M33(A)G SIM schematics

合集下载

NuMicro N9H30系列开发板用户手册说明书

NuMicro N9H30系列开发板用户手册说明书

NuMicro®FamilyArm® ARM926EJ-S BasedNuMaker-HMI-N9H30User ManualEvaluation Board for NuMicro® N9H30 SeriesNUMAKER-HMI-N9H30 USER MANUALThe information described in this document is the exclusive intellectual property ofNuvoton Technology Corporation and shall not be reproduced without permission from Nuvoton.Nuvoton is providing this document only for reference purposes of NuMicro microcontroller andmicroprocessor based system design. Nuvoton assumes no responsibility for errors or omissions.All data and specifications are subject to change without notice.For additional information or questions, please contact: Nuvoton Technology Corporation.Table of Contents1OVERVIEW (5)1.1Features (7)1.1.1NuMaker-N9H30 Main Board Features (7)1.1.2NuDesign-TFT-LCD7 Extension Board Features (7)1.2Supporting Resources (8)2NUMAKER-HMI-N9H30 HARDWARE CONFIGURATION (9)2.1NuMaker-N9H30 Board - Front View (9)2.2NuMaker-N9H30 Board - Rear View (14)2.3NuDesign-TFT-LCD7 - Front View (20)2.4NuDesign-TFT-LCD7 - Rear View (21)2.5NuMaker-N9H30 and NuDesign-TFT-LCD7 PCB Placement (22)3NUMAKER-N9H30 AND NUDESIGN-TFT-LCD7 SCHEMATICS (24)3.1NuMaker-N9H30 - GPIO List Circuit (24)3.2NuMaker-N9H30 - System Block Circuit (25)3.3NuMaker-N9H30 - Power Circuit (26)3.4NuMaker-N9H30 - N9H30F61IEC Circuit (27)3.5NuMaker-N9H30 - Setting, ICE, RS-232_0, Key Circuit (28)NUMAKER-HMI-N9H30 USER MANUAL3.6NuMaker-N9H30 - Memory Circuit (29)3.7NuMaker-N9H30 - I2S, I2C_0, RS-485_6 Circuit (30)3.8NuMaker-N9H30 - RS-232_2 Circuit (31)3.9NuMaker-N9H30 - LCD Circuit (32)3.10NuMaker-N9H30 - CMOS Sensor, I2C_1, CAN_0 Circuit (33)3.11NuMaker-N9H30 - RMII_0_PF Circuit (34)3.12NuMaker-N9H30 - RMII_1_PE Circuit (35)3.13NuMaker-N9H30 - USB Circuit (36)3.14NuDesign-TFT-LCD7 - TFT-LCD7 Circuit (37)4REVISION HISTORY (38)List of FiguresFigure 1-1 Front View of NuMaker-HMI-N9H30 Evaluation Board (5)Figure 1-2 Rear View of NuMaker-HMI-N9H30 Evaluation Board (6)Figure 2-1 Front View of NuMaker-N9H30 Board (9)Figure 2-2 Rear View of NuMaker-N9H30 Board (14)Figure 2-3 Front View of NuDesign-TFT-LCD7 Board (20)Figure 2-4 Rear View of NuDesign-TFT-LCD7 Board (21)Figure 2-5 Front View of NuMaker-N9H30 PCB Placement (22)Figure 2-6 Rear View of NuMaker-N9H30 PCB Placement (22)Figure 2-7 Front View of NuDesign-TFT-LCD7 PCB Placement (23)Figure 2-8 Rear View of NuDesign-TFT-LCD7 PCB Placement (23)Figure 3-1 GPIO List Circuit (24)Figure 3-2 System Block Circuit (25)Figure 3-3 Power Circuit (26)Figure 3-4 N9H30F61IEC Circuit (27)Figure 3-5 Setting, ICE, RS-232_0, Key Circuit (28)Figure 3-6 Memory Circuit (29)Figure 3-7 I2S, I2C_0, RS-486_6 Circuit (30)Figure 3-8 RS-232_2 Circuit (31)Figure 3-9 LCD Circuit (32)NUMAKER-HMI-N9H30 USER MANUAL Figure 3-10 CMOS Sensor, I2C_1, CAN_0 Circuit (33)Figure 3-11 RMII_0_PF Circuit (34)Figure 3-12 RMII_1_PE Circuit (35)Figure 3-13 USB Circuit (36)Figure 3-14 TFT-LCD7 Circuit (37)List of TablesTable 2-1 LCD Panel Combination Connector (CON8) Pin Function (11)Table 2-2 Three Sets of Indication LED Functions (12)Table 2-3 Six Sets of User SW, Key Matrix Functions (12)Table 2-4 CMOS Sensor Connector (CON10) Function (13)Table 2-5 JTAG ICE Interface (J2) Function (14)Table 2-6 Expand Port (CON7) Function (16)Table 2-7 UART0 (J3) Function (16)Table 2-8 UART2 (J6) Function (16)Table 2-9 RS-485_6 (SW6~8) Function (17)Table 2-10 Power on Setting (SW4) Function (17)Table 2-11 Power on Setting (S2) Function (17)Table 2-12 Power on Setting (S3) Function (17)Table 2-13 Power on Setting (S4) Function (17)Table 2-14 Power on Setting (S5) Function (17)Table 2-15 Power on Setting (S7/S6) Function (18)Table 2-16 Power on Setting (S9/S8) Function (18)Table 2-17 CMOS Sensor Connector (CON9) Function (19)Table 2-18 CAN_0 (SW9~10) Function (19)NUMAKER-HMI-N9H30 USER MANUAL1 OVERVIEWThe NuMaker-HMI-N9H30 is an evaluation board for GUI application development. The NuMaker-HMI-N9H30 consists of two parts: a NuMaker-N9H30 main board and a NuDesign-TFT-LCD7 extensionboard. The NuMaker-HMI-N9H30 is designed for project evaluation, prototype development andvalidation with HMI (Human Machine Interface) function.The NuMaker-HMI-N9H30 integrates touchscreen display, voice input/output, rich serial port serviceand I/O interface, providing multiple external storage methods.The NuDesign-TFT-LCD7 can be plugged into the main board via the DIN_32x2 extension connector.The NuDesign-TFT-LCD7 includes one 7” LCD which the resolution is 800x480 with RGB-24bits andembedded the 4-wires resistive type touch panel.Figure 1-1 Front View of NuMaker-HMI-N9H30 Evaluation BoardNUMAKER-HMI-N9H30 USER MANUAL Figure 1-2 Rear View of NuMaker-HMI-N9H30 Evaluation Board1.1 Features1.1.1 NuMaker-N9H30 Main Board Features●N9H30F61IEC chip: LQFP216 pin MCP package with DDR (64 MB)●SPI Flash using W25Q256JVEQ (32 MB) booting with quad mode or storage memory●NAND Flash using W29N01HVSINA (128 MB) booting or storage memory●One Micro-SD/TF card slot served either as a SD memory card for data storage or SDIO(Wi-Fi) device●Two sets of COM ports:–One DB9 RS-232 port with UART_0 used 75C3232E transceiver chip can be servedfor function debug and system development.–One DB9 RS-232 port with UART_2 used 75C3232E transceiver chip for userapplication●22 GPIO expansion ports, including seven sets of UART functions●JTAG interface provided for software development●Microphone input and Earphone/Speaker output with 24-bit stereo audio codec(NAU88C22) for I2S interfaces●Six sets of user-configurable push button keys●Three sets of LEDs for status indication●Provides SN65HVD230 transceiver chip for CAN bus communication●Provides MAX3485 transceiver chip for RS-485 device connection●One buzzer device for program applicationNUMAKER-HMI-N9H30 USER MANUAL●Two sets of RJ45 ports with Ethernet 10/100 Mbps MAC used IP101GR PHY chip●USB_0 that can be used as Device/HOST and USB_1 that can be used as HOSTsupports pen drives, keyboards, mouse and printers●Provides over-voltage and over current protection used APL3211A chip●Retain RTC battery socket for CR2032 type and ADC0 detect battery voltage●System power could be supplied by DC-5V adaptor or USB VBUS1.1.2 NuDesign-TFT-LCD7 Extension Board Features●7” resolution 800x480 4-wire resistive touch panel for 24-bits RGB888 interface●DIN_32x2 extension connector1.2 Supporting ResourcesFor sample codes and introduction about NuMaker-N9H30, please refer to N9H30 BSP:https:///products/gui-solution/gui-platform/numaker-hmi-n9h30/?group=Software&tab=2Visit NuForum for further discussion about the NuMaker-HMI-N9H30:/viewforum.php?f=31 NUMAKER-HMI-N9H30 USER MANUALNUMAKER-HMI-N9H30 USER MANUAL2 NUMAKER-HMI-N9H30 HARDWARE CONFIGURATION2.1 NuMaker-N9H30 Board - Front View Combination Connector (CON8)6 set User SWs (K1~6)3set Indication LEDs (LED1~3)Power Supply Switch (SW_POWER1)Audio Codec(U10)Microphone(M1)NAND Flash(U9)RS-232 Transceiver(U6, U12)RS-485 Transceiver(U11)CAN Transceiver (U13)Figure 2-1 Front View of NuMaker-N9H30 BoardFigure 2-1 shows the main components and connectors from the front side of NuMaker-N9H30 board. The following lists components and connectors from the front view:NuMaker-N9H30 board and NuDesign-TFT-LCD7 board combination connector (CON8). This panel connector supports 4-/5-wire resistive touch or capacitance touch panel for 24-bits RGB888 interface.Connector GPIO pin of N9H30 FunctionCON8.1 - Power 3.3VCON8.2 - Power 3.3VCON8.3 GPD7 LCD_CSCON8.4 GPH3 LCD_BLENCON8.5 GPG9 LCD_DENCON8.7 GPG7 LCD_HSYNCCON8.8 GPG6 LCD_CLKCON8.9 GPD15 LCD_D23(R7)CON8.10 GPD14 LCD_D22(R6)CON8.11 GPD13 LCD_D21(R5)CON8.12 GPD12 LCD_D20(R4)CON8.13 GPD11 LCD_D19(R3)CON8.14 GPD10 LCD_D18(R2)CON8.15 GPD9 LCD_D17(R1)CON8.16 GPD8 LCD_D16(R0)CON8.17 GPA15 LCD_D15(G7)CON8.18 GPA14 LCD_D14(G6)CON8.19 GPA13 LCD_D13(G5)CON8.20 GPA12 LCD_D12(G4)CON8.21 GPA11 LCD_D11(G3)CON8.22 GPA10 LCD_D10(G2)CON8.23 GPA9 LCD_D9(G1) NUMAKER-HMI-N9H30 USER MANUALCON8.24 GPA8 LCD_D8(G0)CON8.25 GPA7 LCD_D7(B7)CON8.26 GPA6 LCD_D6(B6)CON8.27 GPA5 LCD_D5(B5)CON8.28 GPA4 LCD_D4(B4)CON8.29 GPA3 LCD_D3(B3)CON8.30 GPA2 LCD_D2(B2)CON8.31 GPA1 LCD_D1(B1)CON8.32 GPA0 LCD_D0(B0)CON8.33 - -CON8.34 - -CON8.35 - -CON8.36 - -CON8.37 GPB2 LCD_PWMCON8.39 - VSSCON8.40 - VSSCON8.41 ADC7 XPCON8.42 ADC3 VsenCON8.43 ADC6 XMCON8.44 ADC4 YMCON8.45 - -CON8.46 ADC5 YPCON8.47 - VSSCON8.48 - VSSCON8.49 GPG0 I2C0_CCON8.50 GPG1 I2C0_DCON8.51 GPG5 TOUCH_INTCON8.52 - -CON8.53 - -CON8.54 - -CON8.55 - -NUMAKER-HMI-N9H30 USER MANUAL CON8.56 - -CON8.57 - -CON8.58 - -CON8.59 - VSSCON8.60 - VSSCON8.61 - -CON8.62 - -CON8.63 - Power 5VCON8.64 - Power 5VTable 2-1 LCD Panel Combination Connector (CON8) Pin Function●Power supply switch (SW_POWER1): System will be powered on if the SW_POWER1button is pressed●Three sets of indication LEDs:LED Color DescriptionsLED1 Red The system power will beterminated and LED1 lightingwhen the input voltage exceeds5.7V or the current exceeds 2A.LED2 Green Power normal state.LED3 Green Controlled by GPH2 pin Table 2-2 Three Sets of Indication LED Functions●Six sets of user SW, Key Matrix for user definitionKey GPIO pin of N9H30 FunctionK1 GPF10 Row0 GPB4 Col0K2 GPF10 Row0 GPB5 Col1K3 GPE15 Row1 GPB4 Col0K4 GPE15 Row1 GPB5 Col1K5 GPE14 Row2 GPB4 Col0K6GPE14 Row2GPB5 Col1 Table 2-3 Six Sets of User SW, Key Matrix Functions●NAND Flash (128 MB) with Winbond W29N01HVS1NA (U9)●Microphone (M1): Through Nuvoton NAU88C22 chip sound input●Audio CODEC chip (U10): Nuvoton NAU88C22 chip connected to N9H30 using I2Sinterface–SW6/SW7/SW8: 1-2 short for RS-485_6 function and connected to 2P terminal (CON5and J5)–SW6/SW7/SW8: 2-3 short for I2S function and connected to NAU88C22 (U10).●CMOS Sensor connector (CON10, SW9~10)–SW9~10: 1-2 short for CAN_0 function and connected to 2P terminal (CON11)–SW9~10: 2-3 short for CMOS sensor function and connected to CMOS sensorconnector (CON10)Connector GPIO pin of N9H30 FunctionCON10.1 - VSSCON10.2 - VSSNUMAKER-HMI-N9H30 USER MANUALCON10.3 - Power 3.3VCON10.4 - Power 3.3VCON10.5 - -CON10.6 - -CON10.7 GPI4 S_PCLKCON10.8 GPI3 S_CLKCON10.9 GPI8 S_D0CON10.10 GPI9 S_D1CON10.11 GPI10 S_D2CON10.12 GPI11 S_D3CON10.13 GPI12 S_D4CON10.14 GPI13 S_D5CON10.15 GPI14 S_D6CON10.16 GPI15 S_D7CON10.17 GPI6 S_VSYNCCON10.18 GPI5 S_HSYNCCON10.19 GPI0 S_PWDNNUMAKER-HMI-N9H30 USER MANUAL CON10.20 GPI7 S_nRSTCON10.21 GPG2 I2C1_CCON10.22 GPG3 I2C1_DCON10.23 - VSSCON10.24 - VSSTable 2-4 CMOS Sensor Connector (CON10) FunctionNUMAKER-HMI-N9H30 USER MANUAL2.2NuMaker-N9H30 Board - Rear View5V In (CON1)RS-232 DB9 (CON2,CON6)Expand Port (CON7)Speaker Output (J4)Earphone Output (CON4)Buzzer (BZ1)System ResetSW (SW5)SPI Flash (U7,U8)JTAG ICE (J2)Power ProtectionIC (U1)N9H30F61IEC (U5)Micro SD Slot (CON3)RJ45 (CON12, CON13)USB1 HOST (CON15)USB0 Device/Host (CON14)CAN_0 Terminal (CON11)CMOS Sensor Connector (CON9)Power On Setting(SW4, S2~S9)RS-485_6 Terminal (CON5)RTC Battery(BT1)RMII PHY (U14,U16)Figure 2-2 Rear View of NuMaker-N9H30 BoardFigure 2-2 shows the main components and connectors from the rear side of NuMaker-N9H30 board. The following lists components and connectors from the rear view:● +5V In (CON1): Power adaptor 5V input ●JTAG ICE interface (J2) ConnectorGPIO pin of N9H30Function J2.1 - Power 3.3V J2.2 GPJ4 nTRST J2.3 GPJ2 TDI J2.4 GPJ1 TMS J2.5 GPJ0 TCK J2.6 - VSS J2.7 GPJ3 TD0 J2.8-RESETTable 2-5 JTAG ICE Interface (J2) Function●SPI Flash (32 MB) with Winbond W25Q256JVEQ (U7); only one (U7 or U8) SPI Flashcan be used●System Reset (SW5): System will be reset if the SW5 button is pressed●Buzzer (BZ1): Control by GPB3 pin of N9H30●Speaker output (J4): Through the NAU88C22 chip sound output●Earphone output (CON4): Through the NAU88C22 chip sound output●Expand port for user use (CON7):Connector GPIO pin of N9H30 FunctionCON7.1 - Power 3.3VCON7.2 - Power 3.3VCON7.3 GPE12 UART3_TXDCON7.4 GPH4 UART1_TXDCON7.5 GPE13 UART3_RXDCON7.6 GPH5 UART1_RXDCON7.7 GPB0 UART5_TXDCON7.8 GPH6 UART1_RTSCON7.9 GPB1 UART5_RXDCON7.10 GPH7 UART1_CTSCON7.11 GPI1 UART7_TXDNUMAKER-HMI-N9H30 USER MANUAL CON7.12 GPH8 UART4_TXDCON7.13 GPI2 UART7_RXDCON7.14 GPH9 UART4_RXDCON7.15 - -CON7.16 GPH10 UART4_RTSCON7.17 - -CON7.18 GPH11 UART4_CTSCON7.19 - VSSCON7.20 - VSSCON7.21 GPB12 UART10_TXDCON7.22 GPH12 UART8_TXDCON7.23 GPB13 UART10_RXDCON7.24 GPH13 UART8_RXDCON7.25 GPB14 UART10_RTSCON7.26 GPH14 UART8_RTSCON7.27 GPB15 UART10_CTSCON7.28 GPH15 UART8_CTSCON7.29 - Power 5VCON7.30 - Power 5VTable 2-6 Expand Port (CON7) Function●UART0 selection (CON2, J3):–RS-232_0 function and connected to DB9 female (CON2) for debug message output.–GPE0/GPE1 connected to 2P terminal (J3).Connector GPIO pin of N9H30 Function J3.1 GPE1 UART0_RXDJ3.2 GPE0 UART0_TXDTable 2-7 UART0 (J3) Function●UART2 selection (CON6, J6):–RS-232_2 function and connected to DB9 female (CON6) for debug message output –GPF11~14 connected to 4P terminal (J6)Connector GPIO pin of N9H30 Function J6.1 GPF11 UART2_TXDJ6.2 GPF12 UART2_RXDJ6.3 GPF13 UART2_RTSJ6.4 GPF14 UART2_CTSTable 2-8 UART2 (J6) Function●RS-485_6 selection (CON5, J5, SW6~8):–SW6~8: 1-2 short for RS-485_6 function and connected to 2P terminal (CON5 and J5) –SW6~8: 2-3 short for I2S function and connected to NAU88C22 (U10)Connector GPIO pin of N9H30 FunctionSW6:1-2 shortGPG11 RS-485_6_DISW6:2-3 short I2S_DOSW7:1-2 shortGPG12 RS-485_6_ROSW7:2-3 short I2S_DISW8:1-2 shortGPG13 RS-485_6_ENBSW8:2-3 short I2S_BCLKNUMAKER-HMI-N9H30 USER MANUALTable 2-9 RS-485_6 (SW6~8) FunctionPower on setting (SW4, S2~9).SW State FunctionSW4.2/SW4.1 ON/ON Boot from USB SW4.2/SW4.1 ON/OFF Boot from eMMC SW4.2/SW4.1 OFF/ON Boot from NAND Flash SW4.2/SW4.1 OFF/OFF Boot from SPI Flash Table 2-10 Power on Setting (SW4) FunctionSW State FunctionS2 Short System clock from 12MHzcrystalS2 Open System clock from UPLL output Table 2-11 Power on Setting (S2) FunctionSW State FunctionS3 Short Watchdog Timer OFFS3 Open Watchdog Timer ON Table 2-12 Power on Setting (S3) FunctionSW State FunctionS4 Short GPJ[4:0] used as GPIO pinS4Open GPJ[4:0] used as JTAG ICEinterfaceTable 2-13 Power on Setting (S4) FunctionSW State FunctionS5 Short UART0 debug message ONS5 Open UART0 debug message OFFTable 2-14 Power on Setting (S5) FunctionSW State FunctionS7/S6 Short/Short NAND Flash page size 2KBS7/S6 Short/Open NAND Flash page size 4KBS7/S6 Open/Short NAND Flash page size 8KBNUMAKER-HMI-N9H30 USER MANUALS7/S6 Open/Open IgnoreTable 2-15 Power on Setting (S7/S6) FunctionSW State FunctionS9/S8 Short/Short NAND Flash ECC type BCH T12S9/S8 Short/Open NAND Flash ECC type BCH T15S9/S8 Open/Short NAND Flash ECC type BCH T24S9/S8 Open/Open IgnoreTable 2-16 Power on Setting (S9/S8) FunctionCMOS Sensor connector (CON9, SW9~10)–SW9~10: 1-2 short for CAN_0 function and connected to 2P terminal (CON11).–SW9~10: 2-3 short for CMOS sensor function and connected to CMOS sensorconnector (CON9).Connector GPIO pin of N9H30 FunctionCON9.1 - VSSCON9.2 - VSSCON9.3 - Power 3.3VCON9.4 - Power 3.3V NUMAKER-HMI-N9H30 USER MANUALCON9.5 - -CON9.6 - -CON9.7 GPI4 S_PCLKCON9.8 GPI3 S_CLKCON9.9 GPI8 S_D0CON9.10 GPI9 S_D1CON9.11 GPI10 S_D2CON9.12 GPI11 S_D3CON9.13 GPI12 S_D4CON9.14 GPI13 S_D5CON9.15 GPI14 S_D6CON9.16 GPI15 S_D7CON9.17 GPI6 S_VSYNCCON9.18 GPI5 S_HSYNCCON9.19 GPI0 S_PWDNCON9.20 GPI7 S_nRSTCON9.21 GPG2 I2C1_CCON9.22 GPG3 I2C1_DCON9.23 - VSSCON9.24 - VSSTable 2-17 CMOS Sensor Connector (CON9) Function●CAN_0 Selection (CON11, SW9~10):–SW9~10: 1-2 short for CAN_0 function and connected to 2P terminal (CON11) –SW9~10: 2-3 short for CMOS sensor function and connected to CMOS sensor connector (CON9, CON10)SW GPIO pin of N9H30 FunctionSW9:1-2 shortGPI3 CAN_0_RXDSW9:2-3 short S_CLKSW10:1-2 shortGPI4 CAN_0_TXDSW10:2-3 short S_PCLKTable 2-18 CAN_0 (SW9~10) Function●USB0 Device/HOST Micro-AB connector (CON14), where CON14 pin4 ID=1 is Device,ID=0 is HOST●USB1 for USB HOST with Type-A connector (CON15)●RJ45_0 connector with LED indicator (CON12), RMII PHY with IP101GR (U14)●RJ45_1 connector with LED indicator (CON13), RMII PHY with IP101GR (U16)●Micro-SD/TF card slot (CON3)●SOC CPU: Nuvoton N9H30F61IEC (U5)●Battery power for RTC 3.3V powered (BT1, J1), can detect voltage by ADC0●RTC power has 3 sources:–Share with 3.3V I/O power–Battery socket for CR2032 (BT1)–External connector (J1)●Board version 2.1NUMAKER-HMI-N9H30 USER MANUAL2.3 NuDesign-TFT-LCD7 -Front ViewFigure 2-3 Front View of NuDesign-TFT-LCD7 BoardFigure 2-3 shows the main components and connectors from the Front side of NuDesign-TFT-LCD7board.7” resolution 800x480 4-W resistive touch panel for 24-bits RGB888 interface2.4 NuDesign-TFT-LCD7 -Rear ViewFigure 2-4 Rear View of NuDesign-TFT-LCD7 BoardFigure 2-4 shows the main components and connectors from the rear side of NuDesign-TFT-LCD7board.NuMaker-N9H30 and NuDesign-TFT-LCD7 combination connector (CON1).NUMAKER-HMI-N9H30 USER MANUAL 2.5 NuMaker-N9H30 and NuDesign-TFT-LCD7 PCB PlacementFigure 2-5 Front View of NuMaker-N9H30 PCB PlacementFigure 2-6 Rear View of NuMaker-N9H30 PCB PlacementNUMAKER-HMI-N9H30 USER MANUALFigure 2-7 Front View of NuDesign-TFT-LCD7 PCB PlacementFigure 2-8 Rear View of NuDesign-TFT-LCD7 PCB Placement3 NUMAKER-N9H30 AND NUDESIGN-TFT-LCD7 SCHEMATICS3.1 NuMaker-N9H30 - GPIO List CircuitFigure 3-1 shows the N9H30F61IEC GPIO list circuit.Figure 3-1 GPIO List Circuit NUMAKER-HMI-N9H30 USER MANUAL3.2 NuMaker-N9H30 - System Block CircuitFigure 3-2 shows the System Block Circuit.NUMAKER-HMI-N9H30 USER MANUALFigure 3-2 System Block Circuit3.3 NuMaker-N9H30 - Power CircuitFigure 3-3 shows the Power Circuit.NUMAKER-HMI-N9H30 USER MANUALFigure 3-3 Power Circuit3.4 NuMaker-N9H30 - N9H30F61IEC CircuitFigure 3-4 shows the N9H30F61IEC Circuit.Figure 3-4 N9H30F61IEC CircuitNUMAKER-HMI-N9H30 USER MANUAL3.5 NuMaker-N9H30 - Setting, ICE, RS-232_0, Key CircuitFigure 3-5 shows the Setting, ICE, RS-232_0, Key Circuit.NUMAKER-HMI-N9H30 USER MANUALFigure 3-5 Setting, ICE, RS-232_0, Key Circuit3.6 NuMaker-N9H30 - Memory CircuitFigure 3-6 shows the Memory Circuit.NUMAKER-HMI-N9H30 USER MANUALFigure 3-6 Memory Circuit3.7 NuMaker-N9H30 - I2S, I2C_0, RS-485_6 CircuitFigure 3-7 shows the I2S, I2C_0, RS-486_6 Circuit.NUMAKER-HMI-N9H30 USER MANUALFigure 3-7 I2S, I2C_0, RS-486_6 Circuit3.8 NuMaker-N9H30 - RS-232_2 CircuitFigure 3-8 shows the RS-232_2 Circuit.NUMAKER-HMI-N9H30 USER MANUALFigure 3-8 RS-232_2 Circuit3.9 NuMaker-N9H30 - LCD CircuitFigure 3-9 shows the LCD Circuit.NUMAKER-HMI-N9H30 USER MANUALFigure 3-9 LCD Circuit3.10 NuMaker-N9H30 - CMOS Sensor, I2C_1, CAN_0 CircuitFigure 3-10 shows the CMOS Sensor,I2C_1, CAN_0 Circuit.NUMAKER-HMI-N9H30 USER MANUALFigure 3-10 CMOS Sensor, I2C_1, CAN_0 Circuit3.11 NuMaker-N9H30 - RMII_0_PF CircuitFigure 3-11 shows the RMII_0_RF Circuit.NUMAKER-HMI-N9H30 USER MANUALFigure 3-11 RMII_0_PF Circuit3.12 NuMaker-N9H30 - RMII_1_PE CircuitFigure 3-12 shows the RMII_1_PE Circuit.NUMAKER-HMI-N9H30 USER MANUALFigure 3-12 RMII_1_PE Circuit3.13 NuMaker-N9H30 - USB CircuitFigure 3-13 shows the USB Circuit.NUMAKER-HMI-N9H30 USER MANUALFigure 3-13 USB Circuit3.14 NuDesign-TFT-LCD7 - TFT-LCD7 CircuitFigure 3-14 shows the TFT-LCD7 Circuit.Figure 3-14 TFT-LCD7 CircuitNUMAKER-HMI-N9H30 USER MANUAL4 REVISION HISTORYDate Revision Description2022.03.24 1.00 Initial version NUMAKER-HMI-N9H30 USER MANUALNUMAKER-HMI-N9H30 USER MANUALImportant NoticeNuvoton Products are neither intended nor warranted for usage in systems or equipment, anymalfunction or failure of which may cause loss of human life, bodily injury or severe propertydamage. Such applications are deemed, “Insecure Usage”.Insecure usage includes, but is not limited to: equipment for surgical implementation, atomicenergy control instruments, airplane or spaceship instruments, the control or operation ofdynamic, brake or safety systems designed for vehicular use, traffic signal instruments, all typesof safety devices, and other applications intended to support or sustain life.All Insecure Usage shall be made at customer’s risk, and in the event that third parties lay claimsto Nuvoton as a result of customer’s Insecure Usage, custome r shall indemnify the damagesand liabilities thus incurred by Nuvoton.。

Nordic Thingy 91产品简要说明版本1.4说明书

Nordic Thingy 91产品简要说明版本1.4说明书
Button LTE-M/NB-IoT/ GPS antenna
RGB LEDs
Temperature, humidity, air quality
and air pressure Light/color sensor
Buzzer
2.4 GHz antenna
Low-power accelerometer PMIC Battery connector Power switch
Nordic Thingy:91 Product Brief Verent Program/debug device
selection switch nRF9160 SiP
nRF52840 WLCSP
High-g accelerometer
Nano/4FF SIM card slot
An exhaustive set of sensors is included to gather data about the environment, and the movement of the Nordic Thingy:91. Temperature, humidity, air quality, air pressure, color and light data can easily be extracted for local or remote analysis.
and air pressure, plus a color and light sensor Low-power accelerometer and high-g accelerometer Buzzer 4 x N-MOS transistors for external DC motors or LEDs Rechargeable Li-Po battery with 1440 mAh capacity

pm3使用教程

pm3使用教程

pm3使用教程PM3 操作
设备连接示意图:
-------------------------------
设备连接电脑之后,设备管理器可以查看
打开PM3
查看电压命令:hw tu
读卡号命令:hf 14a read
(方上卡片)位置正确的话可以正常读出卡号。

读不出可以移动卡的位置
如果已经确定是全加密卡。

直接爆破命令:
hf mf mifare
卡片连接天线正确的话,命令行会出现数据窗口。

同时电路板的蓝色灯闪烁。

成功爆破密码:
破解全部扇区的密码,并且保存密码文件
命令:hf mf nested 1 0 a 密码 d
密码出来之后。

如果出现00000000的情况,可以在爆破1次。

(先保存好得到的密码文件.然后手动把密码加进去)
密码文件可以用 16进制软件查看。

(密码排列顺序。

先是全部A密码然后全部B密码)
生成dump文件,一定要先手动替换掉0000的数据(也就是 FFFFFFFFF)
生成DUMP 命令。

hf mf dump
会在同目录生成 dumpdata.bin 这个文件.
这个就是 dump文件。

可以直接修改文件后缀
.bin 为 .dump。

数字信号处理英文版课后答案(3)

数字信号处理英文版课后答案(3)

Chapter 3 Solutions3.1 (a) (i) x[0] = 3(ii) x[3] = 5(iii) x[–1] = 2(b) (i)(ii) The sketch for x[n+1] does not show the value of the sample x[5], since this information is not provided in the question.3.2 The impulse function is zero everywhere except n = 0.(a) δ[–4] = 0(b) δ[0] = 1(c) δ[2] = 03.3 (a) This function is a mirror image of the impulse function across the verticalaxis, which means no change occurs.(b) This function shifts the impulse two steps to the right and increases its amplitude to 2.(c) This function is the sum of two impulse functions.3.4 The step function is zero for n < 0 and one everywhere else.(a) u[–3] = 0(b) u[0] = 1(c) u[2] = 13.5 (a) x[n] = 4u[n–1](b) x[n] = –2u[n](c) x[n] = 2u[–n](d) x[n] = u[n–2](e) x[n] = u[2–n]3.6(a)(b)3.7 (a) This signal is a sum of shifted step functions, each with amplitude one. x[n] = 0.1u[n –1] + 0.1u[n –2] + 0.1u[n –3] + …(b) This signal is a sum of impulse functions with increasing amplitude. x[n] = 0.1δ[n –1] + 0.2δ[n –2] + 0.3δ[n –3] + …3.8 x[n] = (u[n] – u[n –2]) + (u[n –5] – u[n –7]) + (u[n –10] – u[n –12])3.9 x[n] = 2δ[n] – 3δ[n –1] + δ[n –2] – δ[n –3] + 3δ[n –4]3.10 (a)x[n] = δ[n –3] + δ[n –4] + δ[n –5] + δ[n –6] – δ[n –7] – δ[n –8] – δ[n –9] – δ[n –10] – δ[n –11] ∑∑==-δ--δ=117k 63k ]k n []k n [(b) x[n] = u[n –3] – 2u[n –7] + u[n –12] 3.11 x[n] = u[n] + 2u[n –4]3.123.13 The signal has values 1, 0.5, 0.25, 0.125, etc. These values can be generated from the function 0.5n , where each value is the amplitude of an impulse function. The signal may be expressed as ∑∞=-δ=0k k ]k n [)5.0(]n [x = δ[n] + 0.5δ[n –1] + 0.25δ[n –2] + 0.125δ[n –3] + …3.14 (a)By Euler’s identity, ⎪⎭⎫ ⎝⎛π-⎪⎭⎫ ⎝⎛π==π-4n sin j 4n cos e]n [x 4n j(b)From (a), 4π=Ω. Therefore, 18422=ππ=Ωπ. The digital period is 8 samples.3.15 (a)⎪⎭⎫⎝⎛π-⎪⎭⎫ ⎝⎛π==π-3n sin j 3n cos e ]n [x 3n j(b) The magnitude of any complex number is the square root of the sum of the squares of the real and imaginary parts. The magnitudes in the last column in (a) show that 3n j eπ- = 1. This equation is true for all n.3.16 The frequency of the analog signal is f = ω/2π = 200/2π Hz. The samplingfrequency f S = 1/T S = 1/(25x10–3) = 40 Hz. The digital frequency is Ω = 2πf/f S = 200/40 = 5 rads. The sampled signal is x[n] = 5sin(n Ω) = 5sin(5n).3.17 Check 2π/Ω for each function. The function is periodic if this ratio is rational. (a) 2π/Ω = 2π/(4/5) = 10π/4 = 5π/2This ratio is not rational, so the sinusoid is not periodic. (b) 2π/Ω = 2π/(6π/7) = 14/6 = 7/3This ratio is rational, and in lowest terms. The number in the numerator, 7, is the number of samples before the sequence repeats. (c) 2π/Ω = 2π/(2π/3) = 3This result may be seen as 3/1. Thus, the sinusoid is periodic with period 3.3.18 (a) From the equation for x(t), ω = 2πf = 1000π, so f = 500 Hz. Since seven samples are collected every three cycles, N = 7 and M = 3, so37M N 2==ΩπThis means SS f 5002f f 276π=π=π=Ω. Solving S f 500276π=π gives f S = 1167 Hz. (b) Since f S > 2f, the sampling rate is adequate to avoid aliasing.3.19 (a) The following samples are graphed below.(b) The ratio 2π/Ω is 2π/(4π/5)=10/4 = 5/2. The numerator, 5, indicates the sinusoidal sequence repeats every five samples. Because the denominator of the ratio is 2, these five samples are collected over two analog periods.(c) The analog signal is superimposed over the digital signal with a dashed line in the figure below.3.20 The analog frequency of x(t) is f = ω/(2π) = 2500π/(2π) = 1250 Hz. The digital frequency of x[n] is π/3 radians. These frequencies must be related through the equationSS f 12502f f 23π=π=π=ΩThe solution to this equation is f S = 7500 Hz. One other solution is possible, since⎪⎭⎫⎝⎛π=⎪⎭⎫ ⎝⎛π-π=⎪⎭⎫ ⎝⎛π3n 5cos 3n n 2cos 3n cos . This view givesSf 1250235π=π=Ωor f S = 1500 Hz. At this frequency, aliasing occurs. The signal appears at a frequency of 250 Hz. This explains why this second sampling rate works:315002502f f 2S π=π=π=Ω3.21 (a) From 052n 92=π+π, n = 59-. The shift moves the function left by 9/5samples. (b) The samples in the two signals do not match, because the shift is not an integer.(c) 951.052)0(92sin ]0[x 1=⎪⎭⎫ ⎝⎛π+π=927.052)1(92sin ]1[x 1=⎪⎭⎫ ⎝⎛π+π=(d) For a phase shift of two samples to the right,0)2(92n 92=θ+π=θ+π, so 94π-=θ. Thus, ⎪⎭⎫ ⎝⎛π-π=94n 92sin ]n [x 1. One period of this signal contains the same sample values as one period of x 2[n]. 3.22 (a)(b)(c)(d) 3.23(a)Since the digital sinusoid is periodic,M 10M N 2==Ωπ. Since Sf f 2π=Ω, M10f f S =. Therefore, 10Mf f S=. Possible frequencies f of the analog signal are defined by M = 1, 3, 7, 9, 11, …, that is, all integers that do not share any factors with 10. Other integers M result in a digital period less than 10. For 4 kHz sampling, the possible frequencies f are 400, 1200, 2800, 3600, 4400, … Hz. (b) The only two frequencies from (a) that lie within the Nyquist range are 400 Hz and 1200 Hz. All other frequencies f, when sampled at 4 kHz, produce aliases at 400 or 1200 Hz.3.24 A 16-bit image uses 16 bits to represent the gray scale level for each pixel in the image. A total of 65,536 gray scale values can be represented with 16 bits.3.25 Each square on the checkerboard is recorded by a 16 x 16 block of pixels. All pixels in the white squares have gray scale value 255. All pixels in the black squares have gray scale value 0.。

毕业设计(论文)-城市道路交叉口交通信号控制设计及仿真

毕业设计(论文)-城市道路交叉口交通信号控制设计及仿真

目录1 前言 (3)1.1本次毕业设计课题的目的、意义 (3)1.2.交通控制简介 (4)1.3国外交通信号控制技术研究概况 (5)1.4国内交通信号控制技术研究概况 (5)1.5交通信号系统仿真 (6)1.5.1系统仿真的概念 (7)1.5.2交通系统仿真的特点及分类 (7)1.6论文结构 (9)2 平面交通信号控制基本概念介绍 (10)2.1基本概念 (10)2.2信号控制参数 (11)2.3信号控制类型 (11)2.3.1按控制范围分类 (12)2.3.2按控制方法分类 (13)2.3.4信号控制常用性能指标 (14)2.3.5无信号交叉口交通影响程度评价方法 (14)2.4本章小结 (16)3 文萃路与学院路交叉口现状计算分析 (17)3.1主要道路通行能力计算 (17)3.2文萃路与学院路交叉口交通量调查 (20)3.2.1 统计周期的选择 (20)3.2.2交通量调查的目的和意义 (20)3.2.3调查的必要性 (21)3.3行车延误调查 (22)3.3.1延误调查的反法、目的及意义 (22)3.3.2交叉口实际调查数据 (22)3.4交叉口的几何结构特征 (23)3.4.1 各交叉口的交通量调查 (24)3.4.2 速度相关的测定 (28)3.4.3车辆转换系数 (29)3.4.4 当量交通量 (29)3.5文萃路与学院路交叉口现状分析计算 (29)3.5.1交叉口交通量计算 (30)3.5.2交叉口通行能力计算 (30)3.6交叉口延误计算 (32)3.7对此无信号交叉口交通音响评价 (32)3.8分析交叉口公害影响 (32)3.9经济性可行性分析 (32)3.10本章小结 (32)4 文萃路与学院路交叉口交通配时仿真设计 (32)4.1Synchro交通仿真系统简介。

(33)4.2 本文Synchro仿真基础数据收集 (33)4.3 Synchro软件仿真参数设置 (34)4.3.1绘制文萃路和学院路交叉口路网图,如4-3: (34)4.3.1调用LANEW INDOEW对话框,输入道路参数,如图4-4: (34)4.3.2 调用VOLUMEW INDOW,输入交通量参数,如图4-5 (35)4.3.3调用Ring and BarrierDesigner对话框,设置相位相序,如图4-6: (36)4.3.4 SYNCHRO进行最佳化分析之画面如图4-7所示: (36)4.3.5通过设置以上参数,得出配时方案如图4-8: (37)4.3.6 SimTraffic 3D仿真 (37)4.4 信号设计方案 (39)4.5仿真结果对比 (39)4.6本章小结 (40)5 结论 (40)5.1结论 (40)注释 (41)参考文献 (42)致谢 (44)外文翻译 (45)附件 (47)1 前言本章节主要对课题的提出及研究意义进行阐明,介绍了基本的概念和理论知识,对论文结构作了整体规划和安排。

西门子技术问题总汇

西门子技术问题总汇

文档标题
如何设置模拟量输入模板 SM 431-7KF00的温度补偿? 如何解决 SIMATIC BATCH 的 IL43基本设备上 hotfix 安装的问题? 如果通过 PCS7 V6.1 SP1 DVD 单独安装 SIMATIC BATCH Report 需要注意哪些设置? 为什么冗余模拟量输出模块的每个通道只有一半电流输出? 使用WinCC/Web Navigator V6.1 SP1需要什么样的操作系统和软件? 是否 COM PROFIBUS 可以使用所有版本的 GSD 文件? 如何在 WinCC flexible 中组态与S7 控制器的 Profinet 连接? 如何在操作面板上设定定时器时间, 同时如何输出定时器的剩余时间? 数据块初始值与实际值的含义 如何通过窗口对象滚动条步进调节过程值参数? 使用 SINAUT ST7 向电子邮箱接受方发送文本信息 SMS 需要做何设置? 可以使用CPU317-2PN/DP替代在iMap中组态的CPU315-2PN/DP吗? 什么情况下插入C-PLUG卡或者C-PLUG有什么作用? 通过一台PC,可以使用哪种方式访问与IWLAN/PB link PNIO或IE/PB link PNIO连接的PROFIBUS设备? 当在SINAUT网络中使用4线变压器应该注意哪些设置? 在 SINAUT 网络中,使用MD3拨号调制解调器作为专线调制解调器时,要进行哪些设置? 如何安装 DCF77 天线, 当选择 DCF77 天线时需要注意什么? 使用SINAUT ST7向传真机发送文本信息时,需要进行哪些设置? 在 SINAUT 项目中发送短消息必须进行哪些特殊服务的设置? 如何在S7-300 PN CPU和CP343-1之间建立一个open TCP 通讯连接,以及如何进行数据交换? 如何在两个S7-300 PN CPU之间建立一个open TCP 通讯连接,以及如何进行数据交换? 哪些控制系统可以成功与SINAUT ST7一起使用? 使用“零-Modem”电缆连接 TIM 模块应该注意什么? 当用 SINAUT 诊断工具的ST1协议进行诊断时,为什么TIM的状态不能显示? TIM 3V-IE 和 TIM 3V-IE Advanced 模块在以太网上通信时使用哪个端口号? 如何对没有接入网络的S7-200CPU编程? 掉电后,LOGO!的程序会丢失吗? 从 PCS7 V6.1 起,为什么没有分配任何 hierarchy (PH) 的 测量点(变量)通过编译不能在OS中自动创建相应的变量? 在SFC中,如何实现从一个 Sequencer 跳出后回到另一个 Sequencer 的某个固定位置并继续执行? 如何实现过程变量的平均值归档? 存储文件的目标路径和备份可选路径有何作用? WinCC变量归档中如何实现采集周期小于500ms的变量归档? 为什么在 OS 上会显示如下信息“时间跳变通知-永久切换为从站模式”? 在西门子A&D产品支持网站是否可以下载关于ET200M的手册? 在S7-400上怎样安装冗余电源? UDT改变后怎样更新使用UDT产生的数据块。 为什么在FB块中使用OUT变量赋值被调用FB块的IN变量时出现错误信息34:4469? 如何查看4-mation导入-导出错误 不能正确引导8212-1QU IBM/Lenovo M52 ThinkCentre 实时趋势更新缓慢的原因 如何保存变量名字典CSV文件的格式

斯沃数控仿真及破解说明

斯沃数控仿真及破解说明

斯沃数控仿真考试提交说明:1毛坯选着;100xФ45螺纹的局部放大图(下图蓝色长方形区域;线表示螺纹)以下是:控制面板局部放大图及其参数的设置值(根据毛坯和对刀时的切削量来定,)刀对三次。

注意切割量尽量小:用脉冲形式Z﹣。

3.程序如下:O4599 %(一定要起个名字)N10 T0101;N20 G00 X100 Z100;N30 M03 S800;N40 G00 X46 Z2; ;%毛坯为45mm,故离开毛坯(46-45)/2 mm,N50 G71 U1.5 R0.5;N60 G71 P70 Q190 U0.6;N70 G01 X0 F80;N80 Z0;N90 X8;N100 G03 X18 Z-5 R5;N110 G01 Z-10;N120 X20.85; %(x从18到20..85)N130 X23.85Z-12; %第一次倒角注意x不是24mmN140 Z-32;N150 X26;N160 X36 W-14;N170 W-7;N180 G02 X42 W-3 R3;N190 G01 Z-66;N200 G70 P70 Q190 M03 S1200;N210 G00 X100 Z100;N220 T0202;N230 M03 S500;N240 G00 X28 Z-32;N250 G01 X20; 切草了N260 G00 X28; %快速点定位N270 W1;N280 G01 X20;N290 W-1;N300 G00 X28; %快速点定位N310 X100 Z100;N320 T0303;N330 M03 S400;N340 G00 X25 Z-9;N350 G92 X23.2 Z-29; F1.5;N360 X22.6;N370 X22.2;N380 X22.04;N390 G00 X100 Z100;N400 T0202;%目的是近似于切断。

N410 G00 X43 Z-69;N420 G01 X3 F30 ;N430 G00 X45;N440 X100 Z100;N450 M30斯沃数控-车床编程与走刀-(2)huaxia学院机电工程----四把刀1。

STM32F103RB数据手册

STM32F103RB数据手册
STM32F103x8 STM32F103xB
Medium-density performance line ARM-based 32-bit MCU with 64 or 128 KB Flash, USB, CAN, 7 timers, 2 ADCs, 9 communication interfaces
■ ■
VFQFPN36 6 × 6 mm
LQFP48 7 × 7 m LQFP100 14 × 14 m LQFP64 10 × 10 m
BGA100 10 × 10 mm BGA64 5 × 5 mm

Debug mode – Serial wire debug (SWD) & JTAG interfaces 7 timers – Three 16-bit timers, each with up to 4 IC/OC/PWM or pulse counter and quadrature (incremental) encoder input – 16-bit, motor control PWM timer with deadtime generation and emergency stop – 2 watchdog timers (Independent and Window) – SysTick timer: a 24-bit downcounter Up to 9 communication interfaces – Up to 2 x I2C interfaces (SMBus/PMBus) – Up to 3 USARTs (ISO 7816 interface, LIN, IrDA capability, modem control) – Up to 2 SPIs (18 Mbit/s) – CAN interface (2.0B Active) – USB 2.0 full-speed interface CRC calculation unit, 96-bit unique ID Packages are ECOPACK® Device summary

GM03-3DA模块使用说明书

GM03-3DA模块使用说明书

GM03-3DA模块使用说明书概述GM03-3DA模块是针对工业现场需要多路模拟量输出的场合而开发的一种模拟量输出模块,可以配合仪表/PLC/工控电脑使用,具有多种输出方式。

显示键盘GM03-3DA模块显示键盘布局如下图所示:当输出方式改变之后,4-20Ma固定输出4Ma,其他模式固定输出0,如果输出方式改为None,则输出禁止,参数设置参数分布:轮流:上电仪表上电后,模块的三路输出按F1设置项中的数值输出。

同事显示器全亮1s后,每隔1s轮流显示三路的输出形式后进入正常显示模式。

显示/键盘操作在正常显示模式下,按下键,显示器显示“CAL”,此时重复按下键,显示在“CAL”、“F1”、“F2”、“F3”、“F4”之间进行切换。

在相应参数项中按下进入相应设置项选择,按下回到正常显示界面。

具体操作参考GM8802仪表。

标定注:模块标定在出厂时已经标定完成,一般情况下不需要标定。

在正常显示模式下,按下键,至显示器显示“CAL”,按下,如果有密码则要求输入密码,如果未设置密码则直接进入通道选择。

通过按键使屏幕显示“CH A”、“CH B”、“CH C”之间切换,选定相应通道后按下对其进行标定。

以标定0~24mA为例:标定共设有5个标定点分别为零码,6mA,12mA,18mA和满码输出标定点。

(由于16位D/A最大输出为65535,所以固定最高位显示为设置点显示)6MA输出校准:仪表显示“一16384”、用万用表检测模拟量输出的大小,若为6MA,则按下键切换到12MA输出校准,或按下键,退出校准界面;若非6MA,则通过按键来修改副显示值至模拟量输出为6MA,修改方法:(1)按下键,则采用为按位修改;(2)按下键,则为微调,键+1,键-1。

12MA输出校准:仪表显示“二32768”,用万用表检测模拟量输出的大小,若为12MA,则按下键切换到18MA输出校准,或按下键,退出校准界面;若非12MA,则通过按键来修改副显示值至模拟量输出为12MA,修改方法:(1)按下键,则采用为按位修改;(2)按下键,则为微调,键+1,键-1。

数字指示调节器SDC30_31使用说明书 操作手册

数字指示调节器SDC30_31使用说明书 操作手册
ᶉ MODE鍵 :自整定的起動/停止、自動/手動、運行/待機、選擇LSP/RSP的模式変更項目。
ᶊ ENT鍵 :確認変更的數値。把顯示的參數等項目變爲置換(変更)狀態。
ᶋ UP ˛ 鍵 :増加數値。顯示中的參數等項目的順次切換。
ᶌ DOWN 鍵 :减少數値。顯示中的參數等項目的順次切換。
DIGITRONIC 3 是株式會社山武的注册商標。
2004 Yamatake Corporation ALL RIGHTS RESERVED
҆શཁ‫ ߲ࣄٻ‬4"'&5:3&26*3&.&/5
爲了减少對人體造成傷害的觸電危險,請遵守本使用説明書記載的所有與 安全相關的注意事項。 本符號是表示觸摸後有觸電的危險,向用戶作警示用。
ᅛᅭ䀁‫٭‬ 原子能设备等 䂟ϡ㽕ᡞ䁆⫷ક⫼ᮐ㟛⫳ੑⳈ᥹Ⳍ䮰ⱘ⫼䗨ϞDŽ
要∖
䂟⺎ֱᡞᴀՓ⫼䁾ᯢ᳌䗕ࠄᴀ⫷કՓ⫼㗙᠟ЁDŽ 火ℶ᪙㞾㻛ॄܼ䚼៪䚼ߚᴀՓ⫼䁾ᯢ᳌ˈ火ℶ䔝䓝ᴀՓ⫼ 䁾ᯢ᳌DŽҞᕠܻᆍ䅞᳈ᰖᘩϡџ‫ܜ‬䗮ⶹDŽ ᴀՓ⫼䁾ᯢ᳌ⱘܻᆍˈ㍧䘢Ҩ㌄ᆽᶹ᷵ᇡˈ㨀ϔ᳝䤃䁸៪ 䙎ⓣˈ䂟৥ᴀ݀ৌᦤߎDŽ ᇡᅶ᠊ឝ⫼㌤ᵰˈᴀ݀ৌ᳝ϡ㛑ᡓ᪨䊀ӏⱘจড়ˈ䂟䂦㾷DŽ
DIGITRONIC 數字指示調節器
4%$
使用説明書
操作手册
/P$141$
非常感謝您購買本公司數字指示調節器 SDC30/31,本使用說明書中記載了正確使 用SDC30/31的必要事項。 使用SDC30/31進行控制盤、裝置設計及維 護的人員務必在閱讀幷理解本書的基礎上 使用該産品。本書不僅在安裝時使用,在 維護及處理故障時也使用。請常備此手册 以便使用。
˛
˛ ˛
˛ ˛
ᶃ 第一顯示部 :通常PV(Process Variable)顯示。 參數等顯示的場合,將顯示其項目。

Tektronix AFG31000系列高性能模拟函数生成器说明书

Tektronix AFG31000系列高性能模拟函数生成器说明书

Arbitrary Function GeneratorsAFG31000 Series DatasheetThe Tektronix AFG31000 Series is a high-performance AFG with built-in arbitrary waveform generation, real-time waveform monitoring, and the largest touchscreen on the market. Providing advanced waveform generation and programming capabilities, waveform verification, and a modern touch-screen interface, the new AFG31000 is sure to delight and simplify the job of every researcher and engineer.Key performance specifications1 or2 channel modelsOutput amplitude range 1 mV P-P to 10 V P-Pinto 50 Ω loadsBasic (AFG) mode:25 MHz, 50 MHz, 100 MHz, 150 MHz, or 250 MHz sine waveforms250 MSa/s, 1 GSa/s or 2 GSa/s sample rates14-bit vertical resolutionBuilt-in waveforms include sine, square, ramp, pulse, noise, andother frequently used waveformsSweep, Burst, and Modulation modes (AM, FM, PM, FSK, andPWM)Advanced (Sequence) mode:Continuous mode (optional Sequence, Triggered and Gatedmodes)16 Mpts arbitrary waveform memory on each channel (128 Mptsoptional)Up to 256 steps in sequence mode with loop, jump and wait events Variable sampling clock 1 µSa/s to 2 GSa/sKey featuresPatented InstaView ™ technology enables engineers to see the actual waveform at the Device Under Test (DUT) in real time, without the need of an oscilloscope and probe, eliminating the uncertainty causedby mismatched impedanceSequencing option adds the ability to program long, complexwaveforms with up to 256 stepsThe 9-inch capacitive touch screen works like a smart phone and hasshort-cuts to frequently used settingsBuilt-in ArbBuilder lets you create and edit arbitrary waveforms on theinstrument, eliminating the need to connect to a PCOutputs are protected from over voltage and current to minimizepotential instrument damageCompatible with TekBench ™ software to help students set up, control,and analyze test results in the labApplicationsAdvanced researchClock and system synchronizationReplication of real world signalsComponent and circuit characterization and validationEmbedded circuit design and testGeneral purpose signal generationBasic and Advanced ModesThe AFG31000 series is the industry’s first arbitrary function generator with full function Basic (AFG) and Advanced (Sequence) modes.In Basic mode, the AFG31000 generates traditional functions and arbitrary waveforms. The touchscreen and front-panel controls make it simple to set up.Basic mode lets you change frequency without the need to worry about waveform length and sample rate. This feature is useful in analog designs that characterize filter/amplifier frequency responses or in digital designs where clock rates change frequently.Key settings are visible at a glance, and are easy to adjust using touch, numeric keypad, or rotary controlsNew with the AFG31000, Advanced mode provides the ability to generate multiple waveforms with complex timing. In this mode, you can compose a list (or a sequence) of 1 to 256 waveforms, with total waveform length up to 16 Mpts/ch (128 Mpts/ch optional) and define the ouput sequence of these waveforms. Repeat, go-to, wait, jump, and triggered events are all supported and the large memory provides space to store many waveforms or long waveforms.This feature is very useful in applications where many test cases need to be performed sequentially. Instead of loading the test cases one by one, you can put all of them in a sequence and load at one time, switching from one to another seamlessly to greatly improve the test efficiency.Advanced mode lets you build complex waveform sequences with flexible step controlsSequenced sine waveforms with different frequency and amplitude. Additionally, Advanced mode uses variable sample rate technology. Every sample in a waveform is output once and only once in each cycle, synchronized to the sample rate. Since there is no skipping or repetition, all details in the waveforms are kept. This feature is very useful for applications in which signal fidelity is extremely critical, such as IQ modulation and pulse train generation.InstaView™ technology shows the actual waveform at the DUTMost waveform generators assume they are driving a 50 Ω impedance. However, most devices under test do not have a 50 Ω impedance. This mismatch results in an inconsistency between the waveform as set on the AFG and the signal at the DUT.DatasheetWith InstaView turned off, the AFG31000 works like a traditional function generator. Due to an impedance mismatch, the AFG display shows a different waveform from the one observed at the DUT.With the patented InstaView ™technology, the AFG31000 Series can display the actual waveform at the DUT, instead of just the nominalwaveform as set on the AFG. The waveform displayed on the AFG instantly responds to changes in frequency, amplitude, waveform shape, andimpedance changes at the DUT. InstaView helps eliminate the uncertainty and measurement risk caused by impedance mismatches, without requiringadditional cables, instruments, or effort.With InstaView turned on, the AFG31000 shows the waveform as observed at the DUT.A large touch screen and smart user interfaceThe large 9-inch capacitive touch screen displays all related settings and parameters on a single screen. Similar to smart devices, you can tap or swipe to easily select, browse, locate and change settings and parameters.Frequently-used functions are immediately accessible. Familiar buttons and rotary knob controls are available for more traditional navigation.Frequently used settings are easy to access from the swipe-up menuAFG31000 SeriesBuilt-in ArbBuilder tool makes creating and editing arbitrary waveforms easier than ever In the past, you needed a PC with waveform editing software to create or edit your arbitrary waveforms. The waveform would then need to be downloaded to the AFG using either a USB stick or a data cable connection. The process was time-consuming, especially when waveforms required frequent changes.ArbBuilder is a built-in application on the AFG31000 series that lets you create and edit your arbitrary waveforms directly on the generator. You can create arbitrary waveforms with the Equation Editor tool or start from a library of standard templates. Thanks to the large capacitive touch screen, you can drag, pinch and zoom to get the detail you need.You can quickly replicate real-world waveforms captured with oscilloscopes or created by third-party software by loading CSV format data files directly into ArbBuilder from a USB memory stick.Creating an arbitrary waveform using the easy touch screen interfaceSimplified multi-unit synchronizationMost applications need one or two channels of output, but some applications require more channels. For example, in order to simulate 3-phase power signals, engineers often need to synchronize three 2-channel generators; one for the voltage and current on each phase. To do this used to be time-consuming, as it required many cable connections between the AFG units, and making changes in deep branches of the menu trees on all instruments.The AFG31000 simplifies this process with an onscreen wizard that leads you through the process of making cable connections and configuring settings to synchronize multiple generators.An on-screen wizard guides you through the process of multiple-unit synchronizationUpgradability protects your investmentThe AFG31000 provides upgrade options for bandwidth, memory extension, and sequence mode support. These options can be installed at the factory or at any time after purchase. This upgradability helps to reduce the product ownership threshold. And when your test requirements change, you can purchase and install upgrade software licenses to add higher performance features. Upgrades eliminate the concern about the return on investment during the instrument lifetime.DatasheetAFG31000 SeriesSpecificationsAll specifications are guaranteed unless noted otherwise. All specifications apply to all models unless noted otherwise.Model overviewOutput characteristicsAmplitudeOutput impedance50 ΩLoad impedance setting Selectable: 50 Ω, 1 Ω to 10.0 kΩ, High Z (Adjusts displayed amplitude according to selected load impedance)Isolation42 Vpk maximum to earth groundShort-circuit protection Signal outputs are robust against permanent shorts against floating groundOvercurrent protection When incoming current is greater than 250 mA, the output channels are protected with relays that disconnect the AFG from thedevice under test. Connection can be resumed by user after removing the incoming currentGeneral characteristics - Basic modeBasic (AFG)Run modes Continuous, Modulation, Sweep and BurstStandard waveforms Sine, Square, Pulse, Ramp, More (Noise, DC,Sin(x)/x, Gaussian, Lorentz, Exponential Rise, Exponential Decay, Haversine )Arbitrary waveformsSampling clock: 250 MSa/s, 1 GSa/s or 2 GSa/s (model and waveform length apply)Vertical resolution: 14 bitsWaveform length: 2 to 131,072 pointsSineFrequency rangeEffective maximum frequency outAmplitude flatness (1 V P-P ,relative to 1 kHz)Amplitude flatness (1 V P-P ,relative to 1 kHz), typicalHarmonic distortion (1 V P-P ),typicalDatasheetTHD, typical≤ 0.04%, 10 Hz to 20 kHz, 1 V P-PSpurious noise (1 V P-P ), typicalPhase noise, typical< -125 dBc/Hz at 20 MHz, 10 kHz offset, 1 V P-PResidual clock noise, all models -63 dBmSquareFrequency rangeRise/fall time, typicalOvershoot, typical< 3%Jitter (RMS), typical2.5 psRampFrequency rangeLinearity, typical (1 kHz, 1 V P-P ,100% symmetry)Symmetry0% to 100%AFG31000 SeriesGeneral characteristics - Basic modePulseFrequency rangePulse widthPulse width resolution 10 ps or 5 digitsPulse Duty 0.001% to 99.999% (limitations of pulse width apply)Edge transition timeEdge transition time resolution 10 ps or 4 digits Lead delay rangeLead delay resolution 10 ps or 8 digits Overshoot, typical < 2%Jitter (RMS), typical 2.5 psDCRange (into 50 Ω)Resolution (into 50 Ω) 1 mV or 4 digits Accuracy ± (1% of |setting | +1mV)NoiseBandwidth (-3 dB)Noise typeWhite GaussianInternal noiseDatasheetGeneral characteristics - Basic modeOther waveformsFrequency rangeArbitrary waveformsFrequency rangeEffective analog bandwidth (-3 dB)Waveform length2 to 131,072Sample rateVertical resolution14 bitRise/fall time, typicalJitter (RMS), typical2.5 psModulationAM, FM, PMAM modulation depth0.0 % to 120 %AM modulation resolution0.1%AFG31000 SeriesGeneral characteristics - Basic modeMinimum FM peak deviationDCMaximum FM peak deviationPM phase deviation range0° to 180°PM phase resolution0.1°FSKPWMSweepType Linear, Logarithmic Waveforms All, except Pulse, Noise, DC Sweep time 1 ms to 500 s Hold/return time0 s to 500 s Maximum total sweep time500 sAccuracy, typical: ≤ 0.4%Minimum start/stop frequency All except ARB: 1 μHzARB: 1 mHzMaximum start/stop frequencyDatasheetGeneral characteristics - Basic modeBurstWaveform All except Noise, DC Type Triggered, gatedBurst count 1 to 1,000,000 cycles or Infinite Intenal trigger rate 1 μs to 500.0 sGate and trigger sources Internal, external, remote interfaceInstaView ™Waveforms All except noise Cable (channel output to load)50 Ω BNC to BNCRun modeContinuous in Basic modeMaximum measurement range (DC + peak AC voltage)DC level measurementAmplitude measurementBandwidth (-3 dB)500 MHzFlatness, sine, 1 V P-P , into 50 ohm, relative to 1 kHz,typicalCable propagation delay measurement, typicalAFG31000 SeriesGeneral characteristics - Basic modeGeneral characteristics - Advanced modeWaveform memory size 16 Mpts (128 Mpts optional) each channel Run modeStandard: ContinuousOptional: Sequence, Triggered, GatedNumber of waveform entriesContinuous, Triggered, Gated: 1 Sequence: 1 to 256Minimum waveform length 168 pts Waveform granularity 1 pt Vertical resolution 14 bitsJump/trigger events External trigger (rising or falling edge), manual trigger, timer, SCPI commands Repeat count 1 to 1,000,000 or infinite Timer range 2 µS to 3600 S Timer resolution 4 ns or 8 digitsVariable sample rateRise/Fall time, typicalOvershoot, typical< 2%Level flatness, typical (sine, 1 V P-P ,relative to 1 kHz)Harmonic distortion, typical (sine with 64 pts/cycle, 1 V P-P )DatasheetSpurious, typical (sine with 64 pts/cycle, 1 V P-P )Spurious free dynamic range,typical (sine with 64 pts/cycle,1 V P-P )Phase noise, typical (sine with 64 pts/cycle, 1 V P-P , at 10 kHz offset)Skew controlRange -320 ns to 320 ns (channel 1 to channel 2 on dual channel models, at maximum sample rate)Resolution 100 ps or 4 digits Accuracy, typical ±(1% of |setting| + 500 ps)Initial skew, typical< 500 psSystem characteristicsOutput Frequency ResolutionFrequency accuracy±10-6 of setting (all except ARB), 0 °C to 50 °C (32 °F to 122 °F)±10-6 of setting ± 1 μHz (ARB), 0 °C to 50 °C (32 °F to 122 °F)Aging ±1.0 x 10-6 per yearPhaseRange -180° to +180°Resolution0.01° (sine)0.1° (other waveforms)Remote program interface GPIB, Ethernet 10BASE-T / 100BASE-TX / 1000BASE-T, USB 2.0Maximum configuration times,typicalPower sourceSource100-240 V, 47-63 Hz 115 V, 360-440 HzConsumption120 WAFG31000 SeriesGeneral characteristics - Advanced modeWarm up time, typical 20 minutes minimum Power on self diagnosis time < 24 s Acoustic noise < 50 dBADisplay9-inch capacitive touch screen with 800 * 480 resolutionUser interface and Help languages English, French, German, Japanese, Korean, Simplified and Traditional Chinese, Russian (user selectable)Auxiliary input characteristicsExternal modulation input, channel 1 and channel 2Input rangeInput impedance 5.2 kΩFrequency range 125 kHz (1 MSa/s)External Trigger inputLevel TTL compatible Impedance10 kΩMinimum pulse width 100 nsSlopePositive or negative selectable Trigger delay range 0 ns to 85 s Trigger delay resolution 100 ps or 5 digitsTrigger latency, typical 390 ns (trigger input to signal output)Jitter (RMS), typical 100 ps (signal output, with external trigger input in burst mode)10 MHz reference clock inputImpedance 1 kΩInput couplingACRequired input voltage swing 100 mV P-P to 5 V P-P Lock range10 MHz ±35 kHz Channel 1 external add inputImpedance 50 ΩInput range -1 V to +1 V (DC + peak AC)BandwidthDC to 10 MHz (-3 dB) at 1 V P-P DatasheetSystem characteristicsAFG31000 Series Auxiliary output characteristicsChannel 1 trigger outputLevel Positive TTL level pulse into 1 kΩImpedance50 ΩJitter, RMS, typical10 ps for all modelsOutput frequency10 MHz reference clock outImpedance50 Ω, AC coupledAmplitude 1.2 V P-P into 50 Ω loadPhysical characteristicsDimensionsHeight191.8 mm (7.55 in.)Width412.8 mm (16.25 in.)Depth143.3 mm (5.64 in.)WeightNet 4.7 kg (10.4 lb.)Shipping7.0 kg (15.4 lb.)EMC, environment, and safetyTemperatureOperating0 °C to +50 °C (32 °F to 122 °F)Nonoperating-30 °C to +70 °C (-22 °F to 158 °F)HumidityOperating≤ 80%, 0 °C to 40 °C (32 °F to104 °F)≤ 60%, > 40°C to 50°C (104 °F to 122 °F), noncondensingNonoperating5% to 90%, < 40 °C (< 104 °F), noncondensing5% to 80%, ≥ 40 °C to 60 °C (≥ 104 °F to 140 °F), noncondensing5% to 40%, > 60 °C to 70 °C (> 140 °F to 158 °F), noncondensingAltitudeOperating Up to 3,000 m (9,842 ft.)Nonoperating Up to 12,000 m (39,370 ft.)EMC compliance EN61326-1:2013, EN 61326-2-1:2013European Union EU Council Directive 2004/108/ECDatasheetEMC, environment, and safetySafety UL 61010-1:2004CAN/CSA C22.2 No. 61010-1:2004IEC 61010-1:2001Over-temperature protection Instrument is protected from over-temperature by turning off outputsAFG31000 Series Ordering InformationModelsAFG31021 1 μHz to 25 MHz sine wave, 1-channel arbitrary function generatorAFG31022 1 μHz to 25 MHz sine wave, 2-channel arbitrary function generatorAFG31051 1 μHz to 50 MHz sine wave, 1-channel arbitrary function generatorAFG31052 1 μHz to 50 MHz sine wave, 2-channel arbitrary function generatorAFG31101 1 μHz to 100 MHz sine wave, 1-channel arbitrary function generatorAFG31102 1 μHz to 100 MHz sine wave, 2-channel arbitrary function generatorAFG31151 1 μHz to 150 MHz sine wave, 1-channel arbitrary function generatorAFG31152 1 μHz to 150 MHz sine wave, 2-channel arbitrary function generatorAFG31251 1 μHz to 250 MHz sine wave, 1-channel arbitrary function generatorAFG31252 1 μHz to 250 MHz sine wave, 2-channel arbitrary function generatorOptionsFactory optionsMEM Extends arbitrary waveform memory to 128 Mpts/ch in Advanced modeSEQ Enables Sequence, Triggered and Gated modes in Advanced modeFeature upgrade after purchaseThe AFG31000 products offer several ways to easily add functionality after the initial purchase.DatasheetPower plug optionsOpt. A0North America power plug (115 V, 60 Hz)Opt. A1Universal Euro power plug (220 V, 50 Hz)Opt. A2United Kingdom power plug (240 V, 50 Hz)Opt. A3Australia power plug (240 V, 50 Hz)Opt. A5Switzerland power plug (220 V, 50 Hz)Opt. A6Japan power plug (100 V, 50/60 Hz)Opt. A10China power plug (50 Hz)Opt. A11India power plug (50 Hz)Opt. A12Brazil power plug (60 Hz)Opt. A99No power cordLanguage optionsOpt. L0English front panel overlay (default)Opt. L1French front panel overlayOpt. L2Italian front panel overlayOpt. L3German front panel overlayOpt. L4Spanish front panel overlayOpt. L5Japanese front panel overlayOpt. L6Portuguese front panel overlayOpt. L7Simplified Chinese front panel overlayOpt. L8Traditional Chinese front panel overlayOpt. L9Korean front panel overlayOpt. L10Russian front panel overlayOpt. L99No front panel overlayService optionsOpt. C3Calibration Service 3 YearsOpt. C5Calibration Service 5 YearsOpt. D1Calibration Data ReportOpt. D3Calibration Data Report 3 Years (with Opt. C3)Opt. D5Calibration Data Report 5 Years (with Opt. C5)Opt. R5Repair Service 5 Years (including warranty)Opt. T3Three Year Total Protection Plan, includes repair or replacement coverage from wear and tear, accidental damage, ESD or EOSplus preventative maintenance. Including a 5 day turnaround time and priority access to customer support Opt. T5Five Year Total Protection Plan, includes repair or replacement coverage from wear and tear, accidental damage, ESD or EOSplus preventative maintenance. Including a 5 day turnaround time and priority access to customer supportAccessories are not covered by the instrument warranty and Service Offerings.AccessoriesStandard accessories-----AFG31000 Series Arbitrary Function Generator Compliance, Installation, and Safety Instructions 012-1732-xx BNC cable shielded, 3 ft.174-4401-xx USB cable, A to B, 3 ft.-----Power cord-----NIST-traceable calibration certificate-----Three-year warranty on parts and laborRecommended accessories012-1732-xx BNC cable shielded, 3 ft.012-0991-xx GPIB cable, double shielded011-0049-02 50 Ω BNC terminatorACD4000B Soft transit caseHCTEK54Hard transit case (requires ACD4000B)WarrantyProduct warranty Three-year warranty on parts and laborTektronix is registered to ISO 9001 and ISO 14001 by SRI Quality System Registrar.Product(s) complies with IEEE Standard 488.1-1987, RS-232-C, and with Tektronix Standard Codes and Formats.Product Area Assessed: The planning, design/development and manufacture of electronic Test and Measurement instruments.AFG31000 SeriesDatasheetASEAN / Australasia (65) 6356 3900 Austria 00800 2255 4835*Balkans, Israel, South Africa and other ISE Countries +41 52 675 3777 Belgium 00800 2255 4835*Brazil +55 (11) 3759 7627 Canada180****9200Central East Europe and the Baltics +41 52 675 3777 Central Europe & Greece +41 52 675 3777 Denmark +45 80 88 1401Finland +41 52 675 3777 France 00800 2255 4835*Germany 00800 2255 4835*Hong Kong 400 820 5835 India 000 800 650 1835 Italy 00800 2255 4835*Japan 81 (3) 6714 3086 Luxembourg +41 52 675 3777 Mexico, Central/South America & Caribbean 52 (55) 56 04 50 90Middle East, Asia, and North Africa +41 52 675 3777 The Netherlands 00800 2255 4835*Norway 800 16098People's Republic of China 400 820 5835 Poland +41 52 675 3777 Portugal 80 08 12370Republic of Korea +822 6917 5084, 822 6917 5080 Russia & CIS +7 (495) 6647564 South Africa +41 52 675 3777Spain 00800 2255 4835*Sweden 00800 2255 4835*Switzerland 00800 2255 4835*Taiwan 886 (2) 2656 6688 United Kingdom & Ireland 00800 2255 4835*USA180****9200* European toll-free number. If not accessible, call: +41 52 675 3777For Further Information. Tektronix maintains a comprehensive, constantly expanding collection of application notes, technical briefs and other resources to help engineers working on the cutting edge of technology. Please visit . Copyright © Tektronix, Inc. All rights reserved. Tektronix products are covered by U.S. and foreign patents, issued and pending. Information in this publication supersedes that in all previously published material. Specification andprice change privileges reserved. TEKTRONIX and TEK are registered trademarks of Tektronix, Inc. All other trade names referenced are the service marks, trademarks, or registered trademarks of their respective companies.13 Nov 2018 75W-61444-2 。

ModelSim的使用(包含实例)

ModelSim的使用(包含实例)

About Using the ModelSim Software with theQuartus II SoftwareModelSim-Altera Design Flow(For Altera Version)1.Set up the ModelSim-Altera working environment2.Set up a project with the ModelSim-Altera software3.Perform a functional simulation with the ModelSim-Altera software4.Perform a timing simulation with the ModelSim-Altera software ModelSim PE/SE Design Flow(For PE/SE Version)1.Set up the ModelSim working environment2.Set up a project with the ModelSim softwarepile libraries and design files with the ModelSim software4.Perform a functional simulation with the ModelSim software5.Perform a timing simulation with the ModelSim software目录MODELSIM-ALTERA版本仿真流程 (3)1、建立M ODEL S IM-A LTERA工作环境 (3)2、用M ODEL S IM-A LTERA建立工程 (3)3、用M ODEL S IM-A LTERA执行功能仿真 (3)4、用M ODEL S IM-A LTERA执行时序仿真 (4)MODELSIM-PE/SE版本仿真流程 (6)P ERFORMING A F UNCTIONAL S IMULATION WITH THE M ODEL S IM S OFTWARE (6)P ERFORMING A T IMING S IMULATION WITH THE M ODEL S IM S OFTWARE (7)相关知识链接 (9)M ODEL S IM P RECOMPILED L IBRARIES(预编译库) (9)A LTERA F UNCTIONAL S IMULATION L IBRARIES(功能仿真库) (12)A LTERA P OST-F IT L IBRARIES(后适配库) (20)P ERFORMING P OWER A NALYSIS WITH THE Q UARTUS II S OFTWARE AND O THER EDA T OOLS (30)使用QUARTUSII自动运行MODELSIM仿真 (36)1、配置N ATIVE L INK (36)2、运行仿真 (38)3、产生T ESTBENCH (39)ModelSim-Altera版本仿真流程1、建立ModelSim-Altera工作环境1.1版本说明ModelSim-Altera(OEM)version 6.4aQuartusII version 9.0该ModelSim版本支持所有QuartusII支持的Altera器件。

M33(A)G 设计指南_简体

M33(A)G 设计指南_简体

M33(A)G模块设计指南M33(A)GGSM / GPRS Wireless Module模块设计指南Rev. 1.0.02009/11/11版权所有 © 2009佳世达科技股份有限公司本文章内容,包含文字、图片,及其排列,均受国内法律、国际条约或其它法律之著作权保护。

任何单位或个人不得进行复制、加工处理、修改,或将存取权授于第三者用于商业用途。

注意由于产品版本升级或其它因素,本文章内容会不定期更新,本公司(或佳世达)将不另行通知。

本文章仅作为使用说明,对于所提供的陈述、讯息、建议,本公司不负任何明示或暗示的保证责任,亦不可作为特殊目的之产品责任担保。

无线模块处移动通信事业部佳世达科技股份有限公司台北市114内湖区基湖路18号电话: +886-2-2799-8800传真: +886-2-2656-6398History/修订记录Version 版本Date日期Note修改描述Originator作者1.0.0 2009-11-11 BruceWang目录1开关机流程 (5)1.1开机流程 (5)1.2开机成功之判断 (5)1.3M33(A)G重启 (6)2初始化流程 (8)3简讯流程 (10)3.1初始化 (10)3.2发送简讯 (10)3.3接收简讯 (10)4语音通话流程 (12)4.1初始化 (12)4.2拨打电话(MO) (12)4.3接听电话(MT) (13)5PPP数据拨号流程 (14)5.1拨号前准备 (14)5.2拨号 (14)6M2M数据流程 (15)6.1初始化 (15)6.2开启M2M (15)6.2.1Command interface (15)6.2.2Raw data interface (16)6.3关闭M2M (17)6.3.1Command interface (17)6.3.2Raw data interface (17)7M33(A)G接脚使用说明 (18)7.1电源 (19)7.2UART (21)7.3音频 (25)7.3.1Microphone (25)7.3.2Receiver/Speaker (26)7.3.3Grounding与Layout (27)7.4SIM (28)7.5静电保护 (29)7.6天线 (31)1开关机流程M33(A)G工作电压为3.3V~4.2V,推荐工作电压为3.8V~4.0V,不建议使用边缘值。

SimReg3:Semantic Similarity Regression版本3.3说明书

SimReg3:Semantic Similarity Regression版本3.3说明书

Package‘SimReg’October12,2022Type PackageTitle Similarity RegressionVersion3.3Date2021-02-10Author Daniel GreeneMaintainer Daniel Greene<************.uk>Description Similarity regression,evaluating the probability of association between sets of ontological termsand binary response vector.A no-association model is compared with one in whichthe log odds of a true response is linked to the semantic similaritybetween terms and a latent characteristic ontological profile-'Phenotype Similarity Regres-sion for Identifying the Genetic Determinants of Rare Dis-eases',Greene et al2016<doi:10.1016/j.ajhg.2016.01.008>.License GPL(>=2)Imports Rcpp(>=0.11.1),ontologyIndex(>=2.0),ontologySimilarity(>=2.0),ontologyPlotLinkingTo RcppDepends R(>=3.0.0)Suggests knitr,rmarkdownVignetteBuilder knitrRoxygenNote7.1.1NeedsCompilation yesRepository CRANDate/Publication2021-02-1516:30:05UTCR topics documented:SimReg3-package (2)get_terms (3)get_term_marginals (3)12SimReg3-package log_BF (4)plot.sim_reg_summary (4)plot_term_marginals (5)posterior_prediction (5)print.sim_reg_output (6)print.sim_reg_summary (7)prob_association (7)sim_reg (8)summary.sim_reg_output (9)sum_log_probs (10)term_marginals (10)Index11 SimReg3-package Similarity Regression FunctionsDescriptionFunctions for performing Bayesian similarity regression,and evaluating the probability of associ-ation between sets of ontological terms and binary response vector.A random model is compared with one in which the log odds of a true response is linked to the semantic similarity between terms and a latent characteristic ontological profile.DetailsKey functions include sim_reg,for similarity regression of binary response variable against an ontologically encoded predictor.An example application would be inferring the probability of association between the presence of a rare genetic variant conditional on an ontologically encoded phenotype.Author(s)Daniel Greene<************.uk>Maintainer:Daniel Greene<************.uk>ReferencesD.Greene,NIHR BioResource,S.Richardson,E.Turro,‘Phenotype similarity regression for iden-tifying the genetic determinants of rare diseases’,The American Journal of Human Genetics98, 1-10,March3,2016.get_terms3get_terms Get full set of terms to use in inference procedure based on similarityfunction argumentsDescriptionGet full set of terms to use in inference procedure based on similarity function argumentsUsageget_terms(args)Argumentsargs Named list of named arguments which gets passed to ontological similarity func-tion by sim_reg.ValueCharacter vector of term IDs.get_term_marginals Calculate marginal probability of terms inclusion in phi fromsim_reg_out objectDescriptionCalculate marginal probability of terms inclusion in phi from sim_reg_out objectUsageget_term_marginals(sim_reg_out)Argumentssim_reg_out Object of class sim_reg_output.ValueNumeric vector of probabilities,named by term ID.4plot.sim_reg_summarylog_BF Calculate log Bayes factor for similarity the model,gamma=1andbaseline model,gamma=0.DescriptionCalculate log Bayes factor for similarity the model,gamma=1and baseline model,gamma=0. Usagelog_BF(x,...)##Default S3method:log_BF(x,...)##S3method for class sim_reg_outputlog_BF(x,...)Argumentsx list of term sets or sim_reg_output object....If x is a list term sets,other arguments to pass to sim_reg,otherwise this is not used.ValueNumeric value.plot.sim_reg_summary Plot summary of sim_reg_output objectDescriptionPlot summary of sim_reg_output objectUsage##S3method for class sim_reg_summaryplot(x,...)##S3method for class sim_reg_outputplot(x,...)Argumentsx Object of class sim_reg_summary....Additional arguments to pass to plot_term_marginals.plot_term_marginals5 plot_term_marginals Create ontological plot of marginal probabilities of termsDescriptionCreate ontological plot of marginal probabilities of termsUsageplot_term_marginals(ontology,term_marginals,max_terms=10,min_probability=0.01,...)Argumentsontology ontology_index object.term_marginals Numeric vector of marginal probabilities of inclusion in phi for individual terms, named by the term IDs.max_terms Maximum number of terms to include in plot.Note that additional terms may be included when terms have the same marginal probability,and common ancestorterms are included.min_probabilityThreshold probability of inclusion in phi for triggering inclusion in plot....Additional arguments to pass to onto_plotposterior_prediction Predicted probability of y given x conditional on association andgiven data.DescriptionPredicted probability of y given x conditional on association and given data.Usageposterior_prediction(ontology,x,y,sim_reg_out,6print.sim_reg_output x_new=x,information_content=get_term_info_content(ontology,x),sim_params=list(ontology=ontology,information_content=information_content), two_way=TRUE,prediction_fn=SimReg:::fg_step_tab_pp(N=length(y)),min_ratio=0.001,...)Argumentsontology ontology_index object.x list of character vectors of ontological terms.y logical response vector.sim_reg_out Object of class sim_reg_output.x_new New list of ontological term sets to perform prediction on.Defaults to x.information_contentNumeric vector of information contents of terms named by term ID.Defaults toinformation content based on frequencies of annotation in x.sim_params List of arguments to pass to get_asym_sim_grid.two_way Boolean value determining whether to calculate semantic similarity‘in both di-rections’(pute s_x and s_phi or just s_phi).prediction_fn Function for computing predicted probabilities for y[i]=TRUE.min_ratio Threshold for fraction of posterior probability which sampled phi must hold in order to be included in sum....Additional arguments to pass to prediction_fn.ValueVector of predicted probabilities corresponding to term sets in x_new.print.sim_reg_output Print sim_reg_output objectDescriptionPrint sim_reg_output objectUsage##S3method for class sim_reg_outputprint(x,...)Argumentsx Object of class sim_reg_output....Non-used arguments.print.sim_reg_summary7 print.sim_reg_summary Print sim_reg_summary objectDescriptionPrint sim_reg_summary objectUsage##S3method for class sim_reg_summaryprint(x,...)Argumentsx Object of class sim_reg_summary....Non-used arguments.prob_association Calculate probability of association between y and xDescriptionCalculate probability of association between y and xUsageprob_association(...,prior=0.05)Arguments...Arguments to pass to log_BF.prior Numeric value determing prior probability that gamma=1.ValueNumeric value.8sim_reg sim_reg Similarity regressionDescriptionPerforms Bayesian‘similarity regression’on given logical response vector y against list of on-tological term sets x.It returns an object of class sim_reg_output.Of particular interest are the probability of an association,which can be calculated with prob_association,and the character-istic ontological profile phi,which can be visualised using the functions plot_term_marginals, and term_marginals).The results can be summarised with summary.Usagesim_reg(ontology,x,y,information_content=get_term_info_content(ontology,x),sim_params=list(ontology=ontology,information_content=information_content), using_terms=get_terms(sim_params),term_weights=rep(0,length(using_terms)),prior=discrete_gamma(using_terms),min_BF=-Inf,max_select=2000L,max_phi_count=200L,two_way=TRUE,selection_fn=fg_step_tab(N=length(y)),lik_method=NULL,lik_method_args=list(),gamma0_ml=bg_rate,min_ratio=1e-04,...)Argumentsontology ontology_index object.x list of character vectors of ontological terms.y logical response vector.information_contentNumeric vector of information contents of terms named by term ID.Defaults toinformation content based on frequencies of annotation in x.sim_params List of arguments to pass to get_asym_sim_grid.using_terms Character vector of term IDs giving the complete set of terms to include in the the phi parameter space.summary.sim_reg_output9term_weights Numeric vector of prior weights for individual terms.prior Function for computing the unweighted prior probability of a phi value.min_BF Bayes factor threshold below which to terminate computation,enabling faster execution time at the expense of accuracy and precision.max_select Upper bound for number of phi values to sample.max_phi_count Upper bound for number of phi values to include infinal likelihood sum.two_way Boolean value determining whether to calculate semantic similarity‘in both di-rections’(pute s_x and s_phi or just s_phi).selection_fn Function for selecting values of phi with high posterior mass.lik_method Function for calculating marginal likelihood contional on values of phi.lik_method_argsList of additional arguments to pass to lik_method.gamma0_ml Function for computing marginal likelihood of data under baseline model gamma=0.min_ratio Lower bound on ratio below which to discard phi values....Additional arguments to pass to selection_fn.Examples##Not run:set.seed(0)data(hpo)disease_terms<-c("HP:0005537","HP:0000729","HP:0001873")all_terms<-get_ancestors(hpo,c(disease_terms,sample(hpo$id,size=50)))y<-c(rep(FALSE,96),rep(TRUE,3))x<-lapply(y,function(.y)minimal_set(hpo,if(!.y)sample(all_terms,size=3)elsec(sample(all_terms,size=1),disease_terms[runif(n=3)<0.8])))sim_reg_out<-sim_reg(ontology=hpo,x=x,y=y)##End(Not run)summary.sim_reg_outputGet summary of sim_reg_output objectDescriptionGet summary of sim_reg_output objectUsage##S3method for class sim_reg_outputsummary(object,prior=0.05,...)10term_marginalsArgumentsobject Object of class sim_reg_output.prior Prior probability of association....Non-used arguments.sum_log_probs Calculate sum of log probabilities on log scale without over/under-flowDescriptionCalculate sum of log probabilities on log scale without over/under-flowUsagesum_log_probs(log_probs)Argumentslog_probs Numeric vector of probabilities on log scale.ValueNumeric value on log scale.term_marginals Calculate marginal probability of terms inclusion in phiDescriptionCalculate marginal probability of terms inclusion in phiUsageterm_marginals(...)Arguments...Arguments to pass to sim_reg.ValueNumeric vector of probabilities,named by term ID.Indexget_term_marginals,3get_terms,3log_BF,4,7plot.sim_reg_output(plot.sim_reg_summary),4plot.sim_reg_summary,4plot_term_marginals,4,5,8posterior_prediction,5print.sim_reg_output,6print.sim_reg_summary,7prob_association,7,8sim_reg,4,8,10SimReg3(SimReg3-package),2SimReg3-package,2sum_log_probs,10summary.sim_reg_output,9term_marginals,8,1011。

选择离子检测 ppt课件

选择离子检测 ppt课件
每个峰通过1525次循环运用时间规划simgroups设置sim采集可以监视30离子组50组采集使用最小数目的离子组以获得最大灵敏度和精度选择最有特征的离子高质量化合物特有的可以选择化合物的特征离子以达到分类目的选择sim离子质谱sim方式选择sim采集方式编辑sim参数sim方式参数添加修改或删除每组标记输入新方法名称保存方法sim数据用于目标化合物的定量scan数据用于未知化合物的谱库检scan的数据保存在相同的数据文件夹中datams和datasimms可以使用autosim的指令自动将全扫描的方法转换为sim的方法sim组和离子会被自动选择
• “不怕太阳晒,也不怕那风雨狂,只怕先生骂我 笨,没有学问无颜见爹娘 ……”
• “太阳当空照,花儿对我笑,小鸟说早早早……”
选择离子检测
SIM是什么? 只监视所选择信息的质荷比
它如何做? 控制质量分析器,仅仅对感兴趣的质量进行分析
为什么做? 提高灵敏度 改善峰形 改善精确度
应用 痕量分析 复杂基质 常规定量
选择离子检测
选择离子检测的原则
讨论主题: • 选择离子检测(SIM)与扫描的区别 •SIM 采集参数如何影响数据 •SIM 方式如何进行数据采集
精品资料
• 你怎么称呼老师?
• 如果老师最后没有总结一节课的重点的难点,你 是否会认为老师的教学方法需要改进?
• 你所经历的课堂,是讲座式还是讨论式? • 教师的教鞭
质谱 SIM 方式
• 选择 SIM 采集方式 • 编辑 SIM 参数
SIM 方式(参数)
• 添加或删除组
• 添加,修改或删除每组 标记
保存方法
• 输入新方法名称
扫描数据采集
四极杆 电压
(amu)SIM 与SCAN较扫描时间 扫描循环时间
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档