线性代数答案(人大出版社_第四版)赵树嫄主编

合集下载

第二章-线性代数(第四版)习题答案

第二章-线性代数(第四版)习题答案
y1 2 2 1 2 1 −1 x1 −7 −4 3 2 9 y1
y2 = 3 3 y2
5 3
x2 = 6 3 x3
−7 y2 . y3 −4

y1 = −7x1 − 4x2 + 9x3 , y2 = 6x1 + 3x2 − 7x3 , y = 3x + 2x − 4x . 3 1 2 3
由数学归纳法知: Ak =
8 .设 A = 0
解: 方法一. 首先计算
1 = 0 0 λ λ3 0 λn 猜测: An = 0 0 nλn−1 λn 0
同理得 y2 = 6x1 + 3x2 − 7x3 , y3 = 3x1 + 2x2 − 4x3 .
2 . 已知两个线性变换 x1 = 2y1 + y3 , x2 = −2y1 + 3y2 + 2y3 , x = 4y + y + 5y , 3 1 2 3 y1 = −3z1 + z2 , y 2 = 2 z1 + z3 , y = −z + 3z , 3 2 3
1 0 (6) 0 0
1 3 (1) AB = BA 吗?
5. 设A=
1
2
,B=
1 1
0 2
, 问:
(2) (A + B )2 = A2 + 2AB + B 2 吗? (3) (A + B )(A − B ) = A2 − B 2 吗?
解: (1) 因为
AB = 3 4 4 6 , BA = 1 2 3 8 ,

人大版线性代数课后习题答案

人大版线性代数课后习题答案
20、证明:
(1) ;
(2) 。
证明:(1) = +
= -
= +
=2 。
(2) = +
= -
= 。
21、计算下列n阶行列式:
(1) ;
(2) ;
(3) ;
(4) ;
(5) 。
解:(1)各列都加到第一列后,再从第一列中提取 ;然后,第一行乘以-1后加到其余各行,得
=( )
=( )
= 。
(2) = · ,
0.2
0.35
0.011
0.05
0.12
0.5
试利用矩阵乘法计算:
(1)经该港口出口到3个地区的货物价值、重量、体积分别各为多少?
(2)经该港口出口的货物总价值、总重量、总体积为多少?
解:(1) =
其中第一、二、三列分别表示北美、欧洲、非洲;
第一、二、三行分别表示价值、重量、体积。
(2) =
其中第一、二、三行分别表示总价值、总重量、总体积。
14、设 为同阶矩阵,且满足 。求证: 的充分必要条件是
.
证明:先证明必要性:由于 ,故
…………(1)
如果A2=A,即
由ቤተ መጻሕፍቲ ባይዱ得B2=E
再证充分性:若B2=E,则由(1)式可知,

所以, 的充分必要条件是 。
15、设 为 阶矩阵,称 的主对角线上所有元的和为 的迹,记作 ,即 。
求证:当 均为 阶矩阵时,有
2)若detA=0,且A=O,则 =0,因而det = 0,结论成立。
3)若detA=0,且AO,此时必有det = 0。因为若det 0,则 可逆,于是在 =O两边左乘 ,得A=O,与AO矛盾。即此时结论也成立。 证毕。

线性代数第四版答案

线性代数第四版答案

线性代数第四版答案(总120页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第一章行列式1利用对角线法则计算下列三阶行列式(1)解2(4)30(1)(1)1180132(1)81(4)(1)2481644(2)解acb bac cba bbb aaa ccc3abc a3b3c3(3)解bc2ca2ab2ac2ba2cb2(a b)(b c)(c a)(4)解x(x y)y yx(x y)(x y)yx y3(x y)3x33xy(x y)y33x2y x3y3x32(x3y3)2按自然数从小到大为标准次序求下列各排列的逆序数(1)1 2 3 4解逆序数为0(2)4 1 3 2解逆序数为4 41 43 42 32(3)3 4 2 1解逆序数为5 3 2 3 1 4 2 4 1, 2 1(4)2 4 1 3解逆序数为3 2 1 4 1 4 3(5)1 3 (2n1) 2 4 (2n)解逆序数为3 2 (1个)5 2 5 4(2个)7 2 7 4 7 6(3个)(2n1)2 (2n1)4 (2n1)6 (2n1)(2n2) (n1个)(6)1 3 (2n1) (2n) (2n2) 2解逆序数为n(n1)3 2(1个)5 2 5 4 (2个)(2n1)2 (2n1)4 (2n1)6 (2n1)(2n2) (n1个)4 2(1个)6 2 6 4(2个)(2n)2 (2n)4 (2n)6 (2n)(2n2) (n1个)3写出四阶行列式中含有因子a11a23的项解含因子a11a23的项的一般形式为(1)t a11a23a3r a4s其中rs是2和4构成的排列这种排列共有两个即24和42所以含因子a11a23的项分别是(1)t a11a23a32a44(1)1a11a23a32a44a11a23a32a44(1)t a11a23a34a42(1)2a11a23a34a42a11a23a34a424计算下列各行列式(1)解(2)解(3)解(4)解abcd ab cd ad1 5证明:(1)(a b)3;证明(a b)3(2);证明(3);证明(c4c3c3c2c2c1得)(c4c3c3c2得)(4)(a b)(a c)(a d)(b c)(b d)(c d)(a b c d);证明=(a b)(a c)(a d)(b c)(b d)(c d)(a b c d)(5)x n a1x n1a n1x a n证明用数学归纳法证明当n2时命题成立假设对于(n1)阶行列式命题成立即D n1x n1a1x n2a n2x a n1则D n按第一列展开有xD n1a n x n a1x n1a n1x a n因此对于n阶行列式命题成立6设n阶行列式D det(a ij), 把D上下翻转、或逆时针旋转90、或依副对角线翻转依次得证明D3D证明因为D det(a ij)所以同理可证7计算下列各行列式(D k为k阶行列式)(1), 其中对角线上元素都是a未写出的元素都是0解(按第n行展开)a n a n2a n2(a21)(2);解将第一行乘(1)分别加到其余各行得再将各列都加到第一列上得[x(n1)a](x a)n1(3);解根据第6题结果有此行列式为范德蒙德行列式(4);解(按第1行展开)再按最后一行展开得递推公式D2n a n d n D2n2b n c n D2n2即D2n(a n d n b n c n)D2n2于是而所以(5) D det(a ij)其中a ij|i j|;解a ij|i j|(1)n1(n1)2n2(6), 其中a1a2a n0解8用克莱姆法则解下列方程组(1)解因为所以(2)解因为所以9问取何值时齐次线性方程组有非零解解系数行列式为令D0得0或1于是当0或1时该齐次线性方程组有非零解10问取何值时齐次线性方程组有非零解解系数行列式为(1)3(3)4(1)2(1)(3)(1)32(1)23令D0得02或3于是当02或3时该齐次线性方程组有非零解第二章矩阵及其运算1已知线性变换求从变量x1x2x3到变量y1y2y3的线性变换解由已知故2已知两个线性变换求从z1z2z3到x1x2x3的线性变换解由已知所以有3设求3AB2A及A T B解4计算下列乘积(1)解(2)解(132231)(10)(3)解(4)解(5)解(a11x1a12x2a13x3 a12x1a22x2a23x3 a13x1a23x2a33x3)5设问(1)AB BA吗解AB BA因为所以AB BA (2)(A B)2A22AB B2吗解 (A B)2A22AB B2因为但所以(A B)2A22AB B2(3)(A B)(A B)A2B2吗解 (A B)(A B)A2B2因为而故(A B)(A B)A2B26举反列说明下列命题是错误的(1)若A20则A0解取则A20但A0(2)若A2A则A0或A E解取则A2A但A0且A E (3)若AX AY且A0则X Y解取则AX AY且A0但X Y7设求A2A3A k 解8设求A k解首先观察用数学归纳法证明当k2时显然成立假设k时成立,则k1时,由数学归纳法原理知9设A B为n阶矩阵,且A为对称矩阵,证明B T AB也是对称矩阵证明因为A T A所以(B T AB)T B T(B T A)T B T A T B B T AB从而B T AB是对称矩阵10设A B都是n阶对称矩阵,证明AB是对称矩阵的充分必要条件是AB BA证明充分性因为A T A B T B且AB BA所以(AB)T(BA)T A T B T AB即AB是对称矩阵必要性因为A T A B T B且(AB)T AB所以AB(AB)T B T A T BA11求下列矩阵的逆矩阵(1)解 |A|1故A1存在因为故(2)解 |A|10故A1存在因为所以(3)解 |A|20故A1存在因为所以(4)(a1a2a n0)解由对角矩阵的性质知12解下列矩阵方程(1)解(2)解(3)解(4)解13利用逆矩阵解下列线性方程组(1)解方程组可表示为故从而有(2)解方程组可表示为故故有14设A k O (k为正整数)证明(E A)1E A A2A k1证明因为A k O所以E A k E又因为E A k(E A)(E A A2A k1)所以 (E A)(E A A2A k1)E由定理2推论知(E A)可逆且(E A)1E A A2A k1证明一方面有E(E A)1(E A)另一方面由A k O有E(E A)(A A2)A2A k1(A k1A k)(E A A2A k1)(E A)故 (E A)1(E A)(E A A2A k1)(E A)两端同时右乘(E A)1就有(E A)1(E A)E A A2A k115设方阵A满足A2A2E O证明A及A2E都可逆并求A1及(A2E)1证明由A2A2E O得A2A2E即A(A E)2E或由定理2推论知A可逆且由A2A2E O得A2A6E4E即(A2E)(A3E)4E或由定理2推论知(A2E)可逆且证明由A2A2E O得A2A2E两端同时取行列式得 |A2A|2即 |A||A E|2故 |A|0所以A可逆而A2E A2 |A2E||A2||A|20故A2E也可逆由A2A2E O A(A E)2EA1A(A E)2A1E又由A2A2E O(A2E)A3(A2E)4E(A2E)(A3E) 4 E所以 (A2E)1(A2E)(A3E)4(A 2 E)116设A为3阶矩阵求|(2A)15A*|解因为所以|2A1|(2)3|A1|8|A|1821617设矩阵A可逆证明其伴随阵A*也可逆且(A*)1(A1)*证明由得A*|A|A1所以当A可逆时有|A*||A|n|A1||A|n10从而A*也可逆因为A*|A|A1所以(A*)1|A|1A又所以(A*)1|A|1A|A|1|A|(A1)*(A1)*18设n阶矩阵A的伴随矩阵为A*证明(1)若|A|0则|A*|0(2)|A*||A|n1证明(1)用反证法证明假设|A*|0则有A*(A*)1E由此得A A A*(A*)1|A|E(A*)1O所以A*O这与|A*|0矛盾,故当|A|0时有|A*|0(2)由于则AA*|A|E取行列式得到|A||A*||A|n若|A|0则|A*||A|n1若|A|0由(1)知|A*|0此时命题也成立因此|A*||A|n119设AB A2B求B解由AB A2E可得(A2E)B A故20设且AB E A2B求B解由AB E A2B得(A E)B A2E即 (A E)B(A E)(A E)因为所以(A E)可逆从而21设A diag(12 1)A*BA2BA8E求B 解由A*BA2BA8E得(A*2E)BA8EB8(A*2E)1A18[A(A*2E)]18(AA*2A)18(|A|E2A)18(2E2A)14(E A)14[diag(21 2)]12diag(12 1)22已知矩阵A的伴随阵且ABA1BA13E求B解由|A*||A|38得|A|2由ABA1BA13E得AB B3AB3(A E)1A3[A(E A1)]1A23设P1AP其中求A11解由P1AP得A P P1所以A11 A=P11P1.|P|3而故24设AP P其中求(A)A8(5E6A A2)解()8(5E62)diag(1158)[diag(555)diag(6630)diag(11 25)]diag(1158)diag(1200)12diag(100)(A)P()P125设矩阵A、B及A B都可逆证明A1B1也可逆并求其逆阵证明因为A1(A B)B1B1A1A1B1而A1(A B)B1是三个可逆矩阵的乘积所以A1(A B)B1可逆即A1B1可逆(A1B1)1[A1(A B)B1]1B(A B)1A26计算解设则而所以即27取验证解而故28设求|A8|及A4解令则故29设n阶矩阵A及s阶矩阵B都可逆求 (1)解设则由此得所以(2)解设则由此得所以30求下列矩阵的逆阵(1)解设则于是(2)解设则第三章矩阵的初等变换与线性方程组1把下列矩阵化为行最简形矩阵(1)解(下一步r2(2)r1r3(3)r1 ) ~(下一步r2(1)r3(2) ) ~(下一步r3r2 )~(下一步r33 )~(下一步r23r3 )~(下一步r1(2)r2r1r3 )~(2)解(下一步r22(3)r1r3(2)r1 )~(下一步r3r2r13r2 )~(下一步r12 )~(3)解(下一步r23r1r32r1r43r1 )~(下一步r2(4)r3(3)r4(5) )~(下一步r13r2r3r2r4r2 )~(4)解(下一步r12r2r33r2r42r2 ) ~(下一步r22r1r38r1r47r1 ) ~(下一步r1r2r2(1)r4r3 )~(下一步r2r3 )~2设求A解是初等矩阵E(1 2)其逆矩阵就是其本身是初等矩阵E(1 2(1))其逆矩阵是E(1 2(1))3试利用矩阵的初等变换求下列方阵的逆矩阵(1)解~~~~故逆矩阵为 (2)解~~~~~故逆矩阵为4 (1)设求X使AX B 解因为所以(2)设求X使XA B 解考虑A T X T B T因为所以从而5设AX2X A求X解原方程化为(A2E)X A因为所以6在秩是r的矩阵中,有没有等于0的r1阶子式有没有等于0的r阶子式解在秩是r的矩阵中可能存在等于0的r1阶子式也可能存在等于0的r阶子式例如R(A)3是等于0的2阶子式是等于0的3阶子式7从矩阵A中划去一行得到矩阵B问A B的秩的关系怎样解R(A)R(B)这是因为B的非零子式必是A的非零子式故A的秩不会小于B的秩8求作一个秩是4的方阵它的两个行向量是(1 0 1 0 0) (11 0 0 0)解用已知向量容易构成一个有4个非零行的5阶下三角矩阵此矩阵的秩为4其第2行和第3行是已知向量9求下列矩阵的秩并求一个最高阶非零子式(1);解(下一步r1r2 )~(下一步r23r1r3r1 )~(下一步r3r2 )~矩阵的是一个最高阶非零子式(2)解(下一步r1r2r22r1r37r1 ) ~(下一步r33r2 )~矩阵的秩是2是一个最高阶非零子式(3)解(下一步r12r4r22r4r33r4 )~(下一步r23r1r32r1 )~(下一步r216r4r316r2 )~~矩阵的秩为3是一个最高阶非零子式10设A、B都是m n矩阵证明A~B的充分必要条件是R(A)R(B)证明根据定理3必要性是成立的充分性设R(A)R(B)则A与B的标准形是相同的设A 与B的标准形为D则有A~D D~B由等价关系的传递性有A~B11设问k为何值可使(1)R(A)1 (2)R(A)2 (3)R(A)3解(1)当k1时R(A)1(2)当k2且k1时R(A)2(3)当k1且k2时R(A)312求解下列齐次线性方程组:(1)解对系数矩阵A进行初等行变换有A~于是。

线性代数3-6(第四版)赵树嫄

线性代数3-6(第四版)赵树嫄

劳动报酬 v1
造 价
纯 收 入 m1
值 合 计 z1
总产值
x1
中间产品 消耗部门
2 n
x12 x1n x22 x2n
xn2 xnn v2 vn m2 mn z2 zn x2 xn
最终产品

消 费
积 累
合 计
产 品
y1 x1 y2 x2
说明
yn xn
xi (i1 2 n)表示 第i部门总产品
《线性代数》(第四版)教学课件
首页 上一页 下一页 结束
(二)平衡方程
2 产值构成平衡方程组
第I、III象限的每一列也存在一个等式 即
x1 x11 x21
x2
x12
x22
xn
x1n
x2 n
xn1 z1 xn2 z2
xnn zn
用总和号表示可以写成
n
xj xij z j ( j1 2 n) i1
部门i生产 每一生产部门 一方面以自己的产品分配给各部门作为
生产资料或满足社会的非生产性消费需要 并提供积累 另一 方面 每一生产部门在其生产过程中也要消耗各部门的产品
《线性代数》(第四版)教学课件
首页 上一页 下一页 结束
价值型的投入产出表
产出(至)投入(自)1来自生1x11

2
x21


n
xn1
新 创
括利润、税收等)
《线性代数》(第四版)教学课件
首页 上一页 下一页 结束
价值型的投入产出表
产出(至)
中间产品
消耗部门
投入(自)
1 2 n

1
x11 x12 x1n
产 部

人大版线性代数课后习题答案

人大版线性代数课后习题答案
(3) ,
其经济意义表示三个炼油厂在1997年和1998年两年各种油品的平均产量。
4、计算下列矩阵的乘积
(1) ;(2) ;
(3) ;(4) ;
(5) ;(6) ;
(7) 。
解:(1) 。
(2) 。
(3) 。
(4) 。
(5) 。
(6) 。
(7) 。
5、如图,考虑边长为2的正方形 :设其顶点和各边中点的坐标分别为
14、设 为同阶矩阵,且满足 。求证: 的充分必要条件是
.
证明:先证明必要性:由于 ,故
…………(1)
如果A2=A,即
由此得B2=E
再证充分性:若B2=E,则由(1)式可知,

所以, 的充分必要条件是 。
15、设 为 阶矩阵,称 的主对角线上所有元的和为 的迹,记作 ,即 。
求证:当 均为 阶矩阵时,有
又 ,

由可交换条件AX=XA,可得b=0, (其中 为任意常数),
即 。
(2)显然与A可交换的矩阵必为三阶方阵,设为X,并令 ,
又 ,

由可交换条件XA=AX,可得d=0,g=0,h=0,c=0,a=e=i,b=f,(其中a,e,i,b,f均为任意常数),
即 。
9、设矩阵 与矩阵 均可交换,求证: 与 也可交换,且 。
又 ,
所以 = ,
即: 。
(4)令AB=C= ,AB=D= ,
其中 ,

显然,当 时, ,
于是 ,即 。
16、计算下列行列式
(1) ;(2) ;
(3) ;(4) ;
(5) ;(6) ;
(7) ;(8) 。
解:(1) = =1。
(2) = = =12。

线性代数3-3(第四版)赵树嫄

线性代数3-3(第四版)赵树嫄

设1(1 2) 2(1/2 2) 有122 由此可得 1220 即1 2线性相关
《线性代数》 (第四版)教学课件
首页 上一页 下一页 结束
(二)关于线性组合与线性相关的定理
定理37 向量组1 2 s(s2)线性相关的充分必要条件是 其 中至少有一个向量是其余s1个向量的线性组合 定理38 如果向量组1 2 s 线性相关 而1 2 s线性无 关 则向量可由向量组1 2 s线性表示且表示法唯一 举例 任何一个向量 (a1 a2 an) 都可由初始单位向量组 1(1 0 0) 2(0 1 0) n(0 0 1)唯一地线性表 示 即 a11a22 ann
《线性代数》 (第四版)教学课件
首页
上一页
下一页
结束
例5 证明 如果向量组 线性无关 则向量组 亦线性无关 证 设有一组数k1 k2 k3使 k1()k2()k3()0 成立 整理得 (k1k3)(k1k2)(k2k3)0 因为向量组 线性无关 故
k k3 0 1 0 k1 k2 k2 k3 0 该方程组的系数行列式D20
提示
1 0 1 D 1 1 0 20 0 1 1
所以该方程组只有零解k1k2k30 从而 线性无关
《线性代数》 (第四版)教学课件
首页
上一页
《线性代数》 (第四版)教学课件
首页 上一页 下一页 结束
定理39 设有两个向量组 1 2 s (A) 及 1 2 t (B) 向量组(B)可由向量组(A)线性表示 如果st 则向量组(B)线性 相关
举例 定理又可以叙述为 如果向量组(B)可由向量组(A)线性表 示 且向量组(B)线性无关 则ts
《线性代数》 (第四版)教学课件

赵树源线性代数复习题四(B)题目和答案

赵树源线性代数复习题四(B)题目和答案

1.三阶矩阵A 的特征值为-2,1,3,则下列矩阵中非奇异矩阵是[ ]。

()2A I A - ()2B I A + ()C I A - ()3D A I -【解】应选择答案()A 。

因为:由已知及特征值定义,A 的特征方程0I A λ-=的根为-2,1,3,应有2I A --=I A -=30I A -=,即有32(1)20I A I A +=---=,知2I A +为奇异矩阵;由0I A -=知I A -为奇异矩阵;33(1)30A I I A -=--=,知3A I -为奇异矩阵;而三阶矩阵只能有三个特征值,故2不可能是A 的特征值,从而20I A -≠,即2I A -为非奇异矩阵。

2.设02λ=是可逆矩阵A 的一个特征值,则矩阵211()3A -必有一个特征值为[ ]。

()43A ()34B ()34C - ()43D - 【解】应选择答案()B 。

因为:02λ=是矩阵A 的一个特征值,即有2A αα=,于是211()33A A A αα=1(2)3A α=23A α=2(2)3α=,亦即21433A αα=,对上式两端左乘211()3A -,得212211114()()()()3333A A A αα--=,亦即 2141()33I A αα-=,整理得2113()34A αα-=,这说明34是矩阵211()3A -的一个特征值。

3.设1λ,2λ都是n 阶矩阵A 的特征值,12λλ≠,且1α与2α分别是A 的对应于1λ与2λ的特征向量,则[ ]。

()10A c =且20c =时,1122c c ααα=+必是A 的特征向量 ()10B c ≠且20c ≠时,1122c c ααα=+必是A 的特征向量 ()120C c c =时,1122c c ααα=+必是A 的特征向量 ()10D c ≠而20c =时,1122c c ααα=+必是A 的特征向量【解】应选择答案()D 。

因为:()A 当10c =且20c =时,1122c c ααα=+1200o αα=⨯+⨯=为零向量,不可成为任一n 阶矩阵A 的特征向量;()B 反设1122c c αα+是A 的特征向量,对应的特征值为λ,于是有 11221122()()A c c c c ααλαα+=+, 亦即为 111222()()c c o λλαλλα-+-=,由定理4.3,不同特征值对应的特征向量线性无关,由上式应有1122()()0c c λλλλ-=-=,而题设10c ≠且20c ≠,于是只能有120λλλλ-=-=,亦即为 12λλλ==,但这与题设12λλ≠相矛盾,从而10c ≠且20c ≠时,1122c c ααα=+不可能是A 的特征向量;()C 当120c c =时,有可能1c 与2c 同时为0,因为此时1122c c ααα=+为零向量,所以1122c c ααα=+“必”是A 的特征向量的说法是错误的;综上知,()D 正确。

人大版线性代数课后习题答案

人大版线性代数课后习题答案
= ,
比较对应元素,得
, 。
又 , ,所以
, ,
即A为对角矩阵。
2、证明:对任意 矩阵A, 和 均为对称矩阵.
证明:( )T=(AT)TAT=AAT,
所以, 为对称矩阵。
( )T=AT(AT)T=ATA,
所以, 为对称矩阵。
3、证明:如果A是实数域上的一个对称矩阵,且满足 ,则A=O.
证明:设
A= ,
故 = = 。
10、证明:n阶行列式
(1) ;
(2) .
证明:(1)令所给的矩阵为Dn,并按第一列展开得

所以 = =
=…= = 。
(2)令所给的行列式为Dn,并按第一列分成两个行列式相加,然后对第一个行列式从第一列开始,每列乘-b后往下一列加,即得
Dn= +
= +bDn-1= =
=…= = 。
11、证明:n阶行列式
的第 行第 列为 。
12、设 ,对于 阶矩阵 ,定义
其中 为 阶单位矩阵。
(1)如果 , ,求 ;
解:依定义得:

(2)如果 , ,求 .
解:依定义得:
= - + = 。
13、写出下列图 的邻接矩阵,并分别计算各邻接矩阵的平方。
解:(1)设邻接矩阵为A,则
A= ,A2= 。
(2)设邻接矩阵为A,则
A= ,A2= 。
0.2
0.35
0.011
0.05
0.12
0.5
试利用矩阵乘法计算:
(1)经该港口出口到3个地区的货物价值、重量、体积分别各为多少?
(2)经该港口出口的货物总价值、总重量、总体积为多少?
解:(1) =
其中第一、二、三列分别表示北美、欧洲、非洲;

线性代数第四版课后习题答案

线性代数第四版课后习题答案

第一章 行列式1. 利用对角线法则计算下列三阶行列式:(1)381141102---;解 381141102---=2⨯(-4)⨯3+0⨯(-1)⨯(-1)+1⨯1⨯8 -0⨯1⨯3-2⨯(-1)⨯8-1⨯(-4)⨯(-1) =-24+8+16-4=-4.(2)b a c a c b cb a ;解 ba c a cb cb a=acb +bac +cba -bbb -aaa -ccc =3abc -a 3-b 3-c 3.(3)222111c b a c b a ;解 222111c b a c b a=bc 2+ca 2+ab 2-ac 2-ba 2-cb 2 =(a -b )(b -c )(c -a ).(4)yx y x x y x y yx y x +++.解 yx y x x y x y yx y x +++=x (x +y )y +yx (x +y )+(x +y )yx -y 3-(x +y )3-x 3 =3xy (x +y )-y 3-3x 2 y -x 3-y 3-x 3 =-2(x 3+y 3).2. 按自然数从小到大为标准次序, 求下列各排列的逆序数: (1)1 2 3 4; 解 逆序数为0 (2)4 1 3 2;解 逆序数为4: 41, 43, 42, 32. (3)3 4 2 1;解 逆序数为5: 3 2, 3 1, 4 2, 4 1, 2 1. (4)2 4 1 3;解 逆序数为3: 2 1, 4 1, 4 3. (5)1 3 ⋅ ⋅ ⋅ (2n -1) 2 4 ⋅ ⋅ ⋅ (2n ); 解 逆序数为2)1(-n n : 3 2 (1个) 5 2, 5 4(2个) 7 2, 7 4, 7 6(3个) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅(2n -1)2, (2n -1)4, (2n -1)6, ⋅ ⋅ ⋅, (2n -1)(2n -2) (n -1个)(6)1 3 ⋅ ⋅ ⋅ (2n -1) (2n ) (2n -2) ⋅ ⋅ ⋅ 2. 解 逆序数为n (n -1) : 3 2(1个) 5 2, 5 4 (2个) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅(2n -1)2, (2n -1)4, (2n -1)6, ⋅ ⋅ ⋅, (2n -1)(2n -2) (n -1个) 4 2(1个) 6 2, 6 4(2个) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅(2n )2, (2n )4, (2n )6, ⋅ ⋅ ⋅, (2n )(2n -2) (n -1个) 3. 写出四阶行列式中含有因子a 11a 23的项. 解 含因子a 11a 23的项的一般形式为(-1)t a 11a 23a 3r a 4s ,其中rs 是2和4构成的排列, 这种排列共有两个, 即24和42. 所以含因子a 11a 23的项分别是(-1)t a 11a 23a 32a 44=(-1)1a 11a 23a 32a 44=-a 11a 23a 32a 44, (-1)t a 11a 23a 34a 42=(-1)2a 11a 23a 34a 42=a 11a 23a 34a 42. 4. 计算下列各行列式:(1)71100251020214214; 解 711025102021421410014231020211021473234-----======c c c c 34)1(143102211014+-⨯---= 143102211014--=01417172001099323211=-++======c c c c .(2)2605232112131412-; 解 2605232112131412-26503212213041224--=====cc 041203212213041224--=====rr0000003212213041214=--=====r r . (3)efcf bf de cd bd aeac ab ---;解 ef cf bf de cd bd ae ac ab ---e c b e c b ec b ad f ---=a b c d e f a d f b c e 4111111111=---=.(4)dc b a100110011001---. 解 dc b a100110011001---dc b a ab ar r 10011001101021---++=====d c a ab 101101)1)(1(12--+--=+01011123-+-++=====cd c ad a ab dc ccdad ab +-+--=+111)1)(1(23=abcd +ab +cd +ad +1.5. 证明:(1)1112222b b a a b ab a +=(a -b )3;证明1112222b b a ab ab a +00122222221213a b a b a a b a ab a c c c c ------=====ab a b a b a ab 22)1(22213-----=+21))((a b a a b a b +--==(a -b )3 .(2)y x z x z y zy x b a bz ay by ax bx az by ax bx az bz ay bx az bz ay by ax )(33+=+++++++++;证明bzay by ax bx az by ax bx az bz ay bxaz bz ay by ax +++++++++bz ay by ax x by ax bx az z bxaz bz ay y b bz ay by ax z by ax bx az y bx az bz ay x a +++++++++++++=bz ay y x by ax x z bxaz z y b y by ax z x bx az y z bz ay x a +++++++=22z y x y x z xz y b y x z x z y z y x a 33+=y x z x z y zy x b y x z x z y z y x a 33+=y x z x z y zy x b a )(33+=.(3)0)3()2()1()3()2()1()3()2()1()3()2()1(2222222222222222=++++++++++++d d d d c c c c b b b b a a a a ;证明2222222222222222)3()2()1()3()2()1()3()2()1()3()2()1(++++++++++++d d d d c c c c b b b b a a a a (c 4-c 3, c 3-c 2, c 2-c 1得)5232125232125232125232122222++++++++++++=d d d d c c c c b b b b a a a a (c 4-c 3, c 3-c 2得) 022122212221222122222=++++=d d c c b b a a .(4)444422221111d c b a d c b a d c b a=(a -b )(a -c )(a -d )(b -c )(b -d )(c -d )(a +b +c +d ); 证明444422221111d c b a d c b a d c b a)()()(0)()()(001111222222222a d d a c c a b b a d d a c c a b b ad a c a b ---------=)()()(111))()((222a d d a c c a b b d c b a d a c a b +++---= ))(())((00111))()((a b d b d d a b c b c c b d b c a d a c a b ++-++------=)()(11))()()()((a b d d a b c c b d b c a d a c a b ++++-----= =(a -b )(a -c )(a -d )(b -c )(b -d )(c -d )(a +b +c +d ).(5)1221 1 000 00 1000 01a x a a a a x x x n n n +⋅⋅⋅-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅--- =x n +a 1x n -1+ ⋅ ⋅ ⋅ +a n -1x +a n .证明 用数学归纳法证明.当n =2时, 2121221a x a x a x a x D ++=+-=, 命题成立. 假设对于(n -1)阶行列式命题成立, 即 D n -1=x n -1+a 1 x n -2+ ⋅ ⋅ ⋅ +a n -2x +a n -1, 则D n 按第一列展开, 有111 00 10 01)1(11-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅--+=+-x x a xD D n n n n =xD n -1+a n =x n +a 1x n -1+ ⋅ ⋅ ⋅ +a n -1x +a n .因此, 对于n 阶行列式命题成立.6. 设n 阶行列式D =det(a ij ), 把D 上下翻转、或逆时针旋转90︒、或依副对角线翻转, 依次得n nn n a a a a D 11111 ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=, 11112 n nn n a a a a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅= , 11113 a a a a D n nnn ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=,证明D D D n n 2)1(21)1(--==, D 3=D .证明 因为D =det(a ij ), 所以nnn n n n nnnn a a a a a a a a a a D 2211111111111 )1( ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=- ⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅--=-- )1()1(331122111121nnn n nn n n a a a a a a a a D D n n n n 2)1()1()2( 21)1()1(--+-+⋅⋅⋅++-=-=.同理可证nnn n n n a a a a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-=- )1(11112)1(2D D n n Tn n 2)1(2)1()1()1(---=-=. D D D D D n n n n n n n n =-=--=-=----)1(2)1(2)1(22)1(3)1()1()1()1(.7. 计算下列各行列式(D k 为k 阶行列式):(1)aaD n 11⋅⋅⋅=, 其中对角线上元素都是a , 未写出的元素都是0;解aa aa a D n 0 0010 000 00 0000 0010 00⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=(按第n 行展开))1()1(10 000 00 000 0010 000)1(-⨯-+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-=n n n aa a )1()1(2 )1(-⨯-⋅⋅⋅⋅-+n n n a a an n n nn a a a+⋅⋅⋅-⋅-=--+)2)(2(1)1()1(=a n -a n -2=a n -2(a 2-1).(2)xa a a x aa a xD n ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅= ; 解 将第一行乘(-1)分别加到其余各行, 得ax x a ax x a a x x a aa a x D n --⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅--⋅⋅⋅--⋅⋅⋅=000 0 00, 再将各列都加到第一列上, 得ax ax a x aaa a n x D n -⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-+=0000 0 0000 )1(=[x +(n -1)a ](x -a )n -1. (3)111 1 )( )1()( )1(1111⋅⋅⋅-⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅⋅⋅⋅-⋅⋅⋅--⋅⋅⋅-=---+n a a a n a a a n a a a D n n n n nn n ; 解 根据第6题结果, 有nn n n n n n n n n a a a n a a a na a aD )( )1()( )1( 11 11)1(1112)1(1-⋅⋅⋅--⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-=---++ 此行列式为范德蒙德行列式.∏≥>≥++++--+--=112)1(1)]1()1[()1(j i n n n n j a i a D∏≥>≥++---=112)1()]([)1(j i n n n j i∏≥>≥++⋅⋅⋅+-++-⋅-⋅-=1121)1(2)1()()1()1(j i n n n n n j i∏≥>≥+-=11)(j i n j i .(4)nnnnn d c d c b a b a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=11112;解nn nnn d c d c b a b a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=11112(按第1行展开)nn n n n nd d c d c b a b a a 00011111111----⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=0 0)1(1111111112c d c d c b a b a b nn n n n nn ----+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-+.再按最后一行展开得递推公式D 2n =a n d n D 2n -2-b n c n D 2n -2, 即D 2n =(a n d n -b n c n )D 2n -2.于是 ∏=-=ni i i i i n D c b d a D 222)(.而 111111112c b d a d c b a D -==, 所以 ∏=-=ni i i i i n c b d a D 12)(.(5) D =det(a ij ), 其中a ij =|i -j |; 解 a ij =|i -j |,4321 4 01233 10122 21011 3210)d e t (⋅⋅⋅----⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-⋅⋅⋅==n n n n n n n n aD ij n0 4321 1 11111 11111 11111 1111 2132⋅⋅⋅----⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅----⋅⋅⋅---⋅⋅⋅--⋅⋅⋅--⋅⋅⋅-=====n n n n r r r r 15242321 0 22210 02210 00210 0001 1213-⋅⋅⋅----⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅----⋅⋅⋅---⋅⋅⋅--⋅⋅⋅-+⋅⋅⋅+=====n n n n n c c c c =(-1)n -1(n -1)2n -2.(6)nn a a a D +⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅+⋅⋅⋅+=1 11 11111121, 其中a 1a 2 ⋅ ⋅ ⋅ a n ≠0.解nn a a a D +⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅+⋅⋅⋅+=1 11 1 1111121 n n n n a a a a a a a a a c c c c +-⋅⋅⋅-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-=====--10 0001 000 100 0100 0100 00113322121321111312112111011 000 00 11000 01100 001 ------+-⋅⋅⋅-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅⋅⋅⋅=nnna a a a a a a a∑=------+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=n i i nn a a a a a a a a 1111131********0010 00000 10000 01000 001)11)((121∑=+=ni in a a a a .8. 用克莱姆法则解下列方程组:(1)⎪⎩⎪⎨⎧=+++-=----=+-+=+++01123253224254321432143214321x x x x x x x x x x x x x x x x ;解 因为14211213513241211111-=----=D , 142112105132412211151-=------=D , 2841120351*******1512-=-----=D , 426110135232422115113-=----=D , 14202132132212151114=-----=D , 所以 111==DD x , 222==DD x , 333==DD x , 144-==DD x .(2)⎪⎪⎩⎪⎪⎨⎧=+=++=++=++=+150650650651655454343232121x x x x x x x x x x x x x .解 因为665510006510006510065100065==D , 15075100165100065100650000611==D , 114551010651000650000601000152-==D , 7035110065000060100051001653==D , 39551601000051000651010654-==D , 21211005100065100651100655==D , 所以66515071=x , 66511452-=x , 6657033=x , 6653954-=x , 6652124=x .9. 问λ, μ取何值时, 齐次线性方程组⎪⎩⎪⎨⎧=++=++=++0200321321321x x x x x x x x x μμλ有非零解?解 系数行列式为μλμμμλ-==1211111D .令D =0, 得 μ=0或λ=1.于是, 当μ=0或λ=1时该齐次线性方程组有非零解.10. 问λ取何值时, 齐次线性方程组⎪⎩⎪⎨⎧=-++=+-+=+--0)1(0)3(2042)1(321321321x x x x x x x x x λλλ有非零解?解 系数行列式为λλλλλλλ--+--=----=101112431111132421D=(1-λ)3+(λ-3)-4(1-λ)-2(1-λ)(-3-λ) =(1-λ)3+2(1-λ)2+λ-3. 令D =0, 得λ=0, λ=2或λ=3.于是, 当λ=0, λ=2或λ=3时, 该齐次线性方程组有非零解.第二章 矩阵及其运算1. 已知线性变换:⎪⎩⎪⎨⎧++=++=++=3213321232113235322y y y x y y y x y y y x , 求从变量x 1, x 2, x 3到变量y 1, y 2, y 3的线性变换. 解 由已知:⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛221321323513122y y y x x x ,故 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-3211221323513122x x x y y y ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛----=321423736947y y y ,⎪⎩⎪⎨⎧-+=-+=+--=321332123211423736947x x x y x x x y x x x y .2. 已知两个线性变换⎪⎩⎪⎨⎧++=++-=+=32133212311542322y y y x y y y x y y x ,⎪⎩⎪⎨⎧+-=+=+-=323312211323z z y z z y z z y , 求从z 1, z 2, z 3到x 1, x 2, x 3的线性变换.解 由已知⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛221321514232102y y y x x x ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-=321310102013514232102z z z⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛----=321161109412316z z z ,所以有⎪⎩⎪⎨⎧+--=+-=++-=3213321232111610941236z z z x z z z x z z z x .3. 设⎪⎪⎭⎫ ⎝⎛--=111111111A , ⎪⎪⎭⎫⎝⎛--=150421321B , 求3AB -2A 及A T B .解 ⎪⎪⎭⎫⎝⎛---⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=-1111111112150421321111111111323A AB⎪⎪⎭⎫⎝⎛----=⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-=2294201722213211111111120926508503,⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=092650850150421321111111111B A T .4. 计算下列乘积:(1)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134;解 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134⎪⎪⎭⎫ ⎝⎛⨯+⨯+⨯⨯+⨯-+⨯⨯+⨯+⨯=102775132)2(71112374⎪⎪⎭⎫⎝⎛=49635.(2)⎪⎪⎭⎫⎝⎛123)321(;解 ⎪⎪⎭⎫⎝⎛123)321(=(1⨯3+2⨯2+3⨯1)=(10).(3))21(312-⎪⎪⎭⎫⎝⎛;解 )21(312-⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛⨯-⨯⨯-⨯⨯-⨯=23)1(321)1(122)1(2⎪⎪⎭⎫ ⎝⎛---=632142.(4)⎪⎪⎪⎭⎫⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412 ;解 ⎪⎪⎪⎭⎫⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412⎪⎭⎫⎝⎛---=6520876. (5)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x ; 解 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x =(a 11x 1+a 12x 2+a 13x 3 a 12x 1+a 22x 2+a 23x 3 a 13x 1+a 23x 2+a 33x 3)⎪⎪⎭⎫⎝⎛321x x x322331132112233322222111222x x a x x a x x a x a x a x a +++++=.5. 设⎪⎭⎫ ⎝⎛=3121A , ⎪⎭⎫ ⎝⎛=2101B , 问: (1)AB =BA 吗? 解 AB ≠BA .因为⎪⎭⎫ ⎝⎛=6443AB , ⎪⎭⎫ ⎝⎛=8321BA , 所以AB ≠BA .(2)(A +B )2=A 2+2AB +B 2吗? 解 (A +B )2≠A 2+2AB +B 2.因为⎪⎭⎫⎝⎛=+5222B A ,⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=+52225222)(2B A ⎪⎭⎫⎝⎛=2914148,但 ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=++43011288611483222B AB A ⎪⎭⎫⎝⎛=27151610,所以(A +B )2≠A 2+2AB +B 2. (3)(A +B )(A -B )=A 2-B 2吗? 解 (A +B )(A -B )≠A 2-B 2.因为⎪⎭⎫ ⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛=-1020B A , ⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=-+906010205222))((B A B A ,而 ⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-718243011148322B A ,故(A +B )(A -B )≠A 2-B 2.6. 举反列说明下列命题是错误的: (1)若A 2=0, 则A =0;解 取⎪⎭⎫ ⎝⎛=0010A , 则A 2=0, 但A ≠0.(2)若A 2=A , 则A =0或A =E ;解 取⎪⎭⎫ ⎝⎛=0011A , 则A 2=A , 但A ≠0且A ≠E .(3)若AX =AY , 且A ≠0, 则X =Y . 解 取⎪⎭⎫ ⎝⎛=0001A , ⎪⎭⎫ ⎝⎛-=1111X , ⎪⎭⎫ ⎝⎛=1011Y ,则AX =AY , 且A ≠0, 但X ≠Y .7. 设⎪⎭⎫⎝⎛=101λA , 求A 2, A 3, ⋅ ⋅ ⋅, A k . 解 ⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=12011011012λλλA ,⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==1301101120123λλλA A A ,⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎪⎭⎫⎝⎛=101λk A k .8. 设⎪⎪⎭⎫⎝⎛=λλλ001001A , 求A k .解 首先观察⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=λλλλλλ0010010010012A ⎪⎪⎭⎫⎝⎛=222002012λλλλλ,⎪⎪⎭⎫⎝⎛=⋅=3232323003033λλλλλλA A A ,⎪⎪⎭⎫⎝⎛=⋅=43423434004064λλλλλλA A A ,⎪⎪⎭⎫⎝⎛=⋅=545345450050105λλλλλλA A A ,⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎝⎛=kA k k kk k k k k k k λλλλλλ0002)1(121----⎪⎪⎪⎭⎫ . 用数学归纳法证明: 当k =2时, 显然成立. 假设k 时成立,则k +1时,⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫⎝⎛-=⋅=---+λλλλλλλλλ0010010002)1(1211k k k k k k k k k k k k A A A ⎪⎪⎪⎪⎭⎫⎝⎛+++=+-+--+11111100)1(02)1()1(k k k k k k k k k k λλλλλλ,由数学归纳法原理知:⎪⎪⎪⎪⎭⎫⎝⎛-=---k k kk k k k k k k k A λλλλλλ0002)1(121. 9. 设A , B 为n 阶矩阵,且A 为对称矩阵,证明B T AB 也是对称矩阵. 证明 因为A T =A , 所以(B T AB )T =B T (B T A )T =B T A T B =B T AB , 从而B T AB 是对称矩阵.10. 设A , B 都是n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是AB =BA .证明 充分性: 因为A T =A , B T =B , 且AB =BA , 所以 (AB )T =(BA )T =A T B T =AB , 即AB 是对称矩阵.必要性: 因为A T =A , B T =B , 且(AB )T =AB , 所以 AB =(AB )T =B T A T =BA . 11. 求下列矩阵的逆矩阵:(1)⎪⎭⎫⎝⎛5221;解 ⎪⎭⎫ ⎝⎛=5221A . |A |=1, 故A -1存在. 因为⎪⎭⎫ ⎝⎛--=⎪⎭⎫⎝⎛=1225*22122111A A A A A ,故 *||11A A A =-⎪⎭⎫ ⎝⎛--=1225. (2)⎪⎭⎫⎝⎛-θθθθcos sin sin cos ; 解 ⎪⎭⎫ ⎝⎛-=θθθθc o s s i ns i n c o s A . |A |=1≠0, 故A -1存在. 因为⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛=θθθθc o s s i ns i n c o s*22122111A A A A A ,所以 *||11A A A =-⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos .(3)⎪⎪⎭⎫⎝⎛---145243121;解 ⎪⎪⎭⎫⎝⎛---=145243121A . |A |=2≠0, 故A -1存在. 因为⎪⎪⎭⎫⎝⎛-----=⎪⎪⎭⎫ ⎝⎛=214321613024*332313322212312111A A A A A A A A A A ,所以 *||11A A A =-⎪⎪⎪⎭⎫⎝⎛-----=1716213213012.(4)⎪⎪⎪⎭⎫ ⎝⎛n a a a 0021(a 1a 2⋅ ⋅ ⋅a n ≠0) .解 ⎪⎪⎪⎭⎫ ⎝⎛=n a a a A0021, 由对角矩阵的性质知⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=-n a a a A 10011211 . 12. 解下列矩阵方程:(1)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛12643152X ; 解 ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-126431521X ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=12642153⎪⎭⎫⎝⎛-=80232.(2)⎪⎭⎫⎝⎛-=⎪⎪⎭⎫⎝⎛--234311*********X ;解 1111012112234311-⎪⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛-=X ⎪⎪⎭⎫⎝⎛---⎪⎭⎫ ⎝⎛-=03323210123431131 ⎪⎪⎭⎫ ⎝⎛---=32538122.(3)⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-101311022141X ;解 11110210132141--⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=X⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=210110131142121 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=21010366121⎪⎪⎭⎫ ⎝⎛=04111. (4)⎪⎪⎭⎫⎝⎛---=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛021102341010100001100001010X .解 11010100001021102341100001010--⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=X⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=010100001021102341100001010⎪⎪⎭⎫⎝⎛---=201431012.13. 利用逆矩阵解下列线性方程组:(1)⎪⎩⎪⎨⎧=++=++=++3532522132321321321x x x x x x x x x ;解 方程组可表示为⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321153522321321x x x ,故 ⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-0013211535223211321x x x ,从而有 ⎪⎩⎪⎨⎧===001321x x x .(2)⎪⎩⎪⎨⎧=-+=--=--05231322321321321x x x x x x x x x .解 方程组可表示为⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----012523312111321x x x ,故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛-----=⎪⎪⎭⎫ ⎝⎛-3050125233121111321x x x , 故有 ⎪⎩⎪⎨⎧===305321x x x .14. 设A k =O (k 为正整数), 证明(E -A )-1=E +A +A 2+⋅ ⋅ ⋅+A k -1. 证明 因为A k =O , 所以E -A k =E . 又因为 E -A k =(E -A )(E +A +A 2+⋅ ⋅ ⋅+A k -1), 所以 (E -A )(E +A +A 2+⋅ ⋅ ⋅+A k -1)=E , 由定理2推论知(E -A )可逆, 且 (E -A )-1=E +A +A 2+⋅ ⋅ ⋅+A k -1.证明 一方面, 有E =(E -A )-1(E -A ). 另一方面, 由A k =O , 有E =(E -A )+(A -A 2)+A 2-⋅ ⋅ ⋅-A k -1+(A k -1-A k ) =(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A ), 故 (E -A )-1(E -A )=(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A ), 两端同时右乘(E -A )-1, 就有(E -A )-1(E -A )=E +A +A 2+⋅ ⋅ ⋅+A k -1.15. 设方阵A 满足A 2-A -2E =O , 证明A 及A +2E 都可逆, 并求A -1及(A +2E )-1.证明 由A 2-A -2E =O 得 A 2-A =2E , 即A (A -E )=2E ,或 E E A A =-⋅)(21,由定理2推论知A 可逆, 且)(211E A A -=-. 由A 2-A -2E =O 得A 2-A -6E =-4E , 即(A +2E )(A -3E )=-4E ,或 E A E E A =-⋅+)3(41)2(由定理2推论知(A +2E )可逆, 且)3(41)2(1A E E A -=+-.证明 由A 2-A -2E =O 得A 2-A =2E , 两端同时取行列式得 |A 2-A |=2, 即 |A ||A -E |=2, 故 |A |≠0,所以A 可逆, 而A +2E =A 2, |A +2E |=|A 2|=|A |2≠0, 故A +2E 也可逆. 由 A 2-A -2E =O ⇒A (A -E )=2E ⇒A -1A (A -E )=2A -1E ⇒)(211E A A -=-, 又由 A 2-A -2E =O ⇒(A +2E )A -3(A +2E )=-4E ⇒ (A +2E )(A -3E )=-4 E ,所以 (A +2E )-1(A +2E )(A -3E )=-4(A +2 E )-1,)3(41)2(1A E E A -=+-. 16. 设A 为3阶矩阵, 21||=A , 求|(2A )-1-5A *|. 解 因为*||11A A A =-, 所以 |||521||*5)2(|111----=-A A A A A |2521|11---=A A =|-2A -1|=(-2)3|A -1|=-8|A |-1=-8⨯2=-16. 17. 设矩阵A 可逆, 证明其伴随阵A *也可逆, 且(A *)-1=(A -1)*. 证明 由*||11A A A =-, 得A *=|A |A -1, 所以当A 可逆时, 有 |A *|=|A |n |A -1|=|A |n -1≠0, 从而A *也可逆.因为A *=|A |A -1, 所以 (A *)-1=|A |-1A . 又*)(||)*(||1111---==A A A A A , 所以 (A *)-1=|A |-1A =|A |-1|A |(A -1)*=(A -1)*. 18. 设n 阶矩阵A 的伴随矩阵为A *, 证明: (1)若|A |=0, 则|A *|=0; (2)|A *|=|A |n -1. 证明(1)用反证法证明. 假设|A *|≠0, 则有A *(A *)-1=E , 由此得 A =A A *(A *)-1=|A |E (A *)-1=O ,所以A *=O , 这与|A *|≠0矛盾,故当|A |=0时, 有|A *|=0. (2)由于*||11A A A =-, 则AA *=|A |E , 取行列式得到 |A ||A *|=|A |n .若|A |≠0, 则|A *|=|A |n -1;若|A |=0, 由(1)知|A *|=0, 此时命题也成立. 因此|A *|=|A |n -1.19. 设⎪⎪⎭⎫⎝⎛-=321011330A , AB =A +2B , 求B .解 由AB =A +2E 可得(A -2E )B =A , 故⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛---=-=--321011330121011332)2(11A E A B ⎪⎪⎭⎫⎝⎛-=011321330.20. 设⎪⎪⎭⎫⎝⎛=101020101A , 且AB +E =A 2+B , 求B .解 由AB +E =A 2+B 得 (A -E )B =A 2-E , 即 (A -E )B =(A -E )(A +E ).因为01001010100||≠-==-E A , 所以(A -E )可逆, 从而⎪⎪⎭⎫⎝⎛=+=201030102E A B .21. 设A =diag(1, -2, 1), A *BA =2BA -8E , 求B . 解 由A *BA =2BA -8E 得 (A *-2E )BA =-8E , B =-8(A *-2E )-1A -1 =-8[A (A *-2E )]-1=-8(AA *-2A )-1 =-8(|A |E -2A )-1=-8(-2E -2A )-1 =4(E +A )-1=4[diag(2, -1, 2)]-1)21,1 ,21(d i a g 4-==2diag(1, -2, 1).22. 已知矩阵A 的伴随阵⎪⎪⎪⎭⎫⎝⎛-=8030010100100001*A , 且ABA -1=BA -1+3E , 求B . 解 由|A *|=|A |3=8, 得|A |=2. 由ABA -1=BA -1+3E 得 AB =B +3A ,B =3(A -E )-1A =3[A (E -A -1)]-1A 11*)2(6*)21(3---=-=A E A E ⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫⎝⎛--=-1030060600600006603001010010000161. 23. 设P -1AP =Λ, 其中⎪⎭⎫ ⎝⎛--=1141P , ⎪⎭⎫ ⎝⎛-=Λ2001, 求A 11. 解 由P -1AP =Λ, 得A =P ΛP -1, 所以A 11= A =P Λ11P -1.|P |=3, ⎪⎭⎫ ⎝⎛-=1141*P , ⎪⎭⎫ ⎝⎛--=-1141311P ,而 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-=Λ11111120 012001,故 ⎪⎪⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=31313431200111411111A ⎪⎭⎫ ⎝⎛--=68468327322731. 24. 设AP =P Λ, 其中⎪⎪⎭⎫⎝⎛--=111201111P , ⎪⎪⎭⎫ ⎝⎛-=Λ511,求ϕ(A )=A 8(5E -6A +A 2). 解 ϕ(Λ)=Λ8(5E -6Λ+Λ2)=diag(1,1,58)[diag(5,5,5)-diag(-6,6,30)+diag(1,1,25)] =diag(1,1,58)diag(12,0,0)=12diag(1,0,0). ϕ(A )=P ϕ(Λ)P -1*)(||1P P P Λ=ϕ⎪⎪⎭⎫ ⎝⎛------⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---=1213032220000000011112011112⎪⎪⎭⎫⎝⎛=1111111114.25. 设矩阵A 、B 及A +B 都可逆, 证明A -1+B -1也可逆, 并求其逆阵. 证明 因为A -1(A +B )B -1=B -1+A -1=A -1+B -1,而A -1(A +B )B -1是三个可逆矩阵的乘积, 所以A -1(A +B )B -1可逆, 即A -1+B -1可逆.(A -1+B -1)-1=[A -1(A +B )B -1]-1=B (A +B )-1A .26. 计算⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎪⎭⎫⎝⎛30003200121013013000120010100121.解 设⎪⎭⎫ ⎝⎛=10211A , ⎪⎭⎫ ⎝⎛=30122A , ⎪⎭⎫ ⎝⎛-=12131B , ⎪⎭⎫ ⎝⎛--=30322B , 则 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫⎝⎛+=222111B A O B B A A ,而 ⎪⎭⎫⎝⎛-=⎪⎭⎫ ⎝⎛--+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=+4225303212131021211B B A ,⎪⎭⎫⎝⎛--=⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛=90343032301222B A ,所以 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A ⎪⎪⎪⎭⎫⎝⎛---=9000340042102521,即 ⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫⎝⎛30003200121013013000120010100121⎪⎪⎪⎭⎫⎝⎛---=9000340042102521. 27. 取⎪⎭⎫⎝⎛==-==1001D C B A , 验证|||||||| D C B A D C B A ≠. 解 4100120021010*********0021010010110100101==--=--=D C B A , 而 01111|||||||| ==D C B A ,故|||||||| D C B A D C B A ≠. 28. 设⎪⎪⎪⎭⎫ ⎝⎛-=22023443O O A , 求|A 8|及A 4.解 令⎪⎭⎫ ⎝⎛-=34431A , ⎪⎭⎫ ⎝⎛=22022A ,则 ⎪⎭⎫⎝⎛=21A O O A A ,故 8218⎪⎭⎫ ⎝⎛=A O O A A ⎪⎭⎫ ⎝⎛=8281A O O A , 1682818281810||||||||||===A A A A A .⎪⎪⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=464444241422025005O O A O O A A . 29. 设n 阶矩阵A 及s 阶矩阵B 都可逆, 求(1)1-⎪⎭⎫⎝⎛O B A O ;解 设⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛-43211C C C C O B A O , 则 ⎪⎭⎫ ⎝⎛O B A O ⎪⎭⎫ ⎝⎛4321C C C C ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=s n E O O E BC BC AC AC 2143. 由此得 ⎪⎩⎪⎨⎧====sn E BC OBC OAC E AC 2143⇒⎪⎩⎪⎨⎧====--121413B C O C O C AC ,所以 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛---O A B O O B A O 111. (2)1-⎪⎭⎫ ⎝⎛B C O A .解 设⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛-43211D D D D B C O A , 则⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛s n E O O E BD CD BD CD AD AD D D D D B C O A 4231214321. 由此得 ⎪⎩⎪⎨⎧=+=+==s nE BD CD OBD CD OAD E AD 423121⇒⎪⎩⎪⎨⎧=-===----14113211B D CA B D O D A D ,所以 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-----11111B CA B O A BC O A . 30. 求下列矩阵的逆阵:(1)⎪⎪⎪⎭⎫⎝⎛2500380000120025; 解 设⎪⎭⎫ ⎝⎛=1225A , ⎪⎭⎫ ⎝⎛=2538B , 则 ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--5221122511A , ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--8532253811B .于是 ⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫⎝⎛----850032000052002125003800001200251111B A B A . (2)⎪⎪⎪⎭⎫⎝⎛4121031200210001. 解 设⎪⎭⎫ ⎝⎛=2101A , ⎪⎭⎫ ⎝⎛=4103B , ⎪⎭⎫ ⎝⎛=2112C , 则⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛------1111114121031200210001B CA B O A B C O A ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-----=411212458103161210021210001.第三章 矩阵的初等变换与线性方程组1. 把下列矩阵化为行最简形矩阵:(1)⎪⎪⎭⎫⎝⎛--340313021201;解 ⎪⎪⎭⎫⎝⎛--340313021201(下一步: r 2+(-2)r 1, r 3+(-3)r 1. )~⎪⎪⎭⎫⎝⎛---020*********(下一步: r 2÷(-1), r 3÷(-2). )~⎪⎪⎭⎫⎝⎛--010*********(下一步: r 3-r 2. )~⎪⎪⎭⎫⎝⎛--300031001201(下一步: r 3÷3. )~⎪⎪⎭⎫⎝⎛--100031001201(下一步: r 2+3r 3. )~⎪⎪⎭⎫⎝⎛-100001001201(下一步: r 1+(-2)r 2, r 1+r 3. )~⎪⎪⎭⎫⎝⎛100001000001.(2)⎪⎪⎭⎫⎝⎛----174034301320;解 ⎪⎪⎭⎫⎝⎛----174034301320(下一步: r 2⨯2+(-3)r 1, r 3+(-2)r 1. )~⎪⎪⎭⎫⎝⎛---310031001320(下一步: r 3+r 2, r 1+3r 2. )~⎪⎪⎭⎫⎝⎛0000310010020(下一步: r 1÷2. )~⎪⎪⎭⎫⎝⎛000031005010.(3)⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311;解 ⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311(下一步: r 2-3r 1, r 3-2r 1, r 4-3r 1. )~⎪⎪⎪⎭⎫ ⎝⎛--------1010500663008840034311(下一步: r 2÷(-4), r 3÷(-3) , r 4÷(-5). )~⎪⎪⎪⎭⎫⎝⎛-----22100221002210034311(下一步: r 1-3r 2, r 3-r 2, r 4-r 2. ) ~⎪⎪⎪⎭⎫⎝⎛---00000000002210032011.(4)⎪⎪⎪⎭⎫⎝⎛------34732038234202173132.解 ⎪⎪⎪⎭⎫⎝⎛------34732038234202173132(下一步: r 1-2r 2, r 3-3r 2, r 4-2r 2. )~⎪⎪⎪⎭⎫ ⎝⎛-----1187701298804202111110(下一步: r 2+2r 1, r 3-8r 1, r 4-7r 1. )~⎪⎪⎪⎭⎫⎝⎛--41000410002020111110(下一步: r 1↔r 2, r 2⨯(-1), r 4-r 3. )~⎪⎪⎪⎭⎫⎝⎛----00000410001111020201(下一步: r 2+r 3. )~⎪⎪⎪⎭⎫⎝⎛--00000410003011020201.2. 设⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛987654321100010101100001010A , 求A .解 ⎪⎪⎭⎫⎝⎛100001010是初等矩阵E (1, 2), 其逆矩阵就是其本身.⎪⎪⎭⎫⎝⎛100010101是初等矩阵E (1, 2(1)), 其逆矩阵是E (1, 2(-1)) ⎪⎪⎭⎫⎝⎛-=100010101.⎪⎪⎭⎫⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=100010101987654321100001010A⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=287221254100010101987321654.3. 试利用矩阵的初等变换, 求下列方阵的逆矩阵:(1)⎪⎪⎭⎫⎝⎛323513123;解 ⎪⎪⎭⎫ ⎝⎛100010001323513123~⎪⎪⎭⎫⎝⎛---101011001200410123~⎪⎪⎭⎫ ⎝⎛----1012002110102/102/3023~⎪⎪⎭⎫⎝⎛----2/102/11002110102/922/7003~⎪⎪⎭⎫⎝⎛----2/102/11002110102/33/26/7001 故逆矩阵为⎪⎪⎪⎪⎭⎫ ⎝⎛----21021211233267.(2)⎪⎪⎪⎭⎫ ⎝⎛-----1210232112201023.解 ⎪⎪⎪⎭⎫⎝⎛-----10000100001000011210232112201023 ~⎪⎪⎪⎭⎫⎝⎛----00100301100001001220594012102321 ~⎪⎪⎪⎭⎫⎝⎛--------20104301100001001200110012102321~⎪⎪⎪⎭⎫ ⎝⎛-------106124301100001001000110012102321~⎪⎪⎪⎭⎫ ⎝⎛----------10612631110`1022111000010000100021~⎪⎪⎪⎭⎫⎝⎛-------106126311101042111000010000100001故逆矩阵为⎪⎪⎪⎭⎫ ⎝⎛-------10612631110104211.4. (1)设⎪⎪⎭⎫ ⎝⎛--=113122214A , ⎪⎪⎭⎫⎝⎛--=132231B , 求X 使AX =B ; 解 因为⎪⎪⎭⎫ ⎝⎛----=132231 113122214) ,(B A ⎪⎪⎭⎫ ⎝⎛--412315210 100010001 ~r , 所以 ⎪⎪⎭⎫⎝⎛--==-4123152101B A X .(2)设⎪⎪⎭⎫ ⎝⎛---=433312120A , ⎪⎭⎫⎝⎛-=132321B , 求X 使XA =B .解 考虑A T X T =B T . 因为⎪⎪⎭⎫ ⎝⎛----=134313*********) ,(T T B A ⎪⎪⎭⎫⎝⎛---411007101042001 ~r ,所以 ⎪⎪⎭⎫⎝⎛---==-417142)(1T T T B A X ,从而 ⎪⎭⎫⎝⎛---==-4741121BA X .5. 设⎪⎪⎭⎫⎝⎛---=101110011A , AX =2X +A , 求X .解 原方程化为(A -2E )X =A . 因为⎪⎪⎭⎫⎝⎛---------=-101101110110011011) ,2(A E A⎪⎪⎭⎫⎝⎛---011100101010110001~,所以 ⎪⎪⎭⎫⎝⎛---=-=-011101110)2(1A E A X .6. 在秩是r 的矩阵中,有没有等于0的r -1阶子式? 有没有等于0的r 阶子式?解 在秩是r 的矩阵中, 可能存在等于0的r -1阶子式, 也可能存在等于0的r 阶子式.例如, ⎪⎪⎭⎫⎝⎛=010*********A , R (A )=3.000是等于0的2阶子式, 010001000是等于0的3阶子式.7. 从矩阵A 中划去一行得到矩阵B , 问A , B 的秩的关系怎样? 解 R (A )≥R (B ).这是因为B 的非零子式必是A 的非零子式, 故A 的秩不会小于B 的秩.8. 求作一个秩是4的方阵, 它的两个行向量是(1, 0, 1, 0, 0), (1, -1, 0, 0, 0).解 用已知向量容易构成一个有4个非零行的5阶下三角矩阵:⎪⎪⎪⎪⎭⎫⎝⎛-0000001000001010001100001, 此矩阵的秩为4, 其第2行和第3行是已知向量.9. 求下列矩阵的秩, 并求一个最高阶非零子式:(1)⎪⎪⎭⎫⎝⎛---443112112013;解 ⎪⎪⎭⎫⎝⎛---443112112013(下一步: r 1↔r 2. )~⎪⎪⎭⎫⎝⎛---443120131211(下一步: r 2-3r 1, r 3-r 1. )~⎪⎪⎭⎫⎝⎛----564056401211(下一步: r 3-r 2. )~⎪⎭⎫ ⎝⎛---000056401211,矩阵的2秩为,41113-=-是一个最高阶非零子式.(2)⎪⎪⎭⎫⎝⎛-------815073*********;解 ⎪⎪⎭⎫⎝⎛-------815073*********(下一步: r 1-r 2, r 2-2r 1, r 3-7r 1. )~⎪⎭⎫ ⎝⎛------15273321059117014431(下一步: r 3-3r 2. )~⎪⎭⎫ ⎝⎛----0000059117014431,矩阵的秩是2, 71223-=-是一个最高阶非零子式.(3)⎪⎪⎪⎭⎫⎝⎛---02301085235703273812.解 ⎪⎪⎪⎭⎫⎝⎛---02301085235703273812(下一步: r 1-2r 4, r 2-2r 4, r 3-3r 4. )~⎪⎪⎪⎭⎫ ⎝⎛------02301024205363071210(下一步: r 2+3r 1, r 3+2r 1. )~⎪⎪⎪⎭⎫⎝⎛-0230114000016000071210(下一步: r 2÷16r 4, r 3-16r 2. )~⎪⎪⎪⎭⎫⎝⎛-02301000001000071210~⎪⎪⎪⎭⎫⎝⎛-0000010********02301,矩阵的秩为3, 070023085570≠=-是一个最高阶非零子式.10. 设A 、B 都是m ⨯n 矩阵, 证明A ~B 的充分必要条件是R (A )=R (B ). 证明 根据定理3, 必要性是成立的.充分性. 设R (A )=R (B ), 则A 与B 的标准形是相同的. 设A 与B 的标准形为D , 则有A ~D , D ~B .由等价关系的传递性, 有A ~B .11. 设⎪⎪⎭⎫⎝⎛----=32321321k k k A , 问k 为何值, 可使(1)R (A )=1; (2)R (A )=2; (3)R (A )=3.解 ⎪⎪⎭⎫ ⎝⎛----=32321321k k k A ⎪⎪⎭⎫⎝⎛+-----)2)(1(0011011 ~k k k k k r . (1)当k =1时, R (A )=1; (2)当k =-2且k ≠1时, R (A )=2; (3)当k ≠1且k ≠-2时, R (A )=3.12. 求解下列齐次线性方程组:(1)⎪⎩⎪⎨⎧=+++=-++=-++02220202432143214321x x x x x x x x x x x x ;解 对系数矩阵A 进行初等行变换, 有A =⎪⎪⎭⎫ ⎝⎛--212211121211~⎪⎪⎭⎫ ⎝⎛---3/410013100101, 于是 ⎪⎪⎩⎪⎪⎨⎧==-==4443424134334x x x x x x x x ,故方程组的解为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛1343344321k x x x x (k 为任意常数).(2)⎪⎩⎪⎨⎧=-++=--+=-++05105036302432143214321x x x x x x x x x x x x ;解 对系数矩阵A 进行初等行变换, 有A =⎪⎪⎭⎫ ⎝⎛----5110531631121~⎪⎪⎭⎫⎝⎛-000001001021,于是 ⎪⎩⎪⎨⎧===+-=4432242102x x x x x x x x ,故方程组的解为⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛10010012214321k k x x x x (k 1, k 2为任意常数).(3)⎪⎩⎪⎨⎧=-+-=+-+=-++=+-+07420634072305324321432143214321x x x x x x x x x x x x x x x x ;解 对系数矩阵A 进行初等行变换, 有A =⎪⎪⎪⎭⎫ ⎝⎛-----7421631472135132~⎪⎪⎪⎭⎫ ⎝⎛1000010000100001,于是 ⎪⎩⎪⎨⎧====0004321x x x x ,故方程组的解为⎪⎩⎪⎨⎧====00004321x x x x .(4)⎪⎩⎪⎨⎧=++-=+-+=-+-=+-+03270161311402332075434321432143214321x x x x x x x x x x x x x x x x .解 对系数矩阵A 进行初等行变换, 有。

线性代数第四版答案

线性代数第四版答案

线性代数第四版答案(总120页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第一章行列式1利用对角线法则计算下列三阶行列式(1)解2(4)30(1)(1)1180132(1)81(4)(1)2481644(2)解acb bac cba bbb aaa ccc3abc a3b3c3(3)解bc2ca2ab2ac2ba2cb2(a b)(b c)(c a)(4)解x(x y)y yx(x y)(x y)yx y3(x y)3x33xy(x y)y33x2y x3y3x32(x3y3)2按自然数从小到大为标准次序求下列各排列的逆序数(1)1 2 3 4解逆序数为0(2)4 1 3 2解逆序数为4 41 43 42 32(3)3 4 2 1解逆序数为5 3 2 3 1 4 2 4 1, 2 1(4)2 4 1 3解逆序数为3 2 1 4 1 4 3(5)1 3 (2n1) 2 4 (2n)解逆序数为3 2 (1个)5 2 5 4(2个)7 2 7 4 7 6(3个)(2n1)2 (2n1)4 (2n1)6 (2n1)(2n2) (n1个)(6)1 3 (2n1) (2n) (2n2) 2解逆序数为n(n1)3 2(1个)5 2 5 4 (2个)(2n1)2 (2n1)4 (2n1)6 (2n1)(2n2) (n1个)4 2(1个)6 2 6 4(2个)(2n)2 (2n)4 (2n)6 (2n)(2n2) (n1个)3写出四阶行列式中含有因子a11a23的项解含因子a11a23的项的一般形式为(1)t a11a23a3r a4s其中rs是2和4构成的排列这种排列共有两个即24和42所以含因子a11a23的项分别是(1)t a11a23a32a44(1)1a11a23a32a44a11a23a32a44(1)t a11a23a34a42(1)2a11a23a34a42a11a23a34a424计算下列各行列式(1)解(2)解(3)解(4)解abcd ab cd ad1 5证明:(1)(a b)3;证明(a b)3(2);证明(3);证明(c4c3c3c2c2c1得)(c4c3c3c2得)(4)(a b)(a c)(a d)(b c)(b d)(c d)(a b c d);证明=(a b)(a c)(a d)(b c)(b d)(c d)(a b c d)(5)x n a1x n1a n1x a n证明用数学归纳法证明当n2时命题成立假设对于(n1)阶行列式命题成立即D n1x n1a1x n2a n2x a n1则D n按第一列展开有xD n1a n x n a1x n1a n1x a n因此对于n阶行列式命题成立6设n阶行列式D det(a ij), 把D上下翻转、或逆时针旋转90、或依副对角线翻转依次得证明D3D证明因为D det(a ij)所以同理可证7计算下列各行列式(D k为k阶行列式)(1), 其中对角线上元素都是a未写出的元素都是0解(按第n行展开)a n a n2a n2(a21)(2);解将第一行乘(1)分别加到其余各行得再将各列都加到第一列上得[x(n1)a](x a)n1(3);解根据第6题结果有此行列式为范德蒙德行列式(4);解(按第1行展开)再按最后一行展开得递推公式D2n a n d n D2n2b n c n D2n2即D2n(a n d n b n c n)D2n2于是而所以(5) D det(a ij)其中a ij|i j|;解a ij|i j|(1)n1(n1)2n2(6), 其中a1a2a n0解8用克莱姆法则解下列方程组(1)解因为所以(2)解因为所以9问取何值时齐次线性方程组有非零解解系数行列式为令D0得0或1于是当0或1时该齐次线性方程组有非零解10问取何值时齐次线性方程组有非零解解系数行列式为(1)3(3)4(1)2(1)(3)(1)32(1)23令D0得02或3于是当02或3时该齐次线性方程组有非零解第二章矩阵及其运算1已知线性变换求从变量x1x2x3到变量y1y2y3的线性变换解由已知故2已知两个线性变换求从z1z2z3到x1x2x3的线性变换解由已知所以有3设求3AB2A及A T B解4计算下列乘积(1)解(2)解(132231)(10)(3)解(4)解(5)解(a11x1a12x2a13x3 a12x1a22x2a23x3 a13x1a23x2a33x3)5设问(1)AB BA吗解AB BA因为所以AB BA (2)(A B)2A22AB B2吗解 (A B)2A22AB B2因为但所以(A B)2A22AB B2(3)(A B)(A B)A2B2吗解 (A B)(A B)A2B2因为而故(A B)(A B)A2B26举反列说明下列命题是错误的(1)若A20则A0解取则A20但A0(2)若A2A则A0或A E解取则A2A但A0且A E (3)若AX AY且A0则X Y解取则AX AY且A0但X Y7设求A2A3A k 解8设求A k解首先观察用数学归纳法证明当k2时显然成立假设k时成立,则k1时,由数学归纳法原理知9设A B为n阶矩阵,且A为对称矩阵,证明B T AB也是对称矩阵证明因为A T A所以(B T AB)T B T(B T A)T B T A T B B T AB从而B T AB是对称矩阵10设A B都是n阶对称矩阵,证明AB是对称矩阵的充分必要条件是AB BA证明充分性因为A T A B T B且AB BA所以(AB)T(BA)T A T B T AB即AB是对称矩阵必要性因为A T A B T B且(AB)T AB所以AB(AB)T B T A T BA11求下列矩阵的逆矩阵(1)解 |A|1故A1存在因为故(2)解 |A|10故A1存在因为所以(3)解 |A|20故A1存在因为所以(4)(a1a2a n0)解由对角矩阵的性质知12解下列矩阵方程(1)解(2)解(3)解(4)解13利用逆矩阵解下列线性方程组(1)解方程组可表示为故从而有(2)解方程组可表示为故故有14设A k O (k为正整数)证明(E A)1E A A2A k1证明因为A k O所以E A k E又因为E A k(E A)(E A A2A k1)所以 (E A)(E A A2A k1)E由定理2推论知(E A)可逆且(E A)1E A A2A k1证明一方面有E(E A)1(E A)另一方面由A k O有E(E A)(A A2)A2A k1(A k1A k)(E A A2A k1)(E A)故 (E A)1(E A)(E A A2A k1)(E A)两端同时右乘(E A)1就有(E A)1(E A)E A A2A k115设方阵A满足A2A2E O证明A及A2E都可逆并求A1及(A2E)1证明由A2A2E O得A2A2E即A(A E)2E或由定理2推论知A可逆且由A2A2E O得A2A6E4E即(A2E)(A3E)4E或由定理2推论知(A2E)可逆且证明由A2A2E O得A2A2E两端同时取行列式得 |A2A|2即 |A||A E|2故 |A|0所以A可逆而A2E A2 |A2E||A2||A|20故A2E也可逆由A2A2E O A(A E)2EA1A(A E)2A1E又由A2A2E O(A2E)A3(A2E)4E(A2E)(A3E) 4 E所以 (A2E)1(A2E)(A3E)4(A 2 E)116设A为3阶矩阵求|(2A)15A*|解因为所以|2A1|(2)3|A1|8|A|1821617设矩阵A可逆证明其伴随阵A*也可逆且(A*)1(A1)*证明由得A*|A|A1所以当A可逆时有|A*||A|n|A1||A|n10从而A*也可逆因为A*|A|A1所以(A*)1|A|1A又所以(A*)1|A|1A|A|1|A|(A1)*(A1)*18设n阶矩阵A的伴随矩阵为A*证明(1)若|A|0则|A*|0(2)|A*||A|n1证明(1)用反证法证明假设|A*|0则有A*(A*)1E由此得A A A*(A*)1|A|E(A*)1O所以A*O这与|A*|0矛盾,故当|A|0时有|A*|0(2)由于则AA*|A|E取行列式得到|A||A*||A|n若|A|0则|A*||A|n1若|A|0由(1)知|A*|0此时命题也成立因此|A*||A|n119设AB A2B求B解由AB A2E可得(A2E)B A故20设且AB E A2B求B解由AB E A2B得(A E)B A2E即 (A E)B(A E)(A E)因为所以(A E)可逆从而21设A diag(12 1)A*BA2BA8E求B 解由A*BA2BA8E得(A*2E)BA8EB8(A*2E)1A18[A(A*2E)]18(AA*2A)18(|A|E2A)18(2E2A)14(E A)14[diag(21 2)]12diag(12 1)22已知矩阵A的伴随阵且ABA1BA13E求B解由|A*||A|38得|A|2由ABA1BA13E得AB B3AB3(A E)1A3[A(E A1)]1A23设P1AP其中求A11解由P1AP得A P P1所以A11 A=P11P1.|P|3而故24设AP P其中求(A)A8(5E6A A2)解()8(5E62)diag(1158)[diag(555)diag(6630)diag(11 25)]diag(1158)diag(1200)12diag(100)(A)P()P125设矩阵A、B及A B都可逆证明A1B1也可逆并求其逆阵证明因为A1(A B)B1B1A1A1B1而A1(A B)B1是三个可逆矩阵的乘积所以A1(A B)B1可逆即A1B1可逆(A1B1)1[A1(A B)B1]1B(A B)1A26计算解设则而所以即27取验证解而故28设求|A8|及A4解令则故29设n阶矩阵A及s阶矩阵B都可逆求 (1)解设则由此得所以(2)解设则由此得所以30求下列矩阵的逆阵(1)解设则于是(2)解设则第三章矩阵的初等变换与线性方程组1把下列矩阵化为行最简形矩阵(1)解(下一步r2(2)r1r3(3)r1 ) ~(下一步r2(1)r3(2) ) ~(下一步r3r2 )~(下一步r33 )~(下一步r23r3 )~(下一步r1(2)r2r1r3 )~(2)解(下一步r22(3)r1r3(2)r1 )~(下一步r3r2r13r2 )~(下一步r12 )~(3)解(下一步r23r1r32r1r43r1 )~(下一步r2(4)r3(3)r4(5) )~(下一步r13r2r3r2r4r2 )~(4)解(下一步r12r2r33r2r42r2 ) ~(下一步r22r1r38r1r47r1 ) ~(下一步r1r2r2(1)r4r3 )~(下一步r2r3 )~2设求A解是初等矩阵E(1 2)其逆矩阵就是其本身是初等矩阵E(1 2(1))其逆矩阵是E(1 2(1))3试利用矩阵的初等变换求下列方阵的逆矩阵(1)解~~~~故逆矩阵为 (2)解~~~~~故逆矩阵为4 (1)设求X使AX B 解因为所以(2)设求X使XA B 解考虑A T X T B T因为所以从而5设AX2X A求X解原方程化为(A2E)X A因为所以6在秩是r的矩阵中,有没有等于0的r1阶子式有没有等于0的r阶子式解在秩是r的矩阵中可能存在等于0的r1阶子式也可能存在等于0的r阶子式例如R(A)3是等于0的2阶子式是等于0的3阶子式7从矩阵A中划去一行得到矩阵B问A B的秩的关系怎样解R(A)R(B)这是因为B的非零子式必是A的非零子式故A的秩不会小于B的秩8求作一个秩是4的方阵它的两个行向量是(1 0 1 0 0) (11 0 0 0)解用已知向量容易构成一个有4个非零行的5阶下三角矩阵此矩阵的秩为4其第2行和第3行是已知向量9求下列矩阵的秩并求一个最高阶非零子式(1);解(下一步r1r2 )~(下一步r23r1r3r1 )~(下一步r3r2 )~矩阵的是一个最高阶非零子式(2)解(下一步r1r2r22r1r37r1 ) ~(下一步r33r2 )~矩阵的秩是2是一个最高阶非零子式(3)解(下一步r12r4r22r4r33r4 )~(下一步r23r1r32r1 )~(下一步r216r4r316r2 )~~矩阵的秩为3是一个最高阶非零子式10设A、B都是m n矩阵证明A~B的充分必要条件是R(A)R(B)证明根据定理3必要性是成立的充分性设R(A)R(B)则A与B的标准形是相同的设A 与B的标准形为D则有A~D D~B由等价关系的传递性有A~B11设问k为何值可使(1)R(A)1 (2)R(A)2 (3)R(A)3解(1)当k1时R(A)1(2)当k2且k1时R(A)2(3)当k1且k2时R(A)312求解下列齐次线性方程组:(1)解对系数矩阵A进行初等行变换有A~于是。

人大版线性代数课后习题答案

人大版线性代数课后习题答案
(1) 用矩阵 分别左乘给定的
正方形各顶点和各边中点坐标,设得到的点依次为
试作出由这些点构成的平面图形;
(2)考虑矩阵
分别在当 和 时,用 左乘原正方形各顶点和各边中点的坐标,若设所得到的点的坐标 和 分别作出由这两组点构成的平面图形。
解:(1)以 的坐标为列构造28矩阵V,令
则矩阵W的每一列依次为 的坐标。如图所示。
第1章
矩阵
习题一
(B)
1、证明:矩阵A与所有n阶对角矩阵可交换的充分必要条件是A为n阶对角矩阵.
证明:先证明必要性。若矩阵A为n阶对角矩阵.即
令n阶对角矩阵为:
A= ,
任何对角矩阵B设为 ,则AB= ,
而BA= ,所以矩阵A与所有n阶对角矩阵可交换。
再证充分性,设A= ,
与B可交换,则由AB=BA,得:
所以 = = 。
8、计算行列式
解:用D表示所给的行列式,把D分成两个行列式相加:
D= +
将右边第一个行列式的第一列加到第二、第四列,用-1乘第一列后加到第三列;将第二个行列式变成三阶行列式后再拆成两个三阶行列式相加,
D= - -
= 。
9、设A为m阶方阵,B为n阶方阵,且 , 。如果

求detC.
解:把C通过mn次的相邻换行之后,即可把C化为C1,且
= =12。
(8)最后一列乘以-1后,加到第一列,并按最后一行展开,得
= = = =-192。
17、解方程
(1) ;(2) 。
解:(1) = = =1。
即解方程 ,因此x=3或-1。
(2) =(x+2)(x-1)=0。
所以方程的解为:x=1或-2。
18、设3阶行列式 ,计算下列行列式:

赵树源线性代数习题四(B)题目和答案

赵树源线性代数习题四(B)题目和答案

1.三阶矩阵A 的特征值为-2,1,3,则下列矩阵中非奇异矩阵是[ ]。

()2A I A - ()2B I A + ()C I A- ()3D A I - 【解】应选择答案()A 。

因为:由已知及特征值定义,A 的特征方程0I A λ-=的根为-2,1,3, 应有2I A --=I A -=30I A -=,即有32(1)20I A I A +=---=,知2I A +为奇异矩阵;由0I A -=知I A -为奇异矩阵;33(1)30A I I A -=--=,知3A I -为奇异矩阵;而三阶矩阵只能有三个特征值,故2不可能是A 的特征值,从而20I A -≠,即2I A -为非奇异矩阵。

2.设02λ=是可逆矩阵A 的一个特征值,则矩阵211()3A -必有一个特征值为[ ]。

()43A ()34B ()34C -()43D -【解】应选择答案()B 。

因为:02λ=是矩阵A 的一个特征值,即有2A αα=,于是211()33A A A αα=1(2)3A α=23A α=2(2)3α=,亦即21433A αα=,对上式两端左乘211()3A -,得212211114()()()()3333A A A αα--=,亦即 2141()33I A αα-=, 整理得2113()34A αα-=,这说明34是矩阵211()3A -的一个特征值。

3.设1λ,2λ都是n 阶矩阵A 的特征值,12λλ≠,且1α与2α分别是A 的对应于1λ与2λ的特征向量,则[ ]。

()10A c =且20c =时,1122c c ααα=+必是A 的特征向量 ()10B c ≠且20c ≠时,1122c c ααα=+必是A 的特征向量()120C c c =时,1122c c ααα=+必是A 的特征向量()10D c ≠而20c =时,1122c c ααα=+必是A 的特征向量【解】应选择答案()D 。

因为:()A 当10c =且20c =时,1122c c ααα=+1200o αα=⨯+⨯=为零向量,不可成为任一n 阶矩阵A 的特征向量;()B 反设1122c c αα+是A 的特征向量,对应的特征值为λ,于是有 11221122()()A c c c c ααλαα+=+, 亦即为 111222()()c c o λλαλλα-+-=,由定理4.3,不同特征值对应的特征向量线性无关,由上式应有1122()()0c c λλλλ-=-=,而题设10c ≠且20c ≠,于是只能有120λλλλ-=-=,亦即为 12λλλ==,但这与题设12λλ≠相矛盾,从而10c ≠且20c ≠时, 1122c c ααα=+不可能是A 的特征向量;()C 当120c c =时,有可能1c 与2c 同时为0,因为此时1122c c ααα=+为零向量,所以1122c c ααα=+“必”是A 的特征向量的说法是错误的;综上知,()D 正确。

线性代数(赵树嫄)第1章行列式

线性代数(赵树嫄)第1章行列式

1
0 1 5 1 1 3 4 7 1
§1.2 n阶行列式 引例 n元线性方程组(方程个数=未知量个数)
a11 x1 a12 x2 a1n xn b1 a21 x1 a22 x2 a2n xn b2 .......... ......... an1 x1 an2 x2 ann xn bn
N (n(n 1)L 21) (n 1) (n 2) 1
定理1.2. n个数码共有n!个排列,其中奇偶排列各占 n! 一半, 各为 . 2 (二) n阶行列式的定义

定义1.2 用n2个元素aij (i , j 1,2, , n)排成的数表
a11 a21 a n1 a12 a22 an 2 a1n a2 n ann
aij中i称为行标, j称为列标, aij
竖排称为列 , 其中横排称为行,
(i , j )元
表示该元素处在第 i行第j列, 处在行列的交叉处 , 有时也记为
a11 a 21 a 31
a12 a 22 a 32
a 23 a11a22a33 a12a23a31 a13a21a32 a13a22a31 a12a21a33 a11a23a32 a 33
6 2 8
主对角线及其主对角线方向上的三个元素的乘 副对角线及其副对角线方向上的三个元 积 带正号, 素的乘积 带负号, 所得六项的代数和就是三阶行列 式的展开式.
例5
a, b R, a , b 满足什么条件时有
a b 0 b a 0 0 1 0 1

a b 0 2 a b a 0 b2 1 0 1

线性代数人大(赵树

线性代数人大(赵树

例4 证明上三角行列式
a11 0 D 0 a12 a1n a22 a2 n a11a22 ann 0
证: 由定义
和式中,只有当
D ( 1) ( j1 j2 jn ) a1 j1 a2 j2 anjn
ann
jn n, jn1 n 1,, j2 2, j1 1时,
x1 3 x2 5 例1 解二元线性方程组 4 x1 3 x2 5
解: 方程组未知量的系数所构成的二阶行列式
D
1 3 4 3
3 ( 3) 4 15 0
1 5 4 5
方程组有惟一解.又
D1
5 3 5 3
30 , D2
15
分析:
a11 a 21 a 31 a12 a 22 a 32 a13 a 23 a11a 22a 33 a12a 23a 31 a13a 21a 32 a 33 a13a 22a 31 a12a 21a 33 a11a 23a 32
( 1)
( j1 j2 j3 )
于是方程组的解为
D3 15 D1 55 D2 20 x1 11,x2 4, x3 3. D 5 D 线性代数 5 D 5 9
思考与练习(三阶行列式) 1 1 1
1.解方程 1 2 1 x
x 1 6 2 x1 x 2 3 x 3 5 2.解线性方程组 3 x1 x 2 5 x 3 5 4x x x 9 2 3 1
于是方程组的解为
D1 30 D2 15 x1 2,x2 1. D 15 D 15 线性代数
6
(2)三阶行列式
主对角线法

线性代数课后习题答案第1――5章习题详解(优选.)

线性代数课后习题答案第1――5章习题详解(优选.)

xx .. ..第一章 行列式4.计算下列各行列式:(1)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢7110025*********4; (2)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢-265232112131412; (3)⎥⎥⎦⎥⎢⎢⎣⎢---ef cf bf de cd bd ae ac ab ; (4)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢---d c b a100110011001解(1)7110025102021421434327c c c c --0100142310202110214---=34)1(143102211014+-⨯---=143102211014-- 321132c c c c ++1417172001099-=0(2)2605232112131412-24c c -2605032122130412-24r r -0412032122130412- 14r r -0000032122130412-=0(3)ef cf bf de cd bd ae ac ab ---=e c b e c b e c b adf ---=111111111---adfbce =abcdef 4xx .. .. (4)d c b a 100110011001---21ar r +dc b a ab 100110011010---+=12)1)(1(+--dc a ab 10111--+ 23dc c +010111-+-+cd c ada ab =23)1)(1(+--cdadab +-+111=1++++ad cd ab abcd5.证明: (1)1112222b b a a b ab a +=3)(b a -; (2)bz ay by ax bx az by ax bx az bz ay bx az bz ay by ax +++++++++=y x z x z y z y x b a )(33+;(3)0)3()2()1()3()2()1()3()2()1()3()2()1(2222222222222222=++++++++++++d d d d c c c c b b b b a a a a ;(4)444422221111d c b a d c b a d c b a ))()()()((d b c b d a c a b a -----=))((d c b a d c +++-⋅;(5)1221100000100001a x a a a a x x x n n n +-----n n n n a x a x a x ++++=--111 . 证明(1)00122222221312a b a b a a b a ab a c c c c ------=左边a b a b a b a ab 22)1(22213-----=+21))((a b a a b a b +--=右边=-=3)(b axx .. ..(2)bz ay by ax z by ax bx az y bx az bz ay x a ++++++分开按第一列左边bzay by ax x by ax bx az z bxaz bz ay y b +++++++ ++++++002y by ax z x bx az y z bz ay x a 分别再分bz ay y x by ax x z bx az z y b +++zy x y x z xz y b y x z x z y z y x a 33+分别再分右边=-+=233)1(yx z x z y zy x b y x z x z y z y x a(3) 2222222222222222)3()2()12()3()2()12()3()2()12()3()2()12(++++++++++++++++=d d d d d c c c c c b b b b b a a a a a 左边9644129644129644129644122222141312++++++++++++---d d d d c c c c b b b b a a a a c c c c c c 964496449644964422222++++++++d d d d c c c c b b b b a a a a 分成二项按第二列964419644196441964412222+++++++++d d d c c c b b b a a a949494949464222224232423d d c c b b a a c c c c c c c c ----第二项第一项06416416416412222=+ddd c c c bb b a a a (4) 444444422222220001ad a c a b a ad a c a b a ad a c a b a ---------=左边=)()()(222222222222222a d d a c c a b b a d a c a b ad a c a b --------- =)()()(111))()((222a d d a c c a b b a d a c ab a d ac a b ++++++--- =⨯---))()((ad a c a b )()()()()(00122222a b b a d d a b b a c c a b b bd b c a b +-++-++--+ =⨯-----))()()()((b d b c a d a c a b )()()()(112222b d a b bd d b c a b bc c ++++++++xx .. ..=))()()()((d b c b d a c a b a -----))((d c b a d c +++-(5) 用数学归纳法证明.,1,2212122命题成立时当a x a x a x a x D n ++=+-==假设对于)1(-n 阶行列式命题成立,即 ,122111-----++++=n n n n n a x a x a x D:1列展开按第则n D1110010001)1(11----+=+-x xa xD D n n n n 右边=+=-n n a xD 1 所以,对于n 阶行列式命题成立.6.设n 阶行列式)det(ij a D =,把D 上下翻转、或逆时针旋转 90、或依副对角线翻转,依次得n nn n a a a a D 11111 =, 11112n nn n a a a a D = ,11113a a a a D n nnn =,证明D D D D D n n =-==-32)1(21,)1(.证明 )det(ij a D =nnnn nn n nn n a a a a a a a a a a D 2211111111111)1(--==∴ =--=--nnn n nnn n a a a a a a a a 331122111121)1()1( nnn n n n a a a a 111121)1()1()1(---=--D D n n n n 2)1()1()2(21)1()1(--+-+++-=-=xx .. ..同理可证nnn n n n a a a a D 11112)1(2)1(--=D D n n T n n 2)1(2)1()1()1(---=-= D D D D D n n n n n n n n =-=--=-=----)1(2)1(2)1(22)1(3)1()1()1()1(7.计算下列各行列式(阶行列式为k D k ):(1)a aD n 11=,其中对角线上元素都是a ,未写出的元素都是0;(2)xaaax aa a x D n=; (3) 1111)()1()()1(1111n a a a n a a a n a a a D n n n n nn n ------=---+; 提示:利用范德蒙德行列式的结果. (4) nnnnn d c d c b a b a D000011112=; (5)j i a a D ij ij n -==其中),det(;(6)nn a a a D +++=11111111121 ,021≠n a a a 其中.解xx .. ..(1) aa a a a D n 00010000000000001000 =按最后一行展开)1()1(100000000000010000)1(-⨯-+-n n n aa a)1)(1(2)1(--⋅-+n n na aa(再按第一行展开)n n n nn a a a+-⋅-=--+)2)(2(1)1()1(2--=n n a a )1(22-=-a a n(2)将第一行乘)1(-分别加到其余各行,得ax x a ax x a a x x a aa a x D n ------=0000000 再将各列都加到第一列上,得ax ax a x aaa a n x D n ----+=000000000)1( )(])1([1a x a n x n --+=- (3) 从第1+n 行开始,第1+n 行经过n 次相邻对换,换到第1行,第n 行经)1(-n 次对换换到第2行…,经2)1(1)1(+=++-+n n n n 次行交换,得xx .. ..nn n n n n n n n n a a a n a a a n a a aD )()1()()1(1111)1(1112)1(1-------=---++此行列式为范德蒙德行列式∏≥>≥++++--+--=112)1(1)]1()1[()1(j i n n n n j a i a D∏∏≥>≥+++-++≥>≥++-•-•-=---=111)1(2)1(112)1()][()1()1()]([)1(j i n n n n n j i n n n j i j i∏≥>≥+-=11)(j i n j i(4) nn nnn d c d c b a b a D 011112=nn n n n nd d c d c b a b a a 0000000011111111----展开按第一行0000)1(1111111112c d c d c b a b a b nn n n n nn ----+-+2222 ---n n n n n n D c b D d a 都按最后一行展开由此得递推公式:222)(--=n n n n n n D c b d a Dxx .. ..即 ∏=-=ni i i iin D c b da D 222)(而 111111112c b d a d c b a D -==得 ∏=-=ni i i i i n c b d a D 12)((5)j i a ij -=0432********0122210113210)det( --------==n n n n n n n n a D ij n ,3221r r r r --0432111111111111111111111 --------------n n n n,,141312c c c c c c +++152423210222102210002100001---------------n n n n n =212)1()1(----n n n(6)nn a a D a +++=11111111121,,433221c c c c c c ---n n n n a a a a a a a a a a +-------10000100010000100010001000011433221 展开(由下往上)按最后一列))(1(121-+n n a a a a nn n a a a a a a a a a --------00000000000000000000000000022433221xx .. ..nn n a a a a a a a a ----+--000000000000000001133221 ++ nn n a a a a a a a a -------000000000000000001143322n n n n n n a a a a a a a a a a a a 322321121))(1(++++=---)11)((121∑=+=ni in a a a a8.用克莱姆法则解下列方程组:⎪⎪⎩⎪⎪⎨⎧=+++-=----=+-+=+++;01123,2532,242,5)1(4321432143214321x x x x x x x x x x x x x x x x ⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=++=++=++=+.15,065,065,065,165)2(5454343232121x x x x x x x x x x x x x 解 (1)11213513241211111----=D 8120735032101111------=145008130032101111---=1421420005410032101111-=---= 112105132412211151------=D 11210513290501115----=1121023313090509151------=2331309050112109151------=1202300461000112109151-----=14200038100112109151----=142-=xx .. ..112035122412111512-----=D 811507312032701151-------=31390011230023101151-=2842840001910023101151-=----=426110135232422115113-=----=D ; 14202132132212151114=-----=D1,3,2,144332211-========∴DDx D D x D D x D D x (2) 510006510006510006510065=D 展开按最后一行61000510065100655-'D D D ''-'=65 D D D ''-'''-''=6)65(5D D '''-''=3019D D ''''-'''=1146566551141965=⨯-⨯=(,11的余子式中为行列式a D D ',11的余子式中为a D D ''''类推D D ''''''',) 51001651000651000650000611=D 展开按第一列6510065100650006+'D 46+'=D 460319+''''-'''=D 1507= 5101065100065000601000152=D 展开按第二列5100651006500061-6510065000610005-365510651065⨯-= 1145108065-=--=xx .. ..51100650000601000051001653=D 展开按第三列51006500061000516500061000510065+6100510656510650061+= 703114619=⨯+=51000601000051000651010654=D 展开按第四列61000510065100655000610005100651--51065106565--=395-= 110051000651000651100655=D 展开按最后一列D '+10005100651006512122111=+= 665212;665395;665703;6651145;665150744321=-==-==∴x x x x x . 9.齐次线性方程组取何值时问,,μλ⎪⎩⎪⎨⎧=++=++=++0200321321321x x x x x x x x x μμλ有非零解?解 μλμμμλ-==12111113D , 齐次线性方程组有非零解,则03=D即 0=-μλμ 得 10==λμ或不难验证,当,10时或==λμ该齐次线性方程组确有非零解.xx .. ..10.齐次线性方程组取何值时问,λ⎪⎩⎪⎨⎧=-++=+-+=+--0)1(0)3(2042)1(321321321x x x x x x x x x λλλ 有非零解?解λλλ----=111132421D λλλλ--+--=101112431)3)(1(2)1(4)3()1(3λλλλλ-------+-=3)1(2)1(23-+-+-=λλλ齐次线性方程组有非零解,则0=D 得 32,0===λλλ或不难验证,当32,0===λλλ或时,该齐次线性方程组确有非零解.xx .. ..第二章 矩阵及其运算1. 已知线性变换:⎪⎩⎪⎨⎧++=++=++=3213321232113235322y y y x y y y x y y y x , 求从变量x 1, x 2, x 3到变量y 1, y 2, y 3的线性变换.解 由已知:⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛221321323513122y y y x x x ,故 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-3211221323513122x x x y y y ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛----=321423736947y y y , ⎪⎩⎪⎨⎧-+=-+=+--=321332123211423736947x x x y x x x y x x x y .2. 已知两个线性变换⎪⎩⎪⎨⎧++=++-=+=32133212311542322y y y x y y y x y y x , ⎪⎩⎪⎨⎧+-=+=+-=323312211323z z y z z y z z y ,求从z 1, z 2, z 3到x 1, x 2, x 3的线性变换.xx .. ..解 由已知⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛221321514232102y y y x x x ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-=321310102013514232102z z z ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----=321161109412316z z z ,所以有⎪⎩⎪⎨⎧+--=+-=++-=3213321232111610941236z z z x z z z x z z z x .3. 设⎪⎪⎭⎫ ⎝⎛--=111111111A , ⎪⎪⎭⎫⎝⎛--=150421321B , 求3AB -2A 及A T B .解 ⎪⎪⎭⎫⎝⎛---⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=-1111111112150421321111111111323A AB⎪⎪⎭⎫⎝⎛----=⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-=2294201722213211111111120926508503,⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=092650850150421321111111111B A T.4. 计算下列乘积:(1)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134;解 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134⎪⎪⎭⎫ ⎝⎛⨯+⨯+⨯⨯+⨯-+⨯⨯+⨯+⨯=102775132)2(71112374⎪⎪⎭⎫⎝⎛=49635.xx .. ..(2)⎪⎪⎭⎫⎝⎛123)321(;解 ⎪⎪⎭⎫⎝⎛123)321(=(1⨯3+2⨯2+3⨯1)=(10).(3))21(312-⎪⎪⎭⎫⎝⎛;解 )21(312-⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛⨯-⨯⨯-⨯⨯-⨯=23)1(321)1(122)1(2⎪⎪⎭⎫⎝⎛---=632142. (4)⎪⎪⎪⎭⎫⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412 ; 解 ⎪⎪⎪⎭⎫⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412⎪⎭⎫ ⎝⎛---=6520876.(5)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x ;解⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x=(a 11x 1+a 12x 2+a 13x 3 a 12x 1+a 22x 2+a 23x 3 a 13x 1+a 23x 2+a 33x 3)⎪⎪⎭⎫ ⎝⎛321x x xxx .. ..322331132112233322222111222x x a x x a x x a x a x a x a +++++=.5. 设⎪⎭⎫ ⎝⎛=3121A , ⎪⎭⎫ ⎝⎛=2101B , 问:(1)AB =BA 吗? 解 AB ≠BA .因为⎪⎭⎫ ⎝⎛=6443AB , ⎪⎭⎫ ⎝⎛=8321BA , 所以AB ≠BA .(2)(A +B)2=A 2+2AB +B 2吗? 解 (A +B)2≠A 2+2AB +B 2.因为⎪⎭⎫ ⎝⎛=+5222B A ,⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=+52225222)(2B A ⎪⎭⎫ ⎝⎛=2914148,但⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=++43011288611483222B AB A ⎪⎭⎫ ⎝⎛=27151610,所以(A +B)2≠A 2+2AB +B 2.(3)(A +B)(A -B)=A 2-B 2吗? 解 (A +B)(A -B)≠A 2-B 2.因为⎪⎭⎫ ⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛=-1020B A ,⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=-+906010205222))((B A B A ,而⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-718243011148322B A ,故(A +B)(A -B)≠A 2-B 2.xx .. ..6. 举反列说明下列命题是错误的: (1)若A 2=0, 则A =0;解 取⎪⎭⎫ ⎝⎛=0010A , 则A 2=0, 但A ≠0. (2)若A 2=A , 则A =0或A =E ;解 取⎪⎭⎫ ⎝⎛=0011A , 则A 2=A , 但A ≠0且A ≠E . (3)若AX =AY , 且A ≠0, 则X =Y . 解 取⎪⎭⎫ ⎝⎛=0001A , ⎪⎭⎫ ⎝⎛-=1111X , ⎪⎭⎫ ⎝⎛=1011Y ,则AX =AY , 且A ≠0, 但X ≠Y .7. 设⎪⎭⎫ ⎝⎛=101λA , 求A 2, A 3, ⋅ ⋅ ⋅, A k .解⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=12011011012λλλA ,⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==1301101120123λλλA A A , ⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎪⎭⎫ ⎝⎛=101λk A k . 8. 设⎪⎪⎭⎫⎝⎛=λλλ001001A , 求A k .解 首先观察xx .. ..⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=λλλλλλ0010010010012A ⎪⎪⎭⎫ ⎝⎛=222002012λλλλλ,⎪⎪⎭⎫ ⎝⎛=⋅=3232323003033λλλλλλA A A ,⎪⎪⎭⎫⎝⎛=⋅=43423434004064λλλλλλA A A ,⎪⎪⎭⎫⎝⎛=⋅=545345450050105λλλλλλA A A ,⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎝⎛=kA k k kk k k k k k k λλλλλλ0002)1(121----⎪⎪⎪⎭⎫ . 用数学归纳法证明: 当k =2时, 显然成立. 假设k 时成立,则k +1时,⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫ ⎝⎛-=⋅=---+λλλλλλλλλ0010010002)1(1211k k k k k k k k k k k k A A A⎪⎪⎪⎪⎭⎫⎝⎛+++=+-+--+11111100)1(02)1()1(k k k k k k k k k k λλλλλλ, 由数学归纳法原理知:xx .. ..⎪⎪⎪⎪⎭⎫ ⎝⎛-=---k k k k k k k k k k k A λλλλλλ0002)1(121.9. 设A , B 为n 阶矩阵,且A 为对称矩阵,证明B T AB 也是对称矩阵. 证明 因为A T =A , 所以(B T AB)T =B T (B T A)T =B T A T B =B T AB ,从而B T AB 是对称矩阵.10. 设A , B 都是n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是AB =BA . 证明 充分性: 因为A T =A , B T =B , 且AB =BA , 所以 (AB)T =(BA)T =A T B T =AB ,即AB 是对称矩阵.必要性: 因为A T =A , B T =B , 且(AB)T =AB , 所以 AB =(AB)T =B T A T =BA . 11. 求下列矩阵的逆矩阵:(1)⎪⎭⎫ ⎝⎛5221; 解⎪⎭⎫ ⎝⎛=5221A . |A|=1, 故A -1存在. 因为⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=1225*22122111A A A A A ,故*||11A A A =-⎪⎭⎫ ⎝⎛--=1225.(2)⎪⎭⎫ ⎝⎛-θθθθcos sin sin cos ;xx .. ..解⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos A . |A|=1≠0, 故A -1存在. 因为⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=θθθθcos sin sin cos *22122111A A A A A ,所以*||11A A A =-⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos .(3)⎪⎪⎭⎫⎝⎛---145243121;解⎪⎪⎭⎫⎝⎛---=145243121A . |A|=2≠0, 故A -1存在. 因为⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛=214321613024*332313322212312111A A A A A A A A A A ,所以*||11A A A =-⎪⎪⎪⎭⎫⎝⎛-----=1716213213012.(4)⎪⎪⎪⎭⎫ ⎝⎛n a a a 0021(a 1a 2⋅ ⋅ ⋅a n≠0) .解⎪⎪⎪⎭⎫ ⎝⎛=n a a a A 0021, 由对角矩阵的性质知xx .. ..⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=-n a a a A 10011211 . 12. 解下列矩阵方程:(1)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛12643152X ; 解 ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-126431521X ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=12642153⎪⎭⎫ ⎝⎛-=80232. (2)⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--234311*********X ; 解 1111012112234311-⎪⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-=X⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-=03323210123431131 ⎪⎪⎭⎫ ⎝⎛---=32538122. (3)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-101311022141X ; 解 11110210132141--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=X⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=210110131142121xx .. ..⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=21010366121⎪⎪⎭⎫ ⎝⎛=04111. (4)⎪⎪⎭⎫⎝⎛---=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛021102341010100001100001010X . 解 11010100001021102341100001010--⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=X⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=010100001021102341100001010⎪⎪⎭⎫⎝⎛---=201431012. 13. 利用逆矩阵解下列线性方程组:(1)⎪⎩⎪⎨⎧=++=++=++3532522132321321321x x x x x x x x x ;解 方程组可表示为⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321153522321321x x x , 故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-0013211535223211321x x x , 从而有 ⎪⎩⎪⎨⎧===001321x x x .(2)⎪⎩⎪⎨⎧=-+=--=--05231322321321321x x x x x x x x x .解 方程组可表示为xx .. ..⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----012523312111321x x x , 故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛-3050125233121111321x x x , 故有 ⎪⎩⎪⎨⎧===305321x x x .14. 设A k =O (k 为正整数), 证明(E -A)-1=E +A +A 2+⋅ ⋅ ⋅+A k -1.证明 因为A k =O , 所以E -A k =E . 又因为E -A k =(E -A)(E +A +A 2+⋅ ⋅ ⋅+A k -1), 所以 (E -A)(E +A +A 2+⋅ ⋅ ⋅+A k -1)=E ,由定理2推论知(E -A)可逆, 且(E -A)-1=E +A +A 2+⋅ ⋅ ⋅+A k -1.证明 一方面, 有E =(E -A)-1(E -A).另一方面, 由A k =O , 有E =(E -A)+(A -A 2)+A 2-⋅ ⋅ ⋅-A k -1+(A k -1-A k )=(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A),故 (E -A)-1(E -A)=(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A),两端同时右乘(E -A)-1, 就有(E -A)-1(E -A)=E +A +A 2+⋅ ⋅ ⋅+A k -1.15. 设方阵A 满足A 2-A -2E =O , 证明A 及A +2E 都可逆, 并求A -1及(A +2E)-1. 证明 由A 2-A -2E =O 得A 2-A =2E , 即A(A -E)=2E ,xx .. ..或 E E A A =-⋅)(21, 由定理2推论知A 可逆, 且)(211E A A -=-. 由A 2-A -2E =O 得A 2-A -6E =-4E , 即(A +2E)(A -3E)=-4E ,或 E A E E A =-⋅+)3(41)2( 由定理2推论知(A +2E)可逆, 且)3(41)2(1A E E A -=+-.证明 由A 2-A -2E =O 得A 2-A =2E , 两端同时取行列式得|A 2-A|=2,即 |A||A -E|=2,故 |A|≠0,所以A 可逆, 而A +2E =A 2, |A +2E|=|A 2|=|A|2≠0, 故A +2E 也可逆.由 A 2-A -2E =O ⇒A(A -E)=2E⇒A -1A(A -E)=2A -1E ⇒)(211E A A -=-, 又由 A 2-A -2E =O ⇒(A +2E)A -3(A +2E)=-4E⇒ (A +2E)(A -3E)=-4 E ,所以 (A +2E)-1(A +2E)(A -3E)=-4(A +2 E)-1,)3(41)2(1A E E A -=+-. 16. 设A 为3阶矩阵,21||=A , 求|(2A)-1-5A*|.xx .. ..解 因为*||11A A A =-, 所以 |||521||*5)2(|111----=-A A A A A |2521|11---=A A =|-2A -1|=(-2)3|A -1|=-8|A|-1=-8⨯2=-16.17. 设矩阵A 可逆, 证明其伴随阵A*也可逆, 且(A*)-1=(A -1)*.证明 由*||11A A A =-, 得A*=|A|A -1, 所以当A 可逆时, 有 |A*|=|A|n |A -1|=|A|n -1≠0,从而A*也可逆.因为A*=|A|A -1, 所以(A*)-1=|A|-1A . 又*)(||)*(||1111---==A A A A A , 所以 (A*)-1=|A|-1A =|A|-1|A|(A -1)*=(A -1)*.18. 设n 阶矩阵A 的伴随矩阵为A*, 证明:(1)若|A|=0, 则|A*|=0;(2)|A*|=|A|n -1.证明(1)用反证法证明. 假设|A*|≠0, 则有A*(A*)-1=E , 由此得A =A A*(A*)-1=|A|E(A*)-1=O ,所以A*=O , 这与|A*|≠0矛盾,故当|A|=0时, 有|A*|=0.(2)由于*||11A A A =-, 则AA*=|A|E , 取行列式得到 |A||A*|=|A|n .若|A|≠0, 则|A*|=|A|n -1;xx .. ..若|A|=0, 由(1)知|A*|=0, 此时命题也成立.因此|A*|=|A|n -1.19. 设⎪⎪⎭⎫⎝⎛-=321011330A , AB =A +2B , 求B . 解 由AB =A +2E 可得(A -2E)B =A , 故⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛---=-=--321011330121011332)2(11A E A B ⎪⎪⎭⎫ ⎝⎛-=011321330. 20. 设⎪⎪⎭⎫⎝⎛=101020101A , 且AB +E =A 2+B , 求B . 解 由AB +E =A 2+B 得(A -E)B =A 2-E ,即 (A -E)B =(A -E)(A +E).因为01001010100||≠-==-E A , 所以(A -E)可逆, 从而⎪⎪⎭⎫ ⎝⎛=+=201030102E A B . 21. 设A =diag(1, -2, 1), A*BA =2BA -8E , 求B .解 由A*BA =2BA -8E 得(A*-2E)BA =-8E ,B =-8(A*-2E)-1A -1=-8[A(A*-2E)]-1=-8(AA*-2A)-1xx .. ..=-8(|A|E -2A)-1=-8(-2E -2A)-1=4(E +A)-1=4[diag(2, -1, 2)]-1)21 ,1 ,21(diag 4-= =2diag(1, -2, 1).22. 已知矩阵A 的伴随阵⎪⎪⎪⎭⎫ ⎝⎛-=8030010100100001*A , 且ABA -1=BA -1+3E , 求B .解 由|A*|=|A|3=8, 得|A|=2.由ABA -1=BA -1+3E 得AB =B +3A ,B =3(A -E)-1A =3[A(E -A -1)]-1A 11*)2(6*)21(3---=-=A E A E ⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛--=-1030060600600006603001010010000161. 23. 设P -1AP =Λ, 其中⎪⎭⎫ ⎝⎛--=1141P , ⎪⎭⎫ ⎝⎛-=Λ2001, 求A 11. 解 由P -1AP =Λ, 得A =P ΛP -1, 所以A 11= A=P Λ11P -1.|P|=3, ⎪⎭⎫ ⎝⎛-=1141*P , ⎪⎭⎫ ⎝⎛--=-1141311P ,xx .. ..而 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-=Λ11111120 012001, 故 ⎪⎪⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=31313431200111411111A ⎪⎭⎫ ⎝⎛--=68468327322731. 24. 设AP =P Λ, 其中⎪⎪⎭⎫ ⎝⎛--=111201111P , ⎪⎪⎭⎫ ⎝⎛-=Λ511, 求ϕ(A)=A 8(5E -6A +A 2).解 ϕ(Λ)=Λ8(5E -6Λ+Λ2)=diag(1,1,58)[diag(5,5,5)-diag(-6,6,30)+diag(1,1,25)]=diag(1,1,58)diag(12,0,0)=12diag(1,0,0).ϕ(A)=P ϕ(Λ)P -1*)(||1P P P Λ=ϕ ⎪⎪⎭⎫⎝⎛------⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---=1213032220000000011112011112 ⎪⎪⎭⎫⎝⎛=1111111114. 25. 设矩阵A 、B 及A +B 都可逆, 证明A -1+B -1也可逆, 并求其逆阵. 证明 因为A -1(A +B)B -1=B -1+A -1=A -1+B -1,而A -1(A +B)B -1是三个可逆矩阵的乘积, 所以A -1(A +B)B -1可逆, 即A -1+B -1可逆. (A -1+B -1)-1=[A -1(A +B)B -1]-1=B(A +B)-1A .xx .. ..26. 计算⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛30003200121013013000120010100121. 解 设⎪⎭⎫ ⎝⎛=10211A , ⎪⎭⎫ ⎝⎛=30122A , ⎪⎭⎫ ⎝⎛-=12131B , ⎪⎭⎫ ⎝⎛--=30322B , 则 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A , 而 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛--+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=+4225303212131021211B B A , ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛=90343032301222B A , 所以 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A ⎪⎪⎪⎭⎫ ⎝⎛---=9000340042102521, 即 ⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛30003200121013013000120010100121⎪⎪⎪⎭⎫ ⎝⎛---=9000340042102521. 27. 取⎪⎭⎫ ⎝⎛==-==1001D C B A , 验证|||||||| D C B A D C B A ≠. 解 41001200210100101002000021010010110100101==--=--=D C B A , 而 01111|||||||| ==D C B A , 故|||||||| D C B A D C B A ≠.xx .. ..28. 设⎪⎪⎪⎭⎫ ⎝⎛-=22023443O O A , 求|A 8|及A 4. 解 令⎪⎭⎫ ⎝⎛-=34431A , ⎪⎭⎫ ⎝⎛=22022A , 则 ⎪⎭⎫ ⎝⎛=21A O O A A , 故 8218⎪⎭⎫ ⎝⎛=A O O A A ⎪⎭⎫ ⎝⎛=8281A O O A ,1682818281810||||||||||===A A A A A . ⎪⎪⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=464444241422025005O O A O O A A . 29. 设n 阶矩阵A 及s 阶矩阵B 都可逆, 求(1)1-⎪⎭⎫ ⎝⎛O B A O ;解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211C C C C O B A O , 则 ⎪⎭⎫ ⎝⎛O B A O ⎪⎭⎫ ⎝⎛4321C C C C ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=s n E O O E BC BC AC AC 2143. 由此得 ⎪⎩⎪⎨⎧====s n E BC O BC O AC E AC 2143⇒⎪⎩⎪⎨⎧====--121413B C O C O C A C , 所以 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛---O A B O O B A O 111.xx .. ..(2)1-⎪⎭⎫ ⎝⎛B C O A .解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211D D D D B C O A , 则⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛s n E O O E BD CD BD CD AD AD D D D D B C O A 4231214321. 由此得 ⎪⎩⎪⎨⎧=+=+==s n E BD CD O BD CD O AD E AD 423121⇒⎪⎩⎪⎨⎧=-===----14113211B D CA B D O D A D ,所以 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-----11111B CA B O A BC O A . 30. 求下列矩阵的逆阵:(1)⎪⎪⎪⎭⎫⎝⎛2500380000120025; 解 设⎪⎭⎫ ⎝⎛=1225A , ⎪⎭⎫ ⎝⎛=2538B , 则⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--5221122511A , ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--8532253811B .于是 ⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛----850032000052002125003800001200251111B A B A .(2)⎪⎪⎪⎭⎫⎝⎛4121031200210001.xx .. ..解 设⎪⎭⎫ ⎝⎛=2101A , ⎪⎭⎫ ⎝⎛=4103B , ⎪⎭⎫ ⎝⎛=2112C , 则⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛------1111114121031200210001B CA B O A BC O A⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-----=411212458103161210021210001.第三章 矩阵的初等变换与线性方程组1.把下列矩阵化为行最简形矩阵:(1) ⎪⎪⎪⎭⎫ ⎝⎛--340313021201; (2)⎪⎪⎪⎭⎫⎝⎛----174034301320; (3) ⎪⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311; (4)⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132.解 (1) ⎪⎪⎪⎭⎫ ⎝⎛--340313*********2)3()2(~r r r r -+-+⎪⎪⎪⎭⎫ ⎝⎛---020*********)2()1(32~-÷-÷r r ⎪⎪⎪⎭⎫ ⎝⎛--01003100120123~r r -⎪⎪⎪⎭⎫⎝⎛--300031001201xx .. ..33~÷r ⎪⎪⎪⎭⎫ ⎝⎛--100031001201323~r r +⎪⎪⎪⎭⎫ ⎝⎛-1000010012013121)2(~r r r r +-+⎪⎪⎪⎭⎫⎝⎛100001000001(2) ⎪⎪⎪⎭⎫ ⎝⎛----1740343013201312)2()3(2~r r r r -+-+⨯⎪⎪⎪⎭⎫ ⎝⎛---31003100132021233~r r r r ++⎪⎪⎪⎭⎫ ⎝⎛000031001002021~÷r ⎪⎪⎪⎭⎫ ⎝⎛000031005010 (3) ⎪⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311 141312323~rr r r rr ---⎪⎪⎪⎪⎭⎫ ⎝⎛--------1010500663008840034311)5()3()4(432~-÷-÷-÷r r r ⎪⎪⎪⎪⎭⎫⎝⎛-----22100221002210034311 2423213~r r r r r r ---⎪⎪⎪⎪⎭⎫⎝⎛---00000000002210032011(4) ⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132 242321232~rr r r rr ---⎪⎪⎪⎪⎭⎫ ⎝⎛-----1187701298804202111110141312782~rr r r r r --+⎪⎪⎪⎪⎭⎫⎝⎛--410004100020201111134221)1(~r r r r r --⨯↔⎪⎪⎪⎪⎭⎫⎝⎛----0000041000111102020132~rr +⎪⎪⎪⎪⎭⎫⎝⎛--000004100030110202012.设⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛987654321100010101100001010A ,求A 。

线性代数(赵树嫄)第一章 行列式

线性代数(赵树嫄)第一章 行列式

2a12 10a13 a22 a32 5a23 5a33
a11 a12 a1 a2 a n1 a n 2
a1n an bn ann
a1n bn ann
a1n a11 a12 an b1 b2 ann an1 an 2
推论:如果行列式的某一行(列)的每个元素都可 以写成 m 个数的和,则此行列式可以写成 m 个行 列式的和。 性质5: 行列式的某一行(列)的所有元素都乘以数 k 加到另一行(列)的相应元素上,行列式的值不变,即 a11 a12 a1n a11 a12 a1n r kr i j a i 1 a i 2 ain a i 1 ka j 1 a i 2 ka j 2 a in ka jn a n1 a n 2 a nn a n1 an 2 a nn 推理: 行列式的某一行(列) 的元素直接加到另一行 (列)的相应元素上,行列式的值不变。
对于二、三阶行列式,或者 0 元素很多 的高阶行列式,可以直接利用行列式定 义来计算。
例1
a11 a21 a n1 0 a22 an 2
下三角形行列式
0 0 a11a22 ann ann
上三角形行列式
a11 0 0 a12 a22 0 a1n a2 n a11a22 ann ann
为三阶行列式, 记为:
a21 a22 a23 a31 a32 a33
即:
a11 a12 a13 a21 a22 a23 =a11a22a33 +a12a23a31+a13a21a32 a31 a32 a33
-a11a23a32 -a12a21a33 -a13a22a31

线性代数人大(赵树

线性代数人大(赵树

对换:在一个排列i1…is…it …in中,若其中某两 数is和it互换位置, 其余各数位置不变得到另一排列 i1…it…is …in,这种变换称为一个对换, 记为( isit).

例6
( 31)
( 42)
( 43)
3421 1423 1243 1234
5 2 1 0
a1 j1 a2 j2 anjn 0
所以
D (1)
(123n )
a11a22 ann a11a22 ann
上三角行列式的值等于其主对角线上各元素的乘积 . 20 线性代数
例5 计算
0
0

0
1
0 0 2 0 D 0 n 1 0 0
n
上式中的分子、分母都是四个数分两对相乘 再相减而得。为便于记忆,引进如下记号:
a11
a12
a21 a22
a11a22 a12a21
称其为二阶行列式 . 据此,解中的分子可分别记为: b1 a12 a11 b1 D1 , D2 b2 a 22 a 21 b2 a11 a12 当D 0时, 方程组的解可表为 a21 a22 D1 D2 x1 ,x2 5 D 线性代数 D
答 1. 方程化简为 案 (x-1)2 =4, 其解为x=3或x=-1;
2 1 3 2. D 3 1 5 6 D1 12 D2 6 D3 0 4 1 1
x1 2, x2 1, x 3 0 线性代数
10
2.排列及其逆序数
(1)排列 由自然数1,2,…,n,组成的一个有序数组i1i2…in
( 1) ( j1 j2 jn ) 的项的和. 并冠以符号
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线性代数习题习题一(A )1,(6)2222222222212(1)4111(1)2111t tt tt t t t tt t --+++==+--++ (7)1log 0log 1b a ab =2,(3)-7(4)04,23410001k k k k k -=-=,0k =或者1k =.5,23140240,0210xx x x x x x=-≠≠≠且.8,(1)4 (2)7 (3)13(4) N( n(n-1)…21 )=(n-1)+(n-2)+…+2+1=(1)2n n - 10, 列号为3k42l,故k 、l 可以选1或5;若k=1,l=5,则N(31425)=3,为负号;故k=1,l=5.12,(1)不等于零的项为132234411a a a a =(2)(234...1)11223341,1...(1)!(1)N n n n n n a a a a a n n --=-=-! 13,(3)211234215352153421510006123061230002809229092280921000280921000c c r r --=(4)将各列加到第一列,2()2()2()x y y xyD x y x y x x y x y ++=+++12()11yx y x y x y x yx+=+---12()00y x yx y xy x yx+=+---332()x y =-+ 17,(1)从第二行开始每行加上第一行,得到1111111111110222 (81111002211110002)-===-----. (2)433221,,r r r r r r ---…431111111112340123 (113610013614102001410)r r -== (3)各列之和相等,各行加到第一行… 18,(3)2134312441224011201120112042413541350355016423223123312304830010522051205102110211r r r r r r r r r r --------+-----=+---------+4334433424241120112*********164016401641010100021002100027202110013700114r r r r r r r r r r r r ------+---------------341120016410011400027r r ----↔--270=-20,第一行加到各行得到上三角形行列式,1230262!0032n n n n n= 21,各行之和相等,将各列加到第一列并且提出公因式(1)n x -110(1)1010x x x x x x xn xx x x x x x -从第二行开始各行减去第一行得到1111000(1)(1)(1)(1)(1)00000n n n n x x x x x n xn x xn x x x-----=--=---- 22,最后一列分别乘以121,,...n a a a ----再分别加到第1,2,…n-1列得到上三角形行列式11223122313112101001()()...()000101n n n n n n n n x a a a a a a a x a a a a a x a a a x a x a x a x a ------------=----23,按第一列展开1221103110001111111100000000000000000000000n n n nnna a a aD a a a a a a a +--=-+ 1122243111111111110000000000000000 (1)00000000n nn a a a a a a a a +--++-012234134123112011..................()nn n n n n i ia a a a a a a a a a a a a a a a a a a a a -==----=-∑24,将第二列加第一列,然后第三列加第二列,….第n 列加第n-1列,最后按第一行展开。

D =12200...000...00....................................000 (1)21...11n n a a a a a ---1200...0000...00....................................000 (01)23...1na a a nn --=-+12(1)(1)...n n n a a a =-+. 25,(1)21432222221123112312220100(1)(4)02315231523190004r r r r x x x x x x ----=--=--12x x =±=± (2)各行之和相等…p18 (3)与22题类似…(4)当0,1,2,3,..2x n =-时,代入行列式都会使行列式有两行相同,所以它们都是方程的根。

28,414243441041401402112(6)212(6)0301806001111111111A A A A --+++==--=--=- 29,111213141111d cb bA A A A b b b b c dad+++=其中1,3两行对应成比例,所以为零. 32,从第二行开始每一行乘以(-1)加到上一行然后按第一列展开12340111111231*********001111130001112000011111nn x x n x D x x n x x x x xxxxxx----==--1111111*********(1)00011011n xx x+--=--11121,2 (1)000000100000010000(1)(1)001000000000011i i r r n n n i n x x x x xx x x x x+-++-=---−−−−→-=--←−−−−- 33,按第一列展开100000000000000000000000000000n a b a b a b a b a a D a a b a b baba-−−−−→=←−−−−按第一列展开阶10000000000000000n b a b a b b b ab++(-1)1n n na b +=+(-1)34,原方程化为21211123122(2)(4)00212002x x x x x x x x==--…. 35,12341111001111111111110011111111r r r r x x x x x y y y y y--+--−−−→←−−−+--22110011001111000001100111111000xxxyxyx y y y--===--=0 解得0x =或者0y =36,11111213(21)(11)(12)(31)(32)(31)48141918127-=++-+--=--(范德蒙行列式) 37,解122322222222211()()11a b x b x a a xb ax a x a c c x a b x aa b b a x b a b c cx a b x a a b b x a a b b +++--++---=----------- 2121111()()00()()()x ar r a x b a x a b a x b a x a b x a a bx a a b b ++--++=---++-------- ()()()()x a b a x b x b a =++---40,(3)D=63,D 1=63,D 2=126, D 3=189123123x x x =⎧⎪=⎨⎪=⎩ (6)D=20,D 1=60,D 2=-80, D 3=--20,D 4=2012343411x x x x =⎧⎪=-⎪⎨=-⎪⎪=⎩ 42,∵22106912412458201822---=---23233330182205--=-=-=--∴原方程仅有零解。

43,令112211310211211kk k k --=---(2)(1)6k k =---2340k k =--=, 得 1k =-或4k =;故当1k =-或4k =时原齐次方程组有非零解。

44,原齐次方程组的系数行列式1120011310(2)(1)211211k k k k k k -+-=-=+-≠-- 即当1k ≠且2k ≠-时原齐次方程组仅有零解。

习题二(A)2,(1)1315 3828237913 A B⎡⎤⎢⎥-=⎢⎥⎢⎥⎣⎦-(2)141387 2325252165 A B⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦+--(3)311140401335 x B A-⎡⎤⎢⎥=-=--⎢⎥⎢⎥----⎣⎦(4)由(2A—Y)+2(B—Y)=0得3Y=2(A+B)∴2()3Y A B=+55332020231133⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦10102233440033222233⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦3,因为232420274x u vA B Cx y y v+-+⎡⎤+-==⎢⎥-++-+⎣⎦得方程组2302724040x ux yvy v+-=⎧⎪-++⎪⎨+=⎪⎪-+=⎩解得x=-5,y=-6,u=4,v=-25,(2)1041 431⎡⎤⎢⎥⎣⎦---(3)123246369⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦14(7)1051176291516153202⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎣⎦---=11,(1)设a cXb d⎡⎤⎢⎥⎣⎦=,则25461321a cb d-⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦2525463321a b c d a b c d ++-⎡⎤⎡⎤=⎢⎥⎢⎥++⎣⎦⎣⎦,得到方程组 25432a b a b +=⎧⎨+=⎩解得20a b =⎧⎨=⎩, 与25631c d c d +=⎧⎨+=⎩-解得238c d =⎧⎨=⎩-.22308X ⎡⎤⎢⎥⎣⎦-=. (2)54245974X ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦--=--2-- (3)设x X y z ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦=,111221131116x y z -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦, 2236x y z x y z x y z +-=⎧⎪-++=⎨⎪++=⎩,解得132x y z =⎧⎪=⎨⎪=⎩于是132X ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦=. 13.设所有可交换的矩阵为a b X c d ⎡⎤=⎢⎥⎣⎦则11110101a b a b c d c d ⎡⎤⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦, a c b d a a b c d c c d +++⎡⎤⎡⎤=⎢⎥⎢⎥+⎣⎦⎣⎦解得0abc d a⎧⎪⎪⎨=⎪⎪=⎩从而0a b X a ⎡⎤=⎢⎥⎣⎦. 16,(3)因为111111000000⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,所以11110000n⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦. (4)因为21111111201010101⎡⎤⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦用数学归纳法可以推得 1110101nn ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦. (5)因为2111111221121111112211⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦故可以推出111111111...211111111nn -⎡⎤⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦. 20,334()mA m A m m m -=-=-=- 21,122(2)2T T n T n n A A mA m A m +===.28,因为()()T T T T T T A A A A A A ==,所以T AA 为对称矩阵.因为()()T T T T T T AA A A AA ==,所以T AA 为对称矩阵.31, (1),原矩阵为12111224123431324442112032A A A B A B A B B B A A A B A B A B B -⎡⎤+⎡⎤⎡⎤⎡⎤⎢⎥==-⎢⎥⎢⎥⎢⎥⎢⎥+⎣⎦⎣⎦⎣⎦⎢⎥-⎣⎦,其中 1112021111A B --⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦[]1224121010111101112A B A B -⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤+=+-=+=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦; [][]3100331A B ⎡⎤==⎢⎥⎣⎦;[][][][][][]3244103210220A B A B ⎡⎤+=+-=+-=-⎢⎥⎣⎦;(3),记原矩阵为00aII cI I bI dI ⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦,则有 00aI I cI I bI dI ⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦ 2222aI acI I cI bdI ⎡⎤=⎢⎥+⎣⎦ ()aIacI Ic bd I ⎡⎤=⎢⎥+⎣⎦000100010a ac a ac c bd c bd ⎡⎤⎢⎥⎢⎥=⎢⎥+⎢⎥+⎣⎦.33,312313234242A A A A A A A A --=--- 1231234288A A A A A A =-=-=-34,(2)因为0a b ad bc c d =-≠,所以11a b d b c d c a ad bc --⎡⎤⎡⎤=⎢⎥⎢⎥--⎣⎦⎣⎦. (4)因为1A =-,故可逆.*143153164A -⎡⎤⎢⎥=-⎢⎥⎢⎥--⎣⎦,1143153164A ---⎡⎤⎢⎥=--⎢⎥⎢⎥-⎣⎦. (6)因为12...0n A a a a =≠,故可逆. 1211...(12...)i i i i nA a a a a a i n -+==, 23*121 (00)nn a a a A a a a -⎛⎫⎪=⎪⎪⎝⎭,111100n a A a -⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦. 40, (1)1254635462231321122108X -----⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦. (211101131111135422243221043211145212511112531974122X -⎡⎤⎢⎥---⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥==--=--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦⎣⎦--⎢⎥⎣⎦) (3)11103311122111121133323611166211022X -⎡⎤-⎢⎥-⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=-==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎢⎥-⎢⎥⎣⎦. 42, 由2AX I A X +=+得到2AX X A I -=-,()()()A I X A I A I -=-+,1()()()()I A I A I X A I A I ----=--()A I +201140022X A I -⎡⎤⎢⎥=+=⎢⎥⎢⎥⎣⎦. 44, 两边同乘以121()()()(...)k k I A I A I A I A A A I A I ----=-++++=-=. 45, 由2240A A I --=得到()(3)A I A I I +-=,于是A I +可逆并且1()3A I A I-+=-. 51, 因为12A -=, 1*1113112216(3)22()33327A A A A A A A------=-=-=-=-. 52, 1113112()2()(2)(8)3122T T A B B A B A -----=-=-=-⋅⋅=-.53, (3),初等行变换得到21321123123313513112112112101100321055011011010120012003001001r r r r r r r r r r r r --+-+----⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥−−−→-−−→-−−−→-−−−→⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦(6),131310101300000121050100⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥--→→→⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦. 54, (1)23122112312223100110010101021110010043120011011121001011011043120r r r r r r r r r r ↔↔-++-⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-−−−→-−−−→⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦23421334101021100143011011010153001164001164r r r r r r r +-+---⎡⎤⎡⎤⎢⎥⎢⎥−−−→−−−→--⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦, 所以 1223143110153121164---⎡⎤⎡⎤⎢⎥⎢⎥-=--⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦. (4), 13571000100201311001230100012301000012001000120010000100010010001--⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦1000131120010001210010001200010001--⎡⎤⎢⎥-⎢⎥→⎢⎥-⎢⎥⎣⎦,11357131120012301210012001200010001----⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥=⎢⎥⎢⎥-⎢⎥⎢⎥⎣⎦⎣⎦. 55, (1),41544154200410026158200401540154⎡⎤⎡⎤⎡⎤⎡⎤→→→⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦⎣⎦, 10254X A B -⎡⎤==⎢⎥-⎣⎦. (2), 111111111013025202520016101301220122--⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-→-→-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦ 10091009001601014010140016⎡⎤⎡⎤⎢⎥⎢⎥→-→-⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦, 19146X A B -⎡⎤⎢⎥==-⎢⎥⎢⎥-⎣⎦. 56,101301101301100522110110011211010432012014001223001223--⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-→----→--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦, 1522(2)432223B A I A ---⎡⎤⎢⎥=-=--⎢⎥⎢⎥-⎣⎦. 57, (1) 1234123412450411110120000⎡⎤⎡⎤⎢⎥⎢⎥-→-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦,秩为2. (3)11210112101121011210224200000000000030013061103041000400004003001030010300100000----⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥→→→⎢⎥⎢⎥⎢⎥⎢⎥----⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦秩为3.(4)秩为3.58, 初等行变换得到111111121010231001λλ⎡⎤⎡⎤⎢⎥⎢⎥→⎢⎥⎢⎥⎢⎥⎢⎥+-⎣⎦⎣⎦,因为秩为2必有 10λ-=, 1λ=.59,111111110112001100123100001a a a ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥→→-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥+-⎣⎦⎣⎦⎣⎦当1,()2;a r A ==当1,()3a r A ≠=.60, 1121112112101423110464A a a b b --⎡⎤⎡⎤⎢⎥⎢⎥=-→-⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦, 因为()2r A =,所以第二第三两行成比例从而得到464142b a --==-解得1a =-, 2b =-习题三(A )1,用消元法解下列线性方程组(1)123123123123233350433136x x x x x x x x x x x x -+=⎧⎪+-=⎪⎨-+=⎪⎪+-=-⎩解2133131361313613136315031500834180153(,)4113411301353270135327131362133072915072915A b -------⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥----⎢⎥⎢⎥⎢⎥⎢⎥=→→→⎢⎥⎢⎥⎢⎥⎢⎥----⎢⎥⎢⎥⎢⎥⎢⎥-----⎣⎦⎣⎦⎣⎦⎣⎦13136131361301530153015300121200110011006600110000------⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥------⎢⎥⎢⎥⎢⎥→→→⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦,回代,131361023101015301530102001100110011000000000000--⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥----⎢⎥⎢⎥⎢⎥→→⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,方程组有唯一解:123121x x x =⎧⎪=⎨⎪=⎩(2)1234123412342121255x x x x x x x x x x x x -++=⎧⎪-+-=-⎨⎪-+-=⎩解:1211112111(,)12111000221215500064A b --⎡⎤⎡⎤⎢⎥⎢⎥=---→--⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦1211100022000010-⎡⎤⎢⎥→--⎢⎥⎢⎥⎣⎦,系数矩阵的秩为2,而增广矩阵的秩为3;方程组无解.(3)123412341234101222x x x x x x x x x x x x ⎧⎪-+-=⎪--+=⎨⎪⎪--+=-⎩解: (A ,b)=111111111111111111110002210011213000001122003322⎡⎤⎡⎤--⎡⎤⎢⎥⎢⎥----⎢⎥⎢⎥⎢⎥⎢⎥--→--→-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-----⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦ 11100210011200000⎡⎤-⎢⎥⎢⎥⎢⎥→-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦,得到同解方程组1212343411221122x x x x x x x x ⎧⎧-==+⎪⎪⎪⎪→⎨⎨⎪⎪-==+⎪⎪⎩⎩设21x c =,42x c =,则得到一般解为112132421212x c x c x c x c ⎧=+⎪⎪=⎪⎨⎪=+⎪⎪=⎩ (6)1245123412345123453020426340242470x x x x x x x x x x x x x x x x x x +--=⎧⎪-+-=⎪⎨-++-=⎪⎪+-+-=⎩解:A =11031110311103111210022210222142634066150000932424702210500000------⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥------⎢⎥⎢⎥⎢⎥→→⎢⎥⎢⎥⎢⎥----⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦⎣⎦7113111061501110110261100010001330000000000⎡⎤---⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥---⎢⎥--⎢⎥⎢⎥→→⎢⎥⎢⎥-⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦,得到同解的方程组13523545706506103x x x x x x x x ⎧+-=⎪⎪⎪--=⎨⎪⎪-=⎪⎩, 13523545765613x x x x x x x x ⎧=-+⎪⎪⎪=+⎨⎪⎪=⎪⎩ 令31x c =,52x c =, 得到112212314252765613x c c x c c x c x c x c ⎧=-+⎪⎪⎪=+⎪⎪=⎨⎪⎪=⎪⎪=⎪⎩2,确定a,b 的值使下列线性方程组有解,并求其解(2)12312321231ax x x x ax x a x x ax a⎧++=⎪++=⎨⎪++=⎩解: 方程的系数行列式D=21111(1)(2)11a a a a a =-+当2a ≠-且a ≠1时,0D ≠,方程有唯一解,2121111(1)(1)1D aa a a a a ==--+,2221111(1)1aD a a a a==-, 2232111(1)(1)11a D a a a a a ==-+,于是得1223121212a x a x a a a x a +⎧=-⎪+⎪⎪=⎨+⎪⎪=⎪+⎩+2+当1a =时,方程组为1231x x x ++=,1231x x x =--+,方程组有无穷多解,1122132+1x c c x c x c=--⎧⎪=⎨⎪=⎩;当2a =时,方程组为123123123212224x x x x x x x x x -++=⎧⎪-+=-⎨⎪+-=⎩,其增广矩阵为(A , b )=21112111121212121124003--⎡⎤⎡⎤⎢⎥⎢⎥--→--⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦,r(A)=2,r(A ,b)=3,方程组无 解.补充,1232312321(1)0(1)32ax bx x b x x ax bx b x b++=⎧⎪-+=⎨⎪++-=-⎩解:2121(,)0110011013200122ab a b A b b b a b b b b b ⎡⎤⎡⎤⎢⎥⎢⎥=-→-⎢⎥⎢⎥⎢⎥⎢⎥-----⎣⎦⎣⎦①0,1a b ≠≠±当时有唯一解,此时,增广矩阵为5302201122001b a b b b b b b -⎡⎤⎢⎥⎢⎥⎢⎥→-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦1+b-0+-+1+500201122001b a b b b -⎡⎤⎢⎥⎢⎥⎢⎥→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦1+b-0+-+1+,解为123521221b x a x b b x b -⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩(1+b)-+-++; ②当a ≠0,且b=1时,有无穷多解,1230c x a x c x -⎧=⎪⎪=⎨⎪=⎪⎩1③当a =0,且b=1有无穷多解,12310x c x x =⎧⎪=⎨⎪=⎩ ④a =0,且b=-1有无穷多解,123130x c x x =⎧⎪⎪=-⎨⎪=⎪⎩ 3, (1) 12343254(23,18,17)αααα+-+= (2) 123452(12,12,11)αααα+--=4,(1)(1,5,2,0)(3,5,7,9)(4,0,5,9)ξβα=--=---=-,(2)13511275)(3,5,7,9)(1,5,2,0)(7,5,,)22222ηαβ-=--=-=(36,(1)(a )设112233k k k αααβ++=,得123(1,0,1)(1,1,1)(0,1,1)(3,5,6)k k k ++--=-化为方程组123110301151116k k k ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦, 112311030113110115111514111610169k k k ---⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=-=-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦∴ 12311149βααα=-++(b )对矩阵123TTTT αααβ⎡⎤⎣⎦进行初等行变换:1103100110115010141116019-⎡⎤⎡⎤⎢⎥⎢⎥-→⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦可得 12311149βααα=-++(2) 12325βεεεε=-++. 9,由题设得到112233*********αβαβαβ-⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦,∴1112233*********αβαβαβ--⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦=123110221102211022βββ⎡⎤⎢⎥⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦即1121122αββ=+,2231122αββ=+,3131122αββ=+. 10,(1)矩阵为1021231235025025012102025000-⎡⎤--⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-→-→-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎢⎥⎣⎦,可知312522ααα=-- ;线性相关.(2)矩阵为1321321321120012013327002000114101300⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥---⎢⎥⎢⎥⎢⎥→→⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦,线性无关. 11,由对应向量构成的矩阵的行列式等于11220nna a a ≠,线性无关.12,由对应向量构成的矩阵112233*********βαβαβα-⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦, ∵ 2111130000--=,∴1β,2β3β 线性相关.13, 证明:令11212312312()()...(...)0s s k k k k ααααααααα++++++++++=, 整理得到1122(...)(...)...0s s s s k k k k k ααα+++++++++=.因为12,,...,s ααα线性无关, 所以有12...0...0. 0s ss k k k k k +++=⎧⎪+++=⎪⎨⎪⎪=⎩, 解得1200.........0s k k k =⎧⎪=⎪⎨⎪⎪=⎩, 从而向量组11212,,...,...s αααααα++++线性无关.14,令212060111kk k k =--=-2,k=3,-2 当≠≠k 3且k -2时,线性无关;当k=3或-2时,线性相关.16,(1)对矩阵1234T T TT A αααα⎡⎤=⎣⎦施以初等行变换,得到 1002100201010101001300131110000⎡⎤⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥→⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦, ∴123,,ααα是极大线性无关组,412αα=-233αα+(2)对矩阵1234T T TT A αααα⎡⎤=⎣⎦施以初等行变换,得到101310131013011201120112110301160000000000000014111101020000---⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥---⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥→→-⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦1013100101120102001400140000000000000000-⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥→→--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦123,,ααα是极大线性无关组, 41234αααα=+-17,对1234TT TT A αααα⎡⎤=⎣⎦施以初等行变换,得到(1)11511151115171123027401223181027400001397041480000--⎡⎤----⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥---⎢⎥⎢⎥→→⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎢⎥⎣⎦ 310127012200000000⎡⎤⎢⎥⎢⎥⎢⎥-→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦,∴ 12,αα是极大线性无关组;并且3123722ααα=-,4122ααα=+(2)1114311143113210226221355011313156702262--⎡⎤⎡⎤⎢⎥⎢⎥-----⎢⎥⎢⎥→⎢⎥⎢⎥---⎢⎥⎢⎥---⎣⎦⎣⎦10212011310000000000-⎡⎤⎢⎥--⎢⎥→⎢⎥⎢⎥⎣⎦12,αα是极大线性无关组;并且3122ααα=-,4123ααα=+,5122ααα=-- 20,(1)对系数矩阵进行变换得12471247100021210510150120312400020001A ----⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=-→-→-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦得方程组 112323440020200x x x x x x x x ==⎧⎧⎪⎪-=→=⎨⎨⎪⎪==⎩⎩ 令31x =, 得12340210x x x x =⎧⎪=⎪⎨=⎪⎪=⎩.0210V ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦即为基础解系. (2) 121111211121123054()32112044251220100Ab ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦-------3-5----4-5---1- 17100281211115011000102800415001000002800000⎡⎤⎢⎥⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥→→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦-----8-5-得方程组454551342172815281528x x x x x x x x x ⎧=⎪⎪⎪=++⎨⎪-⎪=⎪⎩--.令4510x x =⎧⎨=⎩得到123121212x x x ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩--:再令4501x x =⎧⎨=⎩得到123785858x x x ⎧=⎪⎪⎪=⎨⎪⎪=⎩-⎪于是基础解系为121212,781210015858ξξ⎡⎤⎡⎤-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦.(3) 1211112111211110533()17550966321105522Ab --⎡⎤⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥=→⎢⎥⎢⎥--⎢⎥⎢⎥----⎣⎦⎣⎦----3-5-6-1 10111100011110100000111001000021100011--⎡⎤⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥→→⎢⎥⎢⎥-⎢⎥⎢⎥---⎣⎦⎣⎦得到方程组12345000x x x x x =⎧⎪=⎪⎨=⎪⎪=⎩令51x =得41x =,得到基础解系为00011ξ⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦. 23,对系数或增广矩阵进行变换得(1)2111204720015210300120101201360136001222250000000----⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥-----⎢⎥⎢⎥⎢⎥→→⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦得方程组 14124243434215021512012202x x x x x x x x x x x x -==⎧⎧⎪⎪-=→=⎨⎨⎪⎪+==-⎩⎩,令42x c =得到1234152442x cx cx c x c=⎧⎪=⎪⎨=-⎪⎪=⎩.基础解系为152442v c ⎡⎤⎢⎥⎢⎥=⎢⎥-⎢⎥⎣⎦,其中c 为任意常数.(2)111117110117321132000000012262301026235433112001000⎡⎤⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥→⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦100151000000010262300100---⎡⎤⎢⎥⎢⎥→⎢⎥⎢⎥⎣⎦得方程组 145145245245335165162623262300x x x x x x x x x x x x x x --=-=+-⎧⎧⎪⎪++=→=--+⎨⎨⎪⎪==⎩⎩, 对应的齐次线性方程组为14524535260x x x x x x x =+⎧⎪=--⎨⎪=⎩令4500x x =⎧⎨=⎩,得特解12345162300x x x x x =-⎧⎪=⎪⎪=⎨⎪=⎪⎪=⎩,再令4510x x =⎧⎨=⎩得1234512010x x x x x =⎧⎪=-⎪⎪=⎨⎪=⎪⎪=⎩,4501x x =⎧⎨=⎩,得1234556001x x x x x =⎧⎪=-⎪⎪=⎨⎪=⎪⎪=⎩,基础解系为1526,001001⎡⎤⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦原方程组的通解为1216152326000010001U c c -⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,其中1c ,2c 为任意常数.(3),21314151,,1354011354011322110032111113043121411130451212111101431r r r r r r r r Ab ----⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥←−−−−⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦------2()=-2---5-----7-------235454517,8107535003210016126120032201431r r r r r ----⎡⎤⎢⎥⎢⎥⎢⎥−−−−→--⎢⎥-⎢⎥⎢⎥⎣⎦--2-1---22425412107535013100860032000000r r r r r +↔⎡⎤⎢⎥⎢⎥⎢⎥−−−−→⎢⎥⎢⎥⎢⎥⎣⎦--4--2-6-3-2-1341323233,74,3100535010310010000002000000r r r r r r r r --++⎡⎤⎢⎥⎢⎥⎢⎥−−−−−→-⎢⎥⎢⎥⎢⎥⎣⎦---2-2-1314244513211000010053520103110100120010000010001000111200011200000000000r r r r r r --+-⎡⎤⎢⎥⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥−−−→−−−→⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥-⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦---2 得到方程组1525345121120112x x x x x x x ⎧=⎪⎪⎪=-⎪⎨⎪=⎪⎪⎪⎩--=--,特解01010ξ⎡⎤⎢⎥-⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎣⎦=,基础解系12120121υ⎡⎤⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦-=-, 于是全部解是120112()0011021c c R ⎡⎤⎢⎥⎡⎤⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥∈⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎣⎦-+-. 24, 2113112112(,)112112011011211301133A b λλλλλλλλλλλλλλ---⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥=-→-→⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎣⎦---- 21121120110011000310031λλλλλλλλλλλλ--⎡⎤⎡⎤⎢⎥⎢⎥→→⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦----2--()-(-1)(+2)()讨论如下:(1) 当2λ=-时,方程组无解; (2) 当21λλ≠≠-且-时有唯一解; (3) 当时有无穷多解:此时方程组为1232x x x =++-.基础解系为111001⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦--,,特解为00⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦-2,全部解为121211010(,)001c c c c ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦-2--+为任意实数.25,将增广矩阵化为T 阵,得11223344551110001100001100011000011000110000110001111i i i a a a a a a a a a a ==-⎡⎤-⎡⎤⎢⎥-⎢⎥⎢⎥-⎢⎥⎢⎥-⎢⎥-→⎢⎥-⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦⎣⎦∑,可知 当且仅当51i i i a ==∑=0时方程组有解;一般解为112345223453345445x a a a a x x a a a x x a a x x a x =++++⎧⎪=+++⎪⎨=++⎪⎪=+⎩即112342234334445x a a a a cx a a a cx a a c x a cx c=++++⎧⎪=+++⎪⎪=++⎨⎪=+⎪⎪=⎩(c 为任意实数)习题四(A )1,(1)由221(2)1012I A λλλλ---==--=--得到特征值为121,3λλ==. 11λ=以代入,得方程组121210112x I A X x λ--⎡⎤-==⎢⎥--⎣⎦,121200x x x x -=⎧⎨-=⎩--, 1⎡⎤⎢⎥⎣⎦1它的基础解系是,-111λ⎡⎤≠=⎢⎥⎣⎦111c(c0)是对应于特征值的全部特征向量.- 1212123321013200x I A X x x x x x λλ=--⎡⎤-==⎢⎥--⎣⎦-=⎧⎨+=⎩2以代入,得方程组- 1⎡⎤⎢⎥⎣⎦1它的基础解系是, 231λ⎡⎤≠=⎢⎥⎣⎦221c(c 0)是对应于特征值的全部特征向量. (2)由5635631111121022I A λλλλλλλλ----⎡⎤⎡⎤⎢⎥⎢⎥-=-→-⎢⎥⎢⎥⎢⎥⎢⎥-----⎣⎦⎣⎦ 2593(2)111(2)(2)001λλλλλ--⎡⎤⎢⎥→-+-=--⎢⎥⎢⎥⎣⎦=0,1,2,32,λ=12312323631210121x I A X x x λλ=--⎡⎤⎢⎥-=-=⎢⎥⎢⎥--⎣⎦以代入,得方程组即12320x x x +-=,211001-⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦它的基础解系是,, 2110,01-⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦1212c+c(cc不全为零) 1λ=,2,3是对应于特征值2的全部特征向量.(3)11122122I A λλλλλλλλλλλ---==-+--+--1-1-1-1-1-1-1-1-111-111-1110-0-1110-0 231(2)(2)(2)11λλλλλ+=-=-+-1-3-1-1-1110000=0特征值为1,2,342,2λλ==-.以1,2,32λ=代入得1100010001⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦11基础解系是,, 12311100(,,)010001c c c c c c ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦2311不全为零. 12λ=,2,3是对应于特征值的全部特征向量2λ=4以-代入,得1111-⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦基础解系,42λ=-对应于特征值的全部特征向量是11(0)11-⎡⎤⎢⎥⎢⎥≠⎢⎥⎢⎥⎣⎦44c c .(4), 20100101001101I A λλλλλλλ---=-=---22(1)(1)(1)(1)0λλλλ=--=-+=, 得到 1,231,1λλ==-, 当1,21,λ=13x x =,得到基础解系011,001⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦,对应的全部特征向量为 12011001c c ⎡⎤⎡⎤⎢⎥⎢⎥+⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦(12,c c 不全为零), 当31λ=-时, 解方程组1320x x x =-⎧⎨=⎩得到基础解系101-⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦, 全部特征向量为3310(0)1c c -⎡⎤⎢⎥≠⎢⎥⎢⎥⎣⎦.3,由题设,0AX X λ=(1)0()()()kA X k AX k X λ==,即kA 的特征值为0k λ. (2)由A 可逆,00λ≠1110010110()()()A AX A X A X A X XA X Xλλλλ------====1A -的特征值为10λ-.(3)00() 1.I A X IX AX X X X X λλ+=+=+=+0(1)X λ=+ I A +的特征值为01λ+.4,设0AX X λ=,2220002002000()()()A AA X A AX A X AX X X Xλλλλλλλλ=====∵ ∴ ==∴ =0或15, 以0λ=代入0220003030022002xx I A λλλλ---+-=-=-=---,得到2x =. 代入222203032222I A λλλλλλλ-----=-=-----22(3)(3)(4)022λλλλλλ--=-=--=--,解得 1230,3,4λλλ===. 所以其他特征值为233,4λλ==.8,如果A 可逆,则1A -存在,并且11()()A AB A A A BA BA --== ∴ ABBA .。

相关文档
最新文档