形态会发生变化,如 从湿润状态变为干燥状态。
在真空环境中,利用低温或高温使物 料中的水分蒸发,适用于易氧化、易 分解或热敏性物料的干燥。
06
其他干燥方法
如微波干燥、冷冻干燥等。
干燥的物理化学基础
湿分的概念
湿分是指物料中所含的水分或其他溶剂,是影响干燥过程的重要因素。湿分的性质、含量和状态对干燥速率、产品质 量和能耗等都有重要影响。
湿分蒸发的原理
通过干燥可以去除物料 中的水分或其他溶剂, 获得一定组成的干制品 。
干燥后的物料体积缩小 ,重量减轻,便于运输 和贮存。
干燥可以改善物料的外 形、色泽和口感,提高 产品质量。
在许多加工过程中,如 造纸、纺织、陶瓷等, 干燥是必不可少的工艺 环节。
干燥的原理和分类
干燥原理
干燥是利用热能将物料中水分或其他溶剂蒸发 掉的过程。根据传热方式和传质推动力的不同,
其他领域的干燥应用
污泥的干燥
污泥在处理过程中需要经过干燥 处理,以降低水分含量,便于后 续的处理和利用。
废水的蒸发
废水在处理过程中需要通过蒸发 工艺,将水分从废水中分离出来 ,实现废水的净化。
05 干燥的优缺点分析
干燥的优点
高效节能
通过去除物料中的水分,提高 其含水率,使其达到所需的干 燥程度,从而减少能源消耗。
03 干燥过程分析
干燥过程的物理变化
01
02
03
去除水分
通过蒸发或升华的方式, 将固体物料中的水分去除, 使其达到所需的干燥程度。
形态变化
随着水分的去除,固体物 料的形态会发生变化,如 从湿润状态变为干燥状态。
在真空环境中,利用低温或高温使物 料中的水分蒸发,适用于易氧化、易 分解或热敏性物料的干燥。
06
其他干燥方法
如微波干燥、冷冻干燥等。
干燥的物理化学基础
湿分的概念
湿分是指物料中所含的水分或其他溶剂,是影响干燥过程的重要因素。湿分的性质、含量和状态对干燥速率、产品质 量和能耗等都有重要影响。
湿分蒸发的原理
通过干燥可以去除物料 中的水分或其他溶剂, 获得一定组成的干制品 。
干燥后的物料体积缩小 ,重量减轻,便于运输 和贮存。
干燥可以改善物料的外 形、色泽和口感,提高 产品质量。
在许多加工过程中,如 造纸、纺织、陶瓷等, 干燥是必不可少的工艺 环节。
干燥的原理和分类
干燥原理
干燥是利用热能将物料中水分或其他溶剂蒸发 掉的过程。根据传热方式和传质推动力的不同,
其他领域的干燥应用
污泥的干燥
污泥在处理过程中需要经过干燥 处理,以降低水分含量,便于后 续的处理和利用。
废水的蒸发
废水在处理过程中需要通过蒸发 工艺,将水分从废水中分离出来 ,实现废水的净化。
05 干燥的优缺点分析
干燥的优点
高效节能
通过去除物料中的水分,提高 其含水率,使其达到所需的干 燥程度,从而减少能源消耗。
化工原理 PPT 第5章 干燥
式中:
k H rt w
( H s ,t w H )
:空气向湿棉布的对流传热系数,W/(m2 •℃);
k H :以湿度差为推动力的传质系数,kg/(m2 •s•H);
rtw
H
:湿球温度下水的汽化潜热,kJ/kg水;
H s ,tw:湿球温度tw下空气的饱和湿度,kg水/kg绝干气;
:空气的湿度, kg水/kg绝干气。
30
(2)湿空气状态点的确定
31
(3)简单分析:
a.当H、p一定时, 。 t
因此,提高湿空气温度 t,不仅提高了湿 空气的焓值,使其作为载热体外,也降低了相
对湿度使其作为载湿体。
pv b.因pv py、ps f t 及 100% pS 故t一定时,p ,故加压对干燥不利。
H f ( p,pV )
当p为一定值时,
H f ( pV )
当空气达到饱和时,相应的湿度称为饱和湿度 Hs,此时湿空气中的水汽分压等于该空气温度下纯 水的饱和蒸气压 ps。
0.622pS HS p-pS
即:
H S f (t,p)
10
2.相对湿度百分数(简称相对湿度) 定义:在一定总压下,湿空气中水汽分压pV与同
20
影响湿球温度tw的三方面因素: ①物系性质:与α 、 kH有关的物性; ②空气状态:t、H; ③流动条件: α/kH 。 实验表明,α与 kH都与空气速度的 0.8次幂成正比,故α与kH之比值与流速 无关,只与物性有关。当物系已确定, 则物系性质就不再改变,此时,湿球温 度只与气相状态有关,即:
tas :是由热量衡算与物料衡算导出的,属于静平衡。
• tw与tas 数值上的差异取决于α/kH与cH两者之间的差别。 (1)空气—水蒸气体系, c H ,r0 rt 得 t w t as w kH (2)空气—甲苯体系, k 1.8c H ,tw tas
k H rt w
( H s ,t w H )
:空气向湿棉布的对流传热系数,W/(m2 •℃);
k H :以湿度差为推动力的传质系数,kg/(m2 •s•H);
rtw
H
:湿球温度下水的汽化潜热,kJ/kg水;
H s ,tw:湿球温度tw下空气的饱和湿度,kg水/kg绝干气;
:空气的湿度, kg水/kg绝干气。
30
(2)湿空气状态点的确定
31
(3)简单分析:
a.当H、p一定时, 。 t
因此,提高湿空气温度 t,不仅提高了湿 空气的焓值,使其作为载热体外,也降低了相
对湿度使其作为载湿体。
pv b.因pv py、ps f t 及 100% pS 故t一定时,p ,故加压对干燥不利。
H f ( p,pV )
当p为一定值时,
H f ( pV )
当空气达到饱和时,相应的湿度称为饱和湿度 Hs,此时湿空气中的水汽分压等于该空气温度下纯 水的饱和蒸气压 ps。
0.622pS HS p-pS
即:
H S f (t,p)
10
2.相对湿度百分数(简称相对湿度) 定义:在一定总压下,湿空气中水汽分压pV与同
20
影响湿球温度tw的三方面因素: ①物系性质:与α 、 kH有关的物性; ②空气状态:t、H; ③流动条件: α/kH 。 实验表明,α与 kH都与空气速度的 0.8次幂成正比,故α与kH之比值与流速 无关,只与物性有关。当物系已确定, 则物系性质就不再改变,此时,湿球温 度只与气相状态有关,即:
tas :是由热量衡算与物料衡算导出的,属于静平衡。
• tw与tas 数值上的差异取决于α/kH与cH两者之间的差别。 (1)空气—水蒸气体系, c H ,r0 rt 得 t w t as w kH (2)空气—甲苯体系, k 1.8c H ,tw tas
化工原理干燥精品PPT课件
(2)湿度 ---又称湿含量,单位kg水/kg干空气
水汽的质量 H 绝干空气的质量
水汽的摩尔数 绝干空气的摩尔数
Mv Ma
pw P pw
18 29
思考1:H属于前面介绍的哪一类浓度?
质量比
思考2:取1kg干空气作为湿度定义基准又何好处?
干燥过程中干空气的质量不变
《化工原理》电子教案/第十三章
5/101
t
空气
t, H
t, H
《化工原理》电子教案/第十三章
10/101
一.湿空气的性质
6、湿球温度 tw
----用湿球温度计测出的空气温度
❖大量、快速流动的空气(空气的 流速应大于5m/s)与少量水接触;
湿球温度计
❖传质----因存在传质推动力,湿纱布
中的水汽化进入空气,此过程需要吸 热(水提供),因此水温下降;
V T P0 V0标态 T0 P
V T 1.013105
n 22.4 273
P 7/101
《化工原理》电子教案/第十三章
一.湿空气的性质
3.湿比热容cH ----kJ/(kg干气K) 此时,湿空气的质量=(1+H)kg
比热容的一般定义: kJ/(kgK)
cH ca cw H 1.01 1.88H
ca干空气的比热,kJ/(kg·K) 1.01kJ/(kg·K) cw水气的比热,kJ/(kg·K) 1.88kJ/(kg·K)
《化工原理》电子教案/第十三章
8/101
一.湿空气的性质
4.湿空气的焓I ----kJ/ kg干气
此时,湿空气的质量=(1+H)kg
I Ia IwH
ca cw H t r0 H
干燥基础知识ppt课件-PPT课件
《化工原理》 Principles of Chemical Engineering
第十二章 干 燥
Chapter 12 Drying
概述(Introduction)
在化学工业生产中所得到的固态产品或半成品往往含有过 多的水分或有机溶剂 (湿份),要制得合格的产品需要除去 固体物料中多余的湿份。
除湿方法:机械除湿——如离心分离、沉降、过滤。 干燥 ——利用热能使湿物料中的湿份汽化。除 湿程度高,但能耗大。 惯用做法:先采用机械方法把固体所含的绝大部分湿份除 去,然后再通过加热把机械方法无法脱除的湿份干燥掉, 以降低除湿的成本。
3.比热cH (Humid heat)或比热容KJ/(kg· ℃) 比热:1kg 绝干空气及相应水汽温度升高1℃所需要的热量
c c 1 c H H g v
式中:cg — 绝干空气的比热,KJ/(kg· ℃); cv — 水汽的比热,KJ/(kg· ℃) 。
对于空气-水系统: cg=1.01 kJ/(kg· ℃),cv=1.88 kJ/(kg· ℃)
干燥过程基本问题
除水分量 空气消耗量 干燥产品量 热量消耗 干燥时间 能量衡算 涉及干燥速率和水在 气固相的平衡关系 物料衡算 涉及湿空气的性质
解决这些问题需要掌握的基本知识有: (1) 湿分在气固两相间的传递规律; (2) 湿气体的性质及在干燥过程中的状态变化; (3) 物料的含水类型及在干燥过程中的一般特征; (4) 干燥过程中物料衡算关系、热量衡算关系和速率关系。 本章主要介绍运用上述基本知识解决工程中物料干燥的基 本问题,介绍的范围主要针对连续稳态的干燥过程。
由于温差的存在,气体以对流方 式向固体物料传热,使湿份汽化; 在分压差的作用下,湿份由物料 表面向气流主体扩散,并被气流 带走。 干燥是热、质同时传递的过程 干燥介质:用来传递热量(载热 体)和湿份(载湿体)的介质。
第十二章 干 燥
Chapter 12 Drying
概述(Introduction)
在化学工业生产中所得到的固态产品或半成品往往含有过 多的水分或有机溶剂 (湿份),要制得合格的产品需要除去 固体物料中多余的湿份。
除湿方法:机械除湿——如离心分离、沉降、过滤。 干燥 ——利用热能使湿物料中的湿份汽化。除 湿程度高,但能耗大。 惯用做法:先采用机械方法把固体所含的绝大部分湿份除 去,然后再通过加热把机械方法无法脱除的湿份干燥掉, 以降低除湿的成本。
3.比热cH (Humid heat)或比热容KJ/(kg· ℃) 比热:1kg 绝干空气及相应水汽温度升高1℃所需要的热量
c c 1 c H H g v
式中:cg — 绝干空气的比热,KJ/(kg· ℃); cv — 水汽的比热,KJ/(kg· ℃) 。
对于空气-水系统: cg=1.01 kJ/(kg· ℃),cv=1.88 kJ/(kg· ℃)
干燥过程基本问题
除水分量 空气消耗量 干燥产品量 热量消耗 干燥时间 能量衡算 涉及干燥速率和水在 气固相的平衡关系 物料衡算 涉及湿空气的性质
解决这些问题需要掌握的基本知识有: (1) 湿分在气固两相间的传递规律; (2) 湿气体的性质及在干燥过程中的状态变化; (3) 物料的含水类型及在干燥过程中的一般特征; (4) 干燥过程中物料衡算关系、热量衡算关系和速率关系。 本章主要介绍运用上述基本知识解决工程中物料干燥的基 本问题,介绍的范围主要针对连续稳态的干燥过程。
由于温差的存在,气体以对流方 式向固体物料传热,使湿份汽化; 在分压差的作用下,湿份由物料 表面向气流主体扩散,并被气流 带走。 干燥是热、质同时传递的过程 干燥介质:用来传递热量(载热 体)和湿份(载湿体)的介质。
化工原理课件4--干燥
华东交大化工原理电子课件
第七章 干燥
(Drying)
第七章 干 燥
华东交大化工原理电子课件
第一节 概述 第二节 湿空气的性质与湿度图 第三节 干燥过程的物料衡算与热量衡算 第四节 干燥速率与干燥时间 第五节 干燥器
第七章 干 燥
华东交大化工原理电子课件
第一节 概述
去湿——在化学工业中,有些固体原料、半成 品和成品中含有水分和或其它溶剂(统称为湿 分)需要除去。
第七章 干 燥
华东交大化工原理电子课件
四、对流干燥过程
本章主要讨论对流干燥,干燥介质是热空气,
除去的湿分是水分。
1、对流干燥的流程
预热器 空气 干燥产品 湿物料 干燥器 废气
第七章 干 燥
华东交大化工原理电子课件
2、对流干燥的特点
对流干燥是传热、传质同时进行的过程,但传递方向 不同,是热、质反向传递过程: 方向 推动力 传热 气 温度差
pw
第七章 干 燥
华东交大化工原理电子课件 经过以上分析可知,在空气绝热增湿过程中,空气失去 的显热与汽化水分带来的潜热相等,空气的温度和湿度虽随 过程的进行而变化,但其焓值不变。 进入饱和器的湿空气(t,H)焓=离开饱和器的湿空气焓(tas,Has) cHa s (t tas ) Hras cHa s (tas tas ) Has ras
第七章 干 燥
华东交大化工原理电子课件
4、湿空气的温度
(1)、露点 td
定义:一定压力下,将不饱和空气等湿降温至 饱和,出现第一滴露珠时的温度。 湿度H与露点 td 的关系:
H 0.622
pd P pd
Pd—td下的饱和蒸汽压。
第七章 干 燥
第七章 干燥
(Drying)
第七章 干 燥
华东交大化工原理电子课件
第一节 概述 第二节 湿空气的性质与湿度图 第三节 干燥过程的物料衡算与热量衡算 第四节 干燥速率与干燥时间 第五节 干燥器
第七章 干 燥
华东交大化工原理电子课件
第一节 概述
去湿——在化学工业中,有些固体原料、半成 品和成品中含有水分和或其它溶剂(统称为湿 分)需要除去。
第七章 干 燥
华东交大化工原理电子课件
四、对流干燥过程
本章主要讨论对流干燥,干燥介质是热空气,
除去的湿分是水分。
1、对流干燥的流程
预热器 空气 干燥产品 湿物料 干燥器 废气
第七章 干 燥
华东交大化工原理电子课件
2、对流干燥的特点
对流干燥是传热、传质同时进行的过程,但传递方向 不同,是热、质反向传递过程: 方向 推动力 传热 气 温度差
pw
第七章 干 燥
华东交大化工原理电子课件 经过以上分析可知,在空气绝热增湿过程中,空气失去 的显热与汽化水分带来的潜热相等,空气的温度和湿度虽随 过程的进行而变化,但其焓值不变。 进入饱和器的湿空气(t,H)焓=离开饱和器的湿空气焓(tas,Has) cHa s (t tas ) Hras cHa s (tas tas ) Has ras
第七章 干 燥
华东交大化工原理电子课件
4、湿空气的温度
(1)、露点 td
定义:一定压力下,将不饱和空气等湿降温至 饱和,出现第一滴露珠时的温度。 湿度H与露点 td 的关系:
H 0.622
pd P pd
Pd—td下的饱和蒸汽压。
第七章 干 燥
化工原理-干燥ppt课件
V nRT P
V T P0 V0 P T0
V T P0 n22.4 273 P
干燥
湿空气的性质*
3.比热容(湿比热)cH
比热容是指常压下,含1kg绝干气的湿空气之温度升高(或降低)1℃所吸 收(或放出)的热量,cH。
cHcgcvH
1.011.88H
[kJ/(kg干气℃)]
cHf H
cg干空气的比热,kJ/(kg·℃) 1.01kJ/(kg·℃)
将湿球温度计置于温度为t、湿度为H的流
动不饱和空气中,湿纱布中的水分汽化,并向 空气主流中扩散;同时汽化吸热使湿纱布中的 水温下降,与空气间出现温差,引起空气向水 分传热。
湿球温度tw:当空气传给水分的显热恰好等 于水分汽化所需的潜热时,空气与湿纱布间的 热质传递达到平衡,湿球温度计上的温度维持 恒定。此时湿球温度计所测得的温度称为湿空 气的湿球温度。
一干燥器的主要型式677喷雾干燥器一干燥器的主要型式喷雾器结构68一干燥器的主要型式8滚筒干燥器双滚筒干燥器69一干燥器的主要型式真空耙式干燥器冷冻干燥器7055干燥器二干燥器的选型主要干燥器的选择表湿物料的状态物料的实例处理量适用的干燥器液体或泥浆状洗涤剂树脂溶液盐溶液牛奶等大批量喷雾干煤器小批量滚筒干燥器泥糊状染料颜料硅胶淀粉粘土碳酸钙等的滤饼或沉大批量气流干燥器带式干燥器小批量真空转筒干燥器粉粒状00120m聚氯乙烯等合成树脂合成肥料磷肥活性炭石膏钛铁矿谷物大批量气流干燥器转筒干燥器流化床干燥器小批量转筒干燥器厢式干燥器块状20100m煤焦碳矿石等大批量转筒干燥器小批量厢式干燥器片状烟叶薯片大批量带式干燥器转筒干燥器小批量穿流厢式干燥器小批量高频干燥器短纤维酯酸纤维硝酸纤维大批量带式干燥器小批量穿流厢式干燥器一定大小的物料或制品陶瓷器胶合板皮革等大批量隧道干燥器71对流传导辐射气流喷雾流化床干燥实验干燥曲线x干燥章小结湿空气性质及湿焓图性质湿度h0622干球温度t湿球温度t10118810118824902490188干燥过程物料的平衡关系与速率关系结合水分与非结合水分平衡水分x与自由水分恒定干燥条件下的干燥速率恒定干燥条件下的干燥时间等i过程干燥速率udwgdxsdsd干燥速率曲线ux临界含水量x干燥方法干燥器对流式
固体物料的干燥PPT(化工原理)
应用实例
介绍固体物料干燥技术在化工、食品、制药等领域的 应用实例,如活性炭的制备、食品添加剂的干燥等, 说明干燥技术在工业生产中的重要性和实际应用价值 。
05
固体物料的干燥工业应用 与发展趋势
固体物料的干燥在各行业的应用现状
农业
谷物、种子、果蔬等农 产品的干燥,确保食品
质量和延长保质期。
制药
中药材、原料药、药片 的干燥,确保药品质量
发展多种形式的干燥技术,满 足不同物料和工艺的干燥需求
。
环保要求
严格控制干燥过程中的环境污 染,实现绿色生产。
未来干燥技术的研究方向与展望
新材料在干燥技术中的应用
热泵干燥技术的研究
探索新型材料在干燥过程中的作用和应用 前景。
研究热泵干燥技术的原理和应用,提高能 源利用效率。
微波与远红外干燥技术的研究
02
干燥技术与方法
自然晾干
优点
简单易行,成本低,不需特殊设备。
缺点
干燥时间长,受天气和环境影响较大,不适用于大量物料的干燥。
热风干燥
优点
干燥效率高,适用于大量物料的干燥。
缺点
能源消耗较大,干燥过程中可能会对物料产生一定的热损伤。
红外线干燥
优点
干燥效率高,对物料损伤小,适用于敏感物料的干燥。
缺点
实验步骤
准备实验器材和物料、搭建实验装置、测量湿空气参数、 开始干燥实验、记录数据、结束实验、清理现场。
要点二
实验操作
将待干燥物料置于干燥器内,加热空气至一定温度和湿度 ,通过湿空气与物料的热湿交换,使物料中的水分蒸发并 随空气排出。操作过程中需注意控制干燥温度、湿度和空 气流量等参数。
实验结果与数据分析
化工原理模块5干燥.ppt
相对湿度 :在总压和温度一定时,湿空气中水汽的分压 p 与系统温
度下水的饱和蒸汽压 ps 之比的百分数。
p 100 %
ps
值说明湿空气偏离饱和空气或绝干空气的程度, 值越小吸湿能力
越大;
= 0 ,p=0时,表示湿空气中不含水分,为绝干空气。 = 1 ,p=ps时,表示湿空气被水汽所饱和,不能再吸湿。
——湿度性质(湿度H,相对湿度φ,绝对湿度百分数)
空气是气体,应适用于气体状态方程,即温度、压力、体积。所以要 研究,
——温度性质(干球温度t、湿球温度tw、绝热饱和湿度tas、露点td) ——容积性质(湿容积、饱和湿容积)。由于大气压力,对一定地区, 约为定值,所以不研究压力性质。
要研究空气对湿物料的传热,所以要研究,
对于空气-水系统: H 0.622 ps P ps
➢ 若 t < 总压下湿空气的沸点,0 100%; ➢ 若 t >总压下湿空气的沸点,湿份 ps> P,最大 (空气全为水汽)
< 100%。故工业上常用过热蒸汽做干燥介质;
➢ 若 t > 湿份的临界温度,气体中的湿份已是真实气体,此时 =0,
干燥是热、质同时传递的过程
干燥介质:用来传递热量(载热体)和 湿份(载湿体)的介质。
H
t
ti
q
pi
W
M
p
注意:只要物料表面的湿份分压高于气体中湿份分压,干燥即可进 行,与气体的温度无关。气体预热并不是干燥的充要条件,其目的 在于加快湿份汽化和物料干燥的速度,达到一定的生产能力。
空气
预热器
干燥产品
干燥器
惯用做法:先采用机械方法把固体所含的绝大部分湿份除去,然 后再通过加热把机械方法无法脱除的湿份干燥掉,以降低除湿的 成本。
度下水的饱和蒸汽压 ps 之比的百分数。
p 100 %
ps
值说明湿空气偏离饱和空气或绝干空气的程度, 值越小吸湿能力
越大;
= 0 ,p=0时,表示湿空气中不含水分,为绝干空气。 = 1 ,p=ps时,表示湿空气被水汽所饱和,不能再吸湿。
——湿度性质(湿度H,相对湿度φ,绝对湿度百分数)
空气是气体,应适用于气体状态方程,即温度、压力、体积。所以要 研究,
——温度性质(干球温度t、湿球温度tw、绝热饱和湿度tas、露点td) ——容积性质(湿容积、饱和湿容积)。由于大气压力,对一定地区, 约为定值,所以不研究压力性质。
要研究空气对湿物料的传热,所以要研究,
对于空气-水系统: H 0.622 ps P ps
➢ 若 t < 总压下湿空气的沸点,0 100%; ➢ 若 t >总压下湿空气的沸点,湿份 ps> P,最大 (空气全为水汽)
< 100%。故工业上常用过热蒸汽做干燥介质;
➢ 若 t > 湿份的临界温度,气体中的湿份已是真实气体,此时 =0,
干燥是热、质同时传递的过程
干燥介质:用来传递热量(载热体)和 湿份(载湿体)的介质。
H
t
ti
q
pi
W
M
p
注意:只要物料表面的湿份分压高于气体中湿份分压,干燥即可进 行,与气体的温度无关。气体预热并不是干燥的充要条件,其目的 在于加快湿份汽化和物料干燥的速度,达到一定的生产能力。
空气
预热器
干燥产品
干燥器
惯用做法:先采用机械方法把固体所含的绝大部分湿份除去,然 后再通过加热把机械方法无法脱除的湿份干燥掉,以降低除湿的 成本。
化工原理干燥.课件
化学工程系
➢平衡水分与自由水分 (按水分能否用干燥 方法除去的原则 )
平衡水分:干燥推动力 ∆p=p-pi=0时,物料中 存在的水分。在一定空气状态(t,φ)下, 平衡水分是湿物料干燥的极限。 自由水分:总水分-平衡水分
化学工程系
物料中所含水分的性质
对于同种物料,在一定温度下,空气的相 对湿度越大,平衡水分含量越高。
U ——干燥速率(kg/(m2·s)); W′——气化水分量(kg); S ——干燥面积(m2 ) ; τ——干燥时间(s)。
物料温度 X,kg水/kg绝干料
预 热 段
恒 速 干 燥 阶
段
tw
降速干燥阶段
降
降
速
速
第
第
一
二
阶
阶
段
段
化学工程系
U dW GcdX
Sd Sd
干燥时间
干燥曲线
化学工程系
• 对同一干燥过程,夏天的空气消耗量l 大还是冬天的消耗量l大?
化学工程系
7.3.3 干燥过程热量衡算 1.预热器的热量衡算 Qp=L(I1-I0)=L(1.01+1.88H0)(t1-t0)
L,t0,H0,I0
L,t1,H1,I1
QP
2.干燥器的热量衡算
化学工程系
LI1+GcI1′+ QD=LI2+ GcI2′+ QL L(I1-I2)+ QD= Gc(I2′-I1′)+ QL
若要得到绝干产品,只能用绝干空气作为 干燥介质。 X/kg水·(kg绝干料)-1
化学工程系
7.4.2 恒定干燥条件下的干燥速率
湿空气的状态(温度、相对湿度)不变、 空气流速不变、与物料的接触方式不变
化工原理第八章干燥
由于焓是相对值,计算焓值时必须规定基准状态 和基准温度,一般以0℃为基准,且规定在0℃时 绝干空气和液态水的焓值均为零,则
I Ig H v (c I g H v )t r c 0 H c H t r 0 H
显热项
汽化潜热项
对于空气-水系统: I(1.0 1 1.8H 8 )t24H 90
G1
W
G2中仍含少量水分-干燥产品; 注意与绝干物料G的区别。
5.2.3干燥系统的热量衡算
1、热量衡算基本方程
加入干燥系统的Q被用于: ①加热空气 ②蒸发水分 ③加热湿物料 ④热损失
2、干燥系统的热效率
说明:
* t2, H2 ;
* t2 也 不 ,一 宜 t2 般 ta 过 1s (2低 ~ 0 5)。 0 C
风风机量:V 0LH 0 vL (0.77 1.2 24 H 0)42 (27 7 t0 3)3 1 (P 0 0 1 ) 3
3.产品流量( G)2:
G c G 2 (1 w 2 ) G 1 (1 w 1 )
G2
(1 (1
w1) w2)
G1
Gc (1 w 2 )
第五章 干燥
概述
去湿定义:从物料中脱除湿分的过程称为去湿。 湿分:不一定是水分!
一、去湿方法: 1.机械法:沉降、过滤、离心分离 ——低能耗 2.化学法:使用吸附剂或干燥剂 ——成本甚高 3.干燥法: 加热→湿分汽化→蒸汽排出 ——能耗较大
注:干燥介质:是指带走湿分的外加气相
按操作压强 —
常压干燥(√)
2918
273 P
27 t3 1 .0 1 13 50 vH (0 .77 1 .2 2H 4) 4273 P
I Ig H v (c I g H v )t r c 0 H c H t r 0 H
显热项
汽化潜热项
对于空气-水系统: I(1.0 1 1.8H 8 )t24H 90
G1
W
G2中仍含少量水分-干燥产品; 注意与绝干物料G的区别。
5.2.3干燥系统的热量衡算
1、热量衡算基本方程
加入干燥系统的Q被用于: ①加热空气 ②蒸发水分 ③加热湿物料 ④热损失
2、干燥系统的热效率
说明:
* t2, H2 ;
* t2 也 不 ,一 宜 t2 般 ta 过 1s (2低 ~ 0 5)。 0 C
风风机量:V 0LH 0 vL (0.77 1.2 24 H 0)42 (27 7 t0 3)3 1 (P 0 0 1 ) 3
3.产品流量( G)2:
G c G 2 (1 w 2 ) G 1 (1 w 1 )
G2
(1 (1
w1) w2)
G1
Gc (1 w 2 )
第五章 干燥
概述
去湿定义:从物料中脱除湿分的过程称为去湿。 湿分:不一定是水分!
一、去湿方法: 1.机械法:沉降、过滤、离心分离 ——低能耗 2.化学法:使用吸附剂或干燥剂 ——成本甚高 3.干燥法: 加热→湿分汽化→蒸汽排出 ——能耗较大
注:干燥介质:是指带走湿分的外加气相
按操作压强 —
常压干燥(√)
2918
273 P
27 t3 1 .0 1 13 50 vH (0 .77 1 .2 2H 4) 4273 P
相关主题