电阻的测量方法及原理
8测电阻的方法及原理

8测电阻的方法及原理
测量电阻的方法及原理:
1. 电压分压法:
原理:根据欧姆定律,电流通过电阻的大小与电阻两端的电压成正比。
通过测量电阻两端的电压,可以计算出电阻的大小。
方法:将待测电阻与一个已知电阻连接成电路,用电压表测量电阻两端的电压。
根据已知电阻和电压之间的关系,可以计算出待测电阻的阻值。
2. 恒流法:
原理:在一个恒定电流下,电压与电阻的大小成正比。
通过测量电阻两端的电压,可以计算出电阻的大小。
方法:将待测电阻与恒流源和电压表连接成电路,将恒定电流通过待测电阻,然后通过电压表测量电阻两端的电压。
根据恒定电流和电压之间的关系,可以计算出待测电阻的阻值。
3. 桥式测量法:
原理:利用电桥平衡原理,在测量电阻时,通过调节桥路中的已知电阻或变阻器,使电桥平衡,即电桥两侧电位相等,可以计算出待测电阻的大小。
方法:将待测电阻与一个已知电阻、一个可调电阻和一个电桥连接成电路。
通过调节可调电阻,使电桥平衡,记录下已知电阻和可调电阻的数值。
根据电桥平衡条件,可以计算出待测电阻的阻值。
4. 万用表测量法:
原理:万用表是一种集电压表、电流表和电阻表于一体的测量工具。
通过在不同的档位下测量待测电阻的电压或电流,以及参考值,可以计算出待测电阻的大小。
方法:将待测电阻与万用表连接成电路,选择合适的档位,测量电阻的电压或电流。
根据参考值和万用表的读数,可以计算出待测电阻的阻值。
以上是常用的几种测量电阻的方法及原理,根据测量的需求和实际情况选择合适的方法进行测量。
高中电学实验第一讲:电阻的测量方法及原理

高中电学实验第一讲:电阻的测量方法及原理一、伏安法测电阻1、电路原理“伏安法”就是用电压表测出电阻两端的电压U,用电流表测出通过电阻的电流I,再根据欧姆定律求出电阻 R= U/I 的测量电阻的一种方法。
电路图如图一所示。
如果电表为理想电表,即 R V=∞,R A=0用图一(甲)和图一(乙)两种接法测出的电阻相等。
但实际测量中所用电表并非理想电表,电压表的内阻并非趋近于无穷大、电流表也有内阻,因此实验测量出的电阻值与真实值不同,存在误差。
如何分析其误差并选用合适的电路进行测量呢?若将图一(甲)所示电路称电流表外接法,(乙)所示电路为电流表内接法,则“伏安法”测电阻的误差分析和电路选择方法可总结为四个字:“大内小外”。
2、误差分析(1)、电流表外接法由于电表为非理想电表,考虑电表的内阻,等效电路如图二所示,电压表的测量值 U 为ab间电压,电流表的测量值为干路电流,是流过待测电阻的电流与流过电压表的电流之和,故:R测 = U/I = Rab = (Rv∥R)= (Rv×R)/(Rv+R) < R(电阻的真实值)可以看出,此时 R测的系统误差主要来源于 Rv 的分流作用,其相对误差为δ外= ΔR/R = (R-R测)/R = R/(Rv+R)( 2)、电流表内接法其等效电路如图三所示,电流表的测量值为流过待测电阻和电流表的电流,电压表的测量值为待测电阻两端的电压与电流表两端的电压之和,故:R测 = U/I = RA+R > R此时R测的系统误差主要来源于RA的分压作用,其相对误差为: δ内= ΔR/R = (R测-R)/R = RA/R综上所述,当采用电流表内接法时,测量值大于真实值,即"大内";当采用电流表外接法时,测量值小于真实值,即“小外”。
3、电路的选择(一)比值比较法1、“大内”:当 R >> RA 时,,选择电流表内接法测量,误差更小。
电阻的测量实验原理

电阻的测量实验原理
电阻的测量实验原理是通过测量电流和电压来计算电阻的大小。
实验中常用的方法有三种:电流法、电压法和桥法。
1. 电流法:
电流法是通过测量通过电阻的电流来计算电阻值。
实验中,需要将待测电阻与一个已知电阻串联,接入电流源和电流表,同时连接一个电压表测量电阻两端的电压。
通过改变电流源的电流大小,测量电压表的电压值。
根据欧姆定律,电流和电阻之间存在线性关系,可以计算出待测电阻的值。
2. 电压法:
电压法是通过测量加在电阻两端的电压来计算电阻值。
实验中,需要将待测电阻与一个已知电阻并联,接入电压源和电压表。
通过改变电压源的电压大小,测量电压表的电压值。
根据欧姆定律,电压和电阻之间存在线性关系,可以计算出待测电阻的值。
3. 桥法:
桥法利用电桥平衡时电流为零的原理来测量电阻值。
实验中,需要连接一个电阻桥,桥上接有待测电阻和已知电阻。
当桥平衡时,桥上电流为零,可以通过调节已知电阻来使桥平衡,此时已知电阻和待测电阻成比例。
通过测量已知电阻的值,可以计算待测电阻的值。
测电阻的六种方法

THANKS FOR WATCHING
感谢您的观看
的电阻测量。
01
02
03
1. 确保电源电压稳定,避免 测量误差。
2. 选择合适的电流表和电压 表量程,避免测量超量程或
欠量程。
04
05
3. 在测量前检查已知电阻是 否准确可靠,以减小误差。
04 电桥法
定义与原理
定义
电桥法是一种利用电桥平衡原理来测量电阻的方法。
原理
电桥平衡时,比较臂电阻与被测电阻的阻值相等,通过测量比较臂电阻的数值 即可得出被测电阻的阻值。
操作步骤
准备测量仪器和工具,如电桥、电源、导线等。 调节电桥平衡,使电流表读数为零。
将比较臂电阻和被测电阻接入电桥电路中。
记录比较臂电阻的数值,并根据电桥平衡原理计算被测 电阻的阻值。
适用范围与注意事项
适用范围
适用于测量中、小电阻的阻值,具有较高的测量精度和灵敏 度。
注意事项
在测量前应检查仪器和工具是否完好,避免因仪器故障导致 测量误差;在测量过程中应保持电桥平衡,避免因外界干扰 导致测量误差;在测量结束后应及时整理仪器和工具,并做 好记录和保存工作。
定义与原理
• 替代法是用与被测电阻相等的已知电阻,通过与被测电阻 串联或并联,使电流或电压相等,从而得到被测电阻阻值 的测量方法。其原理基于欧姆定律和基尔霍夫定律。
操作步骤
1. 准备已知电阻和测量仪表, 如电压表、电流表等。
04
4. 记录此时仪表读数,根据欧 姆定律计算被测电阻阻值。
01 03
2. 将被测电阻接入电路中, 记录仪表读数。
2. 进行实际测量,记录相 关数据。
4. 考虑系统误差和偶然误 差,对测量结果进行评估。
电阻测量报告

电阻测量报告引言:电阻是电学中非常重要的一个物理量,它决定了电路中的电流和电压的关系。
在实际应用中,电阻的测量是一项基础而且关键的任务。
本报告将探讨电阻测量的原理、方法以及常见的测量误差,并提供一些改进措施,以便能够更准确地进行电阻测量。
一、电阻测量原理电阻是导体对电流流动的阻碍,是单位电压下通过导体的电流大小。
电阻的单位是欧姆(Ω),常用示波器、电阻箱等仪器来测量。
在电路中,常使用欧姆定律来计算电阻的大小:R=U/I,其中R表示电阻值,U表示电压,I表示电流。
二、电阻测量方法1. 串联法测量:将待测电阻与一个已知电阻串联起来,接入电路中。
通过测量整个电路中的电流和电压,结合欧姆定律计算出电阻值。
2. 并联法测量:将待测电阻与一个已知电阻并联起来,接入电路中。
通过测量整个电路中的电流和电压,运用并联电阻的计算公式,计算出待测电阻的阻值。
三、电阻测量误差1. 仪器误差:任何测量仪表在制造过程中都会存在一定的误差。
检验仪器的准确性和精确度对于电阻测量至关重要。
2. 温度影响:电阻值与温度密切相关。
电阻在不同温度下有不同的阻值,因此在测量中需要注意温度的影响。
3. 导线阻值:电阻测量过程中使用的导线也会有一定的电阻值。
这种电阻值可能会对测量结果产生一定的影响。
四、改进措施1. 温度补偿:了解电阻值与温度之间的关系,可以通过查阅相关资料,了解电阻的温度系数,从而进行相应的校正。
2. 优质导线:使用低电阻率的优质导线,以减少导线阻值对测量结果的影响。
3. 定期校准:定期校准测量仪器,确保其准确性和精确度。
结论:电阻测量在电路设计和实验室研究中起着至关重要的作用。
通过正确选择测量方法、注意测量误差及其产生的原因,并采取相应的改进措施,能够提高电阻测量的准确性和精确度,有效地进行各种电阻测量工作。
总结:本报告探讨了电阻测量的原理、方法和常见误差,提供了改进措施以提高测量的准确性。
通过识别并解决电阻测量过程中的问题,能够确保电路设计和实验室研究的可靠性和精确性。
初中测电阻的六种方法

初中测电阻的六种方法测电阻是电学实验中常见的实验内容之一。
电阻是电路中对电流产生阻碍的元件,通常用欧姆(Ω)作为单位表示。
以下是测电阻的六种方法:1.伏安法:伏安法是最常用的测电阻的方法之一。
原理是通过测量通过电阻的电流和电阻两端的电压来确定电阻值。
在直流电路中,通过欧姆定律可以得到电阻的数值,即R = V/I,其中R为电阻,V为电压,I为电流。
通过改变电阻和测量电流和电压的变化,便可以确定电阻的具体值。
2.桥式法:桥式法是一种常见的测量精度较高的测电阻方法。
这种方法根据电桥平衡条件进行测量,原理是通过调节一个或多个可变电阻,使电桥平衡,即无电流通过电桥。
可通过改变电桥的各个元件的值,来测量电阻的值。
3.走线法:走线法是一种简单易行的测电阻方法。
原理是通过将待测电阻连接到一个由导线组成的测量线路中,通过测量电流和电压的关系,来确定电阻的值。
电流可以通过电源连接到线路上,通过电压表或示波器测量电流和电压的变化,从而测量电阻。
4.万用表法:万用表法是一种常见的测电阻方法。
原理是将万用表的正负电极分别连接到电阻的两端,读取表盘上的数值,即可得到电阻的数值。
万用表具有较高的测量精度和多功能,可以测量不同范围的电阻值。
5.滑线法:滑线法是一种用于测量滑动变阻器(如电位器)电阻值的方法。
原理是将滑动变阻器连接到一个电路中,通过滑动板调节电阻值,并通过外部电阻、电压表或者示波器测量电流和电压的变化,从而得到滑动变阻器的电阻值。
6.串联法和并联法:串联法和并联法是测量电阻的两种常见方法。
串联法是将待测电阻与一个已知电阻串联,通过测量总电阻和已知电阻的数值,从而计算得到待测电阻的值。
并联法是将待测电阻与已知电阻并联,通过测量总电阻和已知电阻的数值,再计算得到待测电阻的值。
这两种方法常常用于粗略估算电阻值或检验电阻值的范围。
这些方法各有优劣,适用于不同的测量场合。
通过合理选择适当的测量方法,我们可以准确测量电阻值,并在实际应用中得到有效应用。
8种测电阻的方法及原理

8种测电阻的方法及原理
1. 串联法测电阻原理:将未知电阻与已知电阻依次串联,通过测量串联电阻的电压和电流,利用欧姆定律推算出未知电阻的值。
2. 并联法测电阻原理:将未知电阻与已知电阻依次并联,通过测量并联电阻的电压和电流,利用欧姆定律推算出未知电阻的值。
3. 桥式测电阻原理:使用电阻桥电路进行测量,通过调节桥路平衡,使得平衡时电流或电压为零,从而推算出未知电阻的值。
4. 电容法测电阻原理:利用电容器充电和放电的特性,结合电阻和电容关系式,测量电容器充电或放电的时间,推算出未知电阻的值。
5. 瞬态法测电阻原理:通过在电阻上施加脉冲电压或电流,测量电阻上的响应信号,利用信号的幅度与电阻值之间的关系,推算出未知电阻的值。
6. 温度系数法测电阻原理:利用电阻器的温度系数特性,测量电阻器在不同温度下的阻值变化,推算出未知电阻的值。
7. 信号发生器法测电阻原理:使用信号发生器产生一定频率和振幅的信号,通过测量电阻器对信号的阻抗作出判断,推算出未知电阻的值。
8. 数字电桥法测电阻原理:利用数字电桥仪器进行测量,通过调节电桥平衡,测量电桥上的电阻差值,推算出未知电阻的值。
8种测电阻的方法及原理

8种测电阻的方法及原理
测电阻的方法有很多种,以下列举8种常见的方法及其原理:
1. 电表测量法:使用电表测量电阻值,通过测量电流和电压的关系来计算电阻值。
电表将电流经过待测电阻后,测量电压的大小,再根据欧姆定律计算电阻值。
2. 桥式测量法:使用维尔斯通电桥或韦恩电桥等测量仪器进行测量。
通过调节桥路中的电流、电压或电阻,使桥路平衡,根据其平衡条件计算出待测电阻的值。
3. 相位差测量法:使用交流信号测量待测电阻的相位差。
相位差测量仪器将输入的交流信号分成两路,经过待测电阻和标准电阻后,再通过相位差计算待测电阻的阻值。
4. 双电压源法:在待测电阻两端接入两个不同电压源,通过测量两个电压源之间的电压差和流过待测电阻的电流,计算出电阻值。
5. 恒流法:通过串联一个恒定电流源和待测电阻,测量电压降,再根据欧姆定律计算电阻值。
该方法适用于较小的电阻值测量。
6. 差动测量法:通过测量两个电阻之间的电压差和电流,计算出待测电阻值。
该方法避免了测量电源电压的误差。
7. 瞬态法:待测电阻两端加一个瞬态电压源,测量电阻两端的电压响应时间,再根据响应时间计算电阻值。
8. 气体放电法:通过加大电压,使待测电阻发生放电,测量电流和电压的关系,计算电阻值。
这种方法通常适用于较高阻值的电阻。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、电阻的测量方法及原理一、伏安法测电阻1、电路原理“伏安法”就是用电压表测出电阻两端的电压U,用电流表测出通过电阻的电流I,再根据欧姆定律求出电阻 R= U/I 的测量电阻的一种方法。
电路图如图一所示。
如果电表为理想电表,即 RV =∞,RA=0用图一(甲)和图一(乙)两种接法测出的电阻相等。
但实际测量中所用电表并非理想电表,电压表的阻并非趋近于无穷大、电流表也有阻,因此实验测量出的电阻值与真实值不同,存在误差。
如何分析其误差并选用合适的电路进行测量呢?若将图一(甲)所示电路称电流表外接法,(乙)所示电路为电流表接法,则“伏安法”测电阻的误差分析和电路选择方法可总结为四个字:“大小外”。
2、误差分析(1)、电流表外接法由于电表为非理想电表,考虑电表的阻,等效电路如图二所示,电压表的测量值 U 为ab间电压,电流表的测量值为干路电流,是流过待测电阻的电流与流过电压表的电流之和,故:R测= U/I = Rab = (Rv∥R)=(Rv×R)/(Rv+R) < R(电阻的真实值)可以看出,此时 R测的系统误差主要来源于 Rv 的分流作用,其相对误差为δ外= ΔR/R = (R-R测)/R = R/(Rv+R)( 2)、电流表接法其等效电路如图三所示,电流表的测量值为流过待测电阻和电流表的电流,电压表的测量值为待测电阻两端的电压与电流表两端的电压之和,故:R测 = U/I = RA+R > R此时R测的系统误差主要来源于RA的分压作用,其相对误差为:δ = ΔR/R = (R测-R)/R = RA/R综上所述,当采用电流表接法时,测量值大于真实值,即"大";当采用电流表外接法时,测量值小于真实值,即“小外”。
3、电路的选择(一)比值比较法1、“大”:当 R >> RA 时,,选择电流表接法测量,误差更小。
“小外”:当 R << Rv 时,,选择电流表外接法测量,误差更小。
2、“大”:当R> 时,应选择电流表接法进行测量。
“小外”:当R< 时,应选择电流表外接法进行测量。
证明:电流表、外接法的相对误差分别为 δ = RA/R 和 δ外 = R/(Rv+R),则:(1)若δ<δ外 ,RA/R < R/(Rv+R)即 R 2>R A R v +R A R≈R A R v , R>此时 ,电流表接法的相对误差小于电流表外接法的相对误差,故实验电路应选择电流表接法,即“大”。
(2)同上分析可知,当R< 时,δ>δ外 ,实验电路应选择电流表外接法,即“小外”。
3、试触法当待测电阻的阻值完全未知时,常采用试触法,观察电流表和电压表的示数变化情况: "大":当ΔI/I>ΔU/U 时,电流表的示数的相对变化大,说明电压表的分流作用显著,待测电阻的阻值与电压表的阻可以相比拟,误差主要来源于电压表,应选择电流表接法。
"小外":当ΔI/I<ΔU/U 时,电流表的示数的相对变化小,说明电流表的分压作用显著,待测电阻的阻值与电流表的阻可以相比拟,误差主要来源于电流表,应选择电流表外接法。
例:某同学用伏安法测一个未知电阻R ,用图一所示甲、乙电路各测一次,依甲图测得的数据是U=2.9V 、I=4.0mA ,依乙图测得的数据是3.0V 、3.0mA ,由此可知 所示的电路测量误差小些,测得的R 为____Ω 。
分析:对电流表所测数据,ΔI/I=(4.0-3.0)/4.0=1/4 ;对电压表所测数据,ΔU/U=(3.0-2.9)/2.9=1/29 ,此时ΔI/I>ΔU/U ,由"大"有,电流表接法的测量误差小,即乙图所示电路,测得的R= U/I=3.0/3.0×10-3Ω=1.0×103Ω二、替代法测电阻 (1)电路如图2、实验原理本实验利用闭合电路欧姆定律,当电流表示数相同时的R 1值即等于待测电阻R X 的阻值大小误差分析:实验中的误差主要来源于电阻箱接触电阻的存在,一般测量电路时选择图1所示的电路图,主要原因是,电阻箱在测量过程中不允许流过的电流过大。
三、半偏法测电阻(一)实验电路1、限流式半偏法,图九为限流式半偏法(因变阻器采用的是限流接法)原理为:首先闭合K 1、断开K 2,调节R 1使电流表满偏,再保持K 1不变,R 1不变,调节器节R 2使电流表半偏,则此时变阻器R 2的示数即为要测量的电流表的阻值。
原因,当R 1》》R g 时,R 2的引入对于干路电流影响极小,可以忽略不计,可认为电路中I=Ig 不变,所以电流表的电流与流过变阻器的电流相同,据并联电路分流关系可得,R 2=R g 。
适用条件:本电路仅适用于测量小电阻电流表的阻。
误差分析:电路中,E 、r 不变,R 1不变,R 2的引入导致电路的总电阻略有减小,电路中总电流略有增大,从而使得流过变阻器R 2的电流比流过电流表的电流稍大些,因此变阻器的电阻略小于电表阻。
所以测量值比真实值偏小。
减小误差的方法:电路中电源电动势要大一些,从而使得变阻器R 1的阻值尽可能大些。
2、分压式半偏法图十为分压式半偏法(因变阻器采用的是分压式连接法) 实验原理:如图闭合K 1闭合K 2,调节器节R 1,使电压表满偏,保持R 1不变,断开K 2,调节R 2使电压表半偏,当R V 》R 1时,接入R 2,时可认为分压电路部分电压不变,据串联电路的分压特点可得,R V =R 2。
应用条件:本电路仅适用于测量大阻值电表电阻。
误差分析:接入R 2时,导致分压电路总电阻略有增大,从而使分压电路分压略有增大,而电压表的示数仅为U/2则R 2两端的电压应略大于U/2,所以R 2﹥R V 。
即电压表的测量值略大于真实值。
减小误差的方法:1、Ug 》R1,R1越小,Ug越大误差越小2、电源电动势E大,则分压电阻越小,误差越小。
四、电桥电路测电阻1、电路原理如图2、电路原理当电路中灵敏电流计的示数为零时则有电阻=21RR43RR利用此关系可进行电阻的测量,在测量时可把电路转换为如下图所示。
即把R3、R4换成一根长直均匀电阻丝,RX为待测电阻,R为标准电阻,R和RX间接入一灵敏电流计,滑动触头P可在电阻丝AB上任意移动,且接触良好,当电流表中I=0时测出AP、BP两段电阻丝的长度,由下式21xxRRX=可得出Rx的阻值大小。
3、误差分析:该设计电路中的误差主要决定于电流表的灵敏度和电路中的接触电阻的大小。
五、利用电表的非常规接法测电阻电表的非常规接法一般是指利用电流表与电阻的并联来测量低值电阻,或是电压表与电阻的串联来测量高值电阻。
此种接法在近几年的高考中经常出现,应引起重视。
电路如图1、电流表的非常规接法即利用已知阻值的电流表与待测电阻并联来测量电阻此种接法实质是伏安法测电阻:但在测量时要求知道电表的阻 图1中1211I I R I R x -=电路中要求知道电流表A 1的阻; 图2中22211I R I R I R x -=电路中要求知道两只电流表的阻; 适用围:在测量电路中由于电流表的阻一般较小,故本电路一般仅适用于测量低值电值。
2、电压表的非常规接法即利用已知阻值的电压表与待测电阻串联来测量电阻 电路如图:图1中()11121112U R U U R U U U R X -=-=式中R 1电压表U 1的阻 图1中22112R U R U U R X -=式中R 1、R 2为电压表U 1、U 2的阻该设计电路中由于电压表一般阻较大,故本电路一般用于测量高阻值电阻阻值。
六、 利用欧姆表原理测电阻1、 欧姆表原理电路图:2、原理:利用闭合电路欧姆定律。
xg R r R R R EI ++++=10(1)首先将红黑表笔短接,调节R 1使电流表满偏I=I g ,g g I rR R R EI =+++=10令R=R 0+R 1+R g + r保持R 1不变,接入待测电阻R X ,则每一个R X 对应于一个电流值I ,即xR R EI +=内利用I 与I g 的比值关系可得出表盘上每一刻度所对应的电阻值,即为改装后的欧姆表。
其中当I=21I g 时R X =R 即中值电阻等于阻。
对于欧姆表在测量电阻时待测电阻阻值在中值电阻附近时测量值较准确,误差较小,所以一般要求在测量时,阻值在中值电阻附近,可通过换档调零来调节。
3、误差分析:欧姆表引入的误差主要在于两点:i. 由于电池用久以后会导致电源的电动势下降,而阻增大,导致中值电阻阻值增大,不能调零,从而导致测量值大于真实值。
ii. 由于表盘的刻度不均匀,读数误差大,只能用于粗略地测量电阻的阻值。
二、 控制电路分析一般在高中物理电学实验中控制电路有两种:变阻器的限流式接法、变阻器的分压式接法对变阻器的两种接法分析如下:(一) 变阻器的限流式接法1、电路如图十八2、电路分析:在限流式电路中当变阻器阻值R 比待测电阻R x 大得多时,变阻器对电路的控制作用明显。
待测电阻R x 两端的电压围为U RR UR U X X →+=电流围为:XX R UR R U I →+=电路特点:由于电路中变阻器的阻值较大,所以在同等条件下电路中的总电流较小,电路发热较小,功率损耗较小。
电路设计选用要求:电流小,功耗小或给出条件R>R X 时选且R 越大其限流作用越明显 (二)变阻器的分压连接法 1、电路如图十九2、电路分析在限流式电路中当变阻器阻值R 比待测电阻R x 小得越多时,变阻器对电路的控制作用越明显。
待测电阻R x 两端的电压围为U U →=0通过待测电阻的电流围为:xR U I →=0 电路特点:○1 R<R X 时选择且R 比R X 小得越多,其分压作用越明显,R X 两端的电压越接近于线性变化。
○2电路中电压的调节围较大且连续可调, ○3由于电路中的总电阻较小,电路过的电流相对较大,电路功率消耗较大,发热较多。
电路设计选用要求:○1当电路仪器,电表等的最大量程不够时○2电路中要求电压围大且连续可调时○3 R<RX时选择小得多时,必须选择分压式三、电学实验设计:电器元件的选择和实验电路的选择与连接一、电阻的测量方法3、测量电阻的基本方法:二、控制电路原理与分析及选用条件1、限流式连接法:特点:○1R>RX时选且R越大其限流作用越明显○2电路过的电流较小,电源的功率较小,电路中功率损耗较小,节能选用要求:○1电流小,功耗小○2 R>RX时选且R越大其限流作用越明显2、分压式连接法:特点:○1 R<RX 时选择且R比RX小得越多,其分压作用越明显,RX两端的电压越接近于线性变化。