上海市浦东新区年八年级下期末数学试卷含答案解析

合集下载

上海市浦东新区八年级下期末数学试卷(有答案)(精品)

上海市浦东新区八年级下期末数学试卷(有答案)(精品)

2017-2018学年上海市浦东新区八年级(下)期末数学试卷一、选择题(本大题共4小题,共12.0分)1.在下列方程中,分式方程是()A. x2=1 B. √x2=1 C. 2x=1 D.√x=12.函数y=-x-3的图象不经过()A. 第一象限B. 第二象限C. 第三象限D. 第四象限3.在下列事件中,确定事件共有()①买一张体育彩票中大奖;②抛掷一枚硬币,落地后正面朝上;③在只装有2只红球、3只黄球的袋子中,摸出1只白球;④初二(1)班共有37名学生,至少有3名学生的生日在同一个月.A. 1个B. 2个C. 3个D. 4个4.在四边形ABCD中,对角线AC和BD相交于点O,AB=CD,添加下列条件后能判定这个四边形是平行四边形的是()A. xx//xxB. xx=xxC. ∠xxx=∠xxxD. ∠xxx=∠xxx二、填空题(本大题共14小题,共28.0分)5.方程2x3+54=0的解是______.6.方程√x+2=x的解是x=______.7.如果{x=−1x=2是方程mx2+y2=xy的一个解,那么m=______.8.当k=______时,方程kx+4=3-2x无解.9.当m=______时,函数y=(m-1)x+m是常值函数.10.已知一次函数y=kx+b的图象经过第一象限,且它的截距为-5,那么函数值y随自变量x值的增大而______.11.已知一次函数y=2x+5,当函数值y<0时,自变量x值的取值范围是______.12.已知一辆匀速行驶汽车的路程S(千米)与时间t(时)的函数关系如图所示,那么这辆汽车的速度是每小时______千米.13.若一个多边形的内角和等于外角和,那么这个多边形的边数是______.14. 已知菱形一组对角的和为240°,较短的一条对角线的长度为4厘米,那么这个菱形的面积为______平方厘米.15. 已知在等腰梯形ABCD 中,AD ∥BC ,AB =13厘米,AD =4厘米,高AH =12厘米,那么这个梯形的中位线长等于______厘米.16. 从0,1,2,3四个数字中任取三个数字组成没有重复数字的三位数,那么组成的三位数是奇数的概率是______.17. 如图,已知在矩形ABCD 中,AB =√2,BC =2,将这个矩形沿直线BE 折叠,使点C 落在边AD 上的点F 处,折痕BE 交边CD 于点E ,那么∠DCF 等于______度.18. 已知在平面直角坐标系xOy 中,直线y =-12x +4与x 轴交于点A 、与y 轴交于点B ,四边形AOBC 是梯形,且对角线AB 平分∠CAO ,那么点C 的坐标为______.三、计算题(本大题共1小题,共6.0分)19. 解方程:7x x 2−5x −6=1x +1+2.四、解答题(本大题共7小题,共54.0分)20. 解方程组:{x 2+xx −2x 2=0x +3x =8.21. 已知直线y =kx +b 与直线y =-13x +k 都经过点A (6,-1),求这两条直线与x 轴所围成的三角形面积.22. 已知:如图,在平行四边形ABCD 中,E 、F 分别是对角线BD 上的两点,且BE =DF ,xx ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =x ⃗⃗⃗⃗ ,xx ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =x ⃗⃗⃗⃗ ,xx ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =x ⃗⃗⃗⃗ .(1)用向量x⃗⃗⃗⃗ 、x ⃗⃗⃗⃗ 、x ⃗⃗⃗⃗ 表示下列向量:向量xx ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =______,向量xx ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =______,向量xx ⃗⃗⃗⃗⃗⃗⃗⃗⃗ =______; (2)求作:x⃗⃗⃗⃗ +x ⃗⃗⃗⃗ .23. 已知:如图,在Rt △ABC 中,∠C =90°,CD 平分∠ACB ,AD ⊥CD ,垂足为点D ,M 是边AB 的中点,AB =20,AC =10,求线段DM 的长.24.已知:如图,在等边三角形ABC中,过边AB上一点D作DE⊥BC,垂足为点E,过边AC上一点G作GF⊥BC,垂足为点F,BE=CF,联结DG.(1)求证:四边形DEFG是平行四边形;(2)连接AF,当∠BAF=3∠FAC时,求证:四边形DEFG是正方形.25.从甲地到乙地有两条公路:一条是全长400千米的普通公路,一条是全长360千米的高速公路.某客车在高速公路上行驶的平均速度比在普通公路上行驶的平均速度快50千米/时,从甲地到乙地由高速公路上行驶所需的时间比普通公路上行驶所需的时间少6小时.求该客车在高速公路上行驶的平均速度.26.如图,已知在梯形ABCD中,AD∥BC,P是下底BC上一动点(点P与点B不重合),AB=AD=10,BC=24,∠C=45°,45°<∠B<90°,设BP=x,四边形APCD的面积为y.(1)求y关于x的函数解析式,并写出它的定义域;(2)联结PD,当△APD是以AD为腰的等腰三角形时,求四边形APCD的面积.答案和解析1.【答案】C【解析】解:A、该方程是整式方程,故本选项错误;B、该方程是无理方程,故本选项错误;C、该方程符合分式方程的定义,故本选项正确;D、该方程属于无理方程,故本选项错误;故选:C.根据分式方程的定义:分母里含有字母的方程叫做分式方程进行判断.本题考查了分式方程的定义.判断一个方程是否为分式方程,主要是依据分式方程的定义,也就是看分母中是否含有未知数(注意:仅仅是字母不行,必须是表示未知数的字母).2.【答案】A【解析】解:∵k=-1<0,∴一次函数经过二四象限;∵b=-3<0,∴一次函数又经过第三象限,∴一次函数y=-x-3的图象不经过第一象限,故选:A.根据比例系数得到相应的象限,进而根据常数得到另一象限,判断即可.此题考查一次函数的性质,用到的知识点为:k<0,函数图象经过二四象限,b<0,函数图象经过第三象限.3.【答案】B【解析】解:①买一张体育彩票中大奖,是随机事件,故此选项错误;②抛掷一枚硬币,落地后正面朝上,是随机事件,故此选项错误;③在只装有2只红球、3只黄球的袋子中,摸出1只白球,是不可能事件,属于确定事件;④初二(1)班共有37名学生,至少有3名学生的生日在同一个月,是必然事件,属于确定事件.故选:B.直接利用随机事件以及确定事件的定义分别分析得出答案.此题主要考查了随机事件以及确定事件的定义,正确把握相关定义是解题关键.4.【答案】D【解析】解:A、不能判断四边形是平行四边形,四边形可能是等腰梯形,故本选项不符合题意;B、无法判定四边形是平行四边形,故本选项不符合题意;C、无法判定四边形是平行四边形,故本选项不符合题意;D、由∠BAC=∠DCA推出AB∥CD,结合AB=CD,可以推出四边形是平行四边形;故选:D.根据四边形的判定方法即可解决问题;本题考查平行四边形的判定,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.5.【答案】x=-3【解析】解:方程整理得:x3=-27,开立方得:x=-3.故答案为:x=-3.方程整理后,利用立方根定义求出解即可.此题考查了立方根,熟练掌握立方根的定义是解本题的关键.6.【答案】2【解析】解:原方程变形为:x+2=x2即x2-x-2=0∴(x-2)(x+1)=0∴x=2或x=-1∵x=-1时不满足题意.∴x=2.故答案为:2.本题含根号,计算比较不便,因此可先对方程两边平方,得到x+2=x2,再对方程进行因式分解即可解出本题.本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的提点灵活选用合适的方法.本题运用的是因式分解法和平方法.7.【答案】-34【解析】解:把方程的解代入方程mx2+y2=xy,可得4m+1=-2,∴4m=-3,解得m=-,故答案为:-.依据方程的解概念,将方程的解代入方程进行计算,即可得到m的值.本题考查了二元一次方程的解,方程的解就是满足方程的未知数的值,把解代入方程即可.8.【答案】-2【解析】解:∵kx+4=3-2x,∴(k+2)x=-1,∴k+2=0时,方程kx+4=3-2x无解,解得k=-2.故答案为:-2.方程kx+4=3-2x无解时,x的系数是0,据此求解即可.此题主要考查了一元一次方程的解,要熟练掌握,解答此题的关键是要明确:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.9.【答案】1【解析】解:当m-1=0时,函数y=(m-1)x+m是常值函数,故m=1时,y=1.故答案为:1.直接利用常值函数的定义分析得出答案.此题主要考查了函数的概念,正确把握函数的定义是解题关键.10.【答案】增大【解析】解:∵一次函数y=kx+b的图象经过第一象限,且它的截距为-5,∴一次函数y=kx+b的图象经过第一、三、四象限,即一次函数y=kx+b的图象不经过第二象限,∴k>0,b<0.所以函数值y随自变量x的值增大而增大,故答案为:增大;直接根据一次函数的图象与系数的关系即可得出结论.本题考查的是一次函数的图象与系数的关系,熟知一次函数y=kx+b(k≠0)中,当k>0,b<0时,函数的图象在第一、三、四象限是解答此题的关键.11.【答案】x<-52【解析】解:∵一次函数y=2x+5中y<0,∴2x+5<0,解得x<-.故答案为:x<-.根据题意列出关于x的不等式,求出x的取值范围即可.本题考查的是一次函数的性质,熟知一次函数的增减性是解答此题的关键.12.【答案】48【解析】解:这辆汽车的速度是km/h,故答案为:48根据图象得出汽车的速度即可.此题考查函数图象,关键是根据图象得出汽车的路程和时间.13.【答案】4【解析】解:设多边形的边数为n,则(n-2)×180°=360°,解得:n=4,故答案为:4.设多边形的边数为n,根据题意得出方程(n-2)×180°=360°,求出即可.本题考查了多边形的内角和和外角和定理,能根据题意列出方程是解此题的关键.14.【答案】8√3【解析】解:如图,∵四边形ABCD是菱形,∠BAD+∠BCD=240°,∴∠BAD=∠BCD=120°,∠ABC=∠ADC=60°∵AB=BC=AD=DC,∴△ABC,△ADC是等边三角形,∴AB=BC=AC=4,∴S菱形ABCD =2•S△ABC=2××42=8,故答案为8.只要证明△ABC,△ADC是等边三角形即可解决问题;本题考查菱形的性质、等边三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.15.【答案】9【解析】解:过D作DM⊥BC于M,∵AH⊥BC,∴AH∥DM,∠AHM=90°,∵AD∥BC,∴四边形AHDM是矩形,∴AH=DM=12厘米,AD=HM=4厘米,由勾股定理得:BH===5(厘米),同理CM=5(厘米),∴BC=BH+HM+CM=14厘米,∴梯形ABCD的中位线长是=9(厘米),故答案为:9.过D作DM⊥BC于M,得出四边形AHDM是矩形,求出HM,根据勾股定理求出BH、CM,求出BC,根据梯形的中位线求出即可.本题考查了勾股定理和矩形的性质和判定、等腰梯形的性质、梯形的中位线等知识点,能正确作出辅助线是解此题的关键.16.【答案】49【解析】解:如图所示:,由树状图可得一共有18中组合,符合题意的有8种,故组成的三位数是奇数的概率是:=.故答案为:.根据题意画出树状图,再利用概率公式求出答案.此题主要考查了树状图法求概率,正确画出树状图是解题关键.17.【答案】22.5【解析】解:由折叠可得:BF=BC,∵BC=,∴BF=,∵四边形ABCD为矩形,∴∠A=90°,在Rt△BAF中,AF===,∴AB=AF,∴∠ABF=∠AFB=45°,∴∠FBC=90°-∠ABF=45°,∵在△CBF中,BF=BC,∠FBC=45°,∴∠BCF=∠BFC=(180°-∠CBF)÷2=67.5°,∴∠DCF=90°-∠BCF=90°-67.5°=22.5°,故答案为:22.5°.由翻折得到BF=BC,先根据勾股定理求出AF,得到△BAF为等腰直角三角形,所以∠ABF=∠AFB=45°,进而求出∠FBC=90°-∠ABF=45°,再根据△CBF为等腰三角形,得到∠BCF=∠BFC=(180°-∠CBF)÷2=67.5°,进而求出∠DCF=90°-∠BCF=90°-67.5°=22.5°.本题考查了翻折问题,解决本题的关键是由翻折得到BF=BC.18.【答案】(5,4)【解析】解:∵y=-x+4,∴y=0时,-x+4=0,解得x=8,∴A(8,0),x=0时,y=4,∴B(0,4).如图,四边形AOBC是梯形,且对角线AB平分∠CAO,∴BC ∥OA ,∠OAB=∠CAB ,∴∠ABC=∠OAB ,∴∠ABC=∠CAB ,∴AC=BC .设点C 的坐标为(x ,4),则(x-8)2+42=x 2,解得x=5,∴点C 的坐标为(5,4).故答案为(5,4).求出A 、B 两点的坐标,发现OA ≠OB ,∠OAB ≠∠OBA ,所以四边形AOBC 是梯形,且对角线AB 平分∠CAO 时只能BC ∥OA ,利用平行线的性质以及角平分线定义得出∠ABC=∠CAB ,那么AC=BC .设点C 的坐标为(x ,4),列出方程(x-8)2+42=x 2,求解即可.本题考查了一次函数图象上点的坐标特征,平行线的性质,等腰三角形的判定,两点间的距离公式,得出AC=BC 是解题的关键.19.【答案】解:去分母得:7x =x -6+2(x -6)(x +1),整理得:x 2-8x -9=0,解得:x 1=9,x 2=-1,经检验x =9是分式方程的解,x =-1是增根,则原方程的解为x =9.【解析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.20.【答案】解:∵x 2+xy -2y 2=(x +2y )(x -y ),∴原方程组可化为:{x +2x =0x +3x =8或{x −x =0x +3x =8, 解这两个方程组得原方程组的解为:{x =8x =−16或{x =2x =2.【解析】因式分解得出x2+xy-2y2=(x+2y)(x-y),再化为两个方程组解答即可.本题主要考查解高次方程的能力,解题的关键是熟练掌握加减消元法和整体代入的思想.21.【答案】解:∵直线y=kx+b与直线y=-1x+k都经过点A(6,-1),3−1=6x+x,∴{−1=−2+xx=1,解得{x=−7x+1,∴两条直线的解析式分别为y=x-7和y=-13x+1与x轴交于点C(3,0),∴直线y=x-7与x轴交于点B(7,0),直线y=-13×4×1=2,∴S△ABC=12即这两条直线与x轴所围成的三角形面积为2.【解析】依据直线y=kx+b与直线y=-x+k都经过点A(6,-1),即可得到两条直线的解析式分别为y=x-7和y=-x+1,进而得出直线y=x-7与x轴交于点B(7,0),直线y=-x+1与x轴交于点C(3,0),据此可得这两条直线与x轴所围成的三角形面积为2.此题主要考查了两函数图象相交的问题以及三角形面积的计算,关键是掌握待定系数法求一次函数解析式.22.【答案】-x⃗⃗⃗⃗ x⃗⃗⃗⃗ -x⃗⃗⃗⃗ x⃗⃗⃗⃗ -x⃗⃗⃗⃗【解析】解:(1)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠ADF=∠CBE,∵DF=BE,∴△ADF≌△CBE,∴∠AFD=∠CEB,AF=CE,∴∠AFB=∠CED,∴AF∥CE,∴=-=-=-,=+=-,=+=-, 故答案为-,-,-.(2)延长EC 到,使得C=EC ,连接B ,则向量即为所求;(1)根据平面向量的加法法则计算即可;(2)延长EC 到,使得C=EC ,连接B ,则向量即为所求;本题考查平行四边形的性质、三角形法则等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.23.【答案】解:延长AD 交BC 于E ,∵∠C =90°,∴BC =√xx 2−xx 2=10√3,∵CD 平分∠ACB ,AD ⊥CD ,∴∠ACD =∠ECD ,∠ADC =∠EDC =90°,∴∠CAD =∠CED ,∴CA =CE =10,∴AD =DE ,∵M 是边AB 的中点,∴DM =12BE =12×(10√3-10)=5√3-5.【解析】延长AD 交BC 于E ,根据勾股定理求出BC ,根据等腰三角形的性质得到AD=DE ,根据三角形中位线定理计算即可.本题考查的是三角形中位线定理、等腰三角形的性质以及直角三角形的性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.24.【答案】证明:(1)在等边三角形ABC 中,∵DE ⊥BC ,GF ⊥BC ,∴∠DEF =∠GFC =90°,∴DE ∥GF ,∵∠B =∠C =60°,BE =CF ,∠DEB =∠GFC =90°,∴△BDE ≌△CGF ,∴DE =GF ,∴四边形DEFG 是平行四边形;(2)在平行四边形DEFG 中,∵∠DEF =90°,∴平行四边形DEFG 是矩形,∵∠BAC =60°,∠BAF =3∠FAC ,∴∠GAF =15°,在△CGF 中,∵∠C =60°,∠GFC =90°,∴∠CGF =30°,∴∠GFA =15°,∴∠GAF =∠GFA ,∴GA =GF ,∵DG ∥BC ,∴∠ADG =∠B =60°,∴△DAG 是等边三角形,∴GA =GD ,∴GD =GF ,∴矩形DEFG 是正方形.【解析】(1)根据等边三角形的性质和平行四边形的判定证明即可;(2)根据等边三角形的判定和性质以及正方形的判定解答即可.此题考查正方形的判定,关键是根据全等三角形的判定和性质以及正方形的判定解答. 25.【答案】解:设该客车在高速公路上行驶的平均速度是x 千米/小时,依题意有400x −50-360x=6, 整理得3x 2-170x -9000=0,解得x 1=90,x 2=-1003(舍去), 经检验,x =90是原方程的解.答:该客车在高速公路上行驶的平均速度是90千米/小时.【解析】可设该客车在高速公路上行驶的平均速度是x千米/小时,根据等量关系:从甲地到乙地由高速公路上行驶所需的时间=普通公路上行驶所需的时间-6小时,列出方程求解即可.本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.26.【答案】(1)解:作AH⊥BC于H.设AH=h.由题意:√102−ℎ2+10+h=24,整理得:h2-14h+48=0,解得h=8或6(舍弃),∴y=1(10+24-x)×8,即y=-4x+136(0<x<24)2(2)解:①当AP=AD=10时,∵AB=AD=10,∴AP=AB=10,∵BH=6,∴BP=2BH=12,即x=12,∴y=88.②当PD=AD=10时,四边形ABPD是平行四边形或等腰梯形,∴BP=AD=10或BP=2BH+AD=22,即x=10或22,∴y=96或48,综上所述,四边形APCD的面积为88或96或48.【解析】(1)作AH⊥BC于H.设AH=h.构建方程求出h即可解决问题.(2)分两种情形分别讨论求解即可;本题考查梯形、等腰三角形的性质勾股定理、一次函数的应用等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题.。

2019-2020学年上海市浦东新区第四教育署八年级(下)期末数学试卷(含答案解析)

2019-2020学年上海市浦东新区第四教育署八年级(下)期末数学试卷(含答案解析)

2019-2020学年上海市浦东新区第四教育署八年级(下)期末数学试卷一、选择题(本大题共6小题,共12.0分) 1. 一次函数y =−2x +3的截距是( )A. −2B. 2C. 3D. −3 2. 下列方程中,有实数根的是( )A. x 2+1=0B. x 2−1=0C. √x −1=−1D. 1x−1=0 3. 下列成语或词语所反映的事件中,可能性最小的是( )A. 瓜熟蒂落B. 旭日东升C. 守株待兔D. 夕阳西下 4. 如果一个多边形的内角和等于一个三角形的外角和,那么这个多边形是( )A. 三角形B. 四边形C. 五边形D. 六边形5. 下列结论中,矩形具有而菱形不一定具有的性质是( )A. 对边相等B. 对角线互相平分C. 对角线互相垂直D. 对角线相等6. 某公司拟购进A ,B 两种型号机器人.已知用240万元购买A 型机器人和用360万元购买B 型机器人的台数相同,且B 型机器人的单价比A 型机器人多10万元.设A 型机器人每台x 万元,则所列方程正确的是( )A. 240x =360x+10B. 240x−10=360xC.240x+360x=10 D.360x−240x=10二、填空题(本大题共12小题,共36.0分) 7. 方程√x −6=2的解是______.8. 一次函数y =x −1的图象不经过第______象限. 9. 在△ABC 中,AB ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ +CA⃗⃗⃗⃗⃗ =______. 10. 若关于x 分式方程x−mx−2=1x−2有增根,则m =______.11. 如果直线y =kx +b 经过点A(2,0),且与直线y =−4x 平行,则实数b =______. 12. 一个菱形的边长为5,一条对角线长为6,则这个菱形另一条对角线长为______.13. 在不透明的袋子里装入3个红球和2个白球(除颜色不同外其余均相同),从中随机摸出一个球为白球的概率是______.14. 已知梯形的中位线长为6cm ,高为5cm ,那么它的面积等于______cm 2.15. 如图,在▱ABCD 中,BC =9,AB =5,BE 平分∠ABC 交AD 于点E ,则DE 的长为______.16.如图,四边形ABCD为菱形,四边形AOBE为矩形,O,C,D三点的坐标为(0,0),(2,0),(0,1),则点E的坐标为______.17.如图,在正方形ABCD中,DE平分∠CDB,EF⊥BD于点F.若BE=√2,则此正方形的边长为______.18.如图,矩形ABCD中,AC与BD相交于点O,AC=3cm,∠ACD=30°.将矩形ABCD绕点O旋转后,点A与点B重合,点D落在点E处,那么此时AE的长为______cm.三、计算题(本大题共2小题,共11.0分)19.解方程:1x−2−4x2−4=1.20. 为阻断疫情向校园蔓延,确保师生生命安全和身体健康,教育部2020年1月29日下发通知,要求今年春季学期延期开学,“停课不停学”,统筹利用网络电视资源进行教学,某校为了让学生能够达到最佳的学习效果,确定老师们可以选用以下三种直播授课方式:A.晓黑板直播;B.钉钉直播;C.腾讯会议直播.(1)王燕老师从三种网络授课方式中随机选取一种,是晓黑板直播的概率为______;(2)王燕和陈明两位老师从中随机各选取一种网络直播方式进行授课,请你用列表法或画树状图法,求出王燕和陈明两位老师选取不同的网络直播授课方式的概率.四、解答题(本大题共6小题,共41.0分) 21. 解方程:x +√2x −3=3.22. 解方程组:{x +y =6x 2−3xy +2y 2=023. 如图,在平行四边形ABCD 中,点E 是AD 边的中点,设AB ⃗⃗⃗⃗⃗ =a ⃗ ,AE ⃗⃗⃗⃗⃗ =b ⃗ .(1)试用向量a ⃗ ,b ⃗ 表示向量CE ⃗⃗⃗⃗⃗ ,那么CE ⃗⃗⃗⃗⃗ =______; (2)在图中求作:AB ⃗⃗⃗⃗⃗ −AE ⃗⃗⃗⃗⃗ .(保留作图痕迹,不要求写作法,写出结果)24.如图,平面直角坐标系xOy中,点A(a,1)在双曲线上y=3上,函x数y=kx+b的图象经过点A,与y轴上交点B(0,−2),(1)求直线AB的解析式;(2)设直线AB交x轴于点C,求三角形OAC的面积.25.如图,已知△ABC中,AD是边BC上的中线,过点A作AE//BC,过点D作DE//AB,DE与AC、AE分别交于点O、点E,联结EC.(1)求证:四边形ADCE是平行四边形;(2)当∠BAC=90°时,求证:四边形ADCE是菱形.26.已知:四边形ABCD是正方形,对角线AC、BD相交于点O,点E、F分别在边AB、BC上,∠EOF=90°,如图1(1)求证:CF=BE;(2)如果OG平分∠EOF,与边BC交于点G,如图2,请你猜想BG、CF和GF之间的数量关系,并证明;(3)设正方形ABCD的边长是2,当点E在AB边上移动时,图2中的△GOF可能是等腰三角形吗?(如果可能,请求出线段BG的长;如果不可能,请说明理由.-------- 答案与解析 --------1.答案:C解析:解:∵当x=0时,y=−2x+3=3,∴一次函数y=−2x+3的截距是3.故选:C.代入x=0求出与之对应的y值,此题得解.本题考查了一次函数图象上点的坐标特征以及一次函数的性质,牢记截距的定义是解题的关键.2.答案:B解析:解:A、方程变形得x2=−1<0,故没有实数根,此选项错误;B、方程变形得x2=1,故有实数根,此选项正确;C、二次根式非负,故没有实数根,此选项错误;D、方程两边乘x−1得1=0,没有实数根,此选项错误.故选:B.A、变形得x2=−1<0,由此得到原方程无实数根;B、变形得x2=1,由此得到原方程有实数根;C、根据非负数的性质可得原方程无实数根;D、先把方程两边乘x−1得1=0,由此得到原方程无实数根.本题考查了无理方程:根号内含有未知数的方程叫无理方程;解无理方程的基本思想是把无理方程转化为有理方程来解,常常采用平方法去根号.3.答案:C解析:解:A.瓜熟蒂落,是必然事件,发生的可能性为1,不符合题意;B.旭日东升,是必然事件,发生的可能性为1,不符合题意;C.守株待兔所反映的事件可能发生也可能不发生,是不确定事件,符合题意;D.夕阳西下,是必然事件,发生的可能性为1,不符合题意.故选:C.根据事件发生的可能性大小判断相应事件的类型即可得出答案.本题考查了可能性大小的判断,解决这类题目要注意具体情况具体对待.一般地必然事件的可能性大小为1,不可能事件发生的可能性大小为0,随机事件发生的可能性大小在0至1之间.4.答案:B解析:解:设这个多边形的边数是n,根据题意得:(n−2)⋅180=360,解得:n=4,故选:B.任何多边形的外角和是360度,n边形的内角和是(n−2)⋅180°,如果已知多边形的内角和,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.本题主要考查了多边形的内角和以及外角和,已知多边形的内角和求边数,可以转化为方程的问题来解决,难度适中.5.答案:D解析:解:矩形的性质有:①矩形的对边平行且相等,②矩形的四个角都是直角,③矩形的对角线互相平分且相等,菱形的性质有:①菱形的对边平行,菱形的四条边都相等,②菱形的对角相等,③菱形的对角线互相平分且垂直,并且每一条对角线平分一组对角,所以矩形具有而菱形不一定具有的性质是对角线相等,故选:D.根据矩形和菱形的性质逐个判断即可.本题考查了矩形和菱形的性质,能熟记矩形的性质和菱形的性质的内容是解此题的关键.6.答案:A解析:解:设A型机器人每台x万元,则B型机器人每台(x+10)万元,依题意,得:240x =360x+10.故选:A.设A型机器人每台x万元,则B型机器人每台(x+10)万元,根据数量=总价÷单价结合用240万元购买A型机器人和用360万元购买B型机器人的台数相同,即可得出关于x的分式方程,此题得解.本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.7.答案:x=10解析:解:√x−6=2,x−6=4,x=10,经检验,x=10是原方程的解,所以原方程的解是x =10. 故答案为:x =10.平方法解无理方程即可求解.本题主要考查解无理方程的知识点,去掉根号把无理式化成有理方程是解题的关键,注意观察方程的结构特点,把无理方程转化成一元二次方程的形式进行解答,需要同学们仔细掌握.8.答案:二解析:解:∵一次函数y =x −1中的k =1>0, ∴该函数图象经过第一、三象限. 又∵b =−1<0,∴该函数图象与y 轴交于负半轴,∴该函数图象经过第一、三、四象限,即不经过第二象限. 故答案是:二.由一次函数y =kx +b 中k ,b 的取值范围确定图象在坐标平面内的位置.本题主要考查一次函数图象在坐标平面内的位置与k 、b 的关系.解答本题注意理解:直线y =kx +b 所在的位置与k 、b 的符号有直接的关系.k >0时,直线必经过一、三象限.k <0时,直线必经过二、四象限.b >0时,直线与y 轴正半轴相交.b =0时,直线过原点;b <0时,直线与y 轴负半轴相交. 9.答案:0⃗ 解析: 【分析】由在△ABC 中,根据三角形法则即可求得AB ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ 的值,则可求得答案. 此题考查了平面向量的知识.解题的关键是注意三角形法则的应用. 【解答】解:∵AB ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ +CA ⃗⃗⃗⃗⃗ =AC ⃗⃗⃗⃗⃗ +CA ⃗⃗⃗⃗⃗ =0⃗ . 故答案为:0⃗ . 10.答案:1解析: 【分析】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.分式方程去分母转化为整式方程,由分式方程有增根求出x 的值,代入整式方程计算即可求出m 的值.【解答】解:去分母得:x−m=1,由分式方程有增根,得到x−2=0,即x=2,代入整式方程得:2−m=1,解得:m=1,故答案为:111.答案:8解析:解:∵直线y=kx+b与直线y=−4x平行,∴a=−4.∴直线y=kx+b的解析式为y=−4x+b.将A(2,0)代入得:−4×2+b=0.解得:b=8.故答案为:8.相互平行的两条直线的一次项系数相等,故此k=−4,将A(2,0)代入y=kx+b可求得b的值.本题主要考查的是两条直线平行问题,明确相互平行的两条直线的一次项系数相等是解题的关键.12.答案:8解析:解:由题意知AB=5,AC=6,∴AO=OC=3,∵菱形对角线互相垂直平分,∴△ABO为直角三角形,在Rt△ABO中,AB=5,AO=3,∴BO=√AB2−AO2=4,故BD=2BO=8,故答案为8.根据菱形对角线互相垂直平分可得AO=OC,BO=OD,△ABO为Rt△;在Rt△ABO中,已知AB,AO即可求BO,根据BO即可求BD的长.本题考查了菱形对角线互相垂直平分的性质,考查了勾股定理在直角三角形中的运用,本题中根据勾股定理求BO的值是解题的关键.13.答案:25解析:解:从中随机摸出一个球共有5种等可能结果,其中摸出一个球为白球的有2种结果,,所以摸出一个球为白球的概率为25故答案为:2.5用白球的个数除以球的总个数即可得.本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.14.答案:30解析:解:∵梯形的中位线长为6cm,高为5cm,∴它的面积=6×5=30cm2.故答案为:30.利用梯形的面积等于对角线与高的乘积列式进行计算即可得解.本题考查了梯形的中位线,梯形的面积可以有两种求法,(1)梯形的面积=中位线×高,(2)梯形的面(上底+下底)×高.积=1215.答案:4解析:解:∵四边形ABCD为平行四边形,∴AE//BC,∴∠AEB=∠EBC,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠ABE=∠AEB,∴AB=AE,∵BC=9,CD=5,∴DE=AD−AE=9−5=4.故答案为:4.根据四边形ABCD为平行四边形可得AE//BC,根据平行线的性质和角平分线的性质可得出∠ABE=∠AEB,继而可得AB=AE,然后根据已知可求得DE的长度.本题考查了平行四边形的性质,解答本题的关键是根据平行线的性质和角平分线的性质得出∠ABE=∠AEB.16.答案:(−2,−1)解析:解:∵O,C,D三点的坐标为(0,0),(2,0),(0,1),∴OC=2,OD=1,∵四边形ABCD是菱形,∴OA=OC=2,OB=OD=1,∵四边形AOBE为矩形,∴∠EAO=∠EBO=90°,EB=OA=2,EA=OB=1,∵E在第二象限,∴E点的坐标是(−2,−1),故答案为:(−2,−1).求出OC、OD的长,根据菱形的性质求出OA=OC=2,根据矩形的性质求出OB=EA=1,即可得出答案.本题考查了坐标与图形的性质,矩形的性质和菱形的性质,能求出OA和OB的长是解此题的关键.17.答案:√2+1解析:解:∵四边形ABCD是正方形,∴∠BCD=90°,∠CBD=45°,∵EF⊥BD于点F.BE=√2,∴EF=BE⋅sin45°=1,∵DE平分∠CDB,∴CE=EF=1,∴BC=√2+1.故答案为:√2+1.由正方形的性质得∠CBD=45°,解直角三角形得EF,由角平分线的性质得CE,进而得正方形的边长.本题主要考查了正方形的性质,角平分线的性质,解直角三角形,关键是解直角三角形求得EF的长度.18.答案:32解析:解:∵∠ADC=90°,AC=3cm,∠ACD=30°,∴AD=12AC=32cm,∵将矩形ABCD绕点O旋转后,点A与点B重合,点D落在点E处,∴AE=AD=32cm,故答案为32.由矩形和直角三角形的性质可得AD=12AC=32cm,由旋转的性质可求解.本题考查了旋转的性质,矩形的性质,掌握旋转的性质是本题的关键.19.答案:解:去分母得,x+2−4=x2−4,移项、合并同类项得,x2−x−2=0,解得x1=2,x2=−1,经检验x=2是增根,舍去;x=−1是原方程的根,所以原方程的根是x=−1.解析:本题考查了解分式方程,熟记解分式方程的步骤:去分母、去括号、移项、合并同类项、系数化为1是解题的关键,注意验根.根据解分式方程的步骤:去分母、去括号、移项、合并同类项、系数化为1进行计算即可.20.答案:13解析:解:(1)∵确定老师们可以选用以下三种直播授课方式:A.晓黑板直播;B.钉钉直播;C.腾讯会议直播,∴王燕老师从三种网络授课方式中随机选取一种,是晓黑板直播的概率=13.故答案为:13;(2)根据题意,列表格如下:6种,所以,P(两位老师选取不同的网络直播授课方式)=69=23.(1)直接利用概率公式计算可得;(2)列表得出所有等可能结果,从中找到符合条件的结果数,再利用概率公式求解可得.此题主要考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.21.答案:解:x+√2x−3=3,移项得:√2x−3=3−x,两边平方得:2x−3=(3−x)2,整理得:x2−8x+12=0,解得:x1=2,x2=6,经检验:x=2是原方程的解,x=6不是原方程的增根,舍去,∴原方程的解是x=2.解析:移项后两边平方,即可得出一个一元二次方程,求出方程的解即可.本题考查了解无理方程,能把无理方程转化成有理方程是解此题的关键.22.答案:解:将方程x 2−3xy +2y 2=0 的左边因式分解,得x −2y =0或x −y =0,原方程组可以化为{x +y =6x −2y =0或{x +y =6x −y =0,解这两个方程组得{x =4y =2或{x =3y =3, 所以原方程组的解是{x 1=4y 1=2,{x 2=3y 2=3.解析:先对x 2−3xy +2y 2=0分解因式转化为两个一元一次方程,然后联立①,组成两个二元一次方程组,解之即可.本题考查了高次方程组,将高次方程化为一次方程是解题的关键.23.答案:−b ⃗ −a ⃗解析:解:(1)如图,过点E 作EF//AB ,则点F 是BC 的中点,所以EF ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ =a ⃗ ,FC ⃗⃗⃗⃗⃗ =AE ⃗⃗⃗⃗⃗ =b ⃗ ,所以CE ⃗⃗⃗⃗⃗ =CF ⃗⃗⃗⃗⃗ +FE ⃗⃗⃗⃗⃗ =−b ⃗ −a ⃗ ;故答案为:−b ⃗ −a ⃗ .(2)如图,连接BE ,所以EB ⃗⃗⃗⃗⃗ =AB⃗⃗⃗⃗⃗ −AE ⃗⃗⃗⃗⃗ . (1)如图,过点E 作EF//AB ,则点F 是BC 的中点,根据平面向量的性质即可得结论;(2)如图,连接BE ,所以可得EB ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ −AE ⃗⃗⃗⃗⃗ .本题考查了作图−复杂作图、平行四边形的性质、平面向量,解决本题的关键是掌握平行四边形的性质.24.答案:解:(1)将A(a,1)代入y =3x ,得A(3,1),设直线AB 解析式为y =kx +b ,将A(3,1)B(0,−2)代入可得{3k +b =1b =−2,解得{k =1b =−2, ∴直线AB 解析式为y =x −2;(2)如图,过点A 作AH ⊥OC ,∵A(3,1),∴AH=1,在y=x−2中,令y=0可得x=2,∴C(2,0),∴OC=2,∴S△OAC=12OC⋅AH=12×2×1=1.解析:(1)把A点坐标代入双曲线解析式可求得a的值,再利用待定系数法可求得直线AB的解析式;(2)由直线AB的解析式可求得C点坐标,从而可求得OC的长,过A作AH⊥x轴于点H,则可求得AH的长,从而可求得△AOC的面积.本题主要考查函数图象的交点,掌握函数图象的交点满足每一个函数解析式是解题的关键.25.答案:(1)证明:∵AE//BC,DE//AB,∴四边形ABDE是平行四边形,∴AE=BD,∵AD是边BC上的中线,∴BD=DC,∴AE=DC,又∵AE//BC,∴四边形ADCE是平行四边形,(2)∵∠BAC=90°,AD是边BC上的中线.∴AD=CD,∵四边形ADCE是平行四边形,∴四边形ADCE是菱形,解析:(1)先证四边形ABDE是平行四边形,再证四边形ADCE是平行四边形;(2)由∠BAC=90°,AD是边BC上的中线,即得AD=BD=CD,证得四边形ADCE是平行四边形,即证;本题考查了平行四边形的判定和性质,(1)证得四边形ABDE,四边形ADCE为平行四边形即得;(2)由∠BAC=90°,AD上斜边BC上的中线,即得AD=BD=CD,证得四边形ADCE是平行四边形,从而证得四边形ADCE是菱形.26.答案:证明:(1)如图1,∵四边形ABCD是正方形,∴OB=OC,∠OBE=∠OCF=45°,AC⊥BD,∴∠EOF=∠BOC=90°,∴∠EOB=∠FOC,在△EOB和△FOC中,{∠ECB=∠FOC OB=OC∠OBE=∠OCF,∴△EOB≌△FOC(ASA),∴BE=CF;(2)CF2+BG2=FG2;理由是:如图2,连接EG,由(1)知:△EOB≌△FOC,∴OE=OF,∵OG平分∠EOF,∴∠EOG=∠FOG,∵OG=OG,∴△EOG≌△FOG(SAS),∴EG=FG,∵四边形ABCD是正方形,∴∠EBG=90°,∴EB2+BG2=EG2,∵BE=CF,∴CF2+BG2=FG2;(3)图2中的△GOF可能是等腰三角形,分三种情况:①如图3,当OG=OF时,连接EG,则∠OGF=∠OFG,∴∠BGO=∠CFO,由(2)知:EG=FG,∵OB=OC,∠OBG=∠OCF=45°,∴△BOG≌△COF(AAS),∴BG=CF,设BG=x,则BE=CF=x,FG=2−2x,在Rt△BEG中,由勾股定理得:EG2=BE2+BG2,(2−2x)2=x2+x2,x=2+√2(舍)或2−√2,∴BG=2−√2;②如图4,OF=FG时,OE⊥AB,此时E为AB的中点,G与B重合,BG=0;BC=1;③如图5,OG=FG时,F与C重合,E与B重合,此时BG=12综上,图2中的△GOF可能是等腰三角形,BG的长为2−√2或0或1.解析:(1)首先证明△EOB≌△FOC,推出BE=CF;(2)如图2,连接EG,构建全等三角形,证明△EOG≌△FOG(SAS),得EG=FG,利用勾股定理列等式可得结论;(3)分三种情况:①如图3,当OG=OF时,②如图4,OF=FG时,③如图5,OG=FG时,分别画出图形,可得结论.本题是四边形的综合题,考查正方形的性质、全等三角形的判定和性质、等腰直角三角形的判定和性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.。

上海市浦东新区八年级下期末数学试题(有答案)

上海市浦东新区八年级下期末数学试题(有答案)

上海市浦东新区八年级(下)期末考试数 学 试 卷一、选择题(本大题共4小题,共12.0分) 1. 在下列方程中,分式方程是( )A. x2=1 B.√x 2=1C. 2x =1 D. 2√x =1 2. 函数y =-x -3的图象不经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. 在下列事件中,确定事件共有( )①买一张体育彩票中大奖; ②抛掷一枚硬币,落地后正面朝上;③在只装有2只红球、3只黄球的袋子中,摸出1只白球;④初二(1)班共有37名学生,至少有3名学生的生日在同一个月.A. 1个B. 2个C. 3个D. 4个4. 在四边形ABCD 中,对角线AC 和BD 相交于点O ,AB =CD ,添加下列条件后能判定这个四边形是平行四边形的是( )A. AD//BCB. AO =COC. ∠ABC =∠ADCD. ∠BAC =∠DCA二、填空题(本大题共14小题,共28.0分)5. 方程2x 3+54=0的解是______.6. 方程√x +2=x 的解是x =______.7. 如果{y =−1x=2是方程mx 2+y 2=xy 的一个解,那么m =______. 8. 当k =______时,方程kx +4=3-2x 无解.9. 当m =______时,函数y =(m -1)x +m 是常值函数.10. 已知一次函数y =kx +b 的图象经过第一象限,且它的截距为-5,那么函数值y 随自变量x 值的增大而______.11. 已知一次函数y =2x +5,当函数值y <0时,自变量x 值的取值范围是______. 12. 已知一辆匀速行驶汽车的路程S(千米)与时间t (时)的函数关系如图所示,那么这辆汽车的速度是每小时______千米.13. 若一个多边形的内角和等于外角和,那么这个多边形的边数是______.14. 已知菱形一组对角的和为240°,较短的一条对角线的长度为4厘米,那么这个菱形的面积为______平方厘米.15. 已知在等腰梯形ABCD 中,AD ∥BC ,AB =13厘米,AD =4厘米,高AH =12厘米,那么这个梯形的中位线长等于______厘米.16. 从0,1,2,3四个数字中任取三个数字组成没有重复数字的三位数,那么组成的三位数是奇数的概率是______.17. 如图,已知在矩形ABCD 中,AB =√2,BC =2,将这个矩形沿直线BE折叠,使点C 落在边AD 上的点F 处,折痕BE 交边CD 于点E ,那么∠DCF 等于______度.18. 已知在平面直角坐标系xOy 中,直线y =-12x +4与x 轴交于点A 、与y 轴交于点B ,四边形AOBC 是梯形,且对角线AB 平分∠CAO ,那么点C 的坐标为______. 三、计算题(本大题共1小题,共6.0分) 19. 解方程:7x x 2−5x−6=1x+1+2.四、解答题(本大题共7小题,共54.0分) 20. 解方程组:{x 2+xy −2y 2=0x+3y=8.21. 已知直线y =kx +b 与直线y =-13x +k 都经过点A (6,-1),求这两条直线与x 轴所围成的三角形面积.22. 已知:如图,在平行四边形ABCD 中,E 、F 分别是对角线BD 上的两点,且BE =DF ,AB ⃗⃗⃗⃗⃗ =a⃗ ,BC ⃗⃗⃗⃗⃗ =b ⃗ ,AF⃗⃗⃗⃗⃗ =c ⃗ . (1)用向量a ⃗ 、b ⃗ 、c ⃗ 表示下列向量:向量CE ⃗⃗⃗⃗⃗ =______,向量BD ⃗⃗⃗⃗⃗⃗ =______,向量DE ⃗⃗⃗⃗⃗⃗ =______; (2)求作:b ⃗ +c⃗ .23. 已知:如图,在Rt △ABC 中,∠C =90°,CD 平分∠ACB ,AD ⊥CD ,垂足为点D ,M 是边AB 的中点,AB =20,AC =10,求线段DM 的长.24.已知:如图,在等边三角形ABC中,过边AB上一点D作DE⊥BC,垂足为点E,过边AC上一点G作GF⊥BC,垂足为点F,BE=CF,联结DG.(1)求证:四边形DEFG是平行四边形;(2)连接AF,当∠BAF=3∠FAC时,求证:四边形DEFG是正方形.25.从甲地到乙地有两条公路:一条是全长400千米的普通公路,一条是全长360千米的高速公路.某客车在高速公路上行驶的平均速度比在普通公路上行驶的平均速度快50千米/时,从甲地到乙地由高速公路上行驶所需的时间比普通公路上行驶所需的时间少6小时.求该客车在高速公路上行驶的平均速度.26.如图,已知在梯形ABCD中,AD∥BC,P是下底BC上一动点(点P与点B不重合),AB=AD=10,BC=24,∠C=45°,45°<∠B<90°,设BP=x,四边形APCD的面积为y.(1)求y关于x的函数解析式,并写出它的定义域;(2)联结PD,当△APD是以AD为腰的等腰三角形时,求四边形APCD的面积.答案和解析1.【答案】C【解析】解:A、该方程是整式方程,故本选项错误;B、该方程是无理方程,故本选项错误;C、该方程符合分式方程的定义,故本选项正确;D、该方程属于无理方程,故本选项错误;故选:C.根据分式方程的定义:分母里含有字母的方程叫做分式方程进行判断.本题考查了分式方程的定义.判断一个方程是否为分式方程,主要是依据分式方程的定义,也就是看分母中是否含有未知数(注意:仅仅是字母不行,必须是表示未知数的字母).2.【答案】A【解析】解:∵k=-1<0,∴一次函数经过二四象限;∵b=-3<0,∴一次函数又经过第三象限,∴一次函数y=-x-3的图象不经过第一象限,故选:A.根据比例系数得到相应的象限,进而根据常数得到另一象限,判断即可.此题考查一次函数的性质,用到的知识点为:k<0,函数图象经过二四象限,b<0,函数图象经过第三象限.3.【答案】B【解析】解:①买一张体育彩票中大奖,是随机事件,故此选项错误;②抛掷一枚硬币,落地后正面朝上,是随机事件,故此选项错误;③在只装有2只红球、3只黄球的袋子中,摸出1只白球,是不可能事件,属于确定事件;④初二(1)班共有37名学生,至少有3名学生的生日在同一个月,是必然事件,属于确定事件.故选:B.直接利用随机事件以及确定事件的定义分别分析得出答案.此题主要考查了随机事件以及确定事件的定义,正确把握相关定义是解题关键.4.【答案】D【解析】解:A、不能判断四边形是平行四边形,四边形可能是等腰梯形,故本选项不符合题意;B、无法判定四边形是平行四边形,故本选项不符合题意;C、无法判定四边形是平行四边形,故本选项不符合题意;D、由∠BAC=∠DCA推出AB∥CD,结合AB=CD,可以推出四边形是平行四边形;故选:D.根据四边形的判定方法即可解决问题;本题考查平行四边形的判定,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.5.【答案】x=-3【解析】解:方程整理得:x3=-27,开立方得:x=-3.故答案为:x=-3.方程整理后,利用立方根定义求出解即可.此题考查了立方根,熟练掌握立方根的定义是解本题的关键.6.【答案】2【解析】解:原方程变形为:x+2=x2即x2-x-2=0∴(x-2)(x+1)=0∴x=2或x=-1∵x=-1时不满足题意.∴x=2.故答案为:2.本题含根号,计算比较不便,因此可先对方程两边平方,得到x+2=x2,再对方程进行因式分解即可解出本题.本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的提点灵活选用合适的方法.本题运用的是因式分解法和平方法.7.【答案】-34【解析】解:把方程的解代入方程mx2+y2=xy,可得4m+1=-2,∴4m=-3,解得m=-,故答案为:-.依据方程的解概念,将方程的解代入方程进行计算,即可得到m的值.本题考查了二元一次方程的解,方程的解就是满足方程的未知数的值,把解代入方程即可.8.【答案】-2【解析】解:∵kx+4=3-2x,∴(k+2)x=-1,∴k+2=0时,方程kx+4=3-2x无解,解得k=-2.故答案为:-2.方程kx+4=3-2x无解时,x的系数是0,据此求解即可.此题主要考查了一元一次方程的解,要熟练掌握,解答此题的关键是要明确:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.9.【答案】1【解析】解:当m-1=0时,函数y=(m-1)x+m是常值函数,故m=1时,y=1.故答案为:1.直接利用常值函数的定义分析得出答案.此题主要考查了函数的概念,正确把握函数的定义是解题关键.10.【答案】增大【解析】解:∵一次函数y=kx+b的图象经过第一象限,且它的截距为-5,∴一次函数y=kx+b的图象经过第一、三、四象限,即一次函数y=kx+b的图象不经过第二象限,∴k>0,b<0.所以函数值y随自变量x的值增大而增大,故答案为:增大;直接根据一次函数的图象与系数的关系即可得出结论.本题考查的是一次函数的图象与系数的关系,熟知一次函数y=kx+b(k≠0)中,当k>0,b<0时,函数的图象在第一、三、四象限是解答此题的关键.11.【答案】x<-52【解析】解:∵一次函数y=2x+5中y<0,∴2x+5<0,解得x<-.故答案为:x<-.根据题意列出关于x的不等式,求出x的取值范围即可.本题考查的是一次函数的性质,熟知一次函数的增减性是解答此题的关键.12.【答案】48【解析】解:这辆汽车的速度是km/h,故答案为:48根据图象得出汽车的速度即可.此题考查函数图象,关键是根据图象得出汽车的路程和时间.13.【答案】4【解析】解:设多边形的边数为n,则(n-2)×180°=360°,解得:n=4,故答案为:4.设多边形的边数为n,根据题意得出方程(n-2)×180°=360°,求出即可.本题考查了多边形的内角和和外角和定理,能根据题意列出方程是解此题的关键.14.【答案】8√3【解析】解:如图,∵四边形ABCD是菱形,∠BAD+∠BCD=240°,∴∠BAD=∠BCD=120°,∠ABC=∠ADC=60°∵AB=BC=AD=DC,∴△ABC,△ADC是等边三角形,∴AB=BC=AC=4,∴S菱形ABCD=2•S△ABC=2××42=8,故答案为8.只要证明△ABC,△ADC是等边三角形即可解决问题;本题考查菱形的性质、等边三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.15.【答案】9【解析】解:过D作DM⊥BC于M,∵AH⊥BC,∴AH∥DM,∠AHM=90°,∵AD∥BC,∴四边形AHDM是矩形,∴AH=DM=12厘米,AD=HM=4厘米,由勾股定理得:BH===5(厘米),同理CM=5(厘米),∴BC=BH+HM+CM=14厘米,∴梯形ABCD的中位线长是=9(厘米),故答案为:9.过D作DM⊥BC于M,得出四边形AHDM是矩形,求出HM,根据勾股定理求出BH、CM,求出BC,根据梯形的中位线求出即可.本题考查了勾股定理和矩形的性质和判定、等腰梯形的性质、梯形的中位线等知识点,能正确作出辅助线是解此题的关键.16.【答案】49【解析】解:如图所示:,由树状图可得一共有18中组合,符合题意的有8种,故组成的三位数是奇数的概率是:=.故答案为:.根据题意画出树状图,再利用概率公式求出答案.此题主要考查了树状图法求概率,正确画出树状图是解题关键.17.【答案】22.5【解析】解:由折叠可得:BF=BC,∵BC=,∴BF=,∵四边形ABCD为矩形,∴∠A=90°,在Rt△BAF中,AF===,∴AB=AF,∴∠ABF=∠AFB=45°,∴∠FBC=90°-∠ABF=45°,∵在△CBF中,BF=BC,∠FBC=45°,∴∠BCF=∠BFC=(180°-∠CBF)÷2=67.5°,∴∠DCF=90°-∠BCF=90°-67.5°=22.5°,故答案为:22.5°.由翻折得到BF=BC,先根据勾股定理求出AF,得到△BAF为等腰直角三角形,所以∠ABF=∠AFB=45°,进而求出∠FBC=90°-∠ABF=45°,再根据△CBF为等腰三角形,得到∠BCF=∠BFC=(180°-∠CBF)÷2=67.5°,进而求出∠DCF=90°-∠BCF=90°-67.5°=22.5°.本题考查了翻折问题,解决本题的关键是由翻折得到BF=BC.18.【答案】(5,4)【解析】解:∵y=-x+4,∴y=0时,-x+4=0,解得x=8,∴A(8,0),x=0时,y=4,∴B(0,4).如图,四边形AOBC是梯形,且对角线AB平分∠CAO,∴BC∥OA,∠OAB=∠CAB,∴∠ABC=∠OAB,∴∠ABC=∠CAB,∴AC=BC.设点C的坐标为(x,4),则(x-8)2+42=x2,解得x=5,∴点C的坐标为(5,4).故答案为(5,4).求出A、B两点的坐标,发现OA≠OB,∠OAB≠∠OBA,所以四边形AOBC是梯形,且对角线AB 平分∠CAO时只能BC∥OA,利用平行线的性质以及角平分线定义得出∠ABC=∠CAB,那么AC=BC.设点C的坐标为(x,4),列出方程(x-8)2+42=x2,求解即可.本题考查了一次函数图象上点的坐标特征,平行线的性质,等腰三角形的判定,两点间的距离公式,得出AC=BC是解题的关键.19.【答案】解:去分母得:7x=x-6+2(x-6)(x+1),整理得:x2-8x-9=0,解得:x1=9,x2=-1,经检验x=9是分式方程的解,x=-1是增根,则原方程的解为x=9.【解析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.20.【答案】解:∵x 2+xy -2y 2=(x +2y )(x -y ),∴原方程组可化为:{x +2y =0x+3y=8或{x −y =0x+3y=8,解这两个方程组得原方程组的解为:{y =8x=−16或{y =2x=2.【解析】因式分解得出x 2+xy-2y 2=(x+2y )(x-y ),再化为两个方程组解答即可.本题主要考查解高次方程的能力,解题的关键是熟练掌握加减消元法和整体代入的思想. 21.【答案】解:∵直线y =kx +b 与直线y =-13x +k 都经过点A (6,-1),∴{−1=−2+k −1=6k+b ,解得{b =−7k=1,∴两条直线的解析式分别为y =x -7和y =-13x +1,∴直线y =x -7与x 轴交于点B (7,0),直线y =-13x +1与x 轴交于点C (3,0),∴S △ABC =12×4×1=2, 即这两条直线与x 轴所围成的三角形面积为2.【解析】依据直线y=kx+b 与直线y=-x+k 都经过点A (6,-1),即可得到两条直线的解析式分别为y=x-7和y=-x+1,进而得出直线y=x-7与x 轴交于点B (7,0),直线y=-x+1与x 轴交于点C (3,0),据此可得这两条直线与x 轴所围成的三角形面积为2.此题主要考查了两函数图象相交的问题以及三角形面积的计算,关键是掌握待定系数法求一次函数解析式.22.【答案】-c ⃗ a ⃗ -b ⃗ a⃗ -c ⃗ 【解析】解:(1)∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD=BC ,∴∠ADF=∠CBE ,∵DF=BE ,∴△ADF ≌△CBE ,∴∠AFD=∠CEB ,AF=CE ,∴∠AFB=∠CED ,∴AF ∥CE , ∴=-=-=-, =+=-, =+=-, 故答案为-,-,-.(2)延长EC 到K ,使得CK=EC ,连接BK ,则向量即为所求;(1)根据平面向量的加法法则计算即可;(2)延长EC 到K ,使得CK=EC ,连接BK ,则向量即为所求;本题考查平行四边形的性质、三角形法则等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.23.【答案】解:延长AD 交BC 于E ,∵∠C =90°,∴BC =√AB 2−AC 2=10√3,∵CD 平分∠ACB ,AD ⊥CD ,∴∠ACD =∠ECD ,∠ADC =∠EDC =90°,∴∠CAD =∠CED ,∴CA =CE =10,∴AD =DE ,∵M 是边AB 的中点,∴DM =12BE =12×(10√3-10)=5√3-5.【解析】延长AD 交BC 于E ,根据勾股定理求出BC ,根据等腰三角形的性质得到AD=DE ,根据三角形中位线定理计算即可.本题考查的是三角形中位线定理、等腰三角形的性质以及直角三角形的性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.24.【答案】证明:(1)在等边三角形ABC 中,∵DE ⊥BC ,GF ⊥BC ,∴∠DEF =∠GFC =90°,∴DE ∥GF ,∵∠B =∠C =60°,BE =CF ,∠DEB =∠GFC =90°,∴△BDE ≌△CGF ,∴DE =GF ,∴四边形DEFG 是平行四边形;(2)在平行四边形DEFG 中,∵∠DEF =90°,∴平行四边形DEFG 是矩形,∵∠BAC =60°,∠BAF =3∠FAC ,∴∠GAF =15°,在△CGF 中,∵∠C =60°,∠GFC =90°,∴∠CGF =30°,∴∠GFA =15°,∴∠GAF =∠GFA ,∴GA =GF ,∵DG ∥BC ,∴∠ADG =∠B =60°,∴△DAG 是等边三角形,∴GA =GD ,∴GD =GF ,∴矩形DEFG 是正方形.【解析】(1)根据等边三角形的性质和平行四边形的判定证明即可;(2)根据等边三角形的判定和性质以及正方形的判定解答即可.此题考查正方形的判定,关键是根据全等三角形的判定和性质以及正方形的判定解答.25.【答案】解:设该客车在高速公路上行驶的平均速度是x 千米/小时,依题意有400x−50-360x =6,整理得3x 2-170x -9000=0,解得x1=90,x2=-100(舍去),3经检验,x=90是原方程的解.答:该客车在高速公路上行驶的平均速度是90千米/小时.【解析】可设该客车在高速公路上行驶的平均速度是x千米/小时,根据等量关系:从甲地到乙地由高速公路上行驶所需的时间=普通公路上行驶所需的时间-6小时,列出方程求解即可.本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.26.【答案】(1)解:作AH⊥BC于H.设AH=h.由题意:√102−ℎ2+10+h=24,整理得:h2-14h+48=0,解得h=8或6(舍弃),∴y=1(10+24-x)×8,即y=-4x+136(0<x<24)2(2)解:①当AP=AD=10时,∵AB=AD=10,∴AP=AB=10,∵BH=6,∴BP=2BH=12,即x=12,∴y=88.②当PD=AD=10时,四边形ABPD是平行四边形或等腰梯形,∴BP=AD=10或BP=2BH+AD=22,即x=10或22,∴y=96或48,综上所述,四边形APCD的面积为88或96或48.【解析】(1)作AH⊥BC于H.设AH=h.构建方程求出h即可解决问题.(2)分两种情形分别讨论求解即可;本题考查梯形、等腰三角形的性质勾股定理、一次函数的应用等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题.。

2022-2023学年上海市浦东新区八年级(下)期末数学试卷答案解析

2022-2023学年上海市浦东新区八年级(下)期末数学试卷答案解析

2022-2023学年上海市浦东新区八年级(下)期末数学试卷一、选择题(本大题共6题,每题3分,满分18分)1.(3分)下列函数中,是一次函数的是()A.y=x2+2B.C.y=kx+2D.y=x+22.(3分)用换元法解方程时,下列换元方法中最合适的换元方法是()A.设y=x2+1B.设y=x+1C.设y=D.设y=.3.(3分)方程2x2﹣2=0的解是()A.x=﹣1B.x=0C.x=1D.x=±14.(3分)下列事件是必然事件的是()A.两个不相同无理数的和是无理数B.两个不相同无理数的差是无理数C.两个不相同无理数的积是无理数D.两个不相同无理数的商是无理数5.(3分)如果O是正方形ABCD对角线AC、BD的交点,那么向量、、、是()A.相等向量B.相反向量C.平行向量D.模相等的向量6.(3分)已知四边形ABCD,AB=BC=CD,AC、BD是它的两条对角线.下列条件中,不能判定四边形ABCD是菱形的是()A.AC=BD B.AD=BC C.AB∥DC D.AC⊥BD.二、填空题(本大题共12题,每小题2分,满分24分)7.(2分)如果将直线y=3x+1向上平移1个单位,那么所得新直线的表达式是.8.(2分)直线y=2(x﹣1)的截距是.9.(2分)关于x的方程(m﹣2)x=1(m≠2)的解是.10.(2分)方程的解是.11.(2分)写出二元二次方程x2+y2=13的整数解是.12.(2分)有一个两位数,如果个位上的数比十位上的数大1,并且十位上的数的平方比个位上的数也大1,那么这个两位数是.13.(2分)四张完全相同的卡片上,分别画有菱形、矩形、等腰梯形和直角梯形,如果从中任意抽取张卡片,抽得的卡片上所画图形恰好是中心对称图形的概率是.14.(2分)一个多边形的每一个外角都等于45°,则这个多边形内角和为度.15.(2分)如图,已知梯形ABCD,AB∥DC,点E在底边AB上,EC∥AD.如果设那么=.(用向量的式子表示).16.(2分)如果菱形的面积是24,较短的对角线长为6,那么这个菱形的边长是.17.(2分)如图,△ABC被平行于边BC的直线l分成梯形DBCE和小△ADE,当△ABC为直角三角形,且∠A=90°时,我们叫梯形DBCE是“余角梯形”.如果一个“余角梯形”较短底边长5,两腰长分别是3和4,那么它的中位线长是.18.(2分)如图,在△ABC中,∠A=90°,BC=2AC=8,点M在边BC上,过点M作MN ⊥BC,垂足为点M,交边AB于点N,将△ABC沿直线MN翻折,点A、C分别与点D、E对应,如果四边形ADBE是平行四边形,那么CM的长是.三、解答题(共6题,满分46分)19.(6分)解分式方程:+1=.20.(6分)某班六一节联欢会设计了即兴表演节目的摆球游戏:用一个不透明的盒子,里面装有四个分别标有数字1、2、3、4的乒乓球,这些球除数字外,其它完全相同,游戏规则是:参加联欢会的所有同学从盒子中随机一次摸出两个球(每位同学只能摸一次),如果两球上的数字之和是偶数就给大家即兴表演一个节目;否则,下个同学接着做摸球游戏依次进行.(1)用树状图表示所有等可能的结果;(2)求参加联欢会的同学表演即兴节目的概率.21.(8分)如图,已知梯形ABCD,AB∥CD,AD=BC=DC,AC⊥BC.(1)求∠B的度数;(2)过点D作DE⊥AC,垂足为点E,联结BE,如果DE=1,求BE的长.22.(8分)我们知道,海拔高度每上升1千米,温度下降6℃.某时刻,上海地面温度为20℃,设高出地面x千米处的温度为y℃.(1)写出y与x之间的函数关系式,并写出函数定义域;(2)有一架飞机飞过浦东上空,如果机舱内仪表显示飞机外面的温度为﹣166℃,求此刻飞机离地面的高度为多少千米?23.(8分)已知,如图,△ABC中,AB=AC,D是边BA的延长线上一点,过D作DF∥BC,交CA的延长线于点E,BD=BF.(1)求证:四边形BCEF是平行四边形;(2)联结DC,当A是EC的中点时,求证:四边形BCDE为矩形.24.(10分)如图,在平面直角坐标系xOy中,直线y=kx+b经过点A(﹣4,0),B(0,3).(1)求直线AB的函数表达式;(2)点C在直线AB上,点D与点C关于y轴对称,如果以O、A、C、D为顶点的四边形是平行四边形,求点C的坐标.四、解答题(本题满分12分,每小题12分)25.(12分)如图,已知△ABC,∠BAC=90°,AB=AC=4,点D在边BC上,DE⊥AB,垂足为点E,以DE为边作正方形DEFG,点F在边AB上,且位于点E的左侧,联结AG.(1)设DE=x,AG=y,求y关于x的函数解析式,并写出函数的定义域;(2)当四边形ABDG是等腰梯形时,求DE的长;(3)联结BG,当△AGB是等腰三角形时,求正方形DEFG的面积.2022-2023学年上海市浦东新区八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共6题,每题3分,满分18分)1.【分析】根据一次函数的定义即可即可.【解答】解:A、此函数是二次函数,故此选项不符合题意;B、此函数不是一次函数,故此选项不符合题意;C、当k≠0时,此函数是一次函数,故此选项不符合题意;D、此函数是一次函数,故此选项符合题意.故选:D.【点评】本题考查了一次函数.解题的关键是掌握一次函数的定义,一次函数y=kx+b 的定义条件是:k、b为常数,k≠0,自变量次数为1.2.【分析】根据分式方程的特点即可得出答案.【解答】解:分式方程中与互为倒数,则可设y=,那么=,方程化为y+=7,那么最合适的换元方法是y=,故选:C.【点评】本题考查换元法解分式方程,换元法是解分式方程的常用方法,必须熟练掌握.3.【分析】首先把已知方程变形为x2=1,再根据直接开平方即可得到原方程的解.【解答】解:2x2﹣2=0,2x2=2,x2=1,解得x=±1.故选:D.【点评】本题考查解一元二次方程﹣直接开平方法,形如x2=p或(nx+m)2=p(p≥0)的一元二次方程可采用直接开平方的方法解一元二次方程.4.【分析】根据实数的运算、事件发生的可能性大小判断.【解答】解:A、+(﹣)=0,0是有理数,故两个不相同无理数的和是无理数,是随机事件,不符合题意;B、两个不相同无理数的差是无理数,是必然事件,符合题意;C、×(﹣)=﹣2,﹣2是有理数,故两个不相同无理数的积是无理数,是随机事件,不符合题意;D、=﹣1,﹣1是有理数,故两个不相同无理数的商是无理数,是随机事件,不符合题意;故选:B.【点评】本题考查的是必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5.【分析】根据正方形的性质得出OA=OC=OB=OD,即可推出结论.【解答】解:∵O是正方形ABCD对角线AC、BD的交点,∴OA=OC=OB=OD,∴||=||=||=||,∵、、、的方向不同,∴、、、是模相等的量,故选:D.【点评】本题考查了平面向量,正方形的性质,熟练掌握正方形的性质是解题的关键.6.【分析】根据菱形的判定方法判断即可.【解答】解:∵AB=BC=CD,AC、BD是它的两条对角线,添加AD=BC,∴四边形ABCD是菱形,故B正确;添加AC=BD,不能得出四边形ABCD是菱形,故A错误;添加AB∥DC,∴四边形ABCD是菱形,故C正确;添加AC⊥BD,∴四边形ABCD是菱形,故D正确;故选:A.【点评】此题考查菱形的判定,关键是根据对角线垂直的平行四边形是菱形以及邻边相等的平行四边形是菱形解答.二、填空题(本大题共12题,每小题2分,满分24分)7.【分析】根据“上加下减”的原则进行解答即可.【解答】解:由“上加下减”的原则可知,将函数y=3x+1的图象向上平移1个单位所得函数的解析式为y=3x+1+1,即y=3x+2.故答案为:y=3x+2.【点评】本题考查的是一次函数的图象与几何变换,熟知“上加下减”的原则是解答此题的关键.8.【分析】代入x=0求出y值,此题得解.【解答】解:当x=0时,y=2×(0﹣1)=﹣2,∴直线y=2(x﹣1)的截距为﹣2.故答案为:﹣2.【点评】本题考查了一次函数图象上点的坐标特征,代入x=0求出y值是解题的关键.9.【分析】方程x系数化为1,即可表示出解.【解答】解:方程(m﹣2)x=1(m≠2),系数化为1得:x=.故答案为:x=.【点评】此题考查了解一元一次方程,熟练掌握一元一次方程的解法是解本题的关键.10.【分析】利用方程两边平方的办法把无理方程转化为二次方程,求解并检验即可.【解答】解:方程的两边平方,得x﹣1=x2﹣1,整理,得x2﹣x=0,解这个方程,得x1=0,x2=1.经检验,x=1是原方程的解.故答案为:x=1.【点评】本题主要考查了无理方程,把无理方程转化为整式方程是解决本题的关键.11.【分析】根据整数的定义和平方数即可求解.【解答】解:∵13=4+9,∴二元二次方程x2+y2=13的整数解是或或或或或或或.故答案为:或或或或或或或.【点评】本题考查非一次不定方程(组)的整数解问题,关键是把13分解为4+9.12.【分析】设这个两位数中十位上的数字为x,则个位上的数字为(x+1),根据题意列得方程后解方程即可.【解答】解:设这个两位数中十位上的数字为x,则个位上的数字为(x+1),则x2﹣(x+1)=1,整理得:x2﹣x﹣2=0,解得:x1=2,x1=﹣1(舍去),则2+1=3,那么这个两位数为:23,故答案为:23.【点评】本题考查一元二次方程的应用,根据题意列得方程是解题的关键.13.【分析】先找出卡片上所画的图形是中心对称图形的个数,再除以总数即可.【解答】解:∵四张卡片中中心对称图形有菱形、矩形,共2个,∴卡片上所画的图形恰好是中心对称图形的概率为=,故答案为:.【点评】此题考查概率公式:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种可能,那么事件A的概率P(A)=,关键是找出卡片上所画的图形是中心对称图形的个数.14.【分析】先利用360°÷45°求出多边形的边数,再根据多边形的内角和公式(n﹣2)•180°计算即可求解.【解答】解:多边形的边数为:360°÷45°=8,多边形的内角和是:(8﹣2)•180°=1080°.故答案为:1080.【点评】本题主要考查了正多边形的外角与边数的关系,以及多边形内角和公式,利用外角和为360°求出多边形的边数是解题的关键.15.【分析】先证明四边形ADCE是平行四边形,得出,再根据平面向量三角形运算法则求解即可.【解答】解:∵AB∥DC,AD∥CE,∴四边形ADCE是平行四边形,∴CE=AD,∵,∴,又∵,∴=,故答案为:.【点评】本题考查了平面向量,平行四边形的判定与性质,熟练掌握平面向量的三角形运算法则是解题的关键.16.【分析】根据菱形的面积公式可得菱形的另一对角线长,再根据菱形的对角线互相垂直平分利用勾股定理可求出边长.【解答】解:设菱形的另一对角线长为x,由题意:×6×x=24,解得:x=8,菱形的边长为:=5,故答案为:5.【点评】此题主要考查了菱形的性质,以及勾股定理的应用,关键是掌握菱形的对角线互相垂直、平分.17.【分析】先根据DE∥BC,得=,所以=,设AD=4x,则AE=3x,根据勾股定理得16x2+9x2=25,解得x=1(﹣1舍去),所以AD=4,AE=3,可得AB=8,AC=6,所以BC==10,所以梯形DBCE的中位线长是=.【解答】解:∵DE∥BC,∴=,∵BD=4,CE=3,∴=,∴设AD=4x,则AE=3x,∵∠A=90°,DE=5,∴AD2+AE2=DE2,∴16x2+9x2=25,∴x=1(﹣1舍去),∴AD=4,AE=3,∴AB=8,AC=6,∴BC==10,∴梯形DBCE的中位线长是=.故答案为:.【点评】本题考查了梯形中位线定理,熟练掌握梯形中位线定理是关键,也考查了平行线分线段成比例的性质和勾股定理.18.【分析】先求出∠ABC=30°,过点A作AH⊥BC于点H,得∠AHM=90°,CH=AC =2,四边形AGMH是矩形,设AG=MH=DG=x,然后根据翻折的性质列出方程4x+4=8,求出x,进而可得CM的长.【解答】解:在△ABC中,∠A=90°,∵BC=2AC=8,∴AC=4,∴∠ABC=30°,∴∠C=60°,如图,过点A作AH⊥BC于点H,∴∠AHM=90°,CH=AC=2,由翻折可知:AG=DG,∠MGA=∠GMC=90°,∴四边形AGMH是矩形,∴AG=MH,∴AG=MH=DG,设AG=MH=DG=x,∵四边形ADBE是平行四边形,∴BE=AD=2x,由翻折可知:EM=CM=MH+CH=x+2,∴CB=BE+2CM=2x+2(x+2)=4x+4=8,∴x=1,∴CM=x+2=3.故答案为:3.【点评】本题考查翻折变换、平行四边形的性质、矩形的判定与性质、含30度角的直角三角形等知识,解题的关键是熟练掌握基本知识.三、解答题(共6题,满分46分)19.【分析】分式方程变形后去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:化为整式方程得:x2﹣4x+4+x2﹣4=16,x2﹣2x﹣8=0,解得:x1=﹣2,x2=4,经检验x=﹣2时,x+2=0,所以x=4是原方程的解.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.20.【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)求得参加联欢会的同学即兴表演节目的情况,再利用概率公式即可求得答案.【解答】解:(1)画树状图得:∵由树状图可知,共有12种等可能的结果;(2)∵共有12种等可能的结果,参加联欢会的某位同学即兴表演节目的结果有4种,∴参加联欢会的某位同学即兴表演节目的概率为:.【点评】本题考查的是用列表法或画树状图法求概率.注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.21.【分析】(1)根据等腰三角形的性质得到∠DAC=∠ACD,根据平行线的性质得到∠ACD =∠BAC,等量代换得到∠DAC=∠BAC,根据等腰三角形的性质得到∠DAB=∠B,根据三角形的内角和定理即可得到结论;(2)如图,过点D作DE⊥AC,垂足为点E,联结BE,根据等腰三角形的性质得到AE =CE,解直角三角形即可得到结论.【解答】解:(1)∵AD=CD,∴∠DAC=∠ACD,∵AB∥CD,∴∠ACD=∠BAC,∴∠DAC=∠BAC,∵AD=BC,∴∠DAB=∠B,∴∠B=2∠CAB,∵AC⊥BC,∴∠ACB=90°,∴∠CAB+∠B=90°,∴∠B=60°;(2)如图,过点D作DE⊥AC,垂足为点E,联结BE,∵AD=CD,∴AE=CE,由(1)知,∠DCE=∠CAB=30°,∵DE=1,∴DC=2DE=2,CE=DE=,∴BC=CD=2,∵AC⊥BC,∴BE===.【点评】本题考查了梯形,等腰三角形,含30°角的直角三角形的性质,勾股定理,正确地作出辅助线是解题的关键.22.【分析】(1)根据海拔高度每上升1千米,温度下降6°C,可以写出y与x之间的函数关系式,并写出函数定义域;(2)将y=﹣166代入(1)中的函数解析式,计算出x的值即可.【解答】解:(1)由题意得y=20﹣6x,∴y与x之间的函数关系式是y=20﹣6x(x≥0).(2)将y=﹣166代入y=20﹣6x,得﹣166=20﹣6x,解得x=31.∴此刻飞机离地面的高度为31千米.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,写出相应的函数解析式.23.【分析】(1)由等腰三角形的性质证出CE∥BF,由平行四边形的判定可得出结论;(2)证出∠BED=90°,由矩形的判定可得出结论.【解答】(1)证明:∵AB=AC,∴∠ABC=∠ACB,∵BD=BF,∴∠F=∠BDF,又∵DF∥BC,∴∠DEC=∠C,∠FDB=∠DBC,∴∠F=∠DEC,∴CE∥BF,∵EF∥BC,∴四边形BCEF是平行四边形;(2)证明:∵A为EC的中点,∴EA=AC,∵∠DEA=∠ACB,∠EDA=∠ABC,∴△EDA≌△CBA(AAS),∴ED=BC,又∵ED∥BC,∴四边形BCDE为平行四边形,又∵四边形BCEF为平行四边形,∴BC=EF,∴EF=ED,∵BD=BF,∴BE⊥DF,∴∠BED=90°,∴四边形BCDE为矩形.【点评】本题考查了平行四边形的判定与性质,矩形的判定,全等三角形的判定与性质,等腰三角形的性质,熟练掌握矩形的判定是解题的关键.24.【分析】(1)由待定系数法可求解;(2)由平行四边形的性质列出等式可求解.【解答】解:(1)由题意可得:,解得:,∴直线AB的函数表达式为y=x+3;(2)设点C(m,m+3),∵点D与点C关于y轴对称,∴点D(﹣m,m+3),∴CD∥OA,∵以O、A、C、D为顶点的四边形是平行四边形,∴CD=OA,∴|﹣m﹣m|=4,∴m=±2,∴点C(2,)或(﹣2,).【点评】本题是一次函数综合题,考查了待定系数法求解析式,平行四边形的性质,轴对称的性质,灵活运用这些性质解决问题是解题的关键.四、解答题(本题满分12分,每小题12分)25.【分析】(1)在Rt△AFG中,利用勾股定理,求出y关于x的函数解析式,根据GF>0,AF≥0,求出x的定义域;(2)根据四边形ABDG是等腰梯形时,Rt△AFG为等腰直角三角形,GF=AF,列式计算即可;(3)分GA=GB和GB=AB两种情况进行讨论,当GA=GB,利用三线合一,得到:AF =FB,列式求解;当GB=AB,在Rt△gfb中,用勾股定理进行求解即可.【解答】解:(1)∵∠BAC=90°,AB=AC=4,∴∠B=45°,∵DE⊥AB,∴∠DEB=90°,∴△DEB是等腰直角三角形,∴BE=DE,又∵四边形DEFG为正方形,∴BE=DE=GF=FE=x,∴AF=AB﹣BE﹣EF=4﹣2x,在Rt△AFG中:,即:.∵GF>0,AF≥0,即:x>0,4﹣2x≥0,解得:0<x≤2;∴,定义域为:0<x≤2;(2)如图:当四边形ABDG是等腰梯形时,∴∠GAF=∠B=45°,∴Rt△AFG为等腰直角三角形,∴GF=AF,即:x=4﹣2x,解得:;∴DE的长为:;(3)∵点G在△ABC内部,∴AG<AB,分两种情况讨论△AGB是等腰三角形.①当GA=GB时,∵GF⊥AB,∴AF=FB.=1.即:4﹣2x=2x.解得x=1.此时S正方形DEFG②当GB=AB=4时,GB2=16.在Rt△GFB中,由勾股定理,得GF2+FB2=GB2,即:x2+(2x)2=16,解得,∴.综上,正方形DEFG的面积为:1或.【点评】本题考查等腰三角形的判定和性质,正方形的性质,勾股定理.熟练掌握等腰三角形的判定和性质,是解题的关键.注意,分类讨论。

2023-2024学年上海市浦东新区八年级(下)期末数学试卷及答案解析

2023-2024学年上海市浦东新区八年级(下)期末数学试卷及答案解析

2023-2024学年上海市浦东新区八年级(下)期末数学试卷一、选择题:本题共6小题,每小题3分,共18分。

1.(3分)已知一次函数y=2x﹣1,那么这个一次函数的图象经过()A.一、二、三象限B.一、二、四象限C.一、三、四象限D.二、三、四象限2.(3分)在下列方程中,有实数根的是()A.B.x2+2x+3=0C.D.3.(3分)下列等式中不正确的是()A.B.﹣(﹣)=C.(+)+=+(+)D.+(﹣)=﹣4.(3分)下列说法正确的是()A.不确定事件发生的概率为0.5B.“顺次连接四边形四条边的中点,得到的四边形是正方形”,这是不可能事件C.随机事件发生的概率大于0且小于1D.“取两个无理数,它们的和为无理数”,这是必然事件5.(3分)已知平行四边形ABCD,下列条件中,不能判定这个平行四边形为矩形的是()A.∠A=∠B B.∠A=∠C C.AC=BD D.AB⊥BC6.(3分)如图,在等腰梯形ABCD中,AD∥BC,联结AC,BD,且AC⊥BD,设AD=a,BC=b.下列=,则下列说法正确的是()两个说法:①AC=(a+b);②S梯形ABCDA.①正确②错误B.①错误②正确C.①②均正确D.①②均错误二、填空题:本题共12小题,每小题2分,共24分。

7.(2分)直线y=2x﹣3的截距是.8.(2分)二项方程2x3﹣16=0在实数范围内的解是.9.(2分)关于x的方程(a+2)x=8(a≠﹣2)的解是.10.(2分)用换元法解方程中,如果设,那么将原方程变形后表示为一元二次方程一般形式是.11.(2分)方程=2﹣x的根是.12.(2分)某班的“社会实践活动小组”有男生3人,女生4人,若选出一人做组长,则组长是女生的概率是.13.(2分)如果一个多边形的内角和是1080°,那么这个多边形的边数是.14.(2分)已知菱形的边长为13cm,一条对角线长为24cm,那么菱形的面积为cm2.15.(2分)根据上海市统计局数据,上海市2021年的地区生产总值约是4.32万亿,2023年的地区生产总值约是4.72万亿,设这两年上海市地区生产总值的年平均增长率都为x,根据题意可列方程.16.(2分)如图,在平行四边形ABCD中,对角线AC,BD交于点O,AC⊥AB,AB=,且AC:BD =2:3,那么AC的长为.17.(2分)在梯形ABCD中,AD∥BC,AD=4,BC=10,点E、F分别是AB、CD的中点,那么EF的长为.18.(2分)如图是一张矩形纸片ABCD,点M是对角线AC的中点,点E在BC边上,把△DCE沿直线DE折叠,使点C落在对角线AC上的点F处,连接DF,EF.若MF=AB,则∠DAF=度.三、解答题:本题共8小题,共58分。

上海市浦东新区八年级(下)期末数学试卷答案

上海市浦东新区八年级(下)期末数学试卷答案

2013-2014学年上海市浦东新区八年级(下)期末数学试卷参考答案与试题解析一、选择题:(本大题共6题,每题3分,满分21分)(每题只有一个选项正确)1.(3分)(2014春•浦东新区期末)下列方程中,不是整式方程的是()A.B.=C.x2﹣7=0 D.x5﹣x2=0【分析】找到分母中或根号下含有未知数的方程即可.【解答】解:A、C、D的分母中或根号下均不含未知数,是整式方程;B、分母中含有未知数,不是整式方程,故选:B.【点评】本题考查了方程的知识.方程可分为整式方程,分式方程,无理方程三类;分式方程是分母中含有未知数的方程,无理方程是根号下含有未知数的方程.2.(3分)(2014春•浦东新区期末)下面各对数值中,属于方程x2﹣3y=0的解的一对是()A.B.C.D.【分析】把每个选项中代入方程,看看方程两边是否相等即可.【解答】解:A、把x=0,y=3代入方程x2﹣3y=0得:左边=﹣9,右边=0,即左边≠右边,所以不是方程x2﹣3y=0的解的一对,故本选项错误;B、把x=3,y=0代入方程x2﹣3y=0得:左边=9,右边=0,即左边≠右边,所以不是方程x2﹣3y=0的解的一对,故本选项错误;C、把x=3,y=9代入方程x2﹣3y=0得:左边=﹣18,右边=0,即左边≠右边,所以不是方程x2﹣3y=0的解的一对,故本选项错误;D、把x=3,y=3代入方程x2﹣3y=0得:左边=0,右边=0,即左边=右边,所以是方程x2﹣3y=0的解的一对,故本选项正确;故选D.【点评】本题考查了二元二次方程的解的应用,主要考查学生的计算能力和理解能力.3.(3分)(2014春•浦东新区期末)如图,已知一次函数y=kx+b的图象经过A、B两点,那么不等式kx+b>0的解集是()A.x>5 B.x<5 C.x>3 D.x<3.【分析】由图象可知:A(5,0),且当x<5时,y>0,即可得到不等式kx+b>0的解集是x<5,即可得出选项.【解答】解:∵一次函数y=kx+b的图象经过A、B两点,由图象可知:A(5,0),根据图象当x<5时,y>0,即:不等式kx+b>0的解集是x<5.故选B.【点评】本题考查了一次函数与不等式(组)的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.4.(3分)(2014春•浦东新区期末)下列事件: ①浦东明天是晴天,② 铅球浮在水面上, ③平面中,多边形的外角和都等于360度,属于确定事件的个数是()A.0个B.1个 C.2个 D.3个【分析】确定事件就是一定发生或一定不发生的事件,根据定义即可作出判断.【解答】解:①浦东明天是晴天是不确定事件;②铅球浮在水面上是不可能事件;③是平面中,多边形的外角和都等于360度是必然事件,属于确定事件,确定事件包括必然事件和不可能事件;故选:C.【点评】解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.5.(3分)(2014春•浦东新区期末)下列各式错误的是()A.+(﹣)=0 B.||=0 C.+=+D.﹣=+(﹣)【分析】A、根据相反向量的和等于,可以判断A;B、根据的模等于0,可以判断B;C、根据交换律可以判断C;D、根据运算律可以判断D.【解答】解:A、+(﹣)=,故A错误;B、||=0,故B正确;C、+=+,故C正确;D、﹣=+(﹣),故D正确.故选:A.【点评】考查了平面向量,关键是熟练掌握向量的计算和性质.6.(3分)(2014春•浦东新区期末)如果菱形的两条对角线长分别是10cm和24cm,那么这个菱形的周长为()A.13cm B.34cm C.52cm D.68cm【分析】根据菱形的性质,菱形两对角线的一半分别为5cm,12cm,再由勾股定理求得斜边,及菱形的边长,最后求得周长.【解答】解:∵菱形的对角线平分,∴菱形两对角线的一半分别为5cm,12cm,∵菱形的对角线互相垂直,∴菱形的边长为13cm,∴周长为:13×4=52(cm),故选:C.【点评】本题考查了菱形的性质及勾股定理的知识,主要利用菱形的对角线互相垂直平分来解决,难度一般.7.(3分)(2014春•浦东新区期末)只利用一副(两块)三角尺不能直接拼出的角度是()A.75°B.105°C.150°D.165°【分析】因一副三角板中的各个角的度数分别是30°、60°、45°、90°,把它们进行组合可得到的角有:60°﹣45°=15°,60°+45°=105°,60°+90°=150°,90°+45°=135°,90°+30°=120°,30°+45°=75°,据此解答.【解答】解:一副三角板中各个角的度数分别是30°、60°、45°、90°,A、75°的角可由30°和45°的角拼得.B、105°的角可由45°和60°的角拼得,C、150°的角可由60°和90°的角拼得,D、165°的角不能拼得,故选:D.【点评】本题考查了学生用一副三角板中的角进行拼组,能成多少度角的知识.解题的关键是找出一副三角板中的各个角的度数.二、填空题:(本大题共12题,每题2分,满分24分)8.(2分)(2014春•浦东新区期末)如果y=(m+2)x+m﹣1是常值函数,那么m= ﹣2 .【分析】因为y=(m+2)x+m﹣1是常值函数,所以m+2=0,即可求得m的值.【解答】解:由题意得,m+2=0,m=﹣2,故答案为:﹣2.【点评】本题考查了函数的概念﹣常值函数,是指函数值是固定不变的.9.(2分)(2014春•浦东新区期末)已知直线l与直线y=﹣4x平行,且截距为6,那么这条直线l的表达式是y=﹣4x+6 .【分析】设直线l的解析式为y=kx+b,根据两直线平行的问题得到k=﹣4,根据截距的定义得到b=6,然后写出直线l的解析式.【解答】解:设直线l的解析式为y=kx+b,∵直线l与直线y=﹣4x平行,且截距为6,∴k=﹣4,b=6,∴直线l的解析式为y=﹣4x+6.故答案为y=﹣4x+6.【点评】本题考查了两直线相交或平行的问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么他们的自变量系数相同,即k值相同.10.(2分)(2014春•浦东新区期末)如果一次函数y=kx+b的图象经过第二、三、四象限,那么函数y的值随着自变量x的增大而减小.【分析】根据图象在坐标平面内的位置关系确定k,b的取值范围,从而求解.【解答】解:由一次函数y=kx+b的图象经过第二、三、四象限,又有k<0时,直线必经过二、四象限,故知k<0.故y随x的增大二减小.故答案为:减小.【点评】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限;k<0时,直线必经过二、四象限;b>0时,直线与y轴正半轴相交;b=0时,直线过原点;b<0时,直线与y轴负半轴相交.11.(2分)(2014春•浦东新区期末)方程=的解是x=﹣3 .【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x=3x+6,解得:x=﹣3,经检验x=﹣3是分式方程的解.故答案为:x=﹣3【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.12.(2分)(2014春•浦东新区期末)方程组的解是,.【分析】把方程①代入方程②即可求出x,把x的值代入方程①求出y即可.【解答】解:把①代入②得:x2+2x﹣1=2,解得:x1=﹣3,x2=1,把x1=﹣3,x2=1分别代入①得:y1=﹣7,y2=1,即方程组的解为:,,故答案为::,.【点评】本题考查了解高次方程组和一元二次方程的应用,解此题的关键是能把方程组转化成一元二次方程.13.(2分)(2014春•浦东新区期末)木盒中有1个红球和2个黄球,这三个球除颜色外其他都相同,从盒子里先摸出一个球,然后放回去摇匀后,再摸出一个球.两次都摸到黄球的概率是.【分析】此题可以采用列表法求解.一共有9种情况,两次取出小球上的数字相同的情况,利用求概率公式计算即可.【解答】解:设红球为1,黄球分别为2,3,列表得:(1,3)(2,3)(3,3)(1,2)(2,2)(3,2)(1,1)(2,1)(3,1)∴一共有9种情况,两次取出小球上的数字相同的有4种情况;∴两次取出小球上的数字相同的概率为,故答案为:.【点评】本题考查了用列表法与树状图法求随机事件的概率,列表法可以不重不漏地列举出所有可能发生的情况,用到的知识点为:概率=所求情况数与总情况数之比.14.(2分)(2014春•浦东新区期末)一个多边形每个内角都等于144度,则这个多边形的边数是10 .【分析】先求出每一个外角的度数,再根据边数=360°÷外角的度数计算即可.【解答】解:180°﹣144°=36°,360°÷36°=10,∴这个多边形的边数是10.故答案为:10.【点评】本题主要考查了多边形的内角与外角的关系,求出每一个外角的度数是关键.15.(2分)(2014春•浦东新区期末)如果一个四边形要成为矩形,那么对角线应满足的条件是相等且互相平分.【分析】利用矩形的判定定理直接回答即可.【解答】解:∵对角线相等的平行四边形是矩形,∴如果一个四边形要成为矩形,那么对角线应满足的条件是相等且互相平分,故答案为:相等且互相平分.【点评】本题考查了矩形的判定,解题的关键是弄清矩形的判定定理,难度不大.16.(2分)(2014春•浦东新区期末)已知矩形ABCD的长和宽分别为8和6,那么顶点A到对角线BD的距离等于 4.8 .【分析】本题只要根据矩形的性质,利用面积法来求解即可.【解答】解:因为BC=8,故AD=8,AB=6,则S△ABD=×8×6=24,又因为BD==10,S△ABD=×10AE,故×10AE=24,解得AE=4.8.故答案为:4.8.【点评】本题考查矩形的性质,矩形具有平行四边形的性质,又具有自己的特性,要注意运用矩形具备而一般平行四边形不具备的性质.17.(2分)(2014春•浦东新区期末)如果一个四边形的两条对角线长分别为7cm和12cm,那么顺次联结这个四边形各边中点所得四边形的周长是19 cm.【分析】根据三角形中位线定理,新四边形是平行四边形,且一组邻边分别等于原四边形两条对角线的一半.据此可求周长.【解答】解:∵E、F、G、H分别是边AD、AB、BC、CD的中点,∴EF=BD,GH=BD,EH=AC,FG=AC,∴四边形EFGH的周长是:EF+GH+EH+FG=(AC+BD+AC+BD)=AC+BD=7cm+12cm=19cm.故答案为:19.【点评】此题考查的是三角形中位线的性质,即三角形的中位线平行于第三边且等于第三边的一半.18.(2分)(2016•潍坊三模)如图,已知在梯形ABCD中,AD∥BC,∠B=30°,∠C=75°,AD=2,BC=7,那么AB= 5 .【分析】过点D作DE∥AB交BC于E,根据平行线的性质,得∠DEC=∠B=30°,根据三角形的内角和定理,得∠EDC=75°,再根据等角对等边,得DE=CE.根据两组对边分别平行,知四边形ABED是平行四边形,则AB=DE=CE=7﹣2=5,从而求解.【解答】解:过点D作DE∥AB交BC于E,∴∠DEC=∠B=30°.又∵∠C=75°,∴∠CDE=75°.∴DE=CE.∵AD∥BC,DE∥AB,∴四边形ABED是平行四边形.∴AD=BE=2.∴AB=DE=CE=BC﹣BE=BC﹣AD=7﹣2=5.故答案为:5.【点评】此题综合考查了平行四边形的判定及性质、平行线的性质、等角对等边的性质,解题的关键是作平行线构造平行四边形.19.(2分)(2014春•浦东新区期末)如图,已知E是▱ABCD的边AB上一点,将△ADE 沿直线DE折叠,点A恰好落在边BC上的点F处,如果△BEF的周长为7,△CDF的周长为15,那么CF的长等于 4 .【分析】由折叠性得AB=EF,DF=AD,易得△BEF的周长+△CDF的周长=▱ABCD的周长,可求出两邻边的和,利用CF=△CDF的周长﹣(AD+DC)即可求出结果.【解答】解:由折叠性得AB=EF,DF=AD,∵△BEF的周长为7,△CDF的周长为15,∴△BEF的周长=EF+BE+BF=AB+BF=7,△CDF的周长=DC+DF+FC=DC+AD+FC=15,∴△BEF的周长+△CDF的周长=▱ABCD的周长=22,∴AD+DC=11,∴CF=△CDF的周长﹣(AD+DC)=15﹣11=4.故答案为:4.【点评】本题主要考查了平行四边形的性质及翻折变换,解题的关键是利用折叠前后图形的形状和大小不变,对应边和对应角相等.三、简答题(本大题共8题,满分55分)20.(4分)(2014春•浦东新区期末)如图,已知向量,,.求作:+﹣.(不要求写作法,但要写出结论)【分析】先根据三角形法则首先作出+,后再利用三角形法则作向量+﹣.【解答】解:(1)利用三角形法则首先作出+,图中;(2)再利用三角形法则作向量+﹣.图中即为所求.【点评】此题考查了平面向量的知识.解题的关键是注意三角形法则的应用.21.(6分)(2014春•浦东新区期末)解方程:x﹣=1.【分析】先移项,再两边平方,即可得出一个一元二次方程,求出方程的解,最后进行检验即可.【解答】解:移项得:=x﹣1,两边平方得:2x+1=(x﹣1)2,x2﹣4x=0,解得:x1=0,x2=4,经检验x=0不是原方程的解,x=4是原方程的解,即原方程的解是x=4.【点评】本题考查了解无理方程的应用,解此题的关键是能把无理方程转化成有理方程,注意:解无理方程一定要进行检验.22.(6分)(2014春•浦东新区期末)解方程组.【分析】设=a,=b,方程组变形为关于a与b的方程组,求出方程组的解得到a 与b的值,即可确定出方程组的解.【解答】解:设=a,=b,方程组变形得:,①+②×3得:8a=4,即a=,将a=代入②得:b=,即=,=,解得:x=2,y=3,经检验都为原方程的解.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.23.(8分)(2014春•浦东新区期末)某长途汽车公司规定:乘客坐车最多可以免费携带20kg重量的行李,如果超过这个重量(但是不能超过50kg),那么需要购买行李票.假设行李票的价格y(元)与行李的重量x(kg)之间是一次函数关系,其图象如图.求:(1)y关于x的函数解析式,并写出它的定义域;(2)携带45kg的行李需要购买多少元行李票?【分析】(1)设y与x之间的函数关系式为y=kx+b,由待定系数法求出其解即可;(2)当x=45时代入(1)的解析式,求出y的值即可.【解答】解:(1)设y与x之间的函数关系式为y=kx+b,由函数图象,得,解得:,所以y与x之间的函数关系式为:y=x﹣20,20<x≤50;(2)当x=45时,y=1×45﹣20=25答:旅客携带45(kg)行李应该购买25元行李票.【点评】本题考查了一次函数运用,利用待定系数法求一次函数的解析式,根据函数的解析式求自变量和函数值的运用,解答时求出函数的解析式是关键.24.(8分)(2014春•浦东新区期末)已知:如图,在△ABC中,AB=AC,过点A作MN∥BC,点D、E在直线MN上,且DA=EA≠BC.求证:四边形DBCE是等腰梯形.【分析】根据全等三角形的判定方法即可证明△ABD≌△ACE,由此可得到BD=CE,再根据等腰梯形的判定问题得证.【解答】解:∵AB=AC,∴∠ABC=∠ACB,∵MN∥BC,∴∠ABC=∠DAB,∠ACB=∠EAC,∴∠DAB=∠EAC,在△DAB和△EAC中,,∴△DAB≌△EAC(SAS),∴DB=EC,∵DA=EA≠BC,∴DE≠BC,∴四边形DBCE是等腰梯形.【点评】本题考查了等腰梯形的判定、全等三角形的判定和性质,题目的综合性较强,难度中等.25.(5分)(2014春•浦东新区期末)某班为了鼓励学生积极开展体育锻炼,打算购买一批羽毛球.体育委员小张到商店发现,用160元可以购买某种品牌的羽毛球若干桶,但商店营业员告诉他,如果再加60元,那么就可以享受优惠价,每桶比原价便宜10元,因此可以多买5桶羽毛球,求每桶羽毛球的原价.【分析】设每桶羽毛球的原价为x元,根据题意可得,加60元比160元多买5桶羽毛球,列方程求解.【解答】解:设每桶羽毛球的原价为x元,由题意得,﹣=5,整理得:x2﹣22x﹣320=0,解得:x=32或x=﹣10(不合题意,舍去),经检验,x=32是原方程的解.答:每桶羽毛球的原价为32元.【点评】本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.26.(8分)(2014春•浦东新区期末)已知:如图,在直角坐标平面中,点A在x轴的负半轴上,直线y=kx+经过点A,与y轴相交于点M,点B是点A关于原点的对称点,过点B的直线BC⊥x轴,交直线y=kx+于点C,如果∠M AO=60°.(1)求这条直线的表达式;(2)将△ABC绕点C旋转,使点A落到x轴上另一点D处,此时点B落在点E处.求点E的坐标.【分析】(1)设A(﹣a,0),则B(a,0),直线BC的解析式为x=a,AB=2a,把点A 代入可得出关于ka的表达式,由∠MAO=60°可表示出C点坐标,再根据点C在直线上可得出k、a的值,进而得出结论;(2)根据题意画出图形,由k=,a=1得出AB,AC,BC的长及C点坐标,过点E作EF⊥x轴于点F,根据△DEC由△ABC旋转而成得出CD=AC,DE=AB,根据相似三角形的判定定理得出△CBD∽△EFD,故==,由此可得出结论.【解答】解:(1)设A(﹣a,0),则B(a,0),直线BC的解析式为x=a,AB=2a,∵点A在直线y=kx+上,∴﹣ka+=0①.∵∠MAO=60°,∴BC=AB=2a×=2a,∴C(a,2a),AC=4a,∵点C在直线AC上,∴ka+=2a②,①②联立得,k=,a=1,∴这条直线的表达式为y=x+;(2)如图所示,∵k=,a=1,∴AB=2,AC=4,BC=2,C(1,2),过点E作EF⊥x轴于点F,∵△DEC由△ABC旋转而成,∴CD=AC=4,DE=AB=2,∵CB⊥AD,∴AB=BD,∴D(3,0),∠ADC=∠CAB=60°.∵∠CDE=∠CAB=60°,∴∠EDF=60°.∵∠EDF=∠CDB,∠CBD=∠EFD,∵DE=AB=2,∴DF=1,EF=,∴OF=1+2+1=4,∴E(4,).【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.27.(10分)(2014春•浦东新区期末)已知:如图,正方形ABCD的对角线相交于点O,P是边BC上的一个动点,AP交对角线BD于点E,BQ⊥AP,交对角线AC于点F、边CD于点Q,联结EF.(1)求证:OE=OF;(2)联结PF,如果PF∥BD,求BP:PC的值;(3)联结DP,当DP经过点F时,试猜想点P的位置,并证明你给猜想.【分析】(1)若要证明OE=OF,则问题可转化为两条线段所在的三角形即△OAE和△OBF 全等即可;(2)首先证明四边形BPFE是平行四边形,又因为BQ⊥AP,所以平行四边形BPFE是菱形,进而可求出BP:PC的值;(3)当DP经过点F时,点P在BC中点,通过证明Rt△ABP≌Rt△DCP,由全等三角形的性质:BP=CP,问题得证.【解答】(1)证明:∵BQ⊥AP,∴∠EBF+∠BEP=90°,∵∠OAE+∠OEA=90°,∠BEP=∠OEA,∴∠EBF=∠OAE,在△OAE和△OBF中,∴△OAE≌△OBF(ASA),∴OE=OF.(2)解:∵OE=OF∠EOF=90°,∴∠OEF=∠OFE=45°,同理∠OBC=∠OCB=45°∴∠OEF=∠OBC,∴EF∥BC,∵PF∥BD,∴四边形BPFE是平行四边形,∵BQ⊥AP,∴平行四边形BPFE是菱形,∴BP=PF=PC,即BP:PC=(3)证明:∵△OAE≌△OBF,∴∠1=∠2,∵AC⊥BD,OB=OD,∴BF=DF,∴∠1=∠3,∴∠2=∠3,在△APF和△DPE中,,∴△APF≌△DPE(AAS),∴AP=DP,∵∠ABP=∠DCP=90°,AB=DC,在Rt△ABP和Rt△DCP中,,∴Rt△ABP≌Rt△DCP(HL),∴BP=CP,∴点P在BC中点.【点评】本题考查了正方形的性质、全等三角形的判定和性质以及平行四边形的判定和性质、菱形的判定和性质、解题的关键是熟记各种特殊四边形的判定方法和性质。

2019-2020学年上海市浦东新区八年级下学期期末数学试题(解析版)

2019-2020学年上海市浦东新区八年级下学期期末数学试题(解析版)

上海市浦东新区2019-2020学年八年级下学期期末数学试题一.选择题(共6小题)1.下列等式成立的是()A.()a a --=B.()0a a +-=C.a b b a -=-r r r rD.0a a -=【答案】A【解析】【分析】根据向量的运算法则进行运算即可.【详解】A.()a a --=,正确.B.()0a a +-= ,错误.C.()a b b a -=-- ,错误.D.0a a -=-,错误.【点睛】考查向量的运算,掌握向量的运算法则是解题的关键.2.下列说法中正确的是()A.对角线相等的四边形是矩形B.对角线互相垂直的矩形是正方形C.顺次联结矩形各边中点所得四边形是正方形D.正多边形都是中心对称图形【答案】B【解析】【分析】根据矩形的判定方法对A 进行判断;根据正方形的判定方法对B 进行判断;根据矩形的性质、三角形中位线定理以及菱形的判定方法对C 进行判断;根据中心对称图形的定义对D 进行判断.【详解】解:A 、对角线相等的平行四边形是矩形,所以A 选项错误;B 、对角线互相垂直的矩形是正方形,所以B 选项正确;C 、顺次联结矩形各边中点所得四边形是菱形,所以C 选项错误;D 、边数为偶数的正多边形都是中心对称图形,所以D 选项错误.故选B .【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果⋯那么⋯”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.3.用换元法解方程:1201x x x x ---=-时,如果设1x y x =-,那么将原方程变形后表示为一元二次方程一般形式的是()A.120y y--= B.210y y --= C.2210y y --= D.220y y --=【答案】C【解析】【分析】根据题意把1x y x =-代入原方程即可求解.【详解】把1x y x =-代入原方程得120y y --=,去分母得2210y y --=,故选C.【点睛】此题主要考查一元二次方程的定义,解题的关键是熟知等式的性质进行化简.4.下列方程中,一定有实数解的是()A.490x += B.2230x x --= C.2311x x x +=-- D.10=【答案】B【解析】【分析】首先逐个对每一项的方程分析求解,即可得出结论.【详解】A.通过移项得49x =-,原方程有实数解,故本选项错误,B .方程2230x x --=,△=16>0,原方程有实数解,故本选项正确,C .解方程得1x =,此时最简公分母为0,原方程没有实数解,故本选项错误,D 项通过移项可知任何数的算术平方根都不可能为负数,故等式不成立,故本选项错误.故选B.【点睛】考查了无理方程,根的判别式以及分式方程的解法,在解无理方程时最常用的方法是两边平方法.5.下列事件中,必然事件是()A.在体育中考中,小明考了满分B.经过有交通信号灯的路口,遇到红灯C.抛掷两枚正方体骰子,点数和大于1D.四边形的外角和为180度.【答案】C【解析】【分析】必然事件:,在一定的条件下重复进行试验时,有的事件在每次试验中必然会发生,这样的事件叫必然发生的事件随机事件:可能出现也可能不出现,而在大量重复试验中具有某种规律性的事件叫做随机事件,【详解】A 、在体育中考中,小明考了满分是随机事件;B 、经过有交通信号灯的路口,遇到红灯是随机事件;C 、抛掷两枚正方体骰子,点数和大于1是必然事件;D 、四边形的外角和为180度是不可能事件,故选C .【点睛】本题考查了必然事件和随机事件的定义,解决本类题目的关键是掌握一定会发生的,和一定不会发生的都是必然事件.6.如图,在同一平面内,将边长相等的正方形、正五边形的一边重合,那么∠1的大小是()A.8︒B.15︒C.18︒D.28︒【答案】C【解析】【分析】1∠的度数是正五边形的内角与正方形的内角的度数的差,根据多边形的内角和定理求得角的度数即可得出结果.【详解】解: 正五边形的内角的度数是()1521801085⨯-⨯= ,又 正方形的内角是90 ,11089018∠∴=-= ;故选C .【点睛】本题考查了多边形的内角和定理、正方形的性质,求得正五边形的内角的度数是关键.二.填空题(共12小题)7.一次函数y=(k﹣1)x+2的图象经过一、二、三象限,常数k的取值范围是_____.【答案】k>1【解析】【分析】根据一次函数图象所经过的象限得出k﹣1>0,即可确定k的取值范围.【详解】解:如图所示:∵一次函数y=(k﹣1)x+2的图象经过第一、二、三象限,∴k﹣1>0.解得:k>1,故答案为:k>1.【点睛】此题主要考查一次函数的图像与性质,解题的关键是熟知一次函数的图像特点.x-=的根是__________.8.方程3640x=【答案】4【解析】【分析】首先移项,再两边直接开立方即可x-=,【详解】3640x=,移项得364x=,两边直接开立方得:4x=.故答案为4【点睛】此题考查解一元三次方程,解题关键在于直接开立方法即可.9.4=的解是_____.x=【答案】15【解析】【分析】两边同时平方,即可求出方程的解.【详解】4=,两边同时平方可得:116,x +=解得:15.x =经检验,15x =符合题意.故答案为15x =【点睛】考查无理方程的解法,两边同时平方是解题的关键.10.直线23y x =-的截距是____________________.【答案】﹣3【解析】【分析】一次函数y=kx+b 在y 轴上的截距是b .【详解】解:∵在一次函数y=2x ﹣3中,b=﹣3,∴一次函数y=2x ﹣3在y 轴上的截距b=﹣3.【点睛】本题考查一次函数图象上点的坐标特征,数形结合思想解题是本题的解题关键.11.若直线y=kx+b 平行直线y=5x+3,且过点(2,﹣1),则b=_____.【答案】11-【解析】【分析】根据一次函数的特点,两直线平行这一次项系数相同,可确定k 的值;把点(2,﹣1)代入即可求出b .【详解】∵直线y kx b =+平行于直线53y x =+,则5k =,且过点(2,﹣1),当2x =时1y =-,将其代入5y x b =+得:110b-=+解得:11b =-.故答案为:11-.【点睛】本题考查了求一次函数解析式以及两直线相交或平行问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解;若两条直线是平行的关系,那么它们的自变量系数相同,即k 值相同.12.如果把y=23x+1线沿y轴向下平移1个单位,那么得到的直线的表达式为_____.【答案】23 y x =【解析】【分析】根据平移k值不变及上移加,下移减可得出答案.【详解】把直线213y x=+沿y轴向下平移1个单位,那么得到的直线的表达式为23y x=.故答案为:23y x =.【点睛】本题考查了一次函数图象与几何变换,掌握平移规律“左加右减,上加下减”是解题的关键.13.在平行四边形ABCD中,若∠A:∠B=2:3,则∠C=______.【答案】72°【解析】【分析】根据已知比例设∠A=2x,∠B=3x,再由两直线平行,同旁内角线补,可求角的度数.【详解】解:依题意设∠A=2x,∠B=3x,由平行四边形的性质,得∠A+∠B=180°,∴2x+3x=180°,解得x=36°,∴∠A=2x=72°,又∵∠A=∠C,∴∠C=72°.故答案为72°.【点睛】本题考查了平行四边形的邻角互补,对角相等的性质,根据比例求出∠A的度数是解题的关键.14.如果一个等腰梯形中位线的长是5cm,腰长是4cm,那么它的周长是_____cm.【答案】18【解析】【分析】根据梯形中位线定理求出梯形的上底+下底,根据梯形的周长公式计算,得到答案.【详解】∵梯形中位线的长是5,∴梯形的上底+下底=10,∴等腰梯形的周长=10+4+4=18(cm),故答案为:18.【点睛】本题考查了梯形的中位线,掌握梯形的中位线平行于两底,并且等于两底和的一半是解题的关键.15.在一个不透明的口袋中,有大小、形状完全相同,颜色不同的球15个,从中摸出红球的概率为1 3,则袋中红球的个数为_____.【答案】5【解析】【分析】等量关系为:红球数:总球数=13,把相关数值代入即可求解.【详解】设红球有x个,根据题意得:1 153 x,解得:x=5.故答案为5.【点睛】用到的知识点为:概率=所求情况数与总情况数之比.16.汽车以60千米/时的平均速度,由A地驶往相距420千米的上海,汽车距上海的路程s(千米)与行驶时间t(时)的函数关系式是_____.【答案】s=420﹣60t【解析】【分析】根据速度乘时间等于路程,可得函数关系式.【详解】由“速度×时间=路程”,得:s=420﹣60t,故答案为:s=420﹣60t.【点睛】本题考查了函数关系式.能够正确利用“速度乘以时间等于路程”这一关系来列函数关系式是解题的关键.17.已知:线段AB,BC.求作:平行四边形ABCD.以下是甲同学的作业.①联结AC,作线段AC的垂直平分线,交AC于点M;②联结BM并延长,在延长线上取一点D,使MD=MB,联结AD,CD.四边形ABCD即为所求平行四边形.如图,甲同学的作图依据是:_____.【答案】对角线互相平分的四边形是平行四边形【解析】【分析】根据对角线互相平分的四边形是平行四边形解决问题即可.【详解】由作图可知,AM=MC,BM=MD,∴四边形ABCD是平行四边形(对角线互相平分的四边形是平行四边形),故答案为:对角线互相平分的四边形是平行四边形.【点睛】本题考查了作图-复杂作图,平行四边形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.18.我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式,后人借助这种分割方法所得的图形证明了勾股定理,如图所示的就用了这种分割方法,若BD=3,AE=4,则正方形ODCE的边长等于_____.【答案】7972-【解析】【分析】设正方形ODCE的边长为x,则CD=CE=x,根据全等三角形的性质得到AF=AE,BF=BD,根据勾股定理即可得到结论.【详解】设正方形ODCE的边长为x,则CD=CE=x ,∵△AFO ≌△AEO ,△BDO ≌△BFO ,∴AF=AE ,BF=BD ,∴AB=3+4=7,∵222AC BC AB +=,即()()222437x x +++=,∴17972x --=(舍去),27972x -=,∴正方形ODCE 的边长等于7972-+.故答案为:7972-+.【点睛】本题考查了勾股定理的证明及应用,全等三角形的性质,正方形的性质,熟练掌握勾股定理是解题的关键.三.解答题(共9小题)19.解方程:212124x x x -=--.【答案】x=-3.【解析】【分析】根据解分式方程的方法,先去括号,把方程变为一元二次方程,再进行求解.【详解】解方程:212124x x x -=--.整理得2224x x x +-=-x 2+x-6=0(x+3)(x-2)=0x1=-3,x2=2,经检验,x=2为增根,舍去,∴原方程的解为x=-3.【点睛】此题主要考查分式方程的求解,解题的关键是把原方程化为一元二次方程进行求解.20.1-=【答案】14 x=【解析】【分析】方程两边同时平方可把根号化去,逐渐化为整式方程,可求出解.【详解】解:移项,得1=两边平方,得移项整理,得两边平方,得4x=1所以,正数x=1 4故答案为1 4.【点睛】本题考核知识点:二次根式,无理方程.解题关键点:方程两边同时平方把根号化去.21.解关于y的方程:by2﹣1=y2+2.【答案】当b>1时,原方程的解为y=±331b-;当b≤1时,原方程无实数解.【解析】【分析】把b看做常数根据解方程的步骤:先移项,再合并同类项,系数化为1,即可得出答案.【详解】解:移项得:by2﹣y2=2+1,合并同类项得:(b ﹣1)y 2=3,当b =1时,原方程无解;当b >1时,原方程的解为y =±331b -;当b <1时,原方程无实数解.【点睛】此题主要考查一元二次方程的求解,解题的关键是根据题意分类讨论.22.解方程组:222020x y x y ⎧+=⎨-=⎩【答案】1142x y =⎧⎨=⎩或2242x y =-⎧⎨=-⎩.【解析】【分析】用代入法即可解答,把②化为2x y =,代入①得22(2)20y y +=即可.【详解】222020x y x y ⎧+=⎨-=⎩①②把②化为2x y =,代入①得22(2)20y y +=,整理得:24y =,解得2y =:或2-,把2y =代入②得4x =,把2y =-代入②得4x =-,∴原方程组的解为1142x y =⎧⎨=⎩或2242x y =-⎧⎨=-⎩.【点睛】本题主要考查了二元二次方程组的解法,解答此类题目一般用代入法比较简单,先消去一个未知数再解关于另一个未知数的一元二次方程,把求得结果代入一个较简单的方程中即可.23.已知四边形OBCA 是平行四边形,点D 在OB 上.(1)填空:OA AC + =;AD OB - =;(2)求作:OA CD AD +-.【答案】(1)OC ;CD;(2)见解析.【解析】【分析】(1)利用三角形法则求解即可.(2)利用三角形法则求解即可.【详解】解:(1)∵四边形ABCD 是平行四边形,∴AC =OB ,AC//OB ,由题意,()(),OA AC OC AD OB DA OB DA AC DC CD +=-=-+=-+=-= 故答案为,OC CD.(2)连接AB .∵()OA CD AD OA AD DC OA AC OA OB BO OA BA +-=-+=-=-=+= ∴BA 即为所求.【点睛】本题考查了向量,熟练掌握运用三角形法则是解题的关键.24.新冠肺炎疫情期间,工厂需加工一种口罩250万个,在加工了100万个后,采用了新技术,使每天比原来多加工2.5万个,结果提前了3天完成任务,求工厂原来每天加工多少万个口罩?【答案】该厂原来每天加工10万个口罩.【解析】【分析】设该厂原来每天加工x 万个口罩,根据工厂需加工一种口罩250万个,在加工了100万个后,采用了新技术,使每天比原来多加工2.5万个,结果提前了3天完成任务,可列方程求解.【详解】解:设原来每天加工x 万个口罩,采用了新技术后,每天加工( 2.5x +)万个口罩,根据题意得:10015025032.5x x x++=+,整理得:2 2.51250x x +=﹣,解得:12 1012.5x x ==-,,经检验,121012.5x x ==-,均是原方程的解,但12.5x =-不符合题意,舍去.答:该厂原来每天加工10万个口罩.【点睛】本题考查了分式方程的应用,关键是以时间做为等量关系,根据天数=加工的个数除以每天加工的个数列方程求解即可.25.如图,平行四边形ABCD 中,AE ⊥BC ,CF ⊥AD ,DN=BM .求证:(1)BE=FD ;(2)EF 与MN 互相平分.【答案】(1)见解析;(2)见解析.【解析】【分析】(1)证明△ABE ≌△CDF (AAS )可得结论.(2)连接EM ,EN ,NF ,FM ,证明ME=FN ,FM=NE ,推出四边形MENF 是平行四边形即可解决问题.【详解】(1)∵四边形ABCD 是平行四边形,∴AB=CD ,∠B=∠D ,∵AE ⊥BC ,CF ⊥AD ,∴∠AEB=∠CFD ,∴△ABE ≌△CDF (AAS ),∴BE=DF ;(2)连接EM ,EN ,NF ,FM .∵DN=BM ,∠D=∠B ,DF=BE ,∴△BEM≌△DFN(SAS),∴ME=FN,同法可证FM=EN,∴四边形MENF是平行四边形,∴EF与MN互相平分.【点睛】本题考查了平行四边形的判定和性质,全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.26.如图,等腰三角形ABC中,AB=AC,点E、F分别是AB、AC的中点,CE⊥BF于点O.(1)求证:四边形EBCF是等腰梯形;(2)EF=1,求四边形EBCF的面积.【答案】(1)见解析;(2)9 4.【解析】【分析】(1)根据三角形的中位线定理和等腰梯形的判定定理即可得到结论;(2)如图,延长BC至点G,使CG=EF,连接FG,根据平行四边形的性质得到FG=EC=BF,根据全等三角形的性质和三角形中位线定理即可得到结论.【详解】(1)∵点E、F分别是AB、AC的中点,∴EF//BC,BE=12AB=12AC=CF,∴四边形EBCF是等腰梯形;(2)如图,延长BC至点G,使CG=EF,连接FG,∵EF//BC ,即EF//CG ,且CG=EF ,∴四边形EFGC 是平行四边形,又∵四边形EBCF 是等腰梯形,∴FG=EC=BF ,∵EF=CG ,FC=BE ,∴△EFB ≌△CGF (SSS ),∴BFG EBCF S S = 四边形,∵GC=EF=1,且EF=12BC ,∴BC=2,∴BG=BC+CG=1+2=3.∵FG//EC ,∴∠GFB=∠BOC=90°,∴FH=12BG=32,∴BFG EBCF 1393224S S ==⨯⨯= 四边形.【点睛】本题考查了等腰梯形的判定,全等三角形的判定和性质,平行四边形的性质,正确的作出辅助线是解题的关键.27.在平面直角坐标系xOy 中,若P ,Q 为某个矩形不相邻的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为点P ,Q 的“相关矩形”.图1为点P ,Q 的“相关矩形”的示意图.已知点A 的坐标为(1,2).(1)如图2,点B 的坐标为(b ,0).①若b =﹣2,则点A ,B 的“相关矩形”的面积是;②若点A ,B 的“相关矩形”的面积是8,则b 的值为.(2)如图3,点C在直线y=﹣1上,若点A,C的“相关矩形”是正方形,求直线AC的表达式;(3)如图4,等边△DEF的边DE在x轴上,顶点F在y轴的正半轴上,点D的坐标为(1,0).点M的坐标为(m,2),若在△DEF的边上存在一点N,使得点M,N的“相关矩形”为正方形,请直接写出m的取值范围.【答案】(1)①6;②5或﹣3;(2)直线AC的表达式为:y=﹣x+3或y=x+1;(3)m的取值范围为﹣3≤m≤﹣3或23.【解析】【分析】(1)①由矩形的性质即可得出结果;②由矩形的性质即可得出结果;(2)过点A(1,2)作直线y=﹣1的垂线,垂足为点G,则AG=3求出正方形AGCH的边长为3,分两种情况求出直线AC的表达式即可;(3)由题意得出点M在直线y=2上,由等边三角形的性质和题意得出OD=OE=12DE=1,EF=DF=DE=2,得出OF3OD3,分两种情况:①当点N在边EF上时,若点N与E重合,点M,N的“相关矩形”为正方形,则点M的坐标为(﹣3,2)或(1,2);若点N与F重合,点M,N的“相关矩形”为正方形,则点M的坐标为(﹣32);得出m 的取值范围为﹣3≤m≤﹣3或23≤m≤1;②当点N在边DF上时,若点N与D重合,点M,N的“相关矩形”为正方形,则点M的坐标为(3,2)或(﹣1,2);若点N与F重合,点M,N的“相关矩形”为正方形,则点M的坐标为(232);得出m的取值范围为2﹣≤m≤3或2;即可得出结论.【详解】解:(1)①∵b=﹣2,∴点B的坐标为(﹣2,0),如图2﹣1所示:∵点A的坐标为(1,2),∴由矩形的性质可得:点A,B的“相关矩形”的面积=(1+2)×2=6,故答案为:6;②如图2﹣2所示:由矩形的性质可得:点A,B的“相关矩形”的面积=|b﹣1|×2=8,∴|b﹣1|=4,∴b=5或b=﹣3,故答案为:5或﹣3;(2)过点A(1,2)作直线y=﹣1的垂线,垂足为点G,则AG=3,∵点C在直线y=﹣1上,点A,C的“相关矩形”AGCH是正方形,∴正方形AGCH的边长为3,当点C在直线x=1右侧时,如图3﹣1所示:CG=3,则C(4,﹣1),设直线AC的表达式为:y=kx+a,则214k ak a=+⎧⎨-=+⎩,解得;13ka=-⎧⎨=⎩,∴直线AC的表达式为:y=﹣x+3;当点C在直线x=1左侧时,如图3﹣2所示:CG=3,则C(﹣2,﹣1),设直线AC的表达式为:y=k′x+b,则212k bk b=+⎧⎨-=-+''⎩,解得:k1 b1=⎧⎨='⎩,∴直线AC的表达式为:y=x+1,综上所述,直线AC的表达式为:y=﹣x+3或y=x+1;(3)∵点M的坐标为(m,2),∴点M在直线y=2上,∵△DEF是等边三角形,顶点F在y轴的正半轴上,点D的坐标为(1,0),∴OD=OE=12DE=1,EF=DF=DE=2,∴OF分两种情况:如图4所示:①当点N在边EF上时,若点N与E重合,点M,N的“相关矩形”为正方形,则点M的坐标为(﹣3,2)或(1,2);若点N与F重合,点M,N的“相关矩形”为正方形,则点M的坐标为(﹣2)或(2,2);∴m的取值范围为﹣3≤m≤﹣或2≤m≤1;②当点N在边DF上时,若点N与D重合,点M,N的“相关矩形”为正方形,则点M的坐标为(3,2)或(﹣1,2);若点N与F重合,点M,N的“相关矩形”为正方形,则点M的坐标为(22)或(﹣,2);∴m的取值范围为2或﹣1≤m≤﹣综上所述,m的取值范围为﹣3≤m≤﹣或2≤m≤3.【点睛】此题主要考查图形与坐标综合,解题的关键是熟知正方形的性质、一次函数的图像与性质及新定义的应用.。

上海浦东八年级第二学期数学期末考试附答案

上海浦东八年级第二学期数学期末考试附答案

上海浦东八年级第二学期数学期末考试附答案1.选择题:1.下列四个函数中,一次函数是(B)y=x-2;2.在平面直角坐标系中,直线y=1-x经过(B)第一、二、四象限;3.下列四个命题中真命题是(C)梯形的对角线互相垂直;4.如果点C是线段AB的中点,那么下列结论中正确的是(A)AC+BC=;5.从2,3,4,5,6中任取一个数,是合数的概率是(D).6.下列事件是必然事件的是(D)方程3x=x只有一个实数根.2.填空题:7.一次函数y=3x+2的截距是2.8.已知函数f(x)=3x-1,则f(2)=5.9.已知一次函数y=(k-2)x+4,y随x的增大而减小,那么k的取值范围是k<2.10.已知一次函数y=1/3x+2,当y>-2时,自变量x的取值范围是x>-8.11.已知一次函数的图像与x轴交于点(3,0),且平行于直线y=-2x-3,则它的函数解析式为y=-2x+6.12.方程x^2-3x-4=0的根是-1和4.13.用换元法解分式方程(x-2)/(3x-2)-2/(x-2)=0,如果设y=x-2,则原方程可化为关于y的整式方程是3y^2-2y-8=0.14.十二边形内角和为1800度.15.如果等腰梯形的一条底边长8cm,中位线长10 cm,那么它的另一条底边长12cm.移动过程中,四边形ABQP和四边形QCDP的面积相等时,可以求出x的值。

在移动过程中,是否存在x使得PQ=AB,若存在则求出所有x的值,若不存在则请说明理由。

假设四边形ABQP和四边形QCDP的面积相等,则有:1/2 * AB * PQ * sin∠APQ = 1/2 * CD * DP * sin∠CDP因为AB = CD。

DP = BQ,所以可以化简为:PQ * sin∠APQ = BQ * sin∠CDP又因为∠APQ + ∠CDP = 180°,所以sin∠APQ = sin(180°- ∠CDP) = sin∠CDP代入上式得:PQ = BQ即四边形ABQP为平行四边形时,PQ = AB,此时存在x 使得PQ=AB。

2022届下海市浦东新区八年级第二学期期末综合测试数学试题含解析

2022届下海市浦东新区八年级第二学期期末综合测试数学试题含解析

2022届下海市浦东新区八年级第二学期期末综合测试数学试题一、选择题(每题只有一个答案正确)1.下列各组数中,以它们为边长的线段不能构成直角三角形的是( )A.1,,2 B.1,2,C.5,12,13 D.1,,2.若一组数据3、4、5、x、6、7的平均数是5,则x的值是()A.4 B.5 C.6 D.73.在函数y=中,自变量x的取值范围是()A.x≤﹣3 B.x≥﹣3 C.x<﹣3 D.x>﹣34.如图,正方形ABCD的边长为4,点E是AB的中点,点P从点E出发,沿E A D C→→→移动至终点C,设P点经过的路径长为x,CPE∆的面积为y,则下列图象能大致反映y与x函数关系的是()A.B.C.D.5.下列命题中:①两直角边对应相等的两个直角三角形全等;②两锐角对应相等的两个直角三角形全等;③斜边和一直角边对应相等的两个直角三角形全等;④一锐角和斜边对应相等的两个直角三角形全等;⑤一锐角和一边对应相等的两个直角三角形全等.其中正确的个数有()A.2个B.3个C.4个D.5个6.下列式子中,属于最简二次根式的是()A8B 23C0.5D57.某班30名学生的身高情况如下表:身高()m 1.65 1.58 1.70 1.72 1.76 1.80人数 3 4 6 7 6 4则这30名学生身高的众数和中位数分别是( )A .7,1.71m mB .1.72,1.70m mC .1.72,1.71m mD .1.72,1.72m m8.如图,在矩形ABCD 中,AB =6,AD =8,以BC 为斜边在矩形的外部作直角三角形BEC ,点F 是CD 的中点,则EF 的最大值为( )A .8B .9C .10D .2419.一次函数y kx b =+的图象如图所示,则不等式0kx b +<的解集是( )A .2x <-B .0x <C .0x >D .4x >10.不等式组2232x x x x +>⎧⎨<+⎩的解集是( ) A .x >-2B .x <1C .-1<x <2D .-2<x <1二、填空题11.如图,在平面直角坐标系中,∆OAB 是边长为4的等边三角形,OD 是AB 边上的高,点P 是OD 上的一个动点,若点C 的坐标是(0,3)-,则PA+PC 的最小值是_________________.12.评定学生的学科期末成绩由考试分数,作业分数,课堂参与分数三部分组成,并按3:2:5的比例确定,已知小明的数学考试80分,作业95分,课堂参与82分,则他的数学期末成绩为_____.13.如果一组数据x1,x2,…,x n的方差是4,则另一组数据x1+3,x2+3,…,x n+3的方差是_____.14.如图,一次函数y=kx+b的图象经过A、B两点,与x轴交于点C,则此一次函数的解析式为__________,△AOC的面积为_________.15.如图,□ABCD的对角线AC,BD相交于点O,点E是CD的中点,△ABD的周长为16cm,则△DOE 的周长是_________;16.如果一组数据:8,7,5,x,9,4的平均数为6,那么x的值是_____.17.若反比例函数图象经过点A (﹣6,﹣3),则该反比例函数表达式是________.三、解答题18.因式分解:x2y﹣2xy2+y1.19.(6分)如图,方格纸中每个小方格都是边长为1的正方形,已知学校的坐标为A(2,2).(1)请在图中建立适当的直角坐标系,并写出图书馆的坐标;(2)若体育馆的坐标为C(-2,3),请在坐标系中标出体育馆的位置,并顺次连接学校、图书馆、体育馆,得到△ABC,求△ABC的面积.20.(6分)如图,在四边形ABCD 中,AD ∥BC ,∠ABC =∠ADC =90°,对角线AC ,BD 交于点O ,DE 平分∠ADC 交BC 于点E ,连接OE(1)求证:四边形ABCD 是矩形;(2)若AB =2,求△OEC 的面积.21.(6分)小丽学完统计知识后,随机调查了她所在辖区若干名居民的年龄,并绘制成如下统计图.请根据统计图提供的信息,解答下列问题(1)小丽共调查了 名居民的年龄,扇形统计图中a= %,b= %;(2)补全条形统计图;(3)若该辖区0~14岁的居民约有3500人,请估计年龄在60岁以上的居民人数.22.(8分)如图:反比例函数1k y x=的图象与一次函数2y x b =+的图象交于A 、B 两点,其中A 点坐标为()1,2.(1)求反比例函数与一次函数的表达式;(2)观察图象,直接写出当12y y <时,自变量x 的取值范围;(3)一次函数的图象与y 轴交于点C ,点P 是反比例函数图象上的一个动点,若6OCP S ∆=,求此时P 点的坐标.23.(8分)在正方形ABCD 中,过点A 引射线AH ,交边CD 于点H (H 不与点D 重合).通过翻折,使点B 落在射线AH 上的点G 处,折痕AE 交BC 于E ,连接E ,G 并延长EG 交CD 于F .(1)如图1,当点H 与点C 重合时,FG 与FD 的大小关系是_________;CFE ∆是____________三角形. (2)如图2,当点H 为边CD 上任意一点时(点H 与点C 不重合).连接AF ,猜想FG 与FD 的大小关系,并证明你的结论.(3)在图2,当5AB =,3BE =时,求ECF ∆的面积.24.(10分)如图,Rt ABC ∆中90C ∠=︒且2AC CD ==,又E 、D 为CB 的三等分点.(1)求证ADE BDA ∆∆;(2)证明:ADC AEC B ∠=∠+∠;(3)若点P 为线段AB 上一动点,连接PE 则使线段PE 的长度为整数的点的个数________.(直接写答案无需说明理由)25.(10分)甲、乙两名队员参加射击训练,各自射击10次的成绩分别被制成下列统计图.根据以上信息,整理分析数据如下: 队员 平均/环 中位数/环 众数/环甲7 b 7乙 a 7.5 c(1)写出表格中的a、b、c的值;(2)已知乙队员射击成绩的方差为4.2,计算出甲队员射击成绩的方差,并判断哪个队员的射击成绩较稳定.参考答案一、选择题(每题只有一个答案正确)1.D【解析】试题分析:A、∵12+()2=22,∴能组成直角三角形;B、∵12+22=()2,∴能组成直角三角形;C、∵52+122=132,∴能组成直角三角形;D、∵12+()2≠()2,∴不能组成直角三角形.故选D.考点:勾股定理的逆定理.2.B【解析】分析:根据平均数的定义计算即可;详解:由题意16(3+4+5+x+6+7)=5,解得x=5,故选B.点睛:本题考查平均数的定义,解题的关键是根据平均数的定义构建方程解决问题3.B【解析】【分析】根据二次根式有意义的条件列出不等式即可.【详解】解:根据题意得:x+3≥0解得:x ≥-3所以B 选项是正确的.【点睛】本题考查二次根式及不等式知识,解题时只需找出函数有意义必须满足的条件列出不等式即可,对于一些较复杂的函数一定要仔细.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.4.C【解析】【分析】结合题意分情况讨论:①当点P 在AE 上时,②当点P 在AD 上时,③当点P 在DC 上时,根据三角形面积公式即可得出每段的y 与x 的函数表达式.【详解】①当点P 在AE 上时,∵正方形边长为4,E 为AB 中点,∴2AE =,∵P 点经过的路径长为x ,∴PE x =, ∴12CPE y S PE BC ∆==⋅⋅1422x x =⨯⨯=, ②当点P 在AD 上时,∵正方形边长为4,E 为AB 中点,∴2AE =,∵P 点经过的路径长为x ,∴2AP x =-,6DP x =-,∴CPE BEC APE PDC ABCD y S S S S S ∆∆∆∆==---正方形,11144242(2)4(6)222x x =⨯-⨯⨯-⨯⨯--⨯⨯-, 1642122x x =--+-+,2x =+,③当点P 在DC 上时,∵正方形边长为4,E 为AB 中点,∴2AE =,∵P 点经过的路径长为x ,∴6PD x =-,10PC x =-, ∴12CPE y S PC BC ∆==⋅⋅1(10)42202x x =⨯-⨯=-+, 综上所述:y 与x 的函数表达式为: 2(02)2(26)220(610)x x y x x x x ≤≤⎧⎪=+<≤⎨⎪-+<≤⎩. 故答案为:C.【点睛】本题考查动点问题的函数图象,解决动点问题的函数图象问题关键是发现y 随x 的变化而变化的趋势. 5.C【解析】【分析】根据全等三角形的判定定理逐项分析,作出判断即可.【详解】解:①两直角边对应相等,两直角相等,所以根据SAS 可以判定两直角边对应相等的两个直角三角形全等.故①正确;②两锐角对应相等的两个直角三角形不一定全等,因为对应边不一定相等.故②错误;③斜边和一直角边对应相等的两个直角三角形,可以根据HL 判定它们全等.故③正确;④一锐角和斜边对应相等的两个直角三角形,可以根据AAS 判定它们全等.故④正确;⑤一锐角和一边对应相等的两个直角三角形,可以根据AAS 或ASA 判定它们全等.故⑤正确. 综上所述,正确的说法有4个.故选:C .【点睛】本题考查了直角三角形全等的判定.直角三角形首先是三角形,所以一般三角形全等的判定方法都适合它,同时,直角三角形又是特殊的三角形,有它的特殊性,作为“HL”公理就是直角三角形独有的判定方法.所以直角三角形的判定方法最多,使用时应该抓住“直角”这个隐含的已知条件.6.D【解析】【分析】直接利用最简二次根式的定义分析得出答案.【详解】解:A、822=,故此选项错误;B、2633=,故此选项错误;C、20.52=,故此选项错误;D、5是最简二次根式,故此选项正确.故选:D.【点睛】此题主要考查了最简二次根式,正确把握最简二次根式的定义是解题关键.7.D【解析】【分析】根据众数和中位数的定义求解即可.一组数据中,出现次数最多的数就叫这组数据的众数.把一组数据按从小到大的顺序排列,中间的一个数字(或两个数字的平均数)叫做这组数据的中位数.【详解】解:由图可得出这组数据中1.72m出现的次数最多,因此,这30名学生身高的众数是1.72m;把这一组数据按从小到大的顺序排列,中间的两个数字是1.72m、1.72m,因此,这30名学生身高的中位数是1.72m.故选:D.【点睛】本题考查的知识点是众数以及中位数,掌握众数以及中位数的定义是解此题的关键.8.B【解析】【分析】取BC中点O,连接OE,OF,根据矩形的性质可求OC,CF的长,根据勾股定理可求OF的长,根据直角三角形的性质可求OE的长,根据三角形三边关系可求得当点O,点E,点F共线时,EF有最大值,即EF=OE+OF.【详解】解:如图,取BC中点O,连接OE,OF,∵四边形ABCD是矩形,∴AB=CD=6,AD=BC=8,∠C=10°,∵点F是CD中点,点O是BC的中点,∴CF=3,CO=4,∴=5,∵点O是Rt△BCE的斜边BC的中点,∴OE=OC=4,∵根据三角形三边关系可得:OE+OF≥EF,∴当点O,点E,点F共线时,EF最大值为OE+OF=4+5=1.故选:B.【点睛】本题考查了矩形的性质,三角形三边关系,勾股定理,直角三角形的性质,找到当点O,点E,点F共线时,EF有最大值是本题的关键.9.A【解析】【分析】根据一次函数与一元一次不等式的关系即可求出答案.【详解】解:∵y=kx+b,kx+b<0∴y<0,由图象可知:x<-2故选:A.【点睛】本题考查一次函数与一元一次不等式,解题的关键是正确理解一次函数与一元一次不等式的关系,本题属于基础题型.10.D【解析】分析:首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.详解:2232x xx x+⎧⎨+⎩>①<②,解①得:x>﹣2,解②得:x<1,则不等式组的解集是:﹣2<x<1.故选D .点睛:本题考查了一元一次不等式组的解法:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分.找解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.二、填空题11.31 【解析】 【分析】 由题意知,点A 与点B 关于直线OD 对称,连接BC ,则BC 的长即为PC+AP 的最小值,过点B 作BN ⊥y 轴,垂足为N ,过B 作BM ⊥x 轴于M ,求出BN 、CN 的长,然后利用勾股定理进行求解即可.【详解】由题意知,点A 与点B 关于直线OD 对称,连接BC ,则BC 的长即为PC+AP 的最小值,过点B 作BN ⊥y 轴,垂足为N ,过B 作BM ⊥x 轴于M ,则四边形OMBN 是矩形,∵△ABO 是等边三角形,∴OM=12AO=12×4=2,∴BN=OM=2, 在Rt △OBM 中,BM=22OB OM -=2242-=23,∴ON=BM=23,∵C (0,3)-,∴CN=ON+OC=23+3=33,在Rt △BNC 中,BC=()222223331BN CN +=+=,即PC+AP 的最小值为31,故答案为31. 【点睛】本题考查了轴对称的性质,最短路径问题,勾股定理,等边三角形的性质等,正确添加辅助线,确定出最小值是解题的关键.12.:84分【解析】【分析】因为数学期末成绩由考试分数,作业分数,课堂参与分数三部分组成,并按3:2:5的比例确定,所以利用加权平均数的公式即可求出答案.【详解】解:小明的数学期末成绩为803952825325⨯+⨯+⨯++=84(分),故答案为84分.【点睛】本题主要考查了加权平均数的概念.平均数等于所有数据的和除以数据的个数.13.1【解析】试题分析:数据x1,x2,…,x n的平均数设为a,则数据x1+3,x2+3,…,x n+3的平均数为a+3,根据方差公式:S2=1n[(x1-a)2+(x2-a)2+…(x n-a)2]=1.则数据x1+3,x2+3,… ,x n+3的方差S′2=1n{[(x1+3)-(a+3)]2+[(x2+3)-(a+3)]2+…(x n+3)-(a+3)] 2}=1n[(x1-a)2+(x2-a)2+…(x n-a)2]=1.故答案为1.点睛:此题主要考查了方差公式的运用,关键是根据题意得到平均数的变化,再正确运用方差公式进行计算即可.14.y=x+2 1【解析】【分析】一次函数y=kx+b的图象经过A、B两点,即A(2,1),B(0,2),代入可求出函数关系式.再根据三角形的面积公式,得出△AOC的面积.【详解】解:一次函数y=kx+b的图象经过A、B两点,即A(2,1),B(0,2),与x轴交于点C(-2,0),根据一次函数解析式的特点,可得出方程组242k bb+=⎧⎨=⎩,解得=12kb⎧⎨=⎩则此一次函数的解析式为y=x+2,△AOC的面积=|-2|×1÷2=1.则此一次函数的解析式为y=x+2,△AOC的面积为1.故答案为:y=x+2;1.【点睛】本题考查的是待定系数法求一次函数的解析式,解答本题的关键是掌握点在函数解析式上,点的横纵坐标就适合这个函数解析式.15.8【解析】【分析】【详解】∵四边形ABCD是平行四边形,∴O是BD中点,△ABD≌△CDB,又∵E是CD中点,∴OE是△BCD的中位线,∴OE=12BC,即△DOE的周长=12△BCD的周长,∴△DOE的周长=12△DAB的周长.∴△DOE的周长=12×16=8cm.16.1【解析】【分析】利用平均数的定义,列出方程875946x+++++=6即可求解.【详解】解:根据题意知875946x+++++=6,解得:x=1,故答案为1.【点睛】本题考查了平均数的概念.平均数是指在一组数据中所有数据之和再除以数据的个数.17.y=18/x【解析】【分析】函数经过一定点,将此点坐标代入函数解析式y=kx(k≠0)即可求得k的值.【详解】设反比例函数的解析式为y=k x (k≠0),函数经过点A (-6,-3), ∴-3=6k ,得k=18, ∴反比例函数解析式为y=18x . 故答案为:y=18x. 【点睛】 此题比较简单,考查的是用待定系数法求反比例函数的解析式.三、解答题18.y (x ﹣y )2【解析】【分析】先提取公因式y ,再根据完全平方公式进行二次分解即可求得答案.完全平方公式:a 2±2ab +b 2=(a ±b )2.【详解】解:x 2y ﹣2xy 2+y 1=y (x 2﹣2xy +y 2)=y (x ﹣y )2.【点睛】本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.19.(1)直角坐标系见解析;图书馆的坐标为B(-2,-2);(2)△ABC 的面积为10.【解析】【分析】(1) A(2,2)推出原点,建立平面直角坐标系;(2)直接描出C(-2,3),由点的坐标得到BC 边长为5,BC 边上的高为4,再计算面积.【详解】解:(1)直角坐标系如图所示.图书馆的坐标为B(-2,-2).(2)体育馆的位置C 如图所示.观察可得△ABC 中BC 边长为5,BC 边上的高为4,所以△ABC 的面积为12×5×4=10.【点睛】本题考核知识点:平面直角坐标系. 解题关键点:理解坐标的意义,利用坐标求出线段长度.20.(1)证明见解析;(2)1.【解析】分析:(1)只要证明三个角是直角即可解决问题;(2)作OF⊥BC于F.求出EC、OF的长即可;详解:(1)证明:∵AD∥BC,∴∠ABC+∠BAD=180°,∵∠ABC=90°,∴∠BAD=90°,∴∠BAD=∠ABC=∠ADC=90°,∴四边形ABCD是矩形.(2)作OF⊥BC于F.∵四边形ABCD是矩形,∴CD=AB=2,∠BCD=90°,AO=CO,BO=DO,AC=BD,∴AO=BO=CO=DO,∴BF=FC,∴OF=12CD=1,∵DE平分∠ADC,∠ADC=90°,∴∠EDC=45°,在Rt△EDC中,EC=CD=2,∴△OEC的面积=12•EC•OF=1.点睛:本题考查矩形的判定和性质、角平分线的定义、三角形中位线定理等知识,解题的关键是学会添加常用辅助线,构造三角形中位线解决问题21.(1)500,20%,12%;(2)110,图见解析;(3)2100人【解析】【分析】(1)由题意根据“15~40”的百分比和频数可求总数,进而求出a、b的值;(2)根据题意利用总数和百分比求出频数再补全条形图即可;(3)根据题意用样本估计总体,进而得出年龄在60岁以上的居民人数即可.【详解】解:(1)解:(1)根据“15到40”的百分比为46%,频数为230人,可求总数为230÷46%=500, 0~14岁有100人,60岁以上有60人,所以10060100%20%100%12%500500a b =⨯==⨯=,. 故答案为:500,20%,12%.(2)由题意可得41-59岁有:22%⨯500=110(人),画图如下,(3)由题意估计出总人数:350020%=17500÷(人),年龄在60岁以上的居民人数:1750012%=2100⨯(人).【点睛】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图中各部分占总体的百分比之和为1,直接反映部分占总体的百分比大小.22.(1)12y x =,1y x =+;(2)20x -<<或1x >;(3)(12,16)或(-12,16-) 【解析】【分析】(1)把A 点坐标代入1k y x =中求出k 得到反比例函数解析式,把A 点坐标代入2y x b =+中求出b 得到一次函数解析式;(2)由函数图象,写出一次函数图象在反比例函数图象上方所对应的自变量的范围即可;(3)设P (x ,2x),先利用一次解析式解析式确定C (0,1),再根据三角形面积公式得到1216x ⨯⨯=,然后解绝对值方程得到x 的值,从而得到P 点坐标.【详解】解:(1)把A (1,2)代入1k y x =得k=2, ∴反比例函数解析式为12y x=, 把A (1,2)代入2y x b =+得21b =+,解得1b =,∴一次函数解析式为1y x =+;(2)由函数图象可得:当y 1<y 2时,-2<x <0或x >1;(3)设P (x ,2x), 当x=0时,11y x =+=,∴C (0,1),∵S △OCP =6, ∴1216x ⨯⨯=,解得12x =±, ∴P (12,16)或(-12,16-). 【点睛】本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.也考查了待定系数法求函数解析式.23.(1)FG FD =;等腰直角.(2)详见解析;(3)154 【解析】【分析】(1)连接AF ,由正方形的性质及折叠的性质已知,AGF ADF CFG CEG ∆≅∆∆≅∆,由全等可知FG FD =,CF=CE,结合90DCB ︒∠=可确定CFE ∆是等腰直角三角形;(2)连接AF ,由正方形的性质及折叠的性质已知AGF ADF ∆≅∆,即证FG FD =;(3)设FG x =,依据题意及(2)的结论用含x 的式子确定出Rt ECF ∆的三边长,根据勾股定理求出x 的值,即可求面积.【详解】解:(1)连接AF ,∵四边形ABCD 是正方形,∴B D=90BCD ︒∠=∠∠=,AD AB =.由翻折可知90AGF B D ︒∠=∠=∠=,AG AB AD ==.∵AF AF =,∴Rt AGF Rt ADF ∆∆≌.…∴FG FD =.又,AC EF AC ⊥平分ECF ∠∴AC 垂直平分EF∴EC FC =∴CFE ∆是等腰直角三角形.故答案为:FG FD =;等腰直角.(2)连接AF ,∵四边形ABCD 是正方形的对角线,∴B D 90︒∠=∠=,AD AB =.由翻折可知90AGF B D ︒∠=∠=∠=,AG AB AD ==.∵AF AF =,∴Rt AGF Rt ADF ∆∆≌.…∴FG FD =.…(3)设FG x =,则5FC x =-,3FE x =+.在Rt ECF ∆中,222FE FC EC =+,即()()222352x x +=-+. 解得54x =,即FG 的长为54. ∴515544CF CD FD =-=-=;… ∴115152244ECF S ∆=⨯⨯=.…【点睛】本题考查了正方形的综合问题,涉及的知识点有正方形的性质、全等三角形的证明、勾股定理,灵活将正方形的性质与三角形的知识相结合是解题的关键.24.(1)见解析;(2)见解析;(3)4.【解析】【分析】(1)利用勾股定理求得AD 、DE 的长,再根据BD 、AD 的长,利用两边对应相等,且夹角相等的两个三角形相似,即可判断;(2)利用相似三角形的对应角相等以及三角形的外角的性质即可判断;(3)作EF ⊥AB 于点F ,利用△ABC ∽△EBF ,求得EF 的长,即可确定PE 的长的范围,从而求解.【详解】解:(1)证明:∵AC CD ==, ∴2AD =,∴在ADE ∆和BDA ∆中,AD DE ==,2BD AD == ∴AD BD DE AD=, 又∵ADE BDA ∠=∠,∴~ADE BDA ∆∆;(2)证明:∵~ADE BDA ∆∆,∴ADE BAD ∠=∠,又∵ADC B BAD ∠=∠+∠,∴ADC B AEC ∠=∠+∠;(3)作EH AB ⊥于点F .在直角ABC ∆中,AB ===.∵90BFE C ∠=∠=︒,B B ∠=∠,∴ABCEBF ∆∆,∴EF BEAC AB ==解得:15EF =<.又∵BE =,AE ==,则105PE ,PE 的整数值是1或2或3. 则当1PE =时,P 的位置有2个;当2PE =时,P 的位置有1个;当3PE =时,P 的位置有1个.故PE 的整数点有4个.故答案是:4.【点睛】本题考查了相似三角形的判定与性质,正确作出辅助线,利用相似三角形的性质求得PE的范围是关键.25.(1)a=7,b=7,c=8;(2)甲队员的射击成绩较稳定【解析】【分析】(1)利用加权平均数的计算公式、中位数、众数的概念解答;(2)利用方差的计算公式求出S甲2,根据方差的性质判断即可.【详解】解:(1)a=110(3+6+4+8+7+8+7+8+10+9)=7,b=7,c=8;(2)S甲2=110×[(5﹣7)2×1+(6﹣7)2×2+(7﹣7)2×4+(8﹣7)2×2+(9﹣7)2×1]=1.2,则S甲2<S乙2,∴甲队员的射击成绩较稳定.故答案为(1)a=7,b=7,c=8;(2)甲队员的射击成绩较稳定.【点睛】本题考查的是加权平均数、方差的计算,掌握加权平均数的计算公式、方差的计算公式是解题的关键.。

浦东新区第二学期初二数学期末试卷及答案

浦东新区第二学期初二数学期末试卷及答案

浦东新区20XX学年度第二学期期末质量抽测初二数学试卷一、选择题,(本大题共6题,每题2分,总分值12分)1 .以下四个函数中,一次函数是 ........................................... < ) < A ) y = x2-2xz ( B ) v = x-2 : ( C ) y = — +1 : < D ) y = Jx + \.x2. 在平面直角坐标系中,直线y = l-x经过..................................... ()(A)第一、二、三象限:<B)第一、二、四象限:(C)第一、三、四象限:(D)第二.三、四象限.3. 以下四个命题中真命题是................................................ ()(A )矩形的对角线平分对角:<B )差形的对角线互相垂直平分;(C)梯形的对角线互相垂直;(D)平行四边形的对角线相等.4. 如果点C,是线段/访的中点,那么以下结论中正确的选项是................. < )<A) AC + flC = O (B) AC-BC = O (C) AC + BC = O (D) AC-BC = O5. 从2, 3, 4, 5, 6中任取一个数,是合数的概率是............................. ( )(A) -;<B) -;(C) -;(D)5 5 5 56. 以下事件是必然事件的是................................................ ()------- 9 vt(A)方程Vx + 4 = -3有实数根:(B)方程+ = 0的解是x = 2:x-2 2-x<C)方程/-! =()有实数根:(D)方程3.技=工只有一个实数根.二、填空题:(本大题共12题,每题3分,总分值36分)7. 一次函数y = 3x+2的哉距是_______________ ・8. 函数/Cv) = 3.v-I,那么/(2) = _____________9. 一次函数y = (A-2)x + 4, y随I的增大而诚小,那么。

。2017-2018学年上海市浦东新区八年级(下)期末数学试卷(五四学制)

。2017-2018学年上海市浦东新区八年级(下)期末数学试卷(五四学制)

2017-2018学年上海市浦东新区八年级(下)期末数学试卷(五四学制)一、选择题:(本大题共4题,每题3分,满分12分)1.(3分)在下列方程中,分式方程是()A.=1B.=1C.=1D.=12.(3分)函数y=﹣x﹣3的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限3.(3分)在下列事件中,确定事件共有()①买一张体育彩票中大奖;②抛掷一枚硬币,落地后正面朝上;③在只装有2只红球、3只黄球的袋子中,摸出1只白球;④初二(1)班共有37名学生,至少有3名学生的生日在同一个月.A.1个B.2个C.3个D.4个4.(3分)在四边形ABCD中,对角线AC和BD相交于点O,AB=CD,添加下列条件后能判定这个四边形是平行四边形的是()A.AD∥BC B.AO=CO C.∠ABC=∠ADC D.∠BAC=∠DCA二、填空题:(本大题共14题,每题2分,满分28分)5.(2分)方程2x3+54=0的解是.6.(2分)方程=x的解是x=.7.(2分)如果是方程mx2+y2=xy的一个解,那么m=.8.(2分)当k=时,方程kx+4=3﹣2x无解.9.(2分)当m=时,函数y=(m﹣1)x+m是常值函数.10.(2分)已知一次函数y=kx+b的图象经过第一象限,且它的截距为﹣5,那么函数值y随自变量x值的增大而.11.(2分)已知一次函数y=2x+5,当函数值y<0时,自变量x值的取值范围是.12.(2分)已知一辆匀速行驶汽车的路程S(千米)与时间t(时)的函数关系如图所示,那么这辆汽车的速度是每小时千米.13.(2分)若一个多边形的内角和等于外角和,那么这个多边形的边数是.14.(2分)已知菱形一组对角的和为240°,较短的一条对角线的长度为4厘米,那么这个菱形的面积为平方厘米.15.(2分)已知在等腰梯形ABCD中,AD∥BC,AB=13厘米,AD=4厘米,高AH=12厘米,那么这个梯形的中位线长等于厘米.16.(2分)从0,1,2,3四个数字中任取三个数字组成没有重复数字的三位数,那么组成的三位数是奇数的概率是.17.(2分)如图,已知在矩形ABCD中,AB=,BC=2,将这个矩形沿直线BE 折叠,使点C落在边AD上的点F处,折痕BE交边CD于点E,那么∠DCF等于度.18.(2分)已知在平面直角坐标系xOy中,直线y=﹣x+4与x轴交于点A、与y轴交于点B,四边形AOBC是梯形,且对角线AB平分∠CAO,那么点C的坐标为.三、解答题:(本大题共8题,满分60分)19.(6分)解方程:=+2.20.(6分)解方程组:.21.(6分)已知直线y=kx+b与直线y=﹣x+k都经过点A(6,﹣1),求这两条直线与x轴所围成的三角形面积.22.(8分)已知:如图,在平行四边形ABCD中,E、F分别是对角线BD上的两点,且BE=DF,=,=,=.(1)用向量、、表示下列向量:向量=,向量=,向量=;(2)求作:+.23.(8分)已知:如图,在Rt△ABC中,∠C=90°,CD平分∠ACB,AD⊥CD,垂足为点D,M是边AB的中点,AB=20,AC=10,求线段DM的长.24.(8分)已知:如图,在等边三角形ABC中,过边AB上一点D作DE⊥BC,垂足为点E,过边AC上一点G作GF⊥BC,垂足为点F,BE=CF,联结DG.(1)求证:四边形DEFG是平行四边形;(2)连接AF,当∠BAF=3∠FAC时,求证:四边形DEFG是正方形.25.(8分)从甲地到乙地有两条公路:一条是全长400千米的普通公路,一条是全长360千米的高速公路.某客车在高速公路上行驶的平均速度比在普通公路上行驶的平均速度快50千米/时,从甲地到乙地由高速公路上行驶所需的时间比普通公路上行驶所需的时间少6小时.求该客车在高速公路上行驶的平均速度.26.(10分)如图,已知在梯形ABCD中,AD∥BC,P是下底BC上一动点(点P 与点B不重合),AB=AD=10,BC=24,∠C=45°,45°<∠B<90°,设BP=x,四边形APCD的面积为y.(1)求y关于x的函数解析式,并写出它的定义域;(2)联结PD,当△APD是以AD为腰的等腰三角形时,求四边形APCD的面积.2017-2018学年上海市浦东新区八年级(下)期末数学试卷(五四学制)参考答案与试题解析一、选择题:(本大题共4题,每题3分,满分12分)1.(3分)在下列方程中,分式方程是()A.=1B.=1C.=1D.=1【分析】根据分式方程的定义:分母里含有字母的方程叫做分式方程进行判断.【解答】解:A、该方程是整式方程,故本选项错误;B、该方程是无理方程,故本选项错误;C、该方程符合分式方程的定义,故本选项正确;D、该方程属于无理方程,故本选项错误;故选:C.【点评】本题考查了分式方程的定义.判断一个方程是否为分式方程,主要是依据分式方程的定义,也就是看分母中是否含有未知数(注意:仅仅是字母不行,必须是表示未知数的字母).2.(3分)函数y=﹣x﹣3的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据比例系数得到相应的象限,进而根据常数得到另一象限,判断即可.【解答】解:∵k=﹣1<0,∴一次函数经过二四象限;∵b=﹣3<0,∴一次函数又经过第三象限,∴一次函数y=﹣x﹣3的图象不经过第一象限,故选:A.【点评】此题考查一次函数的性质,用到的知识点为:k<0,函数图象经过二四象限,b<0,函数图象经过第三象限.3.(3分)在下列事件中,确定事件共有()①买一张体育彩票中大奖;②抛掷一枚硬币,落地后正面朝上;③在只装有2只红球、3只黄球的袋子中,摸出1只白球;④初二(1)班共有37名学生,至少有3名学生的生日在同一个月.A.1个B.2个C.3个D.4个【分析】直接利用随机事件以及确定事件的定义分别分析得出答案.【解答】解:①买一张体育彩票中大奖,是随机事件,故此选项错误;②抛掷一枚硬币,落地后正面朝上,是随机事件,故此选项错误;③在只装有2只红球、3只黄球的袋子中,摸出1只白球,是不可能事件,属于确定事件;④初二(1)班共有37名学生,至少有3名学生的生日在同一个月,是必然事件,属于确定事件.故选:B.【点评】此题主要考查了随机事件以及确定事件的定义,正确把握相关定义是解题关键.4.(3分)在四边形ABCD中,对角线AC和BD相交于点O,AB=CD,添加下列条件后能判定这个四边形是平行四边形的是()A.AD∥BC B.AO=CO C.∠ABC=∠ADC D.∠BAC=∠DCA【分析】根据四边形的判定方法即可解决问题;【解答】解:A、不能判断四边形是平行四边形,四边形可能是等腰梯形,故本选项不符合题意;B、无法判定四边形是平行四边形,故本选项不符合题意;C、无法判定四边形是平行四边形,故本选项不符合题意;D、由∠BAC=∠DCA推出AB∥CD,结合AB=CD,可以推出四边形是平行四边形;故选:D.【点评】本题考查平行四边形的判定,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.二、填空题:(本大题共14题,每题2分,满分28分)5.(2分)方程2x3+54=0的解是x=﹣3.【分析】方程整理后,利用立方根定义求出解即可.【解答】解:方程整理得:x3=﹣27,开立方得:x=﹣3.故答案为:x=﹣3.【点评】此题考查了立方根,熟练掌握立方根的定义是解本题的关键.6.(2分)方程=x的解是x=2.【分析】本题含根号,计算比较不便,因此可先对方程两边平方,得到x+2=x2,再对方程进行因式分解即可解出本题.【解答】解:原方程变形为:x+2=x2即x2﹣x﹣2=0∴(x﹣2)(x+1)=0∴x=2或x=﹣1∵x=﹣1时不满足题意.∴x=2.故答案为:2.【点评】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的提点灵活选用合适的方法.本题运用的是因式分解法和平方法.7.(2分)如果是方程mx2+y2=xy的一个解,那么m=﹣.【分析】依据方程的解概念,将方程的解代入方程进行计算,即可得到m的值.【解答】解:把方程的解代入方程mx2+y2=xy,可得4m+1=﹣2,∴4m=﹣3,解得m=﹣,故答案为:﹣.【点评】本题考查了二元一次方程的解,方程的解就是满足方程的未知数的值,把解代入方程即可.8.(2分)当k=﹣2时,方程kx+4=3﹣2x无解.【分析】方程kx+4=3﹣2x无解时,x的系数是0,据此求解即可.【解答】解:∵kx+4=3﹣2x,∴(k+2)x=﹣1,∴k+2=0时,方程kx+4=3﹣2x无解,解得k=﹣2.故答案为:﹣2.【点评】此题主要考查了一元一次方程的解,要熟练掌握,解答此题的关键是要明确:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.9.(2分)当m=1时,函数y=(m﹣1)x+m是常值函数.【分析】直接利用常值函数的定义分析得出答案.【解答】解:当m﹣1=0时,函数y=(m﹣1)x+m是常值函数,故m=1时,y=1.故答案为:1.【点评】此题主要考查了函数的概念,正确把握函数的定义是解题关键.10.(2分)已知一次函数y=kx+b的图象经过第一象限,且它的截距为﹣5,那么函数值y随自变量x值的增大而增大.【分析】直接根据一次函数的图象与系数的关系即可得出结论.【解答】解:∵一次函数y=kx+b的图象经过第一象限,且它的截距为﹣5,∴一次函数y=kx+b的图象经过第一、三、四象限,即一次函数y=kx+b的图象不经过第二象限,∴k>0,b<0.所以函数值y随自变量x的值增大而增大,故答案为:增大;【点评】本题考查的是一次函数的图象与系数的关系,熟知一次函数y=kx+b(k ≠0)中,当k>0,b<0时,函数的图象在第一、三、四象限是解答此题的关键.11.(2分)已知一次函数y=2x+5,当函数值y<0时,自变量x值的取值范围是x<﹣.【分析】根据题意列出关于x的不等式,求出x的取值范围即可.【解答】解:∵一次函数y=2x+5中y<0,∴2x+5<0,解得x<﹣.故答案为:x<﹣.【点评】本题考查的是一次函数的性质,熟知一次函数的增减性是解答此题的关键.12.(2分)已知一辆匀速行驶汽车的路程S(千米)与时间t(时)的函数关系如图所示,那么这辆汽车的速度是每小时48千米.【分析】根据图象得出汽车的速度即可.【解答】解:这辆汽车的速度是km/h,故答案为:48【点评】此题考查函数图象,关键是根据图象得出汽车的路程和时间.13.(2分)若一个多边形的内角和等于外角和,那么这个多边形的边数是4.【分析】设多边形的边数为n,根据题意得出方程(n﹣2)×180°=360°,求出即可.【解答】解:设多边形的边数为n,则(n﹣2)×180°=360°,解得:n=4,故答案为:4.【点评】本题考查了多边形的内角和和外角和定理,能根据题意列出方程是解此题的关键.14.(2分)已知菱形一组对角的和为240°,较短的一条对角线的长度为4厘米,那么这个菱形的面积为8平方厘米.【分析】只要证明△ABC,△ADC是等边三角形即可解决问题;【解答】解:如图,第11页(共21页)∵四边形ABCD 是菱形,∠BAD +∠BCD=240°,∴∠BAD=∠BCD=120°,∠ABC=∠ADC=60°∵AB=BC=AD=DC ,∴△ABC ,△ADC 是等边三角形,∴AB=BC=AC=4,∴S 菱形ABCD =2?S △ABC =2××42=8,故答案为8.【点评】本题考查菱形的性质、等边三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.15.(2分)已知在等腰梯形ABCD 中,AD ∥BC ,AB=13厘米,AD=4厘米,高AH=12厘米,那么这个梯形的中位线长等于9厘米.【分析】过D 作DM ⊥BC 于M ,得出四边形AHDM 是矩形,求出HM ,根据勾股定理求出BH 、CM ,求出BC ,根据梯形的中位线求出即可.【解答】解:过D 作DM ⊥BC 于M ,∵AH ⊥BC ,∴AH ∥DM ,∠AHM=90°,∵AD ∥BC ,∴四边形AHDM 是矩形,∴AH=DM=12厘米,AD=HM=4厘米,由勾股定理得:BH===5(厘米),同理CM=5(厘米),∴BC=BH +HM+CM=14厘米,。

2020-2021学年上海市浦东新区八年级(下)期末数学试卷(附答案详解)

2020-2021学年上海市浦东新区八年级(下)期末数学试卷(附答案详解)

2020-2021学年上海市浦东新区八年级(下)期末数学试卷一、选择题(本大题共6小题,共18.0分)1.一次函数y=−2x+1的图象不经过的象限是()A. 第一象限B. 第二象限C. 第三象限D. 第四象限2.下列方程中,有一个根是x=2的方程是()A. xx−2=2x−2B. x−22+2−xx=0C. √x−2⋅√x−3=0D. √x−6=23.下列事件属于必然事件的事()A. 某种彩票的中奖概率为11000,购买1000张彩票一定能中奖B. 电视打开时正在播放广告C. 任意两个负数的乘积为正数D. 某人手中的玻璃杯不小心掉在水泥地面上会破碎4.已知向量a⃗、b⃗ 满足|a⃗|=|b⃗ |,则()A. a⃗=b⃗B. a⃗=−b⃗C. a⃗//b⃗D. 以上都有可能5.下列命题中正确的是()A. 对角线互相垂直的平行四边形是正方形B. 一组对边平行,且有一个角是直角,一组邻边相等的四边形是正方形C. 对角线相等且互相垂直的四边形是正方形D. 对角线相等且互相垂直平分的四边形是正方形6.如图,在梯形ABCD中,AB//CD,AD=DC=CB,AC⊥BC,那么下列结论不正确的是()A. AC=2CDB. ∠ABC=60°C. ∠CBD=∠DBAD. BD⊥AD二、填空题(本大题共12小题,共24.0分)7. 如果将函数y =3x −1的图象向上平移3个单位,那么所得图象的函数解析式是______ .8. 关于x 的方程a(x −3)=1(a ≠0)的解是______ .9. 已知方程x 2+12x −xx 2+1=3,如果设xx 2+1=y ,那么原方程可以变形为______. 10. 某同学投掷一枚硬币,如果连续4次都是正面朝上,则他第5次抛掷硬币的结果是正面朝上的概率是______ .11. 一个多边形的内角和是1800°,这个多边形是______边形.12. 计算:AB ⃗⃗⃗⃗⃗ −DE ⃗⃗⃗⃗⃗⃗ +BE ⃗⃗⃗⃗⃗ = ______ .13. 在平行四边形ABCD 中,∠A =50°,则∠B =______度.14. 梯形的面积为12平方厘米,中位线长为4厘米,则这个梯形的高为______ 厘米.15. 顺次联结菱形各边中点所得的四边形是______ .16. 矩形的较短边长是1,两条对角线的夹角为60°,则这个矩形的面积是______ .17. 在直角梯形ABCD 中,AD//BC ,∠A =90°,AB =3,CD =6,则∠D 的度数是______ .18. 点A(−2,m)在一次函数y =3x +12的图象上,一次函数与x 轴相交于点B ,B 、C两点关于y 轴对称.将∠ACB 沿x 轴左右平移到∠AC′B′,在平移过程中,将该角绕点C′旋转,使它的一边始终经过点A ,另一边与直线AB 交于点B′.若△AC′B′为等腰直角三角形,且∠A =90°,则点B′的坐标为______ .三、解答题(本大题共8小题,共58.0分)19. 解方程:3−√2x −3=x .20. 解方程组:{x +2y =5x 2−2xy +y 2=1.21. 如图,四边形ABCD 是平行四边形,BA ⃗⃗⃗⃗⃗ =a ⃗ ,BC ⃗⃗⃗⃗⃗ =b ⃗ .(1)填空:BD ⃗⃗⃗⃗⃗⃗ = ______ ;AC⃗⃗⃗⃗⃗ = ______ ; (2)在图中求作:AC⃗⃗⃗⃗⃗ +BD ⃗⃗⃗⃗⃗⃗ (保留作图痕迹,写出结果,不要求写作法);(3)若AC ⊥BD ,|AC ⃗⃗⃗⃗⃗ |=6,|BD ⃗⃗⃗⃗⃗⃗ |=8,则|AC ⃗⃗⃗⃗⃗ +BD⃗⃗⃗⃗⃗⃗ |= ______ .22. 如图,已知四边形ABCD 是平行四边形,将边AB 延长至点E ,使AB =BE ,联结DE 、EC ,DE 与BC 交于点O .(1)求证:四边形BECD 是平行四边形;(2)若∠COE =2∠A ,求证:四边形BECD 是矩形.23. 如图,在正方形ABCD 中,P 是对角线BD 上的一点,点E 在边AD 的延长线上,且PA =PE ,PE 交CD 于点F .(1)求证:PA=PC;(2)求证:PC⊥PE.24.为庆祝建党100周年,某中学组织八年级学生进行徒步活动,从学校出发,步行至离校6千米的红色基地,返回时,由于步行速度比去时每小时少1千米,结果时间比去时多用了半小时,求学生返回时步行的速度.25.已知点P(1,m)、Q(n,1)在反比例函数y=5的图象上,直线y=kx+b经过点P、Q,x且与x轴、y轴的交点分别为A、B两点.(1)求直线PQ的解析式;(2)O为坐标原点,点D在直线上(点C与点B不重合),AB=AC,求点C的坐标;(3)在(2)的条件下,点D在坐标平面上,顺次联结点O、B、C、D的四边形OBCD满足:BC//OD,BO=CD,求满足条件的点D坐标.26.如图,在菱形ABCD中,对角线AC与BD相交于点O,AB=8,∠BAD=60°,点E从点A出发,沿AB以每秒2个单位长度的速度向终点B运动,当点E与点A不重合时,过点E作EF⊥AD于点F,作GE//AD交AC于点G,过点G作射线AD垂线段GH,垂足为点H,得到矩形EFHG,设点E的运动时间为t秒.(1)求点H与点D重合时t的值;(2)设矩形EFHG与菱形ABCD重叠部分图形的面积为S,求S与t之间的函数关系式;(3)设矩形EFHG的对角线EH与FG相交于点O′,①当OO′//AD时,t的值为______ ;②OO′⊥AD时,求出t的值.答案和解析1.【答案】C【解析】解:∵一次函数y=−2x+1,k=−2,b=1,∴该函数图象经过第一、二、四象限,不经过第三象限,故选:C.根据一次函数的性质,可以得到函数y=−2x+1经过哪几个象限,不经过哪个象限,从而可以解答本题.本题考查一次函数的性质,解答本题的关键是明确一次函数的性质,由一次函数的解析式,可以得到经过哪几个象限,不经过哪个象限.2.【答案】B【解析】解:A.xx−2=2x−2,方程两边都乘以x−2,得x=2,检验:当x=2时,x−2=0,所以x=2是增根,即x=2不是原方程的解,故本选项不符合题意;B.当x=2时,分母不等于0,方程的左边=2−22+2−22=0,右边=0,即左边=右边,所以x=2是原方程的解,故本选项符合题意;C.当x=2时,√x−3中x−3<0,所以x=2不是方程√x−2⋅√x−3=0的解,故本选项不符合题意;D.当x=2时,√x−6中x−6<0,所以x=2不是方程√x−6=2的解,故本选项不符合题意;故选:B.把x=2代入选项中的每个方程,再逐个判断即可.本题考查了解分式方程和解无理方程,注意:解分式方程和解无理方程都必须进检验.3.【答案】C【解析】解:A、某种彩票的中奖概率为1,购买1000张彩票一定能中奖,是随机事1000件;B、电视打开时正在播放广告,是随机事件;C、任意两个负数的乘积为正数,是必然事件;D、某人手中的玻璃杯不小心掉在水泥地面上会破碎,是随机事件;故选:C.根据事件发生的可能性大小判断即可.本题考查的是必然事件、不可能事件、随机事件的概念,必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.【答案】D【解析】解:若向量a⃗、b⃗ 满足|a⃗|=|b⃗ |,可得:a⃗=b⃗ ,或a⃗=−b⃗ ,或a⃗//b⃗ ,故选:D.利用单位向量的定义和性质直接判断即可.此题考查平面向量问题,解题时要认真审题,注意单位向量、零向量、共线向量的定义和的性质的合理运用.5.【答案】D【解析】解:A、对角线相等且垂直的平行四边形是正方形,原命题错误;B、一组对边平行,且有一个角是直角,一组邻边相等的四边形可能是直角梯形,不一定是正方形,原命题错误;C、对角线平分、相等且互相垂直的四边形是正方形,原命题错误;D、对角线相等且互相垂直平分的四边形是正方形,原命题正确;故选:D.利用正方形的判定定理对个选项逐一判断后即可得到正确的选项.本题考查了命题与定理的知识,解题的关键是牢记特殊的四边形的判定定理,难度不大,属于基础题.6.【答案】A【解析】解:A、∵AD=DC,∴AC<AD+DC=2CD,A不正确;B、∵四边形ABCD是等腰梯形,∴∠ABC=∠BAD,在△ABC和△BAD中,{BC=AD∠ABC=∠BAD AB=BA,∴△ABC≌△BAD(SAS),∴∠BAC=∠ABD,∵AB//CD,∴∠CDB=∠ABD,∠ABC+∠DCB=180°,∵DC=CB,∴∠CDB=∠CBD=∠ABD=∠BAC,∵∠ACB=90°,∴∠CDB=∠CBD=∠ABD=30°,∴∠ABC=∠ABD+∠CBD=60°,B正确,C、∵AB//CD,∴∠DCA=∠CAB,∵AD=DC,∴∠DAC=∠DCA=∠CAB,C正确.D、∵△DAB≌△CBA,∴∠ADB=∠BCA.∵AC⊥BC,∴∠ADB=∠BCA=90°,∴DB⊥AD,D正确;故选:A.A、根据三角形的三边关系即可得出A不正确;B、通过等腰梯形的性质结合全等三角形的判定与性质即可得出∠ADB=90°,从而得出B正确;C、由梯形的性质得出AB//CD,结合角的计算即可得出∠ABC=60°,即C正确;D、由平行线的性质结合等腰三角形的性质即可得出∠DAC=∠CAB,即D正确.综上即可得出结论.本题考查了梯形的性质、平行线的性质、等腰三角形的性质以及全等三角形的判定与性质,解题的关键是逐项分析四个选项的正误.本题属于中档题,稍显繁琐,但好在该题为选择题,只需由三角形的三边关系得出A不正确即可.7.【答案】y=3x+2【解析】解:由“上加下减”的原则可知,将函数y=3x−1的图象向上平移3个单位所得函数的解析式为y=3x−1+3,即y=3x+2.故答案为:y=3x+2.根据“上加下减”的原则进行解答即可.本题考查的是一次函数的图象与几何变换,熟知“上加下减”的原则是解答此题的关键.8.【答案】x=1+3aa【解析】解:去括号得,ax−3a=1,移项得,ax=1+3a,系数化为1得,x=1+3aa.故答案为:x=1+3aa.根据一元一次方程的解法求解即可.本题考查了一元一次方程的解法,注意移项要变号.9.【答案】12y−y=3【解析】解:根据题意得:设xx2+1=y,则x 2+12x=2y,∴原方程可变为12y−y=3;故答案为12y−y=3.由题意得:设xx2+1=y,则x2+12x=2y,代入即可解答出.本题考查了换元法解分式方程,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化.10.【答案】12【解析】解:第5次掷硬币,出现正面朝上的机会和朝下的机会相同,都为12. 故答案为:12.投掷一枚硬币,是一个随机事件,可能出现的情况有两种:正面朝上或者正面朝下,而且机会相同.本题主要考查概率公式,掌握概率等于所求情况数与总情况数之比是解题的关键. 11.【答案】12【解析】解:设这个多边形是n 边形,根据题意得:(n −2)×180=1800,解得:n =12.∴这个多边形是12边形.故答案为:12.首先设这个多边形是n 边形,然后根据题意得:(n −2)×180=1800,解此方程即可求得答案.此题考查了多边形的内角和定理.注意多边形的内角和为:(n −2)×180°.12.【答案】AD⃗⃗⃗⃗⃗⃗【解析】解:AB ⃗⃗⃗⃗⃗ −DE ⃗⃗⃗⃗⃗⃗ +BE ⃗⃗⃗⃗⃗ =(AB ⃗⃗⃗⃗⃗ +BE ⃗⃗⃗⃗⃗ )−DE ⃗⃗⃗⃗⃗⃗ =AE ⃗⃗⃗⃗⃗ −DE ⃗⃗⃗⃗⃗⃗ =AD⃗⃗⃗⃗⃗⃗ . 故答案为:AD⃗⃗⃗⃗⃗⃗ . 利用三角形法则求解即可.本题考查平面向量,解题的关键是熟练掌握三角形法则,属于中考常考题型.13.【答案】130【解析】解:∵▱ABCD中,BC//AD,∴∠A+∠B=180°,∴∠B=180°−∠A=180°−50°=130°.故答案为130.在平行四边形ABCD中,因为∠A和∠B是一组相邻的内角,由平行四边形的性质可知,∠A+∠B=180°,代值求解.本题利用了平行四边形中邻角互补的性质.运用平行四边形的性质可解决以下问题,如求角的度数、线段的长度,证明角相等或互补,证明线段相等或倍分等.14.【答案】3【解析】解:∵梯形的中位线为4厘米,∴梯形的上底+下底=2×4=8(厘米),=3(厘米),∴这个梯形的高=2×128故答案为:3.根据梯形的中位线定理求出梯形的上底+下底,根据梯形的面积公式计算,得到答案.本题考查的是梯形的中位线定理、梯形的面积公式,掌握梯形的中位线平行于两底,并且等于两底和的一半是解题的关键.15.【答案】矩形【解析】解:顺次联结菱形各边中点所得的四边形是矩形,理由如下:∵E,H分别为AB,AD的中点,∴EH//BD,同理,EF//AC,GH//AC,FG//BD,∴EH//FG,EF//GH,∴四边形EFGH是平行四边形,∵四边形ABCD为菱形,∴AC⊥BD,∵EH//BD,∴AC⊥EH,∵EF//AC,∴EF⊥EH,∴平行四边形EFGH是矩形,故答案为:矩形.根据三角形中位线定理得到EH//BD,EF//AC,GH//AC,FG//BD,进而证明四边形EFGH是平行四边形,根据菱形的性质得到AC⊥BD,根据矩形的判定定理证明结论.本题考查的是中点四边形,掌握三角形中位线定理、菱形的性质定理、矩形的判定定理是解题的关键.16.【答案】√3【解析】解:如图所示:∵四边形ABCD是矩形,∴∠ABC=90°,OA=OC=12AC,OB=OD=12BD,AC=BD,∴OA=OB,又∵∠AOB=60°,∴△AOB是等边三角形,∴OA=AB=1,∴AC=2OA=2,∴BC=√AC2−AB2=√22−12=√3,∴矩形ABCD的面积=AB⋅BC=1×√3=√3,故答案为:√3.由矩形的性质得出OA=OB,再证明△AOB是等边三角形,得出OA=AB=3,然后由勾股定理求出BC的长,即可得出结果.本题考查了矩形的性质、等边三角形的判定与性质、勾股定理;熟练掌握矩形的性质,由勾股定理求出BC的长是解决问题的关键.17.【答案】150°或30°【解析】解:①如图1中,过D作DE⊥BC于E,则∠DEC=∠DEB=90°,∵AD//BC,∠A=90°,∴∠B=90°,∴四边形ABED是矩形,∴∠ADE=90°,AB=DE=3,∵CD=10,∴sinC=DECD =12,∴∠C=30°,∴∠EDC=60°,∴∠ADC=90°+50°=150°.②如图2中,过点C作CE⊥AD于E,同法可得∠D=30°,即∠D的度数是30°或150°,故答案为:150°或30°.分两种情形:①如图1中,过D作DE⊥BC于E,求出四边形ABED是矩形,根据矩形的性质得出∠ADE=90°,AB=DE=3,解直角三角形求出∠C,即可得出答案.②如图2中,过点C作CE⊥AD于E,同法可得∠D=30°.本题考查了矩形的性质和判定,直角梯形,解直角三角形等知识点,解此题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造直角三角形解决问题.18.【答案】(−8,−12)或(4,24)【解析】解:∵点A(−2,m)在一次函数y=3x+12的图象上,∴m=3×(−2)+12=6,∴A(−2,6),令y=0,则x=−4,∴B(−4,0),∵B、C两点关于y轴对称,∴C(4,0),∵△AC′B′为等腰直角三角形,且∠A=90°,∴∠ACB=45°=∠AC′B′,∴∠B′AC′=90,AB′=AC′,Ⅰ.当B在A下方时,作B′M⊥x轴,C′N⊥x轴,与过A点,且平行与x轴的直线交于M、N,∵∠B′AM+∠C′AN=90°=∠AB′M+∠B′AM,∴∠AB′M=∠C′AN,在△B′MA和△ANC′中{∠AB′M=∠C′AN∠AMB′=∠C′NA=90°AB′=C′A,∴△B′MA≌△ANC′(AAS),∴C′N=|y A|=6=AM,∴M(−8,6),将x=−8代入y=3x+12,得y=−12,∴B′(−8,−12);Ⅱ.当B在A上方时,此时,B′′与B′关于A点对称,∴B″(4,24).故答案为:(−8,−12)或(4,24).根据题意∠B′AC′=90,AB′=AC′,当B在A下方时,通过证得△B′MA≌△ANC′,求得M的坐标,把M的横坐标代入直线解析式即可求得B′的坐标;当B在A上方时,根据B′′与B′关于A点对称,即可求得B″的坐标.本题考查了一次函数图象上点的坐标特征,等腰直角三角形的性质,三角形全等的判定和性质,求得M点的坐标是解题的关键.19.【答案】解:整理得:3−x =√2x −3,两边平方得:9−6x +x 2=2x −3,(x −2)(x −6)=0,解得x =2或x =6.经检验x =2是原方程的解.【解析】本题考查无理方程的求法,注意无理方程需验根.整理后变形为3−x =√2x −3,两边平方,把无理方程转换为平时常见的方程的形式.20.【答案】解:二元二次方程组{x +2y =5(x −y)2=1⇒{x +2y =5x −y =1或{x +2y =5x −y =−1, ∴原方程组的解为{x 1=73y 1=43,{x 2=1y 2=2.【解析】先把x 2−2xy +y 2=1,化成(x −y)2=1,直接开平方得x −y =1或x−=−1,与原方程组组成二元一次方程组{x +2y =5x −y =1或{x +2y =5x −y =−1,求解二元一次方程组即可得出答案.本题主要考查了二元二次方程组的解,根据题意先把二次方程降次为一次方程,再组成二元一次方程组进行求解是解决本题的关键.21.【答案】a ⃗ +b ⃗ −a ⃗ +b ⃗ 10【解析】解:(1)∵四边形ABCD 是平行四边形,∴AD =BC ,AD//BC ,∴AD ⃗⃗⃗⃗⃗⃗ =BA ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗⃗ =a ⃗ +b ⃗ ,AC ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ =−a ⃗ +b ⃗ .故答案为:a ⃗ +b ⃗ ,−a ⃗ +b ⃗ .(2)如图,AC ⃗⃗⃗⃗⃗ +BD ⃗⃗⃗⃗⃗⃗ =2b ⃗ ,BE ⃗⃗⃗⃗⃗即为所求.(3)如图,连接AC ,BD 交于点O .∵四边形ABCD 是平行四边形,AC ⊥BD ,∴四边形ABCD 是菱形,∵AC =6,BD =6,∴CO =12AC =3.BO =12BD =4. ∴BC =√BO 2+CO 2=5=|b ⃗ |,∴|AC ⃗⃗⃗⃗⃗ +BD ⃗⃗⃗⃗⃗⃗ |=|2b ⃗ |=2⋅5=10.故答案为:10.(1)利用平行四边形的性质以及三角形法则求解即可.(2)连接AC ,BD ,作DE//AC 交BC 的延长线于E ,BE ⃗⃗⃗⃗⃗ 即为所求.(3)首先证明四边形ABCD 是菱形,求出|b ⃗ |=5,再根据(2)中结论解决问题即可. 本题考查作图−复杂作图,平行四边形的性质,平面向量等知识,解题的关键是熟练掌握三角形法则解决问题,属于中考常考题型.22.【答案】证明:(1)∵四边形ABCD 是平行四边形,∴AB =CD ,AB//CD ,∵AB =BE ,∴BE =CD ,且BE//CD ,∴四边形BECD 是平行四边形;(2)∵四边形ABCD 是平行四边形,∴AD//BC ,∴∠A =∠EBO ,∵∠COE =2∠A =2∠EBO ,∠COE =∠EBO +∠BEO ,∴∠EBO =∠BEO ,∴BO =EO ,由(1)得:四边形BECD 是平行四边形,∴BO =12BC ,EO =12ED ,∴BC =ED ,∴平行四边形BECD是矩形.【解析】(1)由平行四边形的性质得AB=CD,AB//CD,再由AB=BE.得BE=CD,且BE//CD,即可得出结论;(2)证BO=EO,中由平行四边形的性质得BO=12BC,EO=12ED,则BC=ED,即可得出结论.本题考查了矩形的判定、平行四边形的判定与性质、等腰三角形的判定等知识;熟练掌握矩形的判定和平行四边形的判定与性质,证出BO=EO是解题的关键.23.【答案】(1)证明:∵四边形ABCD是正方形,∴AD=CD,∠ADP=∠CDP,在△ADP和△CDP中,{AD=CD∠ADP=∠CDP DP=DP,∴△ADP≌△CDP(SAS),∴PA=PC,∵PA=PE,∴PC=PE.(2)作PM⊥AE于M,PN⊥CD于N,∵PD平分∠ADC,∴PM=PN,∵∠ADC=90°,∴PNDM是矩形,∠MPN=90°,在Rt△PME和Rt△PMC中,PC=PE,PM=PN,∴Rt△PME≌Rt△PNC(HL),∴∠MPE=∠NPC,∴∠MPN=∠MPE+∠NPE=∠NPC+∠NPE=∠EPC=90°.∴PC⊥PE.【解析】(1)欲证明PC=PE,只要证明△ADP≌△CDP即可.(2)作PM⊥AE,PN⊥CD,再证Rt△PME≌Rt△PNC,得∠MPE=∠NPC和∠MPN=∠MPE+∠NPE=∠NPC+∠NPE=∠EPC=90°,由此解答即可.本题考查正方形、全等三角形的判定和性质,勾股定理等知识,正确寻找全等三角形是解题的关键.24.【答案】解:设学生返回时步行的速度为x千米/时,则去时步行的速度为(x+1)千米/时,依题意得:6x −6x+1=12,整理得:x2+x−12=0,解得:x1=3,x2=−4,经检验,x1=3,x2=−4均为原方程的解,且x2=−4不符合题意,舍去.答:学生返回时步行的速度为3千米/时.【解析】设学生返回时步行的速度为x千米/时,则去时步行的速度为(x+1)千米/时,利用时间=路程÷速度,结合返回时比去时多用了半小时,即可得出关于x的分式方程,解之经检验后即可得出结论.本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.25.【答案】解:(1)∵点P(1,m)、Q(n,1)在反比例函数y=5x的图象上,∴1×m=n×1=5,∴m=n=5.∴P(1,5),Q(5,1),设直线PQ的解析式为y=kx+b,∴{k+b=55k+b=1,∴{k=−1b=6,∴直线PQ的解析式为y=−x+6;(2)由(1)知,直线PQ的解析式为y=−x+6,令x=0,则y=6,∴B(0,6),令y=0,则−x+6=0,∴x=6,∴A(6,0),∴点C在直线PQ上,∴设C(c,−c+6),∵AB=AC,∴√62+62=√(c−6)2+(c−6)2,c1=0(舍),c2=12,∴C(12,−6);(3)由(1)知,直线AB的解析式为y=−x+6,∵OD//BC,∴直线OD的解析式为y=−x,∴设D(d,−d),∵BO=CD,∴6=√(12−d)2+(−6+d)2,∴d1=12,d2=6,∴D1(12,−12),D2(6,−6).【解析】(1)将点P,Q坐标代入反比例函数解析式中求解,得出点P,Q的坐标,再用待定系数法即可得出结论;(2)先求出点A,B坐标,设出点C的坐标,利用两点间的距离公式用AB=AC建立方程求解,即可得出结论;(3)先求出OD的解析式,进而设出点D的坐标,利用两点间的距离公式用BO=CD建立方程求解,即可得出结论.此题是反比例函数综合题,主要考查了待定系数法,两点间的距离公式,平行线的性质,用方程的思想解决问题是解本题的关键.26.【答案】4【解析】解:∵四边形ABCD是菱形,∠BAD=60°,∠BAD=30°,∴∠DAC=∠BAC=12∵GE//AD,∴∠GEB=∠BAD=60°,∴∠EGA=∠GEB−∠BAC=30°,∴∠EGA=∠BAC=30°,∴GE=AE=2t,∵四边形EFHG是矩形,∴FH=GE=2t,AE=t,EF=√AE2−AF2=√3t,在Rt△AEF中,AF=12∴AH=AF+FH=3t,(1)点H与点D重合时,AH=AD,∴3t=8,∴t=8;3(2)①当H在边AD上,即0<t≤8时,如图:3矩形EFHG与菱形ABCD重叠部分图形的面积即是矩形EFHG的面积,∴S=EF⋅FH=√3t⋅2t=2√3t2,<t≤4时,设HG交CD于M,如图:②当H在边AD延长线上,即83在Rt △DHM 中,∠HDM =∠DAB =60°,DH =AH −AD =3t −8,∴DM =2DH =6t −16,HM =√DM 2−DH 2=3√3t −8√3, ∴S △DHM =12DH ⋅HM =9√32t 2−24√3t +32√3,∴矩形EFHG 与菱形ABCD 重叠部分图形的面积S =EF ⋅FH −S △DHM =2√3t 2−(9√32t 2−24√3t +32√3)=−52√3t 2+24√3t −32√3, 综上所述,矩形EFHG 与菱形ABCD 重叠部分图形的面积S ={2√3t 2(0<t ≤83)−52√3t 2+24√3t −32√3(83<t ≤4), (3)①当O′O//AD 时,如图:∵四边形EFHG 是矩形,∴O′是FG 的中点,∵O′O//AD ,∴O′O 是△AFG 的中位线,∴O 是AG 中点,∴OA =OG ,又∵O 是AC 中点,OA =OC ,∴G 与C 重合,此时,E 与B 重合,∴t =AE2=AB2=4;故答案为:4;②当OO′⊥AD 时,延长OO′交AD 于N ,如图:∵OO′⊥AD,∴OO′//GH,∵O′是FG的中点,∴O′N是△FGH的中位线,∴N是FH的中点,∵FH=2t,∴FN=HN=t,∴AN=AF+FN=2t,在Rt△AOB中,AB=8,∠OAB=30°,∴OB=4,OA=√AB2−OB2=4√3,在Rt△AON中,∠DAC=30°,∴ON=12OA=2√3,AN=√OA2−ON2=6,∴2t=6,∴t=3.由四边形ABCD是菱形,∠BAD=60°,可得GE=AE=2t,FH=GE=2t,AF=12AE= t,EF=√AE2−AF2=√3t,AH=AF+FH=3t,(1)点H与点D重合时,AH=AD,有3t=8,即得t=83;(2)①当H在边AD上,即0<t≤83时,S=EF⋅FH=√3t⋅2t=2√3t2,②当H在边AD延长线上,即83<t≤4时,设HG交CD于M,求出S△DHM=12DH⋅HM=9√32t2−24√3t+32√3,S=EF⋅FH−S△DHM即可得到答案;(3)①当O′O//AD时,证明O′O是△AFG的中位线,得O是AG中点,从而可得G与C重合,此时,E与B重合,解可得到t=AE2=AB2=4;②当OO′⊥AD时,延长OO′交AD于N,证明O′N是△FGH的中位线,从而可得AN=AF+ FN=2t,而在Rt△AON中,∠DAC=30°,AN=√OA2−ON2=6,故2t=6,即得t=3.本题考查菱形性质及应用、矩形的性质应用,涉及勾股定理、中位线定理等的应用,解题的关键是方程的思想的应用,用t表达出相关线段的长度,再列方程解决问题.。

上海市浦东新区2015-2016年八年级下期末数学试卷含答案解析

上海市浦东新区2015-2016年八年级下期末数学试卷含答案解析

2015-2016学年上海市浦东新区八年级(下)期末数学试卷一、选择题(本大题共6题,每题3分,满分18分)(每题只有一个选择正确1.下列直线中,与直线y=﹣3x+2平行的是()A.y=﹣2x+3 B.y=2x+2 C.y=﹣3x+3 D.y=3x﹣22.已知一次函数y=kx+b(k、b为常数)的图象如图所示,那么关于x的不等式kx+b>0的解集是()A.x>3 B.x>4 C.x<3 D.x<43.下列说法中,正确的是()A.方程=4的根是x=±16B.方程=﹣x的根是x1=0,x2=3C.方程+1=0没有实数根D.方程3﹣的根是x1=2,x2=64.如图,将一种正方形的纸片沿着过一边中点的虚线剪成形状分别为三角形和梯形的两部分,利用这两部分不能拼成的图形是()A.直角三角形B.平行四边形C.菱形 D.等腰梯形5.下列等式正确的是()A. +=+B.﹣=C. +﹣=D. ++=6.在平行四边形、矩形、菱形、等腰梯形这个四个图形中任选一个图形,那么下列事件是不可能事件的是()A.这个图形既是轴对称图形又是中心对称图形B.这个图形既不是轴对称图形又不是中心对称图形C.这个图形是轴对称图形D.这个图形是中心对称图形二、填空题(本大题共12题,每题3分,满分36分)7.一次函数y=2x﹣5的图象在y轴上的截距是______.8.已知一次函数y=kx+b的图象不经过第二象限,那么函数值y随自变量x的值增大而______(填“增大”或“减小”).9.如果关于x的方程(m+2)x=8无解,那么m的取值范围是______.10.方程x3﹣8=0的根是______.11.已知关于x的方程+=,如果设=y,那么原方程化为关于y的方程是______.12.某企业的年产值在三年内从1000万元增加到1331万元,如果这三年中每年的增长率相同,设为x,那么可以列出关于x的方程是______.13.如果多边形的每个外角都是40°,那么这个多边形的边数是______.14.已知点E、F、G、H分别是凸四边形ABCD各边AB、BC、CD、DA的中点,如果对角线AC=BD=4,那么四边形EFGH的周长是______.15.在梯形的一条底边长为5,中位线长为7,那么另一条底边的长为______.16.将几个全等的平行四边形和全等的菱形镶嵌成如图所示的图案,设菱形中较小的角为α度,平行四边形中较大的角为β度,那么β可以用含α的代数式表示为______.17.如图,平行四边形ABCD中,∠B=60°,AB=8cm,AD=10cm,点P在边BC上从B向C运动,点Q在边DA上从D向A运动,如果P,Q运动的速度都为每秒1cm,那么当运动时间t=______秒时,四边形ABPQ是直角梯形.18.已知边长为4的正方形ABCD,点E、F分别在CA、AC的延长线上,且∠BED=∠BFD=45°,那么四边形EBFD的面积是______.三、解答题(本题共4题,每题5分,满分20分)19.解方程组:.20.布袋里有一个红球两个黄球,它们除了颜色外其他都相同.(1)任意摸出一个球恰好是红球的概率是______;(2)摸出一个球再放回袋中,搅匀后再摸出一个球,请利用树形图求事件“摸到一红一黄两球”的概率P.21.已知弹簧在一定限度内,它的长度y(厘米)与所挂重物质量x(千克)是一次函数关系.表中记录的是两次挂不同重量重物的质量(在弹性限度内)与相对应的弹簧长度.所挂重物质量x(千克) 2.5 5弹簧长度y(厘米)7.5 9求不挂重物时弹簧的长度.22.如图,点E在平行四边形ABCD的对角线BD的延长线上.(1)填空: +=______.﹣=______;(2)求作: +(不写作法,保留作图痕迹,写出结果)四、解答题(本题共3题,第23题7分,第24题9分,第25题10分,满分26分)23.如图,已知矩形ABCD中,点E是CD边上的一点,连结BE,过点A作AF⊥BE.垂足为点F,且AF=BE,过点F作MN∥BC,与AB、CD边分别交于点M、N,求证:四边形AMND为正方形.24.已知:如图,平面直角坐标系中有一个等腰梯形ABCD,且AD∥BC,AB=CD,点A 在y轴正半轴上,点B、C在x轴上(点B在点C的左侧),点D在第一象限,AD=3,BC=11,梯形的高为2,双曲线y=经过点D,直线y=kx+b经过A、B两点.(1)求点A、B、C、D的坐标;(2)求双曲线y=和直线y=kx+b的解析式;(3)点M在双曲线上,点N在y轴上,如果四边形ABMN是平行四边形,求点N的坐标.25.已知:如图,在矩形ABCD中,AB=2,BC=5,点P是边AD上一点,连接CP,将四边形ABCP沿CP所在直线翻折,落在四边形EFCP的位置,点A、B的对应点分别为点E,F,边CF与边AD的交点为点G.(1)当AP=2时,求PG的值;(2)如果AP=x,FG=y,求y关于x的函数解析式,并写出它的定义域;(3)连结BP并延长与线段CF交于点M,当△PGM是以MG为腰的等腰三角形时,求AP的长.2015-2016学年上海市浦东新区八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共6题,每题3分,满分18分)(每题只有一个选择正确1.下列直线中,与直线y=﹣3x+2平行的是()A.y=﹣2x+3 B.y=2x+2 C.y=﹣3x+3 D.y=3x﹣2【考点】两条直线相交或平行问题.【分析】根据两直线平行k相同即可解决.【解答】解:根据两直线平行k相同,∵直线y=﹣3x+2,∴k=﹣3,故选C.2.已知一次函数y=kx+b(k、b为常数)的图象如图所示,那么关于x的不等式kx+b>0的解集是()A.x>3 B.x>4 C.x<3 D.x<4【考点】一次函数与一元一次不等式.【分析】从图象上得到函数的增减性及与x轴的交点的横坐标,即能求得不等式kx+b>0的解集.【解答】解:函数y=kx+b的图象经过点(4,0),并且函数值y随x的增大而减小,所以当x<4时,函数值大于0,即关于x的不等式kx+b>0的解集是x<4.故选D.3.下列说法中,正确的是()A.方程=4的根是x=±16B.方程=﹣x的根是x1=0,x2=3C.方程+1=0没有实数根D.方程3﹣的根是x1=2,x2=6【考点】无理方程.【分析】根据各个选项,错误的选项说明错在哪,正确的选项进行说明,即可判断出哪个选项是正确的.【解答】解:当x=﹣16时,没有意义,故选项A错误;当x=3时,==3,而﹣x=﹣3,3≠﹣3,故选项B错误;∵≥0,则+1≥1,故选项C正确;3﹣不是方程,故选项D错误.故选C.4.如图,将一种正方形的纸片沿着过一边中点的虚线剪成形状分别为三角形和梯形的两部分,利用这两部分不能拼成的图形是()A.直角三角形B.平行四边形C.菱形 D.等腰梯形【考点】图形的剪拼.【分析】将剪开的△ABE绕E点旋转180°,EC与EB重合,得到直角三角形;把△ABE平移,使AB与DC重合,则得到平行四边形;把△ABE的顶点E与C重合,B与D重合,与四边形AECD不重叠拼在一起,组成等腰梯形;不能得到菱形;即可得出结论.【解答】解:将△ABE绕E点旋转180°,EC与EB重合,得到直角三角形,故选项A正确;把△ABE平移,使AB与DC重合,则得到平行四边形,故选项B正确;把△ABE的顶点E与C重合,B与D重合,与四边形AECD不重叠拼在一起,组成等腰梯形,故选项D正确;不能得到菱形,故选项C错误.故选C.5.下列等式正确的是()A. +=+B.﹣=C. +﹣=D. ++=【考点】*平面向量.【分析】直接利用三角形法则求解即可求得答案.注意掌握排除法在选择题中的应用.【解答】解:A、∵+=, +=,∴+=﹣(+);故本选项错误;B、+=;故本选项错误;C、∵+=,∴+﹣=;故本选项正确;D、∵+=,∴++=+=;故本选项错误.故选C.6.在平行四边形、矩形、菱形、等腰梯形这个四个图形中任选一个图形,那么下列事件是不可能事件的是()A.这个图形既是轴对称图形又是中心对称图形B.这个图形既不是轴对称图形又不是中心对称图形C.这个图形是轴对称图形D.这个图形是中心对称图形【考点】随机事件.【分析】根据确定事件的定义,结合轴对称以及中心对称的定义即可判断.【解答】解:A、4个图形中有3个是轴对称图形,有3个是中心对称图形,所以任选一个图形既是轴对称图形又是中心对称图形,可能发生,也可能不发生,是随机事件;B、一定不会发生,是不可能事件;C、4个图形中有3个是轴对称图形,所以任选一个图形是轴对称图形,可能发生,也可能不发生,是随机事件;D、4个图形中有3个是中心对称图形,所以任选一个图形是中心对称图形,可能发生,也可能不发生,是随机事件.故选B.二、填空题(本大题共12题,每题3分,满分36分)7.一次函数y=2x﹣5的图象在y轴上的截距是﹣5.【考点】一次函数图象上点的坐标特征.【分析】令x=0,则y=﹣5,即一次函数与y轴交点为(0,﹣5),即可得出答案.【解答】解:由y=2x﹣5,令x=0,则y=﹣5,即一次函数与y轴交点为(0,﹣5),∴一次函数在y轴上的截距为:﹣5.故答案为:﹣5.8.已知一次函数y=kx+b的图象不经过第二象限,那么函数值y随自变量x的值增大而增大(填“增大”或“减小”).【考点】一次函数图象与系数的关系.【分析】直接根据一次函数的图象与系数的关系即可得出结论.【解答】解:∵一次函数y=kx+b的图象不经过第二象限,∴k>0,b<0.所以函数值y随自变量x的值增大而增大,故答案为:增大;9.如果关于x的方程(m+2)x=8无解,那么m的取值范围是m=﹣2.【考点】一元一次方程的解.【分析】根据一元一次方程无解,则m+2=0,即可解答.【解答】解∵关于x的方程(m+2)x=8无解,∴m+2=0,∴m=﹣2,故答案为:m=﹣2.10.方程x3﹣8=0的根是x=2.【考点】立方根.【分析】首先整理方程得出x3=8,进而利用立方根的性质求出x的值.【解答】解:x3﹣8=0,x3=8,解得:x=2.故答案为:x=2.11.已知关于x的方程+=,如果设=y,那么原方程化为关于y的方程是3y+=.【考点】换元法解分式方程.【分析】先根据=y得到,再代入原方程进行换元即可.【解答】解:由=y,可得∴原方程化为3y+=故答案为:3y+=12.某企业的年产值在三年内从1000万元增加到1331万元,如果这三年中每年的增长率相同,设为x,那么可以列出关于x的方程是1000(1+x)2=1331.【考点】由实际问题抽象出一元二次方程.【分析】根据某企业的年产值在三年内从1000万元增加到1331万元,这三年中每年的增长率相同,设为x,可知第一年为1000万,第三年为1331万,从而可以列出相应的方程.【解答】解:∵某企业的年产值在三年内从1000万元增加到1331万元,这三年中每年的增长率相同,设为x,∴1000(1+x)2=1331,故答案为:1000(1+x)2=1331.13.如果多边形的每个外角都是40°,那么这个多边形的边数是9.【考点】多边形内角与外角.【分析】根据多边形的外角和是360度即可求得外角的个数,即多边形的边数.【解答】解:多边形的边数是:=9,故答案为:9.14.已知点E、F、G、H分别是凸四边形ABCD各边AB、BC、CD、DA的中点,如果对角线AC=BD=4,那么四边形EFGH的周长是8.【考点】中点四边形.【分析】根据三角形中位线定理分别求出EF+FG+GH+HE的长,根据四边形的周长公式计算即可.【解答】解:∵E、F、G、H分别是AB、BC、CD、DA的中点,∴EF、FG、GH、HF分别是△ABC、△BCD、△CDA、△DAB的中位线,∴EF=AC=2,FG=BD=2,GH=AC=2,HE=BD=2,∴四边形EFGH的周长=EF+FG+GH+HE=8.故答案为:8.15.在梯形的一条底边长为5,中位线长为7,那么另一条底边的长为9.【考点】梯形中位线定理.【分析】此题只需根据梯形的中位线等于梯形两底和的一半进行计算即可.【解答】解:设另一条底边为x,则5+x=2×7,解得x=9.即另一条底边的长为9.故答案为:9.16.将几个全等的平行四边形和全等的菱形镶嵌成如图所示的图案,设菱形中较小的角为α度,平行四边形中较大的角为β度,那么β可以用含α的代数式表示为β=.【考点】菱形的性质;平行四边形的性质.【分析】由将几个全等的平行四边形和全等的菱形镶嵌成如图所示的图案,可求得∠1与∠2的度数,再利用周角的定义,即可求得答案.【解答】解:如图,∵是几个全等的平行四边形和全等的菱形镶嵌而成,∴∠2=α°,∠1=180°﹣β°,∵2∠2+4∠1=360°,∴2α+4=360,∴β=.故答案为:β=.17.如图,平行四边形ABCD中,∠B=60°,AB=8cm,AD=10cm,点P在边BC上从B向C运动,点Q在边DA上从D向A运动,如果P,Q运动的速度都为每秒1cm,那么当运动时间t=7秒时,四边形ABPQ是直角梯形.【考点】直角梯形;平行四边形的性质.【分析】过点A作AE⊥BC于E,因为AD∥BC,所以当AE∥QP时,则四边形ABPQ是直角梯形,利用已知条件和路程与速度的关系式即可求出时间t的值.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,过点A作AE⊥BC于E,∴当AE∥QP时,则四边形ABPQ是直角梯形,∵∠B=60°,AB=8cm,∴BE=4cm,∵P,Q运动的速度都为每秒1cm,∴AQ=10﹣t,AP=t,∵BE=4,∴EP=t﹣4,∵AE⊥BC,AQ∥EP,AE∥QP,∴QP⊥BC,AQ⊥AD,∴四边形AEPQ是矩形,∴AQ=EP,即10﹣t=t﹣4,解得t=7,故答案为:7.18.已知边长为4的正方形ABCD,点E、F分别在CA、AC的延长线上,且∠BED=∠BFD=45°,那么四边形EBFD的面积是16+16.【考点】正方形的性质.【分析】连接BD交AC于O,首先证明四边形EBFD是菱形,根据菱形的面积等于对角线乘积的一半即可解决问题.【解答】解:如图连接BD交AC于O.∵四边形ABCD是正方形,∴AB=BC=CD=AD=4,∠CAD=∠CAB=45°,∴∠EAD=∠EAB=135°,在△EAB和△EAD中,,∴△EAB≌△EAD,∴∠AEB=∠AED=22.5°,EB=ED,∴∠ADE=180°﹣∠EAD﹣∠AED=22.5°,∴∠AED=∠ADE=22.5°,∴AE=AD=4,同理证明∠DFC=22.5°,FD=FB,∴∠DEF=∠DFE,∴DE=DF,∴ED=EB=FB=FD,∴四边形EBFD的面积=•BD•EF=×4((4+8)=16+16.故答案为16+16.三、解答题(本题共4题,每题5分,满分20分)19.解方程组:.【考点】高次方程.【分析】先由②得x+y=0或x﹣2y=0,再把原方程组可变形为:或,然后解这两个方程组即可.【解答】解:,由②得:(x+y)(x﹣2y)=0,x+y=0或x﹣2y=0,原方程组可变形为:或,解得:,.20.布袋里有一个红球两个黄球,它们除了颜色外其他都相同.(1)任意摸出一个球恰好是红球的概率是;(2)摸出一个球再放回袋中,搅匀后再摸出一个球,请利用树形图求事件“摸到一红一黄两球”的概率P.【考点】列表法与树状图法.【分析】(1)根据题意可得到任意摸出一个球恰好是红球的概率;(2)根据题意可以画出树状图,从而可以求出∴“摸到一红一黄两球”的概率.【解答】解:(1)由题意可得,任意摸出一个球恰好是红球的概率是,故答案为:;(2)由题意可得,∴“摸到一红一黄两球”的概率P=.21.已知弹簧在一定限度内,它的长度y(厘米)与所挂重物质量x(千克)是一次函数关系.表中记录的是两次挂不同重量重物的质量(在弹性限度内)与相对应的弹簧长度.所挂重物质量x(千克) 2.5 5弹簧长度y(厘米)7.5 9求不挂重物时弹簧的长度.【考点】一次函数的应用.【分析】弹簧总长y=挂上xkg的重物时弹簧伸长的长度+弹簧原来的长度,把相关数值代入即可.【解答】解:设长度y(厘米)与所挂重物质量x(千克)的一次函数关系式是:y=kx+b(k ≠0)将表格中数据分别代入为:,解得:,∴y=x+6,当x=0时,y=6.答:不挂重物时弹簧的长度为6厘米.22.如图,点E在平行四边形ABCD的对角线BD的延长线上.(1)填空: +=.﹣=;(2)求作: +(不写作法,保留作图痕迹,写出结果)【考点】*平面向量;平行四边形的性质.【分析】(1)根据向量的平行四边形法则写出+即可,根据平行四边形的对边平行且相等可得=,然后根据向量的三角形法则求解即可;(2)根据平行四边形的对边平行且相等可得=,然后根据向量的平行四边形法则作出以DC、DE为邻边的平行四边形,其对角线即为所求.【解答】解:(1)+=,∵=,∴﹣=﹣=;故答案为:;.(2)如图,即为所求+.四、解答题(本题共3题,第23题7分,第24题9分,第25题10分,满分26分)23.如图,已知矩形ABCD中,点E是CD边上的一点,连结BE,过点A作AF⊥BE.垂足为点F,且AF=BE,过点F作MN∥BC,与AB、CD边分别交于点M、N,求证:四边形AMND为正方形.【考点】正方形的判定;矩形的性质.【分析】由四边形ABCD是矩形,得到两组对边平行,四个角为直角,对角线相等,根据MN与BC平行,得到MN与AD平行,可得出四边形AMND是平行四边形,由一个角为直角的平行四边形是矩形得到AMND是矩形,得到∠AMN=90°,根据AF与BE垂直,得到一对直角相等,利用AAS得到三角形AFM与三角形BEC全等,利用全等三角形对应边相等得到AM=BC,根据AD=BC,得到AM=AD,利用邻边相等的矩形是正方形即可得证.【解答】证明:∵四边形ABCD是矩形,∴AD∥BC,AB∥CD,∠BAD=∠C=∠ABC=90°,BC=AD,∵MN∥BC,∴MN∥AD,又∵AB∥CD,∴四边形AMND是平行四边形,又∵∠BAD=90°,∴四边形AMND是矩形,∴∠AMN=90°,∵AF⊥BE,∴∠AFB=90°,∵∠AFB+∠ABF+∠BAF=180°,∴∠ABF+∠BAF=90°,又∵∠ABC=∠ABF+∠EBC=90°,∴∠BAF=∠EBC,在△AFM和△BEC中,,∴△AFM≌△BEC(AAS),∴AM=BC,又∵AD=BC,∴AM=AD,又∵四边形AMND是矩形,∴四边形AMND是正方形.24.已知:如图,平面直角坐标系中有一个等腰梯形ABCD,且AD∥BC,AB=CD,点A 在y轴正半轴上,点B、C在x轴上(点B在点C的左侧),点D在第一象限,AD=3,BC=11,梯形的高为2,双曲线y=经过点D,直线y=kx+b经过A、B两点.(1)求点A、B、C、D的坐标;(2)求双曲线y=和直线y=kx+b的解析式;(3)点M在双曲线上,点N在y轴上,如果四边形ABMN是平行四边形,求点N的坐标.【考点】反比例函数综合题.【分析】(1)首先过点D作DH⊥x轴于点H,由AD∥BC,AB=CD,易得四边形AOHD 是矩形,证得Rt△ABO≌Rt△DCH,又由AD=3,BC=11,梯形的高为2,即可求得答案;(2)由双曲线y=过点D,直线y=kx+b过点A,B,直接利用待定系数法求解即可求得答案;(3)由四边形ABMN是平行四边形,可得点M的横坐标为﹣4,继而求得点M的坐标,又由AN=BM,求得答案.【解答】解:(1)如图1,过点D作DH⊥x轴于点H.∵AD∥BC,AB=CD,∴四边形ABCD是等腰梯形,∵AO⊥x轴,∴四边形AOHD是矩形,∴AO=DH,AD=OH,∠AOB=∠DHC=90°,在Rt△ABO和Rt△DCH中,,∴Rt△ABO≌Rt△DCH(HL).∴BO=CH,∵梯形的高为2,∴AO=DH=2.∵AD=3,BC=11,∴BO=4,OC=7.∴A(0,2),B(﹣4,0),C(7,0),D(3,2);(2)∵双曲线y=经过点D(3,2),∴m=xy=6.∴双曲线的解析式为:y=,∵直线y=kx+b经过A(0,2)、B(﹣4,0)两点,得:,∴解得:.∴直线的解析式为:y=x+2;(3)如图2,∵四边形ABMN是平行四边形.∴BM∥AN且BM=AN.∵点N在y轴上,∴过点B作x轴的垂线与双曲线y=的交点即为点M.∴点M的坐标为M(﹣4,﹣),∴BM=.∴AN=BM=,∴ON=OA﹣AN=,∴点N的坐标为N(0,).25.已知:如图,在矩形ABCD中,AB=2,BC=5,点P是边AD上一点,连接CP,将四边形ABCP沿CP所在直线翻折,落在四边形EFCP的位置,点A、B的对应点分别为点E,F,边CF与边AD的交点为点G.(1)当AP=2时,求PG的值;(2)如果AP=x,FG=y,求y关于x的函数解析式,并写出它的定义域;(3)连结BP并延长与线段CF交于点M,当△PGM是以MG为腰的等腰三角形时,求AP的长.【考点】四边形综合题.【分析】(1)设PG=a,则在RT△DGC中,CG=a,DG=3﹣a,CD=2,利用勾股定理即可解决问题.(2)在RT△DGC中,CD2+DG2=CG2,得到(y﹣x)2+22=(5﹣y)2,由此即可解决问题.(3)如图1中,分两种情形讨论即可,①MG=MP,只要证明△APB≌△DGC,得到AP=DG,列出方程即可,②MG=PG,只要证明△ABP,△DPC,△BPC均为直角三角形,根据AP2+AB2+DP2+CD2=BC2,列出方程即可.【解答】(1)由题意得:四边形ABCP与四边形EFCP全等.∴∠BCP=∠FCP.∵四边形ABCD是矩形,∴AD∥BC,∴∠BCP=∠DPC,∴∠DCP=∠FCP,∴PG=CG,设PG=a,则在RT△DGC中,CG=a,DG=3﹣a,CD=2,且CD2+DG2=CG2,∴22+(3﹣a)2=a2,解得:a=,即PG=.(2)由题意得:CF=BC=5,∴CG=5﹣y,∴PG=5﹣y,∴DG=5﹣(5﹣y)﹣x=y﹣x,∵在RT△DGC中,CD2+DG2=CG2,∴(y﹣x)2+22=(5﹣y)2,∴y=,∴y关于x的函数解析式为:y=,(0≤x≤3)(3)∵△PGM是以MG为腰的等腰三角形,∴MG=MP或MG=PG,如图1中,①当MG=MP时,∵∠MPG=∠MGC,∵∠APB=∠MPG,∠MGP=∠DGC,∴∠APB=∠DGC,在△APB和△DGC中,,∴△APB≌△DGC,∴AP=DG,∴y=2x,∴=2x,化简整理得:3x2﹣20x+21=0,解得:x=,∵x=>3不符合题意舍去,∴x=.②当MG=PG时,∵∠MPG=∠PMG,∵∠MPG=∠MBC,∴∠MBC=∠PMC,∴CM=CB,(即点M与点F重合).又∵∠BCP=∠MCP,∴CP⊥BP,∴△ABP,△DPC,△BPC均为直角三角形.∴AP2+AB2+DP2+CD2=BC2,即x2+22+(5﹣x)2+22=52,化简整理得:x2﹣5x+4=0,解得:x=1或4.∵x=4>3不符合题意舍弃,∴x=1.综上所述:当△PGM是以MG腰的等腰三角形时,AP=或1.2016年9月25日。

2020届上海市浦东新区八年级下期末数学试题(有答案)(加精)

2020届上海市浦东新区八年级下期末数学试题(有答案)(加精)

上海市浦东新区八年级(下)期末考试数 学 试 卷一、选择题(本大题共4小题,共12.0分)1. 在下列方程中,分式方程是( ) A. x 2=1B. √x 2=1C. 2x =1D. √x =1 2. 函数y =-x -3的图象不经过( ) A. 第一象限 B. 第二象限C. 第三象限D. 第四象限 3. 在下列事件中,确定事件共有( )①买一张体育彩票中大奖;②抛掷一枚硬币,落地后正面朝上;③在只装有2只红球、3只黄球的袋子中,摸出1只白球;④初二(1)班共有37名学生,至少有3名学生的生日在同一个月.A. 1个B. 2个C. 3个D. 4个4. 在四边形ABCD 中,对角线AC 和BD 相交于点O ,AB =CD ,添加下列条件后能判定这个四边形是平行四边形的是( )A. AD//BCB. AO =COC. ∠ABC =∠ADCD. ∠BAC =∠DCA 二、填空题(本大题共14小题,共28.0分)5. 方程2x 3+54=0的解是______.6. 方程√x +2=x 的解是x =______.7. 如果{y =−1x=2是方程mx 2+y 2=xy 的一个解,那么m =______.8. 当k =______时,方程kx +4=3-2x 无解.9. 当m =______时,函数y =(m -1)x +m 是常值函数.10. 已知一次函数y =kx +b 的图象经过第一象限,且它的截距为-5,那么函数值y 随自变量x 值的增大而______.11. 已知一次函数y =2x +5,当函数值y <0时,自变量x 值的取值范围是______.12. 已知一辆匀速行驶汽车的路程S(千米)与时间t (时)的函数关系如图所示,那么这辆汽车的速度是每小时______千米.13. 若一个多边形的内角和等于外角和,那么这个多边形的边数是______.14. 已知菱形一组对角的和为240°,较短的一条对角线的长度为4厘米,那么这个菱形的面积为______平方厘米.15. 已知在等腰梯形ABCD 中,AD ∥BC ,AB =13厘米,AD =4厘米,高AH =12厘米,那么这个梯形的中位线长等于______厘米.16. 从0,1,2,3四个数字中任取三个数字组成没有重复数字的三位数,那么组成的三位数是奇数的概率是______.17. 如图,已知在矩形ABCD 中,AB =√2,BC =2,将这个矩形沿直线BE折叠,使点C 落在边AD 上的点F 处,折痕BE 交边CD 于点E ,那么∠DCF等于______度.18. 已知在平面直角坐标系xOy 中,直线y =-12x +4与x 轴交于点A 、与y 轴交于点B ,四边形AOBC 是梯形,且对角线AB 平分∠CAO ,那么点C 的坐标为______.三、计算题(本大题共1小题,共6.0分)19. 解方程:7x x 2−5x−6=1x+1+2.四、解答题(本大题共7小题,共54.0分)20. 解方程组:{x 2+xy −2y 2=0x+3y=8.21. 已知直线y =kx +b 与直线y =-13x +k 都经过点A (6,-1),求这两条直线与x 轴所围成的三角形面积.22. 已知:如图,在平行四边形ABCD 中,E 、F 分别是对角线BD 上的两点,且BE =DF ,AB ⃗⃗⃗⃗⃗ =a⃗ ,BC ⃗⃗⃗⃗⃗ =b ⃗ ,AF⃗⃗⃗⃗⃗ =c ⃗ . (1)用向量a ⃗ 、b ⃗ 、c⃗ 表示下列向量:向量CE ⃗⃗⃗⃗⃗ =______,向量BD ⃗⃗⃗⃗⃗⃗ =______,向量DE ⃗⃗⃗⃗⃗⃗ =______; (2)求作:b ⃗ +c ⃗ .23. 已知:如图,在Rt △ABC 中,∠C =90°,CD 平分∠ACB ,AD ⊥CD ,垂足为点D ,M 是边AB 的中点,AB =20,AC =10,求线段DM的长.24.已知:如图,在等边三角形ABC中,过边AB上一点D作DE⊥BC,垂足为点E,过边AC上一点G作GF⊥BC,垂足为点F,BE=CF,联结DG.(1)求证:四边形DEFG是平行四边形;(2)连接AF,当∠BAF=3∠FAC时,求证:四边形DEFG是正方形.25.从甲地到乙地有两条公路:一条是全长400千米的普通公路,一条是全长360千米的高速公路.某客车在高速公路上行驶的平均速度比在普通公路上行驶的平均速度快50千米/时,从甲地到乙地由高速公路上行驶所需的时间比普通公路上行驶所需的时间少6小时.求该客车在高速公路上行驶的平均速度.26.如图,已知在梯形ABCD中,AD∥BC,P是下底BC上一动点(点P与点B不重合),AB=AD=10,BC=24,∠C=45°,45°<∠B<90°,设BP=x,四边形APCD的面积为y.(1)求y关于x的函数解析式,并写出它的定义域;(2)联结PD,当△APD是以AD为腰的等腰三角形时,求四边形APCD的面积.答案和解析1.【答案】C【解析】解:A、该方程是整式方程,故本选项错误;B、该方程是无理方程,故本选项错误;C、该方程符合分式方程的定义,故本选项正确;D、该方程属于无理方程,故本选项错误;故选:C.根据分式方程的定义:分母里含有字母的方程叫做分式方程进行判断.本题考查了分式方程的定义.判断一个方程是否为分式方程,主要是依据分式方程的定义,也就是看分母中是否含有未知数(注意:仅仅是字母不行,必须是表示未知数的字母).2.【答案】A【解析】解:∵k=-1<0,∴一次函数经过二四象限;∵b=-3<0,∴一次函数又经过第三象限,∴一次函数y=-x-3的图象不经过第一象限,故选:A.根据比例系数得到相应的象限,进而根据常数得到另一象限,判断即可.此题考查一次函数的性质,用到的知识点为:k<0,函数图象经过二四象限,b<0,函数图象经过第三象限.3.【答案】B【解析】解:①买一张体育彩票中大奖,是随机事件,故此选项错误;②抛掷一枚硬币,落地后正面朝上,是随机事件,故此选项错误;③在只装有2只红球、3只黄球的袋子中,摸出1只白球,是不可能事件,属于确定事件;④初二(1)班共有37名学生,至少有3名学生的生日在同一个月,是必然事件,属于确定事件.故选:B.直接利用随机事件以及确定事件的定义分别分析得出答案.此题主要考查了随机事件以及确定事件的定义,正确把握相关定义是解题关键.4.【答案】D【解析】解:A、不能判断四边形是平行四边形,四边形可能是等腰梯形,故本选项不符合题意;B、无法判定四边形是平行四边形,故本选项不符合题意;C、无法判定四边形是平行四边形,故本选项不符合题意;D、由∠BAC=∠DCA推出AB∥CD,结合AB=CD,可以推出四边形是平行四边形;故选:D.根据四边形的判定方法即可解决问题;本题考查平行四边形的判定,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.5.【答案】x=-3【解析】解:方程整理得:x3=-27,开立方得:x=-3.故答案为:x=-3.方程整理后,利用立方根定义求出解即可.此题考查了立方根,熟练掌握立方根的定义是解本题的关键.6.【答案】2【解析】解:原方程变形为:x+2=x2即x2-x-2=0∴(x-2)(x+1)=0∴x=2或x=-1∵x=-1时不满足题意.∴x=2.故答案为:2.本题含根号,计算比较不便,因此可先对方程两边平方,得到x+2=x2,再对方程进行因式分解即可解出本题.本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的提点灵活选用合适的方法.本题运用的是因式分解法和平方法.7.【答案】-34【解析】解:把方程的解代入方程mx2+y2=xy,可得4m+1=-2,∴4m=-3,解得m=-,故答案为:-.依据方程的解概念,将方程的解代入方程进行计算,即可得到m的值.本题考查了二元一次方程的解,方程的解就是满足方程的未知数的值,把解代入方程即可.8.【答案】-2【解析】解:∵kx+4=3-2x,∴(k+2)x=-1,∴k+2=0时,方程kx+4=3-2x无解,解得k=-2.故答案为:-2.方程kx+4=3-2x无解时,x的系数是0,据此求解即可.此题主要考查了一元一次方程的解,要熟练掌握,解答此题的关键是要明确:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.9.【答案】1【解析】解:当m-1=0时,函数y=(m-1)x+m是常值函数,故m=1时,y=1.故答案为:1.直接利用常值函数的定义分析得出答案.此题主要考查了函数的概念,正确把握函数的定义是解题关键.10.【答案】增大【解析】解:∵一次函数y=kx+b的图象经过第一象限,且它的截距为-5,∴一次函数y=kx+b的图象经过第一、三、四象限,即一次函数y=kx+b的图象不经过第二象限,∴k>0,b<0.所以函数值y随自变量x的值增大而增大,故答案为:增大;直接根据一次函数的图象与系数的关系即可得出结论.本题考查的是一次函数的图象与系数的关系,熟知一次函数y=kx+b(k≠0)中,当k>0,b<0时,函数的图象在第一、三、四象限是解答此题的关键.11.【答案】x<-52【解析】解:∵一次函数y=2x+5中y<0,∴2x+5<0,解得x<-.故答案为:x<-.根据题意列出关于x的不等式,求出x的取值范围即可.本题考查的是一次函数的性质,熟知一次函数的增减性是解答此题的关键.12.【答案】48【解析】解:这辆汽车的速度是km/h,故答案为:48根据图象得出汽车的速度即可.此题考查函数图象,关键是根据图象得出汽车的路程和时间.13.【答案】4【解析】解:设多边形的边数为n,则(n-2)×180°=360°,解得:n=4,故答案为:4.设多边形的边数为n,根据题意得出方程(n-2)×180°=360°,求出即可.本题考查了多边形的内角和和外角和定理,能根据题意列出方程是解此题的关键.14.【答案】8√3【解析】解:如图,∵四边形ABCD是菱形,∠BAD+∠BCD=240°,∴∠BAD=∠BCD=120°,∠ABC=∠ADC=60°∵AB=BC=AD=DC,∴△ABC,△ADC是等边三角形,∴AB=BC=AC=4,∴S菱形ABCD=2•S△ABC=2××42=8,故答案为8.只要证明△ABC,△ADC是等边三角形即可解决问题;本题考查菱形的性质、等边三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.15.【答案】9【解析】解:过D作DM⊥BC于M,∵AH⊥BC,∴AH∥DM,∠AHM=90°,∵AD∥BC,∴四边形AHDM是矩形,∴AH=DM=12厘米,AD=HM=4厘米,由勾股定理得:BH===5(厘米),同理CM=5(厘米),∴BC=BH+HM+CM=14厘米,∴梯形ABCD的中位线长是=9(厘米),故答案为:9.过D作DM⊥BC于M,得出四边形AHDM是矩形,求出HM,根据勾股定理求出BH、CM,求出BC,根据梯形的中位线求出即可.本题考查了勾股定理和矩形的性质和判定、等腰梯形的性质、梯形的中位线等知识点,能正确作出辅助线是解此题的关键.16.【答案】49【解析】解:如图所示:,由树状图可得一共有18中组合,符合题意的有8种,故组成的三位数是奇数的概率是:=.故答案为:.根据题意画出树状图,再利用概率公式求出答案.此题主要考查了树状图法求概率,正确画出树状图是解题关键.17.【答案】22.5【解析】解:由折叠可得:BF=BC,∵BC=,∴BF=,∵四边形ABCD为矩形,∴∠A=90°,在Rt△BAF中,AF===,∴AB=AF,∴∠ABF=∠AFB=45°,∴∠FBC=90°-∠ABF=45°,∵在△CBF中,BF=BC,∠FBC=45°,∴∠BCF=∠BFC=(180°-∠CBF)÷2=67.5°,∴∠DCF=90°-∠BCF=90°-67.5°=22.5°,故答案为:22.5°.由翻折得到BF=BC,先根据勾股定理求出AF,得到△BAF为等腰直角三角形,所以∠ABF=∠AFB=45°,进而求出∠FBC=90°-∠ABF=45°,再根据△CBF为等腰三角形,得到∠BCF=∠BFC=(180°-∠CBF)÷2=67.5°,进而求出∠DCF=90°-∠BCF=90°-67.5°=22.5°.本题考查了翻折问题,解决本题的关键是由翻折得到BF=BC.18.【答案】(5,4)【解析】解:∵y=-x+4,∴y=0时,-x+4=0,解得x=8,∴A(8,0),x=0时,y=4,∴B(0,4).如图,四边形AOBC是梯形,且对角线AB平分∠CAO,∴BC∥OA,∠OAB=∠CAB,∴∠ABC=∠OAB,∴∠ABC=∠CAB,∴AC=BC.设点C的坐标为(x,4),则(x-8)2+42=x2,解得x=5,∴点C的坐标为(5,4).故答案为(5,4).求出A、B两点的坐标,发现OA≠OB,∠OAB≠∠OBA,所以四边形AOBC是梯形,且对角线AB 平分∠CAO时只能BC∥OA,利用平行线的性质以及角平分线定义得出∠ABC=∠CAB,那么AC=BC.设点C的坐标为(x,4),列出方程(x-8)2+42=x2,求解即可.本题考查了一次函数图象上点的坐标特征,平行线的性质,等腰三角形的判定,两点间的距离公式,得出AC=BC是解题的关键.19.【答案】解:去分母得:7x=x-6+2(x-6)(x+1),整理得:x2-8x-9=0,解得:x1=9,x2=-1,经检验x=9是分式方程的解,x=-1是增根,则原方程的解为x=9.【解析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.20.【答案】解:∵x 2+xy -2y 2=(x +2y )(x -y ),∴原方程组可化为:{x +2y =0x+3y=8或{x −y =0x+3y=8,解这两个方程组得原方程组的解为:{y =8x=−16或{y =2x=2.【解析】因式分解得出x 2+xy-2y 2=(x+2y )(x-y ),再化为两个方程组解答即可.本题主要考查解高次方程的能力,解题的关键是熟练掌握加减消元法和整体代入的思想. 21.【答案】解:∵直线y =kx +b 与直线y =-13x +k 都经过点A (6,-1),∴{−1=−2+k −1=6k+b ,解得{b =−7k=1,∴两条直线的解析式分别为y =x -7和y =-13x +1,∴直线y =x -7与x 轴交于点B (7,0),直线y =-13x +1与x 轴交于点C (3,0),∴S △ABC =12×4×1=2, 即这两条直线与x 轴所围成的三角形面积为2.【解析】依据直线y=kx+b 与直线y=-x+k 都经过点A (6,-1),即可得到两条直线的解析式分别为y=x-7和y=-x+1,进而得出直线y=x-7与x 轴交于点B (7,0),直线y=-x+1与x 轴交于点C (3,0),据此可得这两条直线与x 轴所围成的三角形面积为2.此题主要考查了两函数图象相交的问题以及三角形面积的计算,关键是掌握待定系数法求一次函数解析式.22.【答案】-c ⃗ a ⃗ -b ⃗ a⃗ -c ⃗ 【解析】解:(1)∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD=BC ,∴∠ADF=∠CBE ,∵DF=BE ,∴△ADF ≌△CBE ,∴∠AFD=∠CEB ,AF=CE ,∴∠AFB=∠CED ,∴AF ∥CE , ∴=-=-=-, =+=-, =+=-, 故答案为-,-,-.(2)延长EC 到K ,使得CK=EC ,连接BK ,则向量即为所求;(1)根据平面向量的加法法则计算即可;(2)延长EC 到K ,使得CK=EC ,连接BK ,则向量即为所求;本题考查平行四边形的性质、三角形法则等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.23.【答案】解:延长AD 交BC 于E ,∵∠C =90°,∴BC =√AB 2−AC 2=10√3,∵CD 平分∠ACB ,AD ⊥CD ,∴∠ACD =∠ECD ,∠ADC =∠EDC =90°,∴∠CAD =∠CED ,∴CA =CE =10,∴AD =DE ,∵M 是边AB 的中点,∴DM =12BE =12×(10√3-10)=5√3-5.【解析】延长AD 交BC 于E ,根据勾股定理求出BC ,根据等腰三角形的性质得到AD=DE ,根据三角形中位线定理计算即可.本题考查的是三角形中位线定理、等腰三角形的性质以及直角三角形的性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.24.【答案】证明:(1)在等边三角形ABC 中,∵DE ⊥BC ,GF ⊥BC ,∴∠DEF =∠GFC =90°,∴DE ∥GF ,∵∠B =∠C =60°,BE =CF ,∠DEB =∠GFC =90°,∴△BDE ≌△CGF ,∴DE =GF ,∴四边形DEFG 是平行四边形;(2)在平行四边形DEFG 中,∵∠DEF =90°,∴平行四边形DEFG 是矩形,∵∠BAC =60°,∠BAF =3∠FAC ,∴∠GAF =15°,在△CGF 中,∵∠C =60°,∠GFC =90°,∴∠CGF =30°,∴∠GFA =15°,∴∠GAF =∠GFA ,∴GA =GF ,∵DG ∥BC ,∴∠ADG =∠B =60°,∴△DAG 是等边三角形,∴GA =GD ,∴GD =GF ,∴矩形DEFG 是正方形.【解析】(1)根据等边三角形的性质和平行四边形的判定证明即可;(2)根据等边三角形的判定和性质以及正方形的判定解答即可.此题考查正方形的判定,关键是根据全等三角形的判定和性质以及正方形的判定解答.25.【答案】解:设该客车在高速公路上行驶的平均速度是x 千米/小时,依题意有400x−50-360x =6,整理得3x 2-170x -9000=0,解得x1=90,x2=-100(舍去),3经检验,x=90是原方程的解.答:该客车在高速公路上行驶的平均速度是90千米/小时.【解析】可设该客车在高速公路上行驶的平均速度是x千米/小时,根据等量关系:从甲地到乙地由高速公路上行驶所需的时间=普通公路上行驶所需的时间-6小时,列出方程求解即可.本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.26.【答案】(1)解:作AH⊥BC于H.设AH=h.由题意:√102−ℎ2+10+h=24,整理得:h2-14h+48=0,解得h=8或6(舍弃),∴y=1(10+24-x)×8,即y=-4x+136(0<x<24)2(2)解:①当AP=AD=10时,∵AB=AD=10,∴AP=AB=10,∵BH=6,∴BP=2BH=12,即x=12,∴y=88.②当PD=AD=10时,四边形ABPD是平行四边形或等腰梯形,∴BP=AD=10或BP=2BH+AD=22,即x=10或22,∴y=96或48,综上所述,四边形APCD的面积为88或96或48.【解析】(1)作AH⊥BC于H.设AH=h.构建方程求出h即可解决问题.(2)分两种情形分别讨论求解即可;本题考查梯形、等腰三角形的性质勾股定理、一次函数的应用等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题.。

2017-2018年上海市浦东新区八年级下期末数学试题(含答案解析)

2017-2018年上海市浦东新区八年级下期末数学试题(含答案解析)

2017-2018学年上海市浦东新区八年级(下)期末数学试卷一、选择题(本大题共4小题,共12.0分)1.在下列方程中,分式方程是()A. B. C. D.2.函数y=-x-3的图象不经过()A. 第一象限B. 第二象限C. 第三象限D. 第四象限3.在下列事件中,确定事件共有()①买一张体育彩票中大奖;②抛掷一枚硬币,落地后正面朝上;③在只装有2只红球、3只黄球的袋子中,摸出1只白球;④初二(1)班共有37名学生,至少有3名学生的生日在同一个月.A. 1个B. 2个C. 3个D. 4个4.在四边形ABCD中,对角线AC和BD相交于点O,AB=CD,添加下列条件后能判定这个四边形是平行四边形的是()A. B.C. D.二、填空题(本大题共14小题,共28.0分)5.方程2x3+54=0的解是______.6.方程=x的解是x=______.7.如果是方程mx2+y2=xy的一个解,那么m=______.8.当k=______时,方程kx+4=3-2x无解.9.当m=______时,函数y=(m-1)x+m是常值函数.10.已知一次函数y=kx+b的图象经过第一象限,且它的截距为-5,那么函数值y随自变量x值的增大而______.11.已知一次函数y=2x+5,当函数值y<0时,自变量x值的取值范围是______.12.已知一辆匀速行驶汽车的路程S(千米)与时间t(时)的函数关系如图所示,那么这辆汽车的速度是每小时______千米.13.若一个多边形的内角和等于外角和,那么这个多边形的边数是______.14.已知菱形一组对角的和为240°,较短的一条对角线的长度为4厘米,那么这个菱形的面积为______平方厘米.15.已知在等腰梯形ABCD中,AD∥BC,AB=13厘米,AD=4厘米,高AH=12厘米,那么这个梯形的中位线长等于______厘米.16.从0,1,2,3四个数字中任取三个数字组成没有重复数字的三位数,那么组成的三位数是奇数的概率是______.17.如图,已知在矩形ABCD中,AB=,BC=2,将这个矩形沿CD于点E,那么∠DCF等于______度.18.已知在平面直角坐标系xOy中,直线y=-x+4与x轴交于点A、与y轴交于点B,四边形AOBC是梯形,且对角线AB平分∠CAO,那么点C的坐标为______.三、计算题(本大题共1小题,共6.0分)19.解方程:=+2.四、解答题(本大题共7小题,共54.0分)20.解方程组:.21.已知直线y=kx+b与直线y=-x+k都经过点A(6,-1),求这两条直线与x轴所围成的三角形面积.22.已知:如图,在平行四边形ABCD中,E、F分别是对角线BD上的两点,且BE=DF,=,=,=.(1)用向量、、表示下列向量:向量=______,向量=______,向量=______;(2)求作:+.23.已知:如图,在Rt△ABC中,∠C=90°,CD平分∠ACB,AD⊥CD,垂足为点D,M是边AB的中点,AB=20,AC=10,求线段DM的长.24.已知:如图,在等边三角形ABC中,过边AB上一点D作DE⊥BC,垂足为点E,过边AC上一点G作GF⊥BC,垂足为点F,BE=CF,联结DG.(1)求证:四边形DEFG是平行四边形;(2)连接AF,当∠BAF=3∠FAC时,求证:四边形DEFG 是正方形.25.从甲地到乙地有两条公路:一条是全长400千米的普通公路,一条是全长360千米的高速公路.某客车在高速公路上行驶的平均速度比在普通公路上行驶的平均速度快50千米/时,从甲地到乙地由高速公路上行驶所需的时间比普通公路上行驶所需的时间少6小时.求该客车在高速公路上行驶的平均速度.26.如图,已知在梯形ABCD中,AD∥BC,P是下底BC上一动点(点P与点B不重合),AB=AD=10,BC=24,∠C=45°,45°<∠B<90°,设BP=x,四边形APCD的面积为y.(1)求y关于x的函数解析式,并写出它的定义域;(2)联结PD,当△APD是以AD为腰的等腰三角形时,求四边形APCD的面积.答案和解析1.【答案】C【解析】解:A、该方程是整式方程,故本选项错误;B、该方程是无理方程,故本选项错误;C、该方程符合分式方程的定义,故本选项正确;D、该方程属于无理方程,故本选项错误;故选:C.根据分式方程的定义:分母里含有字母的方程叫做分式方程进行判断.本题考查了分式方程的定义.判断一个方程是否为分式方程,主要是依据分式方程的定义,也就是看分母中是否含有未知数(注意:仅仅是字母不行,必须是表示未知数的字母).2.【答案】A【解析】解:∵k=-1<0,∴一次函数经过二四象限;∵b=-3<0,∴一次函数又经过第三象限,∴一次函数y=-x-3的图象不经过第一象限,故选:A.根据比例系数得到相应的象限,进而根据常数得到另一象限,判断即可.此题考查一次函数的性质,用到的知识点为:k<0,函数图象经过二四象限,b<0,函数图象经过第三象限.3.【答案】B【解析】解:①买一张体育彩票中大奖,是随机事件,故此选项错误;②抛掷一枚硬币,落地后正面朝上,是随机事件,故此选项错误;③在只装有2只红球、3只黄球的袋子中,摸出1只白球,是不可能事件,属于确定事件;④初二(1)班共有37名学生,至少有3名学生的生日在同一个月,是必然事件,属于确定事件.故选:B.直接利用随机事件以及确定事件的定义分别分析得出答案.此题主要考查了随机事件以及确定事件的定义,正确把握相关定义是解题关键.4.【答案】D【解析】解:A、不能判断四边形是平行四边形,四边形可能是等腰梯形,故本选项不符合题意;B、无法判定四边形是平行四边形,故本选项不符合题意;C、无法判定四边形是平行四边形,故本选项不符合题意;D、由∠BAC=∠DCA推出AB∥CD,结合AB=CD,可以推出四边形是平行四边形;故选:D.根据四边形的判定方法即可解决问题;本题考查平行四边形的判定,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.5.【答案】x=-3【解析】解:方程整理得:x3=-27,开立方得:x=-3.故答案为:x=-3.方程整理后,利用立方根定义求出解即可.此题考查了立方根,熟练掌握立方根的定义是解本题的关键.6.【答案】2【解析】解:原方程变形为:x+2=x2即x2-x-2=0∴(x-2)(x+1)=0∴x=2或x=-1∵x=-1时不满足题意.∴x=2.故答案为:2.本题含根号,计算比较不便,因此可先对方程两边平方,得到x+2=x2,再对方程进行因式分解即可解出本题.本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的提点灵活选用合适的方法.本题运用的是因式分解法和平方法.7.【答案】-【解析】解:把方程的解代入方程mx2+y2=xy,可得4m+1=-2,∴4m=-3,解得m=-,故答案为:-.依据方程的解概念,将方程的解代入方程进行计算,即可得到m的值.本题考查了二元一次方程的解,方程的解就是满足方程的未知数的值,把解代入方程即可.8.【答案】-2【解析】解:∵kx+4=3-2x,∴(k+2)x=-1,∴k+2=0时,方程kx+4=3-2x无解,解得k=-2.故答案为:-2.方程kx+4=3-2x无解时,x的系数是0,据此求解即可.此题主要考查了一元一次方程的解,要熟练掌握,解答此题的关键是要明确:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.9.【答案】1【解析】解:当m-1=0时,函数y=(m-1)x+m是常值函数,故m=1时,y=1.故答案为:1.直接利用常值函数的定义分析得出答案.此题主要考查了函数的概念,正确把握函数的定义是解题关键.10.【答案】增大【解析】解:∵一次函数y=kx+b的图象经过第一象限,且它的截距为-5,∴一次函数y=kx+b的图象经过第一、三、四象限,即一次函数y=kx+b的图象不经过第二象限,∴k>0,b<0.所以函数值y随自变量x的值增大而增大,故答案为:增大;直接根据一次函数的图象与系数的关系即可得出结论.本题考查的是一次函数的图象与系数的关系,熟知一次函数y=kx+b(k≠0)中,当k>0,b<0时,函数的图象在第一、三、四象限是解答此题的关键.11.【答案】x<-【解析】解:∵一次函数y=2x+5中y<0,∴2x+5<0,解得x<-.故答案为:x<-.根据题意列出关于x的不等式,求出x的取值范围即可.本题考查的是一次函数的性质,熟知一次函数的增减性是解答此题的关键.12.【答案】48【解析】解:这辆汽车的速度是km/h,故答案为:48根据图象得出汽车的速度即可.此题考查函数图象,关键是根据图象得出汽车的路程和时间.13.【答案】4【解析】解:设多边形的边数为n,则(n-2)×180°=360°,解得:n=4,故答案为:4.设多边形的边数为n,根据题意得出方程(n-2)×180°=360°,求出即可.本题考查了多边形的内角和和外角和定理,能根据题意列出方程是解此题的关键.14.【答案】8【解析】解:如图,∵四边形ABCD是菱形,∠BAD+∠BCD=240°,∴∠BAD=∠BCD=120°,∠ABC=∠ADC=60°∵AB=BC=AD=DC,∴△ABC,△ADC是等边三角形,∴AB=BC=AC=4,∴S菱形ABCD=2•S△ABC=2××42=8,故答案为8.只要证明△ABC,△ADC是等边三角形即可解决问题;本题考查菱形的性质、等边三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.15.【答案】9【解析】解:过D作DM⊥BC于M,∵AH⊥BC,∴AH∥DM,∠AHM=90°,∴四边形AHDM是矩形,∴AH=DM=12厘米,AD=HM=4厘米,由勾股定理得:BH===5(厘米),同理CM=5(厘米),∴BC=BH+HM+CM=14厘米,∴梯形ABCD的中位线长是=9(厘米),故答案为:9.过D作DM⊥BC于M,得出四边形AHDM是矩形,求出HM,根据勾股定理求出BH、CM,求出BC,根据梯形的中位线求出即可.本题考查了勾股定理和矩形的性质和判定、等腰梯形的性质、梯形的中位线等知识点,能正确作出辅助线是解此题的关键.16.【答案】【解析】解:如图所示:,由树状图可得一共有18中组合,符合题意的有8种,故组成的三位数是奇数的概率是:=.故答案为:.根据题意画出树状图,再利用概率公式求出答案.此题主要考查了树状图法求概率,正确画出树状图是解题关键.17.【答案】22.5【解析】解:由折叠可得:BF=BC,∵BC=,∴BF=,∵四边形ABCD为矩形,在Rt△BAF中,AF===,∴AB=AF,∴∠ABF=∠AFB=45°,∴∠FBC=90°-∠ABF=45°,∵在△CBF中,BF=BC,∠FBC=45°,∴∠BCF=∠BFC=(180°-∠CBF)÷2=67.5°,∴∠DCF=90°-∠BCF=90°-67.5°=22.5°,故答案为:22.5°.由翻折得到BF=BC,先根据勾股定理求出AF,得到△BAF为等腰直角三角形,所以∠ABF=∠AFB=45°,进而求出∠FBC=90°-∠ABF=45°,再根据△CBF为等腰三角形,得到∠BCF=∠BFC=(180°-∠CBF)÷2=67.5°,进而求出∠DCF=90°-∠BCF=90°-67.5°=22.5°.本题考查了翻折问题,解决本题的关键是由翻折得到BF=BC.18.【答案】(5,4)【解析】解:∵y=-x+4,∴y=0时,-x+4=0,解得x=8,∴A(8,0),x=0时,y=4,∴B(0,4).如图,四边形AOBC是梯形,且对角线AB平分∠CAO,∴BC∥OA,∠OAB=∠CAB,∴∠ABC=∠OAB,∴∠ABC=∠CAB,∴AC=BC.设点C的坐标为(x,4),则(x-8)2+42=x2,解得x=5,∴点C的坐标为(5,4).故答案为(5,4).求出A、B两点的坐标,发现OA≠OB,∠OAB≠∠OBA,所以四边形AOBC是梯形,且对角线AB平分∠CAO时只能BC∥OA,利用平行线的性质以及角平分线定义得出∠ABC=∠CAB,那么AC=BC.设点C的坐标为(x,4),列出方程(x-8)2+42=x2,求解即可.本题考查了一次函数图象上点的坐标特征,平行线的性质,等腰三角形的判定,两点间的距离公式,得出AC=BC是解题的关键.19.【答案】解:去分母得:7x=x-6+2(x-6)(x+1),整理得:x2-8x-9=0,解得:x1=9,x2=-1,经检验x=9是分式方程的解,x=-1是增根,则原方程的解为x=9.【解析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.20.【答案】解:∵x2+xy-2y2=(x+2y)(x-y),∴原方程组可化为:或,解这两个方程组得原方程组的解为:或.【解析】因式分解得出x2+xy-2y2=(x+2y)(x-y),再化为两个方程组解答即可.本题主要考查解高次方程的能力,解题的关键是熟练掌握加减消元法和整体代入的思想.21.【答案】解:∵直线y=kx+b与直线y=-x+k都经过点A(6,-1),∴,解得,∴两条直线的解析式分别为y=x-7和y=-x+1,∴直线y=x-7与x轴交于点B(7,0),直线y=-x+1与x轴交于点C(3,0),∴S△ABC=×4×1=2,即这两条直线与x轴所围成的三角形面积为2.【解析】依据直线y=kx+b与直线y=-x+k都经过点A(6,-1),即可得到两条直线的解析式分别为y=x-7和y=-x+1,进而得出直线y=x-7与x轴交于点B(7,0),直线y=-x+1与x轴交于点C(3,0),据此可得这两条直线与x轴所围成的三角形面积为2.此题主要考查了两函数图象相交的问题以及三角形面积的计算,关键是掌握待定系数法求一次函数解析式.22.【答案】---【解析】解:(1)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠ADF=∠CBE,∵DF=BE,∴△ADF≌△CBE,∴∠AFD=∠CEB,AF=CE,∴∠AFB=∠CED,∴AF∥CE,∴=-=-=-,=+=-,=+=-,故答案为-,-,-.(2)延长EC到K,使得CK=EC,连接BK,则向量即为所求;(1)根据平面向量的加法法则计算即可;(2)延长EC到K,使得CK=EC,连接BK,则向量即为所求;本题考查平行四边形的性质、三角形法则等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.23.【答案】解:延长AD交BC于E,∵∠C=90°,∴BC==10,∵CD平分∠ACB,AD⊥CD,∴∠ACD=∠ECD,∠ADC=∠EDC=90°,∴∠CAD=∠CED,∴CA=CE=10,∴AD=DE,∵M是边AB的中点,∴DM=BE=×(10-10)=5-5.【解析】延长AD交BC于E,根据勾股定理求出BC,根据等腰三角形的性质得到AD=DE,根据三角形中位线定理计算即可.本题考查的是三角形中位线定理、等腰三角形的性质以及直角三角形的性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.24.【答案】证明:(1)在等边三角形ABC中,∵DE⊥BC,GF⊥BC,∴∠DEF=∠GFC=90°,∴DE∥GF,∵∠B=∠C=60°,BE=CF,∠DEB=∠GFC=90°,∴△BDE≌△CGF,∴DE=GF,∴四边形DEFG是平行四边形;(2)在平行四边形DEFG中,∵∠DEF=90°,∴平行四边形DEFG是矩形,∵∠BAC=60°,∠BAF=3∠FAC,∴∠GAF=15°,在△CGF中,∵∠C=60°,∠GFC=90°,∴∠CGF=30°,∴∠GFA=15°,∴∠GAF=∠GFA,∴GA=GF,∵DG∥BC,∴∠ADG=∠B=60°,∴△DAG是等边三角形,∴GA=GD,∴GD=GF,∴矩形DEFG是正方形.【解析】(1)根据等边三角形的性质和平行四边形的判定证明即可;(2)根据等边三角形的判定和性质以及正方形的判定解答即可.此题考查正方形的判定,关键是根据全等三角形的判定和性质以及正方形的判定解答.25.【答案】解:设该客车在高速公路上行驶的平均速度是x千米/小时,依题意有-=6,整理得3x2-170x-9000=0,解得x1=90,x2=-(舍去),经检验,x=90是原方程的解.答:该客车在高速公路上行驶的平均速度是90千米/小时.【解析】可设该客车在高速公路上行驶的平均速度是x千米/小时,根据等量关系:从甲地到乙地由高速公路上行驶所需的时间=普通公路上行驶所需的时间-6小时,列出方程求解即可.本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.26.【答案】(1)解:作AH⊥BC于H.设AH=h.由题意:+10+h=24,整理得:h2-14h+48=0,解得h=8或6(舍弃),∴y=(10+24-x)×8,即y=-4x+136(0<x<24)(2)解:①当AP=AD=10时,∵AB=AD=10,∴AP=AB=10,∵BH=6,∴BP=2BH=12,即x=12,∴y=88.②当PD=AD=10时,四边形ABPD是平行四边形或等腰梯形,∴BP=AD=10或BP=2BH+AD=22,即x=10或22,∴y=96或48,综上所述,四边形APCD的面积为88或96或48.【解析】(1)作AH⊥BC于H.设AH=h.构建方程求出h即可解决问题.(2)分两种情形分别讨论求解即可;本题考查梯形、等腰三角形的性质勾股定理、一次函数的应用等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题.。

2017-2018学年上海市浦东新区八年级下期末数学试题(含答案解析)

2017-2018学年上海市浦东新区八年级下期末数学试题(含答案解析)

2017-2018学年上海市浦东新区八年级(下)期末数学试卷一、选择题(本大题共4小题,共12.0分)1.在下列方程中,分式方程是()A.B. C. D.2.函数y=-x-3的图象不经过()A. 第一象限B. 第二象限C. 第三象限D. 第四象限3.在下列事件中,确定事件共有()①买一张体育彩票中大奖;②抛掷一枚硬币,落地后正面朝上;③在只装有2只红球、3只黄球的袋子中,摸出1只白球;④初二(1)班共有37名学生,至少有3名学生的生日在同一个月.A. 1个B. 2个C. 3个D. 4个4.在四边形ABCD中,对角线AC和BD相交于点O,AB=CD,添加下列条件后能判定这个四边形是平行四边形的是()A. B.C. D.二、填空题(本大题共14小题,共28.0分)5.方程2x3+54=0的解是______.6.方程=x的解是x=______.7.如果是方程mx2+y2=xy的一个解,那么m=______.8.当k=______时,方程kx+4=3-2x无解.9.当m=______时,函数y=(m-1)x+m是常值函数.10.已知一次函数y=kx+b的图象经过第一象限,且它的截距为-5,那么函数值y随自变量x值的增大而______.11.已知一次函数y=2x+5,当函数值y<0时,自变量x值的取值范围是______.12.已知一辆匀速行驶汽车的路程S(千米)与时间t(时)的函数关系如图所示,那么这辆汽车的速度是每小时______千米.13.若一个多边形的内角和等于外角和,那么这个多边形的边数是______.14.已知菱形一组对角的和为240°,较短的一条对角线的长度为4厘米,那么这个菱形的面积为______平方厘米.15.已知在等腰梯形ABCD中,AD∥BC,AB=13厘米,AD=4厘米,高AH=12厘米,那么这个梯形的中位线长等于______厘米.16.从0,1,2,3四个数字中任取三个数字组成没有重复数字的三位数,那么组成的三位数是奇数的概率是______.17.如图,已知在矩形ABCD中,AB=,BC=2,将这个矩形沿直线BE折叠,使点C落在边AD上的点F处,折痕BE交边CD于点E,那么∠DCF等于______度.18.已知在平面直角坐标系xOy中,直线y=-x+4与x轴交于点A、与y轴交于点B,四边形AOBC是梯形,且对角线AB平分∠CAO,那么点C的坐标为______.三、计算题(本大题共1小题,共6.0分)19.解方程:=+2.四、解答题(本大题共7小题,共54.0分)20.解方程组:.21.已知直线y=kx+b与直线y=-x+k都经过点A(6,-1),求这两条直线与x轴所围成的三角形面积.22.已知:如图,在平行四边形ABCD中,E、F分别是对角线BD上的两点,且BE=DF,=,=,=.(1)用向量、、表示下列向量:向量=______,向量=______,向量=______;(2)求作:+.23.已知:如图,在Rt△ABC中,∠C=90°,CD平分∠ACB,AD⊥CD,垂足为点D,M是边AB的中点,AB=20,AC=10,求线段DM的长.24.已知:如图,在等边三角形ABC中,过边AB上一点D作DE⊥BC,垂足为点E,过边AC上一点G作GF⊥BC,垂足为点F,BE=CF,联结DG.(1)求证:四边形DEFG是平行四边形;(2)连接AF,当∠BAF=3∠FAC时,求证:四边形DEFG是正方形.25.从甲地到乙地有两条公路:一条是全长400千米的普通公路,一条是全长360千米的高速公路.某客车在高速公路上行驶的平均速度比在普通公路上行驶的平均速度快50千米/时,从甲地到乙地由高速公路上行驶所需的时间比普通公路上行驶所需的时间少6小时.求该客车在高速公路上行驶的平均速度.26.如图,已知在梯形ABCD中,AD∥BC,P是下底BC上一动点(点P与点B不重合),AB=AD=10,BC=24,∠C=45°,45°<∠B<90°,设BP=x,四边形APCD的面积为y.(1)求y关于x的函数解析式,并写出它的定义域;(2)联结PD,当△APD是以AD为腰的等腰三角形时,求四边形APCD的面积.答案和解析1.【答案】C【解析】解:A、该方程是整式方程,故本选项错误;B、该方程是无理方程,故本选项错误;C、该方程符合分式方程的定义,故本选项正确;D、该方程属于无理方程,故本选项错误;故选:C.根据分式方程的定义:分母里含有字母的方程叫做分式方程进行判断.本题考查了分式方程的定义.判断一个方程是否为分式方程,主要是依据分式方程的定义,也就是看分母中是否含有未知数(注意:仅仅是字母不行,必须是表示未知数的字母).2.【答案】A【解析】解:∵k=-1<0,∴一次函数经过二四象限;∵b=-3<0,∴一次函数又经过第三象限,∴一次函数y=-x-3的图象不经过第一象限,故选:A.根据比例系数得到相应的象限,进而根据常数得到另一象限,判断即可.此题考查一次函数的性质,用到的知识点为:k<0,函数图象经过二四象限,b<0,函数图象经过第三象限.3.【答案】B【解析】解:①买一张体育彩票中大奖,是随机事件,故此选项错误;②抛掷一枚硬币,落地后正面朝上,是随机事件,故此选项错误;③在只装有2只红球、3只黄球的袋子中,摸出1只白球,是不可能事件,属于确定事件;④初二(1)班共有37名学生,至少有3名学生的生日在同一个月,是必然事件,属于确定事件.故选:B.直接利用随机事件以及确定事件的定义分别分析得出答案.此题主要考查了随机事件以及确定事件的定义,正确把握相关定义是解题关键.4.【答案】D【解析】解:A、不能判断四边形是平行四边形,四边形可能是等腰梯形,故本选项不符合题意;B、无法判定四边形是平行四边形,故本选项不符合题意;C、无法判定四边形是平行四边形,故本选项不符合题意;D、由∠BAC=∠DCA推出AB∥CD,结合AB=CD,可以推出四边形是平行四边形;故选:D.根据四边形的判定方法即可解决问题;本题考查平行四边形的判定,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.5.【答案】x=-3【解析】解:方程整理得:x3=-27,开立方得:x=-3.故答案为:x=-3.方程整理后,利用立方根定义求出解即可.此题考查了立方根,熟练掌握立方根的定义是解本题的关键.6.【答案】2【解析】解:原方程变形为:x+2=x2即x2-x-2=0∴(x-2)(x+1)=0∴x=2或x=-1∵x=-1时不满足题意.∴x=2.故答案为:2.本题含根号,计算比较不便,因此可先对方程两边平方,得到x+2=x2,再对方程进行因式分解即可解出本题.本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的提点灵活选用合适的方法.本题运用的是因式分解法和平方法.7.【答案】-【解析】解:把方程的解代入方程mx2+y2=xy,可得4m+1=-2,∴4m=-3,解得m=-,故答案为:-.依据方程的解概念,将方程的解代入方程进行计算,即可得到m的值.本题考查了二元一次方程的解,方程的解就是满足方程的未知数的值,把解代入方程即可.8.【答案】-2【解析】解:∵kx+4=3-2x,∴(k+2)x=-1,∴k+2=0时,方程kx+4=3-2x无解,解得k=-2.故答案为:-2.方程kx+4=3-2x无解时,x的系数是0,据此求解即可.此题主要考查了一元一次方程的解,要熟练掌握,解答此题的关键是要明确:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.9.【答案】1【解析】解:当m-1=0时,函数y=(m-1)x+m是常值函数,故m=1时,y=1.故答案为:1.直接利用常值函数的定义分析得出答案.此题主要考查了函数的概念,正确把握函数的定义是解题关键.10.【答案】增大【解析】解:∵一次函数y=kx+b的图象经过第一象限,且它的截距为-5,∴一次函数y=kx+b的图象经过第一、三、四象限,即一次函数y=kx+b的图象不经过第二象限,∴k>0,b<0.所以函数值y随自变量x的值增大而增大,故答案为:增大;直接根据一次函数的图象与系数的关系即可得出结论.本题考查的是一次函数的图象与系数的关系,熟知一次函数y=kx+b(k≠0)中,当k>0,b<0时,函数的图象在第一、三、四象限是解答此题的关键.11.【答案】x<-【解析】解:∵一次函数y=2x+5中y<0,∴2x+5<0,解得x<-.故答案为:x<-.根据题意列出关于x的不等式,求出x的取值范围即可.本题考查的是一次函数的性质,熟知一次函数的增减性是解答此题的关键.12.【答案】48【解析】解:这辆汽车的速度是km/h,故答案为:48根据图象得出汽车的速度即可.此题考查函数图象,关键是根据图象得出汽车的路程和时间.13.【答案】4【解析】解:设多边形的边数为n,则(n-2)×180°=360°,解得:n=4,故答案为:4.设多边形的边数为n,根据题意得出方程(n-2)×180°=360°,求出即可.本题考查了多边形的内角和和外角和定理,能根据题意列出方程是解此题的关键.14.【答案】8【解析】解:如图,∵四边形ABCD是菱形,∠BAD+∠BCD=240°,∴∠BAD=∠BCD=120°,∠ABC=∠ADC=60°∵AB=BC=AD=DC,∴△ABC,△ADC是等边三角形,∴AB=BC=AC=4,∴S=2•S△ABC=2××42=8,菱形ABCD故答案为8.只要证明△ABC,△ADC是等边三角形即可解决问题;本题考查菱形的性质、等边三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.15.【答案】9【解析】解:过D作DM⊥BC于M,∵AH⊥BC,∴AH∥DM,∠AHM=90°,∵AD∥BC,∴四边形AHDM是矩形,∴AH=DM=12厘米,AD=HM=4厘米,由勾股定理得:BH===5(厘米),同理CM=5(厘米),∴BC=BH+HM+CM=14厘米,∴梯形ABCD的中位线长是=9(厘米),故答案为:9.过D作DM⊥BC于M,得出四边形AHDM是矩形,求出HM,根据勾股定理求出BH、CM,求出BC,根据梯形的中位线求出即可.本题考查了勾股定理和矩形的性质和判定、等腰梯形的性质、梯形的中位线等知识点,能正确作出辅助线是解此题的关键.16.【答案】【解析】解:如图所示:,由树状图可得一共有18中组合,符合题意的有8种,故组成的三位数是奇数的概率是:=.故答案为:.根据题意画出树状图,再利用概率公式求出答案.此题主要考查了树状图法求概率,正确画出树状图是解题关键.17.【答案】22.5【解析】解:由折叠可得:BF=BC,∵BC=,∴BF=,∵四边形ABCD为矩形,∴∠A=90°,在Rt△BAF中,AF===,∴AB=AF,∴∠ABF=∠AFB=45°,∴∠FBC=90°-∠ABF=45°,∵在△CBF中,BF=BC,∠FBC=45°,∴∠BCF=∠BFC=(180°-∠CBF)÷2=67.5°,∴∠DCF=90°-∠BCF=90°-67.5°=22.5°,故答案为:22.5°.由翻折得到BF=BC,先根据勾股定理求出AF,得到△BAF为等腰直角三角形,所以∠ABF=∠AFB=45°,进而求出∠FBC=90°-∠ABF=45°,再根据△CBF为等腰三角形,得到∠BCF=∠BFC=(180°-∠CBF)÷2=67.5°,进而求出∠DCF=90°-∠BCF=90°-67.5°=22.5°.本题考查了翻折问题,解决本题的关键是由翻折得到BF=BC.18.【答案】(5,4)【解析】解:∵y=-x+4,∴y=0时,-x+4=0,解得x=8,∴A(8,0),x=0时,y=4,∴B(0,4).如图,四边形AOBC是梯形,且对角线AB平分∠CAO,∴BC∥OA,∠OAB=∠CAB,∴∠ABC=∠OAB,∴∠ABC=∠CAB,∴AC=BC.设点C的坐标为(x,4),则(x-8)2+42=x2,解得x=5,∴点C的坐标为(5,4).故答案为(5,4).求出A、B两点的坐标,发现OA≠OB,∠OAB≠∠OBA,所以四边形AOBC是梯形,且对角线AB 平分∠CAO时只能BC∥OA,利用平行线的性质以及角平分线定义得出∠ABC=∠CAB,那么AC=BC.设点C的坐标为(x,4),列出方程(x-8)2+42=x2,求解即可.本题考查了一次函数图象上点的坐标特征,平行线的性质,等腰三角形的判定,两点间的距离公式,得出AC=BC是解题的关键.19.【答案】解:去分母得:7x=x-6+2(x-6)(x+1),整理得:x2-8x-9=0,解得:x1=9,x2=-1,经检验x=9是分式方程的解,x=-1是增根,则原方程的解为x=9.【解析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.20.【答案】解:∵x2+xy-2y2=(x+2y)(x-y),∴原方程组可化为:或,解这两个方程组得原方程组的解为:或.【解析】因式分解得出x2+xy-2y2=(x+2y)(x-y),再化为两个方程组解答即可.本题主要考查解高次方程的能力,解题的关键是熟练掌握加减消元法和整体代入的思想.21.【答案】解:∵直线y=kx+b与直线y=-x+k都经过点A(6,-1),∴,解得,∴两条直线的解析式分别为y=x-7和y=-x+1,∴直线y=x-7与x轴交于点B(7,0),直线y=-x+1与x轴交于点C(3,0),∴S△ABC=×4×1=2,即这两条直线与x轴所围成的三角形面积为2.【解析】依据直线y=kx+b与直线y=-x+k都经过点A(6,-1),即可得到两条直线的解析式分别为y=x-7和y=-x+1,进而得出直线y=x-7与x轴交于点B(7,0),直线y=-x+1与x轴交于点C(3,0),据此可得这两条直线与x轴所围成的三角形面积为2.此题主要考查了两函数图象相交的问题以及三角形面积的计算,关键是掌握待定系数法求一次函数解析式.22.【答案】---【解析】解:(1)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠ADF=∠CBE,∵DF=BE,∴△ADF≌△CBE,∴∠AFD=∠CEB,AF=CE,∴∠AFB=∠CED,∴AF∥CE,∴=-=-=-,=+=-,=+=-,故答案为-,-,-.(2)延长EC到K,使得CK=EC,连接BK,则向量即为所求;(1)根据平面向量的加法法则计算即可;(2)延长EC到K,使得CK=EC,连接BK,则向量即为所求;本题考查平行四边形的性质、三角形法则等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.23.【答案】解:延长AD交BC于E,∵∠C=90°,∴BC==10,∵CD平分∠ACB,AD⊥CD,∴∠ACD=∠ECD,∠ADC=∠EDC=90°,∴∠CAD=∠CED,∴CA=CE=10,∴AD=DE,∵M是边AB的中点,∴DM=BE=×(10-10)=5-5.【解析】延长AD交BC于E,根据勾股定理求出BC,根据等腰三角形的性质得到AD=DE,根据三角形中位线定理计算即可.本题考查的是三角形中位线定理、等腰三角形的性质以及直角三角形的性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.24.【答案】证明:(1)在等边三角形ABC中,∵DE⊥BC,GF⊥BC,∴∠DEF=∠GFC=90°,∴DE∥GF,∵∠B=∠C=60°,BE=CF,∠DEB=∠GFC=90°,∴△BDE≌△CGF,∴DE=GF,∴四边形DEFG是平行四边形;(2)在平行四边形DEFG中,∵∠DEF=90°,∴平行四边形DEFG是矩形,∵∠BAC=60°,∠BAF=3∠FAC,∴∠GAF=15°,在△CGF中,∵∠C=60°,∠GFC=90°,∴∠CGF=30°,∴∠GFA=15°,∴∠GAF=∠GFA,∴GA=GF,∵DG∥BC,∴∠ADG=∠B=60°,∴△DAG是等边三角形,∴GA=GD,∴GD=GF,∴矩形DEFG是正方形.【解析】(1)根据等边三角形的性质和平行四边形的判定证明即可;(2)根据等边三角形的判定和性质以及正方形的判定解答即可.此题考查正方形的判定,关键是根据全等三角形的判定和性质以及正方形的判定解答.25.【答案】解:设该客车在高速公路上行驶的平均速度是x千米/小时,依题意有-=6,整理得3x2-170x-9000=0,解得x1=90,x2=-(舍去),经检验,x=90是原方程的解.答:该客车在高速公路上行驶的平均速度是90千米/小时.【解析】可设该客车在高速公路上行驶的平均速度是x千米/小时,根据等量关系:从甲地到乙地由高速公路上行驶所需的时间=普通公路上行驶所需的时间-6小时,列出方程求解即可.本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.26.【答案】(1)解:作AH⊥BC于H.设AH=h.由题意:+10+h=24,整理得:h2-14h+48=0,解得h=8或6(舍弃),∴y=(10+24-x)×8,即y=-4x+136(0<x<24)(2)解:①当AP=AD=10时,∵AB=AD=10,∴AP=AB=10,∵BH=6,∴BP=2BH=12,即x=12,∴y=88.②当PD=AD=10时,四边形ABPD是平行四边形或等腰梯形,∴BP=AD=10或BP=2BH+AD=22,即x=10或22,∴y=96或48,综上所述,四边形APCD的面积为88或96或48.【解析】(1)作AH⊥BC于H.设AH=h.构建方程求出h即可解决问题.(2)分两种情形分别讨论求解即可;本题考查梯形、等腰三角形的性质勾股定理、一次函数的应用等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

上海市浦东新区2015-20XX年八年级下期末数学试卷含答案解析2015-2016学年上海市浦东新区八年级(下)期末数学试卷一、选择题(本大题共6题,每题3分,满分18分)(每题只有一个选择正确1.下列直线中,与直线y=﹣3x+2平行的是()A.y=﹣2x+3 B.y=2x+2 C.y=﹣3x+3 D.y=3x﹣22.已知一次函数y=kx+b(k、b为常数)的图象如图所示,那么关于x的不等式kx+b>0的解集是()A.x>3 B.x>4 C.x<3 D.x<43.下列说法中,正确的是()A.方程=4的根是x=±16B.方程=﹣x的根是x1=0,x2=3C.方程+1=0没有实数根D.方程3﹣的根是x1=2,x2=64.如图,将一种正方形的纸片沿着过一边中点的虚线剪成形状分别为三角形和梯形的两部分,利用这两部分不能拼成的图形是()A.直角三角形B.平行四边形C.菱形D.等腰梯形5.下列等式正确的是()A.+=+ B.﹣= C.+﹣= D.++= 6.在平行四边形、矩形、菱形、等腰梯形这个四个图形中任选一个图形,那么下列事件是不可能事件的是()A.这个图形既是轴对称图形又是中心对称图形B.这个图形既不是轴对称图形又不是中心对称图形C.这个图形是轴对称图形D.这个图形是中心对称图形二、填空题(本大题共12题,每题3分,满分36分)7.一次函数y=2x﹣5的图象在y轴上的截距是______.8.已知一次函数y=kx+b的图象不经过第二象限,那么函数值y 随自变量x的值增大而______(填“增大”或“减小”).9.如果关于x的方程(m+2)x=8无解,那么m的取值范围是______.10.方程x3﹣8=0的根是______.)11.已知关于x的方程+=,如果设=y,那么原方程化为关于y的方程是______.12.某企业的年产值在三年内从1000万元增加到1331万元,如果这三年中每年的增长率相同,设为x,那么可以列出关于x的方程是______.13.如果多边形的每个外角都是40°,那么这个多边形的边数是______.14.已知点E、F、G、H分别是凸四边形ABCD各边AB、BC、CD、DA的中点,如果对角线AC=BD=4,那么四边形EFGH的周长是______.15.在梯形的一条底边长为5,中位线长为7,那么另一条底边的长为______.16.将几个全等的平行四边形和全等的菱形镶嵌成如图所示的图案,设菱形中较小的角为α度,平行四边形中较大的角为β度,那么β可以用含α的代数式表示为______.17.如图,平行四边形ABCD中,∠B=60°,AB=8cm,AD=10cm,点P在边BC上从B向C运动,点Q在边DA上从D向A运动,如果P,Q运动的速度都为每秒1cm,那么当运动时间t=______秒时,四边形ABPQ是直角梯形.18.F分别在CA、AC的延长线上,已知边长为4的正方形ABCD,点E、且∠BED=∠BFD=45°,那么四边形EBFD的面积是______.三、解答题(本题共4题,每题5分,满分20分)19.解方程组:.20.布袋里有一个红球两个黄球,它们除了颜色外其他都相同.(1)任意摸出一个球恰好是红球的概率是______;(2)摸出一个球再放回袋中,搅匀后再摸出一个球,请利用树形图求事件“摸到一红一黄两球”的概率P.)21.已知弹簧在一定限度内,它的长度y(厘米)与所挂重物质量x(千克)是一次函数关求不挂重物时弹簧的长度.22.如图,点E在平行四边形ABCD 的对角线BD的延长线上.(1)填空:+=______.﹣=______;(2)求作:+(不写作法,保留作图痕迹,写出结果)四、解答题(本题共3题,第23题7分,第24题9分,第25题10分,满分26分)23.如图,已知矩形ABCD中,点E是CD边上的一点,连结BE,过点A作AF⊥BE.垂足为点F,且AF=BE,过点F作MN∥BC,与AB、CD边分别交于点M、N,求证:四边形AMND 为正方形.24.已知:如图,平面直角坐标系中有一个等腰梯形ABCD,且AD∥BC,AB=CD,点AC在x轴上AD=3,BC=11,在y轴正半轴上,点B、(点B在点C 的左侧),点D在第一象限,梯形的高为2,双曲线y=经过点D,直线y=kx+b经过A、B两点.(1)求点A、B、C、D的坐标;(2)求双曲线y=和直线y=kx+b的解析式;(3)点M在双曲线上,点N在y轴上,如果四边形ABMN是平行四边形,求点N的坐标.)25.已知:如图,在矩形ABCD中,AB=2,BC=5,点P是边AD 上一点,连接CP,将四边形ABCP沿CP所在直线翻折,落在四边形EFCP的位置,点A、B的对应点分别为点E,F,边CF与边AD的交点为点G.(1)当AP=2时,求PG的值;(2)如果AP=x,FG=y,求y关于x的函数解析式,并写出它的定义域;(3)连结BP并延长与线段CF交于点M,当△PGM是以MG为腰的等腰三角形时,求AP的长.)2015-2016学年上海市浦东新区八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共6题,每题3分,满分18分)(每题只有一个选择正确1.下列直线中,与直线y=﹣3x+2平行的是()A.y=﹣2x+3 B.y=2x+2 C.y=﹣3x+3 D.y=3x﹣2【考点】两条直线相交或平行问题.【分析】根据两直线平行k相同即可解决.【解答】解:根据两直线平行k相同,∵直线y=﹣3x+2,∴k=﹣3,故选C.2.已知一次函数y=kx+b(k、b为常数)的图象如图所示,那么关于x的不等式kx+b>0的解集是()A.x>3 B.x>4 C.x<3 D.x<4【考点】一次函数与一元一次不等式.【分析】从图象上得到函数的增减性及与x轴的交点的横坐标,即能求得不等式kx+b>0的解集.【解答】解:函数y=kx+b的图象经过点(4,0),并且函数值y 随x的增大而减小,所以当x<4时,函数值大于0,即关于x的不等式kx+b>0的解集是x<4.故选D.3.下列说法中,正确的是()A.方程=4的根是x=±16B.方程C.方程D.方程3﹣=﹣x的根是x1=0,x2=3 +1=0没有实数根的根是x1=2,x2=6【考点】无理方程.【分析】根据各个选项,错误的选项说明错在哪,正确的选项进行说明,即可判断出哪个选项是正确的.【解答】解:当x=﹣16时,没有意义,故选项A错误;==3,而﹣x=﹣3,3≠﹣3,故选项B错误;当x=3时,)∵3﹣≥0,则+1≥1,故选项C正确;不是方程,故选项D错误.故选C.4.如图,将一种正方形的纸片沿着过一边中点的虚线剪成形状分别为三角形和梯形的两部分,利用这两部分不能拼成的图形是()A.直角三角形B.平行四边形C.菱形D.等腰梯形【考点】图形的剪拼.【分析】将剪开的△ABE绕E点旋转180°,EC与EB重合,得到直角三角形;把△ABE平移,使AB与DC重合,则得到平行四边形;把△ABE的顶点E与C重合,B与D重合,与四边形AECD不重叠拼在一起,组成等腰梯形;不能得到菱形;即可得出结论.【解答】解:将△ABE绕E点旋转180°,EC与EB重合,得到直角三角形,故选项A正确;把△ABE平移,使AB与DC重合,则得到平行四边形,故选项B 正确;把△ABE的顶点E与C重合,B与D重合,与四边形AECD不重叠拼在一起,组成等腰梯形,故选项D正确;不能得到菱形,故选项C错误.故选C.5.下列等式正确的是()A.+=+ B.﹣【考点】*平面向量.= C.+﹣= D.++=【分析】直接利用三角形法则求解即可求得答案.注意掌握排除法在选择题中的应用.【解答】解:A、∵+=,+=,∴+=﹣(+);故本选项错误;B、+=;故本选项错误;C、∵+=,∴+﹣=;故本选项正确;D、∵+=,∴++=+=;故本选项错误.故选C.)6.在平行四边形、矩形、菱形、等腰梯形这个四个图形中任选一个图形,那么下列事件是不可能事件的是()A.这个图形既是轴对称图形又是中心对称图形B.这个图形既不是轴对称图形又不是中心对称图形C.这个图形是轴对称图形D.这个图形是中心对称图形【考点】随机事件.【分析】根据确定事件的定义,结合轴对称以及中心对称的定义即可判断.【解答】解:A、4个图形中有3个是轴对称图形,有3个是中心对称图形,所以任选一个图形既是轴对称图形又是中心对称图形,可能发生,也可能不发生,是随机事件;B、一定不会发生,是不可能事件;C、4个图形中有3个是轴对称图形,所以任选一个图形是轴对称图形,可能发生,也可能不发生,是随机事件;D、4个图形中有3个是中心对称图形,所以任选一个图形是中心对称图形,可能发生,也可能不发生,是随机事件.故选B.二、填空题(本大题共12题,每题3分,满分36分)7.一次函数y=2x﹣5的图象在y轴上的截距是5.【考点】一次函数图象上点的坐标特征.【分析】令x=0,则y=﹣5,即一次函数与y轴交点为(0,﹣5),即可得出答案.【解答】解:由y=2x﹣5,令x=0,则y=﹣5,即一次函数与y轴交点为(0,﹣5),∴一次函数在y轴上的截距为:﹣5.故答案为:﹣5.8.已知一次函数y=kx+b的图象不经过第二象限,那么函数值y 随自变量x的值增大而大(填“增大”或“减小”).【考点】一次函数图象与系数的关系.【分析】直接根据一次函数的图象与系数的关系即可得出结论.【解答】解:∵一次函数y=kx+b的图象不经过第二象限,∴k>0,b<0.所以函数值y随自变量x的值增大而增大,故答案为:增大;9.如果关于x的方程(m+2)x=8无解,那么m的取值范围是m=2【考点】一元一次方程的解.【分析】根据一元一次方程无解,则m+2=0,即可解答.【解答】解∵关于x的方程(m+2)x=8无解,∴m+2=0,∴m=﹣2,故答案为:m=﹣2.10.方程x3﹣8=0的根是x=2 .)【考点】立方根.【分析】首先整理方程得出x3=8,进而利用立方根的性质求出x 的值.【解答】解:x3﹣8=0,x3=8,解得:x=2.故答案为:x=2.11.已知关于x的方程+=,如果设=y,那么原方程化为关于y的【考点】换元法解分式方程.【分析】先根据=y得到,再代入原方程进行换元即可.【解答】解:由=y,可得∴原方程化为3y+=故答案为:3y+=12.某企业的年产值在三年内从1000万元增加到1331万元,如果这三年中每年的增长率相同,设为x,那么可以列出关于x的方程是1000(1+x)2=1331.【考点】由实际问题抽象出一元二次方程.【分析】根据某企业的年产值在三年内从1000万元增加到1331万元,这三年中每年的增长率相同,设为x,可知第一年为1000万,第三年为1331万,从而可以列出相应的方程.【解答】解:∵某企业的年产值在三年内从1000万元增加到1331万元,这三年中每年的增长率相同,设为x,∴1000(1+x)2=1331,故答案为:1000(1+x)2=1331.13.如果多边形的每个外角都是40°,那么这个多边形的边数是.【考点】多边形内角与外角.【分析】根据多边形的外角和是360度即可求得外角的个数,即多边形的边数.【解答】解:多边形的边数是:=9,故答案为:9.14.已知点E、F、G、H分别是凸四边形ABCD各边AB、BC、CD、DA的中点,如果对角线AC=BD=4,那么四边形EFGH的周长是8 .【考点】中点四边形.)【分析】根据三角形中位线定理分别求出EF+FG+GH+HE的长,根据四边形的周长公式计算即可.【解答】解:∵E、F、G、H分别是AB、BC、CD、DA的中点,∴EF、FG、GH、HF分别是△ABC、△BCD、△CDA、△DAB的中位线,∴EF=AC=2,FG=BD=2,GH=AC=2,HE=BD=2,∴四边形EFGH的周长=EF+FG+GH+HE=8.故答案为:8.15.在梯形的一条底边长为5,中位线长为7,那么另一条底边的长为【考点】梯形中位线定理.【分析】此题只需根据梯形的中位线等于梯形两底和的一半进行计算即可.【解答】解:设另一条底边为x,则5+x=2×7,解得x=9.即另一条底边的长为9.故答案为:9.16.将几个全等的平行四边形和全等的菱形镶嵌成如图所示的图案,设菱形中较小的角为α度,平行四边形中较大的角为β度,那么β可以用含α的代数式表示为β=.【考点】菱形的性质;平行四边形的性质.【分析】由将几个全等的平行四边形和全等的菱形镶嵌成如图所示的图案,可求得∠1与∠2的度数,再利用周角的定义,即可求得答案.【解答】解:如图,∵是几个全等的平行四边形和全等的菱形镶嵌而成,∴∠2=α°,∠1=180°﹣β°,∵2∠2+4∠1=360°,∴2α+4=360,∴β=..故答案为:β=)17.如图,平行四边形ABCD中,∠B=60°,AB=8cm,AD=10cm,点P在边BC上从B向C运动,点Q在边DA上从D向A运动,如果P,Q运动的速度都为每秒1cm,那么当运动时间t= 7 秒时,四边形ABPQ是直角梯形.【考点】直角梯形;平行四边形的性质.【分析】过点A作AE⊥BC于E,因为AD∥BC,所以当AE∥QP 时,则四边形ABPQ是直角梯形,利用已知条件和路程与速度的关系式即可求出时间t的值.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,过点A作AE⊥BC于E,∴当AE∥QP时,则四边形ABPQ是直角梯形,∵∠B=60°,AB=8cm,∴BE=4cm,∵P,Q运动的速度都为每秒1cm,∴AQ=10﹣t,AP=t,∵BE=4,∴EP=t﹣4,∵AE⊥BC,AQ∥EP,AE∥QP,∴QP⊥BC,AQ⊥AD,∴四边形AEPQ是矩形,∴AQ=EP,即10﹣t=t﹣4,解得t=7,故答案为:7.18.F分别在CA、AC的延长线上,已知边长为4的正方形ABCD,点E、且∠BED=∠BFD=45°,那么四边形EBFD的面积是16+16.)【考点】正方形的性质.【分析】连接BD交AC于O,首先证明四边形EBFD是菱形,根据菱形的面积等于对角线乘积的一半即可解决问题.【解答】解:如图连接BD交AC于O.∵四边形ABCD是正方形,∴AB=BC=CD=AD=4,∠CAD=∠CAB=45°,∴∠EAD=∠EAB=135°,在△EAB和△EAD中,,∴△EAB≌△EAD,∴∠AEB=∠AED=22.5°,EB=ED,∴∠ADE=180°﹣∠EAD﹣∠AED=22.5°,∴∠AED=∠ADE=22.5°,∴AE=AD=4,同理证明∠DFC=22.5°,FD=FB,∴∠DEF=∠DFE,∴DE=DF,∴ED=EB=FB=FD,∴四边形EBFD的面积=?BD?EF=×4((4+8)=16+16.故答案为16+16.三、解答题(本题共4题,每题5分,满分20分)19.解方程组:【考点】高次方程..)【分析】先由②得x+y=0或x﹣2y=0,再把原方程组可变形为:然后解这两个方程组即可.【解答】解:由②得:(x+y)(x﹣2y)=0,x+y=0或x﹣2y=0,原方程组可变形为:或,,或,解得:,.20.布袋里有一个红球两个黄球,它们除了颜色外其他都相同.(1)任意摸出一个球恰好是红球的概率是;(2)摸出一个球再放回袋中,搅匀后再摸出一个球,请利用树形图求事件“摸到一红一黄两球”的概率P.【考点】列表法与树状图法.【分析】(1)根据题意可得到任意摸出一个球恰好是红球的概率;(2)根据题意可以画出树状图,从而可以求出∴“摸到一红一黄两球”的概率.【解答】解:(1)由题意可得,任意摸出一个球恰好是红球的概率是,故答案为:;(2)由题意可得,∴“摸到一红一黄两球”的概率P=.21.已知弹簧在一定限度内,它的长度y(厘米)与所挂重物质量x(千克)是一次函数关求不挂重物时弹簧的长度.【考点】一次函数的应用.)【分析】弹簧总长y=挂上xkg的重物时弹簧伸长的长度+弹簧原来的长度,把相关数值代入即可.【解答】解:设长度y(厘米)与所挂重物质量x(千克)的一次函数关系式是:y=kx+b(k≠0)将表格中数据分别代入为:,解得:,∴y=x+6,当x=0时,y=6.答:不挂重物时弹簧的长度为6厘米.22.如图,点E在平行四边形ABCD的对角线BD的延长线上.(1)填空:+=.﹣=;(2)求作:+(不写作法,保留作图痕迹,写出结果)【考点】*平面向量;平行四边形的性质.【分析】(1)根据向量的平行四边形法则写出+即可,根据平行四边形的对边平行且相等可得=,然后根据向量的三角形法则求解即可;(2)根据平行四边形的对边平行且相等可得=,然后根据向量的平行四边形法则作出以DC、DE为邻边的平行四边形,其对角线即为所求.【解答】解:(1)+=,∵=,∴﹣=﹣=;故答案为:;.(2)如图,即为所求+.四、解答题(本题共3题,第23题7分,第24题9分,第25题10分,满分26分)23.如图,已知矩形ABCD中,点E是CD边上的一点,连结BE,过点A作AF⊥BE.垂足为点F,且AF=BE,过点F作MN∥BC,与AB、CD边分别交于点M、N,求证:四边形AMND 为正方形.)【考点】正方形的判定;矩形的性质.【分析】由四边形ABCD是矩形,得到两组对边平行,四个角为直角,对角线相等,根据MN与BC平行,得到MN与AD平行,可得出四边形AMND是平行四边形,由一个角为直角的平行四边形是矩形得到AMND是矩形,得到∠AMN=90°,根据AF与BE垂直,得到一对直角相等,利用AAS得到三角形AFM与三角形BEC全等,利用全等三角形对应边相等得到AM=BC,根据AD=BC,得到AM=AD,利用邻边相等的矩形是正方形即可得证.【解答】证明:∵四边形ABCD是矩形,∴AD∥BC,AB∥CD,∠BAD=∠C=∠ABC=90°,BC=AD,∵MN∥BC,∴MN∥AD,又∵AB∥CD,∴四边形AMND是平行四边形,又∵∠BAD=90°,∴四边形AMND是矩形,∴∠AMN=90°,∵AF⊥BE,∴∠AFB=90°,∵∠AFB+∠ABF+∠BAF=180°,∴∠ABF+∠BAF=90°,又∵∠ABC=∠ABF+∠EBC=90°,∴∠BAF=∠EBC,在△AFM和△BEC中,,∴△AFM≌△BEC(AAS),∴AM=BC,又∵AD=BC,∴AM=AD,又∵四边形AMND是矩形,∴四边形AMND是正方形.24.已知:如图,平面直角坐标系中有一个等腰梯形ABCD,且AD∥BC,AB=CD,点AC在x轴上AD=3,BC=11,在y轴正半轴上,点B、(点B在点C 的左侧),点D在第一象限,梯形的高为2,双曲线y=经过点D,直线y=kx+b经过A、B两点.(1)求点A、B、C、D的坐标;)(2)求双曲线y=和直线y=kx+b的解析式;(3)点M在双曲线上,点N在y轴上,如果四边形ABMN是平行四边形,求点N的坐标.【考点】反比例函数综合题.【分析】(1)首先过点D作DH⊥x轴于点H,由AD∥BC,AB=CD,易得四边形AOHD是矩形,证得Rt△ABO≌Rt△DCH,又由AD=3,BC=11,梯形的高为2,即可求得答案;(2)由双曲线y=过点D,直线y=kx+b过点A,B,直接利用待定系数法求解即可求得答案;(3)由四边形ABMN是平行四边形,可得点M的横坐标为﹣4,继而求得点M的坐标,又由AN=BM,求得答案.【解答】解:(1)如图1,过点D作DH⊥x轴于点H.∵AD∥BC,AB=CD,∴四边形ABCD是等腰梯形,∵AO⊥x轴,∴四边形AOHD是矩形,∴AO=DH,AD=OH,∠AOB=∠DHC=90°,在Rt△ABO和Rt△DCH中,,∴Rt△ABO≌Rt△DCH(HL).∴BO=CH,∵梯形的高为2,∴AO=DH=2.∵AD=3,BC=11,∴BO=4,OC=7.∴A(0,2),B(﹣4,0),C(7,0),D(3,2);(2)∵双曲线y=经过点D(3,2),∴m=xy=6.∴双曲线的解析式为:y=,∵直线y=kx+b经过A(0,2)、B(﹣4,0)两点,)得:,∴解得:.∴直线的解析式为:y=x+2;(3)如图2,∵四边形ABMN是平行四边形.∴BM∥AN且BM=AN.∵点N在y轴上,∴过点B作x轴的垂线与双曲线y=的交点即为点M.∴点M的坐标为M(﹣4,﹣),∴BM=.∴AN=BM=,∴ON=OA﹣AN=,∴点N的坐标为N(0,).)25.已知:如图,在矩形ABCD中,AB=2,BC=5,点P是边AD 上一点,连接CP,将四边形ABCP沿CP所在直线翻折,落在四边形EFCP的位置,点A、B的对应点分别为点E,F,边CF与边AD的交点为点G.(1)当AP=2时,求PG的值;(2)如果AP=x,FG=y,求y关于x的函数解析式,并写出它的定义域;(3)连结BP并延长与线段CF交于点M,当△PGM是以MG为腰的等腰三角形时,求AP的长.【考点】四边形综合题.【分析】(1)设PG=a,则在RT△DGC中,CG=a,DG=3﹣a,CD=2,利用勾股定理即可解决问题.(2)在RT△DGC中,CD2+DG2=CG2,得到(y﹣x)2+22=(5﹣y)2,由此即可解决问题.①MG=MP,(3)如图1中,分两种情形讨论即可,只要证明△APB ≌△DGC,得到AP=DG,列出方程即可,②MG=PG,只要证明△ABP,△DPC,△BPC均为直角三角形,根据AP2+AB2+DP2+CD2=BC2,列出方程即可.【解答】(1)由题意得:四边形ABCP与四边形EFCP全等.∴∠BCP=∠FCP.∵四边形ABCD是矩形,∴AD∥BC,∴∠BCP=∠DPC,∴∠DCP=∠FCP,∴PG=CG,设PG=a,则在RT△DGC中,CG=a,DG=3﹣a,CD=2,且CD2+DG2=CG2,∴22+(3﹣a)2=a2,解得:a=即PG=.,(2)由题意得:CF=BC=5,∴CG=5﹣y,∴PG=5﹣y,∴DG=5﹣(5﹣y)﹣x=y﹣x,∵在RT△DGC中,CD2+DG2=CG2,∴(y﹣x)2+22=(5﹣y)2,∴y=,)∴y关于x的函数解析式为:y=,(0≤x≤3)(3)∵△PGM是以MG为腰的等腰三角形,∴MG=MP或MG=PG,如图1中,①当MG=MP时,∵∠MPG=∠MGC,∵∠APB=∠MPG,∠MGP=∠DGC,∴∠APB=∠DGC,在△APB和△DGC中,,∴△APB≌△DGC,∴AP=DG,∴y=2x,∴=2x,化简整理得:3x2﹣20x+21=0,解得:x=,∵x= ∴x=>3不符合题意舍去,.②当MG=PG时,∵∠MPG=∠PMG,∵∠MPG=∠MBC,∴∠MBC=∠PMC,∴CM=CB,(即点M与点F重合).又∵∠BCP=∠MCP,∴CP⊥BP,∴△ABP,△DPC,△BPC均为直角三角形.∴AP2+AB2+DP2+CD2=BC2,即x2+22+(5﹣x)2+22=52,化简整理得:x2﹣5x+4=0,解得:x=1或4.∵x=4>3不符合题意舍弃,∴x=1.综上所述:当△PGM是以MG腰的等腰三角形时,AP=或1.))20XX年9月25日)。

相关文档
最新文档