二元一次方程组知识点及典型例题
第一讲 二元一次方程(组)
第一讲二元一次方程(组)1、【知识点梳理】1、二元一次方程【1】含有两个未知数,且含有未知数的项的次数都是一次的方程叫做二元一次方程。
【2】使二元一次方程两边的值相等的一对未知数的值,叫做二元一次方程的一个解。
2、二元一次方程组【1】由两个二元一次方程组成,并且含有两个未知数的方程组,叫做二元一次方程组。
【2】同时满足二元一次方程组中各个方程的解,叫做这个二元一次方程组的解。
3、解二元一次方程组【1】消元就是把二元一次方程组化为一元一次方程。
消元的方法是代入,这种解方程组的方法称为代入消元法,简称代入法。
用代入消元法解二元一次方程组的一般步骤是:I、将方程组中的一个方程变形,使得一个未知数能用含有另一个未知数的代数式表示;II、用这个代数式代替另一个方程中相应的未知数,得到一个一元一次方程,求出一个未知数的值;III、把这个未知数的值代入代数式,求另一个未知数的值;IV、写出方程组的解。
【2】对于二元一次方程组,当两个方程组的同一个未知数的系数相同或是互为相反数时,可以通过把两个方程的两边进行相加或相减来消元,转化为一元一次方程求解。
通过将两个方程的两边进行相加或相减,消去其中一个未知数转化为一元一次方程。
这种解二元一次方程组的方法叫做加减消元法,简称加减法。
用加减法消元法解二元一次方程组的一般步骤是:I、将其中一个未知数的系数转化为相同(或互为相反数);II、通过相加(或相减)消去这个未知数,得到一个一元一次方程; III、解这个一元一次方程,得到这个未知数的值;IV、将求得得未知数的值代入原方程组中的任一个方程,求得另一个未知数的值;V、写出方程组的解。
4、应用二元一次方程组解决实际问题的基本步骤为:【1】理解问题(审题,搞清已知和未知,分析数量关系)【2】制定计划(考虑如何根据等量关系设元,列出方程组)【3】执行计划(列出方程组并求解,得到答案)【4】回顾(检查和反思解题过程,检验答案的正确性以及是否符合题意)5、二元一次方程组应用题分类【1】工程问题:工作量=工作效率×工作时间一般分为两种,一种是一般的工程问题;另一种是工作总量是单位"1"的工程问题【2】行程问题:(1) 相遇问题:甲的路程+乙的路程=甲乙相距的距离(2)追赶问题:甲的路程-乙的路程=甲乙相距的距离(3)航速问题:顺流(风):航速=静水(无风)中的速度+水(风)速逆流(风):航速=静水(无风)中的速度--水(风)速【3】和差倍总分问题:较大量=较小量+多余量,总量=倍数×倍量【4】产品配套问题:加工总量成比例【5】浓度问题:溶液×浓度=溶质【6】银行利率问题:免税利息=本金×利率×时间,税后利息=本金×利率×时间—本金×利率×时间×税率【7】利润问题:利润=售价—进价,利润率=(售价—进价)÷进价×100%【8】盈亏问题:关键从盈(过剩)、亏(不足)两个角度把握事物的总量【9】数字问题:首先要正确掌握自然数、奇数偶数等有关的概念、特征及其表示【10】几何问题:必须掌握几何图形的性质、周长、面积等计算公式【11】年龄问题:抓住人与人的岁数是同时增长的【12】增长率问题:原量×(1+增长率)=增长后的量,原量×(1+减少率)=减少后的量2、【例题解析】【例1】已知与是同类项,求和的值.【例2】已知满足方程组的,值的和等于2,求的值【例3】已知,求的值.【例4】现要加工400个机器零件,若甲先做1天,然后两人再共做2天,则还有60个未完成;若两人齐心合作3天,则可超产20个.问甲、乙两人每天各做多少个零件?【例5】某厂共有120名生产工人,每个工人每天可生产螺栓25个或螺母20个,如果一个螺栓与两个螺母配成一套,那么每天安排多名工人生产螺栓,多少名工人生产螺母,才能使每天生产出来的产品配成最多套?三、【课堂习题】1、下列属于二元一次方程组的是()A、 B、C、 D、2、关于x、y的方程组的解是方程3x+2y=34的一组解,那么m的值是()(A)2;(B)-1;(C)1;(D)-2;3、与已知二元一次方程5x-y=2组成的方程组有无数多个解的方程是()(A)15x-3y=6 (B)4x-y=7 (C)10x+2y=4 (D)20x-4y=3 4、李明同学早上骑自行车上学,中途因道路施工步行一段路,到学校共用时15分钟.他骑自行车的平均速度是250米/分钟,步行的平均速度是80米/分钟.他家离学校的距离是2900米.如果他骑车和步行的时间分别为x,y分钟,列出的方程是( )A. B. C. D.5、已知方程组有无数多个解,则a、b的值等于()(A)a=-3,b=-14 (B)a=3,b=-7(C)a=-1,b=9 (D)a=-3,b=146、若x、y均为非负数,则方程6x=-7y的解的情况是()(A)无解(B)有唯一一个解(C)有无数多个解(D)不能确定7、已知,则x与 y 之比是()A. 5 :2B. 3 :2C. 4 :3D. 2 :58、若|3x+y+5|+|2x-2y-2|=0,则2x2-3xy的值是()(A)14 (B)-4 (C)-12 (D)129、已知与都是方程y=kx+b的解,则k与b的值为()(A),b=-4 (B),b=4(C),b=4 (D),b=-410、在国家倡导的“阳光体育”活动中,老师给小明30元钱,让他买三样体育用品;大绳,小绳,毽子.其中大绳至多买两条,大绳每条10元,小绳每条3元,毽子每个1元.在把钱都用尽的条件下,买法共有()A.6种 B.7种 C.8种 D.9种【填空题】1、在方程3x+4y=16中,当x=3时,y=________,当y=-2时,x=_______若x、y都是正整数,那么这个方程的解为___________;2、方程2x+3y=10中,当3x-6=0时,y=_________;3、若是方程组的解,则;4、如果x=1,y=2满足方程,那么a=____________;5、已知方程组有无数多解,则a=______,m=______;6、若4x+3y+5=0,则3(8y-x)-5(x+6y-2)的值等于_________;7、已知a-3b=2a+b-15=1,则代数式a2-4ab+b2+3的值为__________;8、某家电商场一次出两种不同品牌的电视机,其中一台赚了12%另一台赔了12%,且这次售出的两台电视机的售价都是3080元,那么,在这次买卖中商场的利润为____________元.【解答题】1、;2、;3、 4、;5、;6、;7、a为何值时,方程组的解x ,y的值互为相反数,并求它的值。
二元一次方程组行程问题类型全知识点加练习
一、行程问题:路程=速度×时间1、相遇问题:两者所走的路程之和=两者原相距路程2、追及问题:快者所走路程-慢者所走路程=两者原相距路程例1、某站有甲乙两辆汽车,若甲车先出发1小时后乙车出发,则乙车出发后5小时追上甲车;若甲车先开出30千米后,乙车出发,则乙车出发4小时后乙车所走的路程比甲车所走的路程多10千米。
求两车的速度。
例2、甲、乙两地相距160千米,一辆汽车和一辆拖拉机同时由甲、乙两地相向而行,1小时20分相遇。
相遇后,拖拉机继续前进,汽车在相遇处停留1小时后调转车头原速返回,在汽车再次出发半小时后追上了拖拉机。
这时,汽车、拖拉机各自行驶了多少千米?3、环形跑道问题:环形跑道追及、相遇问题等同于直线追及、相遇问题。
(1)同时同地相向而行第一次相遇(相当于相遇问题):甲的路程+乙的路程=跑道一圈长(2)同时同地同向而行第一次相遇(相当于追及问题):快者的路程-慢者的路程=跑道一圈长例1、甲、乙两人在周长为400米的环形跑道上练跑,如果同时同地相向出发,每隔2.5分钟相遇一次;如果同时同地同向出发。
每隔10分钟相遇一次,假定两人速度不变,且甲快乙慢,求甲、乙两人的速度。
4、航行、飞行问题:(1)顺流(风):航速=静水(无风)中的速度+水(风)速(2)逆流(风):航速=静水(无风)中的速度-水(风)速例1、已知A、B两码头之间的距离为240千米,一艘船航行于A、B 两码头之间,顺流航行需4小时;逆流航行需6小时,求船在静水中的速度及水流的速度。
【练一练】1、甲、乙两人相距36千米,相向而行,如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇,甲、乙两人每小时各走多少千米?2、甲乙两人练习赛跑如果甲让乙先跑10m,甲跑5s就能追上乙,如果乙先跑2s,那么甲跑4s就能追上乙,求两人每秒各跑多少米。
3、甲、乙两人在一条长400米的环形跑道上跑步,如果同向跑,每隔133分钟相遇一次,,如果反向跑,则每隔40秒相遇一次,已知甲比乙跑的快,求甲、乙两人的速度?4、甲、乙两地相距160千米,一辆汽车和一辆拖拉机同时由甲、乙两地相向而行,1小时20分相遇. 相遇后,拖拉机继续前进,汽车在相遇处停留1小时后调转车头原速返回,在汽车再次出发半小时后追上了拖拉机. 这时,汽车、拖拉机各自行驶了多少千米?5、某部队执行任务,以8千米/时的速度前进,通讯员在队尾接到命令后把命令传给排头,然后立即返回排尾,通讯员来回的速度均为12千米/小时,共用14.4分钟,求队伍的长是多少?6、一架飞机在两城之间飞行,风速为24千米 /小时,顺风飞行需2小时50分,逆风飞行需要3小时。
初二数学上学期第七章二元一次方程组知识点加试题
第七章:二元一次方程组考点1: 方程组及其解法一、考点讲解:1.二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程. 2.二元一次方程组:含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组. 3.二元一次方程组的解:二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解. 4.二元一次方程组的解法.(1)代人消元法:解方程组的基本思路是“消元”一把“二元”变为“一元”,主要步骤是,将其中一个方程中的某个未知数用含有另一个未知数的代数式表示出来,并代人另一个方程中,从而消去一个未知数,化二元一次方程组为一元一次方程,这种解方程组的方法称为代人消元法,简称代人法.(2)减消无法:通过方程两边分别相加(减)消去其中一个未知数,这种解二元一次方程组的方法叫做加减消元法,简称加减法. 5.整体思想解方程组.(1)整体代入.如解方程组3(1) 5 5(1)3(5) x y y x -=+⎧⎨-=+⎩①②,方程①的左边可化为3(x+5)-18=y+5③,把②中的3(x+5)看作一个整体代入③中,可简化计算过程,求得y .然后求出方程组的解.(2)整体加减,如1+3y 19 313x+y 11 3x ⎧=⎪⎪⎨⎪=⎪⎩①②因为方程①和②的未知数x 、y 的系数正好对调,所以可采用两个方程整体相加减求解.利用①+②,得x+y=9③,利用②-①得x -y=3④,可使③、④组成简单的方程组求得x ,y . 二、经典考题剖析:【考题1-1】(2004、汉中)若x+y+4则 3x+2y =_______解:-6 点拨:由x+y+4=0, x-2=0,解得x=2, y=-6,故3x+2y =3×2+2×(-6)= -6 【考题1-2】(2004、北碚,5分) 解方程组:x-y=42x+y=5⎧⎨⎩点拨:此题用加减消元法较容易,也可用代人消元法解. 三、针对性训练:( 20分钟) (答案:242 ) 1、对方程组4x+7y=-19 4x-5y=17 ⎧⎨⎩①②,用加减法消去x ,得到的方程为( )A 、2y=-2 =-36 C. 12y=-2 =-36 2.二元一次方程组x+y=102x-y=-1⎧⎨⎩的解是( ) A .11x=x=2x=73 C. D.19y=8y=3y=3x=3 B.y=7⎧⎪⎧⎧⎪⎪⎪⎨⎨⎨⎪⎪⎩⎩⎪⎪⎩⎧⎨⎩ 3.若x=-2y=1⎧⎨⎩ 是方程组ax+by=1bx+ay=7⎧⎨⎩的解,则(a+b ) (a -b )的值为( )A. -353B. 353 C. -164.解方程组:⑴2x+5y=53x+2y=53x-5y=102x+5y=7⎧⎧⎨⎨⎩⎩⑵ 5.已知方程组ax+5y=15 4x-by=-2 ⎧⎨⎩①②由于甲看错了方程①中的a 得到的方程组的解为x=-3y=-1⎧⎨⎩乙看错了方程②中的b ,得到方程组的解为x=5y=4⎧⎨⎩若按正确的a 、b 为计算,求原方程组的解x 与y 的差.6.若a+b4b 与3a+b 是同类二次根式,求a 、b 的值.7.已知关于x ,y 的方程组2x-y=32kx+(k+1)y=10⎧⎨⎩的解互为相反数,则k 的值是多少?8.甲、乙两人解同一个二元一次方程组,甲正确地得出解x=3,y=-2,乙因把这个方程组中的第二个方程X 的系数抄错了,得到一个错误的解为x=-2,y=2.他们解先后,原方程组的三个系数又被污染而看不清楚,变成下面的形式:请你把原方程组的三个被污染的系数填上.考点2:方程组的实际应用 一、考点讲解:方程组解决实际问题:应用方程组解决实际问题的关键在于正确找出问题中的两个等量关系,列出方程并组成方程组,同时注意检验解的合理性. 二、经典考题剖析: 【考题2-1】(2004、宁安)某商品按进价的100%加价后出售.经过一段时间,商家为了减少库存,决定5折销售,这时每件商品( )A .赚50%B .赔50%C .赔25%D .不赔不赚【考题2-2】(2004、南山区正题3分)如图1-7-1,AB ⊥BC ,∠ABD 的度数比∠DBC 的度数的两倍少15°,设∠ABD 和∠DBC 的度数分别为x 、y ,那么下面可以求出这两个角的度数的方程组是( )A .9015x y x y +=⎧⎨=-⎩ B .90215x y x y +=⎧⎨=-⎩ C .90152x y x y+=⎧⎨=-⎩ D .290215x x y =⎧⎨=-⎩【考题2-3】(2004、宁安)如图,如果横行上的两个数字之和相等,竖列上的两个数字之和相等,那么a 、b 、c 、d 依次可为 。
小学奥数 二元一次方程组 知识点+例题+练习 (分类全面)
5.根据下图提供的信息,求一个杯子和一个水壶的价格分别是多少。
6、小丽的妈妈在玩具厂劳动,做5只小狗、5只小猴用去220分钟,做4只小狗、8只小猴用去256分钟,平均做1只小狗与1只小猴各用多少时间?
三、解方程组
(一)代入消元法
(1)、 (2)、
(3)、 (4)
(5)、 (6)、
(二)加减消元法
(1)、 (2)、
(3)、 (4)、
(5)、 (6)、
(三)拓展与提高
(1) (3)
四、用二元一次方程组解决问题
1、为了保护环境,某学校环保小组成员收集废旧电池,第一天收集5节1号电池,6节5号电池,总质量为500g;第二天收集3节一号电池,4节5号电池,总质量为310g。一节一号电池和一节五号电池的质量分别是多少?
2、有大小两种船,1艘大船与4艘小船一次可以载乘客46名,2艘大船与3艘小船一次可以载乘客57人,绵阳市仙海湖某船家有3艘大船与6艘小船,一次可以载游客的人数是多少。
一、下列方程组中,是二元一次方程组的是
二、列方程组
1、某农户供养了白鸡、黑鸡100只,白鸡的数量是黑鸡的3倍,设白鸡有x只,黑鸡有y只,列出关于x,y的二元一次方程组。
2、甲、乙两工人师傅制作某种工件,每天共制作12件,甲比乙每天多制作2件,设甲每天制作x件,乙每天制作y件,列出关于x,y的二元一次方程组。
5.七年一班共44人,现分成甲、乙两组参加学校活动。由于需要,现从乙组调了6人到甲组后,甲乙两组人数相等。问原来甲乙各多少人?
6.现有邮票一打,已知面值为一元和两元的,总面值为50元,2元的邮票比1元的邮票多10张,问面值为一元和两元的邮票各多少张?
二元一次方程组知识点整理、典型例题总结
二元一次方程组知识点整理、典型例题总结二元一次方程组一、知识点总结1、二元一次方程:含有两个未知数(x和y),并且含有未知数的项的次数都是1,像这样的整式方程叫做二元一次方程,它的一般形式是ax+by=c(a≠0,b≠0)。
2、二元一次方程的解:一般地,能够使二元一次方程的左右两边相等的两个未知数的值,叫做二元一次方程的解。
3、二元一次方程组:含有两个未知数(x和y),并且含有未知数的项的次数都是1,将这样的两个或几个一次方程合起来组成的方程组叫做二元一次方程组。
4、二元一次方程组的解:二元一次方程组中的几个方程的公共解,叫做二元一次方程组的解。
二元一次方程组解的情况:①无解,例如:{x+y=1,2x+2y=3};②有且只有一组解,例如:{x+y=1,2x+y=2};③有无数组解,例如:{x+y=1,2x+2y=2}。
5、二元一次方程组的解法:代入消元法和加减消元法。
6、列二元一次方程组解应用题的一般步骤可概括为“审、找、列、解、答”五步:(1)审:通过审题,把实际问题抽象成数学问题,分析已知数和未知数;(2)设:找出能够表示题意两个相等关系,并用字母表示其中的两个未知数;(3)列:根据这两个相等关系列出必需的代数式,从而列出方程组;(4)解:解这个方程组,求出两个未知数的值;(5)答:在对求出的方程的解做出是否合理判断的基础上,写出答案。
二、典型例题分析例1:二元一次方程组{x=2.2x-3m=1}的解,求m、n的值。
例2:若{nx-my=-5.y=3},求m、n的值。
例3:方程x+3y=10在正整数范围内有哪几组解?例4:将方程10-2(3-y)=3(2-x)变形,用含有x的代数式表示y。
例5:已知{(m+1)x+(n-1)y}/nm=1是关于x、y的二元一次方程,求nm的值。
例6:若方程2m-13n-2x+5y=7是关于x、y的二元一次方程,求m、n的值。
例7:(1)用代入消元法解方程组{7x+5y=3.2x-y=-4}。
完整版)二元一次方程组知识点及典型例题
完整版)二元一次方程组知识点及典型例题二元一次方程组小结与复一、知识梳理一)二元一次方程组的有关概念1.二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫作二元一次方程。
2.二元一次方程的一个解:适合一个二元一次方程的一对未知数的值,叫这个二元一次方程的一个解。
任何一个二元一次方程都有无数个解。
3.方程组和方程组的解1) 方程组:由几个方程组成的一组方程叫作方程组。
2) 方程组的解:方程组中各个方程的公共解,叫作这个方程组的解。
4.二元一次方程组和二元一次方程组的解1) 二元一次方程组:含有两个未知数的两个一次方程所组成的一组方程,叫作二元一次方程组。
2) 二元一次方程组的解:二元一次方程组中各个方程的公共解,叫作这个二元一次方程组的解。
二)二元一次方程组的解法:1.代入消元法2.加减消元法二、典例剖析题型一1.二元一次方程及方程组的概念。
二元一次方程的一般形式:任何一个二元一次方程经过整理、化简后,都可以化成ax+by+c=(a,b,c为已知数,且a≠0,b≠0)的形式,这种形式叫二元一次方程的一般形式。
练1:下列方程,哪些是二元一次方程,哪些不是?A) 6x-2=5z+6xB) m/11+yx=7C) x-yD) xy+2x+y=1练2:若方程(m-1)x+3y5n-9=4是关于x、y的二元一次方程,求mn的值。
练3:若方程(2m-6)x|n|-1+(n+2)ym-8=1是二元一次方程,则m=_______,n=__________.专题二:二元一次方程组的解法:解二元一次方程组的基本思想是消元转化。
一)代入消元法:1.直接代入例1:解方程组y=2x-3。
4x-3y=1.2.变形代入例2:解方程组x+y=90y=3x-75x+2y=8x=15-2y5x-y=9。
3x+4y=10.3.跟踪训练:1) {2x-y=-4。
4x-5y=-23.2) {3x+5y=13。
3x-2y=5.3) {3x+5y=20。
二元一次方程组行程问题类型全知识点加练习
二元一次方程组行程问题类型全知识点加练习Tomorrow Will Be Better, February 3, 2021一、行程问题:路程=速度×时间1、相遇问题:两者所走的路程之和=两者原相距路程2、追及问题:快者所走路程-慢者所走路程=两者原相距路程例1、某站有甲乙两辆汽车,若甲车先出发1小时后乙车出发,则乙车出发后5小时追上甲车;若甲车先开出30千米后,乙车出发,则乙车出发4小时后乙车所走的路程比甲车所走的路程多10千米;求两车的速度;例2、甲、乙两地相距160千米,一辆汽车和一辆拖拉机同时由甲、乙两地相向而行,1小时20分相遇;相遇后,拖拉机继续前进,汽车在相遇处停留1小时后调转车头原速返回,在汽车再次出发半小时后追上了拖拉机;这时,汽车、拖拉机各自行驶了多少千米3、环形跑道问题:环形跑道追及、相遇问题等同于直线追及、相遇问题;(1)同时同地相向而行第一次相遇相当于相遇问题:甲的路程+乙的路程=跑道一圈长(2)同时同地同向而行第一次相遇相当于追及问题:快者的路程-慢者的路程=跑道一圈长例1、甲、乙两人在周长为400米的环形跑道上练跑,如果同时同地相向出发,每隔2.5分钟相遇一次;如果同时同地同向出发;每隔10分钟相遇一次,假定两人速度不变,且甲快乙慢,求甲、乙两人的速度;4、航行、飞行问题:(1)顺流风:航速=静水无风中的速度+水风速(2)逆流风:航速=静水无风中的速度-水风速例1、已知A、B两码头之间的距离为240千米,一艘船航行于A、B两码头之间,顺流航行需4小时;逆流航行需6小时,求船在静水中的速度及水流的速度;练一练1、甲、乙两人相距36千米,相向而行,如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇,甲、乙两人每小时各走多少千米2、甲乙两人练习赛跑如果甲让乙先跑10m,甲跑5s就能追上乙,如果乙先跑2s,那么甲跑4s就能追上乙,求两人每秒各跑多少米;3、甲、乙两人在一条长400米的环形跑道上跑步,如果同向跑,每隔133分钟相遇一次,,如果反向跑,则每隔40秒相遇一次,已知甲比乙跑的快,求甲、乙两人的速度4、甲、乙两地相距160千米,一辆汽车和一辆拖拉机同时由甲、乙两地相向而行,1小时20分相遇. 相遇后,拖拉机继续前进,汽车在相遇处停留1小时后调转车头原速返回,在汽车再次出发半小时后追上了拖拉机. 这时,汽车、拖拉机各自行驶了多少千米5、某部队执行任务,以8千米/时的速度前进,通讯员在队尾接到命令后把命令传给排头,然后立即返回排尾,通讯员来回的速度均为12千米/小时,共用14.4分钟,求队伍的长是多少6、一架飞机在两城之间飞行,风速为24千米 /小时 ,顺风飞行需2小时50分,逆风飞行需要3小时;求无风时飞机的飞行速度和两城之间的距离;7、一列客车长200 m,一列货车长280 m,在平行的轨道上相向行驶,从两车头相遇到两车尾相离经过16秒,已知客车与货车的速度之比是3∶2,问两车每秒各行驶多少米8、已知某一铁路桥长1000米,现有一列火车从桥上通过,测得火车从开始上桥到完全过桥共用1分钟,整列火车完全在桥上的时间为40秒钟,求火车的长度和火车的速度;9、王平要从甲村走到乙村.如果他每小时走4千米,那么走到预定时间, 离乙村还有0.5千米;如果他每小时走5千米,那么比预定时间少用半小时就可到达乙村.求预定时间是多少小时,甲村到乙村的路程是多少千米;10、袁峰家离学校1880米,其中一段为上坡路,其余为下坡路,他跑步去学校共用时16分钟,,已知他上坡的速度为4.8千米/小时,下坡的速度为12千米/小时,那么,袁峰上坡、下坡各用了多长时间;11、从少先队夏令营到学校,先下山再走平路,一少先队员骑自行车以12km/h的速度下山,以9km/h的速度通过平路,到学校共用了55分钟,回来时,通过平路的速度不变,但以6km/h的速度上山,回到营地又花去了1小时10分,问夏令营到学校的距离是多少公里12、小华从家里到学校的路是一段平路和一段下坡路.假设他始终保持平路每分钟走60米,下坡路每分钟走80米 ,上坡路每分钟走40米,从家里到学校需10分钟,从学校到家里需15分钟.请问小华家离学校多远13、为了参加2011年威海国际铁人三项游泳、自行车、长跑系列赛业余组的比赛,李明针对自行车和长跑项目进行专项训练.某次训练中,李明骑自行车的平均速度为每分钟600米,跑步的平均速度为每分钟200米,自行车路段和长跑路段共5千米,用时15分钟.求自行车路段和长跑路段的长度.。
二元一次方程组知识点整理、典型例题练习总结
二元一次方程组(拓展与提优)1、二兀一次方程:含有两个未知数(x和y),并且含有未知数①项①次数都是1,像这样①整式方程叫做二元一次方程,它①一般形式是ax by c(a 0,b °).例1、若方程(2m-6)x|n|-1 +(n+2)y m2-8=1是关于x、y①二元一次方程,求m、n①值.2、二元一次方程①解:一般地,能够使二元一次方程①左右两边相等①两个未知数①值,叫做二元一次方程①解.【二元一次方程有无数组解】3、二元一次方程组:含有两个未知数(x和y),并且含有未知数①项①次数都是1,将这样①两个或几个一次方程合起来组成①方程组叫做二元一次方程组•4、二元一次方程组①解:二元一次方程组中①几个方程①公共解,叫做二元一次方程组①解•【二元一次方程组解x y 1 x y 1 x y1x y 1 O情况:①无解,例如:x y 6, 2x 2y 6;②有且只有一组解,例如:2x y 2;③有无数组解,例如:2x 2y 2】是关于x、y O二元一次方程组2x+(m-1)y=2nx+ y=1O解,试求(m+r)2016O值例3、方程x 3y 10在正整数范围内有哪几组解?5、二元一次方程组O解法:代入消元法和加减消元法。
例4、将方程10 2(3 y) 3(2 x)变形,用含有x O代数式表示y.例5、用适当O方法解二元一次方程组x+1+3 2例6、若方程组ax y 1有无数组解,则a、b O值分别为()6x by 2例2、已知x 2y 1B. a 2,b 1C.a=3,b=-2D. a 2,b 2 A. a=6,b=-16、三元一次方程组及其解法: 方程组中一共含有三个未知数,含未知数①项①次数都是1,并且方程组中一共有 两个或两个以上①方程,这样①方程组叫做三元一次方程组。
解三元一次方程组① 关键也是“消元”:三元T 二元T 元x y z 6 例10、3x 求解方程组y z 22x 3y z 117、二元 一次方程与一次函数关系:例11、一次函数y=kx+2①图像总过定点 _____________ ,二元一次方程kx-y=-2有无数组解,其中必有一个解为 ___________ 。
数学第八章 二元一次方程组知识点及练习题附解析
数学第八章 二元一次方程组知识点及练习题附解析一、选择题1.小明、小颖、小亮玩飞镖游戏,他们每人投靶5次,中靶情况如图所示.规定投中同一圆环得分相同,若小明得分21分,小亮得分17分,则小颖得分为( )A .19分B .20分C .21分D .22分2.小明去商店购买A B 、两种玩具,共用了10元钱,A 种玩具每件1元,B 种玩具每件2元.若每种玩具至少买一件,且A 种玩具的数量多于B 种玩具的数量.则小明的购买方案有( )A .5种B .4种C .3种D .2种3.已知关于x 、y 的方程组2323216ax by c ax by c -=⎧⎨+=⎩的解是42x y =⎧⎨=⎩,则关于x 、y 的方程组232232316ax by a c ax by a c -+=⎧⎨++=⎩的解是 ( ) A .42x y =⎧⎨=⎩ B .32x y =⎧⎨=⎩ C .52x y =⎧⎨=⎩ D .51x y =⎧⎨=⎩4.下列判断中,正确的是( )A .方程x y =不是二元一次方程B .任何一个二元一次方程都只有一个解C .方程25x y -=有无数个解,任何一对x 、y 都是该方程的解D .21x y =⎧⎨=-⎩既是方程24x y -=的解也是方程231x y +=的解 5.如图,一个粒子在第一象限和x ,y 轴的正半轴上运动,在第一秒内, 它从原点运动到(0,1),接着它按图所示在x 轴、y 轴的平行方向来回运动,即(0,0)→(0,1)→(1,1)→(1,0)→(2,0)→…,且每秒运动一个单位长度,那么2020秒时,这个粒子所处位置为( )A .(4,44)B .(5,44)C . (44,4)D . (44,5)6.小明出门时身上带了100元,下表记录了他今天所有支出,其中饮料与饼干支出的金额被涂黑.若每瓶饮料5元,每包饼干8元,则小明不可能...剩下多少元?()A.4 B.15 C.22 D.447.如图,将正方形ABCD的一角折叠,折痕为AE,点B落在点B′处,B AD∠'比BAE∠大48︒.设BAE∠和B AD∠'的度数分别为x︒和y︒,那么x和y满足的方程组是( )A.4890y xy x-=⎧⎨+=⎩B.482y xy x-=⎧⎨=⎩C.48290x yy x-=⎧⎨+=⎩D.48290y xy x-=⎧⎨+=⎩8.某工厂现有95个工人,一个工人每天可做8个螺杆或22个螺母,两个螺母和一个螺杆为一套,现在要求工人每天做的螺杆和螺母完整配套而没有剩余,若设安排x个工人做螺杆,y个工人做螺母,则列出正确的二元一次方程组为()A.; B.; C.; D.9.若x,y均为正整数,且2x+1·4y=128,则x+y的值为( )A.3 B.5 C.4或5 D.3或4或5 10.《九章算术》中记载一问题如下:“今有共买鸡,人出八,盈三;人出七,不足四,问人数、物价各几何?”意思是:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又差4钱,问人数、物价各多少?设有x人,买鸡的钱数为y,依题意可列方程组为()A.8374x yx y+=⎧⎨+=⎩B.8374x yx y-=⎧⎨-=⎩C.8374x yx y+=⎧⎨-=⎩D.8374x yx y-=⎧⎨+=⎩二、填空题11.已知点 C、D是线段AB上两点(不与端点A、B重合),点A、B、C、D四点组成的所有线段的长度都是正整数,且总和为29,则线段AB的长度为__________________ . 12.观察表一,寻找规律,表二、表三、表四分别是从表一中截取的一部分,则a+b﹣m=_____.13.綦江中学初二在数学竞赛活动中举行了“一题多解”比赛,按分数高低取前60名获奖,原定一等奖5人,二等奖15人,三等奖40人,现调整为一等奖10人,二等奖20人,三等奖30人,调整后一等奖平均分降低3分,二等奖平均分降低2分,三等奖平均分降低1分,如果原来二等奖比三等奖平均分数多7分,则调整后一等奖比二等奖平均分数多______分.14.中国古代著名的《算法统宗》中有这样一个问题:“只闻隔壁客分银,不知人数不知银,七两分之多四两,九两分之少半斤.”大意为:“一群人分银子,若每人分七两,则剩余四两;若每人分九两,则还差八两,问共有多少人?所分银子共有多少两?”(注:当时1斤=16两,故有“半斤八两”这个成语)设共有x 人,所分银子共有y 两,则所列方程组为_____________15.已知三个方程构成的方程组230xy y x --=,350yz z y --=,520xz x z --=,恰有一组非零解x a =,y b =,z c =,则222a b c ++=________.16.为实现营养的合理搭配,某电商推出适合不同人群的甲、乙两种袋装混合粗粮.其中,甲种粗粮每袋装有3千克A 粗粮,1千克B 粗粮,1千克C 粗粮;乙种粗粮每袋装有1千克A 粗粮,2千克B 粗粮,2千克C 粗粮.甲、乙两种袋装粗粮每袋成本价分别为袋中,,A B C 三种粗粮的成本价之和.已知A 粗粮每千克成本价为6元,甲种粗粮每袋售价为58.5元,利润率为30%,乙种粗粮的利润率为20%.若这两种袋装粗粮的销售利润率达到24%,则该电商销售甲、乙两种袋装粗粮的数量之比是____________________. (-=100%⨯商品的售价商品的成本价商品的利润率商品的成本价) 17.一个自行车轮胎,若把它安装在前轮,则自行车行驶5000 km 后报废;若把它安装在后轮,则自行车行驶3000km 后报废,行驶一定路程后可以交换前、后轮胎.如果交换前、后轮胎,要使一辆自行车的一对新轮胎同时报废,那么这辆车将能行驶___km .18.如图,三个全等的小矩形沿“横﹣竖﹣横”排列在一个边长分别为5.7,4.5的大矩形中,图中一个小矩形的周长等于_____.19.若方程组2313{3530.9a b a b -=+=的解是8.3{ 1.2,a b ==则方程组的解为________ 20.若m 1,m 2,…m 2016是从0,1,2这三个数中取值的一列数,若m 1+m 2+…+m 2016=1546, (m 1﹣1)2+(m 2﹣1)2+…+(m 2016﹣1)2=1510,则在m 1,m 2,…m 2016中,取值为2的个数为____.三、解答题21.某生态柑橘园现有柑橘21吨,计划租用A ,B 两种型号的货车将柑橘运往外地销售.已知满载时,用2辆A 型车和3辆B 型车一次可运柑橘12吨;用3辆A 型车和4辆B 型车一次可运柑橘17吨.(1)1辆A 型车和1辆B 型车满载时一次分别运柑橘多少吨?(2)若计划租用A 型货车m 辆,B 型货车n 辆,一次运完全部柑橘,且每辆车均为满载.①请帮柑橘园设计租车方案;②若A 型车每辆需租金120元/次,B 型车每辆需租金100元/次.请选出最省钱的租车方案,并求出最少租车费.22.为了节能减排,我市某校准备购买某种品牌的节能灯,已知3只A 型节能灯和5只B 型节能灯共需50元,2只A 型节能灯和3只B 型节能灯共需31元.(1)求1只A 型节能灯和1只B 型节能灯的售价各是多少元?(2)学校准备购买这两种型号的节能灯共200只,要求A 型节能灯的数量不超过B 型节能灯的数量的3倍,请设计出最省钱的购买方案,并说明理由.23.如图,在平面直角坐标系xOy 中,点(,)A a b ,(,)B m n 分别是第三象限与第二象限内的点,将A ,B 两点先向右平移h 个单位,再向下平移1个单位得到C ,D 两点(点A 对应点C ).(1)写出C ,D 两点的坐标;(用含相关字母的代数式表示)(2)连接AD ,过点B 作AD 的垂线l ,E 是直线l 上一点,连接DE ,且DE 的最小值为1.①若1b n =-,求证:直线l x ⊥轴;②在平面直角坐标系中,任何一个二元一次方程的图象都是一条直线,这条直线上有无数个点,每一个点的坐标(,)x y 都是这个方程的一个解.在①的条件下,若关于x ,y 的二元一次方程px qy k +=(0pq ≠)的图象经过点B ,D 及点(,)s t ,判断s t +与m n +是否相等,并说明理由.24.在平面直角坐标系中,点A 、B 在坐标轴上,其中()0,A a 、(),0B b 满足|21|280a b a b --++-=.(1)求A 、B 两点的坐标;(2)将线段AB 平移到CD ,点A 的对应点为()2,C t -,如图1所示,若三角形ABC 的面积为9,求点D 的坐标;(3)平移线段AB 到CD ,若点C 、D 也在坐标轴上,如图2所示.P 为线段AB 上的一动点(不与A 、B 重合),连接OP 、PE 平分OPB ∠,2BCE ECD ∠=∠.求证:3()BCD CEP OPE ∠=∠-∠.25.阅读下列材料,然后解答后面的问题.已知方程组372041027x y z x y z ++=⎧⎨++=⎩,求x+y+z 的值. 解:将原方程组整理得2(3)()203(3)()27x y x y z x y x y z ++++=⎧⎨++++=⎩①②, ②–①,得x+3y=7③,把③代入①得,x+y+z=6.仿照上述解法,已知方程组6422641x y x y z +=⎧⎨--+=-⎩,试求x+2y –z 的值. 26.为了打造区域中心城市,实现攀枝花跨越式发展,我市花城新区建设正按投资计划有序推进.花城新区建设工程部,因道路建设需要开挖土石方,计划每小时挖掘土石方540m 3,现决定向某大型机械租赁公司租用甲、乙两种型号的挖掘机来完成这项工作,租赁公司提供的挖掘机有关信息如表:(1)若租用甲、乙两种型号的挖掘机共8台,恰好完成每小时的挖掘量,则甲、乙两种型号的挖掘机各需多少台?(2)请你设计一种方案,不仅每小时支付的租金最少,又恰好能完成每小时的挖掘量?【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】设投中外环得x 分,投中内环得y 分,根据所给图信息列一个二元一次方程组,解出即可得出答案.【详解】解:设投中外环得x 分,投中内环得y 分,根据题意得2321417x y x y +=⎧⎨+=⎩, 解得:35x y =⎧⎨=⎩, 32332519x y ∴+=⨯+⨯=分即小颖得分为19分,故选A .【点睛】本题考查了二元一次方程组的应用,读懂题意找到等量关系式是解题的关键.2.C解析:C【分析】设A 种玩具的数量为x ,B 种玩具的数量为y ,根据共用10元钱,可得关于x 、y 的二元一次方程,继而根据11x y x y ≥≥,,>以及x 、y 均为正整数进行讨论即可得. 【详解】设A 种玩具的数量为x ,B 种玩具的数量为y ,则210x y +=, 即52x y =-, 又x 、y 均为正整数,且11x y x y ≥≥,,>, 当2x =时,4y =,不符合; 当4x =时,3y =,符合;当6x =时,2y =,符合;当8x =时,1y =,符合,共3种购买方案,故选C.【点睛】本题考查了二元一次方程的应用——方案问题,弄清题意,正确进行分析是解题的关键.3.B解析:B【分析】方程组232232316ax by a c ax by a c -+=⎧⎨++=⎩可化为213231216a x by c a x by c +-=⎧⎨++=⎩()(),由方程组2323216ax by c ax by c-=⎧⎨+=⎩的解是42x y =⎧⎨=⎩即可求得方程组232232316ax by a c ax by a c -+=⎧⎨++=⎩的解为32x y =⎧⎨=⎩. 【详解】方程组232232316ax by a c ax by a c -+=⎧⎨++=⎩可化为213231216a x by c a x by c +-=⎧⎨++=⎩()(), ∵方程组2323216ax by c ax by c -=⎧⎨+=⎩的解是42x y =⎧⎨=⎩, ∴142x y +=⎧⎨=⎩, 即方程组232232316ax by a c ax by a c -+=⎧⎨++=⎩的解为32x y =⎧⎨=⎩. 故选B.【点睛】本题考查了二元一次方程组的解,把方程组232232316ax by a c ax by a c -+=⎧⎨++=⎩化为213231216a x by c a x by c +-=⎧⎨++=⎩()()是解决问题的关键. 4.D解析:D【分析】根据二元一次方程的概念和二元一次方程的解逐项进行判断即可.【详解】A .方程x y =是二元一次方程,故错误;B .任何一个二元一次方程都有无数个解,故错误;C .方程25x y -=有无数个解,但并不是任何一对x 、y 都是该方程的解,故错误;D.21xy=⎧⎨=-⎩既是方程24x y-=的解也是方程231x y+=的解,故正确;故选:D.【点睛】本题主要考查了二元一次方程的概念和二元一次方程的解,熟练掌握二元一次方程的概念和解法是解题的关键.5.A解析:A【分析】设粒子运动到A1,A2,…A n时所用的时间分别为a1,a2,…a n,则a1=2,a2=6,a3=12,a4=20,…,由a n-a n-1=2n,则a2-a1=2×2,a3-a2=2×3,a4-a3=2×4,…,a n-a n-1=2n,以上相加得到a n-a1的值,进而求得a n来解,再找到运动方向的规律即可求解.【详解】由题意,设粒子运动到A1,A2,…,A n时所用的间分别为a1,a2,…,a n,则a1=2,a2=6,a3=12,a4=20,…,a2-a1=2×2,a3-a2=2×3,a4-a3=2×4,…,a n-a n-1=2n,相加得:a n-a1=2(2+3+4+…+n)=n2+n-2,∴a n=n(n+1).∵44×45=1980,故运动了1980秒时它到点A44(44,44);又由运动规律知:A1,A2,…,A n中,奇数点处向下运动,偶数点处向左运动.故达到A44(44,44)时向左运动40秒到达点(4,44),即运动了2020秒.所求点应为(4,44).故选:A.【点睛】本题考查了规律型-点的坐标,分析粒子在第一象限的运动规律得到数列a n的递推关系式a n-a n-1=2n是本题的突破口,对运动规律的探索知:A1,A2,…A n中,奇数点处向下运动,偶数点处向左运动是解题的关键.6.C解析:C【分析】设买了x瓶饮料,y盒饼干,求出买三餐所剩的钱数,对四个选项分别讨论,得到买饮料、饼干的总钱数,列出关于,x y二元一次方程,若这个方程有自然数解,则可能,反之,不可能.【详解】解:设买了x 瓶饮料,y 盒饼干,,x y 为自然数,买三餐还剩100-10-15-18=57元A. 若剩4元,则 58574x y +=-,有整数解9,1x y ==;B. 若剩15元,则 585715x y +=-,有整数解2,4x y ==;C. 若剩22元,则 585722x y +=-,无整数解;D. 若剩44元,则 585744x y +=-,有整数解1,1x y ==;故选:C.【点睛】本题考查了二元一次方程的应用,解题关键是读懂题意,列出二元一次方程,把问题转化为二元一次方程的整数解的问题.7.D解析:D【分析】根据由将正方形ABCD 的一角折叠,折痕为AE ,∠B'AD 比∠BAE 大48°的等量关系即可列出方程组.【详解】解:.设BAE ∠和B AD ∠'的度数分别为x ︒和y ︒由题意可得:48290y x y x -=⎧⎨+=⎩ 故答案为D.【点睛】本题考查了二元一次方程组的应用,根据翻折变换的性质以及正方形的四个角都是直角寻找等量关系是解答本题的关键. 8.C解析:C【解析】试题分析:设安排x 个工人做螺杆,y 个工人做螺母,根据“工厂现有95个工人”和“一个工人每天可做8个螺杆或22个螺母,两个螺母和一个螺杆为一套”列出方程组即可得到95{16220x y x y +=-= . 故选:C点睛:此题主要考查了由实际问题抽象出二元一次方程组,关键是弄清题意,找出合适的等量关系,列出方程组. 9.C解析:C【解析】∵2x +1·4y =128,27=128, ∴x +1+2y =7,即x +2y =6.∵x,y均为正整数,∴22xy=⎧⎨=⎩或41xy=⎧⎨=⎩∴x+y=4或5.10.D解析:D【分析】一方面买鸡的钱数=8人出的总钱数-3钱,另一方面买鸡的钱数=7人出的总钱数+4钱,据此即可列出方程组.【详解】解:设有x人,买鸡的钱数为y,根据题意,得:8374x y x y-=⎧⎨+=⎩.【点睛】本题考查的是二元一次方程组的应用,正确理解题意、根据买鸡的总钱数不变列出方程组是解题关键.二、填空题11.8或9【分析】根据题意画出图形,可得图中共有线段6条,分别为AC、CD、DB,AD、BC、AB ,然后根据所有线段的和为29可得关于AB、CD的等式,继而根据所有线段的长都是正整数以及AB>CD利解析:8或9【分析】根据题意画出图形,可得图中共有线段6条,分别为AC、CD、DB,AD、BC、AB,然后根据所有线段的和为29可得关于AB、CD的等式,继而根据所有线段的长都是正整数以及AB>CD利用二元一次方程的解的概念进行求解即可.【详解】如图,图中共有线段6条,分别为AC、CD、DB,AD、BC、AB,由题意得:AC+CD+DB+AD+BC+AB=29,∵AC+CD+DB=AB,AD=AC+CD,BC=CD+DB,∴3AB+CD=29,又∵所有线段的长度都是正整数,AB>CD ,∴AB=8,CD=5或AB=9,CD=2,即AB的长度为8或9,故答案为:8或9.【点睛】本题考查了线段的和差,二元一次方程的正整数解等知识,正确画出图形,熟练掌握和灵活运用相关知识是解题的关键.12.﹣7【分析】由表二结合表一即可得出关于a 的一元一次方程,解之即可得出a 值;由表三结合表一即可得出关于b 的一元一次方程,解之即可得出b 值;在表三中设42为第x 行y 列,则75为第(x+1)行(y+2解析:﹣7【分析】由表二结合表一即可得出关于a 的一元一次方程,解之即可得出a 值;由表三结合表一即可得出关于b 的一元一次方程,解之即可得出b 值;在表三中设42为第x 行y 列,则75为第(x+1)行(y+2)列,结合表一中每个数等于其所在的行数×列式即可列出关于x 、y 的二元一次方程组,解之即可得出x 、y 的值,将其代入m=(x+1)(y+1)即可得出m 的值,将a 、b 、m 的值代入a-b+m 即可得出结论.【详解】表二截取的是其中的一列:上下两个数字的差相等,∴a-15=15-12,解得:a=18;表三截取的是两行两列的相邻的四个数字:右边一列数字的差比左边一列数字的差大1, ∴42-b-1=36-30,解得:b=35;表四截取的是两行三列的相邻的六个数字:设42为第x 行y 列,则75为第(x+1)行(y+2)列,则有()()421275xy x y ⎧⎨++⎩==, 解得:143x y ⎧⎨⎩== 或3228x y ⎧⎪⎨⎪⎩==(舍去), ∴m=(x+1)(y+1)=(14+1)×(3+1)=60.∴a+b ﹣m=18+35-60=-7.故答案为:-7【点睛】此题考查一元一次方程的应用,规律型:数字变化类,根据表一中数的排列特点通过解方程(或方程组)求出a 、b 、m 的值是解题关键.13.5【分析】设原一等奖平均分为x 分,原二等奖平均分为y 分,原三等奖平均分为z 分,根据总分不变,列出方程,求出原来一等奖比二等奖平均分多的分数,最后根据调整后一等奖平均分降低3分,二等奖平均分降低2解析:5【分析】设原一等奖平均分为x分,原二等奖平均分为y分,原三等奖平均分为z分,根据总分不变,列出方程,求出原来一等奖比二等奖平均分多的分数,最后根据调整后一等奖平均分降低3分,二等奖平均分降低2分列出代数式,即可求出答案.【详解】设原一等奖平均分为x分,原二等奖平均分为y分,原三等奖平均分为z分,由题意可得:5x+15y+40z=10(x﹣3)+20(y﹣2)+30(z﹣1)①,z=y﹣7 ②;由①得:x+y﹣2z=20 ③,将②代入③得:x+y﹣2(y﹣7)=20,解得:x﹣y=6,即原来一等奖比二等奖平均分多6分,∵调整后一等奖平均分降低3分,二等奖平均分降低2分,∴(x﹣3)﹣(y﹣2)=(x﹣y)﹣1=6﹣1=5(分),即调整后一等奖比二等奖平均分数多5分,故答案为:5.【点睛】本题考查了三元一次方程组的应用.找出等量关系并列出方程是解答本题的关键.14.【解析】【分析】题中涉及两个未知数:共有x人,所分银子共有y两;两组条件:每人分七两,则剩余四两;每人分九两,则还差八两;列出二元一次方程组即可.【详解】两组条件:每人分七两,则剩余四两;解析:7498x y x y+=⎧⎨-=⎩【解析】【分析】题中涉及两个未知数:共有x人,所分银子共有y两;两组条件:每人分七两,则剩余四两;每人分九两,则还差八两;列出二元一次方程组即可.【详解】两组条件:每人分七两,则剩余四两;每人分九两,则还差八两;解:7498x y x y+=⎧⎨-=⎩【点睛】本题考查二元一次方程组的应用,找到等量关系,列方程组是解答本题的关键. 15.152【分析】先把xy-2y-3x=0,yz-3z-5y=0,xz-5x-2z=0建立三元方程组,再利用代入法求出x ,y ,z 的值,再根据x=a ,y=b ,z=c 求出a2+b2+c2的值.解析:152【解析】【分析】先把xy-2y-3x=0,yz-3z-5y=0,xz-5x-2z=0建立三元方程组,再利用代入法求出x ,y ,z 的值,再根据x=a ,y=b ,z=c 求出a 2+b 2+c 2的值.【详解】xy 2y 3x 0--=,yz 3z 5y 0--=,xz 5x 2z 0--=组成方程组得230350520xy y x yz z y xz x z --=⎧⎪--=⎨⎪--=⎩①②③, 由①得:x=23y y -④, 把④代入③整理得:-10y+6z=0,∴z=53y , 把z=53y 代入②得:253y -5y-5y=0, 解得:y 1=0 (舍去),y 2=6, ∴z=53×6=10, x=2663⨯-=4, 又∵x=a ,y=b ,z=c ,∴a 2+b 2+c 2=x 2+y 2+z 2=42+62+102=16+36+100=152,故答案为152.【点睛】本题考查了解三元方程组;解题的关键是通过建立三元方程组,再运用代入法进行消元求出方程组的解.16.【解析】【分析】先分别根据已知条件计算出甲、乙的成本,然后设设甲销售袋,乙销售袋使总利润率为24%,根据等量关系:(甲的成本+乙的成本)×24%=a 袋甲种粗粮的利润+b 袋乙种粗粮的利润,列出方程 解析:89【分析】先分别根据已知条件计算出甲、乙的成本,然后设设甲销售a 袋,乙销售b 袋使总利润率为24%,根据等量关系:(甲的成本+乙的成本)×24%=a 袋甲种粗粮的利润+b 袋乙种粗粮的利润,列出方程进行整理即可得.【详解】用表格列出甲、乙两种粗粮的成分:由题意可得甲的成本价为:130%=45(元), 甲中A 的成本为:3×6=18(元), 则甲中B 、C 的成本之和为:45-18=27(元),根据乙的组成则可得乙的成本价为:6+27×2=60(元),设甲销售a 袋,乙销售b 袋使总利润率为24%,则有(45a+60b )×24%=(58.5-45)a+(72-60)b ,整理得:2.7a=2.4b ,所以,a :b=8:9,故答案为89. 【点评】本题考查了方程的应用,难度较大,根据题意求出甲、乙两种包装的成本价是解题的关键.17.3750【解析】设每个新轮胎报废时的总磨损量为k ,则安装在前轮的轮胎每行驶1km 磨损量为,安装在后轮的轮胎每行驶1km 的磨损量为.又设一对新轮胎交换位置前走了x km ,交换位置后走了ykm .分别以解析:3750【解析】设每个新轮胎报废时的总磨损量为k ,则安装在前轮的轮胎每行驶1km 磨损量为5000k ,安装在后轮的轮胎每行驶1km 的磨损量为3000k .又设一对新轮胎交换位置前走了xkm ,交换位置后走了ykm .分别以一个轮胎的总磨损量为等量关系列方程,有+=50003000+=50003000kx ky k ky kx k ⎧⎪⎪⎨⎪⎪⎩,两式相加,得()()250003000k x y k x y k +++=,则x+y=21150003000+=3750(千米). 故答案为:3750. 点睛:本题考查了二元一次方程组的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.利用二元一次方程组求解的应用题一般情况下题中要给出两个等量关系,准确的找到等量关系并用方程组表示出来是解题的关键.18.8【解析】试题分析:设小矩形的长为x ,宽为y ,则,两方程相加,解得x+y=3.4,因此小矩形的周长为2(x+y )=6.8.解析:8【解析】试题分析:设小矩形的长为x ,宽为y ,则2 5.7{2 4.5x y x y +=+=,两方程相加,解得x+y=3.4,因此小矩形的周长为2(x+y )=6.8.19.【解析】试题分析:根据整体思想,可设a=x+2,b=y-1,可发现两个方程组相同,因此可知x+2=8.3,y-1=1.2,解得x=6.3,y=2.2,即方程组的解为: .20.520【解析】试题分析:解决此题可以先设0有a 个,1有b 个,2有c 个,根据据题意列出方程组求解即可.设0有a 个,1有b 个,2有c 个, 由题意得, 解得,故取值为2的个数为502个考点:(1解析:520【解析】试题分析:解决此题可以先设0有a 个,1有b 个,2有c 个,根据据题意列出方程组求解即可.设0有a个,1有b个,2有c个,由题意得,解得,故取值为2的个数为502个考点:(1)、规律型:(2)、数字的变化类.三、解答题21.(1)1辆A型车满载时一次可运柑橘3吨,1辆B型车满载时一次可运柑橘2吨;(2)①共有4种租车方案,方案1:租用1辆A型车,9辆B型车;方案2:租用3辆A 型车,6辆B型车;方案3:租用5辆A型车,3辆B型车;方案4:租用7辆A型车;②最省钱的租车方案是租用7辆A型车,最少租车费是840元【分析】(1)设1辆A型车满载时一次可运柑橘x吨,1辆B型车满载时一次可运柑橘y吨,根据“用2辆A型车和3辆B型车一次可运柑橘12吨;用3辆A型车和4辆B型车一次可运柑橘17吨”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)①根据一次运载柑橘21吨,即可得出关于m,n的二元一次方程,结合m,n均为非负整数,即可得出各租车方案;②根据租车总费用=租用每辆车的费用×租用的辆数,即可求出各租车方案所需费用,比较后即可得出结论.【详解】解:(1)设1辆A型车满载时一次可运柑橘x吨,1辆B型车满载时一次可运柑橘y吨,依题意,得:2312 3417 x yx y+=⎧⎨+=⎩,解得:32xy==⎧⎨⎩.故答案为:1辆A型车满载时一次可运柑橘3吨,1辆B型车满载时一次可运柑橘2吨.(2)①依题意,得:3m+2n=21,∴m=7﹣23 n.又∵m,n均为非负整数,∴19mn=⎧⎨=⎩或36mn=⎧⎨=⎩或53mn==⎧⎨⎩或7mn=⎧⎨=⎩.答:共有4种租车方案,方案1:租用1辆A型车,9辆B型车;方案2:租用3辆A型车,6辆B型车;方案3:租用5辆A型车,3辆B型车;方案4:租用7辆A型车.②方案1所需租车费为120×1+100×9=1020(元),方案2所需租车费为120×3+100×6=960(元),方案3所需租车费为120×5+100×3=900(元),方案4所需租车费为120×7=840(元).∵1020>960>900>840,故答案为:最省钱的租车方案是租用7辆A 型车,最少租车费是840元.【点睛】本题主要考查列二元一次方程以及利用二元一次方程解决方案问题,正确理想二元一次方程组并运用二元一次方程解决方案问题是本题解题的关键.22.(1)1只A 型节能灯的售价是5元,1只B 型节能灯的售价是7元;(2)当购买A 型号节能灯150只,B 型号节能灯50只时最省钱,见解析.【分析】(1)根据题意可以列出相应的二元一次方程组,从而可以解答本题;(2)根据题意可以得到费用与购买A 型号节能灯的关系式,然后根据一次函数的性质即可解答本题.【详解】解:(1)设1只A 型节能灯的售价是x 元,1只B 型节能灯的售价是y 元,35502331x y x y +=⎧⎨+=⎩,解得,57x y =⎧⎨=⎩, 答:1只A 型节能灯的售价是5元,1只B 型节能灯的售价是7元;(2)设购买A 型号的节能灯a 只,则购买B 型号的节能灯200a (﹣)只,费用为w 元, 5720021400w a a a +-+=()=-,3200a a ≤-(),150a ∴≤,∴当150a =时,w 取得最小值,此时110020050w a =,﹣=答:当购买A 型号节能灯150只,B 型号节能灯50只时最省钱.【点睛】本题考查一次函数的应用、二元一次方程组的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用一次函数的性质和不等式的性质解答.23.(1)C (a+h ,b-1),D (m+h ,n-1);(2)①见解析;②相等,理由见解析【分析】(1)根据平移规律解决问题即可..(2)①证明A ,D 的纵坐标相等即可解决问题;②如图,设AD 交直线l 于J ,首先证明BJ=DJ=1,推出D (m+1,n-1),再证明p=q ,即可解决问题.【详解】解:(1)由题意,C (a+h ,b-1),D (m+h ,n-1);(2)①∵b=n-1,∴A (a ,b ),D (m+h ,n-1),∴点A ,D 的纵坐标相等,∴AD ∥x 轴,∵直线l ⊥AD ,∴直线l ⊥x 轴;②相等,理由是:如图,设AD 交直线l 于J ,∵DE 的最小值为1,∴DJ=1,∵BJ=1,∴D (m+1,n-1),∴二元一次方程px+qy=k (pq≠0)的图象经过点B ,D ,∴mp+nq=k ,(m+1)p+(n-1)q=k ,∴p-q=0,∴p=q ,∴m+n=k p, ∵tp+sp=k ,∴t+s=k p, ∴m+n=t+s .【点睛】本题考查坐标与图形的变化-平移,二元一次方程等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.24.(1)A ,B 两点的坐标分别为()0,2,()3,0;(2)点D 的坐标是141,3⎛⎫-⎪⎝⎭;(3)证明见解析【分析】(1)根据非负数的性质得出二元一次方程组,求解即可;(2)过点B 作y 轴的平行线分别与过点A ,C 作x 轴的平行线交于点N ,点M ,过点C 作y 轴的平行线与过点A 作x 轴的平行线交于点T ,根据三角形ABC 的面积=长方形CMNT 的面积-(三角形ANB 的面积+三角形ATC 的面积+三角形CMB 的面积)列出方程,求解得出点C 的坐标,由平移的规律可得点D 的坐标;(3)过点E 作//EF CD ,交y 轴于点F ,过点O 作//OG AB ,交PE 于点G ,根据两直线平行,内错角相等与已知条件得出3BCD CEF ∠=∠,同样可证OGP OPE ∠=∠,由平移的性质与平行公理的推论可得FEP OGP ∠=∠,最后根据CEP CEF FEP ∠=∠+∠,通过等量代换进行证明.【详解】解:(1)210a b --=,又∵|21|0a b --≥0, |21|0a b ∴--=0=,即210280a b a b --=⎧⎨+-=⎩, 解方程组2128a b a b -=⎧⎨+=⎩得23a b =⎧⎨=⎩, A ∴,B 两点的坐标分别为()0,2,()3,0;(2)如图,过点B 作y 轴的平行线分别与过点A ,C 作x 轴的平行线交于点N ,点M ,过点C 作y 轴的平行线与过点A 作x 轴的平行线交于点T ,∴三角形ABC 的面积=长方形CMNT 的面积-(三角形ANB 的面积+三角形ATC 的面积+三角形CMB 的面积),根据题意得,11195(2||)232(2||)5||222t t t ⎡⎤=⨯+-⨯⨯+⨯⨯++⨯⨯⎢⎥⎣⎦, 化简,得3||42t =, 解得,83t =±, 依题意得,0t <,83t ∴=-,即点C 的坐标为82,3⎛⎫-- ⎪⎝⎭, ∴依题意可知,点C 的坐标是由点A 的坐标先向左平移2个单位长度,再向下平移143个单位长度得到的,从而可知,点D 的坐标是由点B 的坐标先向左平移2个单位长度,再向下平移143个单位长度得到的, ∴点D 的坐标是141,3⎛⎫- ⎪⎝⎭;EF CD,交y轴于点F,如图所示,(3)证明:过点E作//∠=∠,则ECD CEF∠=∠,2BCE ECD∴∠=∠=∠,BCD ECD CEF33OG AB,交PE于点G,如图所示,过点O作//∠=∠,则OGP BPE∠,PE平分OPB∴∠=∠,OPE BPE∴∠=∠,OGP OPECD AB,由平移得//∴,//OG FE∴∠=∠,FEP OGP∴∠=∠,FEP OPE∠=∠+∠,CEP CEF FEP∴∠=∠+∠,CEP CEF OPE∴∠=∠-∠,CEF CEP OPE∴∠=∠-∠.BCD CEP OPE3()【点睛】本题综合性较强,考查非负数的性质,解二元一次方程组,平行线的性质,平移的性质,坐标与图形的性质,第(3)题巧作辅助线构造平行线是解题的关键.25.3【分析】根据题目的解法,把x+2y-z看成一个整体,进行解方程即可.【详解】。
初二数学(二元一次方程组专题复习)
二元一次方程组【知识点一:二元一次方程组的有关概念】二元一次方程:含有两个未知数,并且含有未知数的项的次数都是1的整式方程叫做二元一次方程.【典型例题】1.在下列方程中,不是二元一次方程的有()A.x+y=3 B.xy=3 C.x-y=3 D.x=3-y次方程.A.1个B.2个C.3个D.4个3.若关于x,y的方程x m+1+y n-2=0是二元一次方程,则m+n的和为()A.0 B.1 C.2 D.3【变式练习】1.下列各式中,属于二元一次方程的是()A.x2-25=0 B.x=2y C.y-6=0 D.x+y+z=02.下列四个方程中,是二元一次方程的是()A.xy=3 B.2x-y2=9 C.132x y=+D.3x-2y=03.若x a-2+3y b+3=15是关于x,y的二元一次方程,则a+b的值为()A.1 B.-1 C.2 D.-2 【提高练习】1.下列式子中,属于二元一次方程的是()A.2x+3=x-5 B.x+y<2 C.3x-1=2-5y D.xy≠1 2.已知:mx-3y=2x+6是关于x、y的二元一次方程,则m的值为()A.m≠0B.m≠3C.m≠-2 D.m≠23.已知x2m-1+3y4-2n=-7是关于x,y的二元一次方程,则m、n的值是()A.B.C.D.二元一次方程的解集:适合一个二元一次方程的每一对未知数的值,叫做这个二元一次方程的一个解.对于任何一个二元一次方程,令其中一个未知数取任意一个值,都能求出与它对应的另一个未知数的值.因此,任何一个二元一次方程都有无数多个解.由这些解组成的集合,叫做这个二元一次方程的解集.【典型例题】1.若是关于x、y的二元一次方程ax-3y=1的解,则a的值为()A.-5 B.-1 C.2 D.72.方程x+2y=5的正整数解有()A.一组B.二组C.三组D.四组3.已知方程5x-2y=1,当x与y相等时,x与y的值分别是()A.x=13,y=13B.x=-1,y=-1 C.x=1,y=1 D.x=2,y=2【变式练习】1.二元一次方程5a-11b=21()A.有且只有一解B.有无数解C.无解D.有且只有两解2.若是方程2x-3y+a=1的解,则a的值是()A.1 B.12C.2 D.03.已知是二元一次方程2x-y=14的解,则k的值是()A.2 B.-2 C.3 D.-34、方程2x+y=9在正整数范围内的解有()A、1个B、2个C、3个D、4个【提高练习】1.方程x +y =6的非负整数解有( ) A .6个B .7个C .8个D .无数个2.二元一次方程3x +2y =15在自然数范围内的解的个数是( )A .1个B .2个C .3个D .4个二元一次方程组及其解:两个二元一次方程合在一起就组成了一个二元一次方程组.一般地,能使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程组的解. 【典型例题】1、下列方程组中,属于二元一次方程组的是( )A 、⎩⎨⎧==+725xy y xB 、⎪⎩⎪⎨⎧=-=+043112y x y xC 、⎪⎩⎪⎨⎧=+=343453y x y xD 、⎩⎨⎧=+=-12382y x y x2.下列方程组中,是二元一次方程组的是( )A 、B 、C 、D 、3.若方程组是二元一次方程组,则a 的值为_______.4.关于x 、y 的方程组的解是,则|m -n |的值是( )A .5B .3C .2D .15.若方程组026ax y x by +=⎧⎨+=⎩的解是12x y =⎧⎨=-⎩,则a +b =_______.【变式练习】1.下列方程组中,是二元一次方程组的是( )A .228423119 (23754624)x y x y a b x B C D x y b c y x x y +=+=-=⎧⎧=⎧⎧⎨⎨⎨⎨+=-==-=⎩⎩⎩⎩ 2.下列方程组中,不是二元一次方程组的是( )A 、B 、C 、D 、3.已知是二元一次方程组的解,则2m -n 的算术平方根为( ) A .±2B .2 C .2D .44.若方程组2x y b x by a +=⎧⎨-=⎩的解是1x y =⎧⎨=⎩,那么│a -b │=_____.【提高练习】1.方程2x +3y =11和下列方程构成的方程组的解是 的方程是( )A .3x +4y =20B .4x -7y =3C .2x -7y =1D .5x -4y =62.已知│2x -y -3│+(2x +y +11)2=0,则( ) A .21x y =⎧⎨=⎩ B .03x y =⎧⎨=-⎩ C .15x y =-⎧⎨=-⎩ D .27x y =-⎧⎨=-⎩3、若3243y x b a +与b a y x -634是同类项,则=+b a ( )A 、-3B 、0C 、3D 、6【知识点二:二元一次方程组的两种解法】【例1】若1721x ax by y ax by =+=⎧⎧⎨⎨=--=-⎩⎩是方程组的解,则a =______,b =_______.【变式练习】1、以x 、y 为未知数的方程组⎩⎨⎧=+=-24by ax by ax 与方程组⎩⎨⎧=+=+654432y x y x 的解相同,试求a 、b 的值.2、若把上面题目改成方程组451x y ax by -=⎧⎨+=-⎩与⎩⎨⎧=-=+184393by ax y x 的解相同,试求a 、b 的值.【例四】已知二元一次方程3x +4y =6,当x 、y 互为相反数时,x =_____,y =______;当x 、y 相等时,x =______,y = _______ . 【例五】已知2x 2m -3n -7-3y m +3n +6=8是关于x ,y 的二元一次方程,求n 2m【变式练习】1、若2a y +5b 3x 与-4a 2x b 2-4y是同类项,则a =______,b =_______.2、如果(5a -7b +3)2+53+-b a =0,求a 与b 的值.【扩展】代入法在一些特殊方程中的巧妙应用⎩⎨⎧-=+-=+1)(258y x x y x【例五】方程组⎩⎨⎧-=+=-252132y x y x 中,x 的系数特点是______;方程组⎩⎨⎧=-=+437835y x y x 中,y 的系数特点是________.这两个方程组用__________________法解比较方便.【变式练习】【例六】已知方程mx +ny =10有两个解,分别是⎩⎨⎧-==⎩⎨⎧=-=1221y x y x 和,则m =________,n =__________. 【变式练习】1、若2a +3b =4和3a -b =-5能同时成立,则a =_____,b =______.2、如果二元一次方程组⎩⎨⎧=-=+a y x ay x 4的解是二元一次方程3x -5y -28=a 的一个解,那么a 的值是_________.3、若关于x 、y 的二元一次方程组⎩⎨⎧-=+=+1532m y x my x 的解x 与y 的差是7,求m 的值.4、若3122x m y m =+⎧⎨=-⎩,是方程组1034=-y x 的一组解,求m 的值.5、二元一次方程343x my mx ny -=+=和有一个公共解11x y =⎧⎨=-⎩,求m 和n 的值.【例七】已知⎩⎨⎧=+=+8272y x y x ,那么x -y 的值是___________.【变式练习】1、已知⎩⎨⎧=+=+8272y x y x ,则y x yx +-=_________. 2、已知⎩⎨⎧=-=+ay x a y x 22,a ≠0,则y x =__________.⎪⎪⎩⎪⎪⎨⎧=+=-+4231432y x y yx 观察思考,选择适当的方法消元并加以归纳总结(1) (2)(3) (4)【知识点三:一次函数与二元一次方程(组)的综合应用】1.若直线y =2x+n 与y =mx -1相交于点(1,-2),则( ). A .m =12,n =-52 B .m =12,n =-1 C .m =-1,n =-52 D .m =-3,n =-322.直线y =12x -6与直线y =-231x -1132的交点坐标是( ).A .(-8,-10)B .(0,-6)C .(10,-1)D .以上答案均不对 3.在y =kx +b 中,当x =1时y =2;当x =2时y =4,则k ,b 的值是( ). A .00k b =⎧⎨=⎩ B . 20k b =⎧⎨=⎩ C .31k b =⎧⎨=⎩ D . 02k b =⎧⎨=⎩4.直线kx -3y =8,2x +5y =-4交点的纵坐标为0,则k 的值为( ) A .4 B .-4 C .2 D .-2⎩⎨⎧=+-=65732y x y x ⎩⎨⎧=-=+6341953y x y x5.已知4353xy⎧=⎪⎪⎨⎪=⎪⎩,是方程组3,12x yxy+=⎧⎪⎨-=⎪⎩的解,那么一次函数y=3-x和y=2x+1的交点是________.6.一次函数y=3x+7的图像与y轴的交点在二元一次方程-2x+by=18上,则b=_________.7.已知关系x,y的二元一次方程3ax+2by=0和5ax-3by=19化成的两个一次函数的图像的交点坐标为(1,-1),则a=_______,b=________.8.已知方程组230,2360y xy x-+=⎧⎨+-=⎩的解为4,31,xy⎧=⎪⎨⎪=⎩则一次函数y=3x-3与y=-32x+3的交点P的坐标是______.9.若直线y=ax+7经过一次函数y=4-3x和y=2x-1的交点,求a的值.10.(1)在同一直角坐标系中作出一次函数y=x+2,y=x-3的图像.(2)两者的图像有何关系?(3)你能找出一组数适合方程x-y=2,x-y=3吗?________,这说明方程组2,3,x yx y-=-⎧⎨-=⎩_______.11.如图所示,求两直线的解析式及图像的交点坐标.12.在直角坐标系中,直线L1经过点(2,3)和(-1,-3),直线L2经过原点,且与直线L1交于点(-2,a).(1)求a的值.(2)(-2,a)可看成怎样的二元一次方程组的解?(3)设交点为P,直线L1与y轴交于点A,你能求出△APO的面积吗?【知识点四:二元一次方程组应用题】【一、百分数问题】1.某市现有42万人口,计划一年后城镇人口增加%,农村人口增加工厂%,这样全市人口将增加1%,求这个市现在的城镇人口与农村人口?2.要配浓度是45%的盐水12千克,现有10%的盐水与85%的盐水,这两种盐水各需多少?3.校办工厂去年的总收入比总支出多50万元,今年的总收入比去年增加了10%,总支出节约了20%,因而总收入比总支出多100万元. 求去年我校校办工厂的总收入和总支出各多少万元?4.某工厂去年的利润(总产值-总支出)为200万元,今年的总产值比去年增加了20%,总支出比去年减少了10%,今年的利润为780万元。
二元一次方程组知识总结及训练
二元一次方程组知识总结及训练 知识点一:二元一次方程定义和条件: 定义:含有两个未知数,并且含有未知数的项的次数都是1•的整式方程叫做二元一次方程. 条件: 含有两个未知数;含有未知数的项的次数都是1•;必须是等式;未知数的项的系数不为0。
1.若2x m+n -1-3y m -n -3+5=0是关于x ,y 的二元一次方程,则m=_____,n=_____.2.若3x 953++n m +4y 724--n m =2是关于x 、y 的二元一次方程,则nm 的值等于 。
3.已知b ay x +2与y x b a -531是同类项,则______=x ,_______=y 。
4.若2m x +(m+1)y=3m-1是关于x 、y 的二元一次方程,则m 的取值范围是( )A 、m ≠-1B 、m=±1C 、m=1D 、m=0 5.若是关于的二元一次方程,则( ) A. B. C. D.知识点二:二元一次方程的一般形式及其变形一般形式:ax+by=c(a≠0,b≠0,c 为任意数)变形:⑴ 用x 表示y 就是把x 看成已知数,求y 的值。
⑵ 用y 表示x 就是把y 看成已知数,求x的值。
变形是解二元一次方程租的代入法的基础和关键所在。
1.由方程624=-y x ,用含x 的代数式表示y ,则_______=y2.已知3x - 2y = 1,用含x 的代数式表示y 是_________,当x = -1时,y = _3.由2x -3y -4=0,可以得到用x 表示y 的式子y = 。
4.已知方程2x+3y -4=0,用含x 的代数式表示y 为:y=_______;用含y 的代数式表示x 为:x=_______ _.5.已知12321=-y x ,用x 表示y 的式子是_____;用y 表示x 的式子是______。
当1=x 时=y ____ _;知识点三:二元一次方程的解和二元一次方程的解的求法。
二元一次方程组知识点汇总及练习(超详细)
二元一次方程组知识点汇总及练习(超详细)二元一次方程组知识点梳理及经典练知识点1:二元一次方程组的定义1.二元一次方程1)定义:含有两个未知数,且所含未知数的项的次数都是1的方程叫做二元一次方程。
2)三个条件:①方程中的元指的是未知数,即二元一次方程有且只有两个未知数。
②含有未知数的项的次数都是1.③二元一次方程的左右两边都必须是等式。
3)含有未知数的项的系数不等于零,且两未知数的次数均为1.即若ax+by=c是二元一次方程,则a≠0,b≠0且m=1,n=1.2.二元一次方程组1)定义:由两个二元一次方程所组成的方程组叫二元一次方程组。
2)三个条件:①方程组中有且只有两个未知数。
②方程组中含有未知数的项的次数为1.③方程组中每个方程均为整式方程。
3.二元一次方程组的解1)定义:使二元一次方程组中两个方程左右两边的值都相等的两个未知数的值叫做二元一次方程组的解。
2)常考题型:①根据定义判断。
②已知方程组的解,求方程组待定系数(将解代入方程)。
③列方程组求相关字母的值。
知识点2:解二元一次方程组1.代入消元法1)定义:通过代入消去一个未知数,将方程组转化为一个一元一次方程来解,这种解法叫做代入消元法。
2)用代入消元法解二元一次方程组的步骤:①从方程组中选取一个系数比较简单的方程,把其中的一个未知数用含另一个未知数的式子表示出来。
②把①中所得的方程代入另一个方程,消去一个未知数。
③解所得到的一元一次方程,求得一个未知数的值。
④把所求得的一个未知数的值代入①中求得的方程,求出另一个未知数的值,从而确定方程组的解。
例:解方程组:2x-7y=83x-8y-10=02.加减消元法1)定义:两个二元一次方程中同一未知数的系数相反或相等时,把这两个方程的两边分别相加减,就能消去这个未知数,得到一个一元一次方程。
这种方法叫做加减消元法,简称加减法。
2)加减消元法解方程步骤:①方程组的两个方程中,如果同一个未知数的系数既不互为相反数,又不相等,就用适当的整数乘方程两边,使一个未知数的系数互为相反数或相等。
二元一次方程组知识点整理.doc
第五章 二元一次方程组(知识点整理)知识点1:二元一次方程(组)的定义1、二元一次方程的概念①② ③例1:已知()0211=+-+-b a y x a 是关于x 、y 的二元一次方程,则a =______,b =_____. 例2:下列方程为二元一次方程的有_________① y x =-52,②14=-x ,③2=xy ,④3=+y x ,⑤22=-y x ,⑥22=-+y x xy ,⑦71=+y x⑧y x 23+,⑨1=++c b a 练习1:下列方程中是二元一次方程的是( )A .3x-y 2=0B .2x +1y =1C .3x -52y=6 D .4xy=3 练习2:若753313=+--m n m y x是关于x 、y 二元一次方程,则m =_________,n =_________。
2、二元一次方程组的概念例1:下列方程组中,是二元一次方程组的是( )A 、228423119...23754624x y x y a b x B C D x y b c y x x y +=+=-=⎧⎧=⎧⎧⎨⎨⎨⎨+=-==-=⎩⎩⎩⎩练习1,已知下列方程组,其中属于二元一次方程组的个数为( )(1)32x y y =⎧⎨=-⎩,(2)324x y y z +=⎧⎨-=⎩,(3)1310x y x y ⎧+=⎪⎪⎨⎪-=⎪⎩,(4)30x y x y +=⎧⎨-=⎩,A .1 B. 2 C . 3 D . 4知识点2:二元一次方程(组)的解练习1:当1-=m x ,1+=m y 满足方程032=-+-m y x ,则=m _________.练习2:方程组⎩⎨⎧=+=-422y x y x 的解是( )A .⎩⎨⎧==21y xB .⎩⎨⎧==13y xC .⎩⎨⎧-==20y xD .⎩⎨⎧==02y x练习3:下面几个数组中,哪个是方程7x+2y=19的一个解( )。
A 、 31x y =⎧⎨=-⎩ B 、 31x y =⎧⎨=⎩ C 、 31x y =-⎧⎨=⎩ D 、练习4: 若满足方程组⎩⎨⎧=-+=-6)12(423y k kx y x 的x 、y 的值相等,则k =_______.练习5:若方程组⎩⎨⎧=++=-10)1(232y k kx y x 的解互为相反数,则k 的值为 。
绝对经典二元一次方程组知识点整理、典型例题练习总结
绝对经典二元一次方程组的 解题技巧与注意事项
第五章
解题技巧
消元法:通过代入或加减消元,将二元一次方程组转化为一元一次方程求 解。 换元法:通过引入新变量替换原方程中的某些项,简化方程组或找到更简 单的解法。
参数法:通过引入参数来简化方程组,并找到更有效的解法。
图像法:通过绘制二元一次方程组的平面图,直观地找到解集和解决方案。
分配问题:描述一组人或物按照一定规则进行分配的情况,可以通过建立 二元一次方程组求解。
配套问题:描述不同部件或产品之间的配对关系,通常涉及数量、比例和 单价等变量。
相遇问题
描述:二元一次 方程组在解决相 遇问题中的应用
实例:两个物体在 某点相遇,通过方 程组求解各自的运 动轨迹和时间
解题思路:先设 定变量,列出方 程组,然后解方 程组得出答案
感谢您的观看
汇报人:XX
添加标题
添加标题
添加标题
添加标题
消元法:通过消去一个未知数,将 二元一次方程组转化为一个一元一 次方程,再求解另一个未知数
公式法:通过使用二元一次程组 的通解公式来求解未知数
整体代入法
定义:将方程组中的一个方程整体代入另一个方程,消元求解
适用范围:当方程组中某个未知数的系数相等或互为相反数时,适合使用 整体代入法
绝对经典二元一次方 程组知识点整理、典 型例题练习总结
XX,a click to unlimited possibilities
汇报人:XX
目录
CONTENTS
01 二元一次方程组的基本概念
02 绝对经典二元一次方程组的解法
03 绝对经典二元一次方程组的实际应用
04
绝对经典二元一次方程组的变式与拓 展
(完整版)二元一次方程(组)补习、培优、竞赛经典归类讲解、练习及答案
二元一次方程(组)补习、培优、竞赛归类讲解及练习答案知识点:1、二元一次方程:(1)方程的两边都是整式,(2)含有两个未知数,(3)未知数的最高次数是一次。
2、二元一次方程的一个解:使二元一次方程左右两边相等的两个未知数的值叫二元一次方程的一个解。
3、二元一次方程组:含有两个未知数的两个二元一次方程所组成的方程组。
4、二元一次方程组的解:二元一次方程组中各个方程的公共解。
(使二元一次方程组的两个方程左、右两边的值都相等的两个未知数的值)无论是二元一次方程还是二元一次方程组的解都应该写成⎩⎨⎧==y x 的形式。
5、二元一次方程组的解法:基本思路是消元。
(1)代入消元法:将一个方程变形,用一个未知数的式子表示另一个未知数的形式,再代入另一个方程,把二元消去一元,再求解一元一次方程。
主要步骤:变形——用一个未知数的代数式表示另一个未知数。
代入——消去一个元。
求解——分别求出两个未知数的值。
写解——写出方程组的解。
(2)加减消元法:适用于相同未知数的系数有相等或互为相反数的特点的方程组,首先观察出两个未知数的系数各自的特点,判断如何运用加减消去一个未知数;含分母、小数、括号等的方程组都应先化为最简形式后再用这两种方法去解。
变形——同一个未知数的系数相同或互为相反数。
加减——消去一个元。
求解——分别求出两个未知数的值。
写解——写出方程组的解。
(3)列方程解应用题的一般步骤是:关键是找出题目中的两个相等关系,列出方程组。
列二元一次方程组解应用题的一般步骤可概括为“审、找、列、解、答”五步,即:① 审:通过审题,把实际问题抽象成数学问题,分析已知数和未知数,并用字母表示其中的两个未知数。
② 找:找出能够表示题意两个相等关系。
③ 列:根据这两个相等关系列出必需的代数式,从而列出方程组。
④ 解:解这个方程组,求出两个未知数的值。
⑤ 答:在对求出的方程的解做出是否合理判断的基础上,写出答案。
6、二元一次方程组⎩⎨⎧=+=+222111c y b x a c y b x a 的解的情况有以下三种: ① 当212121c c b b a a ==时,方程组有无数多解。
(完整版)二元一次方程组知识点归纳
t at i me an dAl l t h i ng si nt he i rb ei n ga re go od fo rs o m e t h i n二元一次方程组知识点归纳、解题技巧汇总、练习题及答案1、二元一次方程的定义:含有两个未知数,并且未知数的项的次数都是1,像这样的方程叫做二元一次方程。
2、二元一次方程组的定义:把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组。
注意 :二元一次方程组不一定都是由两个二元一次方程合在一起组成的! 也可以由一个或多个二元一次方程单独组成。
3、二元一次方程组的解:一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解,二元一次方程有无数个解。
4、二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。
1.有一组解 如方程组x+y=5① 6x+13y=89② x=-24/7 y=59/7 为方程组的解 2.有无数组解 如方程组x+y=6① 2x+2y=12② 因为这两个方程实际上是一个方程(亦称作“方程有两个相等的实数根”),所以此类方程组有无数组解。
3.无解 如方程组x+y=4① 2x+2y=10②, 因为方程②化简后为 x+y=5 这与方程①相矛盾,所以此类方程组无解。
一般解法,消元:将方程组中的未知数个数由多化少,逐一解决。
消元的方法有两种: 代入消元法:把二元一次方程组中一个方程的未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解。
这个方法叫做代入消元法,简称代入法。
例:解方程组x+y=5① 6x+13y=89② 解:由①得 x=5-y ③ t at i me an dAl l t h i ng si nt he i rb ei n ga re go od fo rs o m e t h i n把y=59/7带入③, x=5-59/7 即x=-24/7 ∴x=-24/7 y=59/7 为方程组的解 基本思路:未知数又多变少。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第八章 二元一次方程组
一、知识回顾
1、含有 个未知数,并且含有未知数的项的次数都是 的方程叫做二元一次方程;能使二元一次方程 的两个未知数的值叫做二元一次方程的解。
2、把具有 未知数的 方程合在一起就组成了一个二元一次方程组;能使二元一次方程组 的未知数的值叫做二元一次方程组的解。
3、解二元一次方程组的基本思想是 ,它有 和 两种方法;把二元一次方程组中一个方程的一个未知数用含 的式子表示出来,{再 另一个方程,实现消元进而求得这个二元一次方程组的解,这种方法叫做 ;当两个二元一次方程中同一个未知数的系数 (或 )时,将两个方程的两边分别 (或 ),就能消去这个未知数得到一个一元一次方程,这种方法叫做 。
4、列方程组解应用题的步骤可概括为 、 、 、 、 、 、 这七大步骤。
5、由 个方程组成,并且方程组中含有 个相同未知数,每个方程中含未知数的项的次数都为 ,这样的方程组叫做三元一次方程组。
6、解三元一次方程组的基本思路是:通过 或 进行消元,将三元一次方程组问题转化为二元一次方程组,再将二元一次方程组转化为 求解。
二、典例解析
例1 解方程组:41216x y x y -=-⎧⎨+=⎩
方法总结:解二元一次方程组时,如果某个方程中某个未知数的系数为1或者-1,就可把这个未知数用另一个未知数来表示,从而带入求解;如果两个方程中某个未知数中某个未知数的系数相等,就用减法消元求解;如果两个方程中某个未知数中某个未知数的系数互为相反数,就用加法消元求解;如果这三种情况都不是那就只能化系数为相同或互为相反数了。
变式1 解方程组(1)2327x y x y ⎧=⎪⎨⎪+=⎩
(2)32245a b a b --==
变式2 解方程组3
23234x y z x y z x y z -+=⎧⎪-+=⎨⎪+-=⎩
例2 已知
2
1
x
y
=
⎧
⎨
=
⎩
是方程组
7
1
ax by
ax by
+=
⎧
⎨
-=
⎩
的解,求a b
-的值。
方法总结:1、方程组的解一定满足方程组,带回去检验即可知道是不是方程组的解;2、注意有时要“将错就错”解题;3、对于方程的解的问题,先解方程,用含参数的式子表示方程的解,再解参数方程;
变式1若方程组
352
23
x y k
x y k
+=+
⎧
⎨
+=
⎩
的解x和y的和为0,求k的值。
变式2 若方程组
45
1
x y
ax by
+=
⎧
⎨
-=
⎩
与方程组
3
321
ax by
x y
+=
⎧
⎨
-=
⎩
有相同的解,求a,b的值。
变式3 关于x,y的方程组
5323
x y
x y p
+=
⎧
⎨
+=
⎩
的解是正整数,求整数p的值。
变式4 小红和小丽共同解方程组
515
42
ax y
x by
+=
⎧
⎨
-=-
⎩
,由于小红看错了a的值,求得的解是
3
1
x
y
=-
⎧
⎨
=-
⎩
,小丽
看错了b的值,求得的解是
5
4
x
y
=
⎧
⎨
=
⎩
,(1)你能求出a,b的正确的值吗?(2)方程组的正确的解为多少?
例3 求二元一次方程3215
x y
+=的正整数解。
方法总结:对于不定方程应当采用分类讨论的方法求解,或者用其中的一个未知数表示其余的未知数再求解。
变式1 已知
4520
430
x y z
x y z
-+=
⎧
⎨
+-=
⎩
,且0
xyz≠,则::
x y z的值为。
变式2 某校举办一次足球比赛,胜一场得3分,平一场得1分,负一场得0分。
若甲队5场比赛后积7分,则甲队平场。
例4 为建设节约型、环境友好型社会,克服因干旱而造成的电力紧张困难,切实做好节能减排工作。
某地决定对居民家庭用电实行“阶梯电价”,电力公司规定:居民家庭每月用电量在80千瓦时以下(含80千瓦时,1千瓦时俗称1度)时,实行“基本电价”;当居民家庭每月用电量超过80千瓦时时,超过部分实行“提高电价”。
(1)小张家2011年4月用电量为100千瓦时,交电费68元;5月用电量为120千瓦时,交电费88元。
求“基本电价”和“提高电价”分别是多少元/千瓦时?
(2)若6月份小张家预计用电130千瓦时,那么应交多少电费?
方法总结:认真读题,弄清题意,找准数量间的等量关系是解应用题的关键。
变式1 2011年“五∙一”黄金周期间,河池市某旅行社接待一日游和三日游的旅客共1600人,收取旅游费129万元,其中一日游每人收费150元,三日游每人收费1200元,该旅行社接待的一日游和三日游旅客各多少人?
变式2 一批机器零件共2200个,如果甲先做10天后,乙加入合作,再做16天正好完成;如果乙先做10天后,甲加入合作,再做18天也恰好完成。
问两人每天各做多少个零件?
变式3 甲公司决定分别向A、B两地运苹果,运给A地10吨,B地8吨,但现在只有苹果12吨,还需从乙公司调运6吨,经协商,从甲运给A、B两地运费分别为50元/吨和30元/吨,从乙运给A、B两地运费分别为80元/吨和40元/吨.若最后总运费为840元,问该如何调运?。