江西省研究生数学建模竞赛B题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江西省研究生数学建模竞赛B题
泄洪设施修建计划
位于我国南方的某个偏远贫困乡,地处山区,一旦遇到暴雨,经常发生洪涝灾害。
以往下雨时,完全是依靠天然河流进行泄洪。
2010年入夏以来,由于史无前例的连日大雨侵袭,加上这些天然河流泄洪不畅,造成大面积水灾,不仅夏粮颗粒无收,而且严重危害到当地群众的生命财产安全。
为此,乡政府打算立即着手解决防汛水利设施建设问题。
从两方面考虑,一是在各村开挖一些排洪沟,以满足近两三年的短期防汛需要;二是从长远考虑,可以通过修建新泄洪河道的办法把洪水引出到主干河流。
经测算,修建新泄洪河道
的费用为L
.0
(万元),其中Q表示泄洪河道的可泄洪量(万立方米/小
P51.0
66
Q
时),L表示泄洪河道的长度(公里)。
请你们通过数学建模方法,解决以下问题:
问题1:该乡的某个村区域内原有四条天然河流,由于泥沙沉积,其泄洪能力逐年减弱。
在表1中给出它们在近年来的可泄洪量(万立方米/小时)粗略统计数字。
水利专家经过勘察,在该村区域内规划了8条可供开挖排洪沟的路线。
由于它们的地质构造、长度不同,因而开挖的费用和预计的可泄洪量也不同,详见表2,而且预计每条排洪沟的可泄洪量还会以平均每年10%左右的速率减少。
同时开始修建一段20公里长的新泄洪河道。
修建工程从开工到完成需要三年时间,且每年投资修建的费用为万元的整数倍。
要求完成之后,通过新泄洪河道能够达到可泄洪量100万立方米/小时的泄洪能力。
乡政府从2010年开始,连续三年,每年最多可提供60万元用于该村开挖排洪沟和修建新泄洪河道,为了保证该村从2010至2014年这五年间每年分别能至少达到可泄洪量150、160、170、180、190万立方米/小时的泄洪能力,请作出一个从2010年起三年的开挖排洪沟和修建新泄洪河道计划,以使整个方案的总开支尽量节省(不考虑利息的因素在内)。
表1 现有四条天然河道在近几年的可泄洪量(万立方米/小时)
表2 开挖各条排洪沟费用(万元)和预计当年可泄洪量(万立方米/小时)
问题2:该乡共有10个村,分别标记为①—⑩,下图给出了它们大致的相对地理位置,海拔高度总体上呈自西向东逐渐降低的态势。
①
②③④
⑤
⑥⑦⑧
⑨
⑩
其中村⑧距离主干河流最近,且海拔高度最低。
乡政府打算拟定一个修建在各村之间互通的新泄洪河道网络计划,将洪水先通过新泄洪河道引入村⑧后,再经村⑧引出到主干河流。
要求完成之后,每个村通过新泄洪河道能够达到可泄洪量100万立方米/小时的泄洪能力。
表3 各村之间修建新泄洪河道的距离(单位:公里)
请你们根据表3中的数据,为该乡提供一个各村之间修建新泄洪河道网络的合理方案,使得总费用尽量节省。
(说明:从村A→村B的新泄洪河道,一般要求能够承载村A及上游新泄洪河道的泄洪量。
)
问题3:新泄洪河道网络铺设完成后,打算安排一位维护人员,每天可以从一个村到与之直接有新泄洪河道连接的相邻村进行设施维护工作,并在到达的村留宿,次日再随机地选择一个与该村直接有新泄洪河道连接的相邻村进行维护工作。
试分析长此以往,他在各村留宿的概率分布是否稳定?
问题4:你们是否能够为该乡提出一个更加合理的解决泄洪的办法?
说明:1、以上问题必须建立一般的数学模型,不能仅按照题目中提供的数据计算一个结果。
2、建模过程中,可自行提出合理的模型假设。