一种基于MCU+FPGA的LED大屏幕控制系统的设计

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

引言

只要在现在的市场上走一圈就会发现,大部分的中小规模 LED 显示系统,采用的是传统的单片机作为主控芯片。但是内部资源较少、运行速度较慢的单片机,很难满足LED大屏幕的显示屏,因为系统要求数据传输量大,扫描速度要快。以FPGA作为控制器,一方面,FPGA采用软件编程实现硬件功能,可以有效提高运行速度;另一方面,它的引脚资源丰富,可扩展性强。因此,用单片FPGA 和简单的外围电路就可以实现大屏幕LED显示屏的控制,具有集成度高、稳定性好、设计灵活和效率高等优点。

1 系统总体结构

LED大屏幕显示系统由上位机(PC机)、单片机系统、FPGA控制器、LED显示屏的行列驱动电路等模块组成,如图1所示。上位机负责汉字、字符等数据的采集与发送。单片机系统与上位机之间以异步串行通信工作方式,通过串行端口从上位机获得已完成格式转换的待显示的图形点阵数据,并将其存入EEPROM 存储器。之后通过FPGA控制器,将存储器的显示数据还原到LED显示屏。扫描控制电路采用可编程逻辑芯片Cyclone EP1C6,利用VHDL语言编程实现,采用1/16扫描方式,刷新频率在60 Hz以上。本文着重介绍256×1024的单色图文显示屏的FPGA控制模块。

图1 系统总体结构框图

2 LED显示屏基本工作原理

对大屏幕LED显示屏来说,列显示数据通常采用的是串行传输方式,行采用1/16的扫描方式。图2为16×32点阵屏单元模块的基本结构,列驱动电路采用4个74HC595级联而成。在移位脉冲SRCLK的作用下,串行数据从74HC595的数据端口SER一位一位地输入,当一行的所有32列数据传送完后,输出锁存信号RCLK并选通行信号Y0,则第1行的各列数据就可按要求显示。按同样的方法显示其余各行,当16行数据扫描一遍(即完成一个周期)后,再从第1行开始下一个周期的扫描。只要扫描的周期小于20 ms,显示屏就不闪烁。

图2 16×32点阵屏基本结构

256×1024大屏幕显示屏由16×32个的16×32点阵屏级联而成。为了缩短控制系统到屏体的信号传输时间,将显示数据分为16个区,每个区由16×1024点阵组成,每行数据为1024/8=128字节,显示屏的像素信号由LED显示屏的右侧向左侧传输移位,把16个分区的数据存在同一块存储器。一屏的显示数据为32 KB,要准确读出16个分区的数据,其存储器的读地址由16位组成,由于数据只有32 KB,因此最高可置为0。其余15位地址从高到低依次为:行地址(4位)、列地址(7位)、分区地址(4位)。4位分区地址的译码信号(Y0~Y15)作为锁存器的锁存脉冲,在16个读地址发生周期内,依次将第1~16分区的第1字节数据锁存到相应的锁存器,然后在移位锁存信号上升沿将该16字节数据同时锁存入16个8位并转串移位寄存器组中。在下一个16个读地址发生时钟周期,一方面,并转串移位寄存器将8位数据移位串行输出,移位时钟为读地址发生时钟的二分频;另一方面,依次将16个分区的第2字节数据读出并锁入相应的锁存器,按照这种规律将所有分区的第一行数据依次全部读出后,在数据有效脉冲信号的上升沿将所有串行移位数据输出,驱动LED显示。接下来,移位输出第2行的数据,在此期间第1行保持显示;第2行全部移入后,驱动第2

行显示,同时移入第3行……按照这种各分区分行扫描的方式完成整个LED大屏幕的扫描显示。

3 基于FPGA显示屏控制器的设计

3.1 FPGA控制模块总体方案

如图3所示,FPGA控制模块主要由单片机与FPGA接口及数据读写模块、读地址发生器、译码器、行地址发生器、数据锁存器组、移位寄存器组、脉冲发生器等模块组成。

图3 FPGA控制模块总体结构框图

读地址发生器主要产生读地址信号,地址信号送往MCU接口及数据读写模块,读取外部SRAM1或SRAM2中已处理好的LED显示屏数据,并把数据按分区方式送到数据锁存器组锁存。锁存器输出16分区数据,通过移位寄存器组实现并串转换得到显示屏所需要的串行数据,并送往LED显示屏列驱动电路。脉冲发生器为各模块提供相应的同步时钟,行地址发生器产生相应的行信号送往显示屏的行驱动电路。

3.2 单片机与FPGA接口及数据读写模块

单片机与FPGA接口及数据读写模块结构如图4所示。单片机从EEPROM中读取数据并根据显示要求进行处理后,通过接口及数据读写模块把数据送往数据缓冲器SRAM1或SRAM2。为提高数据的传输速度,保证显示效果的连续性,在系统中采用双体切换技术来完成数据存储过程。也就是说,采用双SRAM存储结构,两套完全独立的读、写地址线和数据线轮流切换进行读写。工作时,FPGA在一个特定的时间只从两块SRAM中的一块读取显示的数据进行显示,同时另外一块SRAM与MCU进行数据交换。MCU会写入新的数据,依次交替工作,可实现左移、上移、双屏等显示模式。如果显示的内容不改变,即一块SRAM里的数据不变时,MCU不需要给另外一块SRAM写数据。

图4 单片机与FPGA接口及数据读写模块结构框图

图5 数据读写状态转换图

该模块采用VHDL有限状态机来实现,整个控制分为4个状态,其状态转换图如图5所示。其工作过程如下:系统开机进入初始状态ST0,单片机的写入使能端E为低电平,单片机从EEPROM中读取数据并把数据写入到SRAM1,同时FPGA读取SRAM2中的数据;当单片机数据写完一屏数据后E变为高电平,当FPGA从SRAM2中读完数据、结束信号READ_END为低电平时,进入ST1状态。

在ST1状态下,若没有新的数据写入则E保持高电平,FPGA读取SRAM1的数据,为静态显示;只有当单片机的读入控制信号E为低电平且READ_END

为低电平时,进入ST2状态。在ST2状态下,单片机把数据写入SRAM2,同时FPGA读取SRAM1的数据,单片机数据写完后E变为高电平,当FPGA一屏数据读完后READ_END为低电平,进入ST3状态。在ST3状态下,如果没有新数据写入E为高电平,FPGA读取SRAM2中的数据。当单片机有新的数据写入时E变为低电平,当FPGA一屏数据读完后READ_END为低电平时,重新进入ST0状态。通过这种周而复始的交替工作完成数据的写入与读取,其端口程序如下:

ENTITY WRITEREAD_SEL IS

相关文档
最新文档