苏科版七年级数学上册6章 平面图形的认识(一)6.1-6.3 阶段 培优训练卷(有答案)

合集下载

苏科版七年级上册数学第6章 平面图形的认识(一) 含答案

苏科版七年级上册数学第6章 平面图形的认识(一) 含答案

苏科版七年级上册数学第6章平面图形的认识(一)含答案一、单选题(共15题,共计45分)1、如图,已知直线AB、CD相交于点O,OE平分∠COB,若∠EOB=50°,则∠BOD的度数是:()A.50 °B.60 °C.80 °D.70 °2、下列四个生产生活现象,可以用基本事实“两点之间线段最短”来解释的是()A.用两个钉子就可以把木条固定在墙上B.植树时,只要定出两棵树的位置,就能确定同一行树所在的直线C.从A地到B地架设电线,总是尽可能沿着线段AB来架设D.打靶的时候,眼睛要与枪上的准星、靶心在同一条直线上3、已知∠α=38°,则∠α的余角是()A.42°B.62°C.52°D.142°4、两点间的距离是指()A.连接两点的线段的长度B.连接两点的直线的长度C.连接两点的线段D.连接两点的直线5、如图,已知直线AB,线段CO⊥AB于点O,∠AOD= ∠BOD,∠COD的度数为()A.15°B.25°C.30°D.45°6、如图,直线、相交于点,,垂足为,若射线在的内部,,,则的度数为()A. B. C. D.7、如图所示,AB⊥EF,CD⊥EF,∠1=∠F=45°,那么与∠FCD(不包括∠FCD)相等的角有( )A.5个B.2个C.3个D.4个8、下列各图中,∠1与∠2是对顶角的是()A. B. C. D.9、下列说法正确的是( )A.画一条长3cm的射线;B.射线、线段、直线中直线最长C.射线是直线的一部分D.延长直线AB到C10、下列说法正确的是()A.两点之间的距离是两点间的线段B.与同一条直线垂直的两条直线也垂直C.同一平面内,过一点有且只有一条直线与已知直线平行D.同一平面内,过一点有且只有一条直线与已知直线垂直11、含30°角的直角三角板与直线a,b的位置关系如图所示,已知,.则的度数是()A.35°B.45°C.55°D.65°12、下列说法中正确的个数是()①线段AB和射线AB都是直线的一部分;②直线AB和直线BA是同一条直线;③射线AB和射线BA是同一条射线;④把线段向一个方向无限延伸可得到射线,向两个方向无限延伸可得到直线.A.1B.2C.3D.413、如图,AD∥BE,∠GBE的平分线BF的反向延长线交AD的反向延长线于M 点,若∠BAD=70°,则∠M的度数为()A.20°B.35°C.45°D.70°14、在15°、65°、75°、135°的角中,能用一副三角尺画出来的有()A.1个B.2个C.3个D.4个15、下面与不是对顶角的是()A. B. C. D.二、填空题(共10题,共计30分)16、两点整,时针与分针所成角的度数为________.17、如图,直线AB、CD相交于点O,OB平分∠EOD,∠COE=100°,则∠AOC=________°.18、如图,点O是直线AD上的点,∠AOB,∠BOC,∠COD三个角从小到大依次相差25°,则这三个角中最小角的度数是________.19、如图,直线AB,CD相交于点O,EO⊥AB,垂足为点O,若∠AOD=132°,则∠EOC=________20、补全解题过程.已知:如图,点C是线段AB的中点,AD=6,BD=4,求CD的长.解:∵AD=6,BD=4,∴AB=AD+________=________.∵点C是线段AB的中点,∴AC=CB=________=________.∴CD=AD﹣________ =________.21、已知,OC是从的顶点O引出的一条射线,若,则的度数为________.22、已知,自的顶点O引射线OC,若::3,那么的度数是________.23、铁一中分校下午放学时间是5:45,此时时针与分针的夹角为________.24、若的余角是,则的补角为________25、已知一个角的度数为27°18′43″,则它的余角度数等于________.三、解答题(共5题,共计25分)26、已知∠α与∠β互为补角,且∠β的一半比∠α大30°,求∠α27、如图,已知2∠BOC=∠AOC,∠AOC的余角比∠BOC小30°,作射线OD,使得∠AOC=4∠AOD,求∠DOB的度数.28、如图,已知直线AB和CD相交于点O,OE平分∠AOC,∠AOD-∠BOD=30°,试求∠AOE的度数。

苏科版七年级上册数学第6章 平面图形的认识(一) 含答案

苏科版七年级上册数学第6章 平面图形的认识(一) 含答案

苏科版七年级上册数学第6章平面图形的认识(一)含答案一、单选题(共15题,共计45分)1、下列说法正确的()A.连接两点的线段叫做两点之间的距离B.射线与射线表示同一条射线C.若,则是线段的中点D.两点之间,线段最短2、过一点画已知直线的垂线,可画垂线的条数是()A.0B.1C.2D.无数3、如图,OA⊥OC,OB⊥OD,四位同学观察图形后分别说了自己的观点.甲:∠AOB=∠COD;乙:∠BOC+∠AOD=180°;丙:∠AOB+∠COD=90°;丁:图中小于平角的角有6个.其中观点正确的有()A.甲、乙、丙B.甲、丙、丁C.乙、丙、丁D.甲、乙、丁4、如图所示,两块三角板的直角顶点O重叠在一起,且OB恰好平分∠COD,则∠AOD的度数为()A.100°B.120°C.135°D.150°5、体育课上,老师测量跳远成绩的依据是()A.两点之间,线段最短B.垂线段最短C.过一点只有一条直线与已知直线垂直D.两点确定一条直线6、下列语句:①同一平面上,三条直线只有两个交点,则其中两条直线互相平行;②如果两条平行线被第三条截,同旁内角相等,那么这两条平行线都与第三条直线垂直;③过一点有且只有一条直线与已知直线平行,其中()A.①、②是正确的命题B.②、③是正确命题C.①、③是正确命题D.以上结论皆错7、如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是()A.垂线段最短B.经过一点有无数条直线C.经过两点,有且仅有一条直线D.两点之间,线段最短8、将一直角三角板与两边平行的硬纸条如图所示放置,下列结论:(1)∠1=∠2;(2)∠3=∠4;(3)∠2+∠4=90°;(4)∠4+∠5=180°. 其中正确的个数是( )A.1B.2C.3D.49、下列命题中是假命题的是()A.同旁内角互补,两直线平行B.垂线段最短C.在同一平面内,过一点有且只有一条直线与已知直线垂直D.直线外一点到这条直线的垂线段叫做点到直线的距离10、给出下列说法:⑴两条直线被第三条直线所截,同位角相等;⑵相等的两个角是对顶角;⑶平面内的一条直线和两条平行线中的一条相交,则它与另一条也相交;⑷从直线外一点到这条直线的垂线段,叫做这点到直线的距离;其中正确的有()A.0个B.1个C.2个D.3个11、如图,BC是⊙O的直径,A,D是⊙O上的两点,连接AB,AD,BD,若∠ADB=70°,则∠ABC的度数是()A.20°B.70°C.30°D.90°12、如图,在中,,将沿直线m翻折,点B落在点D的位置,则的度数是()A. B. C. D.13、A、B两地的位置如图所示,则A在B的()A.南偏东30°B.东偏南60°C.西偏北30°D.北偏西60°14、如图所示,OE平分,OD平分,,则的度数是().A. B. C. D.15、平面上有三点,经过每两点作一条直线,则能作出的直线的条数是()A.1条B.3条 C.1条或3条D.以上都不对二、填空题(共10题,共计30分)16、如图,△ABC是以AB为斜边的直角三角形,AC=4,BC=3,P为AB上一动点,且PE⊥AC于E,PF⊥BC于F,则线段EF长度的最小值是________。

2020-2021学年第一学期苏科版七年级数学上册第6章平面图形的认识(一) 综合 培优训练卷(1)

2020-2021学年第一学期苏科版七年级数学上册第6章平面图形的认识(一) 综合 培优训练卷(1)
精品文档,助力人生,欢迎关注小编!
2020-2021 苏科版七年级数学上册第 6 章平面图形的认识(一) 综合培优训练卷(1)
一、选择题 1、如图,下列不正确的几何语句是( )
A.直线 AB 与直线 BA 是同一条直线 B.射线 OA 与射线 OB 是同一条射线 C.射线 OA 与射线 AB 是同一条射线 D.线段 AB 与线段 BA 是同一条线段
11、如图,点 A 在直线 l1 上,点 B,C 在直线 l2 上,AB⊥l2,AC⊥l1,AB=4,BC=3,AC=5,有下列说
法: (1)点 B 到直线 l1 的距离等于 4 (2)点 C 到直线 l1 的距离等于 5
(3)点 A 到直线 l2 间的距离等于 4 (4)点 B 到直线 AC 的距离等于 3
⑥如果两个角是邻补角,那么这两个角的平分线组成的图形是 直角,故⑥正 确.
所以错误的有 4 个,故选 C.
3、如图,B 是线段 AD 的中点,C 是 BD 上一点,则下列结论中错误的是(

A.BC=AB-CD
B.BC= 1 AD-CD 2
C.BC= 1 (AD+CD) D.BC=AC-BD 2
解析:∵
则线段PQ=___________.
14、已知线段 AB=10 cm ,BC=5 cm,A、B、C 三点在同一条直线上,则 AC=_
_.
15、如图,线段AB=BC=CD=DE=1 cm,那么图中所有线段的长度之和等于___ _____cm.
16、如图,点 O 是直线 AD 上一点,射线 OC、OE 分别是∠AOB、∠BOD 的平分线,若∠AOC=28°, 则∠COD=_________,∠BOE=__________.

A.∠1=∠3

苏科版七年级数学上册第6章平面图形的认识(一)达标测试卷【含答案】

苏科版七年级数学上册第6章平面图形的认识(一)达标测试卷【含答案】

9.如果线段 AB=5cm,BC=4cm,且 A,B,C 在同一条直线上,那么 A、C 两点的距离是( )
A. 1cm
B. 9cm
D. 以上答案都不正确
10.同一平面内,三条不同直线的交点个数可能是( )个.
C. 1cm 或 9cm
A. 1 或 3
B. 0、1 或 3
C. 0、1 或
2
D. 0、1、2 或 3
A.①④
B.②③
C.①②④
D.①③④
6.下列说法①一个角的补角大于这个角②小于平角的角是钝角③同角或等角的余角相等④若 1 2 3 180 ,
则 1 、 2 、 3 互为补角.其中正确的说法有( )
A.4 个
B.3 个
C.2 个
D.1 个
7.如图,AM 为∠BAC 的平分线,下列等式错误的是( )
A.两点确定一条直线
B.两点之间,线段最短
C.垂线段最短
D.同一平面内垂直于同一条直线的两直线平行
5.下列日常现象:
①用两根钉子就可以把一根木条固定在墙上;②把弯曲的公路改直,就能够缩短路程;
③利用圆规可以比较两条线段的大小;④建筑工人砌墙时,经常先在两端立桩拉线,然后沿着线砌墙.
其中,可以用“两点确定一条直线”来解释的现象是( )
【考点】角平分线的定义. 【答案】见试题解答内容 【分析】根据角平分线的定义求解. 【解答】解:∵∠AOC=25°,OC 平分∠AOB, ∴∠AOB=2∠AOC=50°, 故答案为 50°. 15 如图,点 A 位于点 O 的 方向上.
【考点】方向角. 【答案】见试题解答内容 【分析】根据方位角的概念直接解答即可. 【解答】解:点 A 位于点 O 的北偏西 30°方向上.

苏教版七年级数学 平面图形的认识(一)练习题

苏教版七年级数学 平面图形的认识(一)练习题

第六章 平面图形的认识(一)(2)两点之间的所有连线中,线段最短。

(3)两点之间线段的长度叫做这两点之间的距离。

1、如图,线段AB 上有两点C 和D ,则图中共有____条线段。

写出其中的一条线段为 ;若直线上有n 个点,则它们共组成 条线段2、C 为线段AB 的中点,D 在线段CB 上,6=DA ,4=DB ,求CD 的长度。

3、如图,D C B A 、、、是圆周上的四个点,连接其中任意两点可得到一条线段,这 样的线段共可连出__________条。

4、 请你做裁判:过C B A 、、三个点中的两点作直线,小明说有一条,小林说只有一条,小牛说不是一条就是三条,你认为他们三人谁的说法对?为什么?5、 如图,从A 地到B 地有①②③三条路可以走,每条路长分别为n m l 、、(图中、、表示直角),则第_________条路最短,另两条路的长短关系为__________________。

6、 两条直线相交最多有_________个交点;三条直线两两相交最多有_________个交点;四条直线两两相交最多有_________个交点;n 条直线两两相交最多有_______个交点。

7、 下列说法中正确的是( )A 、两条射线组成的图形叫做角B 、直线是一个平角C 、一条射线就是一个周角D 、AOB ∠与BOA ∠表示同一个角 8、 对角的表示方法理解错误的是( )A 、可用三个大写字母表示,顶点字母写在中间,角边上的点写在两旁B 、任何角都可用一个大写字母来表示C 、记角有时可靠近顶点加上弧线注上数字来表示D 、记角有时可靠近顶点加上弧线注上希腊字母来表示9、 用1∠、ACB ∠、C ∠三种方法表示同一个角的是( )A 、B 、C 、10、下列语句:①线段AB 是点A 与B 的距离;②把一条线段分成两部分的点叫做线段的中点;③可以反向延长角的一边,其中正确的个数有( )A 、没有B 、1个C 、2个D 、3个 11、如图,图中共有________个小于平角的角,其中以A 为顶点的角共有_______个。

苏科版七年级上册数学第6章 平面图形的认识(一) 含答案

苏科版七年级上册数学第6章 平面图形的认识(一) 含答案

苏科版七年级上册数学第6章平面图形的认识(一)含答案一、单选题(共15题,共计45分)1、下列说法:①如果∠1+ ∠2+∠3=180°,那么∠1,∠2,∠3三个角互为补角;②如果∠A+ ∠B=90°,那么∠A与∠B互为余角;③“对顶角相等”成立,反之“相等的角是对顶角”也成立;④两条直线被第三条直线所截,同位角相等;⑤两点之间,线段最短. 正确的个数是()A.2个B.3个C.4个D.5个2、下列说法不正确的是()A.过任意一点可作已知直线的一条平行线B.在同一平面内两条不相交的直线是平行线C.在同一平面内,过直线外一点只能画一条直线与已知直线垂直D.直线外一点与直线上各点连接的所有线段中,垂线段最短3、如图,在中,,沿折叠,使点恰好落在边上点处,若,则的大小为()A. B. C. D.4、下列说法中正确的是().A.如果,那么一定是7B. 不一定是负数C.射线和射线是同一条射线D.一个角的余角大于5、如图,直线AB,CD相交于点O,EO⊥CD于点O,∠AOE=36°,则∠BOD=()A.36°B.44°C.50°D.54°6、下列四种说法中正确的是()A.连结两点间的线段叫两点间的距离B.射线AB与射线BA是同一条射线 C.相等的角是对顶角 D.若直线a∥b,b∥c,则a∥c7、如图.若乙、丙都在甲的北偏东70°方向上.乙在丁的正北方向上,且乙到丙、丁的距离相同.则α的度数是()A.25°B.30°C.35°D.40°8、如图,已知直线AB和CD相交于O点,∠COE=90°,OF平分∠AOE,∠COF=34°,则∠BOD大小为()A.22°B.34°C.56°D.90°9、将一副三角板按照如图所示的位置摆放,则图中的∠α和∠β的关系一定成立的是()A.∠α与β互余B.∠α与∠β互补C.∠α与∠β相等D.∠α比∠β小10、下列说法中,错误的是()A.线段AB是直线AB的一部分B.直线AB与直线BA是同一条直线C.射线AB与射线BA是同一条射线D.把线段AB向两端无限延伸可得到直线AB11、如图,已知长方形纸片的一条边经过直角三角形纸片的直角顶点,若矩形纸片的一组对边与直角三角形的两条直角边相交成∠1,∠2. 则∠1与∠2的关系为()A.∠1+∠2=180°B.∠2=4∠1C.∠2=∠1+90°D.∠1+∠2=150°12、如图,OA⊥OB ,∠1=35°,则∠ 2的度数是()A.35°B.45°C.55°D.70°13、如图,已知AB∥CD,∠D=50°,BC平分∠ABD,则∠ABC等于()A.65°B.55°C.50°D.45°14、下列说法中,正确的是()①两点之间的所有连线中,线段最短;②过一点有且只有一条直线与已知直线垂直;③平行于同一直线的两条直线互相平行;④直线外一点到这条直线的垂线段叫做点到直线的距离。

{word试卷}2020-2021苏科版七年级数学上册第6章平面图形的认识(一)章末培优训练卷

{word试卷}2020-2021苏科版七年级数学上册第6章平面图形的认识(一)章末培优训练卷

20XX年高中测试高中试题试卷科目:年级:考点:监考老师:日期:2020-2021苏科版七年级数学上册第6章平面图形的认识(一) 章末培优训练卷(2)一、选择题1、下列说法正确的( )A .连接两点的线段叫做两点之间的距离B .射线AB 与射线BA 表示同一条射线C .若AC =BC ,则C 是线段AB 的中点D .两点之间,线段最短2、如图,点D 是线段AB 的中点,点C 在线段BD 上,且BC =AB ,CD =1,则线段AB 的长为( )A .4B .6C .9D .83、已知线段AB =4cm ,点C 是直线AB 上一点(不同于点A 、B ).下列说法:①若点C 为线段AB 的中点,则AC =2cm ;②若AC =1cm ,则点C 为线段AB 的四等分点;③若AC +BC =4cm ,则点C 一定在线段AB 上;④若AC +BC >4cm ,则点C 一定在线段AB 的延长线上;⑤若AC +BC =8cm ,则AC =2cm .其中正确的个数有( )A .1个B .2个C .3个D .4个4、如图,AM 为∠BAC 的平分线,下列等式错误的是( )A .12∠BAC =∠BAM B .∠BAM =∠CAM C .∠BAM =2∠CAM D .2∠CAM =∠BAC5、如图,∠AOB=∠COD=90°,OE平分∠BOD.若∠AOD∶∠BOC=5∶1,则∠COE的度数为( )A.30° B.40° C.50° D.60°6、如图,两个直角∠AOC和∠BOD有公共顶点O,下列结论:①∠AOB=∠COD;②∠AOB+∠COD=90°;③若OB平分∠AOC,则OC平分∠BOD;④∠AOD的平分线与∠BOC的平分线是同一条射线.其中结论正确的个数是()A.4个B.3个C.2个D.1个7、已知∠A与∠B互余,∠B与∠C互余,则∠A与∠C()A.互余B.相等C.互补D.差为90°8、直线AB,CD相交于点O,OE⊥AB于点O,OF平分∠AOE,∠1=15°31′,则下列结论不正确的是()A.∠AOD与∠1互为补角 B.∠1=∠3 C. ∠1的余角等于75°29′ D.∠2=45°(8)9、如图,OA⊥OC,OB⊥OD,有下列结论:①∠AOB=∠COD;②∠AOB=∠COD=90°;③∠BOC+∠AOD=180°;④∠AOC-∠COD=∠BOC.其中正确的是()A.①②③ B.①②④C.①③④ D.②③④10、下列说法中,正确的个数是 ( )(1)过一点有且只有一条直线与已知直线垂直;(2)过一点有且只有一条直线与已知直线平行;(3)在同一平面内,不相交的两条射线是平行线;(4)如果两条直线都与第三条直线平行,那么这两条直线也互相平行.A.1个B.2个 C.3个D.4个11、若一个角的两边分别平行于另一个角的两边,则这两个角 ( )A.相等B.互补 C.相等或互补D.以上都不对12、如图,直线AB,CD相交于点O,OE⊥AB于点O,OF平分∠AOE,∠1=15°31′,则下列结论不正确的是()A.∠AOD与∠1互为补角 B.∠1=∠3 C. ∠1的余角等于75°29′ D.∠2=45°二、填空题13、已知线段AB,点C、点D在直线AB上,并且CD=8,AC:CB=1:2,BD:AB=2:3,则AB=.14、把一条弯曲的公路改成直道,可以缩短路程.用几何知识解释其道理是15、如图,∠AOC=90°,OC平分∠DOB,且∠DOC=22°36′,∠BOA度数是_______(15) (16)16、如图所示,∠AOB是平角,∠AOC=30°,∠BOD=60°,OM,ON分别是∠AOC,∠BOD的平分线,∠MON等于_____度.17、(1)若∠α=35°,则∠α的补角为____,∠α的余角为____,∠α的补角与余角的差为____;(2)若∠α的补角为76°28′,则∠α=____.(3)一个角是70°39′,则它的余角的度数是____.18、如图,直线AB,CD,EF交于一点O.(1)∠EOB的对顶角是________;(2)________是∠AOE的对顶角;(3)若∠AOC=76°,则∠BOD的度数为________.(18) (19)19、如图,已知直线AB和DF相交于点O(∠AOD为锐角),∠COB=90°,OE平分∠AOF.则2∠EOF﹣∠COD=°.20、在如图所示的直三棱柱中,互相平行的棱有_______对21、如图,∠1=28°,AB⊥CD,垂足为O,EF经过点O.则∠2的度数是.(21) (22)22、如图,OB⊥CD,∠1∶∠2=2∶5,则∠AOB等于__________23、(1)已知∠AOB=30°,OC⊥OA,OD⊥OB,则∠COD的度数为____________.(2)如果点A,B都在直线l的同一条垂线上,点A到直线l的距离等于8cm,点B到直线l的距离等于6cm,那么线段AB的长为____________cm.24、(1)如图1,AO⊥OC,∠1=∠2,则OB与OD的位置关系是____________.(2)将一张长方形纸片按如图2所示的方式折叠,BC,BD为折痕,则BC与BD的位置关系为_____图1 图2三、解答题25、如图,C,D是线段AB上的两点,且满足AC:CD:DB=3:2:1,M,N分别为AC和CB的中点.(1)若AB=24,求DN的长度;(2)证明:5MN=6(CD+DN).26、如图,点A、O、B在一条直线上,OD平分∠COA,OE平分∠BOC,∠BOF=2∠COF,∠EOF=22°.(1)求∠DOE的度数;(2)求∠FOC的度数.27、如图所示,∠AOB是平角,OM,ON分别是∠AOC,∠BOD的平分线.(1)当∠MON=140°时,则∠COD=;(2)当∠AOC=30°,∠BOD=60°时,求∠MON的度数;(3)当∠COD=α时,求∠MON的度数.28、如图,点O是直线AB上任一点,射线OD和射线OE分别平分∠AOC和∠BOC.(1)填空:与∠AOE互补的角有;(2)若∠COD=30°,求∠DOE的度数;(3)当∠AOD=α°时,请直接写出∠DOE的度数.29、如图,已知直线AB与CD交于点O,OE平分∠BOD,OF平分∠AOB.(1)若∠BOE=40°,求∠AOF与∠COF的度数;(2)若∠BOE=x(x<45°),请用含x的代数式表示∠COF的度数.30、(1)画一画:在图①中,以P为顶点画∠P(∠P为锐角),使∠P的两边分别和∠1的两边平行;再在图②中,以P为顶点画∠P(∠P为钝角),使∠P的两边分别和∠1的两边平行.(2)量一量:∠1和∠P的度数,它们之间的数量关系是__________________.(3)猜一猜:如果一个角的两边分别与另一个角的两边平行,那么这两个角的数量关系是________(4)做一做:如果一个角的两边分别平行于另一个角的两边,且这个角为30°,求另外一个角的度数.31、如图,直线EF,CD相交于点O,OA⊥OB,且CO平分∠AOF,若∠AOE=n°,求∠BOD的度数.(用含n的代数式表示)2020-2021苏科版七年级数学上册第6章平面图形的认识(一)章末培优训练卷(2)(答案)一、选择题1、下列说法正确的()A.连接两点的线段叫做两点之间的距离B.射线AB与射线BA表示同一条射线C.若AC=BC,则C是线段AB的中点D.两点之间,线段最短解:A、连接两点的线段的长度叫做两点之间的距离,故选项错误;B、射线AB的端点是A,射线BA的端点是B,故不是同一条射线,故选项错误;C、若AC=BC,则点C是线段AB的中点,错误,因为点A、B、C不一定共线;故选项错误;D、两点之间,线段最短,正确.故选:D.2、如图,点D是线段AB的中点,点C在线段BD上,且BC=AB,CD=1,则线段AB的长为()A.4B.6C.9D.8解:设BC为x,那么AB为 3x,∵D为AB中点,∴AD=BD=1.5x,CD=BD﹣BC=0.5x,又∵CD=0.5x=1,∴x=2,∴AB=3×2=6.故选:B.3、已知线段AB=4cm,点C是直线AB上一点(不同于点A、B).下列说法:①若点C为线段AB的中点,则AC=2cm;②若AC=1cm,则点C为线段AB的四等分点;③若AC+BC=4cm,则点C一定在线段AB上;④若AC+BC>4cm,则点C一定在线段AB 的延长线上;⑤若AC+BC=8cm,则AC=2cm.其中正确的个数有()A.1个B.2个C.3个D.4个解:(1)如图1所示:∵点C为线段AB的中点,∴AC=BC=,又∵AB=4cm,∴AC=2cm,∴结论①正确;(2)如图2所示:∵AC 1=1,AB =4,∴,∴点C 1为线段AB 的四等分点 又∵AC 2=1,∴, 又∵点C 2在AB 的反向延长线上,∴点C 2不是线段AB 的四等分点,∴结论②错误;(3)如图3所示:点C 为线段AB 上的一动点,∴AB =AC +BC ,又∵AB =4cm ,∴AC +BC =4cm ,∴结论③正确;(4)如图4所示:若点C 在AB 的延长线上时,AC 1+BC 1>AB , ∵AB =4,∴AC 1+BC 1>4cm ,若点在AB 的反向延长线上时,AC 2+BC 2>AB ,∵AB =4, ∴AC 2+BC 2>4cm ,∴结论④错误;(5)如图5所示:若点C 在线段AB 的延长线时,且BC 1=2cm ,有AC 1+BC 1=8cm ,若点C 在线段AB 的反向延长线时,且BC 2=2cm ,有AC 2+BC 2=8cm ,∴结论⑤错误.综合所述;正确结论是①、③, 故选:B .4、如图,AM 为∠BAC 的平分线,下列等式错误的是(C )A .12∠BAC =∠BAM B .∠BAM =∠CAM C .∠BAM =2∠CAM D .2∠CAM =∠BAC5、如图,∠AOB =∠COD =90°,OE 平分∠BOD .若∠AOD ∶∠BOC =5∶1,则∠COE 的度数为(A )A.30° B.40° C.50° D.60°6、如图,两个直角∠AOC和∠BOD有公共顶点O,下列结论:①∠AOB=∠COD;②∠AOB+∠COD=90°;③若OB平分∠AOC,则OC平分∠BOD;④∠AOD的平分线与∠BOC的平分线是同一条射线.其中结论正确的个数是()A.4个B.3个C.2个D.1个解:①∵∠AOC=∠BOD=90°,∴∠AOB+∠BOC=∠BOC+∠COD=90°,∴∠AOB =∠COD;②∠AOB+∠COD=90°不一定和是90°;③若OB平分∠AOC,则∠AOB=∠BOC=45°,∴∠COD=45°,∴OC平分∠BOD;④∵∠AOB=∠COD,∴∠BOE=∠COE,∴∠AOE=∠DOE,∴∠AOD的平分线与∠BOC的平分线是同一条射线.∴①③④正确,故选:B.7、已知∠A与∠B互余,∠B与∠C互余,则∠A与∠C(B)A.互余B.相等C.互补D.差为90°8、直线AB,CD相交于点O,OE⊥AB于点O,OF平分∠AOE,∠1=15°31′,则下列结论不正确的是(C)A.∠AOD与∠1互为补角 B.∠1=∠3 C. ∠1的余角等于75°29′ D.∠2=45°9、如图,OA⊥OC,OB⊥OD,有下列结论:①∠AOB=∠COD;②∠AOB=∠COD=90°;③∠BOC+∠AOD=180°;④∠AOC-∠COD=∠BOC.其中正确的是(C)A.①②③ B.①②④C.①③④ D.②③④10、下列说法中,正确的个数是 ( )(1)过一点有且只有一条直线与已知直线垂直;(2)过一点有且只有一条直线与已知直线平行;(3)在同一平面内,不相交的两条射线是平行线;(4)如果两条直线都与第三条直线平行,那么这两条直线也互相平行.A.1个B.2个 C.3个D.4个【答案】A【解析】(1)过一点有且只有一条直线与已知直线垂直,应强调在同一平面内,故本项错误;(2)过一点有且只有一条直线与已知直线平行,应强调在经过直线外一点,故是错误的.(3)在同一平面内,不相交的两条直线是平行线,射线不一定,故本项错误;(4)如果两条直线都与第三条直线平行,那么这两条直线也互相平行是正确的.故选:A.11、若一个角的两边分别平行于另一个角的两边,则这两个角 ( )A.相等B.互补 C.相等或互补D.以上都不对【答案】C【解析】如图所示,∠1和∠2,∠1和∠3两对角符合条件.根据平行线的性质,得到∠1=∠2.结合邻补角的定义,得∠1+∠3=∠2+∠3=180°.故选C.12、如图,直线AB,CD相交于点O,OE⊥AB于点O,OF平分∠AOE,∠1=15°31′,则下列结论不正确的是(C)A.∠AOD与∠1互为补角 B.∠1=∠3 C. ∠1的余角等于75°29′ D.∠2=45°二、填空题13、已知线段AB,点C、点D在直线AB上,并且CD=8,AC:CB=1:2,BD:AB=2:3,则AB=.解:分三种情况进行讨论:①当C在线段AB上时,点D在线段AB的延长线上,∵AC:CB=1:2,∴BC=AB,∵BD:AB=2:3,∴BD=,∴CD=BC+BD=,∴AB=6;②当点C在线段AB的反向延长线时,∵BD:AB=2:3,∴AB=3AD,∵AC:CB=1:2,∴AC=AB,∴CD=AC+AD=4AD=8,∴AD=2,∴AB=6;③当点C在线段AB的反向延长线,点D在线段AB的延长线时,∵AC:CB=1:2,BD:AB=2:3,∴AB=,故AB=6或3.故答案为:6或314、把一条弯曲的公路改成直道,可以缩短路程.用几何知识解释其道理是解:把一条弯曲的公路改成直道,可以缩短路程.用几何知识解释其道理是两点之间线段最短,故答案为:两点之间线段最短.15、如图,∠AOC=90°,OC平分∠DOB,且∠DOC=22°36′,∠BOA度数是_______解:∵OC平分∠DOB,∴∠DOC=∠BOC=22°36′.∵∠AOC=∠AOB+∠BOC=90°,∴∠AOB=∠AOC﹣∠BOC=90°﹣22°36′=67°24′.16、如图所示,∠AOB是平角,∠AOC=30°,∠BOD=60°,OM,ON分别是∠AOC,∠BOD的平分线,∠MON等于_135 ____度.17、(1)若∠α=35°,则∠α的补角为____,∠α的余角为____,∠α的补角与余角的差为____;(2)若∠α的补角为76°28′,则∠α=____.(3)一个角是70°39′,则它的余角的度数是____.【答案】(1) 145°; 55°; 90°(2) 103°32′;(3) 19°21′18、如图,直线AB,CD,EF交于一点O.(1)∠EOB的对顶角是________;(2)________是∠AOE的对顶角;(3)若∠AOC=76°,则∠BOD的度数为________.答案:(1)∠AOF(2)∠BOF(3)76°19、如图,已知直线AB和DF相交于点O(∠AOD为锐角),∠COB=90°,OE平分∠AOF.则2∠EOF﹣∠COD=°.【解析】∵OE平分∠AOF,∴∠AOF=2∠EOF,∵∠AOF=∠BOD,∠COB=90°,∴2∠EOF﹣∠COD=∠AOF﹣∠COD=∠BOD﹣∠COD=∠COB=90°.故答案为:90.20、在如图所示的直三棱柱中,互相平行的棱有_______对【解】AB∥A′B′,AC∥A′C′,BC∥B′C′,AA′∥BB′,AA′∥CC′,BB′∥CC′,共6对.21、如图,∠1=28°,AB⊥CD,垂足为O,EF经过点O.则∠2的度数是.【解析】∵直线AB、EF相交于O点,∠1=28°,∴∠3=∠1=28°(对顶角相等),又∵AB⊥CD,∴∠2+∠3=90°,∴∠2=90°﹣∠3=90°﹣28°=62°,故答案为62°.22、如图,OB⊥CD,∠1∶∠2=2∶5,则∠AOB等于_____126°_____23、(1)已知∠AOB=30°,OC⊥OA,OD⊥OB,则∠COD的度数为____________.(2)如果点A,B都在直线l的同一条垂线上,点A到直线l的距离等于8cm,点B到直线l的距离等于6cm,那么线段AB的长为____________cm.【解析】分点A,B在直线l的同侧或异侧两种情况讨论:同侧:AB=8-6=2(cm),异侧:AB=8+6=14(cm).答案:(1)30°或150°(2)2或1424、(1)如图1,AO⊥OC,∠1=∠2,则OB与OD的位置关系是____________.(2)将一张长方形纸片按如图2所示的方式折叠,BC,BD为折痕,则BC与BD的位置关系为_____图1 图2答案:(1)垂直(2)BC⊥BD三、解答题25、如图,C,D是线段AB上的两点,且满足AC:CD:DB=3:2:1,M,N分别为AC和CB的中点.(1)若AB=24,求DN的长度;(2)证明:5MN=6(CD+DN).解:(1)∵AB=24,AC:CD:DB=3:2:1,∴CD=AB=8,DB=AB=4∴CB=CD+DB=12∵N是CB的中点, ∴CN=CB=6, ∴ND=CD﹣CN=8﹣6=2;(2)证明:M,N分别为AC和CB的中点∴MC=AC,CN=CB, ∴MN=MC+CN=AC+CB=AB∵AC:CD:DB=3:2:1, ∴CD=AB=AB, DB=AB∴CB=CD+DB=AB, ∴CN=CB=AB∴DN=CD﹣CN=AB﹣AB=AB∴6(CD+DN)=6(AB+AB)=AB∵5MN=5×AB=AB, ∴5MN=6(CD+DN).26、如图,点A、O、B在一条直线上,OD平分∠COA,OE平分∠BOC,∠BOF=2∠COF,∠EOF=22°.(1)求∠DOE的度数;(2)求∠FOC的度数.解:(1)∵OD平分∠COA,OE平分∠BOC,∴,,∴;(2)设∠FOC=x,∵OE平分∠BOC,∠BOF=2∠COF,∴2x﹣22°=x+22°,解得x=44°.27、如图所示,∠AOB是平角,OM,ON分别是∠AOC,∠BOD的平分线.(1)当∠MON=140°时,则∠COD=100°;(2)当∠AOC =30°,∠BOD =60°时,求∠MON 的度数;(3)当∠COD =α时,求∠MON 的度数.解:(2)因为∠AOB 是平角,所以∠AOB =180°.因为OM ,ON 分别是∠AOC ,∠BOD 的平分线,所以∠AOM =∠COM =12∠AOC =15°,∠BON =∠DON =12∠BOD =30°. 所以∠MON =180°-15°-30°=135°.(3)∠MON =∠MOC +∠COD +∠DON =12∠AOC +12∠BOD +∠COD =12(180°-∠COD)+∠COD =90°+12α.28、如图,点O 是直线AB 上任一点,射线OD 和射线OE 分别平分∠AOC 和∠BOC .(1)填空:与∠AOE 互补的角有 ;(2)若∠COD=30°,求∠DOE 的度数;(3)当∠AOD=α°时,请直接写出∠DOE 的度数.【答案】解:(1)∵OE 平分∠BOC ,∴∠BOE=∠COE ;∵∠AOE+∠BOE=180°,∴∠AOE+∠COE=180°,∴与∠AOE 互补的角是∠BOE 、∠COE ;故答案为∠BOE 、∠COE ;(2)∵OD 、OE 分别平分∠AOC 、∠BOC ,∴∠COD=∠AOD=30°,∠COE=∠BOE=∠BOC,∴∠AOC=2×30°=60°,∴∠BOC=180°﹣60°=120°,∴∠CO E=∠BOC=60°,∴∠DOE=∠COD+∠COE=90°;(3)当∠AOD=α°时,∠DOE=90°.29、如图,已知直线AB与CD交于点O,OE平分∠BOD,OF平分∠AOB.(1)若∠BOE=40°,求∠AOF与∠COF的度数;(2)若∠BOE=x(x<45°),请用含x的代数式表示∠COF的度数.解:(1)∵OE平分∠BOD,∴∠BOE=12∠BOD.∵∠BOE=40°,∴∠BOD=80°,∴∠BOC=100°.∵OF平分∠AOB,∴∠AOF=∠BOF=90°,∴∠COF=100°-90°=10°.(2)∠COF=180°-2x-90°=90°-2x.30、(1)画一画:在图①中,以P为顶点画∠P(∠P为锐角),使∠P的两边分别和∠1的两边平行;再在图②中,以P为顶点画∠P(∠P为钝角),使∠P的两边分别和∠1的两边平行.(2)量一量:∠1和∠P的度数,它们之间的数量关系是__________________.(3)猜一猜:如果一个角的两边分别与另一个角的两边平行,那么这两个角的数量关系是________(4)做一做:如果一个角的两边分别平行于另一个角的两边,且这个角为30°,求另外一个角的度数.解:(1)如图所示.(答案不唯一)(2)∠1=∠P 或∠1+∠P =180°(3)相等或互补(4)另一个角为30°或150°.31、如图,直线EF ,CD 相交于点O ,OA ⊥OB ,且CO 平分∠AOF ,若∠AOE =n °,求∠BOD 的度数.(用含n 的代数式表示)解法一:∵∠AOF +∠AOE =180°,∴∠AOF =180°-∠AOE =180°-n °.∵OC 平分∠AOF ,∴∠AOC =12∠AOF =90°-12n °.又∵OA ⊥OB ,∴∠AOB =90°,∴∠BOD =180°-∠AOB -∠AOC =180°-90°-(90°-12n °)=12n °. 解法二:作OH 平分∠AOE ,则OH ⊥OC.∵OA ⊥OB ,∴∠DOH =∠BOA =90°,∴∠BOD =∠AOH =12∠AOE =12n °.。

苏科版七年级上册数学第6章 平面图形的认识(一) 含答案

苏科版七年级上册数学第6章 平面图形的认识(一) 含答案

苏科版七年级上册数学第6章平面图形的认识(一)含答案一、单选题(共15题,共计45分)1、下列语句中:①一条直线有且只有一条垂线;②不相等的两个角一定不是对顶角;③两条不相交的直线叫做平行线;④若两个角的一对边在同一直线上,另一对边互相平行,则这两个角相等;⑤不在同一直线上的四个点可画6条直线;⑥如果两个角是邻补角,那么这两个角的平分线组成的图形是直角.其中错误的有()A.2个B.3个C.4个D.5个2、如图,a∥b,若∠1=50°,则∠2的度数为()A.50°B.120°C.130°D.140°3、体育课上,老师测量跳远成绩的依据是()A.两点确定一条直线B.垂线段最短C.两点之间,线段最短D.平行线间的距离相等4、已知线段AB及一点P,如果PA+PB=AB,那么正确的是()A.P为AB的中点B.P在线段AB上C.P在线段AB外D.P在线段MN上5、如图,点O在直线AB上,射线OC平分∠DOB,若∠DOC=35°,则∠AOD等于()A.35°B.70°C.110°D.145°6、下列说法正确的是()A.两条直线被第三条直线所截,内错角相等B.直线外一点到这条直线的垂线段,叫做点到直线的距离C.若a⊥b,b⊥c,则a⊥cD.不相等的角不是对顶角7、把弯曲的河道改直,能够缩短船舶航行的路程,这样做的道理是()A.垂线段最短B.两点确定一条直线C.两点之间,直线最短 D.两点之间,线段最短8、如图3,AD是△ABC的高,AD=BD,DE=DC,∠BAC=75°,则∠ABE的度数是()A.10°B.15°C.30°D.45°9、如图所示,从A地到达B地,最短的路线是()A.A→C→E→BB.A→F→E→BC.A→D→E→BD.A→C→G→E→B10、如图,四边形ABCD中,AD∥BC,∠ABC=90°,AB=3,AD=4,BC=3 ,动点P从A点出发,按A→B→C的方向在AB和BC上移动,记PA=x,点D到直线PA的距离为y,则y关于x的函数图象大致是()A. B. C. D.11、若α=29°45′,则α的余角等于()A.60°55′B.60°15′C.150°55′D.150°15′12、如图,点C,D是线段AB上的两点,点D是线段AC的中点.若AB=10cm,BC=4cm,则线段DB的长等于()A.2cmB.3cmC.6cmD.7cm13、下列说法错误的是()A.两点之间线段最短B.对顶角相等C.为了了解生产的一批炮弹的杀伤半径,适宜采用全面调查的方式D.“通常加热到100℃时,水沸腾”这个事情属于必然事件14、下列说法中,正确的有()A.两点之间,线段最短B.同一平面内不相交的两条线段平行C.连结两点的线段叫做两点的距离D.AB=BC,则点B是线段AC的中点15、下列说法:①有理数的绝对值一定是正数;②两点之间的所有连线中,线段最短;③相等的角是对顶角;④过一点有且仅有一条直线与已知直线垂直;⑤不相交的两条直线叫做平行线,其中正确的有()A.1个B.2个C.3个D.4个二、填空题(共10题,共计30分)16、已知AB⊥CD,垂足为O,EF经过点O,∠AOE=35°,则∠DOF等于________ 。

苏科版七年级数学上册期末复习专题练第6章 平面图形的认识(一) 【含答案】

苏科版七年级数学上册期末复习专题练第6章 平面图形的认识(一) 【含答案】

苏科版七年级数学上册期末复习专题练第6章 平面图形的认识(一)一、选择题1、下列结论:①两点确定一条直线;②直线AB 与直线BA 是同一条直线;③线段AB 与线段BA 是同一条线段;④射线OA 与射线AO 是同一条射线.其中正确的结论共有( )个.A .1B .2C .3D .42、根据下图,下列说法中不正确的是( ) A .图①中直线经过点B .图②中直线,相交于点l A a b AC .图③中点在线段上D .图④中射线与线段有公共点C AB CD AB 3、如图,是北偏东方向的一条射线,若射线 与射线垂直,则的方位角是()OA 30°OB OA OB A .北偏东 B .北偏西 C .西偏北 D .北偏西30°30°60︒60︒(3题) (7题) (8题)4、如图,C 是线段上一点,D 、E 分别是线段、的中点,若,,则的值为( AB AB AC 20AB =2CD =DE )A .6B .7C .8D .95、已知线段,点是直线上一点,,点是线段的中点,点是线段10cm AB =C AB 4cm BC =M AB N 的中点,则线段的长度是( )BC MN A . B . C .或 D .或3cm 5cm 3cm 7cm 5cm 7cm6、点分,时针与分针所夹的角为( )410A .B .C .D .55︒65︒70︒75︒7、如图,将一副三角板重叠放在一起,使直角顶点重合于点.若,则( )O 120AOC ∠=︒BOD ∠=A .30°B .40°C .50°D .60°8、如图,OD 平分∠AOB ,OC ⊥OD ,OE 平分∠AOC ,若∠BOE =15°,则∠AOD 的度数为( )A .18°B .20°C .22°D .30°9、如图,将长方形纸片ABCD 的∠C 沿着GF 折叠(点F 在BC 上,不与B ,C 重合),使点C 落在长方形内部点E 处,若∠BFE =3∠BFH ,∠BFH =20°,则∠GFH 的度数是( )A .85°B .90°C .95°D .100°(9题) (10题)10、如图所示,已知∠AOB=64°,OA 1平分∠AOB ,OA 2平分∠AOA 1,OA 3平分∠AOA 2,OA 4平分∠AOA 3,则∠AOA 4的大小为( )A .1°B .2°C .4°D .8°二、填空题11、下列生产和生活现象:①用两个钉子就可以把木条固定在墙上;②把弯曲的公路改直,就能缩短路程;③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线;④从地到地架设电线,A B 总是尽可能沿着线段架设.其中能用“两点之间,线段最短”来解释的现象有________.(填序号)AB 12、如图:点C 为线段AB 上的一点,M 、N 分别为AC 、BC 的中点,AB =40,则MN =_____.13、已知,如图,直线AB 、CD 交于点O ,OE ⊥AB 于O ,∠COE =50°,则∠BOD =______.(13题) (14题) (16题) (17题)14、如图,把一张长方形纸片沿AB 折叠后,若∠1=50°,则∠2的度数为______.15、已知线段,是的中点,点在直线上,且,则线段的长度是______6cm AB =O AB C AB 5cm CA =OC .cm 16、如图所示,90AOC ∠=︒,点B ,O ,D 在同一直线上,若126∠=︒,则2∠的度数为______.17、如图,一副三角板按图示放置,已知∠AOC =65°,则∠AOB =______°.18、看下面小明和小丽的对话:小明:“我今天12点10分到达图书馆时,你已经开始看书了,你是什么时间到的呢?小丽:“我11点30分从家出发,到达图书馆时,钟表的时针与分针的夹角恰好是11°.”回答问题:小丽从家到图书馆共用了 分钟.三、解答题19、如图,在网格中有和点D ,请用无刻度的直尺在网格中按下列要求画图.BAC ∠(1)过点D 面;(在图①中画)//DM AC (2)以点D 为顶点作,使与互余.(在图② 中只画一个)EDF ∠EDF ∠BAC ∠20、已知:如图,点在线段上,点是中点,.求线段长,C D AB D AB 1,123AC AB AB ==CD 21、如图,点O 在直线AB 上,OC . OD 是两条射线,OC ⊥OD ,射线OE 平分∠BOC .(1)若∠DOE =140°,求∠AOC 的度数.(2)若∠DOE =α,则∠AOC = .( 请用含α的代数式表示);22、已知:如图,,平分,且.2COB AOC ∠=∠OD AOB ∠19COD ∠=︒(1)_____;AOB ∠=AOC ∠(2)____;COD ∠=AOC ∠(3)求的度数.AOB ∠23、如图,B 是线段AD 上一动点,沿A→D→A 以2cm/s 的速度往返运动1次,C 是线段BD 的中点,,设点B 运动时间为t 秒().10cm AD =010t ≤≤(1)当时,①________cm ,②此时线段CD 的长度=_______cm ;2t =AB =(2)用含有t 的代数式表示运动过程中AB 的长;(3)在运动过程中,若AB 中点为E ,则EC 的长度是否变化?若不变,求出EC 的长;若变化,请说明理由.24、如图,直线AB 、CD 相交于点O ,AOD ∠为锐角,OE CD ⊥,OF 平分BOD ∠(1)图中与AOE ∠互余的角为__________;(2)若EOB DOB ∠=∠,求AOE ∠的度数;(3)图中与锐角AOE ∠互补角的个数随AOE ∠的度数变化而变化,直接写出与AOE ∠互补的角的个数及对应的AOE ∠的度数25、如图,直角三角板的直角顶点在直线上,,是三角板的两条直角边,平O AB OC OD OE 分.AOD ∠(1)若,求的度数;20COE ∠=︒BOD ∠(2)若,则 ;(用含的代数式表示)COE α∠=BOD ∠=2α︒α(3)当三角板绕点逆时针旋转到图2的位置时,其他条件不变,请直接写出与之间有O COE ∠BOD ∠怎样的数量关系.26、(问题情境)苏科版义务教育教科书数学七上第178页第13题有这样的一个问题:“如图1,OC是∠AOB内一条射线,OD、OE分别平分∠AOB、∠AOC.若∠AOC=30°,∠BOC=90°,求∠DOE的度数”,小明在做题中发现:解决这个问题时∠AOC的度数不知道也可以求出∠DOE的度数.也就是说这个题目可以简化为:如图1,OC是∠AOB内一条射线,OD、OE分别平分∠AOB、∠AOC.若∠BOC=90°,求∠DOE的度数.(1)请你先完成这个简化后的问题的解答;(变式探究)小明在完成以上问题解答后,作如下变式探究:(2)如图1,若∠BOC=m°,则∠DOE= °;(变式拓展)小明继续探究:(3)已知直线AM、BN相交于点O,若OC是∠AOB外一条射线,且不与OM、ON重合,OD、OE分别平分∠AOB、∠AOC,当∠BOC=m°时,求∠DOE的度数(自己在备用图中画出示意图求解).答案一、选择题1、下列结论:①两点确定一条直线;②直线AB与直线BA是同一条直线;③线段AB与线段BA是同一条线段;④射线OA与射线AO是同一条射线.其中正确的结论共有()个.A.1B.2C.3D.4C【分析】根据直线、线段和射线以及直线的公理进行判断即可.解:①两点确定一条直线,正确;②直线AB与直线BA是同一条直线,正确;③线段AB与线段BA是同一条线段,正确;④射线OA与射线AO不是同一条射线,错误;故选C.2、根据下图,下列说法中不正确的是()l A a b AA.图①中直线经过点B.图②中直线,相交于点C AB CD ABC.图③中点在线段上D.图④中射线与线段有公共点C【分析】根据点和直线的位置关系、射线和线段的延伸性、直线与直线相交的表示方法等知识点对每一项进行分析,即可得出答案.【详解】解:A、图①中直线l经过点A,正确;B、图②中直线a、b相交于点A,正确;C、图③中点C在线段AB外,故本选项错误;D、图④中射线CD与线段AB有公共点,正确;故选:C.OA30°OB OA OB3、如图,是北偏东方向的一条射线,若射线与射线垂直,则的方位角是()A .北偏东B .北偏西C .西偏北D .北偏西30°30°60︒60︒D 【分析】根据垂直,可得∠AOB 的度数,根据角的和差,可得答案.【详解】解:∵射线OB 与射线OA 垂直,∴∠AOB =90°,∴∠1=90°-30°=60°,故射线OB 的方向角是北偏西60°,故选:D .4、如图,C 是线段上一点,D 、E 分别是线段、的中点,若,,则的值为( AB AB AC 20AB =2CD =DE )A .6B .7C .8D .9A 【分析】由D 是线段AB 的中点可计算出AD 的长度,结合CD =2可求得AC =8,再由E 是线段AC 的中点可求得CE 的长度,最后根据DE =CD +CE 即可得出答案.【详解】解:∵D 是线段AB 的中点,AB =20,∴AD =AB =10,12又∵CD =2,∴AC =AD -CD =10-2=8,∵E 是线段AC 的中点,AC =8,∴CE =AC =4,∴DE =CD +CE =2+4=6.故选:A .125、已知线段,点是直线上一点,,点是线段的中点,点是线段10cm AB =C AB 4cm BC =M AB N 的中点,则线段的长度是( )BC MN A . B . C .或D .或3cm 5cm 3cm 7cm 5cm 7cmC【分析】根据题意知,点在点左侧时,;点在点右侧时,,因为C B MN BM BN =-C B +MN BM BN =点是线段的中点,点是线段的中点,分别算出长度,代入计算即可.M AB N BC ,BM BN 【详解】解:因为点是直线上一点,所以需要分类讨论:C AB (1)点在点左侧时,作图如下:C B∵,,∴,,10cm AB =4cm BC =152BM AB cm ==122BN BC cm ==又∵,∴.MN BM BN =-=523MN cm -=(2)当点在点右侧时,作图如下:C B由(1)知,,,152BM AB cm ==122BN BC cm ==∵,∴,+MN BM BN =+=5+2=7cm MN BM BN =综上所述,的长度是或.故选:CMN 3cm 7cm 6、点分,时针与分针所夹的角为( )410A .B .C .D .55︒65︒70︒75︒B【分析】因为钟表上的刻度是把一个圆平均分成了12等份,每一份是30°,找出4点10分时针和分针分别转动角度即可求出.【详解】解:点10分时,分针在指在2时位置处,时针指在4时过10分钟处,4 由于一大格是,10分钟转过的角度为,30°1030560⨯︒=︒因此4点10分时,分针与时针的夹角是.故选:.230565⨯︒+︒=︒B7、如图,将一副三角板重叠放在一起,使直角顶点重合于点.若,则( )O 120AOC ∠=︒BOD ∠=A .30°B .40°C .50°D .60°D 【分析】根据角的和差关系求解即可.【详解】解:∵∠AOC =120°,∴∠BOC =∠AOC -∠AOB =30°,∴∠BOD =∠COD -∠BOC =60°.故选:D .8、如图,OD 平分∠AOB ,OC ⊥OD ,OE 平分∠AOC ,若∠BOE =15°,则∠AOD 的度数为( )A .18°B .20°C .22°D .30°B 【分析】根据垂线的性质、角平分线的定义得出含∠AOD 的等式求解即可.【详解】解:∵OC ⊥OD ,∴∠COD =90°,∴∠AOC =∠COD +∠AOD =90°+∠AOD ,∵OD 平分∠AOB ,OE平分∠AOC ,∠BOE =15°,∴∠AOE =∠AOC =∠BOE +∠AOB =15°+2∠AOD ,12∴15°+2∠AOD =(90°+∠AOD ),∴∠AOD =20°,故选:B .129、如图,将长方形纸片ABCD 的∠C 沿着GF 折叠(点F 在BC 上,不与B ,C 重合),使点C 落在长方形内部点E 处,若∠BFE =3∠BFH ,∠BFH =20°,则∠GFH 的度数是( )A .85°B .90°C .95°D .100°D 【分析】根据折叠求出∠CFG =∠EFG =∠CFE ,根据∠BFE =3∠BFH ,∠BFH =20°,即可求出12∠GFH =∠GFE +∠HFE 的度数.【详解】解:∵将长方形纸片ABCD 的角C 沿着GF 折叠(点F 在BC 上,不与B ,使点C 落在长方形内部点E 处,∴∠CFG =∠EFG =∠CFE ,12∵∠BFE =3∠BFH ,∠BFH =20°,∴∠BFE =60°,∴∠CFE =120°,∴∠GFE =60°,∵∠EFH =∠EFB ﹣∠BFH ,∴∠EFH ==40°,∴∠GFH =∠GFE +∠EFH =60°+40°=100°.故选:D .10、如图所示,已知∠AOB=64°,OA 1平分∠AOB ,OA 2平分∠AOA 1,OA 3平分∠AOA 2,OA 4平分∠AOA 3,则∠AOA 4的大小为( )A .1°B .2°C .4°D .8°C【分析】根据角平分线定义求出∠AOA 1=∠AOB=32°,同理即可求出答案.12∵∠AOB=64°,OA 1平分∠AOB ,∴∠AOA 1=∠AOB=32°,12∵OA 2平分∠AOA 1,∴∠AOA 2=∠AOA 1=16°,12同理∠AOA 3=8°,∠AOA 4=4°,故选:C .二、填空题11、下列生产和生活现象:①用两个钉子就可以把木条固定在墙上;②把弯曲的公路改直,就能缩短路程;③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线;④从地到地架设电线,A B 总是尽可能沿着线段架设.其中能用“两点之间,线段最短”来解释的现象有________.(填序号)AB ②④【分析】根据两点之间,线段最短的性质,对各个选项逐个分析,即可得到答案.【详解】①用两个钉子就可以把木条固定在墙上,可用两点可确定一条直线解释;②把弯曲的公路改直,就能缩短路程,可用两点之间,线段最短解释;③植树时,只要确定两棵树的位置,就能确定同一行树所在的直线,可用两点可确定一条直线解释;④从地到地架设电线,总是尽可能沿着线段架设,可用两点之间,线段最短解释;故②④.A B AB 12、如图:点C 为线段AB 上的一点,M 、N 分别为AC 、BC 的中点,AB=40,则MN =_____.20【分析】由题意易得,进而可得,进而问题可11,22MC AC CN CB ==111222MN MC CN AC CB AB =+=+=求解.【详解】解:∵M 、N 分别为AC 、BC 的中点,∴,11,22MC AC CN CB ==∵AB =40,∴;11120222MN MC CN AC CB AB =+=+==故答案为20.13、已知,如图,直线AB 、CD 交于点O ,OE ⊥AB 于O ,∠COE =50°,则∠BOD =______.40°【分析】运用对顶角的定义如果一个角的两边分别是另一个角两边的反向延长线,且这两个角有公共顶点,那么这两个角是对顶角、邻补角的定义:两个角有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,叫做邻补角,求解即可.【详解】解:∵OE ⊥AB ,∴∠AOE =90°,∵∠COE =50°,∴∠AOC =90°﹣∠COE =90°﹣50°=40°,∴∠BOD =∠AOC =40°.故40°.14、如图,把一张长方形纸片沿AB 折叠后,若∠1=50°,则∠2的度数为______.65°【详解】∵把一张长方形纸片沿AB 折叠,∴∠2=∠3,∵∠1+∠2+∠3=180°,∠1=50°,∴∠2=(180°-∠1)2=65°.÷15、已知线段,是的中点,点在直线上,且,则线段的长度是______6cm AB =O AB C AB 5cm CA =OC .cm 2或8【分析】根据点C 在直线AB 上,可以从两种情况进行分析计算:当点C 在线段AB 上时和当点C 不在线段AB 上时,即可计算得到答案.【详解】解:当点C 在A 、B 之间时,如图1所示∵线段AB =6cm ,O 是AB 的中点,∴OA =AB =×6cm =3c m ,1212∴OC =CA ﹣OA =5cm ﹣3cm =2cm .当点C 在点A 的左边时,如图2所示,∵线段AB =6cm ,O 是AB 的中点,CA =5cm ,∴OA =AB =×6c m =3cm ,1212∴OC =CA +OA =5cm +3c m =8c m 故答案为2或8.16、如图所示,90AOC ∠=︒,点B ,O ,D 在同一直线上,若126∠=︒,则2∠的度数为______.116°【分析】由图示可得,∠1与∠BOC互余,结合已知可求∠BOC,又因为∠2与∠COB互补,即可求出∠2的度数.∠=︒,∠AOC=90°,∴∠BOC=64°,【详解】解:∵126∵∠2+∠BOC=180°,∴∠2=116°.故116°.17、如图,一副三角板按图示放置,已知∠AOC=65°,则∠AOB=______°.155【分析】根据图形中角之间的关系即可求得∠AOB的度数.【详解】解:∵∠BOC=90°,∴∠AOB=∠AOC+∠BOC=65°+90°=155°故155.18、看下面小明和小丽的对话:小明:“我今天12点10分到达图书馆时,你已经开始看书了,你是什么时间到的呢?小丽:“我11点30分从家出发,到达图书馆时,钟表的时针与分针的夹角恰好是11°.”回答问题:小丽从家到图书馆共用了 分钟.【思路点拨】11点30分时,时针与分针的夹角为165°,分针每分钟转过6°,而时针每分钟转过0.5°,此问题可以转化为追及问题,当分针从与时针的夹角为165°减少到还有11°时所用的时间,以及超过时针11°时所用的时间,设未知数,列方程解答即可,同时注意分钟在时针前11°和在时针后11°两种情况.【解答过程】解:11点30分时,时针与分针的夹角为165°,由钟表时针、分针的旋转规律得,分针每分钟转过6°,而时针每分钟转过0.5°,设小丽从家出发用x 分钟到达图书馆,由题意得:(6°﹣0.5°)x =165°﹣11°或(6°﹣0.5°)x =165°+11°,解得:x =28或x =32,经检验,28分,32分钟均符合题意,故28或32.三、解答题19、如图,在网格中有和点D ,请用无刻度的直尺在网格中按下列要求画图.BAC ∠(1)过点D 面;(在图①中画)//DM AC (2)以点D 为顶点作,使与互余.(在图② 中只画一个)EDF ∠EDF ∠BAC ∠(1)画图见解析,(2)画图见解析【分析】(1)连接点D 与点D 向左平移一个单位,向下平移三个单位的点的直线即可;(2)过点D ,连接以D 为顶点边长为2的正方形对角线,和以D 为顶点边长为1和3的长方形对角线,两条对角线组成的角就是所求的角.【详解】解:(1)如图所示,DM 就是所求直线;(2)如图所示,就是所求角.EDF ∠20、已知:如图,点在线段上,点是中点,.求线段长,C D AB D AB 1,123AC AB AB ==CD 2【分析】根据中点的定义以及题意,分别求出线段AD 与线段AC 的长度,即可得出结论.【详解】∵D 为线段AB 的中点,∴AD =AB =×12=6,1212∵AC =AB ,13∴AC =×12=4,13∴CD =AD -AC =6-4=2.21、如图,点O 在直线AB 上,OC . OD 是两条射线,OC ⊥OD ,射线OE 平分∠BOC .(1)若∠DOE =140°,求∠AOC 的度数.(2)若∠DOE =α,则∠AOC = .( 请用含α的代数式表示);(1)80°;(2)360°-2α【分析】(1)根据OC ⊥OD ,∠DOE =140°可求出∠COE ,再根据射线OE 平分∠BOC .求出BOE ,最后根据平角的意义求出答案;(2)利用(1)的方法,用代数式表示角度即可.【详解】解:(1)∵OC ⊥OD ,∠DOE =140°,∴∠COE =∠DOE -∠COD =140°-90°=50°,∵射线OE 平分∠BOC .∴∠COE =∠BOE =50°,∴∠AOC =180°-∠COE -∠BOE =180°-50°-50°=80°;(2)∵OC ⊥OD ,∠DOE =α,∴∠COE =∠DOE -∠COD =α-90°,∵射线OE 平分∠BOC .∴∠COE =∠BOE =α-90°,∴∠AOC =180°-∠COE -∠BOE =180°-(α-90°)-(α-90°)=360°-2α,故360°-2α.22、已知:如图,,平分,且.2COB AOC ∠=∠OD AOB ∠19COD ∠=︒(1)_____;AOB ∠=AOC ∠(2)____;COD ∠=AOC ∠(3)求的度数.AOB ∠(1)3;(2);(3)12114AOB ∠=︒【分析】(1)根据∠COB=2∠AOC ,∠COB+∠AOC=∠AOB 可得∠AOB=3∠AOC ,(2)由OD 平分 ∠AOB ,∠COD=∠AOD-∠AOC 可得∠COD 与∠AOC 的关系.(3)由OD 平分∠AOB 得到∠AOD=∠AOB 又由∠AOD=∠AOC+∠COD ,可得∠COD 与∠AOB12的关系,从而求出∠AOB 的度数.【详解】解:(1)∵∠COB=2∠AOC , ∠COB+∠AOC=∠AOB∴∠AOB=∠AOC+2∠AOC=3∠AOC (2)∵∠COD=∠AOD-∠AOC= ∠AOB- ∠AOB= ∠AOB121316又∵∠AOB=3∠AOC ∴∠COD=∠AOB=×3∠AOC=∠AOC161612(3)∵OD 平分∠AOB ∴∠AOD=∠AOB 12又∵∠AOD=∠AOC+∠COD ∴∠AOB=∠AOB+19°1213∠AOB=19° ∠AOB=114° 故(1) 3;(2) ;(3) ∠AOB=114°161223、如图,B 是线段AD 上一动点,沿A→D→A 以2cm/s 的速度往返运动1次,C 是线段BD 的中点,,设点B 运动时间为t 秒().10cm AD =010t ≤≤(1)当时,①________cm ,②此时线段CD 的长度=_______cm ;2t =AB =(2)用含有t 的代数式表示运动过程中AB 的长;(3)在运动过程中,若AB 中点为E ,则EC 的长度是否变化?若不变,求出EC 的长;若变化,请说明理由.(1)①4;②3;(2),;(3)不变,.()2cm 05AB t t =≤≤()()202cm 510AB t t =-<≤5EC =【分析】(1)①根据即可得出结论;②先求出BD 的长,再根据C 是线段BD 的中点即可得到CD 2AB t =的长;(2)分类讨论即可;(3)直接根据中点定义即可得到结论;【详解】(1)①当时,(cm ),2t =224AB =⨯=②此时,(cm ),∵C 是线段BD 的中点,则;1046BD =-=3CD cm =(2)①∵B 是线段AD 上一动点,沿A→D→A 以2cm/s 的速度往返运动,∴当时,,∴;05t ≤≤2AB t =()2cm 05AB t t =≤≤②当时,,∴;510t <≤()10210202A B t t =--=-()()202cm 510AB t t =-<≤(3)不变;因为AB 的中点为E ,C 是BD 的中点,所以,,所以,.()1122EC AB BD AD =+=11052EC =⨯=24、如图,直线AB 、CD 相交于点O ,AOD ∠为锐角,OE CD ⊥,OF 平分BOD ∠(1)图中与AOE ∠互余的角为__________;(2)若EOB DOB ∠=∠,求AOE ∠的度数;(3)图中与锐角AOE ∠互补角的个数随AOE ∠的度数变化而变化,直接写出与AOE ∠互补的角的个数及对应的AOE ∠的度数(1)AOD ∠、BOC ∠;(2)45︒;(3)见解析.【分析】(1)根据余角的定义可解答;(2)根据补角的定义列方程可解答;(3)设出∠AOE 的度数,依次表达图中的补角,可解.【详解】(1)由题意可得于∠AOE 互余的角为:AOD ∠、BOC∠(2)设AOD x ∠=︒.∵AOD x ∠=︒,∴180180BOD AOD x ∠=︒-∠=︒-︒,BOC AOD x ∠=∠=︒.∵OE CD ⊥,∴90EOC EOD ∠=∠=︒.又∵EOB DOB ∠=∠,∴90180x x ︒+︒=︒-︒,即45x =.∴904545AOE EOD AOD ∠=∠-∠=︒-︒=︒.(3)设∠AOE =α,且0°<α<90°由(1)可知,∠AOD =∠BOC =90°-α,∠BOE =180°-α,∴∠BOD =180°-∠AOD =180°-(90°-α)=90°+α,∵OF 平分∠BOD ,∴∠BOF =∠DOF =45°+2α,∴∠AOF =∠AOD +∠DOF =90°-α+45°+2α=135°-2α,∠EOF =∠AOF +∠AOE =135°+2α,∠COF =∠BOC +∠BOF =90°-α+45°+2α=135°-2α=∠AOF ,①当∠AOF +∠AOE =180°时,即135°-2α+α=180°,解得α=90°,不符合题意;②当∠EOF +∠AOE =180°时,即135°+2α+α=180°,解得α=30°,符合题意;③当∠BOD +∠AOE =180°时,即90°+α+α=180°,解得α=45°,符合题意;综上可知,当锐角30AOE ∠=︒时,互补角有2个,为EOB ∠、EOF ∠.当锐角45AOE ∠=︒时,互补角有3个,为EOB ∠、AOC ∠、DOB ∠.当锐角AOE ∠不等于45︒和30°时,互补角有1个,为EOB ∠.25、如图,直角三角板的直角顶点在直线上,,是三角板的两条直角边,平O AB OC OD OE 分.AOD ∠(1)若,求的度数;20COE ∠=︒BOD ∠(2)若,则 ;(用含的代数式表示)COE α∠=BOD ∠=2α︒α(3)当三角板绕点逆时针旋转到图2的位置时,其他条件不变,请直接写出与之间有O COE ∠BOD ∠怎样的数量关系.【分析】(1)先根据直角计算的度数,再根据角平分线的定义计算的度数,最后利用平角DOE ∠AOD ∠的定义可得结论;(2)类似(1)的方法解答即可;(3)设,则,根据角平分线的定义表示,再利用互余的关系求BOD β∠=180AOD β∠=︒-BOE ∠的度数,可得结论.COE ∠(1)若,20COE ∠=︒,,90COD ∠=︒ 902070EOD ∴∠=︒-︒=︒平分,,OE AOD ∠2140AOD EOD ∴∠=∠=︒;18014040BOD ∴∠=︒-︒=︒(2)若,,COE α∠=90EOD α∴∠=-平分,,OE AOD ∠22(90)1802AOD EOD αα∴∠=∠=-=-;180(1802)2BOD αα∴∠=︒--=故;2α(3),理由是:2BOD COE ∠=∠设,则,BOD β∠=180AOD β∠=︒-平分,,OE AOD ∠118090222EOD AOD ββ︒-∴∠=∠==︒-,,即.90COD ∠=︒ 90(90)22COE ββ∴∠=︒-︒-=2BOD COE ∠=∠26、(问题情境)苏科版义务教育教科书数学七上第178页第13题有这样的一个问题:“如图1,OC 是∠AOB 内一条射线,OD 、OE 分别平分∠AOB 、∠AOC .若∠AOC =30°,∠BOC =90°,求∠DOE 的度数”,小明在做题中发现:解决这个问题时∠AOC 的度数不知道也可以求出∠DOE 的度数.也就是说这个题目可以简化为:如图1,OC 是∠AOB 内一条射线,OD 、OE 分别平分∠AOB 、∠AOC .若∠BOC =90°,求∠DOE 的度数.(1)请你先完成这个简化后的问题的解答;(变式探究)小明在完成以上问题解答后,作如下变式探究:(2)如图1,若∠BOC =m °,则∠DOE = °;(变式拓展)小明继续探究:(3)已知直线AM 、BN 相交于点O ,若OC 是∠AOB 外一条射线,且不与OM 、ON 重合,OD 、OE 分别平分∠AOB 、∠AOC ,当∠BOC =m °时,求∠DOE 的度数(自己在备用图中画出示意图求解).(1)45°;(2);(3)2m °2m °【分析】(1)首先假设∠AOC =a °,然后用a 表示∠AOB ,再根据OD ,OE 两条角平分线,推出∠DOE 即可;(2)首先假设∠AOC =a °,然后用a 表示∠AOB ,再根据OD ,OE 两条角平分线,用m °表示∠DOE 即可;(3)分三种情况讨论,第一种:OC 在AM 上,第二种:OC 在AM 下侧,∠MON 之间,第三种:OC 在∠AON 之间,即可得到∠DOE ,【详解】解:(1)设∠AOC =a °,则∠AOB =∠AOC +∠BOC =a °+90°,∵OD 平分∠AOB ,OE 平分∠AOC ,∴∠DOE =∠AOD ﹣∠AOE =∠AOB ﹣∠AOC =(a °+90°)﹣a °==45°;121212121902⨯︒(2)设∠AOC =a °,则∠AOB =∠AOC +∠BOC =a °+m °,∵OD 平分∠AOB ,OE 平分∠AOC ,∴∠DOE =∠AOD ﹣∠AOE =∠AOB ﹣∠AOC =(a °+m °)﹣a °=,故;121212122m °2m °(3)①当OC 在AM 上,即OC 在∠BOM 之间,设∠AOC =a °,则∠AOB =∠AOC +∠BOC =a °+m °,∵OD 平分∠AOB ,OE 平分∠AOC ,∴∠DOE =∠AOD ﹣∠AOE =∠AOB ﹣∠AOC =(a °+m °)﹣a °=;121212122m °②当OC 在直线AM 下方,且OC 在∠MON 之间时,∠BOC =∠AOB +∠AOC =m °,∠DOE =∠AOE ﹣∠AOD =∠AOC +∠AOB =∠BOC =;1212122m °③当OC 在直线AM 下方,且OC 在∠AON 之间时,由②得,∠BOC =m °,∠DOE =∠AOC +∠AOB =12∠BOC =2m °;综上所述,∠DOE =2m °.1212。

苏科版七年级数学上册第6章 平面图形的认识(一) 单元综合练习题【含答案】

苏科版七年级数学上册第6章  平面图形的认识(一) 单元综合练习题【含答案】

苏科版七年级数学上册第6章平面图形的认识(一)单元综合练习题一、选择题1、如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是()A.两点确定一条直线B.两点之间线段最短C.垂线段最短D.连接两点的线段叫做两点的距离2、如图所示,能用∠α,∠AOB,∠O表示同一个角的是()A.B.C.D.3、下图中,1∠和2∠是对顶角的是()A.B.C.D.4、下列图形中线段AD的长表示点A到直线BC距离的是()A.B.C.D.5、一个角的补角比这个角的余角大().A.70°B.80°C.90°D.100°6、已知α,β是两个钝角,有四位同学计算16(α+β)得出四种不同的答案分别是24°,48°,76°,86°,其中只有一个是正确的,则正确的答案是()A.86°B.76°C.48°D.24°7、如图,线段21AD cm=,点B在线段AD上,C为BD的中点,且13AB CD=,则BC的长度()A.8cm B.9cm C.6cm D.7cm 8、如图,C是AB的中点,D是BC的中点,则下列等式中正确的是()①32DB AD AB=-;②13CD AB=;③2DB AD AB=-;④CD AD CB=-.A.①②B.③④C.①④D.②③9、如图,直线AB,CD相交于点O,OE⊥AB于O,OF平分∠DOE,若∠AOC=32°,则∠AOF的度数为()A.119°B.121°C.122°D.124°10、下列说法正确的个数有()①射线AB与射线BA表示同一条射线.②若∠1+∠2=180°,∠1+∠3=180°,则∠2=∠3.③一条射线把一个角分成两个角,这条射线叫这个角的平分线.④连结两点的线段叫做两点之间的距离.⑤40°50ˊ=40.5°.⑥互余且相等的两个角都是45°.A.1个B.2个C.3个D.4个二、填空题11、用度、分、秒表示:37.68︒=______.12、如图,A 是线段BC 外一点,连接AB ,AC ,过点A 作线段BC 的垂线AH ,垂足为H .在AB 、AC 、AH 这三条线段中,AH 是最短的线段,依据是_______.(12题) (14题)13、某校下午放学的时间是4:30,此时时针与分针夹角的度数为______.14、如图,直线AB ,CD 相交于点O ,135∠=︒,275∠=︒,则EOB ∠的度数为__________︒.15、如图,线段4AB cm =,延长线段AB 到C ,使1BC cm =,再反向延长AB 到D ,使3AD cm =,E 是AD中点,F 是CD 的中点.则EF 的长度为 cm .16、已知线段6cm AB =,若M 是AB 的三等分点,N 是AM 的中点,则线段MN 的长度为________. 17、如图,直线AB 与直线CD 相交于点O ,:1:2BOC BOD ∠∠=,射线OE CD ⊥,则∠BOE 度数为___(17题) (18题)18、如图,在三角形ABC 中,90ABC ∠=︒,BD AC ⊥,垂足为点D ,5AB =,12BC =,13AC =,下列结论正确的是 .(写出所有正确结论的序号)①90ADB ∠=︒;②A DBC ∠=∠;③点C 到直线BD 的距离为线段CB 的长度;④点B 到直线AC 的距离为6013. 三、解答题19、如图,在8×8的正方形网格中,每个小正方形的顶点称为格点,点A 、B 、C 均在格点上,按下述要求画图并标注相关字母.(1)画线段AB ,画射线BC ,画直线AC ;(2)过点B 画线段BD ⊥AC ,垂足为点D ;(3)取线段AB 的中点E ,过点E 画BD 的平行线,交AC 于点F .20、如图,C 为线段AD 上的一点,B 为线段CD 的中点,AD =12cm ,BD =3cm . (1)图中共有 条线段;(2)求线段AC 的长;(3)若点E 在线段AD 上,且BE =2cm ,求AE 的长.21、如图,O 是直线AB 上一点,OC 为任一条射线,OD 平分∠BOC ,OE 平分∠AOC .(1)若∠BOC =70°,求∠COD 和∠EOC 的度数;(2)写出∠COD 与∠EOC 具有的数量关系并说明理由.22、将一副三角板叠放在一起,使直角顶点重合于点O.(1)如图1,若∠AOD=35°,求∠BOC的度数.(2)若三角板AOB保持不动,将三角板COD的边OD与边OA重合,然后将其绕点O旋转.试猜想在旋转过程中,∠AOC与∠BOD有何数量关系?请说明理由.23、如图,已知C、D两点将线段AB分成2:3:4三段,点E是BD的中点,点F是线段CD上一点,且=,求AB的长.EF cmCF DF2=,1224、如图,直线AB、CD相交于点O,OE平分BOD∠=︒.BOF∠,OF CD⊥,垂足为O,若38(1)求AOC∠的度数;(2)过点O作射线OG,使GOE BOF∠的度数.∠=∠,求FOG25、如图,点C在线段AB上,图中共有三条线段AB、AC和BC,若其中有一条线段的长度是另外一条线段长度的2倍,则称点C是线段AB的“巧点”.(1)线段的中点这条线段的“巧点”;(填“是“或“不是”)(2)若AB=24cm,点C是线段AB的巧点,求AC的长.26、已知O为直线AB上一点,将一直角三角板OMN的直角顶点放在点O处.射线OC平分∠MOB.(1)如图1,若∠AOM=30°,求∠CON的度数;(2)在图1中,若∠AOM=α,直接写出∠CON的度数(用含α的代数式表示);(3)将图1中的直角三角板OMN绕顶点O顺时针旋转至图2的位置,当∠AOC=3∠BON时,求∠AOM 的度数.答案一、选择题1、如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是()A.两点确定一条直线B.两点之间线段最短C.垂线段最短D.连接两点的线段叫做两点的距离A【分析】根据公理“两点确定一条直线”来解答即可.解:经过刨平的木板上的两个点,能弹出一条笔直的墨线,此操作的依据是两点确定一条直线.故选:A.2、如图所示,能用∠α,∠AOB,∠O表示同一个角的是()A.B.C.D.【分析】角可以用一个大写字母表示,也可以用三个大写字母表示.角还可以用一个希腊字母表示,或用阿拉伯数字表示.【详解】解:能用∠α,∠AOB,∠O三种方法表示同一个角的图形是选项D中的图,选项B,C,D中的图都不能用∠α,∠AOB,∠O三种方法表示同一个角的图形,故选:D.3、下图中,1∠和2∠是对顶角的是()A.B.C.D.C【分析】根据对顶角的定义解答即可.【详解】解:A. 1∠和2∠的某一边不是互为反向延长线,不是对顶角,故不符合题意;B. 1∠和2∠没有公共顶点,不是对顶角,故不符合题意;C. 1∠和2∠是对顶角,符合题意;D. 1∠和2∠的某一边不是互为反向延长线,不是对顶角,故不符合题意.故选C.4、下列图形中线段AD的长表示点A到直线BC距离的是()A.B.C. D.A【分析】根据点到直线的距离,垂足在直线上,据此分析即可【详解】A. AD表示的是点A到直线BC距离,故该选项正确,符合题意;B. AD表示的是点D到直线AB距离,故该选项不正确,不符合题意;C. AD表示的是点D到直线AB距离,故该选项不正确,不符合题意;D. AD不能表示点到直线距离,故该选项不正确,不符合题意;故选A5、一个角的补角比这个角的余角大().A.70°B.80°C.90°D.100°C【分析】根据互补即两角的和为180°,互余的两角和为90°,设这个角为x ,即可求出答案.【详解】解:设这个角为x ,则这个角的补角为180°-x ,这个角的补角为90°-x ,根据题意得:180°-x -(90°-x )=90°,故选:C .6、已知α,β是两个钝角,有四位同学计算16(α+β)得出四种不同的答案分别是24°,48°,76°,86°,其中只有一个是正确的,则正确的答案是( )A .86°B .76°C .48°D .24°C 【分析】由α,β是两个钝角可得180°<α+β<360°,进一步即可求得16(α+β)的范围,从而可得答案. 【详解】解:因为α,β是两个钝角,所以90°<α<180°,90°<β<180°,所以180°<α+β<360°,所以30°<16(α+β)<60°, 在上述四个选项中,只有选项C 中48°在上述范围中,故选:C .7、如图,线段21AD cm =,点B 在线段AD 上,C 为BD 的中点,且13AB CD =,则BC 的长度( )A .8cmB .9cmC .6cmD .7cm【分析】设AB x =cm ,则3CD x =cm ,根据线段的中点可得3BC CD x ==cm ,再根据21AD cm =可得x ,进而可得答案.13AB CD =, ∴设AB x =cm ,则3CD x =cm ,C 为BD 的中点,3BC CD x ∴==cm ,3321x x x ∴++=,解得3x =,39BC x ∴==.故选:B .8、如图,C 是AB 的中点,D 是BC 的中点,则下列等式中正确的是( )①32DB AD AB =-;②13CD AB =;③2DB AD AB =-;④CD AD CB =-.A .①②B .③④C .①④D .②③【分析】根据线段中点的性质,可得1124CD BD BC AB ===,再根据线段的和差,可得答案.C 是AB 的中点,D 是BC 的中点,1124CD BD BC AB ∴===,288AB BD CD ∴==,44AB BD CD ==,39AD BD =,26AD BD =,3298AD AB BD BD BD ∴-=-=,故①正确,②不正确;642DB BD BD BD ∴≠-=,③不正确;32AD CB CD CD CD -=-=,④正确.正确的有:①④.故选:C .9、如图,直线AB ,CD 相交于点O ,OE ⊥AB 于O ,OF 平分∠DOE ,若∠AOC =32°,则∠AOF 的度数为( )A .119°B .121°C .122°D .124°A 【分析】根据OE ⊥AB 于O ,即可得出∠BOE =∠AOE =90°,进而求出∠DOE =58°,再利用OF 平分∠DOE ,即可求出∠EOF 的度数,再由∠AOF =∠AOE +∠EOF 即可求出∠AOF 的度数.【详解】解:∵OE ⊥AB 于O ,∴∠BOE =∠AOE =90°,∵∠AOC =32°,∴∠AOC =∠BOD =32°,∴∠DOE =∠BOE ﹣∠BOD =90°﹣32°=58°,∵OF 平分∠DOE ,∴∠EOF 12=∠DOE 1582=⨯︒=29°,∠AOF =∠AOE +∠EOF =90°+29°=119°.故选:A .10、下列说法正确的个数有( )①射线AB 与射线BA 表示同一条射线. ②若∠1+∠2=180°,∠1+∠3=180°,则∠2=∠3. ③一条射线把一个角分成两个角,这条射线叫这个角的平分线.④连结两点的线段叫做两点之间的距离.⑤40°50ˊ=40.5°.⑥互余且相等的两个角都是45°.A .1个B .2个C .3个D .4个【分析】根据射线的定义,同角的补角相等,角平分线的定义,两点之间的距离的定义,度分秒的换算以及余角的定义对各小题分析判断即可得解.解:①射线AB 与射线BA 不表示同一条射线,因为它们的端点不同,故本小题错误;②若∠1+∠2=180°,∠1+∠3=180°,则∠2=∠3,正确;③应为一条射线把一个角分成两个角相等的角,这条射线叫这个角的平分线,故本小题错误;④应为连结两点的线段的长度叫做两点之间的距离,故本小题错误;⑤40°50′≈40.83°,故本小题错误;⑥互余且相等的两个角都是45°,正确.综上所述,说法正确的有②⑥共2个.故选:B .二、填空题11、用度、分、秒表示:37.68︒=______.374048︒'"【分析】进行度、分、秒的转化运算,注意以60为进制.1=60'︒,1'=60''.【详解】解:'''''''37.6837+0.686037+40.837400.860374048374048'''︒=︒⨯=︒=︒++⨯=︒'=︒++故答案为374048︒'"12、如图,A 是线段BC 外一点,连接AB ,AC ,过点A 作线段BC 的垂线AH ,垂足为H .在AB 、AC 、AH 这三条线段中,AH 是最短的线段,依据是_______.垂线段最短【分析】根据垂线段最短的定义求解即可.【详解】解:∵点到直线的距离,垂线段最短,∴依据是垂线段最短,故垂线段最短.13、某校下午放学的时间是4:30,此时时针与分针夹角的度数为______.45°【分析】根据钟面平均分成12份,可得每份是30°,4点30分时,时针分针相差1.5格,根据时针与分针相距的份数乘以每份的度数,可得答案.【详解】解:4:30时,时针与分针的夹角的度数是30°×1.5=45°,故45°.14、如图,直线AB ,CD 相交于点O ,135∠=︒,275∠=︒,则EOB ∠的度数为__________︒.110【分析】先根据对顶角相等求出∠DOB ,进而结合275∠=︒即可求出∠EOB .【详解】解:∵∠1=35°,∴∠DOB =∠1=35°,又∵∠2=75°,∴∠EOB =∠2+∠DOB =110°.故110.15、如图,线段4AB cm =,延长线段AB 到C ,使1BC cm =,再反向延长AB 到D ,使3AD cm =,E 是AD中点,F 是CD 的中点.则EF 的长度为 cm .【分析】结合图形和题意,利用线段的和差知CD AD AB BC =++,即可求CD 的长度;再利用中点的定义,求得DF 和DE 的长度,又EF DF DE =-,即可求得EF 的长度.3418CD AD AB BC cm =++=++=;E 是AD 中点,F 是CD 的中点,118422DF CD cm ∴==⨯=,113 1.522DE AD cm ==⨯=. 4 1.5 2.5EF DF DE cm ∴=-=-=,故2.5.16、已知线段6cm AB =,若M 是AB 的三等分点,N 是AM 的中点,则线段MN 的长度为________. 1cm 或2cm【分析】分两种情况考虑点M 是AB 的三等分点,求出AM 的长,由中点定义求出MN 即可.【详解】当M 是AB 的左三等分点,∵AB=6cm ,∴AM=11AB=6=233⨯cm , ∵N 是AM 的中点,∴AN=NM=11AM=2=122⨯,当M 是AB 的右三等分点,∵AB=6cm ,∴AM=22AB=6=433⨯cm , ∵N 是AM 的中点,∴AN=NM=11AM=4=222⨯,线段MN 的长度为1cm 或2cm .故1cm 或2cm .17、如图,直线AB 与直线CD 相交于点O ,:1:2BOC BOD ∠∠=,射线OE CD ⊥,则∠BOE 度数为___150︒或30【分析】根据条件求得∠COB 的度数,然后根据∠BOE =∠COE -∠COB 即可求解.【详解】解:如图,∵:1:2BOC BOD ∠∠= ∴11806012BOC ∠=⨯︒=︒+ ∵OE CD ⊥∴90COE ∠=︒∴∠BOE =∠COE -∠COB =90°-60°=30°同理,如图,当点E ′在EO 的延长线上时,∠BOE ′=180°-30°=150°故答案是:30°或150°.18、如图,在三角形ABC 中,90ABC ∠=︒,BD AC ⊥,垂足为点D ,5AB =,12BC =,13AC =,下列结论正确的是 .(写出所有正确结论的序号)①90ADB ∠=︒;②A DBC ∠=∠;③点C 到直线BD 的距离为线段CB 的长度;④点B 到直线AC 的距离为6013.【分析】①根据垂直的定义即可求解;②根据余角的性质即可求解;③根据点到直线的距离的定义即可求解;④根据三角形面积公式即可求解.①BD AC⊥,90ADB∴∠=︒,故①正确;②90ABD A∠+∠=︒,90ABD DBC∠+∠=︒,A DBC∴∠=∠,故②正确;③点C到直线BD的距离为线段CD的长度,故③错误;④点B到直线AC的距离为160512213213⨯⨯⨯÷=,故④正确.故①②④.三、解答题19、如图,在8×8的正方形网格中,每个小正方形的顶点称为格点,点A、B、C均在格点上,按下述要求画图并标注相关字母.(1)画线段AB,画射线BC,画直线AC;(2)过点B画线段BD⊥AC,垂足为点D;(3)取线段AB的中点E,过点E画BD的平行线,交AC于点F.(1)如图所示,线段AB,射线BC,直线AC即为所求;见解析;(2)线段BD即为所求;见解析;(3)直线EF即为所求.见解析.(1)连接AB、以B为端点,作射线BC、过点A、C作直线即可;(2)根据网格结构,作过点B所在的小正方形对角线与直线AC相交于点D,即为所求;(3)根据网格结构,作过点E所在的小正方形对角线所在的射线与直线AC相交于点F,即为所求.【详解】(1)如图所示,线段AB,射线BC,直线AC即为所求;(2)线段BD即为所求;(3)直线EF即为所求.20、如图,C为线段AD上的一点,B为线段CD的中点,AD =12cm,BD =3cm.(1)图中共有条线段;(2)求线段AC的长;(3)若点E在线段AD上,且BE =2cm,求AE的长.(1)6;(2)6cm;(3)11cm或7cm【分析】(1)根据线段的定义找出线段即可;(2)先根据点B为CD的中点,BD=3cm求出线段CD的长,再根据AC=AD−CD即可得出结论;(3)根据E点位置的不同分情况讨论即可求解.【详解】解:(1)图中的线段有AC、AB、AD、BC、CD、BD,共有6条线段.故6;(2)∵点B为CD的中点.∴CD=2BD.∵BD=3cm,∴CD=6cm,BC=3cm,∵AC=AD−CD且AD=12cm,CD=6cm,∴AC=6cm;(3)如图,点E在B点的左侧,BE =2cm,∴CE=BC-CE=1 cm,∴AE=AC+CE=7 cm,如图,点E在B点的右侧,BE =2cm,∴AE=AC+BC+BE=6+3+2=11cm,∴AE 的长为11cm 或7cm .21、如图,O 是直线AB 上一点,OC 为任一条射线,OD 平分∠BOC ,OE 平分∠AOC .(1)若∠BOC =70°,求∠COD 和∠EOC 的度数;(2)写出∠COD 与∠EOC 具有的数量关系并说明理由.解:(1)∵OD 平分∠BOC ,∠BOC =70°,∴∠COD=21∠BOC=21×70°=35°, ∵∠BOC =70°,∴∠AOC =180°﹣∠BOC =180°﹣70°=110°,∵OE 平分∠AOC ,∴∠EOC=21∠AOC=21×110°=55°; (2)∠COD 与∠EOC 互余,理由如下:∵OD 平分∠BOC ,OE 平分∠AOC ,∴∠COD=21∠BOC ,∠EOC=21∠AOC , ∴∠COD+∠EOC=21(∠BOC+∠AOC )=21×180°=90°, ∴∠COD 与∠EOC 互余.22、将一副三角板叠放在一起,使直角顶点重合于点O .(1)如图1,若∠AOD =35°,求∠BOC 的度数.(2)若三角板AOB保持不动,将三角板COD的边OD与边OA重合,然后将其绕点O旋转.试猜想在旋转过程中,∠AOC与∠BOD有何数量关系?请说明理由.【分析】(1)由于是两直角三角形板重叠,根据∠AOD的度数可得∠BOD,再根据∠DOC=90°可得∠BOC;(2)当分两种情况:∠AOB与∠DOC有重叠部分时和当∠AOB与∠DOC没有重叠部分时.【详解】解:(1)若∠AOD=35°,∵∠AOB=∠COD=90°,∴∠BOD=90°﹣35°=55°,∴∠BOC=90°﹣∠BOD=90°﹣55°=35°;(2)∠AOC与∠BOD互补.当∠AOB与∠DOC有重叠部分时,∵∠AOB=∠COD=90°,∴∠AOD+∠BOD+∠BOD+∠BOC=180°.∵∠AOD+∠BOD+∠BOC=∠AOC,∴∠AOC+∠BOD=180°,当∠AOB与∠DOC没有重叠部分时,∠AOB+∠COD+∠AOC+∠BOD=360°,又∵∠AOC=∠BOD=90°,∴∠AOB+∠DOC=180°.23、如图,已知C 、D 两点将线段AB 分成2:3:4三段,点E 是BD 的中点,点F 是线段CD 上一点,且2CF DF =,12EF cm =,求AB 的长.【分析】首先设2AC xcm =,则线段3CD xcm =,4DB xcm =,然后根据E 是线段BD 的中点,2CF DF =,分别用x 表示出DE 、EF ,根据12EF cm =,求出x 的值,即可求出线段AB 的长是多少. 设2AC x =, C 、D 两点将线段AB 分成2:3:4三段,3CD x ∴=,4BD x =,2CF DF =,CD CF DF =+,DF x ∴=,点E 是BD 的中点,2DE x ∴=,3EF DF DE x ∴=+=,12EF cm =,4x cm ∴=,8AC cm ∴=,12CD cm =,16BD cm =,36AB AC CD BD cm ∴=++=.24、如图,直线AB 、CD 相交于点O ,OE 平分BOD ∠,OF CD ⊥,垂足为O ,若38BOF ∠=︒.(1)求AOC ∠的度数;(2)过点O 作射线OG ,使GOE BOF ∠=∠,求FOG ∠的度数.【分析】(1)由垂直可得,90DOF ∠=︒,由互余得BOD ∠的度数,再由对顶角相等,可得AOC ∠的度数;(2)射线OG 的位置不确定,需要分类讨论,当射线OG 在射线OE 上方时,当射线OG 在射线OE 下方时,分别求解.(1)如图,OF CD ⊥,垂足为O ,90DOF ∴∠=︒,38BOF ∠=︒,903852BOD DOF BOD ∴∠=∠-∠=︒-︒=︒,52AOC BOD ∴∠=∠=︒.(2)由(1)知,52BOD ∠=︒, OE 平分BOD ∠, 1262BOE DOE BOD ∴∠=∠=∠=︒, 382664EOF FOG GOE ∴∠=∠+∠=︒+︒=︒,38BOF ∠=︒,38EOG BOF ∴∠=∠=︒.当射线OG 在射线OE 上方时,如图1,643826FOG EOF EOG ∠=∠-∠=︒-︒=︒;当射线OG 在射线OE 下方时,如图2,6438102FOG EOF EOG ∠=∠+∠=︒+︒=︒.综上可知,FOG ∠的度数为26︒或102︒.25、如图,点C在线段AB上,图中共有三条线段AB、AC和BC,若其中有一条线段的长度是另外一条线段长度的2倍,则称点C是线段AB的“巧点”.(1)线段的中点这条线段的“巧点”;(填“是“或“不是”)(2)若AB=24cm,点C是线段AB的巧点,求AC的长.(1)是;(2)AC=8cm或12cm或16cm.【分析】(1)根据“巧点”的定义即可求解;(2)分BC=2AC,AB=2AC,AC=2BC三种情况讨论,分别求解即可.【详解】解:(1)当M是线段AB的中点,则AB=2AM,∴线段的中点是这条线段的“巧点”.故是;(2)∵AB=24cm,点C是线段AB的巧点,①BC=2AC,则AC=13AB=13×24=8(cm);②AB=2AC,则AC=12AB=12×24=12(cm);③AC=2BC,则AC=23AB=23×24=16(cm).∴AC=8cm或AC=12cm或AC=16cm.26、已知O为直线AB上一点,将一直角三角板OMN的直角顶点放在点O处.射线OC平分∠MOB.(1)如图1,若∠AOM=30°,求∠CON的度数;(2)在图1中,若∠AOM=α,直接写出∠CON的度数(用含α的代数式表示);(3)将图1中的直角三角板OMN绕顶点O顺时针旋转至图2的位置,当∠AOC=3∠BON时,求∠AOM 的度数.(1)15°;(2)12α;(3)144°【分析】(1)根据补角的定义可得∠BOM=150°,再由∠MON是直角,OC平分∠BOM,即可求解;(2)根据补角的定义可得∠BOM=180°﹣α,再由∠MON是直角,OC平分∠BOM,即可求解;(3)设∠AOM=x,则∠BOM=180°﹣x,根据OC平分∠BOM,可得∠MOC=90°﹣12x,从而得到∠AOC=∠AOM+∠MOC=90°+12x,再由∠MON=90°,可得到∠BON=∠MON﹣∠BOM=x﹣90°,然后根据∠AOC=3∠BON,可得到关于x的方程,即可求解.【详解】解:(1)由已知得∠BOM=180°﹣∠AOM=150°,∵∠MON是直角,OC平分∠BOM,∴∠CON=∠MON﹣12∠BOM=90°﹣12×150°=15°;(2)由已知得∠BOM=180°﹣∠AOM=180°﹣α,∵∠MON是直角,OC平分∠BOM,∴∠CON=∠MON﹣12∠BOM=90°﹣12×(180°﹣α)=12α;(3)设∠AOM=x,则∠BOM=180°﹣x,∵OC平分∠BOM,∴∠MOC=12∠BOM=12(180°﹣x)=90°﹣12x,∴∠AOC=∠AOM+∠MOC=x+90°﹣12x=90°+12x,∵∠MON=90°,∴∠BON=∠MON﹣∠BOM=90°﹣(180°﹣x)=x﹣90°,∵∠AOC=3∠BON,∴90°+1x=3(x﹣90°),解得x=144°,∴∠AOM=144°.2。

苏科版七年级上《第6章平面图形的认识(一)》单元测试题含答案

苏科版七年级上《第6章平面图形的认识(一)》单元测试题含答案

第6章平面图形的认识(一)一、选择题(每小题3分,共21分)1.下列说法正确的是()A.过一点P只能作一条直线B.射线AB和射线BA表示同一条射线C.直线AB和直线BA表示同一条直线D.射线a比直线b短2.如图5-Z-1,由点O测点A的方向是()图5-Z-1A.北偏南60°B.南偏西60°C.南偏西30°D.西偏南30°3. 如图5-Z-2,OA⊥OB,∠BOC=30°,OD平分∠AOC,则∠BOD的度数是()图5-Z-2A.40°B.60°C.20°D.30°4.若直线l上一点P和直线l外一点Q的距离为8 cm,则点Q到直线l的距离是() A.等于8 cm B.小于或等于8 cmC.大于8 cm D.以上三种都有可能5.如图5-Z-3所示,OC⊥AB,∠COD=45°,则图中互为补角的角共有()图5-Z-3A.1对B.2对C.3对D.4对6.在图5-Z-4中,线段的条数为()图5-Z-4A.9 B.10C.13 D.157.已知∠α是锐角,∠α与∠β互补,∠α与∠γ互余,则∠β-∠γ的值为()A.45°B.60°C.90°D.180°二、填空题(每小题3分,共24分)8.已知∠A=40°,则∠A的余角的度数是________.9.工人师傅在砌墙时,先在两端各固定一点,中间拉紧一条细线,然后沿着细线砌墙就能砌直.运用的数学原理:________________________.10.9:30时,钟表的时针和分针构成的角的度数是________.11.如图5-Z-5,已知BC=4,BD=7,D是线段AC的中点,则AB=________.图5-Z-512.把16°15′化为度是________.13.若∠α与∠β是对顶角,∠α的补角是35°,则∠β的度数为________.14.如图5-Z-6,PC∥AB,QC∥AB,则点P,C,Q在一条直线上,理由:______________________.图5-Z-615.如图5-Z-7所示,AB⊥CD,垂足为B,直线EF过点B,且BE平分∠ABD,则∠CBF的度数为________.图5-Z-7三、解答题(共55分)16.(10分)已知点C在线段AB上,点D在线段AB的延长线上,若AC=5,BC=3,BD=AB,求CD的长.17.(10分)如图5-Z-8,已知∠AOB, 用三角尺和量角器画图.(1)画∠AOB的平分线OC,并在OC上任取一点P;(2)过点P画一条平行于OB的直线;(3)过点P画PD⊥OA,PE⊥OB,垂足分别为D,E.图5-Z-818.(10分)如图5-Z-9,直线AB,CD相交于点O,OE平分∠AOC,∠AOD比∠AOE 大75°,求∠AOD的度数.图5-Z-919.(12分)如图5-Z-10,已知线段AB,请按要求完成下列问题.(1)用直尺和圆规作图:延长线段AB到点C,使BC=AB;反向延长线段AB到点D,使AD=AC.(2)如果AB=2 cm,①求CD的长;②设P是线段BD的中点,求线段CP的长.图5-Z-1020.(13分)如图5-Z-11,将长方形纸片的一角斜折过去,点B落在点D处,EF为折痕,再把FC折过去与FD重合,FH为折痕,问:(1)EF与FH有什么位置关系?(2)∠CFH与∠BEF有什么数量关系?图5-Z-111.C 2.C 3. D 4.B 5.C 6.D 7.C 8.50° 9.两点确定一条直线 10.105° 11.10 12.16.25° 13.145°14.过直线外一点有且只有一条直线和已知直线平行 15.45°16.解:∵点C 在线段AB 上,AC =5,BC =3, ∴AB =8.∵点D 在线段AB 的延长线上,BD =14AB ,∴BD =14AB =2,∴CD =BC +BD =3+2=5.17.略18.解:因为OE 平分∠AOC ,所以可设∠AOE =∠EOC =x °.因为∠AOD 比∠AOE 大75°,所以∠AOD =∠AOE +75°=(x +75)°.因为∠AOD +∠AOE +∠EOC =180°, 所以x +75+x +x =180, 解得x =35.所以∠AOD =35°+75°=110°.19.解:(1)如图所示,点C 和点D 即为所求.(2)①∵AB =2 cm ,BC =AB ,∴AC =2AB =4 cm.又∵AD =AC ,∴CD =2AC =8 cm.②∵BD =AD +AB =4+2=6 (cm),P 是线段BD 的中点,∴BP =3 cm ,∴CP =BC +BP =2+3=5(cm).20.解:(1)根据折叠的有关性质可知:∠DFH =∠CFH ,∠BFE =∠DFE . 因为∠BFE +∠DFE +∠DFH +∠CFH =180°, 即有∠EFD +∠DFH =12×180°=90°,即∠EFH =90°. 故EF ⊥FH .(2)因为∠BEF +∠BFE =90°,∠BFE +∠CFH =90°,所以∠CFH =∠BEF .。

苏科版七年级上册数学第6章 平面图形的认识(一) 含答案

苏科版七年级上册数学第6章 平面图形的认识(一) 含答案

苏科版七年级上册数学第6章平面图形的认识(一)含答案一、单选题(共15题,共计45分)1、将一副三角板按照如图所示的位置摆放,则图中的和的关系一定成立的是()A.互余B.互补C.相等D.无法确定2、已知:如图,AB⊥CD,垂足为O,EF为过点O的一条直线,则∠1与∠2的关系一定成立的是()A.互余B.互补C.相等D.不确定3、给出下列说法:⑴两条直线被第三条直线所截,同位角相等;⑵相等的两个角是对顶角;⑶平面内的一条直线和两条平行线中的一条相交,则它与另一条也相交;⑷从直线外一点到这条直线的垂线段,叫做这点到直线的距离;其中正确的有()A.0个B.1个C.2个D.3个4、如图,AB∥CD,点E在AB上,点F在CD上,EF⊥FH,FH与AB相交于点G,若∠CFE=40°,则∠EGF的()A.40°B.50°C.60°D.70°5、直线AB,CD相交于点O,OE⊥AB于点O,OF平分∠AOE,∠1=15.5°则下列结论不正确的是()A.∠2=45°B.∠1=∠3C.∠AOD与∠1互为补角D.∠1的余角等于75.5°6、下列说法错误的是()A.同角或等角的余角相等B.同角或等角的补角相等C.两个锐角的余角相等D.两个直角的补角相等7、如图,直线AB,CD相交于点O,下列描述:①∠1和∠2互为对顶角②∠1和∠3互为对顶角③∠1=∠2④∠1=∠3其中,正确的是()A.①③B.①④C.②③D.②④8、用一副三角尺画角,不能画出的角是 ( )A.15°B.75°C.145°D.165°9、如图所示,∠α+∠β=90°,∠β+∠γ=90°,则().A.∠α=βB.∠β=∠γC.∠α=∠β=∠γD.∠α=∠γ10、一艘轮船由海平面上A地出发向南偏西40°的方向行驶80海里到达B 地,再由B地向北偏西20°的方向行驶80海里到达C地,则A,C两地相距()A.100海里B.80海里C.60海里D.40海里11、钟表上8时45分,时针与分针所夹的角度是()A.7.5°B.8°C.22.5°D.25°12、在同一平面内,两条直线的位置关系是()A.平行或垂直B.平行或相交C.垂直或相交D.平行、垂直或相交13、下列说法正确的是()A.相等的两个角是对顶角B.同位角相等C.图形平移后的大小可以发生改变D.两条直线相交所成的四个角都相等,则这两条直线互相垂直14、把8.32°用度、分、秒表示正确的是()A.8°3′2″B.8°30′2″C.8°19′12″D.8°19 ′20″15、已知∠1=28°24′,∠2=28.24°,∠3=28.4°,下列说法正确的是()A.∠1=∠2B.∠1=∠3C.∠1<∠2D.∠2>∠3二、填空题(共10题,共计30分)16、如图,点O在直线AB上,OC⊥OD,OC,OF分别平分∠AOE和∠BOD,若∠AOC=20°,则∠BOF的度数为________.17、已知∠1=60°,则∠1的余角的补角度数是________18、比较大小:32.5°________ 32°5'(填“>”、“=”或“<”).19、已知∠A=40°,则∠A的余角的度数是________20、如图,在△ABC中,∠BAC=45°,AB=AC=8,P为AB边上一动点,以PA、PC为边作平行四边形PAQC,则对角线PQ的长度的最小值为________21、已知一个角的补角比这个角的一半多,则这个角的度数为________.22、在括号内注明说理依据.如图已知∠B=∠D,∠1=∠2,试猜想∠A与∠C的大小关系,并说明理由.解:猜想∠A=∠C∵∠1=∠2 (已知)∠1=∠EGC________∴∠2=∠EGC________∴BF∥DE________∴∠B=∠AED________∵∠B=∠D________∴∠AED=∠D (________)∴AB∥CD________∴∠A=∠C________.23、如图,为等边三角形,,,点为线段上的动点,连接,以为边作等边,连接,则线段的最小值为________.24、如图,点O是直线AB上一点,OC⊥OD,OM是∠BOD的角平分线,ON是∠AOC的角平分线,则∠MON的度数是________°.25、已知∠AOB=25°42′,则∠AOB的补角为________.三、解答题(共5题,共计25分)26、如图,∠AOB=∠COD=90°,OC平分∠AOB,∠BOD=3∠DOE.试求∠COE的度数.27、如图,OA的方向是北偏东15°,OB的方向是西偏北50°,若∠AOC=∠AOB,求OC的方向.28、如图,∠ABD和∠BDC的平分线相交于点E,BE交CD于点F,∠1+∠2=90°.试问直线AB,CD在位置上有什么关系?∠2与∠3在数量上有什么关系?并证明你的猜想.29、如图,将一副直角三角板叠放在一起,使直角顶点重合于点O.(1)若OC平分∠AOB,求∠DOB的度数.(2)求∠AOD+∠BOC的值.30、完成证明并写出推理根据:如图,直线分别与直线、交于点和点,,射线、分别与直线交于点、,且,则与有何数量关系?并说明理由.解:与的数量关系为▲,理由如下:∵(已知)∴▲ // ▲(▲)∴&nbsp; ▲(▲)∵(已知)∴▲(▲)∵▲∴▲ - ▲参考答案一、单选题(共15题,共计45分)1、C2、A3、B4、B5、D6、C7、D8、C9、D10、B11、A12、B14、C15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、25、三、解答题(共5题,共计25分)26、27、28、29、30、。

苏科版七年级上册数学第6章 平面图形的认识(一) 含答案

苏科版七年级上册数学第6章 平面图形的认识(一) 含答案

苏科版七年级上册数学第6章平面图形的认识(一)含答案一、单选题(共15题,共计45分)1、下列结论中,错误的是()A.两点确定一条直线B.两点之间,直线最短C.等角的余角相等 D.等角的补角相等2、下面四个图形中,∠1=∠2一定成立的是()A. B. C. D.3、如图,小红同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是()A.两点之间,线段最短B.两点确定一条直线C.过一点,有无数条直线D.连接两点之间的线段叫做两点间的距离4、下列说法:①两点之间的所有连线中,线段最短;②相等的角是对顶角;③过一点有且仅有一条直线与已知直线平行;④长方体是四棱柱;其中正确的有()A.1个B.2个C.3个D.4个5、下列说法正确的有()个①连接两点的线段叫两点之间的距离;②直线比线段长;③若AM=BM,则M为AB的中点;④钝角与锐角的差为锐角.A.0B.1C.2D.36、如图,小于平角的角有()A.5个B.6个C.7个D.8个7、下列四个命题:①对顶角相等;②内错角相等;③平行于同一条直线的两条直线互相平行;④如果一个角的两边分别平行于另一个角的两边,那么这两个角相等。

其中真命题的个数是( )A.1个B.2个C.3个D.4个8、利用一副三角板上已知度数的角,不能画出的角是()A.15°B.135°C.165°D.100°9、如图,已知是直角,OM平分,ON平分,则的度数是()A.30°B.45°C.50°D.60°10、下列说法正确的是()A.直线AB是平角B.凡是直角都相等C.两个锐角之和一定是钝角 D.两条射线组成的图形叫做角11、下面等式成立的是()A.83.5°=83°50′B.37°12′36″=37.48°C.24°24′24″=24.44° D.41.25°=41°15′12、如图,已知菱形,,,E为中点,P为对角线上一点,则的最小值等于( )A. B. C. D.813、点P为直线l外一点,A,B,C为直线l上三点,且PA=8cm,PB=7cm,PC=5cm,则点P到直线l的距离为()A.5cmB.7cmC.8cmD.不大于5cm14、如图,a∥b,点B在直线b上,且AB⊥BC,若∠1=34°,则∠2的大小为()A.34°B.54°C.56°D.66°15、下列说法中,不正确的是()A.两点确定一条直线B.相等的角是对顶角C.等角的补角相等 D.两条直线都和第三条直线平行,则这两直线也平行二、填空题(共10题,共计30分)16、火车往返于A、B两个城市,中途经过4个站点(共6个站点),不同的车站来往需要不同的车票,共有________ 种不同的车票.17、如图数轴上两点表示的数分别是,点C在数轴上,若,则点C表示的数为________.18、如图,矩形ABOC的顶点A的坐标为(﹣4,5),D是OB的中点,E是OC 上的一点,当△ADE的周长最小时,点E的坐标是________.19、如图,直线AB,CD,EF相交于点O,且AB⊥CD,∠1与∠2的关系是________.20、如图,AB∥CD,过直线EF上的点G作GH⊥AB,若∠1=50°,则∠2=________°。

苏科版七年级上册数学第6章 平面图形的认识(一)含答案

苏科版七年级上册数学第6章 平面图形的认识(一)含答案

苏科版七年级上册数学第6章平面图形的认识(一)含答案一、单选题(共15题,共计45分)1、如图,两只手的食指和拇指在同一个平面内,它们构成的一对角可看成是()A.同位角B.内错角C.对顶角D.同旁内角2、如图,,若,则的度数是()A. B. C. D.3、把一条弯曲的公路改成直道,可以缩短路程,其道理用几何的知识解释应是( )A.两点确定一条直线B.两点之间线段最短C.线段有两个端点 D.线段可比较大小4、如图AB、CD交于点O,OE⊥AB于O,则下列不正确的是()A.∠AOC与∠BOD是对顶角B.∠BOD和∠DOE互为余角C.∠AOC和∠DOE互为余角D.∠AOE和∠BOC是对顶角5、如图,已知点A是射线BE上一点,过A作AC⊥BF,垂足为C,CD⊥BE,垂足为D.给出下列结论:①∠1是∠ACD的余角;②图中互余的角共有3对;③∠1的补角只有∠DCF;④与∠ADC互补的角共有3个.其中正确结论有()A.①B.①②③C.①④D.②③④6、如图,,则和的关系是()A.不是同位角但相等B.是同位角且相等C.是同位角但不相等 D.不是同位角也不相等7、下列说法中,正确的是()A.相交的两条直线叫做垂直B.经过一点可以画两条直线C.平角是一条直线D.两点之间的所有连线中,线段最短8、用度、分、秒表示91.34°为()A.91°20′24″B.91°34′C.91°20′4″D.91°3′4″9、如图,已知AB⊥BD,BC⊥CD,AD=a,CD=b,则BD的长的取值范围为()A.大于bB.小于aC.大于b且小于aD.无法确定10、有下列五个命题:①过一点有且只有一条直线与已知直线平行;②平行于同一条直线的两条直线互相平行;③过一点有且只有一条直线与已知直线垂直;④垂直于同一条直线的两条直线互相平行;⑤三角形的一个外角等于它的两个内角的和.其中真命题的个数是()A.1个B.2个C.3个D.4个11、下列命题的逆命题是真命题的是( )A.对顶角相等B.等角对等边C.同角的余角相等D.全等三角形对应角相等12、如图,直线AB、CD相交于点O,OE平分∠BOC,∠FOD=90°,若∠BOD:∠BOE=1:2,则∠AOF的度数为()A.70°B.75°C.60°D.54°13、过线段外一点画这条线段的垂线,垂足一定在()A.线段上B.线段的端点上C.线段的延长线上D.以上情况都有可能14、下列说法正确的个数是()①射线与射线是同一条射线;②点到点的距离是线段;③画一条长为的直线;④在同一平面内,过一点有且只有一条直线垂直于已知直线.A.0个B.1个C.2个D.3个15、如图,长度为12 cm的线段AB的中点为M,若点C将线段MB分成MC∶CB =1∶2,则线段AC的长度为( )A.2 cmB.8 cmC.6 cmD.4 cm二、填空题(共10题,共计30分)16、如图是小凡同学在体育课上跳远后留下的脚印,他的跳远成绩是线段________ 的长度,这样测量的依据是________ .17、如图,某海域有三个小岛A,B,O,在小岛O处观测小岛A在它北偏东63°49′8″的方向上,观测小岛B在南偏东38°35′42″的方向上,则∠AOB 的度数是________.18、若直线上有5个点,我们进行第一次操作:在每相邻两点间插入1个点,则直线上有9个点;第二次操作:在9个点中的每相邻两点间继续插入1个点,则直线上有________个点.现在直线上有n个点,经过3次这样的操作后,直线上共有________个点.19、如图,直线AB,CD相交于点O,EO⊥AB于点O,∠EOD=50°,则∠BOC的度数为________.20、点P(2,4)与点Q(-3,4)之间的距离是________.21、如图所示,在三角形ABC中,∠A=90°,则A到BC的垂线段为________,C到AB的距离为________.22、已知∠AOB=72°,若从点O引一条射线OC,使∠BOC=36°,则∠AOC 的度数为________.23、如图是一个时钟的钟面,8:00时时针及分针的位置如图所示,则此时分针与时针所成的∠α是________.24、如图①,我们在“格点”直角坐标系上可以清楚看到:要找AB或DE的长度,显然是转化为求Rt△ABC或Rt△DEF的斜边长.下面:以求DE为例来说明如何解决:从坐标系中发现:D(﹣7,5),E(4,﹣3).所以DA=|5﹣(﹣3)|=8,AE=|4﹣(﹣7)|=11,所以由勾股定理可得:DE==.下面请你参与:(1)在图①中:AC=________ ,BC=________ ,AB=________(2)在图②中:设A(x1, y1),B(x2, y2),试用x1, x2, y1, y2表示AC=________ ,BC=________ ,AB=________(3)(2)中得出的结论被称为“平面直角坐标系中两点间距离公式”,请用此公式解决如下题目:已知:A(2,1),B(4,3),C为坐标轴上的点,且使得△ABC是以AB为底边的等腰三角形.请求出C点的坐标________25、如图,已知直线AB、CD、EF相交于点O,AB⊥CD,∠DOE=127°,则∠COE=________°,∠AOF=________°.三、解答题(共5题,共计25分)26、如图,已知,∠,求、、的度数.27、两个相等的角,有公共顶点和一条公共边,另两条边所成的角是直角.求这两个角的度数.28、已知一个锐角的补角比它的余角的3倍大10°,求这个角的度数.29、如图,已知:∠DGA=∠FHC,∠A=∠F.求证:DF∥AC.(注:证明时要求写出每一步的依据)30、如图,∠A=65°,∠ABD=30°,∠ACB=72°,且CE平分∠ACB,求∠BEC 的度数.参考答案一、单选题(共15题,共计45分)1、B2、B3、B4、D5、C6、A7、D8、A10、A11、B12、D13、D14、B15、B二、填空题(共10题,共计30分)16、17、18、19、20、21、22、24、25、三、解答题(共5题,共计25分)26、28、30、。

苏科版七年级数学上册6章 平面图形的认识(一)6.1-6.3 阶段 培优训练卷(有答案)

苏科版七年级数学上册6章 平面图形的认识(一)6.1-6.3 阶段 培优训练卷(有答案)

如果别人思考数学的真理像我一样深入持久,他也会找到我的发现。

——高斯2020-2021苏科版七年级数学上册6章平面图形的认识(一)6.1-6.3阶段培优训练卷一、选择题1、图中给出的直线、射线、线段,根据各自的性质,能相交的是( )2、下列说法:①一根拉的很紧的细线就是直线;②直线的一半是射线;③一直线上的任意一点把这条直线分成两条射线;④经过两点只有一条线段;⑤在所有连接两点的线中,线段最短,其中正确的个数是( )A.1个B.2个C.3个D.4个3、图中共有线段()A.4条B.6条C.8条D.10条4、如果点C在AB上,下列表达式:①AC=AB;②AB=2BC;③AC=BC;④AC+BC=AB中,能表示C是AB中点的有( )A.1个B.2个C.3个D.4个5、如图,直线AB,CD相交于点O,已知∠AOC=80°,∠BOE:∠EOD=3:2,则∠AOE的度数是()A.100°B.116°C.120°D.132°6、如图,C为线段AD上一点,点B为CD的中点,且AD=9,BD=2.若点E在直线AD上,且EA=1,则BE的长为()A.4B.6或8C.6D.87、如图,下列表示角的方法错误的是( )A.∠1与∠AOB表示同一个角B.∠AOC可用么O来表示C.图中共有三个角∠AOB、∠AOC、∠BOC D.∠β表示的是∠BOC8、已知∠AOB=20°,∠AOC=4∠AOB,OD平分∠AOB,OM平分∠AOC,则∠MOD的度数是()A.20°或50°B.20°或60°C.30°或50°D.30°或60°9、已知∠A=115°,∠B是∠A的补角,则∠B的余角的度数是()A.65°B.115°C.15°D.25°10、下列说法中,正确的是()①已知∠A=40°,则∠A的余角是50°.②若∠1+∠2=90°,则∠1和∠2互为余角.③若∠1+∠2+∠3=180°,则∠1、∠2和∠3互为补角.④一个角的补角必为钝角.A.①,②B.①,②,③C.③,④,②D.③,④11、下列说法中,正确的是().①射线AB和射线BA是同一条射线;②若AB=BC,则点B为线段AC的中点;③同角的补角相等;④点C在线段AB上,M,N分别是线段AC,CB的中点. 若MN=5,则线段AB=10.A.①② B.②③ C.②④ D.③④12、下列说法:①一个角的补角大于这个角;②小于平角的角是钝角;③同角或等角的余角相等;④若∠1+∠2+∠3=180°,则∠1、∠2、∠3互为补角,其中正确的说法有()A.4个B.3个C.2个D.1个A .都互为对顶角B .图1、图2、图3中的∠1、∠2互为对顶角C .都不互为对顶角D .只有图3中的∠1、∠2互为对顶角14、如图,直线AB ,CD 相交于点O ,如果∠BOD =75°,OE 把∠AOC 分成两个角,且∠AOE :∠EOC =2:3.那么∠AOE 的度数是( )A .15°B .30°C .45°D .35°二、填空题15、平面上有四个点,经过其中每两个点画一条直线,那么一共可以画直线 条16、如图,以点O 为端点的射线有_______条,它们分别是______________,图中线段共有_______条.17、如图所示是一段火车路线图,A 、B 、C 、D 、E 是五个火车站,在这条线路上往返行车需要印制 种火车票.18、把一段弯曲的河流改直,可以缩短航程,其理由是19、如图,C 、D 是线段AB 上的两个点,CD =8 cm ,M 是AC 的中点,N 是DB 的中点,MN12 cm ,那么线段AB 的长等于_______cm .20、如图,点A ,B 是直线l 上的两点,点C ,D 在直线l 上且点C 在点D 的左侧,点D 在点B 的右侧.AC :CB =1:2,BD :AB =2:3.若CD =12,则AB = .21、如图,直线AB 、CD 相交于点O ,OB 平分∠EOD ,∠COE =100°,则∠AOC = °.22、47°40′的余角为 .23、如果∠α和∠β互补,且∠α>∠β,则下列表示∠β的余角的式子中:①90°﹣∠β;②∠α﹣90°;③21(∠α+∠β);④21(∠α﹣∠β).正确的有( ) A .4个 B .3个 C .2个 D .1个24、如图,直线AB 、CD 相交于点O ,射线OM 平分∠AOC ,∠MON =90°.若∠BON =50°,则∠BOD 的度数为 .三、解答题25、已知道四点A、B、C、D,按要求画图.(1)画直线AB、CD交于E点;(2)画线段AC、BD交于点F;(3)作射线BC.26、如图,线段AB=8 cm,C是线段AB上一点,AC=3.2 cm,M是AB的中点,N是AC的中点,求线段MN的长.27、如图:A、B、C、D四点在同一直线上.(1)若AB=CD.①比较线段的大小:AC BD(填“>”、“=”或“<”);②若BC=AC,且AC=12cm,则AD的长为cm;(2)若线段AD被点B、C分成了3:4:5三部分,且AB的中点M和CD的中点N之间的距离是16cm,求AD的长.28、如图,点O是直线FA上一点,OB,OD,OC,OE是射线,OE平分∠AOC,OD平分∠BOC.(1)若∠AOE=15°,求∠FOC的度数;(2)若∠AOB=86°,求∠DOE的度数.29、定义:从一个角的顶点出发,把这个角分成1:2的两个角的射线,叫做这个角的三分线,显然,一个角的三分线有两条,例如:如图1,若,则OC是的一条三分线.已知:如图是的一条三分线,且,若,求的度数.已知:,如图2,若是的两条三分线.求的度数.现以O为中心,将顺时针旋转n度得到,当OA恰好是的三分线时,求n的值.30、如图,直线AB,CD交于点O,OE平分∠COB,OF是∠EOD的角平分线.(1)说明:∠AOD=2∠COE;(2)若∠AOC=50°,求∠EOF的度数;(3)若∠BOF=15°,求∠AOC的度数.31、已知,如图,把直角三角形MON的直角顶点O放在直线AB上,射线OC平分∠AON.(1)如图1,若∠MOC=28°,求∠BON的度数.(2)若∠MOC=m°,则∠BON的度数为.(3)由(1)和(2),我们发现∠MOC和∠BON之间有什么样的数量关系?(4)若将三角形MON绕点O旋转到如图2所示的位置,试问∠MOC和∠BON之间的数量关系是否发生变化?请说明理由.2020-2021苏科版七年级数学上册6章平面图形的认识(一)6.1-6.3阶段 培优训练卷(答案)一、选择题1、图中给出的直线、射线、线段,根据各自的性质,能相交的是 ( )【解析】A .射线延伸后两直线不能相交,故本选项错误;B .直线延伸后两直线不能相交,故本选项错误;C .射线和直线延伸后两直线不能相交,故本选项错误;D .射线延伸后两直线能相交,故本选项正确;故选D2、下列说法:①一根拉的很紧的细线就是直线;②直线的一半是射线;③一直线上的任意一点把这条直线分成两条射线;④经过两点只有一条线段;⑤在所有连接两点的线中,线段最短,其中正确的个数是 ( )A .1个B .2个C .3个D .4个【解析】①错误,细线始终有端点,所以它是线段.实际生活中除了光、声音之类的,不存在射线,更不用说直线;②错误,直线可以无限延长,所以没有一半;③正确,射线定义:只有一个端点,另一端无限延长,任意的一点可看作两条射线分别的端点;④正确,过两点作一条直线;⑤正确,两点之间线段最短.故选C3、图中共有线段( )A .4条B .6条C .8条D .10条解:图中的线段有AC 、AD 、AE 、AB ;CD 、CE 、CB ;DE 、DB ;EB ;共10条,故选:D .4、如果点C 在AB 上,下列表达式:①AC =AB ;②AB =2BC ;③AC =BC ;④AC +BC =AB 中,能表示C 是AB 中点的有 ( )A .1个B .2个C .3个D .4个【解析】如图,能表示点C 是线段AB 的中点的是AB=BC ,AC=BC ,而AC=AB 和AC+BC=AB 都不能表示C 是线段AB 的中点,即正确的有②③两个. 故选B .5、如图,直线AB ,CD 相交于点O ,已知∠AOC =80°,∠BOE :∠EOD =3:2,则∠AOE 的度数是( )A .100°B .116°C .120°D .132°【解析】∵∠AOC =80°,∴∠DOB =80°,∠AOD =100°,∵∠BOE :∠EOD =3:2,∴∠DOE =80°×52=32°,∴∠AOE =100°+32°=132°,故选:D .6、如图,C 为线段AD 上一点,点B 为CD 的中点,且AD =9,BD =2.若点E 在直线AD 上,且EA =1,则BE 的长为( )A .4B .6或8C .6D .8解:若E 在线段DA 的延长线,如图1,∵EA =1,AD =9,∴ED =EA +AD =1+9=10,∵BD =2,∴BE =ED ﹣BD =10﹣2=8,∵BD=2,∴BE=ED﹣BD=8﹣2=6,综上所述,BE的长为8或6.故选:B.7、如图,下列表示角的方法错误的是( )A.∠1与∠AOB表示同一个角B.∠AOC可用么O来表示C.图中共有三个角∠AOB、∠AOC、∠BOC D.∠β表示的是∠BOC【解析】以点O为顶点的角有3个,因此不能用单独的顶点字母表示一个角,所以B项错误.8、已知∠AOB=20°,∠AOC=4∠AOB,OD平分∠AOB,OM平分∠AOC,则∠MOD的度数是(C)A.20°或50°B.20°或60°C.30°或50°D.30°或60°9、已知∠A=115°,∠B是∠A的补角,则∠B的余角的度数是()A.65°B.115°C.15°D.25°【解答】解:∠A的补角∠B的度数是:180°﹣115°=65°,则余角是90°﹣65°=25°.故选:D.10、下列说法中,正确的是()①已知∠A=40°,则∠A的余角是50°.②若∠1+∠2=90°,则∠1和∠2互为余角.③若∠1+∠2+∠3=180°,则∠1、∠2和∠3互为补角.④一个角的补角必为钝角.A.①,②B.①,②,③C.③,④,②D.③,④【解析】①已知∠A=40°,则∠A的余角是50°,原说法正确;②若∠1+∠2=90°,则∠1和∠2互为余角,原说法正确;③若∠1+∠2+∠3=180°,则∠1、∠2和∠3不能互为补角,原说法错误;④一个角的补角不一定是钝角,原说法错误.说法正确的是①②,故选A.11、下列说法中,正确的是(D).①射线AB和射线BA是同一条射线;②若AB=BC,则点B为线段AC的中点;③同角的补角相等;④点C在线段AB上,M,N分别是线段AC,CB的中点. 若MN=5,则线段AB=10.A.①② B.②③ C.②④ D.③④12、下列说法:①一个角的补角大于这个角;②小于平角的角是钝角;③同角或等角的余角相等;④若∠1+∠2+∠3=180°,则∠1、∠2、∠3互为补角,其中正确的说法有()A.4个B.3个C.2个D.1个【解答】解:①已知∠A=140°,则∠A的补角=40°,原来的说法错误;②大于直角小于平角的角是钝角,原来的说法错误;③同角或等角的余角相等是正确的;④和为180度的两个角互为补角,原来的说法错误.故其中正确的说法有1个.故选:D.13、下面四个图形中∠1与∠2为互为对顶角的说法正确的是()C.都不互为对顶角D.只有图3中的∠1、∠2互为对顶角【解析】根据对顶角的定义可知:只有图3中的∠1、∠2互为对顶角,故选D.14、如图,直线AB,CD相交于点O,如果∠BOD=75°,OE把∠AOC分成两个角,且∠AOE:∠EOC=2:3.那么∠AOE的度数是()A.15°B.30°C.45°D.35°【解析】∵∠BOD=75°,∴∠AOC=75°,∵∠AOE:∠EOC=2:3,∴设∠AOE=2x°,∠EOC=3x°,则2x+3x=75,解得:x=15,∴∠AOE=30°,故选:B.二、填空题15、平面上有四个点,经过其中每两个点画一条直线,那么一共可以画直线条解:①当四点共线时,则经过每两个点画一条直线,那么共可以画直线1条;②当只有三点共线时,则经过每两个点画一条直线,那么共可以画直线4条;③当每三点不共线时,则经过每两个点画一条直线,那么共可以画直线6条.故答案为:1或4或6.16、如图,以点O为端点的射线有_______条,它们分别是______________,图中线段共有_______条.【解析】以O为端点的射线有OA、OB、OC、OD,共四条;一共有八条线段,分别是OD、OA、OB、OC、AD、AB、AC、BC.答案:4;射线OA、射线OB,、射线OC,、射线OD;8.17、如图所示是一段火车路线图,A、B、C、D、E是五个火车站,在这条线路上往返行车需要印制种火车票.解:图中线段有:AB、AC、AD、AE,BC、BD、BE,CD、CE、DE,共10条,∵每条线段应印2种车票,∴共需印10×2=20种车票.故答案为:20.18、把一段弯曲的河流改直,可以缩短航程,其理由是解:把一段弯曲的河流改直,可以缩短航程,其理由是两点之间,线段最短,故答案为:两点之间,线段最短.19、如图,C、D是线段AB上的两个点,CD=8 cm,M是AC的中点,N是DB的中点,MN12 cm,那么线段AB的长等于_______cm.【解析】∵M是AC的中点,N是DB的中点,∴AM=MC,BN=DN,∴AM+BN=MC+DN=MN-CD=4cm,∴AB=AM+BN+CD=12cm.20、如图,点A,B是直线l上的两点,点C,D在直线l上且点C在点D的左侧,点D在点B的右侧.AC:CB=1:2,BD:AB=2:3.若CD=12,则AB=.①C 点在A 点的左边,∵AC :CB =1:2,BD :AB =2:3,假设AC =3k ,则AB =3k ,BD =2k ,∴CD =3k +3k +2k =8k ,∵CD =12,∴k =1.5,∴AB =4.5;②C 点在线段AB 上,∵AC :CB =1:2,BD :AB =2:3,假设AC =k ,则CB =2k ,BD =2k ,∴CD =CB +BD =4k ,∵CD =12,∴k =3,∴AB =AC +CB =3k =9;③C 点在B 点后,不符合题意,舍去;∴综上所述,AB =4.5或9.21、如图,直线AB 、CD 相交于点O ,OB 平分∠EOD ,∠COE =100°,则∠AOC = °.【解析】∵∠COE =100°,∴∠DOE =80°,∵OB 平分∠EOD ,∴∠BOD =40°,∴∠AOC =40°,故答案为:40.22、47°40′的余角为 .【解析】47°40′的余角的度数为:90°﹣47°40′=42°20′.故答案为42°20′.23、如果∠α和∠β互补,且∠α>∠β,则下列表示∠β的余角的式子中:①90°﹣∠β;②∠α﹣90°;③21(∠α+∠β);④21(∠α﹣∠β).正确的有( ) A .4个 B .3个 C .2个 D .1个【解析】∵∠α和∠β互补,∴∠α+∠β=180°.因为90°﹣∠β+∠β=90°,所以①正确;又∠α﹣90°+∠β=∠α+∠β﹣90°=180°﹣90°=90°,②也正确;21(∠α+∠β)+∠β=21×180°+∠β=90°+∠β≠90°,所以③错误; 21(∠α﹣∠β)+∠β=21(∠α+∠β)=21×180°=90°,所以④正确. 综上可知,①②④均正确.24、如图,直线AB 、CD 相交于点O ,射线OM 平分∠AOC ,∠MON =90°.若∠BON =50°,则∠BOD 的度数为 .【解析】∵∠MON =90°.∠BON =50°,∴∠AOM =90°﹣50°′=40°,∵射线OM 平分∠AOC ,∴∠AOC =40°×2=80°,∴∠BOD =∠AOC =80°.故答案为:80°.三、解答题25、已知道四点A 、B 、C 、D ,按要求画图.(1)画直线AB 、CD 交于E 点;(2)画线段AC 、BD 交于点F ;(3)作射线BC .解:(1)(2)(3)26、如图,线段AB=8 cm,C是线段AB上一点,AC=3.2 cm,M是AB的中点,N是AC的中点,求线段MN的长.解:由AB=8,M是AB的中点,所以AM=4,又AC=3.2,所以CM=0.8cm;因为N是AC的中点,所以NC=1.6,所以MN=NC+CM=2.4cm.27、如图:A、B、C、D四点在同一直线上.(1)若AB=CD.①比较线段的大小:AC BD(填“>”、“=”或“<”);②若BC=AC,且AC=12cm,则AD的长为cm;(2)若线段AD被点B、C分成了3:4:5三部分,且AB的中点M和CD的中点N之间的距离是16cm,求AD的长.解:(1)①∵AB=CD,∴AB+BC=CD+BC,即,AC=BD,故答案为:=;②∵BC=AC,且AC=12cm,∴BC=×12=9(cm),∴AB=CD=AC﹣BC=12﹣9=3(cm),∴AD=AC+CD=12+3=15(cm),故答案为:15;(2)如图,设每份为x,则AB=3x,BC=4x,CD=5x,AD=12x,∵M是AB的中点,点N是CD的中点N,∴AM=BM=x,CN=DN=x,又∵MN=16,∴x+4x+x=16,解得,x=2,∴AD=12x=24(cm),答:AD的长为24cm.28、如图,点O是直线FA上一点,OB,OD,OC,OE是射线,OE平分∠AOC,OD平分∠BOC.(1)若∠AOE=15°,求∠FOC的度数;(2)若∠AOB=86°,求∠DOE的度数.解:(1)∵∠AOE=15°,OE平分∠AOC,∴∠AOC=2×15°=30°,∵点O是直线FA上一点,∴∠FOC=180°﹣30°=150°.(2)∵OE平分∠AOC,OD平分∠BOC,∴∠EOC=12∠AOC,∠DOC=12∠BOC,∴∠DOE=12∠AOC+12∠BOC=12∠AOB=12×86°=43°.29、定义:从一个角的顶点出发,把这个角分成1:2的两个角的射线,叫做这个角的三分线,显然,一个角的三分线有两条,例如:如图1,若,则OC是的一条三分线.已知:如图是的一条三分线,且,若,求的度数.已知:,如图2,若是的两条三分线.求的度数.现以O为中心,将顺时针旋转n度得到,当OA恰好是的三分线时,求n的值.解:如图是的一条三分线,且,,又,;如图是的两条三分线,;经过大海的一番磨砺,卵石才变得更加美丽光滑。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020-2021苏科版七年级数学上册6章平面图形的认识(一)6.1-6.3阶段培优训练卷一、选择题1、图中给出的直线、射线、线段,根据各自的性质,能相交的是( )2、下列说法:①一根拉的很紧的细线就是直线;②直线的一半是射线;③一直线上的任意一点把这条直线分成两条射线;④经过两点只有一条线段;⑤在所有连接两点的线中,线段最短,其中正确的个数是( )A.1个B.2个C.3个D.4个3、图中共有线段()A.4条B.6条C.8条D.10条4、如果点C在AB上,下列表达式:①AC=AB;②AB=2BC;③AC=BC;④AC+BC=AB中,能表示C是AB中点的有( )A.1个B.2个C.3个D.4个5、如图,直线AB,CD相交于点O,已知∠AOC=80°,∠BOE:∠EOD=3:2,则∠AOE的度数是()A.100°B.116°C.120°D.132°6、如图,C为线段AD上一点,点B为CD的中点,且AD=9,BD=2.若点E在直线AD上,且EA=1,则BE的长为()A.4B.6或8C.6D.87、如图,下列表示角的方法错误的是( )A.∠1与∠AOB表示同一个角B.∠AOC可用么O来表示C.图中共有三个角∠AOB、∠AOC、∠BOC D.∠β表示的是∠BOC8、已知∠AOB=20°,∠AOC=4∠AOB,OD平分∠AOB,OM平分∠AOC,则∠MOD的度数是()A.20°或50°B.20°或60°C.30°或50°D.30°或60°9、已知∠A=115°,∠B是∠A的补角,则∠B的余角的度数是()A.65°B.115°C.15°D.25°10、下列说法中,正确的是()①已知∠A=40°,则∠A的余角是50°.②若∠1+∠2=90°,则∠1和∠2互为余角.③若∠1+∠2+∠3=180°,则∠1、∠2和∠3互为补角.④一个角的补角必为钝角.A.①,②B.①,②,③C.③,④,②D.③,④11、下列说法中,正确的是().①射线AB和射线BA是同一条射线;②若AB=BC,则点B为线段AC的中点;③同角的补角相等;④点C在线段AB上,M,N分别是线段AC,CB的中点. 若MN=5,则线段AB=10.A.①② B.②③ C.②④ D.③④12、下列说法:①一个角的补角大于这个角;②小于平角的角是钝角;③同角或等角的余角相等;④若∠1+∠2+∠3=180°,则∠1、∠2、∠3互为补角,其中正确的说法有()A.4个B.3个C.2个D.1个13、下面四个图形中∠1与∠2为互为对顶角的说法正确的是()A.都互为对顶角B.图1、图2、图3中的∠1、∠2互为对顶角C.都不互为对顶角D.只有图3中的∠1、∠2互为对顶角14、如图,直线AB,CD相交于点O,如果∠BOD=75°,OE把∠AOC分成两个角,且∠AOE:∠EOC=2:3.那么∠AOE的度数是()A.15°B.30°C.45°D.35°二、填空题15、平面上有四个点,经过其中每两个点画一条直线,那么一共可以画直线条16、如图,以点O为端点的射线有_______条,它们分别是______________,图中线段共有_______条.17、如图所示是一段火车路线图,A、B、C、D、E是五个火车站,在这条线路上往返行车需要印制种火车票.18、把一段弯曲的河流改直,可以缩短航程,其理由是19、如图,C、D是线段AB上的两个点,CD=8 cm,M是AC的中点,N是DB的中点,MN12 cm,那么线段AB的长等于_______cm.20、如图,点A,B是直线l上的两点,点C,D在直线l上且点C在点D的左侧,点D在点B的右侧.AC:CB=1:2,BD:AB=2:3.若CD=12,则AB=.21、如图,直线AB、CD相交于点O,OB平分∠EOD,∠COE=100°,则∠AOC=°.22、47°40′的余角为.23、如果∠α和∠β互补,且∠α>∠β,则下列表示∠β的余角的式子中:①90°﹣∠β;②∠α﹣90°;③(∠α+∠β);④(∠α﹣∠β).正确的有()A.4个B.3个C.2个D.1个24、如图,直线AB、CD相交于点O,射线OM平分∠AOC,∠MON=90°.若∠BON=50°,则∠BOD的度数为.三、解答题25、已知道四点A、B、C、D,按要求画图.(1)画直线AB、CD交于E点;(2)画线段AC、BD交于点F;(3)作射线BC.26、如图,线段AB=8 cm,C是线段AB上一点,AC=3.2 cm,M是AB的中点,N是AC的中点,求线段MN的长.27、如图:A、B、C、D四点在同一直线上.(1)若AB=CD.①比较线段的大小:AC BD(填“>”、“=”或“<”);②若BC=AC,且AC=12cm,则AD的长为cm;(2)若线段AD被点B、C分成了3:4:5三部分,且AB的中点M和CD的中点N之间的距离是16cm,求AD的长.28、如图,点O是直线FA上一点,OB,OD,OC,OE是射线,OE平分∠AOC,OD平分∠BOC.(1)若∠AOE=15°,求∠FOC的度数;(2)若∠AOB=86°,求∠DOE的度数.29、定义:从一个角的顶点出发,把这个角分成1:2的两个角的射线,叫做这个角的三分线,显然,一个角的三分线有两条,例如:如图1,若,则OC是的一条三分线.已知:如图是的一条三分线,且,若,求的度数.已知:,如图2,若是的两条三分线.求的度数.现以O为中心,将顺时针旋转n度得到,当OA恰好是的三分线时,求n的值.30、如图,直线AB,CD交于点O,OE平分∠COB,OF是∠EOD的角平分线.(1)说明:∠AOD=2∠COE;(2)若∠AOC=50°,求∠EOF的度数;(3)若∠BOF=15°,求∠AOC的度数.31、已知,如图,把直角三角形MON的直角顶点O放在直线AB上,射线OC平分∠AON.(1)如图1,若∠MOC=28°,求∠BON的度数.(2)若∠MOC=m°,则∠BON的度数为.(3)由(1)和(2),我们发现∠MOC和∠BON之间有什么样的数量关系?(4)若将三角形MON绕点O旋转到如图2所示的位置,试问∠MOC和∠BON之间的数量关系是否发生变化?请说明理由.2020-2021苏科版七年级数学上册6章平面图形的认识(一)6.1-6.3阶段培优训练卷(答案)一、选择题1、图中给出的直线、射线、线段,根据各自的性质,能相交的是( )【解析】A.射线延伸后两直线不能相交,故本选项错误;B.直线延伸后两直线不能相交,故本选项错误;C.射线和直线延伸后两直线不能相交,故本选项错误;D.射线延伸后两直线能相交,故本选项正确;故选D2、下列说法:①一根拉的很紧的细线就是直线;②直线的一半是射线;③一直线上的任意一点把这条直线分成两条射线;④经过两点只有一条线段;⑤在所有连接两点的线中,线段最短,其中正确的个数是( )A.1个B.2个C.3个D.4个【解析】①错误,细线始终有端点,所以它是线段.实际生活中除了光、声音之类的,不存在射线,更不用说直线;②错误,直线可以无限延长,所以没有一半;③正确,射线定义:只有一个端点,另一端无限延长,任意的一点可看作两条射线分别的端点;④正确,过两点作一条直线;⑤正确,两点之间线段最短.故选C3、图中共有线段()A.4条B.6条C.8条D.10条解:图中的线段有AC、AD、AE、AB;CD、CE、CB;DE、DB;EB;共10条,故选:D.4、如果点C在AB上,下列表达式:①AC=AB;②AB=2BC;③AC=BC;④AC+BC=AB中,能表示C是AB中点的有( )A.1个B.2个C.3个D.4个【解析】如图,能表示点C是线段AB的中点的是AB=BC,AC=BC,而AC=AB和AC+BC=AB都不能表示C是线段AB的中点,即正确的有②③两个.故选B.5、如图,直线AB,CD相交于点O,已知∠AOC=80°,∠BOE:∠EOD=3:2,则∠AOE的度数是()A.100°B.116°C.120°D.132°【解析】∵∠AOC=80°,∴∠DOB=80°,∠AOD=100°,∵∠BOE:∠EOD=3:2,∴∠DOE=80°×=32°,∴∠AOE=100°+32°=132°,故选:D.6、如图,C为线段AD上一点,点B为CD的中点,且AD=9,BD=2.若点E在直线AD上,且EA=1,则BE的长为()A.4B.6或8C.6D.8解:若E在线段DA的延长线,如图1,∵EA=1,AD=9,∴ED=EA+AD=1+9=10,∵BD=2,∴BE=ED﹣BD=10﹣2=8,若E线段AD上,如图2,EA=1,AD=9,∴ED=AD﹣EA=9﹣1=8,∵BD=2,∴BE=ED﹣BD=8﹣2=6,综上所述,BE的长为8或6.故选:B.7、如图,下列表示角的方法错误的是( )A.∠1与∠AOB表示同一个角B.∠AOC可用么O来表示C.图中共有三个角∠AOB、∠AOC、∠BOC D.∠β表示的是∠BOC【解析】以点O为顶点的角有3个,因此不能用单独的顶点字母表示一个角,所以B项错误.8、已知∠AOB=20°,∠AOC=4∠AOB,OD平分∠AOB,OM平分∠AOC,则∠MOD的度数是(C)A.20°或50°B.20°或60°C.30°或50°D.30°或60°9、已知∠A=115°,∠B是∠A的补角,则∠B的余角的度数是()A.65°B.115°C.15°D.25°【解答】解:∠A的补角∠B的度数是:180°﹣115°=65°,则余角是90°﹣65°=25°.故选:D.10、下列说法中,正确的是()①已知∠A=40°,则∠A的余角是50°.②若∠1+∠2=90°,则∠1和∠2互为余角.③若∠1+∠2+∠3=180°,则∠1、∠2和∠3互为补角.④一个角的补角必为钝角.A.①,②B.①,②,③C.③,④,②D.③,④【解析】①已知∠A=40°,则∠A的余角是50°,原说法正确;②若∠1+∠2=90°,则∠1和∠2互为余角,原说法正确;③若∠1+∠2+∠3=180°,则∠1、∠2和∠3不能互为补角,原说法错误;④一个角的补角不一定是钝角,原说法错误.说法正确的是①②,故选A.11、下列说法中,正确的是(D).①射线AB和射线BA是同一条射线;②若AB=BC,则点B为线段AC的中点;③同角的补角相等;④点C在线段AB上,M,N分别是线段AC,CB的中点. 若MN=5,则线段AB=10.A.①② B.②③ C.②④ D.③④12、下列说法:①一个角的补角大于这个角;②小于平角的角是钝角;③同角或等角的余角相等;④若∠1+∠2+∠3=180°,则∠1、∠2、∠3互为补角,其中正确的说法有()A.4个B.3个C.2个D.1个【解答】解:①已知∠A=140°,则∠A的补角=40°,原来的说法错误;②大于直角小于平角的角是钝角,原来的说法错误;③同角或等角的余角相等是正确的;④和为180度的两个角互为补角,原来的说法错误.故其中正确的说法有1个.故选:D.13、下面四个图形中∠1与∠2为互为对顶角的说法正确的是()A.都互为对顶角B.图1、图2、图3中的∠1、∠2互为对顶角C.都不互为对顶角D.只有图3中的∠1、∠2互为对顶角【解析】根据对顶角的定义可知:只有图3中的∠1、∠2互为对顶角,故选D.14、如图,直线AB,CD相交于点O,如果∠BOD=75°,OE把∠AOC分成两个角,且∠AOE:∠EOC=2:3.那么∠AOE的度数是()A.15°B.30°C.45°D.35°【解析】∵∠BOD=75°,∴∠AOC=75°,∵∠AOE:∠EOC=2:3,∴设∠AOE=2x°,∠EOC=3x°,则2x+3x=75,解得:x=15,∴∠AOE=30°,故选:B.二、填空题15、平面上有四个点,经过其中每两个点画一条直线,那么一共可以画直线条解:①当四点共线时,则经过每两个点画一条直线,那么共可以画直线1条;②当只有三点共线时,则经过每两个点画一条直线,那么共可以画直线4条;③当每三点不共线时,则经过每两个点画一条直线,那么共可以画直线6条.故答案为:1或4或6.16、如图,以点O为端点的射线有_______条,它们分别是______________,图中线段共有_______条.【解析】以O为端点的射线有OA、OB、OC、OD,共四条;一共有八条线段,分别是OD、OA、OB、OC、AD、AB、AC、BC.答案:4;射线OA、射线OB,、射线OC,、射线OD;8.17、如图所示是一段火车路线图,A、B、C、D、E是五个火车站,在这条线路上往返行车需要印制种火车票.解:图中线段有:AB、AC、AD、AE,BC、BD、BE,CD、CE、DE,共10条,∵每条线段应印2种车票,∴共需印10×2=20种车票.故答案为:20.18、把一段弯曲的河流改直,可以缩短航程,其理由是解:把一段弯曲的河流改直,可以缩短航程,其理由是两点之间,线段最短,故答案为:两点之间,线段最短.19、如图,C、D是线段AB上的两个点,CD=8 cm,M是AC的中点,N是DB的中点,MN12 cm,那么线段AB的长等于_______cm.【解析】∵M是AC的中点,N是DB的中点,∴AM=MC,BN=DN,∴AM+BN=MC+DN=MN-CD=4cm,∴AB=AM+BN+CD=12cm.20、如图,点A,B是直线l上的两点,点C,D在直线l上且点C在点D的左侧,点D在点B的右侧.AC:CB=1:2,BD:AB=2:3.若CD=12,则AB=.解:对C点的位置分情况讨论如下:①C点在A点的左边,∵AC:CB=1:2,BD:AB=2:3,假设AC=3k,则AB=3k,BD=2k,∴CD=3k+3k+2k=8k,∵CD=12,∴k=1.5,∴AB=4.5;②C点在线段AB上,∵AC:CB=1:2,BD:AB=2:3,假设AC=k,则CB=2k,BD=2k,∴CD=CB+BD=4k,∵CD=12,∴k=3,∴AB=AC+CB=3k=9;③C点在B点后,不符合题意,舍去;∴综上所述,AB=4.5或9.21、如图,直线AB、CD相交于点O,OB平分∠EOD,∠COE=100°,则∠AOC=°.【解析】∵∠COE=100°,∴∠DOE=80°,∵OB平分∠EOD,∴∠BOD=40°,∴∠AOC=40°,故答案为:40.22、47°40′的余角为.【解析】47°40′的余角的度数为:90°﹣47°40′=42°20′.故答案为42°20′.23、如果∠α和∠β互补,且∠α>∠β,则下列表示∠β的余角的式子中:①90°﹣∠β;②∠α﹣90°;③(∠α+∠β);④(∠α﹣∠β).正确的有()A.4个B.3个C.2个D.1个【解析】∵∠α和∠β互补,∴∠α+∠β=180°.因为90°﹣∠β+∠β=90°,所以①正确;又∠α﹣90°+∠β=∠α+∠β﹣90°=180°﹣90°=90°,②也正确;(∠α+∠β)+∠β=×180°+∠β=90°+∠β≠90°,所以③错误;(∠α﹣∠β)+∠β=(∠α+∠β)=×180°=90°,所以④正确.综上可知,①②④均正确.24、如图,直线AB、CD相交于点O,射线OM平分∠AOC,∠MON=90°.若∠BON=50°,则∠BOD的度数为.【解析】∵∠MON=90°.∠BON=50°,∴∠AOM=90°﹣50°′=40°,∵射线OM平分∠AOC,∴∠AOC=40°×2=80°,∴∠BOD=∠AOC=80°.故答案为:80°.三、解答题25、已知道四点A、B、C、D,按要求画图.(1)画直线AB、CD交于E点;(2)画线段AC、BD交于点F;(3)作射线BC.解:(1)(2)(3)26、如图,线段AB=8 cm,C是线段AB上一点,AC=3.2 cm,M是AB的中点,N是AC的中点,求线段MN的长.解:由AB=8,M是AB的中点,所以AM=4,又AC=3.2,所以CM=0.8cm;因为N是AC的中点,所以NC=1.6,所以MN=NC+CM=2.4cm.27、如图:A、B、C、D四点在同一直线上.(1)若AB=CD.①比较线段的大小:AC BD(填“>”、“=”或“<”);②若BC=AC,且AC=12cm,则AD的长为cm;(2)若线段AD被点B、C分成了3:4:5三部分,且AB的中点M和CD的中点N之间的距离是16cm,求AD的长.解:(1)①∵AB=CD,∴AB+BC=CD+BC,即,AC=BD,故答案为:=;②∵BC=AC,且AC=12cm,∴BC=×12=9(cm),∴AB=CD=AC﹣BC=12﹣9=3(cm),∴AD=AC+CD=12+3=15(cm),故答案为:15;(2)如图,设每份为x,则AB=3x,BC=4x,CD=5x,AD=12x,∵M是AB的中点,点N是CD的中点N,∴AM=BM=x,CN=DN=x,又∵MN=16,∴x+4x+x=16,解得,x=2,∴AD=12x=24(cm),答:AD的长为24cm.28、如图,点O是直线FA上一点,OB,OD,OC,OE是射线,OE平分∠AOC,OD平分∠BOC.(1)若∠AOE=15°,求∠FOC的度数;(2)若∠AOB=86°,求∠DOE的度数.解:(1)∵∠AOE=15°,OE平分∠AOC,∴∠AOC=2×15°=30°,∵点O是直线FA上一点,∴∠FOC=180°﹣30°=150°.(2)∵OE平分∠AOC,OD平分∠BOC,∴∠EOC=∠AOC,∠DOC=∠BOC,∴∠DOE=∠AOC+∠BOC=∠AOB=×86°=43°.29、定义:从一个角的顶点出发,把这个角分成1:2的两个角的射线,叫做这个角的三分线,显然,一个角的三分线有两条,例如:如图1,若,则OC是的一条三分线.已知:如图是的一条三分线,且,若,求的度数.已知:,如图2,若是的两条三分线.求的度数.现以O为中心,将顺时针旋转n度得到,当OA恰好是的三分线时,求n的值.解:如图是的一条三分线,且,,又,;如图是的两条三分线,;分两种情况:当OA是的三分线,且∠AOC{{'}}'/>时,,,;当OA是的三分线,且时,,,;综上所述,或.30、如图,直线AB,CD交于点O,OE平分∠COB,OF是∠EOD的角平分线.(1)说明:∠AOD=2∠COE;(2)若∠AOC=50°,求∠EOF的度数;(3)若∠BOF=15°,求∠AOC的度数.【解析】(1)∵OE平分∠COB,∴∠COE∠COB,∵∠AOD=∠COB,∴∠AOD=2∠COE;(2)∵∠AOC=50°,∴∠BOC=180°﹣50°=130°,∴∠EOC∠BOC=65°,∴∠DOE=180°﹣∠EOC=180°﹣65°=115°,∵OF平分∠DOE,∴∠EOF∠DOC=57.5°;(3)设∠AOC=∠BOD=α,则∠DOF=α+15°,∴∠EOF=∠DOF=α+15°,∴∠EOB=∠EOF+∠BOF=α+30°,∴∠COB=2∠EOB=2α+60°,而∠COB+∠BOD=180°,即,3α+60°=180°,解得,α=40°,即,∠AOC=40°.31、已知,如图,把直角三角形MON的直角顶点O放在直线AB上,射线OC平分∠AON.(1)如图1,若∠MOC=28°,求∠BON的度数.(2)若∠MOC=m°,则∠BON的度数为.(3)由(1)和(2),我们发现∠MOC和∠BON之间有什么样的数量关系?(4)若将三角形MON绕点O旋转到如图2所示的位置,试问∠MOC和∠BON之间的数量关系是否发生变化?请说明理由.【解析】(1)如图1,∵∠MOC=28°,∠MON=90°,∴∠NOC=90°﹣28°=62°,又∵OC平分∠AON,∴∠AOC=∠NOC=62°,∴∠BON=180°﹣2∠NOC=180°﹣62°×2=56°,(2)如图1,∵∠MOC=m°,∠MON=90°,∴∠NOC=90°﹣m°=(90﹣m)°,又∵OC平分∠AON,∴∠AOC=∠NOC=(90﹣m)°,∴∠BON=180°﹣2∠NOC=180°﹣(90﹣m)°×2=2m°,故答案为2m°;(3)由(1)和(2)可得:∠BON=2∠MOC;(4)∠MOC和∠BON之间的数量关系不发生变化,如图2,∵OC平分∠AON,∴∠AOC=∠NOC,∵∠MON=90°,∴∠AOC=∠NOC=90°﹣∠MOC,∴∠BON=180°﹣2∠NOC=180°﹣2(90°﹣∠MOC)=2∠MOC,即:∴∠BON=2∠MOC.。

相关文档
最新文档