四川省绵阳市某重点初中2020年招生考试数学试卷

合集下载

2020年四川省绵阳市中考数学试题及参考答案(word解析版)

2020年四川省绵阳市中考数学试题及参考答案(word解析版)

绵阳市2020年高中阶段学校招生暨初中学业水平考试数学(满分140分,考试时间120分钟)第Ⅰ卷(选择题共36分)一、选择题:本大题共12小题,每小题3分,共36分.每小题只有一个选项符合题目要求.1.﹣3的相反数是()A.﹣3 B.﹣C.D.32.如图是以正方形的边长为直径,在正方形内画半圆得到的图形,则此图形的对称轴有()A.2条B.4条C.6条D.8条3.近年来,华为手机越来越受到消费者的青睐.截至2019年12月底,华为5G手机全球总发货量突破690万台.将690万用科学记数法表示为()A.0.69×107B.69×105C.6.9×105D.6.9×1064.下列四个图形中,不能作为正方体的展开图的是()A.B.C.D.5.若有意义,则a的取值范围是()A.a≥1 B.a≤1 C.a≥0 D.a≤﹣16.《九章算术》中记载“今有共买羊,人出五,不足四十五;人出七,不足三,问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?此问题中羊价为()A.160钱B.155钱C.150钱D.145钱7.如图,在四边形ABCD中,∠A=∠C=90°,DF∥BC,∠ABC的平分线BE交DF于点G,GH⊥DF,点E恰好为DH的中点,若AE=3,CD=2,则GH=()A.1 B.2 C.3 D.48.将一个篮球和一个足球随机放入三个不同的篮子中,则恰有一个篮子为空的概率为()A.B.C.D.9.在螳螂的示意图中,AB∥DE,△ABC是等腰三角形,∠ABC=124°,∠CDE=72°,则∠ACD =()A.16°B.28°C.44°D.45°10.甲、乙二人同驾一辆车出游,各匀速行驶一半路程,共用3小时,到达目的地后,甲对乙说:“我用你所花的时间,可以行驶180km”,乙对甲说:“我用你所花的时间,只能行驶80km”.从他们的交谈中可以判断,乙驾车的时长为()A.1.2小时B.1.6小时C.1.8小时D.2小时11.三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小完全相同.当水面刚好淹没小孔时,大孔水面宽度为10米,孔顶离水面1.5米;当水位下降,大孔水面宽度为14米时,单个小孔的水面宽度为4米,若大孔水面宽度为20米,则单个小孔的水面宽度为()A.4米B.5米C.2米D.7米12.如图,在四边形ABCD中,AD∥BC,∠ABC=90°,AB=2,AD=2,将△ABC绕点C顺时针方向旋转后得△A′B′C,当A′B′恰好经过点D时,△B′CD为等腰三角形,若BB′=2,则AA′=()A.B.2C.D.第Ⅱ卷(非选择题共104分)二、填空题:本大题共6小题,每小题4分,共24分.13.因式分解:x3y﹣4xy3=.14.平面直角坐标系中,将点A(﹣1,2)先向左平移2个单位,再向上平移1个单位后得到的点A1的坐标为.15.若多项式xy|m﹣n|+(n﹣2)x2y2+1是关于x,y的三次多项式,则mn=.16.我市认真落实国家“精准扶贫”政策,计划在对口帮扶的贫困县种植甲、乙两种火龙果共100亩,根据市场调查,甲、乙两种火龙果每亩的种植成本分别为0.9万元、1.1万元,每亩的销售额分别为2万元、2.5万元,如果要求种植成本不少于98万元,但不超过100万元,且所有火龙果能全部售出,则该县在此项目中获得的最大利润是万元.(利润=销售额﹣种植成本)17.如图,四边形ABCD中,AB∥CD,∠ABC=60°,AD=BC=CD=4,点M是四边形ABCD内的一个动点,满足∠AMD=90°,则点M到直线BC的距离的最小值为.18.若不等式>﹣x﹣的解都能使不等式(m﹣6)x<2m+1成立,则实数m的取值范围是.三、解答题:本大题共7小题,共计90分.解答应写出文字说明、证明过程或演算步骤.19.(16分)(1)计算:|﹣3|+2cos60°﹣×﹣(﹣)0.(2)先化简,再求值:(x+2+)÷,其中x=﹣1.20.(12分)4月23日是“世界读书日”,甲、乙两个书店在这一天举行了购书优惠活动.甲书店:所有书籍按标价8折出售;乙书店:一次购书中标价总额不超过100元的按原价计费,超过100元后的部分打6折.(1)以x(单位:元)表示标价总额,y(单位:元)表示应支付金额,分别就两家书店的优惠方式,求y关于x的函数解析式;(2)“世界读书日”这一天,如何选择这两家书店去购书更省钱?21.(12分)为助力新冠肺炎疫情后经济的复苏,天天快餐公司积极投入到复工复产中.现有A、B 两家农副产品加工厂到该公司推销鸡腿,两家鸡腿的价格相同,品质相近.该公司决定通过检查质量来确定选购哪家的鸡腿.检察人员从两家分别抽取100个鸡腿,然后再从中随机各抽取10个,记录它们的质量(单位:克)如表:A加工厂74 75 75 75 73 77 78 72 76 75B加工厂78 74 78 73 74 75 74 74 75 75 (1)根据表中数据,求A加工厂的10个鸡腿质量的中位数、众数、平均数;(2)估计B加工厂这100个鸡腿中,质量为75克的鸡腿有多少个?(3)根据鸡腿质量的稳定性,该快餐公司应选购哪家加工厂的鸡腿?22.(12分)如图,△ABC内接于⊙O,点D在⊙O外,∠ADC=90°,BD 交⊙O于点E,交AC于点F,∠EAC=∠DCE,∠CEB=∠DCA,CD=6,AD=8.(1)求证:AB∥CD;(2)求证:CD是⊙O的切线;(3)求tan∠ACB的值.23.(12分)如图,在平面直角坐标系xOy中,一次函数的图象与反比例函数y=(k<0)的图象在第二象限交于A(﹣3,m),B(n,2)两点.(1)当m=1时,求一次函数的解析式;(2)若点E在x轴上,满足∠AEB=90°,且AE=2﹣m,求反比例函数的解析式.24.(12分)如图,抛物线过点A(0,1)和C,顶点为D,直线AC与抛物线的对称轴BD的交点为B(,0),平行于y轴的直线EF与抛物线交于点E,与直线AC交于点F,点F的横坐标为,四边形BDEF为平行四边形.(1)求点F的坐标及抛物线的解析式;(2)若点P为抛物线上的动点,且在直线AC上方,当△PAB面积最大时,求点P的坐标及△PAB面积的最大值;(3)在抛物线的对称轴上取一点Q,同时在抛物线上取一点R,使以AC为一边且以A,C,Q,R为顶点的四边形为平行四边形,求点Q和点R的坐标.25.(14分)如图,在矩形ABCD中,对角线相交于点O,⊙M为△BCD的内切圆,切点分别为N,P,Q,DN=4,BN=6.(1)求BC,CD;(2)点H从点A出发,沿线段AD向点D以每秒3个单位长度的速度运动,当点H运动到点D 时停止,过点H作HI∥BD交AC于点I,设运动时间为t秒.①将△AHI沿AC翻折得△AH′I,是否存在时刻t,使点H′恰好落在边BC上?若存在,求t的值;若不存在,请说明理由;②若点F为线段CD上的动点,当△OFH为正三角形时,求t的值.答案与解析第Ⅰ卷(选择题共36分)一、选择题:本大题共12小题,每小题3分,共36分.每小题只有一个选项符合题目要求.1.﹣3的相反数是()A.﹣3 B.﹣C.D.3【知识考点】相反数.【思路分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解题过程】解:﹣3的相反数是3,故选:D.【总结归纳】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.2.如图是以正方形的边长为直径,在正方形内画半圆得到的图形,则此图形的对称轴有()A.2条B.4条C.6条D.8条【知识考点】正方形的性质;轴对称的性质;轴对称图形.【思路分析】根据轴对称的性质即可画出对称轴进而可得此图形的对称轴的条数.【解题过程】解:如图,因为以正方形的边长为直径,在正方形内画半圆得到的图形,所以此图形的对称轴有4条.故选:B.【总结归纳】本题考查了正方形的性质、轴对称的性质、轴对称图形,解决本题的关键是掌握轴对称的性质.3.近年来,华为手机越来越受到消费者的青睐.截至2019年12月底,华为5G手机全球总发货量突破690万台.将690万用科学记数法表示为()A.0.69×107B.69×105C.6.9×105D.6.9×106【知识考点】科学记数法—表示较大的数.【思路分析】绝对值大于10的数用科学记数法表示一般形式为a×10n,n为整数位数减1.【解题过程】解:690万=6900000=6.9×106.故选:D.【总结归纳】本题考查了科学记数法﹣表示较大的数,科学记数法中a的要求和10的指数n的表示规律为关键,4.下列四个图形中,不能作为正方体的展开图的是()A.B.C.D.【知识考点】几何体的展开图.【思路分析】根据正方体的展开图的11种不同情况进行判断即可.【解题过程】解:正方体展开图的11种情况可分为“1﹣4﹣1型”6种,“2﹣3﹣1型”3种,“2﹣2﹣2型”1种,“3﹣3型”1种,因此选项D符合题意,故选:D.【总结归纳】本题考查正方体的展开图,理解和掌握正方体的展开图的11种不同情况,是正确判断的前提.5.若有意义,则a的取值范围是()A.a≥1 B.a≤1 C.a≥0 D.a≤﹣1【知识考点】二次根式有意义的条件.【思路分析】直接利用二次根式有意义的条件分析得出答案.【解题过程】解:若有意义,则a﹣1≥0,解得:a≥1.故选:A.【总结归纳】此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.6.《九章算术》中记载“今有共买羊,人出五,不足四十五;人出七,不足三,问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?此问题中羊价为()A.160钱B.155钱C.150钱D.145钱【知识考点】一元一次方程的应用;二元一次方程组的应用.【思路分析】设共有x人合伙买羊,羊价为y钱,根据“若每人出5钱,还差45钱;若每人出7钱,还差3钱”,即可得出关于x,y的二元一次方程组,解之即可得出结论.【解题过程】解:设共有x人合伙买羊,羊价为y钱,依题意,得:,解得:.故选:C.【总结归纳】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.7.如图,在四边形ABCD中,∠A=∠C=90°,DF∥BC,∠ABC的平分线BE交DF于点G,GH⊥DF,点E恰好为DH的中点,若AE=3,CD=2,则GH=()A.1 B.2 C.3 D.4【知识考点】角平分线的性质;勾股定理.【思路分析】过E作EM⊥BC,交FD于点N,可得EN⊥GD,得到EN与GH平行,再由E为HD中点,得到HG=2EN,同时得到四边形NMCD为矩形,再由角平分线定理得到AE=ME,进而求出EN的长,得到HG的长.【解题过程】解:过E作EM⊥BC,交FD于点N,∵DF∥BC,∴EN⊥DF,∴EN∥HG,∴=,∵E为HD中点,∴=,∴=,即HG=2EN,∴∠DNM=∠HMC=∠C=90°,∴四边形NMCD为矩形,∴MN=DC=2,∵BE平分∠ABC,EA⊥AB,EM⊥BC,∴EM=AE=3,∴EN=EM﹣MN=3﹣2=1,则HG=2EN=2.故选:B.【总结归纳】此题考查了勾股定理,矩形的判定与性质,角平分线定理,以及平行得比例,熟练掌握定理及性质是解本题的关键.8.将一个篮球和一个足球随机放入三个不同的篮子中,则恰有一个篮子为空的概率为()A.B.C.D.【知识考点】列表法与树状图法.【思路分析】根据题意画出树状图得出所有等可能的情况数,找出恰有一个篮子为空的情况数,然后根据概率公式即可得出答案.【解题过程】解:三个不同的篮子分别用A、B、C表示,根据题意画图如下:共有9种等可能的情况数,其中恰有一个篮子为空的有6种,则恰有一个篮子为空的概率为=.故选:A.【总结归纳】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.9.在螳螂的示意图中,AB∥DE,△ABC是等腰三角形,∠ABC=124°,∠CDE=72°,则∠ACD =()A.16°B.28°C.44°D.45°【知识考点】平行线的性质;等腰三角形的性质.【思路分析】延长ED,交AC于F,根据等腰三角形的性质得出∠A=∠ACB=28°,根据平行线的性质得出∠CFD=∠A=28°,由三角形外角的性质即可求得∠ACD的度数.【解题过程】解:延长ED,交AC于F,∵△ABC是等腰三角形,∠ABC=124°,∴∠A=∠ACB=28°,∵AB∥DE,∴∠CFD=∠A=28°,∵∠CDE=∠CFD+∠ACD=72°,∴∠ACD=72°﹣28°=44°,故选:C.【总结归纳】本题考查了等腰三角形的性质,平行线的性质,三角形外角的性质,熟练掌握性质定理是解题的关键.10.甲、乙二人同驾一辆车出游,各匀速行驶一半路程,共用3小时,到达目的地后,甲对乙说:“我用你所花的时间,可以行驶180km”,乙对甲说:“我用你所花的时间,只能行驶80km”.从他们的交谈中可以判断,乙驾车的时长为()A.1.2小时B.1.6小时C.1.8小时D.2小时【知识考点】分式方程的应用.【思路分析】设乙驾车时长为x小时,则甲驾车时长为(3﹣x)小时,根据两人对话可知:甲的速度为km/h,乙的速度为km/h,根据“各匀速行驶一半路程”列出方程求解即可.【解题过程】解:设乙驾车时长为x小时,则甲驾车时长为(3﹣x)小时,根据两人对话可知:甲的速度为km/h,乙的速度为km/h,根据题意得:=,解得:x1=1.8或x2=9,经检验:x1=1.8或x2=9是原方程的解,x2=9不合题意,舍去,故选:C.【总结归纳】考查了分式方程的应用,解题的关键是能够分别表示出各自的实际速度,难度中等.11.三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小完全相同.当水面刚好淹没小孔时,大孔水面宽度为10米,孔顶离水面1.5米;当水位下降,大孔水面宽度为14米时,单个小孔的水面宽度为4米,若大孔水面宽度为20米,则单个小孔的水面宽度为()A.4米B.5米C.2米D.7米【知识考点】二次函数的应用.【思路分析】根据题意,可以画出相应的抛物线,然后即可得到大孔所在抛物线解析式,再求出顶点为A的小孔所在抛物线的解析式,将x=﹣10代入可求解.【解题过程】解:如图,建立如图所示的平面直角坐标系,由题意可得MN=4,EF=14,BC=10,DO=,设大孔所在抛物线解析式为y=ax2+,∵BC=10,∴点B(﹣5,0),∴0=a×(﹣5)2+,∴a=﹣,∴大孔所在抛物线解析式为y=﹣x2+,设点A(b,0),则设顶点为A的小孔所在抛物线的解析式为y=m(x﹣b)2,∵EF=14,∴点E的横坐标为﹣7,∴点E坐标为(﹣7,﹣),∴﹣=m(x﹣b)2,∴x1=+b,x2=﹣+b,∴MN=4,∴|+b﹣(﹣+b)|=4∴m=﹣,∴顶点为A的小孔所在抛物线的解析式为y=﹣(x﹣b)2,∵大孔水面宽度为20米,∴当x=﹣10时,y=﹣,∴﹣=﹣(x﹣b)2,∴x1=+b,x2=﹣+b,∴单个小孔的水面宽度=|(+b)﹣(﹣+b)|=5(米),故选:B.【总结归纳】本题考查二次函数的应用,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.12.如图,在四边形ABCD中,AD∥BC,∠ABC=90°,AB=2,AD=2,将△ABC绕点C 顺时针方向旋转后得△A′B′C,当A′B′恰好经过点D时,△B′CD为等腰三角形,若BB′=2,则AA′=()A.B.2C.D.【知识考点】等腰三角形的判定;直角梯形;旋转的性质.【思路分析】过D作DE⊥BC于E,则∠DEC=∠DEB=90°,根据矩形的想知道的BE=AD=2,DE=AB=2,根据旋转的性质得到∠DB′C=∠ABC=90°,B′C=BC,A′C=AC,∠A′CA=∠B′CB,推出△B′CD为等腰直角三角形,得到CD=B′C,设B′C=BC=x,则CD=x,CE=x﹣2,根据勾股定理即可得到结论.【解题过程】解:过D作DE⊥BC于E,则∠DEC=∠DEB=90°,∵AD∥BC,∠ABC=90°,∴∠DAB=∠ABC=90°,∴四边形ABED是矩形,∴BE=AD=2,DE=AB=2,∵将△ABC绕点C顺时针方向旋转后得△A′B′C,∴∠DB′C=∠ABC=90°,B′C=BC,A′C=AC,∠A′CA=∠B′CB,∴△A′CA∽△B′CB,∴=,∵△B′CD为等腰三角形,∴△B′CD为等腰直角三角形,∴CD=B′C,设B′C=BC=x,则CD=x,CE=x﹣2,∵CD2=CE2+DE2,∴(x)2=(x﹣2)2+(2)2,∴x=4(负值舍去),∴BC=4,∴AC==2,∴=,∴A′A=,故选:A.【总结归纳】本题考查了旋转的性质,等腰直角三角形的性质,矩形的判定和性质,相似三角形的判定和性质,勾股定理,正确的识别图形是解题的关键.第Ⅱ卷(非选择题共104分)二、填空题:本大题共6小题,每小题4分,共24分.13.因式分解:x3y﹣4xy3=.【知识考点】提公因式法与公式法的综合运用.【思路分析】先提取公因式xy,再对余下的多项式利用平方差公式继续分解.【解题过程】解:x3y﹣4xy3=xy(x2﹣4y2)=xy(x+2y)(x﹣2y).故答案为:xy(x+2y)(x﹣2y).【总结归纳】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.14.平面直角坐标系中,将点A(﹣1,2)先向左平移2个单位,再向上平移1个单位后得到的点A1的坐标为.【知识考点】坐标与图形变化﹣平移.【思路分析】根据在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.(即:横坐标,右移加,左移减;纵坐标,上移加,下移减.)即可得结论.【解题过程】解:∵将点A(﹣1,2)先向左平移2个单位,横坐标﹣2,再向上平移1个单位纵坐标+1,∴平移后得到的点A1的坐标为:(﹣3,3).故答案为:(﹣3,3).【总结归纳】本题考查了坐标与图形变化﹣平移,解决本题的关键是掌握平移定义.15.若多项式xy|m﹣n|+(n﹣2)x2y2+1是关于x,y的三次多项式,则mn=.【知识考点】多项式.【思路分析】直接利用多项式的次数确定方法得出答案.【解题过程】解:∵多项式xy|m﹣n|+(n﹣2)x2y2+1是关于x,y的三次多项式,∴n﹣2=0,1+|m﹣n|=3,∴n=2,|m﹣n|=2,∴m﹣n=2或n﹣m=2,∴m=4或m=0,∴mn=0或8.故答案为:0或8.【总结归纳】此题主要考查了多项式,正确掌握多项式的次数确定方法是解题关键.16.我市认真落实国家“精准扶贫”政策,计划在对口帮扶的贫困县种植甲、乙两种火龙果共100亩,根据市场调查,甲、乙两种火龙果每亩的种植成本分别为0.9万元、1.1万元,每亩的销售额分别为2万元、2.5万元,如果要求种植成本不少于98万元,但不超过100万元,且所有火龙果能全部售出,则该县在此项目中获得的最大利润是万元.(利润=销售额﹣种植成本)【知识考点】一元一次不等式组的应用;F一次函数的应用.【思路分析】设甲种火龙果种植x亩,乙钟火龙果种植(100﹣x)亩,此项目获得利润w,根据题意列出不等式求出x的范围,然后根据题意列出w与x的函数关系即可求出答案.【解题过程】解:设甲种火龙果种植x亩,乙钟火龙果种植(100﹣x)亩,此项目获得利润w,甲、乙两种火龙果每亩利润为1.1万元,1.4万元,由题意可知:,解得:50≤x≤60,此项目获得利润w=1.1x+1.4(100﹣x)=140﹣0.3x,当x=50时,w的最大值为140﹣15=125万元.【总结归纳】本题考查一次函数,解题的关键是根据题意给出的等量关系列出函数关系式,本题属于中等题型.17.如图,四边形ABCD中,AB∥CD,∠ABC=60°,AD=BC=CD=4,点M是四边形ABCD 内的一个动点,满足∠AMD=90°,则点M到直线BC的距离的最小值为.【知识考点】垂线段最短;三角形三边关系;勾股定理.【思路分析】取AD的中点O,连接OM,过点M作ME⊥BC交BC的延长线于E,点点O作OF⊥BC于F,交CD于G,则OM+ME≥OF.求出OM,OF即可解决问题.【解题过程】解:取AD的中点O,连接OM,过点M作ME⊥BC交BC的延长线于E,点点O 作OF⊥BC于F,交CD于G,则OM+ME≥OF.∵∠AMD=90°,AD=4,OA=OD,∴OM=AD=2,∵AB∥CD,∴∠GCF=∠B=60°,∴∠DGO=∠CGE=30°,∵AD=BC,∴∠DAB=∠B=60°,∴∠ADC=∠BCD=120°,∴∠DOG=30°=∠DGO,∴DG=DO=2,∵CD=4,∴CG=2,∴OG=2,GF=,OF=3,∴ME≥OF﹣OM=3﹣2,∴当O,M,E共线时,ME的值最小,最小值为3﹣2.【总结归纳】本题考查解直角三角形,垂线段最短,直角三角形斜边中线的性质等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.18.若不等式>﹣x﹣的解都能使不等式(m﹣6)x<2m+1成立,则实数m的取值范围是.【知识考点】解一元一次不等式.【思路分析】解不等式>﹣x﹣得x>﹣4,据此知x>﹣4都能使不等式(m﹣6)x<2m+1成立,再分m﹣6=0和m﹣6≠0两种情况分别求解.【解题过程】解:解不等式>﹣x﹣得x>﹣4,∵x>﹣4都能使不等式(m﹣6)x<2m+1成立,①当m﹣6=0,即m=6时,则x>﹣4都能使0•x<13恒成立;②当m﹣6≠0,则不等式(m﹣6)x<2m+1的解要改变方向,∴m﹣6<0,即m<6,∴不等式(m﹣6)x<2m+1的解集为x>,∵x>﹣4都能使x>成立,∴﹣4≥,∴﹣4m+24≤2m+1,∴m≥,综上所述,m的取值范围是≤m≤6.故答案为:≤m≤6.【总结归纳】本题主要考查解一元一次不等式,解题的关键是掌握解一元一次不等式的步骤和依据及不等式的基本性质.三、解答题:本大题共7小题,共计90分.解答应写出文字说明、证明过程或演算步骤.19.(16分)(1)计算:|﹣3|+2cos60°﹣×﹣(﹣)0.(2)先化简,再求值:(x+2+)÷,其中x=﹣1.【知识考点】分式的化简求值;零指数幂;分母有理化;二次根式的混合运算;特殊角的三角函数值.【思路分析】(1)先去绝对值符号、代入三角函数值、化简二次根式、计算零指数幂,再计算乘法,最后计算加减可得;(2)先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.【解题过程】解:(1)原式=3﹣+2×﹣×2﹣1=3﹣+﹣2﹣1=0;(2)原式=(+)÷=•=,当x=﹣1时,原式===1﹣.【总结归纳】本题主要考查实数的混合运算与分式的化简求值,解题的关键是掌握绝对值性质、二次根式的性质、零指数幂的规定、熟记三角函数值及分式的混合运算顺序和运算法则.20.(12分)4月23日是“世界读书日”,甲、乙两个书店在这一天举行了购书优惠活动.甲书店:所有书籍按标价8折出售;乙书店:一次购书中标价总额不超过100元的按原价计费,超过100元后的部分打6折.(1)以x(单位:元)表示标价总额,y(单位:元)表示应支付金额,分别就两家书店的优惠方式,求y关于x的函数解析式;(2)“世界读书日”这一天,如何选择这两家书店去购书更省钱?【知识考点】一元一次不等式的应用;一次函数的应用.【思路分析】(1)根据题意给出的等量关系即可求出答案.(2)先求出两书店所需费用相同时的书本数量,从而可判断哪家书店省钱.【解题过程】解:(1)甲书店:y=0.8x,乙书店:y=.(2)令0.8x=0.6x+40,解得:x=200,当x<200时,选择甲书店更省钱,当x=200,甲乙书店所需费用相同,当x>200,选择乙书店更省钱.【总结归纳】本题考查一次函数的应用,解题的关键是正确找出题中的等量关系,本题属于基础题型.21.(12分)为助力新冠肺炎疫情后经济的复苏,天天快餐公司积极投入到复工复产中.现有A、B两家农副产品加工厂到该公司推销鸡腿,两家鸡腿的价格相同,品质相近.该公司决定通过检查质量来确定选购哪家的鸡腿.检察人员从两家分别抽取100个鸡腿,然后再从中随机各抽取10个,记录它们的质量(单位:克)如表:A加工厂74 75 75 75 73 77 78 72 76 75B加工厂78 74 78 73 74 75 74 74 75 75 (1)根据表中数据,求A加工厂的10个鸡腿质量的中位数、众数、平均数;(2)估计B加工厂这100个鸡腿中,质量为75克的鸡腿有多少个?(3)根据鸡腿质量的稳定性,该快餐公司应选购哪家加工厂的鸡腿?【知识考点】用样本估计总体;算术平均数;中位数;众数;方差.【思路分析】(1)根据中位数、众数和平均数的计算公式分别进行解答即可;(2)用总数乘以质量为75克的鸡腿所占的百分比即可;(3)根据方差的定义,方差越小数据越稳定即可得出答案.【解题过程】解:(1)把这些数从小到大排列,最中间的数是第5和第6个数的平均数,则中位数是=75(克);因为75出现了4次,出现的次数最多,所以众数是75克;平均数是:(74+75+75+75+73+77+78+72+76+75)=75(克);(2)根据题意得:100×=30(个),答:质量为75克的鸡腿有30个;(3)选B加工厂的鸡腿.∵A、B平均值一样,B的方差比A的方差小,B更稳定,∴选B加工厂的鸡腿.【总结归纳】本题考查了方差、平均数、中位数、众数,熟悉计算公式和意义是解题的关键.22.(12分)如图,△ABC内接于⊙O,点D在⊙O外,∠ADC=90°,BD交⊙O于点E,交AC 于点F,∠EAC=∠DCE,∠CEB=∠DCA,CD=6,AD=8.(1)求证:AB∥CD;(2)求证:CD是⊙O的切线;(3)求tan∠ACB的值.【知识考点】圆的综合题.【思路分析】(1)由圆周角定理与已知得∠BAC=∠DCA,即可得出结论;(2)连接EO并延长交⊙O于G,连接CG,则EG为⊙O的直径,∠ECG=90°,证明∠DCE =∠EGC=∠OCG,得出∠DCE+∠OCE=90°,即可得出结论;(3)由三角函数定义求出cos∠ACD=,证出∠ABC=∠ACD=∠CAB,求出BC=AC=10,AB=12,过点B作BG⊥AC于C,设GC=x,则AG=10﹣x,由勾股定理得出方程,解方程得GC=,由勾股定理求出BG=,由三角函数定义即可得答案.【解题过程】(1)证明:∵∠BAC=∠CEB,∠CEB=∠DCA,∴∠BAC=∠DCA,∴AB∥CD;(2)证明:连接EO并延长交⊙O于G,连接CG,如图1所示:则EG为⊙O的直径,∴∠ECG=90°,∵OC=OG,∴∠OCG=∠EGC,∵∠EAC=∠EGC,∠EAC=∠DCE,∴∠DCE=∠EGC=∠OCG,∵∠OCG+∠OCE=∠ECG=90°,∴∠DCE+∠OCE=90°,即∠DCO=90°,∵OC是⊙O的半径,∴CD是⊙O的切线;(3)解:在Rt△ADC中,由勾股定理得:AC===10,∴cos∠ACD===,∵CD是⊙O的切线,AB∥CD,∴∠ABC=∠ACD=∠CAB,∴BC=AC=10,AB=2BC•cos∠ABC=2×10×=12,过点B作BG⊥AC于C,如图2所示:设GC=x,则AG=10﹣x,由勾股定理得:AB2﹣AG2=BG2=BC2﹣GC2,即:122﹣(10﹣x)2=102﹣x2,解得:x=,∴GC=,∴BG===,∴tan∠ACB===.【总结归纳】本题是圆的综合题目,考查了切线的判定与性质、圆周角定理、平行线的判定与性质、等腰三角形的判定与性质、三角函数定义、勾股定理等知识;本题综合性强,熟练掌握圆周角定理和切线的判定是解题的关键.23.(12分)如图,在平面直角坐标系xOy中,一次函数的图象与反比例函数y=(k<0)的图象在第二象限交于A(﹣3,m),B(n,2)两点.(1)当m=1时,求一次函数的解析式;(2)若点E在x轴上,满足∠AEB=90°,且AE=2﹣m,求反比例函数的解析式.【知识考点】反比例函数综合题.【思路分析】(1)将点A坐标代入反比例函数解析式中求出k,进而得出点B坐标,最后用待定系数法求出直线AB的解析式;(2)先判断出BF=AE,进而得出△AEG≌Rt△BFG(AAS),得出AG=BG,EG=FG,即BE =BG+EG=AG+FG=AF,再求出m=﹣n,进而得出BF=2+n,MN=n+3,即BE=AF=n+3,再判断出△AME∽△ENB,得出==,得出ME=BN=,最后用勾股定理求出m,即可得出结论.【解题过程】解:(1)当m=1时,点A(﹣3,1),∵点A在反比例函数y=的图象上,∴k=﹣3×1=﹣3,∴反比例函数的解析式为y=﹣;∵点B(n,2)在反比例函数y=﹣图象上,∴2n=﹣3,∴n=﹣,设直线AB的解析式为y=ax+b,则,∴,∴直线AB的解析式为y=x+3;(2)如图,过点A作AM⊥x轴于M,过点B作BN⊥x轴于N,过点A作AF⊥BN于F,交BE于G,则四边形AMNF是矩形,∴FN=AM,AF=MN,∵A(﹣3,m),B(n,2),∴BF=2﹣m,∵AE=2﹣m,∴BF=AE,在△AEG和△BFG中,,∴△AEG≌Rt△BFG(AAS),∴AG=BG,EG=FG,∴BE=BG+EG=AG+FG=AF,∵点A(﹣3,m),B(n,2)在反比例函数y=的图象上,∴k=﹣3m=2n,∴m=﹣n,∴BF=BN﹣FN=BN﹣AM=2﹣m=2+n,MN=n﹣(﹣3)=n+3,∴BE=AF=n+3,∵∠AEM+∠MAE=90°,∠AEM+∠BEN=90°,∴∠MAE=∠NEB,∵∠AME=∠ENB=90°,∴△AME∽△ENB,∴====,∴ME=BN=,在Rt△AME中,AM=m,AE=2﹣m,根据勾股定理得,AM2+ME2=AE2,∴m2+()2=(2﹣m)2,∴m=,∴k=﹣3m=﹣,∴反比例函数的解析式为y=﹣.【总结归纳】此题是反比例函数综合题,主要考查了待定系数法,勾股定理,矩形的判定和性质,全等三角形的判定和性质,构造出△AEG≌△BFG(AAS)是解本题的关键.24.(12分)如图,抛物线过点A(0,1)和C,顶点为D,直线AC与抛物线的对称轴BD的交点为B(,0),平行于y轴的直线EF与抛物线交于点E,与直线AC交于点F,点F的横坐标为,四边形BDEF为平行四边形.(1)求点F的坐标及抛物线的解析式;(2)若点P为抛物线上的动点,且在直线AC上方,当△PAB面积最大时,求点P的坐标及△PAB面积的最大值;(3)在抛物线的对称轴上取一点Q,同时在抛物线上取一点R,使以AC为一边且以A,C,Q,R为顶点的四边形为平行四边形,求点Q和点R的坐标.【知识考点】二次函数综合题.【思路分析】(1)由待定系数法求出直线AB的解析式为y=﹣x+1,求出F点的坐标,由平。

2020年四川绵阳中考数学试卷(解析版)

2020年四川绵阳中考数学试卷(解析版)

2020年四川绵阳中考数学试卷(解析版)一、选择题(本大题共12小题,每小题3分,共36分)1.的相反数是( ).A. B. C. D.2.如图是以正方形的边长为直径,在正方形内画半圆得到的图形,则此图形的对称轴有( ).A.条B.条C.条D.条3.近年来,华为手机越来越受到消费者的青睐.截至年月底,华为手机全球总发货量突破万台,将万用科学记数法表示为( ).A. B. C. D.4.下列四个图形中,不能作为正方体的展开图的是( ).A.B.C.D.5.若有意义,则的取值范围是( ).A.B.C.D.6.《九章算术》中记载“今有共买羊,人出五,不足四十五;人出七,不足三,问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出钱,还差钱;若每人出钱,还差钱,问合伙人数、羊价各是多少?此问题中羊价为( ).A.钱B.钱C.钱D.钱7.如图,在四边形中,,,的平分线交于点,,点恰好为的中点,若,,则( ).A.B.C.D.8.将一个篮球和一个足球随机放入三个不同的篮子中,则恰有一个篮子为空的概率为( ).A.B.C.D.9.在螳螂的示意图中,,是等腰三角形,,,则( ).A.B.C.D.10.甲、乙二人同驾一辆车出游,各匀速行驶一半路程,共用小时,到达目的地后,甲对乙说:“我用你所花的时间,可以行驶”,乙对甲说:“我用你所花的时间,只能行驶”.从他们的交谈中可以判断,乙驾车的时长为( ).A.小时B.小时C.小时D.小时11.三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小完全相同,当水面刚好淹没小孔时,大孔水面宽度为米,孔顶离水面米;当水位下降,大孔水面宽度为米时,单个小孔的水面宽度为米,若大孔水面宽度为米,则单个小孔的水面宽度为( ).A.米B.米C.米D.米12.如图,在四边形中,,,,,将绕点顺时针方向旋转后得,当恰好经过点时,为等腰三角形,若,则( ).A.B.C.D.二、填空题(本大题共6小题,每小题4分,共24分)13.因式分解: .14.平面直角坐标系中,将点先向左平移个单位,再向上平移个单位后得到的点的坐标为 .15.若多项式是关于,的三次多项式,则 .16.我市认真落实国家“精准扶贫”政策,计划在对口帮扶的贫困县种植甲、乙两种火龙果共亩,根据市场调查,甲、乙两种火龙果每亩的种植成本分别为万元、万元,每亩的销售额分别为万元、万元,如果要求种植成本不少于万元,但不超过万元,且所有火龙果能全部售出,则该县在此项目中获得的最大利润是 万元.(利润销售额种植成本)17.如图,四边形中,,,,点是四边形内的一个动点,满足,则点到直线的距离的最小值为 .18.若不等式的解都能使不等式成立,则实数的取值范围是 .三、解答题(本大题共7小题,共90分)(1)(2)19.按要求解答.计算:.先化简,再求值:,其中.(1)(2)20.月日是“世界读书日”,甲、乙两个书店在这一天举行了购书优惠活动.甲书店:所有书籍按标价折出售;乙书店:一次购书中标价总额不超过元的按原价计费,超过元后的部分打折.以(单位:元)表示标价总额,(单位:元)表示应支付金额,分别就两家书店的优惠方式,求关于的函数解析式.“世界读书日”这一天,如何选择这两家书店去购书更省钱?(1)(2)(3)21.为助力新冠肺炎疫情后经济的复苏,天天快餐公司积极投入到复工复产中.现有、两家农副产品加工厂到该公司推销鸡腿,两家鸡腿的价格相同,品质相近.该公司决定通过检查质量来确定选购哪家的鸡腿.检察人员从两家分别抽取个鸡腿,然后再从中随机各抽取个,记录它们的质量(单位:克)如表:加工厂加工厂根据表中数据,求加工厂的个鸡腿质量的中位数、众数、平均数;估计加工厂这个鸡腿中,质量为克的鸡腿有多少个?根据鸡腿质量的稳定性,该快餐公司应选购哪家加工厂的鸡腿?(1)22.如图,内接于⊙,点在⊙外,,交⊙于点,交于点,,,,.求证:.(2)(3)求证:是⊙的切线.求的值.(1)(2)23.如图,在平面直角坐标系中,一次函数的图象与反比例函数的图象在第二象限交于,两点.当时,求一次函数的解析式.若点在轴上,满足,且,求反比例函数的解析式.(1)(2)(3)24.如图,抛物线过点和,顶点为,直线与抛物线的对称轴的交点为,平行于轴的直线与抛物线交于点,与直线交于点,点的横坐标为,四边形为平行四边形.xy求点的坐标及抛物线的解析式.若点为抛物线上的动点,且在直线上方,当面积最大时,求点的坐标及面积的最大值.在抛物线的对称轴上取一点,同时在抛物线上取一点,使以为一边且以,,,为顶点的四边形为平行四边形,求点和点的坐标.xy(备用图)(1)12(2)25.如图,在矩形中,对角线相交于点,⊙为的内切圆,切点分别为,,,,.求,.点从点出发,沿线段向点以每秒个单位长度的速度运动,当点运动到点时停止,过点作交于点,设运动时间为秒.将沿翻折得,是否存在时刻,使点恰好落在边上?若存在,求的值;若不存在,请说明理由.若点为线段上的动点,当为正三角形时,求的值.备用图备用图【答案】解析:的相反数是.故选:.解析:如图,因为以正方形的边长为直径,在正方形内画半圆得到的图形,所以此图形的对称轴有条.故选:.解析:万.故选.解析:正方体展开图的种情况可分为“型”种,“型”种,“型”种,“型”种,因此选项符合题意,故选.D 1.B 2.D 3.D 4.A5.解析:若有意义,则,解得:.故选.解析:设共有人合伙买羊,羊价为钱,依题意,得:,解得:.故选.解析:过作,交于点,∵,∴,∴,∴,∵为中点,∴,∴,即,∴,∴四边形为矩形,∴,∵平分,,,∴,C 6.B 7.∴,则.故选.解析:三个不同的篮子分别用、、表示,根据题意画图如下:开始共有种等可能的情况数,其中恰有一个篮子为空的有种,则恰有一个篮子为空的概率为.故答案选:.解析:延长,交于,∵是等腰三角形,,∴,∵,∴,∵,∴,故选.解析:A 8.C 9.C 10.设乙驾车时长为小时,则甲驾车时长为小时,根据两人对话可知:甲的速度为,乙的速度为,根据题意得:,解得:或,经检验:或是原方程的解,不合题意,舍去,故选.解析:如图,建立如图所示的平面直角坐标系,由题意可得米,米,米,米,设大孔所在抛物线解析式为,∵米,∴点,∴,∴,∴大孔所在抛物线解析式为,设点,则设顶点为的小孔所在抛物线的解析式为,∵米,∴点的横坐标为,∴点坐标为,∴,∴,,∴米,B 11.∴米,∴,∴顶点为的小孔所在抛物线的解析式为,∵大孔水面宽度为米,∴当时,,∴,∴,,∴单个小孔的水面宽度(米).故选:.解析:过作于,则,∵,,∴,∴四边形是矩形,∴,,∵将绕点顺时针方向旋转后得,∴,,,,∴,∴,∵为等腰三角形,∴为等腰直角三角形,∴,设,则,,A 12.∵,∴,∴(负值舍去),∴,∴,∴,∴.故选.解析:.故答案为:.解析:∵将点先向左平移个单位,横坐标,再向上平移个单位纵坐标,∴平移后得到的点的坐标为:.故答案为:.解析:∵多项式是关于,的三次多项式,∴,,∴,,∴或,∴或,∴或.故答案为:或.13.14.或15.16.解析:设甲种火龙果种植亩,乙种火龙果种植亩,此项目获得利润,甲、乙两种火龙果每亩利润为万元,万元,由题意可知:,解得:,此项目获得利润,当时,的最大值为万元.17.解析:取的中点,连接,过点作交的延长线于,过点作于,交于,则.∵,,,∴,∵,∴,∴,∵,∴,∴,∴,∴,∵,(1)(2)∴,∴,,,∴,∴当,,共线时,的值最小,最小值为.解析:解不等式得,∵都能使不等式成立,①当,即时,则都能使恒成立;②当,则不等式的解要改变方向,∴,即,∴不等式的解集为,∵都能使成立,∴,∴,∴,综上所述,的取值范围是.故答案为:.解析:原式.原式,当时,18.(1)(2)19.(1)(2)(1)(2)(3)原式,.解析:甲书店:,乙书店:.令,解得:,当时,选择甲书店更省钱,当时,甲乙书店所需费用相同,当时,选择乙书店更省钱.解析:把这些数从小到大排列,最中间的数是第和第个数的平均数,则中位数是(克),因为出现了次,出现的次数最多,所以众数是克,平均数是:(克).根据题意得:(个),答:质量为克的鸡腿有个.选加工厂的鸡腿.(1)甲书店:,乙书店:.(2)当时,选择甲书店更省钱,当时,甲乙书店所需费用相同,当时,选择乙书店更省钱.20.,,,,(1)中位数是克,众数是克,平均数是克.(2)个.(3)加工厂.21.(1)(2)的方差是:,的平均数是:,的方差是:,∵、平均值一样,的方差比的方差小,更稳定,∴选加工厂的鸡腿.解析:∵,,∴,∴.连接并延长交⊙于,连接,如图所示:图则为⊙的直径,∴,∵,∴,∵,,∴,∵,∴,即,∵是⊙的半径,(1)证明见解析.(2)证明见解析.(3).22.(3)(1)∴是⊙的切线.在中,由勾股定理得:,∴,∵是⊙的切线,,∴,∴,,过点作于,如图所示:图设,则,由勾股定理得:,即:,解得:,∴,∴,∴.解析:当时,点,∵点在反比例函数图象上,∴,∴反比例函数的解析式为,∵点在反比例函数图象上,∴,(1).(2).23.(2)∴,设直线的解析式为,则,∴,∴直线的解析式为.如图,过点作轴于,过点作轴于,过点作于,交于,则四边形是矩形,∴,,∵,,∴,∵,∴,在和中,,∴≌,∴,,∴,∵点,在反比例函数的图象上,∴,∴,∴,,∴,∵,,∴,∵,对顶角相等(1)∴,∴,∴,在 中,,,根据勾股定理得,,∴,∴,∴∴反比例函数的解析式为:.解析:设抛物线的解析式为(),∵,,设直线的解析式为,∴,解得,∴直线的解析式为,∵点的横坐标为,∴点纵坐标为,∴点的坐标为,又∵点在抛物线上,∴,对称轴为:,∴,∴解析式化为:,∵四边形为平行四边形,∴,(1),.(2),的面积最大为.(3),;或,.24.(2)(3)∴,解得,∴抛物线的解析式为.设,作轴交于点,xy则,∴,,∴当时,的面积最大为,此时.∵,∴或,∴.设,①当为对角线时,∴,∵在抛物线上,∴,解得,∴,,②当为对角线时,∴,∵在抛物线上,(1)1(2)∴解得,∴,.综上所述,,;或,.解析:∵⊙为的内切圆,切点分别为,,,,,∴,,,,设,则,,∵四边形是矩形,∴,∴,即,解得:或(舍),∴,.故答案为:,.存在时刻,使点恰好落在边上,如图所示:图由折叠的性质得:,,∵四边形是矩形,∴,,,,,,∴,(1),.12(2)存在,..25.2,∴,∵,∴,∴,∴,∴,∴,∵,∴,∴,即,解得:,∴,解得:,即存在时刻,使点恰好落在边上.作于,交的延长线于,作于,于,如图所示:图则,,是的中位线,∴,∵是等边三角形,∴,,∴,∴,,∴是梯形的中位线,∴,∵,∴,∴,∴,∴,∴,∴,∴,即当为正三角形时,的值为.。

【解析版】2020年四川省绵阳市中考数学试卷

【解析版】2020年四川省绵阳市中考数学试卷

【解析版】2020年四川省绵阳市中考数学试卷一、选择题:本大题共12小题,每小题3分,共36分.每小题只有一个选项符合题目要求.1.(3分)﹣3的相反数是()A.﹣3B.﹣C.D.3【解答】解:﹣3的相反数是3,故选:D.2.(3分)如图是以正方形的边长为直径,在正方形内画半圆得到的图形,则此图形的对称轴有()A.2条B.4条C.6条D.8条【解答】解:如图,因为以正方形的边长为直径,在正方形内画半圆得到的图形,所以此图形的对称轴有4条.故选:B.3.(3分)近年来,华为手机越来越受到消费者的青睐.截至2019年12月底,华为5G手机全球总发货量突破690万台.将690万用科学记数法表示为()A.0.69×107B.69×105C.6.9×105D.6.9×106【解答】解:690万=6900000=6.9×106.故选:D.4.(3分)下列四个图形中,不能作为正方体的展开图的是()A.B.C.D.【解答】解:正方体展开图的11种情况可分为“1﹣4﹣1型”6种,“2﹣3﹣1型”3种,“2﹣2﹣2型”1种,“3﹣3型”1种,因此选项D符合题意,故选:D.5.(3分)若有意义,则a的取值范围是()A.a≥1B.a≤1C.a≥0D.a≤﹣1【解答】解:若有意义,则a﹣1≥0,解得:a≥1.故选:A.6.(3分)《九章算术》中记载“今有共买羊,人出五,不足四十五;人出七,不足三,问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?此问题中羊价为()A.160钱B.155钱C.150钱D.145钱【解答】解:设共有x人合伙买羊,羊价为y钱,依题意,得:,解得:.故选:C.7.(3分)如图,在四边形ABCD中,∠A=∠C=90°,DF∥BC,∠ABC的平分线BE交DF于点G,GH⊥DF,点E恰好为DH的中点,若AE=3,CD=2,则GH=()A.1B.2C.3D.4【解答】解:过E作EM⊥BC,交FD于点H,∵DF∥BC,∴EH⊥DF,∴EH∥HG,∴=,∵E为HD中点,∴=,∴=,即HG=2EH,∴∠DHM=∠HMC=∠C=90°,∴四边形HMCD为矩形,∴HM=DC=2,∵BE平分∠ABC,EA⊥AB,EM⊥BC,∴EM=AE=3,∴EH=EM﹣HM=3﹣2=1,则HG=2EH=2.故选:B.8.(3分)将一个篮球和一个足球随机放入三个不同的篮子中,则恰有一个篮子为空的概率为()A.B.C.D.【解答】解:三个不同的篮子分别用A、B、C表示,根据题意画图如下:共有9种等可能的情况数,其中恰有一个篮子为空的有6种,则恰有一个篮子为空的概率为=.故选:A.9.(3分)在螳螂的示意图中,AB∥DE,△ABC是等腰三角形,∠ABC=124°,∠CDE=72°,则∠ACD=()A.16°B.28°C.44°D.45°【解答】解:延长ED,交AC于F,∵△ABC是等腰三角形,∠ABC=124°,∴∠A=∠ACB=28°,∵AB∥DE,∴∠CFD=∠A=28°,∵∠CDE=∠CFD+∠ACD=72°,∴∠ACD=72°﹣28°=44°,故选:C.10.(3分)甲、乙二人同驾一辆车出游,各匀速行驶一半路程,共用3小时,到达目的地后,甲对乙说:“我用你所花的时间,可以行驶180km”,乙对甲说:“我用你所花的时间,只能行驶80km”.从他们的交谈中可以判断,乙驾车的时长为()A.1.2小时B.1.6小时C.1.8小时D.2小时【解答】解:设乙驾车时长为x小时,则乙驾车时长为(3﹣x)小时,根据两人对话可知:甲的速度为km/h,乙的速度为km/h,根据题意得:,解得:x1=1.8或x2=9,经检验:x1=1.8或x2=9是原方程的解,x2=9不合题意,舍去,故选:C.11.(3分)三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小完全相同.当水面刚好淹没小孔时,大孔水面宽度为10米,孔顶离水面1.5米;当水位下降,大孔水面宽度为14米时,单个小孔的水面宽度为4米,若大孔水面宽度为20米,则单个小孔的水面宽度为()A.4米B.5米C.2米D.7米【解答】解:如图,建立如图所示的平面直角坐标系,由题意可得MN=4,EF=14,BC=10,DO=,设大孔所在抛物线解析式为y=ax2+,∵BC=10,∴点B(﹣5,0),∴0=a×(﹣5)2+,∴a=﹣,∴大孔所在抛物线解析式为y=﹣x2+,设点A(b,0),则设顶点为A的小孔所在抛物线的解析式为y=m(x﹣b)2,∵EF=14,∴点E的横坐标为﹣7,∴点E坐标为(﹣7,﹣),∴﹣=m(x﹣b)2,∴x1=+b,x2=﹣+b,∴MN=4,∴|+b﹣(﹣+b)|=4∴m=﹣,∴顶点为A的小孔所在抛物线的解析式为y=﹣(x﹣b)2,∵大孔水面宽度为20米,∴当x=﹣10时,y=﹣,∴﹣=﹣(x﹣b)2,∴x1=+b,x2=﹣+b,∴单个小孔的水面宽度=|(+b)﹣(﹣+b)|=5(米),故选:B.12.(3分)如图,在四边形ABCD中,AD∥BC,∠ABC=90°,AB=2,AD=2,将△ABC绕点C顺时针方向旋转后得△A′B′C,当A′B′恰好经过点D时,△B′CD为等腰三角形,若BB′=2,则AA′=()A.B.2C.D.【解答】解:过D作DE⊥BC于E,则∠DEC=∠DEB=90°,∵AD∥BC,∠ABC=90°,∴∠DAB=∠ABC=90°,∴四边形ABED是矩形,∴BE=AD=2,DE=AB=2,∵将△ABC绕点C顺时针方向旋转后得△A′B′C,∴∠DB′C=∠ABC=90°,B′C=BC,A′C=AC,∠A′CA=∠B′CB,∴△A′CA∽△B′CB,∴=,∵△B′CD为等腰三角形,∴△B′CD为等腰直角三角形,∴CD=B′C,设B′C=BC=x,则CD=x,CE=x﹣2,∵CD2=CE2+DE2,∴(x)2=(x﹣2)2+(2)2,∴x=4(负值舍去),∴BC=4,∴AC==2,∴=,∴A′A=,故选:A.二、填空题:本大题共6小题,每小题4分,共24分.将答案填写在答题卡相应的横线上.13.(4分)因式分解:x3y﹣4xy3=xy(x+2y)(x﹣2y).【解答】解:x3y﹣4xy3,=xy(x2﹣4y2),=xy(x+2y)(x﹣2y).故答案为:xy(x+2y)(x﹣2y).14.(4分)平面直角坐标系中,将点A(﹣1,2)先向左平移2个单位,再向上平移1个单位后得到的点A1的坐标为(﹣3,3).【解答】解:∵将点A(﹣1,2)先向左平移2个单位,横坐标﹣2,再向上平移1个单位纵坐标+1,∴平移后得到的点A1的坐标为:(﹣3,3).故答案为:(﹣3,3).15.(4分)若多项式xy|m﹣n|+(n﹣2)x2y2+1是关于x,y的三次多项式,则mn=0或8.【解答】解:∵多项式xy|m﹣n|+(n﹣2)x2y2+1是关于x,y的三次多项式,∴n﹣2=0,1+|m﹣n|=3,∴n=2,|m﹣n|=2,∴m﹣n=2或n﹣m=2,∴m=4或m=0,∴mn=0或8.故答案为:0或8.16.(4分)我市认真落实国家“精准扶贫”政策,计划在对口帮扶的贫困县种植甲、乙两种火龙果共100亩,根据市场调查,甲、乙两种火龙果每亩的种植成本分别为0.9万元、1.1万元,每亩的销售额分别为2万元、2.5万元,如果要求种植成本不少于98万元,但不超过100万元,且所有火龙果能全部售出,则该县在此项目中获得的最大利润是125万元.(利润=销售额﹣种植成本)【解答】解:设甲种火龙果种植x亩,乙钟火龙果种植(100﹣x)亩,此项目获得利润w,甲、乙两种火龙果每亩利润为1.1万元,1.4万元,由题意可知:,解得:50≤x≤60,此项目获得利润w=1.1x+1.4(100﹣x)=140﹣0.3x,当x=50时,w的最大值为140﹣15=125万元.17.(4分)如图,四边形ABCD中,AB∥CD,∠ABC=60°,AD=BC=CD=4,点M是四边形ABCD内的一个动点,满足∠AMD=90°,则点M到直线BC的距离的最小值为3﹣2.【解答】解:取AD的中点O,连接OM,过点M作ME⊥BC交BC的延长线于E,点点O作OF⊥BC于F,交CD于G,则OM+ME≥OF.∵∠AMD=90°,AD=4,OA=OD,∴OM=AD=2,∵AB∥CD,∴∠GCF=∠B=60°,∴∠DGO=∠CGE=30°,∵AD=BC,∴∠DAB=∠B=60°,∴∠ADC=∠BCD=120°,∴∠DOG=30°=∠DGO,∴DG=DO=2,∵CD=4,∴CG=2,∴OG=2,GF=,OF=3,∴ME≥OF﹣OM=3﹣2,∴当O,M,E共线时,ME的值最小,最小值为3﹣2.18.(4分)若不等式>﹣x﹣的解都能使不等式(m﹣6)x<2m+1成立,则实数m的取值范围是≤m≤6.【解答】解:解不等式>﹣x﹣得x>﹣4,∵x>﹣4都能使不等式(m﹣6)x<2m+1成立,①当m﹣6=0,即m=6时,则x>﹣4都能使0•x<13恒成立;②当m﹣6≠0,则不等式(m﹣6)x<2m+1的解要改变方向,∴m﹣6<0,即m<6,∴不等式(m﹣6)x<2m+1的解集为x>,∵x>﹣4都能使x>成立,∴﹣4≥,∴﹣4m+24≤2m+1,∴m≥,综上所述,m的取值范围是≤m≤6.故答案为:≤m≤6.三、解答题:本大题共7小题,共计90分.解答应写出文字说明、证明过程或演算步骤.19.(16分)(1)计算:|﹣3|+2cos60°﹣×﹣(﹣)0.(2)先化简,再求值:(x+2+)÷,其中x=﹣1.【解答】解:(1)原式=3﹣+2×﹣×2﹣1=3﹣+﹣2﹣1=0;(2)原式=(+)÷=•=,当x=﹣1时,原式===1﹣.20.(12分)4月23日是“世界读书日”,甲、乙两个书店在这一天举行了购书优惠活动.甲书店:所有书籍按标价8折出售;乙书店:一次购书中标价总额不超过100元的按原价计费,超过100元后的部分打6折.(1)以x(单位:元)表示标价总额,y(单位:元)表示应支付金额,分别就两家书店的优惠方式,求y关于x的函数解析式;(2)“世界读书日”这一天,如何选择这两家书店去购书更省钱?【解答】解:(1)甲书店:y=0.8x,乙书店:y=.(2)令0.8x=0.6x+40,解得:x=200,当x<200时,选择甲书店更省钱,当x=200,甲乙书店所需费用相同,当x>200,选择乙书店更省钱.21.(12分)为助力新冠肺炎疫情后经济的复苏,天天快餐公司积极投入到复工复产中.现有A、B两家农副产品加工厂到该公司推销鸡腿,两家鸡腿的价格相同,品质相近.该公司决定通过检查质量来确定选购哪家的鸡腿.检察人员从两家分别抽取100个鸡腿,然后再从中随机各抽取10个,记录它们的质量(单位:克)如表:A加工厂74757575737778727675B加工厂78747873747574747575(1)根据表中数据,求A加工厂的10个鸡腿质量的中位数、众数、平均数;(2)估计B加工厂这100个鸡腿中,质量为75克的鸡腿有多少个?(3)根据鸡腿质量的稳定性,该快餐公司应选购哪家加工厂的鸡腿?【解答】解:(1)把这些数从小到大排列,最中间的数是第5和第6个数的平均数,则中位数是=75(克);因为75出现了4次,出现的次数最多,所以众数是75克;平均数是:(74+75+75+75+73+77+78+72+76+75)=75(克);(2)根据题意得:100×=30(个),答:质量为75克的鸡腿有30个;(3)选B加工厂的鸡腿.∵A、B平均值一样,B的方差比A的方差小,B更稳定,∴选B加工厂的鸡腿.22.(12分)如图,△ABC内接于⊙O,点D在⊙O外,∠ADC=90°,BD交⊙O于点E,交AC于点F,∠EAC=∠DCE,∠CEB=∠DCA,CD=6,AD=8.(1)求证:AB∥CD;(2)求证:CD是⊙O的切线;(3)求tan∠ACB的值.【解答】(1)证明:∵∠BAC=∠CEB,∠CEB=∠DCA,∴∠BAC=∠DCA,∴AB∥CD;(2)证明:连接EO并延长交⊙O于G,连接CG,如图1所示:则EG为⊙O的直径,∴∠ECG=90°,∵OC=OG,∴∠OCG=∠EGC,∵∠EAC=∠EGC,∠EAC=∠DCE,∴∠DCE=∠EGC=∠OCG,∵∠OCG+∠OCE=∠ECG=90°,∴∠DCE+∠OCE=90°,即∠DCO=90°,∵OC是⊙O的半径,∴CD是⊙O的切线;(3)解:在Rt△ADC中,由勾股定理得:AC===10,∴cos∠ACD===,∵CD是⊙O的切线,AB∥CD,∴∠ABC=∠ACD=∠CAB,∴BC=AC=10,AB=2BC•cos∠ABC=2×10×=12,过点B作BG⊥AC于C,如图2所示:设GC=x,则AG=10﹣x,由勾股定理得:AB2﹣AG2=BG2=BC2﹣GC2,即:122﹣(10﹣x)2=102﹣x2,解得:x=,∴GC=,∴BG===,∴tan∠ACB===.23.(12分)如图,在平面直角坐标系xOy中,一次函数的图象与反比例函数y=(k<0)的图象在第二象限交于A(﹣3,m),B(n,2)两点.(1)当m=1时,求一次函数的解析式;(2)若点E在x轴上,满足∠AEB=90°,且AE=2﹣m,求反比例函数的解析式.【解答】解:(1)当m=1时,点A(﹣3,1),∵点A在反比例函数y=的图象上,∴k=﹣3×1=﹣3,∴反比例函数的解析式为y=﹣;∵点B(n,2)在反比例函数y=﹣图象上,∴2n=﹣3,∴n=﹣,设直线AB的解析式为y=ax+b,则,∴,∴直线AB的解析式为y=x+3;(2)如图,过点A作AM⊥x轴于M,过点B作BN⊥x轴于N,过点A作AF⊥BN于F,交BE于G,则四边形AMNF是矩形,∴FN=AM,AF=MN,∵A(﹣3,m),B(n,2),∴BF=2﹣m,∵AE=2﹣m,∴BF=AE,在△AEG和△BFG中,,∴△AEG≌Rt△BFG(AAS),∴AG=BG,EG=FG,∴BE=BG+EG=AG+FG=AF,∵点A(﹣3,m),B(n,2)在反比例函数y=的图象上,∴k=﹣3m=2n,∴m=﹣n,∴BF=BN﹣FN=BN﹣AM=2﹣m=2+n,MN=n﹣(﹣3)=n+3,∴BE=AF=n+3,∵∠AEM+∠MAE=90°,∠AEM+∠BEN=90°,∴∠MAE=∠NEB,∵∠AME=∠ENB=90°,∴△AME∽△ENB,∴====,∴ME=BN=,在Rt△AME中,AM=m,AE=2﹣m,根据勾股定理得,AM2+ME2=AE2,∴m2+()2=(2﹣m)2,∴m=,∴k=﹣3m=﹣,∴反比例函数的解析式为y=﹣.24.(12分)如图,抛物线过点A(0,1)和C,顶点为D,直线AC与抛物线的对称轴BD 的交点为B(,0),平行于y轴的直线EF与抛物线交于点E,与直线AC交于点F,点F的横坐标为,四边形BDEF为平行四边形.(1)求点F的坐标及抛物线的解析式;(2)若点P为抛物线上的动点,且在直线AC上方,当△PAB面积最大时,求点P的坐标及△PAB面积的最大值;(3)在抛物线的对称轴上取一点Q,同时在抛物线上取一点R,使以AC为一边且以A,C,Q,R为顶点的四边形为平行四边形,求点Q和点R的坐标.【解答】解:(1)设抛物线的解析式为y=ax2+bx+c(a≠0),∵A(0,1),B(,0),设直线AB的解析式为y=kx+m,∴,解得,∴直线AB的解析式为y=﹣x+1,∵点F的横坐标为,∴F点纵坐标为﹣+1=﹣,∴F点的坐标为(,﹣),又∵点A在抛物线上,∴c=1,对称轴为:x=﹣,∴b=﹣2a,∴解析式化为:y=ax2﹣2ax+1,∵四边形DBFE为平行四边形.∴BD=EF,∴﹣3a+1=a﹣8a+1﹣(﹣),解得a=﹣1,∴抛物线的解析式为y=﹣x2+2x+1;(2)设P(n,﹣n2+2n+1),作PP'⊥x轴交AC于点P',则P'(n,﹣n+1),∴PP'=﹣n2+n,S△ABP=OB•PP'=﹣n=﹣+,∴当n=时,△ABP的面积最大为,此时P(,).(3)∵,∴x=0或x=,∴C(,﹣),设Q(,m),①当AQ为对角线时,∴R(﹣),∵R在抛物线y=+4上,∴m+=﹣+4,解得m=﹣,∴Q,R;②当AR为对角线时,∴R(),∵R在抛物线y=+4上,∴m﹣+4,解得m=﹣10,∴Q(,﹣10),R().综上所述,Q,R;或Q(,﹣10),R().25.(14分)如图,在矩形ABCD中,对角线相交于点O,⊙M为△BCD的内切圆,切点分别为N,P,Q,DN=4,BN=6.(1)求BC,CD;(2)点H从点A出发,沿线段AD向点D以每秒3个单位长度的速度运动,当点H运动到点D时停止,过点H作HI∥BD交AC于点I,设运动时间为t秒.①将△AHI沿AC翻折得△AH′I,是否存在时刻t,使点H′恰好落在边BC上?若存在,求t的值;若不存在,请说明理由;②若点F为线段CD上的动点,当△OFH为正三角形时,求t的值.【解答】解:(1)∵⊙M为△BCD的内切圆,切点分别为N,P,Q,DN=4,BN=6,∴BP=BN=6,DQ=DN=4,CP=CQ,BD=BN+DN=10,设CP=CQ=a,则BC=6+a,CD=4+a,∵四边形ABCD是矩形,∴∠BCD=90°,∴BC2+CD2=BD2,即(6+a)2+(4+a)2=102,解得:a=2,∴BC=6+2=8,CD=4+2=6;(2)①存在时刻t=s,使点H′恰好落在边BC上;理由如下:如图1所示:由折叠的性质得:∠AH'I=∠AHI,AH'=AH=3t,∵四边形ABCD是矩形,∴AD=BC=8,AD∥BC,∠BCD=90°,OA=OC=AC,OB=OD=BD,AC=BD,∴AC=BD===10,OA=OD=5,∴∠ADO=∠OAD,∵HI∥BD,∴∠AHI=∠ADO,∴∠AH'I=∠AHI=∠ADO=∠OAD=∠ACH',∴△AIH'∽△AH'C,∴=,∴AH'2=AI×AC,∵HI∥BD,∴△AIH∽△AOD,∴=,即=,解得:AI=t,∴(3t)2=t×10,解得:t=,即存在时刻t=s,使点H′恰好落在边BC上;②作PH⊥OH于H,交OF的延长线于P,作OM⊥AD于M,PN⊥AD于N,如图2所示:则OM∥CD∥PN,∠OMH=∠HNP=90°,OM是△ACD的中位线,∴OM=CD=3,∵△OFH是等边三角形,∴OF=FH,∠OHF=∠HOF=60°,∴∠FHP=∠HPO=30°,∴FH=FP=OF,HP=OH,∴DF是梯形OMNP的中位线,∴DN=DM=4,∵∠MHO+∠MOH=∠MHO+∠NHP=90°,∴∠MOH=∠NHP,∴△OMH∽△HNP,∴==,∴HN=OM=3,∴DH=HN﹣DN=3﹣4,∴AH=AD﹣DH=12﹣3,∴t==4﹣,即当△OFH为正三角形时,t的值为(4﹣)s.。

2020年四川省绵阳市中考数学试卷(附答案解析)

2020年四川省绵阳市中考数学试卷(附答案解析)

2020年四川省绵阳市中考数学试卷一、选择题:本大题共12小题,每小题3分,共36分.每小题只有一个选项符合题目要求.1.(3分)3-的相反数是( )A .3-B .13-C D .32.(3分)如图是以正方形的边长为直径,在正方形内画半圆得到的图形,则此图形的对称轴有( )A .2条B .4条C .6条D .8条3.(3分)近年来,华为手机越来越受到消费者的青睐.截至2019年12月底,华为5G 手机全球总发货量突破690万台.将690万用科学记数法表示为( ) A .70.6910⨯B .56910⨯C .56.910⨯D .66.910⨯4.(3分)下列四个图形中,不能作为正方体的展开图的是( )A .B .C .D .5.(3a 的取值范围是( ) A .1aB .1aC .0aD .1a -6.(3分)《九章算术》中记载“今有共买羊,人出五,不足四十五;人出七,不足三,问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?此问题中羊价为( ) A .160钱B .155钱C .150钱D .145钱7.(3分)如图,在四边形ABCD 中,90A C ∠=∠=︒,//DF BC ,ABC ∠的平分线BE 交DF 于点G ,GH DF ⊥,点E 恰好为DH 的中点,若3AE =,2CD =,则(GH = )A.1B.2C.3D.48.(3分)将一个篮球和一个足球随机放入三个不同的篮子中,则恰有一个篮子为空的概率为()A.23B.12C.13D.169.(3分)在螳螂的示意图中,//AB DE,ABC∆是等腰三角形,124ABC∠=︒,72CDE∠=︒,则(ACD∠=)A.16︒B.28︒C.44︒D.45︒10.(3分)甲、乙二人同驾一辆车出游,各匀速行驶一半路程,共用3小时,到达目的地后,甲对乙说:“我用你所花的时间,可以行驶180km”,乙对甲说:“我用你所花的时间,只能行驶80km”.从他们的交谈中可以判断,乙驾车的时长为()A.1.2小时B.1.6小时C.1.8小时D.2小时11.(3分)三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小完全相同.当水面刚好淹没小孔时,大孔水面宽度为10米,孔顶离水面1.5米;当水位下降,大孔水面宽度为14米时,单个小孔的水面宽度为4米,若大孔水面宽度为20米,则单个小孔的水面宽度为( )A.B.C.D.7米12.(3分)如图,在四边形ABCD中,//AD BC,90ABC∠=︒,AB=,2AD=,将ABC ∆绕点C 顺时针方向旋转后得△A B C '',当A B ''恰好经过点D 时,△B CD '为等腰三角形,若2BB '=,则(AA '= )A B .C D 二、填空题:本大题共6小题,每小题4分,共24分.将答案填写在答题卡相应的横线上. 13.(4分)因式分解:334x y xy -= .14.(4分)平面直角坐标系中,将点(1,2)A -先向左平移2个单位,再向上平移1个单位后得到的点1A 的坐标为 .15.(4分)若多项式||22(2)1m n xy n x y -+-+是关于x ,y 的三次多项式,则mn = . 16.(4分)我市认真落实国家“精准扶贫”政策,计划在对口帮扶的贫困县种植甲、乙两种火龙果共100亩,根据市场调查,甲、乙两种火龙果每亩的种植成本分别为0.9万元、1.1万元,每亩的销售额分别为2万元、2.5万元,如果要求种植成本不少于98万元,但不超过100万元,且所有火龙果能全部售出,则该县在此项目中获得的最大利润是 万元.(利润=销售额-种植成本)17.(4分)如图,四边形ABCD 中,//AB CD ,60ABC ∠=︒,4AD BC CD ===,点M 是四边形ABCD 内的一个动点,满足90AMD ∠=︒,则点M 到直线BC 的距离的最小值为 .18.(4分)若不等式5722x x +>--的解都能使不等式(6)21m x m -<+成立,则实数m 的取值范围是 .三、解答题:本大题共7小题,共计90分.解答应写出文字说明、证明过程或演算步骤.19.(16分)(1)计算:03|(+︒-.(2)先化简,再求值:2312(2)22x x x x x ++++÷--,其中1x =. 20.(12分)4月23日是“世界读书日”,甲、乙两个书店在这一天举行了购书优惠活动.甲书店:所有书籍按标价8折出售;乙书店:一次购书中标价总额不超过100元的按原价计费,超过100元后的部分打6折. (1)以x (单位:元)表示标价总额,y (单位:元)表示应支付金额,分别就两家书店的优惠方式,求y 关于x 的函数解析式;(2)“世界读书日”这一天,如何选择这两家书店去购书更省钱?21.(12分)为助力新冠肺炎疫情后经济的复苏,天天快餐公司积极投入到复工复产中.现有A 、B 两家农副产品加工厂到该公司推销鸡腿,两家鸡腿的价格相同,品质相近.该公司决定通过检查质量来确定选购哪家的鸡腿.检察人员从两家分别抽取100个鸡腿,然后再从中随机各抽取10个,记录它们的质量(单位:克)如表:(2)估计B 加工厂这100个鸡腿中,质量为75克的鸡腿有多少个? (3)根据鸡腿质量的稳定性,该快餐公司应选购哪家加工厂的鸡腿?22.(12分)如图,ABC ∆内接于O ,点D 在O 外,90ADC ∠=︒,BD 交O 于点E ,交AC 于点F ,EAC DCE ∠=∠,CEB DCA ∠=∠,6CD =,8AD =.(1)求证://AB CD ; (2)求证:CD 是O 的切线; (3)求tan ACB ∠的值.23.(12分)如图,在平面直角坐标系xOy 中,一次函数的图象与反比例函数(0)k y k x=<的图象在第二象限交于(3,)A m -,(,2)B n 两点. (1)当1m =时,求一次函数的解析式;(2)若点E 在x 轴上,满足90AEB ∠=︒,且2AE m =-,求反比例函数的解析式.24.(12分)如图,抛物线过点(0,1)A和C,顶点为D,直线AC与抛物线的对称轴BD的交点为B,0),平行于y轴的直线EF与抛物线交于点E,与直线AC交于点F,点F的BDEF为平行四边形.(1)求点F的坐标及抛物线的解析式;(2)若点P为抛物线上的动点,且在直线AC上方,当PAB∆面积最大时,求点P的坐标及∆面积的最大值;PAB(3)在抛物线的对称轴上取一点Q,同时在抛物线上取一点R,使以AC为一边且以A,C,Q,R为顶点的四边形为平行四边形,求点Q和点R的坐标.25.(14分)如图,在矩形ABCD中,对角线相交于点O,M为BCD∆的内切圆,切点分别为N,P,Q,4DN=,6BN=.(1)求BC,CD;(2)点H从点A出发,沿线段AD向点D以每秒3个单位长度的速度运动,当点H运动到点D时停止,过点H作//HI BD交AC于点I,设运动时间为t秒.①将AHI∆沿AC翻折得△AH I',是否存在时刻t,使点H'恰好落在边BC上?若存在,求t的值;若不存在,请说明理由;②若点F为线段CD上的动点,当OFH∆为正三角形时,求t的值.2020年四川省绵阳市中考数学试卷参考答案与试题解析一、选择题1.【分析】根据一个数的相反数就是在这个数前面添上“-”号,求解即可.【解答】解:3-的相反数是3,故选:D.2.【分析】根据轴对称的性质即可画出对称轴进而可得此图形的对称轴的条数.【解答】解:如图,因为以正方形的边长为直径,在正方形内画半圆得到的图形,所以此图形的对称轴有4条.故选:B.3.【分析】绝对值大于10的数用科学记数法表示一般形式为10na⨯,n为整数位数减1.【解答】解:690万6==⨯.6900000 6.910故选:D.4.【分析】根据正方体的展开图的11种不同情况进行判断即可.【解答】解:正方体展开图的11种情况可分为“141----型”6种,“231--型”3种,“222型”1种,“33-型”1种,因此选项D符合题意,故选:D.5.【分析】直接利用二次根式有意义的条件分析得出答案.a-,10a.解得:1故选:A.6.【分析】设共有x人合伙买羊,羊价为y钱,根据“若每人出5钱,还差45钱;若每人出7钱,还差3钱”,即可得出关于x,y的二元一次方程组,解之即可得出结论.【解答】解:设共有x人合伙买羊,羊价为y钱,依题意,得:54573x yx y +=⎧⎨+=⎩,解得:21150x y =⎧⎨=⎩.故选:C .7.【分析】过E 作EM BC ⊥,交FD 于点H ,可得EH GD ⊥,得到EH 与GH 平行,再由E 为HD 中点,得到2HG EH =,同时得到四边形HMCD 为矩形,再由角平分线定理得到AE ME =,进而求出EH 的长,得到HG 的长.【解答】解:过E 作EM BC ⊥,交FD 于点H , //DF BC ,EH DF ∴⊥,//EH HG ∴,∴EH EDHG HD=, E 为HD 中点,∴12ED HD =, ∴12EH HG =,即2HG EH =, 90DHM HMC C ∴∠=∠=∠=︒,∴四边形HMCD 为矩形,2HM DC ∴==,BE 平分ABC ∠,EA AB ⊥,EM BC ⊥,3EM AE ∴==,321EH EM HM ∴=-=-=,则22HG EH ==. 故选:B .8.【分析】根据题意画出树状图得出所有等可能的情况数,找出恰有一个篮子为空的情况数,然后根据概率公式即可得出答案.【解答】解:三个不同的篮子分别用A、B、C表示,根据题意画图如下:共有9种等可能的情况数,其中恰有一个篮子为空的有6种,则恰有一个篮子为空的概率为62 93 =.故选:A.9.【分析】延长ED,交AC于F,根据等腰三角形的性质得出28A ACB∠=∠=︒,根据平行线的性质得出28CFD A∠=∠=︒,由三角形外角的性质即可求得ACD∠的度数.【解答】解:延长ED,交AC于F,ABC∆是等腰三角形,124ABC∠=︒,28A ACB∴∠=∠=︒,//AB DE,28CFD A∴∠=∠=︒,72CDE CFD ACD∠=∠+∠=︒,722844ACD∴∠=︒-︒=︒,故选:C.10.【分析】设乙驾车时长为x小时,则乙驾车时长为(3)x-小时,根据两人对话可知:甲的速度为180/km hx,乙的速度为80/3km hx-,根据“各匀速行驶一半路程”列出方程求解即可.【解答】解:设乙驾车时长为x小时,则乙驾车时长为(3)x-小时,根据两人对话可知:甲的速度为180/km hx,乙的速度为80/3km hx-,根据题意得:180(3)803xx x-=-,解得:1 1.8x =或29x =,经检验:1 1.8x =或29x =是原方程的解, 29x =不合题意,舍去,故选:C .11.【分析】根据题意,可以画出相应的抛物线,然后即可得到大孔所在抛物线解析式,再求出顶点为A 的小孔所在抛物线的解析式,将10x =-代入可求解.【解答】解:如图,建立如图所示的平面直角坐标系,由题意可得4MN =,14EF =,10BC =,32DO =,设大孔所在抛物线解析式为232y ax =+, 10BC =,∴点(5,0)B -,230(5)2a ∴=⨯-+, 350a ∴=-, ∴大孔所在抛物线解析式为233502y x =-+, 设点(,0)A b ,则设顶点为A 的小孔所在抛物线的解析式为2()y m x b =-,14EF =,∴点E 的横坐标为7-, ∴点E 坐标为36(7,)25--, 236()25m x b ∴-=-,1x b ∴,2x b =,4MN ∴=,()|4b b -= 925m ∴=-, ∴顶点为A 的小孔所在抛物线的解析式为29()25y x b =--, 大孔水面宽度为20米,∴当10x =-时,92y =-, 299()225x b ∴-=--,1x b ∴,22x b =-+,∴单个小孔的水面宽度|)()|b b =-=), 故选:B .12.【分析】过D 作DE BC ⊥于E ,则90DEC DEB ∠=∠=︒,根据矩形的想知道的2BE AD ==,DE AB ==90DB C ABC ∠'=∠=︒,B C BC '=,AC AC '=,ACA B CB ∠'=∠',推出△B CD '为等腰直角三角形,得到CD C =',设B C BC x '==,则CD =,2CE x =-,根据勾股定理即可得到结论.【解答】解:过D 作DE BC ⊥于E ,则90DEC DEB ∠=∠=︒,//AD BC ,90ABC ∠=︒,90DAB ABC ∴∠=∠=︒,∴四边形ABED 是矩形,2BE AD ∴==,DE AB ==将ABC ∆绕点C 顺时针方向旋转后得△A B C '',90DB C ABC ∴∠'=∠=︒,B C BC '=,AC AC '=,ACA B CB ∠'=∠',∴△A CA '∽△B CB ', ∴A A AC B B BC'=', △B CD '为等腰三角形,∴△B CD '为等腰直角三角形,CD C ∴=',设B C BC x '==,则CD ,2CE x =-,222CD CE DE =+,222)(2)x ∴=-+,4x ∴=(负值舍去), 4BC ∴=,AC ∴,∴24A A '=,A A ∴'=,故选:A .二、13.【分析】先提取公因式xy ,再对余下的多项式利用平方差公式继续分解.【解答】解:334x y xy -,22(4)xy x y =-,(2)(2)xy x y x y =+-.故答案为:(2)(2)xy x y x y +-.14.【分析】根据在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a ,相应的新图形就是把原图形向右(或向左)平移a 个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a ,相应的新图形就是把原图形向上(或向下)平移a 个单位长度.(即:横坐标,右移加,左移减;纵坐标,上移加,下移减.)即可得结论. 【解答】解:将点(1,2)A -先向左平移2个单位,横坐标2-,再向上平移1个单位纵坐标1+,∴平移后得到的点1A 的坐标为:(3,3)-.故答案为:(3,3)-.15.【分析】直接利用多项式的次数确定方法得出答案. 【解答】解:多项式||22(2)1m n xy n x y -+-+是关于x ,y 的三次多项式,20n ∴-=,1||3m n +-=,2n ∴=,||2m n -=,2m n ∴-=或2n m -=,4m ∴=或0m =,0mn ∴=或8.故答案为:0或8.16.【分析】设甲种火龙果种植x 亩,乙钟火龙果种植(100)x -亩,此项目获得利润w ,根据题意列出不等式求出x 的范围,然后根据题意列出w 与x 的函数关系即可求出答案.【解答】解:设甲种火龙果种植x 亩,乙钟火龙果种植(100)x -亩,此项目获得利润w , 甲、乙两种火龙果每亩利润为1.1万元,1.4万元,由题意可知:0.9 1.1(100)980.9 1.1(100)100x x x x +-⎧⎨+-⎩, 解得:5060x ,此项目获得利润 1.1 1.4(100)1400.3w x x x =+-=-,当50x =时,w 的最大值为14015125-=万元.17.【分析】取AD 的中点O ,连接OM ,过点M 作ME BC ⊥交BC 的延长线于E ,点点O 作OF BC ⊥于F ,交CD 于G ,则OM ME OF +.求出OM ,OF 即可解决问题.【解答】解:取AD 的中点O ,连接OM ,过点M 作ME BC ⊥交BC 的延长线于E ,点点O 作OF BC ⊥于F ,交CD 于G ,则OM ME OF +.90AMD ∠=︒,4AD =,OA OD =,122OM AD ∴==, //AB CD ,60GCF B ∴∠=∠=︒,30DGO CGE ∴∠=∠=︒,AD BC =,60DAB B ∴∠=∠=︒,120ADC BCD ∴∠=∠=︒,30DOG DGO ∴∠=︒=∠,2DG DO ∴==,4CD =,2CG ∴=,OG ∴=GF =,OF =2ME OF OM ∴-=-,∴当O ,M ,E 共线时,ME 的值最小,最小值为2.18.【分析】解不等式5722x x +>--得4x >-,据此知4x >-都能使不等式(6)21m x m -<+成立,再分60m -=和60m -≠两种情况分别求解. 【解答】解:解不等式5722x x +>--得4x >-, 4x >-都能使不等式(6)21m x m -<+成立,①当60m -=,即6m =时,则4x >-都能使013x <恒成立;②当60m -≠,则不等式(6)21m x m -<+的解要改变方向,60m ∴-<,即6m <,∴不等式(6)21m x m -<+的解集为216m x m +>-, 4x >-都能使216m x m +>-成立, 2146m m +∴--, 42421m m ∴-++,236m ∴, 综上所述,m 的取值范围是2366m . 故答案为:2366m . 三、解答题:19.【分析】(1)先去绝对值符号、代入三角函数值、化简二次根式、计算零指数幂,再计算乘法,最后计算加减可得;(2)先根据分式的混合运算顺序和运算法则化简原式,再将x 的值代入计算可得.【解答】解:(1)原式1312=321=-0=;(2)原式2243(1)()222x x x x x -+=+÷--- 2(1)(1)22(1)x x x x x +--=-+ 11x x -=+,当1x 时,原式==1=20.【分析】(1)根据题意给出的等量关系即可求出答案.(2)先求出两书店所需费用相同时的书本数量,从而可判断哪家书店省钱.【解答】解:(1)甲书店:0.8y x =,乙书店:,1000.640,100x x y x x ⎧=⎨+>⎩. (2)令0.80.640x x =+,解得:200x =,当200x <时,选择甲书店更省钱,当200x =,甲乙书店所需费用相同,当200x >,选择乙书店更省钱.21.【分析】(1)根据中位数、众数和平均数的计算公式分别进行解答即可;(2)用总数乘以质量为75克的鸡腿所占的百分比即可;(3)根据方差的定义,方差越小数据越稳定即可得出答案.【解答】解:(1)把这些数从小到大排列,最中间的数是第5和第6个数的平均数, 则中位数是7575752+=(克); 因为75出现了4次,出现的次数最多,所以众数是75克;平均数是:1(74757575737778727675)7510+++++++++=(克);(2)根据题意得:31003010⨯=(个),答:质量为75克的鸡腿有30个;(3)选B 加工厂的鸡腿. A 、B 平均值一样,B 的方差比A 的方差小,B 更稳定,∴选B 加工厂的鸡腿.22.【分析】(1)由圆周角定理与已知得BAC DCA ∠=∠,即可得出结论;(2)连接EO 并延长交O 于G ,连接CG ,则EG 为O 的直径,90ECG ∠=︒,证明DCE EGC OCG ∠=∠=∠,得出90DCE OCE ∠+∠=︒,即可得出结论;(3)由三角函数定义求出3cos 5ACD ∠=,证出ABC ACD CAB ∠=∠=∠,求出10BC AC ==,12AB =,过点B 作BG AC ⊥于C ,设GC x =,则10AG x =-,由勾股定理得出方程,解方程得145GC =,由勾股定理求出485BG =,由三角函数定义即可得答案. 【解答】(1)证明:BAC CEB ∠=∠,CEB DCA ∠=∠,BAC DCA ∴∠=∠,//AB CD ∴;(2)证明:连接EO 并延长交O 于G ,连接CG ,如图1所示: 则EG 为O 的直径,90ECG ∴∠=︒,OC OG =,OCG EGC ∴∠=∠,EAC EGC ∠=∠,EAC DCE ∠=∠,DCE EGC OCG ∴∠=∠=∠,90OCG OCE ECG ∠+∠=∠=︒,90DCE OCE ∴∠+∠=︒,即90DCO ∠=︒, OC 是O 的半径,CD ∴是O 的切线;(3)解:在Rt ADC ∆中,由勾股定理得:10AC =, 63cos 105CD ACD AC ∴∠===, CD 是O 的切线,//AB CD ,ABC ACD CAB ∴∠=∠=∠,10BC AC ∴==,32cos 210125AB BC ABC =∠=⨯⨯=, 过点B 作BG AC ⊥于C ,如图2所示:设GC x =,则10AG x =-,由勾股定理得:22222AB AG BG BC GC -==-,即:222212(10)10x x --=-, 解得:145x =, 145GC ∴=,485BG ∴=, 48245tan 1475BG ACB GC ∴∠===.23.【分析】(1)将点A 坐标代入反比例函数解析式中求出k ,进而得出点B 坐标,最后用待定系数法求出直线AB 的解析式;(2)先判断出BF AE =,进而得出Rt BFG(AAS)AEG ∆≅∆,得出AG BG =,EG FG =,即BE BG EG AG FG AF =+=+=,再求出23m n =-,进而得出223BF n =+,3MN n =+,即3BE AF n ==+,再判断出AME ENB ∆∆∽,得出23ME AE BN BE ==,得出2433ME BN ==,最后用勾股定理求出m ,即可得出结论.【解答】解:(1)当1m =时,点(3,1)A -,点A 在反比例函数k y x =的图象上, 313k ∴=-⨯=-,∴反比例函数的解析式为3y x=-; 点(,2)B n 在反比例函数3y x=-图象上, 23n ∴=-,32n ∴=-, 设直线AB 的解析式为y ax b =+,则31322a b a b -+=⎧⎪⎨-+=⎪⎩, ∴233a b ⎧=⎪⎨⎪=⎩,∴直线AB 的解析式为233y x =+; (2)如图,过点A 作AM x ⊥轴于M ,过点B 作BN x ⊥轴于N ,过点A 作AF BN ⊥于F ,交BE 于G ,则四边形AMNF 是矩形,FN AM ∴=,AF MN =,(3,)A m -,(,2)B n ,2BF m ∴=-,2AE m =-,BF AE ∴=,在AEG ∆和BFG ∆中,()90AGE BGF AEG BFG AE BF ⎧∠=∠⎪∠=∠=︒⎨⎪=⎩对顶角相等,Rt BFG(AAS)AEG ∴∆≅∆,AG BG ∴=,EG FG =,BE BG EG AG FG AF ∴=+=+=,点(3,)A m -,(,2)B n 在反比例函数k y x=的图象上, 32k m n ∴=-=,23m n ∴=-, 2223BF BN FN BN AM m n ∴=-=-=-=+,(3)3MN n n =--=+, 3BE AF n ∴==+,90AEM MAE ∠+∠=︒,90AEM BEN ∠+∠=︒,MAE NEB ∴∠=∠,90AME ENB ∠=∠=︒,AME ENB ∴∆∆∽,∴22223333n ME AE m BN BE n n +-====++, 2433ME BN ∴==, 在Rt AME ∆中,AM m =,2AE m =-,根据勾股定理得,222AM ME AE +=,2224()(2)3m m ∴+=-, 59m ∴=, 533k m ∴=-=-, ∴反比例函数的解析式为53y x=-.24.【分析】(1)由待定系数法求出直线AB的解析式为1y x =+,求出F 点的坐标,由平行四边形的性质得出1613181()33a a a -+=-+--,求出a 的值,则可得出答案; (2)设2(,1)P n n -++,作PP x '⊥轴交AC 于点P ',则(,1)P n '+,得出2PP n '=-,由二次函数的性质可得出答案; (3)联立直线AC和抛物线解析式求出C 4)3-,设Q )m ,分两种情况:①当AQ 为对角线时,②当AR 为对角线时,分别求出点Q 和R 的坐标即可.【解答】解:(1)设抛物线的解析式为2(0)y ax bx c a =++≠, (0,1)A,B 0),设直线AB 的解析式为y kx m =+,∴01m m +==⎪⎩,解得1k m ⎧=⎪⎨⎪=⎩,∴直线AB的解析式为1y =+, 点F, F ∴点纵坐标为113+=-, F ∴点的坐标为1)3-, 又点A 在抛物线上, 1c ∴=,对称轴为:2b x a=-=,b ∴=-, ∴解析式化为:21y ax =-+, 四边形DBFE 为平行四边形. BD EF ∴=,1613181()33a a a ∴-+=-+--, 解得1a =-,∴抛物线的解析式为21y x =-++;(2)设2(,1)P n n -++,作PP x '⊥轴交AC 于点P ',则(,1)P n '+,2PP n '∴=-,2213722ABP S OB PP n n ∆'==-+=+ ∴当n =ABP ∆,此时P 47)12. (3)211y y x ⎧=+⎪⎨⎪=-++⎩, 0x ∴=或x = C ∴4)3-, 设Q )m ,①当AQ 为对角线时,7()3R m∴+,R 在抛物线2(4y x =--+上,27(43m ∴+=-+, 解得443m =-, 44)3Q ∴-,37()3R -;②当AR 为对角线时,7)3Rm ∴-,R 在抛物线2(4y x =--+上,2743m ∴-=-+, 解得10m =-,Q ∴10)-,37)3R -.综上所述,44)3Q -,37()3R -;或Q ,10)-,37)3R -. 25.【分析】(1)由切线长定理得出6BP BN ==,4DQ DN ==,CP CQ =,10BD BN DN =+=,设CP CQ a ==,由勾股定理得出222BC CD BD +=,得出方程,解方程即可;(2)①由折叠的性质得AH I AHI '∠=∠,3AH AH t '==,证明AIH '∆∽△AH C ',则2AH AI AC '=⨯,证AIH AOD ∆∆∽,求出158AI t =,得出215(3)108t t =⨯,解方程即可; ②作PH OH ⊥于H ,交OF 的延长线于P ,作OM AD ⊥于M ,PN AD ⊥于N ,证出FH FP OF ==,HP =,4DN DM ==,证明OMH HNP ∆∆∽,求出HN ==,则4DH HN DN =-=,得出12AH AD DH =-=-【解答】解:(1)M 为BCD ∆的内切圆,切点分别为N ,P ,Q ,4DN =,6BN =, 6BP BN ∴==,4DQ DN ==,CP CQ =,10BD BN DN =+=,设CP CQ a ==,则6BC a =+,4CD a =+,四边形ABCD 是矩形,90BCD ∴∠=︒,222BC CD BD ∴+=,即222(6)(4)10a a +++=,解得:2a =,628BC ∴=+=,426CD =+=;(2)①存在时刻2512t s =,使点H '恰好落在边BC 上;理由如下: 如图1所示: 由折叠的性质得:AH I AHI '∠=∠,3AH AH t '==,四边形ABCD 是矩形,8AD BC ∴==,//AD BC ,90BCD ∠=︒,12OA OC AC ==,12OB OD BD ==,AC BD =,10AC BD ∴==,5OA OD ==,ADO OAD ∴∠=∠,//HI BD ,AHI ADO ∴∠=∠,AH I AHI ADO OAD ACH ''∴∠=∠=∠=∠=∠,AIH '∴∆∽△AH C ', ∴AH AI AC AH'=', 2AH AI AC '∴=⨯,//HI BD ,AIH AOD ∴∆∆∽, ∴AI AH AO AD =,即358AI t =, 解得:158AI t =,215(3)108t t ∴=⨯, 解得:2512t =, 即存在时刻2512t s =,使点H '恰好落在边BC 上; ②作PH OH ⊥于H ,交OF 的延长线于P ,作OM AD ⊥于M ,PN AD ⊥于N ,如图2所示:则////OM CD PN ,90OMH HNP ∠=∠=︒,OM 是ACD ∆的中位线,132OM CD ∴==, OFH ∆是等边三角形,OF FH ∴=,60OHF HOF ∠=∠=︒,30FHP HPO ∴∠=∠=︒,FH FP OF ∴==,HP =,DF ∴是梯形OMNP 的中位线,4DN DM ∴==,90MHO MOH MHO NHP ∠+∠=∠+∠=︒,MOH NHP ∴∠=∠,OMH HNP ∴∆∆∽, ∴OM OH HN HP ==HN ∴==,4DH HN DN ∴=-=,12AH AD DH ∴=-=-,43AH t ∴==即当OFH ∆为正三角形时,t 的值为(4s .。

2020年四川省绵阳市高级中等教育学校招生统一考试初中数学

2020年四川省绵阳市高级中等教育学校招生统一考试初中数学

2020年四川省绵阳市高级中等教育学校招生统一考试初中数学数学试卷一、选择题:本大题共12个小题,每题3分,共36分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的.1.假如向东走80 m 记为80 m ,那么向西走60 m 记为〔 〕A .-60 mB .︱-60︱mC .-〔-60〕mD .601m 2.点P 〔-2,1〕关于原点对称的点的坐标为〔 〕A .〔2,1〕B .〔1,-2〕C .〔2,-1〕D .〔-2,1〕 3.以下图中的正五棱柱的左视图应为〔 〕4.2018年初甲型H1N1流感在墨西哥暴发并在全球蔓延,我们应通过注意个人卫生加强防范.研究讲明,甲型H1N1流感球形病毒细胞的直径约为0.00000156 m ,用科学记数法表示那个数是〔 〕 A .0.156×10-5B .0.156×105C .1.56×10-6 D .1.56×1065.一个钢管放在V 形架内,以下图是其截面图,O 为钢管的圆心.假如钢管的半径为25 cm ,∠MPN = 60 ,那么OP =〔 〕A .50 cmB .253cmC .3350cm D .503cm 6.在一次中学生田径运动会上,参加男子跳高的14名运动员成绩如下表所示:〔 〕成绩/m 1.50 1.61 1.66 1.70 1.75 1.78 人数232151那么这些运动员成绩的中位数是A .1.66B .1.67C .1.68D .1.757.如图,把一个长方形的纸片对折两次,然后剪下一个角,为了得到一个锐角为60︒ 的菱形,剪口与折痕所成的角α 的度数应为〔 〕A .15︒或30︒B .30︒或45︒C .45︒或60︒D .30︒或60︒ 8.小明在解关于x 、y 的二元一次方程组⎩⎨⎧=⊗-=⊗+133,y x y x 时得到了正确结果⎩⎨⎧=⊕=.1,y x 后来发觉〝⊗〞〝 ⊕〞处被墨水污损了,请你帮他找出⊗、⊕ 处的值分不是〔 〕 A .⊗ = 1,⊕ = 1 B .⊗ = 2,⊕ = 1 C .⊗ = 1,⊕ = 2D .⊗ = 2,⊕ = 29.n -12是正整数,那么实数n 的最大值为〔 〕A .12B .11C .8D .310.如图,在平面直角坐标系中,矩形ABCD 的中心在原点,顶点A 、C 在反比例函数xky =的图象上,AB ∥y 轴,AD ∥x 轴,假设ABCD 的面积为8,那么k =〔 〕A .-2B .2C .-4D .411.如图,四边形ABCD 是矩形,AB :AD = 4:3,把矩形沿直线AC 折叠,点B 落在点E处,连接DE ,那么DE :AC =〔 〕A .1:3B .3:8C .8:27D .7:2512.如图,△ABC 是直角边长为a 的等腰直角三角形,直角边AB 是半圆O 1的直径,半圆O 2过C 点且与半圆O 1相切,那么图中阴影部分的面积是〔 〕A .2367a π- B .2365a π- C .2367a D .2365a 二、填空题:本大题共6个小题,每题4分,共24分.将答案直截了当填写在题中横线上. 13.运算:〔2a 2〕2 = .14.如图,直线a ∥b ,l 与a 、b 交于E 、F 点,PF 平分∠EFD 交a 于P 点,假设∠1 = 70︒,那么∠2 = .15.如图是由假设干个边长为1的小正方形组成的网格,请在图中作出将〝蘑菇〞ABCDE绕A 点逆时针旋转90︒再向右平移2个单位的图形〔其中C 、D 为所在小正方形边的中点〕.16.小明想利用小区邻近的楼房来测同一水平线上一棵树的高度.如图,他在同一水平线上选择了一点A ,使A 与树顶E 、楼房顶点D 也恰好在一条直线上.小明测得A 处的仰角为∠A = 30︒.楼房CD =21米,且与树BE 之间的距离BC = 30米,那么此树的高度约为米.〔结果保留两个有效数字,3≈1.732〕17.一天晚上,小伟帮妈妈清洗茶杯,三个茶杯只有花色不同,其中一个无盖〔如图〕,突然停电了,小伟只好把杯盖与茶杯随机地搭配在一起,那么花色完全搭配正确的概率是 .18.将正整数依次按下表规律排成四列,那么依照表中的排列规律,数2018应排的位置是第 行第 列.三、解答题:本大题共7个小题,共90分.解承诺写出文字讲明、证明过程或演算步骤. 19.〔此题共2个小题,每题8分,共16分〕〔1〕运算:〔-1〕2018 + 3〔tan 60︒〕-1-︱1-3︱+〔3.14-π〕0.〔2〕先化简,再选择一个合适的x 值代入求值:11)131()11(22-⋅--÷++x x x x x . 20.新民场镇地处城郊,镇政府为进一步改善场镇人居环境,预备在街道两边植种行道树,行道树的树种选择取决于居民的喜爱情形.为此,新民初中社会调查小组在场镇随机调查了部分居民,并将结果绘制成如下扇形统计图,其中∠AOB = 126︒.第1列 第2列 第3列 第4列第1行 1 2 3 第2行 6 5 4 第3行 7 8 9 第4行 12 11 10 ……请依照扇形统计图,完成以下咨询题:〔1〕本次调查了多少名居民?其中喜爱柳树的居民有多少人? 〔2〕请将扇形统计图改成条形统计图〔在图中完成〕;〔3〕请依照此项调查,对新民场镇植种行道树的树种提出一条建议. 21.关于x 的一元二次方程x 2 + 2〔k -1〕x + k 2-1 = 0有两个不相等的实数根.〔1〕求实数k 的取值范畴;〔2〕0可能是方程的一个根吗?假设是,要求出它的另一个根;假设不是,请讲明理由.22.李大爷一年前买入了相同数量的A 、B 两种种兔,目前,他所养的这两种种兔数量仍旧相同,且A 种种兔的数量比买入时增加了20只,B 种种兔比买入时的2倍少10只.〔1〕求一年前李大爷共买了多少只种兔?〔2〕李大爷目前预备卖出30只种兔,卖A 种种兔可获利15元/只,卖B 种种兔可获利6元/只.假如要求卖出的A 种种兔少于B 种种兔,且总共获利不低于280元,那么他有哪几种卖兔方案?哪种方案获利最大?要求出最大获利. 23.抛物线y = ax 2-x + c 通过点Q 〔-2,23〕,且它的顶点P 的横坐标为-1.设抛物线与x 轴相交于A 、B 两点,如图.〔1〕求抛物线的解析式; 〔2〕求A 、B 两点的坐标;〔3〕设PB 于y 轴交于C 点,求△ABC 的面积.24.如图,A 、P 、B 、C 是⊙O 上的四点,∠APC =∠BPC = 60︒,AB 与PC 交于Q 点.〔1〕判定△ABC 的形状,并证明你的结论; 〔2〕求证:QBAQPB AP =; 〔3〕假设∠ABP = 15︒,△ABC 的面积为43,求PC 的长.25.如图,在平面直角坐标系中,矩形AOBC 在第一象限内,E 是边OB 上的动点〔不包括端点〕,作∠AEF = 90︒,使EF 交矩形的外角平分线BF 于点F ,设C 〔m ,n 〕.〔1〕假设m = n 时,如图,求证:EF = AE ;〔2〕假设m ≠n 时,如图,试咨询边OB 上是否还存在点E ,使得EF = AE ?假设存在,要求出点E 的坐标;假设不存在,请讲明理由.〔3〕假设m = tn 〔t >1〕时,试探究点E 在边OB 的何处时,使得EF =〔t + 1〕AE 成立?并求出点E 的坐标.。

2020年部编人教版四川省绵阳市中考数学试题

2020年部编人教版四川省绵阳市中考数学试题

绵阳市2020年初中学业考试暨高中阶段学校招生考试数学第一卷(选择题,共36分)一.选择题:本大题共12个小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1)ABC. D. 2.下列“数字”图形中,有且仅有一条对称轴的是( )3.2020年,我国上海和安徽首先发现“H7N9”禽流感,H7N9是一种新型禽流感,其病毒颗粒呈多形性,其中球形病毒的最大直径为0.00000012米,这一直径用科学记数法表示为( ) A .1.2×10-9米 B .1.2×10-8米 C .12×10-8米 D .1.2×10-7米 4.设“▲”、“●”、“■”分别表示三种不同的物体,现用天平秤两次,情况如图所示,那么▲、●、■这三种物体按质量从大到小排列应为( )A .■、●、▲B .▲、■、●C .■、▲、● D.●、▲、■5.把右图中的三棱柱展开,所得到的展开图是( )6.下列说法正确的是( )A .对角线相等且互相垂直的四边形是菱形B .对角线互相垂直的梯形是等腰梯形C .对角线互相垂直的四边形是平行四边形D .对角线相等且互相平分的四边形是矩形7.如图,要拧开一个边长为a =6cm 的正六边形螺帽,扳手张开的开口b 至少为( ) A . B .12mm C . D . A . B.C. D. B.8.朵朵幼儿园的阿姨给小朋友分苹果,如果每人3个还3个,如果每人2个又多2个,请问共有多少个小朋友?( )A .4个B .5个C .10个D .12个9.如图,在两建筑物之间有一旗杆,高15米,从A 点经过旗杆顶点恰好看到矮建筑物的墙角C 点,且俯角α为60º,又从A 点测得D 点的俯角β为30º,若旗杆底总G 为BC 的中点,则矮建筑物的高CD 为( ) A .20米 B. C.米 D.10.如图,四边形ABCD 是菱形,对角线AC =8cm ,BD =6cm ,DH ⊥AB 于点H ,且DH 与AC 交于G ,则GH =( ) A .2825cm B .2120cm C .2815cm D .2521cm11.“服务他人,提升自我”,七一学校积极开展志愿者服务活动,来自初三的5名同学(3男两女)成立了“交通秩序维护”小分队,若从该小分队中任选两名同学进行交通秩序维护,则恰好是一男一女的概率是( )A .16B .15C .25D .3512.把所有正奇数从小到大排列,并按如下规律分组:(1),(3,5,7),(9,11,13,15,17),(19,21,23,25,27,29,31),…,现用等式A M =(i ,j )表示正奇数M 是第i 组第j 个数(从左往右数),如A 7=(2,3),则A 2020=( ) A .(45,77) B .(45,39) C .(32,46) D .(32,23) 7题图 βαG D C B A 9题图HG OD C BA 10题图第二卷(非选择题,共114分)二.填空题:本大题共6个小题,每小题4分,共24分。

【新】2019-2020四川绵阳中学实验学校初升高自主招生数学【4套】模拟试卷【含解析】

【新】2019-2020四川绵阳中学实验学校初升高自主招生数学【4套】模拟试卷【含解析】

第一套:满分120分2020-2021年四川绵阳中学实验学校初升高自主招生数学模拟卷一.选择题(共6小题,满分42分)1. (7分)货车和小汽车同时从甲地出发,以各自的速度匀速向乙地行驶,小汽车到达乙地后,立即以相同的速度沿原路返回甲地,已知甲、乙两地相距180千米,货车的速度为60千米/小时,小汽车的速度为90千米/小时,则下图中能分别反映出货车、小汽车离乙地的距离y (千米)与各自行驶时间t (小时)之间的函数图象是【 】A. B. C. D.2. (7分)在平面直角坐标系中,任意两点规定运算:①;②;③当x 1= x 2且y 1=y 2时,A =B.有下列四个命题:(1)若A (1,2),B (2,–1),则,; (2)若,则A =C ; (3)若,则A =C ;()()1122,,,A x y B x y ()1212,⊕=++A B x x y y 1212=⊗+A B x x y y (),31⊕= A B 0=⊗A B ⊕=⊕A B B C =⊗⊗A B B C(4)对任意点A 、B 、C ,均有成立. 其中正确命题的个数为( )A. 1个B. 2个C. 3个D. 4个 3.(7分)如图,AB 是半圆直径,半径OC ⊥AB 于点O ,AD 平分∠CAB 交弧BC 于点D ,连结CD 、OD ,给出以下四个结论:①AC ∥OD ;②CE=OE ;③△ODE ∽△ADO ;④2CD 2=CE •AB .正确结论序号是( )A .①②B .③④C .①③D .①④ 4. (7分)如图,在△ABC 中,∠ACB =90º,AC =BC =1,E 、F 为线段AB 上两动点,且∠ECF =45°,过点E 、F 分别作BC 、AC 的垂线相交于点M ,垂足分别为H 、G .现有以下结论:①;②当点E 与点B 重合时,;③;④MG •MH =,其中正确结论为( )A. ①②③B. ①③④C. ①②④D. ①②③④ 5.(7分)在数学活动课上,同学们利用如图的程序进行计算,发现无论x 取任何正整数,结果都会进入循环,下面选项一定不是该循环的是( )A. 4,2,1B. 2,1,4C. 1,4,2D. 2,4,1 6. (7分)如图,在矩形ABCD 中,AB =4,AD =5,AD 、AB 、BC 分别与⊙O 相切于E 、F 、G 三点,过点D()()⊕⊕=⊕⊕A B C A B C 2AB =12MH =AF BE EF +=12作⊙O 的切线交BC 于点M ,则DM 的长为( )A.B. C. D.二.填空题(每小题6分,满分30分)7.(6分)将边长分别为1、2、3、4……19、20的正方形置于直角坐标系第一象限,如图中方式叠放,则按图示规律排列的所有阴影部分的面积之和为 . 8.(6分)如图,三个半圆依次相外切,它们的圆心都在x 轴上,并与直线3y x =相切.设三个半圆的半径依次为r 1、r 2、r 3,则当r 1=1时,r 3= .9.(6分)如图,将一块直角三角板OAB 放在平面直角坐标系中,B (2,0),∠AOB=60°,点A 在第一象限,过点A 的双曲线为k y x=.在x 轴上取一点P ,过点P 作直线OA 的垂线l ,以直线l 为对称轴,线段OB 经轴对称变换后的像是O ´B ´.(1)当点O ´与点A 重合时,点P 的坐标是 ;(2)设P (t ,0),当O ´B ´与双曲线有交点时,t 的取值范围是 .1339241332510.(6分)如图,正方形A 1B 1P 1P 2的顶点P 1、P 2在反 比例函数2(0)y x x=>的图象上,顶点A 1、B 1分别在x 轴、y 轴的正半轴上,再在其右侧作正方形P 2P 3A 2B 2,顶点P 3在反比例函数2(0)y x x=>的图象上,顶点A 2在x 轴的正半轴上,则点P 3的坐标为 .11.(6分)如图,在⊙O 中,直径AB ⊥CD ,垂足为E ,点M 在OC 上,AM 的延长线交⊙O 于点G ,交过C 的直线于F ,∠1=∠2,连结CB 与DG 交于点N .若点M 是CO 的中点,⊙O 的半径为4,cos ∠BOC=41,则BN= .三.解答题(每小题12分,满分48分)12.(12分)先化简,再求值:, 其中.13.(12分)如图,点A (m ,m +1),B (m +3,m -1)都在反比例函数的图象上.(1)求m ,k 的值;32221052422x x x x x x x x --÷++--+-2022(tan 45cos30)21x =-+︒-︒-xky =xO yAB (2)如果M 为x 轴上一点,N 为y 轴上一点, 以点A ,B ,M ,N 为顶点的四边形是平行四边形,试求直线MN 的函数表达式. (3)将线段AB 沿直线进行对折得到线段,且点始终在直线OA 上,当线段与轴有交点时,则b 的取值范围为 (直接写出答案)14.(12分)如图,在Rt △ABC 中,∠ABC=90°,以AB 为直径作⊙O 交AC 于点D ,DE 是⊙O 的切线,连接DE .(1)连接OC 交DE 于点F ,若OF=CF ,证明:四边形OECD 是平行四边形; (2)若=n ,求tan ∠ACO 的值b kx y +=11B A 1A 11B A x OFCF15.(12分)如图1,抛物线y =ax 2+bx +c (a ≠0)的顶点为C (1,4),交x 轴于A 、B 两点,交y 轴于点D ,其中点B 的坐标为(3,0)。

绵阳市2020年中考数学(解析版)

绵阳市2020年中考数学(解析版)

校区:_______________ 授课教师:_______________ 姓名:_______________ 考号:______________________·············密············封············线·············内············不············要·············答············题············ ···················································································································································绵阳市2020年高中阶段学校招生暨初中学业水平考试数 学(解析版)本试卷分试题卷和答题卡两部分.试题卷共6页,答题卡共6页,满分150分.考试时间120分钟. 注意事项:1.答题前,考生务必将自己的姓名、准考证号用0.5毫米的黑色墨迹签字笔填写在答题卡上,并认真核对条形码上的姓名、准考证号,考点、考场号.2.选择题答案伏用2B 始笔填涂在答题卡对应题目标号的位置上,非选择题答案使用0.5毫米的黑色墨迹签字笔书写在答题卡的对应枢内,超出答题区域书写的答常无效;在草稿纸,试题卷上答题无效. 3.考试结来后,将试题卷和答题卡一并交回. 4.本试卷由极客数学帮杰少解析.第Ⅰ卷(选择题,共36分)一、选择题:本大题共12小题,每小题3分,共36分.每小题只有一个选项符合题目要求. 1.-3的相反数是( ) A .-3 B .13−C .3D .3【答案】D【解析】本题考查相反数的定义,-3的相反数是-(-3)=3,故选D .2.如图是以正方形的边长为直径,在正方形内画半圆得到的图形,则此图形的对称轴有( ) A .2条B .4条C .6条D .8条【答案】B【解析】显然正方形的四条对称轴也是该图形的对称轴,故选B .3.近年来,华为手机越来越受到消费者的青睐.截至2019年12月底,华为5G 手机全球总发货量突破690万台.将690万用科学记数法表示为( ) A .0.69×107 B .69×105 C .6.9×105 D .6.9×106【答案】D【解析】科学记数法的表示方法是:a ×10n 的形式,其中1≤|a |<10,∴690万用科学记数法表示为:6.9×106,故选D .4.下列四个图形中,不能作为正方体的展开图的是( )A .B .C .D .【答案】D【解析】本题考查正方体的展开图,需要一定的空间想象能力,易知D 选项无法还原为正方体,故选D . 5.若1a −有意义,则a 的取值范围是( ) A .a ≥1 B .a ≤1C .a ≥0D .a ≤-1【答案】A【解析】二次根式要有意义,那么被开方数必须是非负数,∴a -1≥0,∴a ≥1,故选A .6.《九章算术》中记载“今有共买羊,人出五,不足四十五;人出七,不足三,问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?此问题中羊价为( ) A .160钱B .155钱C .150钱D .145钱【答案】C【解析】设合伙人数位x ,羊价钱为y 钱,则根据题意可得:54573x y x y+=⎧⎨+=⎩,解得21150x y =⎧⎨=⎩,∴羊价为150钱,故选C .7.如图,在四边形ABCD 中,∠A =∠C =90°,DF ∥BC ,∠ABC 的平分线BE 交DF 于点G ,GH ⊥DF ,点E 恰好为DH 的中点,若AE =3,CD =2,则GH =( ) A .1B .2C .3D .4【答案】B【解析】如图,过E 作EM ⊥BC 于M ,交DF 于N ,则由已知可得EM =AE =3,∵CD =2,∴EN =1, ∵E 为DH 中点,∴EN 是△HGD 的中位线, ∴HG =2EN =2,故选B .机密★启用前FGHEDCBANM FGHEDCBA···········密············封············线·············内············不············要·············答············题············ ················································································································································8.将一个篮球和一个足球随机放入三个不同的篮子中,则恰有一个篮子为空的概率为( ) A .23B .12C .13D .16【答案】A【解析】篮球放在篮子中总的情况有3种,足球放在篮子中总的情况也有3种,那么总的情况有N =3×3=9种,记三个不同篮子的顺序为(1,2,3).分别在(1,2,3)位置上放球. 恰有一个篮子为空时的情况有:——续写费马的一纸空白(空篮子,篮球,足球)、(空篮子,足球,篮球);(篮球,空篮子,足球)、(足球,空篮子,篮球); (篮球,足球,空篮子)、(足球,篮球,空篮子),总共n =6种情况,——杰少 ∴满足题意的概率6293n P N===,故选A .9.在螳螂的示意图中,AB ∥DE ,△ABC 是等腰三角形,∠ABC =124°,∠CDE =72°,则∠ACD =( ) A .16°B .28°C .44°D .45°【答案】C【解析】如图,延长CD 交AB 于F ,由已知易得∠ACB =∠BAC =28°,∠DFG =∠CDE =72°, ∴∠ACD =∠DFG -∠BAC =72°-28°=44°,故选C .10.甲、乙二人同驾一辆车出游,各匀速行驶一半路程,共用3小时,到达目的地后,甲对乙说:“我用你所花的时间,可以行驶180km ”,乙对甲说:“我用你所花的时间,只能行驶80km ”.从他们的交谈中可以判断,乙驾车的时长为( ) A .1.2小时B .1.6小时C .1.8小时D .2小时【答案】C【解析】设甲用时x 小时,乙用时y 小时,由已知可得:2318080x y y x +=⎧⎪⎨⎛⎫=⎪⎪⎝⎭⎩,解得1218..x y =⎧⎨=⎩,——续写费马的一纸空白 故选C .11.三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小完全相同.当水面刚好淹没小孔时,大孔水面宽度为10米,孔顶离水面1.5米;当水位下降,大孔水面宽度为14米时,单个小孔的水面宽度为4米,若大孔水面宽度为20米,则单个小孔的水面宽度为( )A .43米B .52米C .213米D .7米【答案】B【解析】本题主要考察数学建模思想,如图,以大桥的顶点处建立平面直角坐标系xOy ,并把两小桥平移到与大桥的对称轴y 轴重合.那么本题就转化成已知MN =10,OP =1.5,EF =14,GH =4,AB =20,求CD 的值.∴M (-5,-1.5),∴大抛物线解析式21350y x =−,∵E 点横坐标为-7,∴E 点纵坐标为()2314775050−⨯−=−,G 点坐标为(-2,14750−),又P 点坐标(0,-1.5),∴小抛物线的解析式2293252y x =−−,——续写费马的一纸空白∵A 点横坐标为-10,∴A 点的纵坐标为()2310650−⨯−=−, 从而C 点的纵坐标也为-6,由2936252x −=−−,解得522x =±,——杰少∴CD =52,故选B .EDCBAGF E DCBAIH G F E N M Q P DCBAO yx校区:_______________ 授课教师:_______________ 姓名:_______________ 考号:______________________·············密············封············线·············内············不············要·············答············题············ ···················································································································································12.如图,在四边形ABCD 中,AD ∥BC ,∠ABC =90°,AB =27,AD =2,将△ABC 绕点C 顺时针方向旋转后得△A ′B ′C ,当A ′B ′恰好经过点D 时,△B ′CD 为等腰三角形,若BB ′=2,则AA ′=( ) A .11B .23C .13D .14【答案】错题【解析】说明:绵阳的这题中考选择压轴题是一道错题,原因是条件多余导致条件之间相互矛盾.苦了考生了,只希望这题改卷时都不扣分,不要以所谓的“正确”参考答案来批改!修改解答:删除BB ′=2这个条件其实用前面的条件,后面这个BB ′的长度是确定的,但一定不是2, 比如解答如下:【修改后的解答】作DE ⊥BC 于点E ,则BE =AD =2,DE =27, 设B ′C =BC =x ,则DC =2x ,CE =x -2,∴DC 2=DE 2+EC 2,即:2x 2=28+(x -2)2,解得x =4, ∴BC =4,AC =211,在AB 上取一点F ,使得BF =BC =4,连接DF , 则△DFC ∽△CB ′B ,相似比2∶1,∴AF =27-4,∵AD =2,∴DF =21227-, ∴BB ′=2672DF =-,--杰少显然△A ′AC ∽△B ′BC ,∴''A A AC B BBC=,∴A ′A =211267661174⨯−-=.—By :续写费马的一纸空白我估计命题组的人没有注意到此时BB ′为定值,然后就太草率的对BB ′赋值一个2, 从而利用△A ′AC ∽△B ′BC ,则A A ACB BBC''=,得到A ′A =2112114⨯=,然后就选A 了,如果保留BB ′=2这个条件,那么前面给的条件又得修改一个条件了. 希望这个题能够得到命题组的重视,希望可以给所有考生分数.以上来自极客杰少的分析及建议,当然,我们可以探讨这个题,企鹅:97407923.备注:A ′A 66117−=这个数据不太友好,可以修改一下数据避免出现开方开不尽的双重二次根式,我们这样修改“AD =4,AB =7”,其他条件不变,依然删除BB ′这个条件,那么同样的计算,可得到最终的AA ′=21855,相对66117−这个数据来说会友好一些.希望明年的绵阳中考会出得棒棒的,加油!第Ⅱ卷(非选择题,共114分)二、填空题:本大题共6小题,每小题4分,共24分.将答案填写在答题卡相应的横线上. 13.因式分解:x 3y -4xy 3= . 【答案】xy (x +2y )(x -2y )【解析】x 3y -4xy 3=xy (x 2-4y 2)=xy (x +2y )(x -2y ).14.平面直角坐标系中,将点A (-1,2)先向左平移2个单位,再向上平移1个单位后得到的点A 1的坐标为 . 【答案】(-3,3)【解析】由已知可得平移后的A 1点为(-1-2,2+1),即:A 1(-3,3).15.若多项式2221||()m n xy n x y +−+-是关于x ,y 的三次多项式,则mn = .【答案】0或8【解析】由已知四次项不存在,∴n -2=0,∴n =2,又原多项式为三次,∴1+|m -n |=3,解得m =0或m =4,∴mn =0或8.16.我市认真落实国家“精准扶贫”政策,计划在对口帮扶的贫困县种植甲、乙两种火龙果共100亩,根据市场调查,甲、乙两种火龙果每亩的种植成本分别为0.9万元、1.1万元,每亩的销售额分别为2万元、2.5万元,如果要求种植成本不少于98万元,但不超过100万元,且所有火龙果能全部售出,则该县在此项目中获得的最大利润是 万元.(利润=销售额-种植成本) 【答案】125【解析】设甲火龙果种植共x 亩,则乙种火龙果种植(100-x )亩,根据题意可得:98≤0.9x +1.1(100-x )≤100,解得:50≤x ≤60, ∴火龙果的利润w =(2-0.9)x +(2.5-1.1)(100-x )=-0.3x +140, ∴当x =50时,w max =-0.3×50+140=125(万元)FEDB'BAA'CDB'BAA'C···········密············封············线·············内············不············要·············答············题············ ················································································································································17.如图,四边形ABCD 中,AB ∥CD ,∠ABC =60°,AD =BC =CD =4,点M 是四边形ABCD 内的一个动点,满足∠AMD =90°,则点M 到直线BC 的距离的最小值为 .【答案】33-2【解析】如图,取AD 中点O ,连接OM 、∵∠AMD =90°,AD =4,∴OM =12AD =2,过M 作ME ⊥BC 于E ,过O 作OF ⊥BC 于点F 交DC 于点G , 则OM +ME ≥OF ,--续写费马的一纸空白 ∵AB ∥CD ,∴∠GCF =60°, ∴∠DGO =∠FGC =30°, 而∠ADC =∠DCB =120°,∴∠DOG =30°=∠DGO , ∴DG =OD =2,从而GC =2, ∴OC =23,GF =3,--杰少 ∴ME ≥OF -OOM =33-2. 当O 、M 、E 三点共线时取等.18.若不等式52x +−>x 72−的解都能使不等式(m -6)x <2m +1成立,则实数m 的取值范围是 .【答案】2366m ≤≤【解析】由已知可得52x +>-x -72的解集为x >-4,又x >-4都能使不等式(m -6)x <2m +1成立,1°若m -6=0,即m =6,则x >-4都能使0·x <13恒成立; 2°若m -6≠0,即m ≠6,则不等式(m -6)x <2m +1的解要改变方向,∴m -6<0,即m <6,--杰少 从而(m -6)x <2m +1的解集是x >216m m +-,∵x >-4都能使得x >216m m +-成立,∴-4≥216m m +-,∴-4m +24≤2m +1,∴m ≥236,∴236≤m <6.综上所述,m 的取值范围是236≤m ≤6.--续写费马的一纸空白三、解答题:本大题共7小题,共计90分.解答应写出文字说明、证明过程或演算步骤.19.(1)计算:|5−3|+25cos60°182−⨯−(22−)0. 【答案】0 【解析】原式=135252102−+⨯−−=——续写费马的一纸空白(2)先化简,再求值:(x +232x +−)2122x x x ++÷−,其中x 2=−1.【答案】化简结果11x x −+,计算结果:12−【解析】原式=()22121·211x x x x x x−−−=−++,——杰少把x 2=−1代入可得,原式=12−.20.4月23日是“世界读书日”,甲、乙两个书店在这一天举行了购书优惠活动. 甲书店:所有书籍按标价8折出售;乙书店:一次购书中标价总额不超过100元的按原价计费,超过100元后的部分打6折.(1)以x (单位:元)表示标价总额,y (单位:元)表示应支付金额,分别就两家书店的优惠方式,求y 关于x 的函数解析式;(2)“世界读书日”这一天,如何选择这两家书店去购书更省钱?GOF E MCBADDABCM校区:_______________ 授课教师:_______________ 姓名:_______________ 考号:______________________·············密············封············线·············内············不············要·············答············题············ ···················································································································································【答案】(1)甲:y =0.8x ;乙:1000640100,.,x x y x x ≤⎧=⎨+>⎩;(2)见解析.【解析】(1)甲书店:y =0.8x ;乙书店:当x ≤100时,y =x ;当x >100时,y =100+0.6(x -100)=0.6x +40,综上所述,1000640100,.,x x y x x ≤⎧=⎨+>⎩.——续写费马的一纸空白(2)令0.8x =0.6x +40解得x =200, ∴1°当x <200时,选择甲书店更省钱; 2°当x =200时,甲乙书店省钱一样多; 3°当x >200时,选择乙书店更省钱——杰少21.为助力新冠肺炎疫情后经济的复苏,天天快餐公司积极投入到复工复产中.现有A 、B 两家农副产品加工厂到该公司推销鸡腿,两家鸡腿的价格相同,品质相近.该公司决定通过检查质量来确定选购哪家的鸡腿.检察人员从两家分别抽取100个鸡腿,然后再从中随机各抽取10个,记录它们的质量(单位:克)如表:A 加工厂 74 75 75 75 73 77 78 72 76 75B 加工厂78747873747574747575(1)根据表中数据,求A 加工厂的10个鸡腿质量的中位数、众数、平均数; (2)估计B 加工厂这100个鸡腿中,质量为75克的鸡腿有多少个? (3)根据鸡腿质量的稳定性,该快餐公司应选购哪家加工厂的鸡腿?【答案】(1)中位数:75、众数:75、平均数:75;(2)30个(3)选B 加工厂的鸡腿.【解析】(1)把A 加工厂的数据从小到大排序为:72,73,74,75,75,75,75,76,77,78,∴中位数为:75;——续写费马的一纸空白 75是出现频数最多的,∴众数为:75; 平均数为:747575757377787276757510+++++++++=;(2)B 鸡腿中质量为75克的鸡腿在10个鸡腿中的占比为:310,∴100个鸡腿中,质量为75克的鸡腿有:100×310=30个;(3)经过计算,A 、B 加工厂的鸡腿质量的平均值一样,而B 的方差比A 的方差小,B 更加稳定, ∴选B 加工厂的鸡腿——杰少22.如图,△ABC 内接于⊙O ,点D 在⊙O 外,∠ADC =90°,BD 交⊙O 于点E ,交AC 于点F ,∠EAC =∠DCE ,∠CEB =∠DCA ,CD =6,AD =8. (1)求证:AB ∥CD ; (2)求证:CD 是⊙O 的切线; (3)求tan ∠ACB 的值. 【答案】(1)(2)见解析;(3)247.【解析】(1)证明:由已知可得∠BAC =∠CEB =∠DCA ,∴AB ∥CD ;(2)∠EAC =∠DCE 【其实这就是弦切角】, 中考不能直接使用,转化一下就可以了.连接EO 并延长交⊙O 于G ,连接CG 、OC ,则EG 为直径,∴∠ECG =90°,∠DCE =∠EAC =∠EBC =∠EGC =∠OCG =90°-∠OCE , ∴∠DCE +∠OCE =90°, 即:∠DCO =90°,而OC 是半径, ∴CD 是⊙O 的切线;--杰少 (3)∵CD =6,AD =8,∠ADC =90°, ∴AC =10,cos ∠ACD =35,∵CD 是⊙O 的切线,AB ∥CD ,∴∠ABC =∠ACD =∠CAB ,——续写费马的一纸空白 ∴BC =AC =10,AB =2BC ·cos ∠ABC =12, 作BG ⊥AC 于点G ,设GC =x ,则AG =10-x , ∴AB 2-AG 2=BG 2=BC 2-GC 2, ∴122-(10-x )2=102-x 2, ∴x =145,∴BG =485,∴tan ∠ACB =247.--续写费马的一纸空白GAD ECFOBAD ECF OB···········密············封············线·············内············不············要·············答············题············ ················································································································································23.如图,在平面直角坐标系xOy 中,一次函数的图象与反比例函数y =k x(k <0)的图象在第二象限交于A (-3,m ),B (n ,2)两点. (1)当m =1时,求一次函数的解析式;(2)若点E 在x 轴上,满足∠AEB =90°,且AE =2-m ,求反比例函数的解析式.【答案】(1)y =23x +3;(2)y =-53x.【解析】(1)当m =1时,A (-3,1),∴2n =-3,n =-32,设AB :y =k ′x +b ,代入解得k ′=23,b =3,∴y =23x +3.(2)这个第二问确实把同学们难倒了,很多同学用的一线三等角+勾股,最后出现三次方程,然后就没有然后了,哎!注意到B 、A 的纵坐标之差为2-m ,而AE =2-m ,是不是发现新大陆了?BF ⊥x 轴于N ,过A 作AF ⊥BN 于F ,交BE 于G ,则BF =2-m =AE , 则△AGE ≌△BGF ,∴AG =GB ,EG =GF , 又-3m =2n ,∴m =-23n ,∴BE =BG +GE =AG +GF =AF =n +3,∴tan ∠BAF =222333nBF AF n +==+,--杰少备注:到这里是关键,突破前面,就可以绕开三次方程. △AME ∽△ENB ,∴ME =23BN =43,∵AM =m ,AE =2-m ,∴AM 2+ME 2=AE 2, 即:m 2+169=(2-m )2,解得m =59,∴k =-3m =-53.—续写费马的一纸空白∴反比例函数的解析式为y =-53x.24.如图,抛物线过点A (0,1)和C ,顶点为D ,直线AC 与抛物线的对称轴BD 的交点为B (3,0),平行于y 轴的直线EF 与抛物线交于点E ,与直线AC 交于点F ,点F 的横坐标为433,四边形BDEF 为平行四边形.(1)求点F 的坐标及抛物线的解析式;(2)若点P 为抛物线上的动点,且在直线AC 上方,当△PAB 面积最大时,求点P 的坐标及△PAB 面积的最大值;(3)在抛物线的对称轴上取一点Q ,同时在抛物线上取一点R ,使以AC 为一边且以A C ,Q ,R 为顶点的四边形为平行四边形,求点Q 和点R 的坐标.备用图【答案】(1)y =-x 2+23x +1;(2)P (736,4712),面积最大值为49324;(3)Q (3,-443),R (-433,-373);或Q (3,-10),R (1033,-373).【解析】(1)设抛物线的解析式为y =ax 2+bx +c (a ≠0),∵A (0,1),B (3,0),∴AB :y =-33x +1,∵F 的横坐标为433,∴F 的纵坐标为-33×433+1=-13,∴F 点的坐标为(433,-1).又∵A 在抛物线上,∴c =1,——续写费马的一纸空白 对称轴:x =-32b a=,∴b =-23a ,∴解析式化为:y =ax 2-23a x +1, ∵四边形DBFE 为平行四边形,∴BD =EF ,D EC FB OA y xxyAOBCxyF GNMAEBOxyAEBO校区:_______________ 授课教师:_______________ 姓名:_______________ 考号:______________________·············密············封············线·············内············不············要·············答············题············ ···················································································································································∴-3a +1=163a -8a +1-(-13),解得a =-1,∴抛物线解析式为y =-x 2+23x +1;(2)设P (p ,-p 2+23p +1),作PP ′⊥x 轴交AC 于点P ′, 则P ′(p ,-33p +1),∴PP ′=-p 2+733p ,∴S △ABP =12·OB ·PP ′=-32p 2+72p =-32(p -736)2+49324,∴当p =736时,△ABP 的面积最大为49324,此时P (736,4712).(3)设Q (3,m ),易得A (0,1),C (733,-43),1°当AQ 为对角线时,则A +Q =R +C , ∴R =A +Q -C =(-433,m +73),∵R 在抛物线y =-(x -3)2+4上,∴m +73=-(-4333-)2+4,解得m =-443,∴Q (3,-443),R (-433,-373);--杰少2°当AR 为对角线时,则A +R =Q +C , ∴R = Q +C -A =(1033,m -73),∵R 在抛物线y =-(x -3)2+4上,∴m -73=-(10333-)2+4,解得m =-10, ∴Q (3,-10),R (1033,-373).--续写费马的一纸空白综上所述,Q (3,-443),R (-433,-373);或Q (3,-10),R (1033,-373).25.如图,在矩形ABCD 中,对角线相交于点O ,⊙M 为△BCD 的内切圆,切点分别为P ,Q , DN =4,BN =6. (1)求BC ,CD ;(2)点H 从点A 出发,沿线段AD 向点D 以每秒3个单位长度的速度运动,当点H 运动到点D 时停止,过点HI ∥BD 交AC 于点l ,设运动时间为t 秒.①将△AHI 沿AC 翻折得△AH ′I ,是否存在时刻t ,使点H ′恰好落在边BC 上?若存在,求t 的值;若不存在,请说明理由;②若点F 为线段CD 上的动点,当△OFH 为正三角形时,求t 的值.(备用图) (备用图)【答案】(1)BC =8,CD =6;(2)①2512;②4-3.【解析】(1)由已知易得BP =BN =6,DQ =DN =4,PC =QC =a ,∴BC 2+CD 2=BD 2,即:(6+a )2+(4+a )2=102,∴a =2; ∴BC =8,CD =6;(2)①【法1】如图,∵HI ∥OD ,∴∠AH ′I =∠AHI =∠ADO =∠OAD =∠ACH ′,∴△AIH ′∽△AH ′C ,∴AH ′2=AI ·AC , ∵AH ′=AH =3t ,AI =AH AD ·AC =38t ×10=154t ,∴9t 2=154t ×5,∴t =2512.--续写费马的一纸空白【法2】易得∠H ′CA =∠CAH =∠CAH ′,∴H ′C =AH ′=AH =3t ,∴BH ′=8-3t ,∴在Rt △ABH ′中,有AB 2+BH ′2=AH ′2, 即:62+(8-3t )2=(3t )2,解得:t =2512.②如图,作PH ⊥OH 于H ,交OF 延长线于P , 过O 、P 分别作OM ⊥AD 于M ,PN ⊥AD 于N , 则△OMH ∽△HNP ,相似比1∶3,∴HN =3OM =33,DN =DM =4,--杰少∴DH =33-4,∴AH =AD -DH =12-33, ∴t =3AH =4-3.--以上来自极客杰少的全卷解析,感谢阅读.DH IH'ONMP QCB AABCOD ABCODDH'IAB CQP MNOHPNM FH OD CBA。

2020年四川省绵阳市中等学校招生统一考试初中数学

2020年四川省绵阳市中等学校招生统一考试初中数学

2020年四川省绵阳市中等学校招生统一考试初中数学数学试卷一、选择题:本大题共12个小题,每题3分,共36分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的.1.-2的绝对值等于〔 〕.A .2B .-2C .±2D .21 2.以下轴对称图形中,对称轴条数最多的是〔 〕.3.以下所给的数值中,为不等式-2x + 3<0的解的是〔 〕.A .-2B .-1C .23 D .2 4.某校初三·一班6名女生的体重〔单位:kg 〕为:35 36 38 40 42 42 那么这组数据的中位数等于〔 〕.A .38B .39C .40D .425.2008年8月8日,五环会旗将在〝鸟巢〞高高飘扬,会旗上的五环〔如以下图〕间的位置关系有〔 〕.A .相交或相切B .相交或内含C .相交或相离D .相切或相离6.〝5·12”汶川大地震使绵阳也遭受了重大缺失,社会各界积极捐助.据新华社讯,截止到6月22日12时,我国收到社会各界捐款、捐物共计467.4亿元.把467.4亿元用科学记数法表示为〔 〕.A .4.674×1011 元B .4.674×1010 元C.4.674×109 元D.4.674×108 元7.,如以下图,∠1 =∠2 =∠3 = 55°,那么∠4的度数等于〔〕.A.115°B.120°C.125°D.135°8.假设关于x的多项式x2-px-6含有因式x-3,那么实数p的值为〔〕.A.-5 B.5 C.-1 D.19.某几何体的三视图如下所示,那么该几何体能够是〔〕.10.平均地向一个容器注水,最后把容器注满.在注水过程中,水面高度h随时刻t的变化规律如下图〔图中OABC为一折线〕,那么那个容器的形状为〔〕.11.二次函数y = ax2 + bx + c的部分对应值如下表:x-3 -2 -1 0 1 2 3 4 5y12 5 0 -3 -4 -3 0 5 12 利用二次函数的图象可知,当函数值y<0时,x的取值范畴是〔〕.A.x<0或x>2 B.0<x<2C .x <-1或x >3D .-1<x <312.如以下图,O 是边长为1的正△ABC 的中心,将△ABC 绕点O 逆时针方向旋转180°,得△A 1B 1C 1,那么△A 1B 1C 1与△ABC 重叠部分〔图中阴影部分〕的面积为〔 〕.A .33B .43C .63D .83 二、填空题:本大题共6个小题,每题4分,共24分.将答案直截了当填写在题中横线上. 13.3×〔-31〕= . 14.函数x x y 2+=中,自变量x 的取值范畴是 . 15.如以下图是由假设干个边长为1的小正方形组成的网格,在图中做出将五角星ABCDE 向其东北方向平移23个单位的图形.16.质地平均的正四面体骰子的四个面上分不写有数字2,3,4,5,投掷那个正四面体两次,那么第一次底面上的数字能够整除第二次底面上的数字的概率是 .17.如以下图,AB 是圆O 的直径,弦AC 、BD 相交于点E ,假设∠BEC = 60°,C 是BD⌒的中点,那么tan ∠ACD = .18.△ABC中,∠C = 90°,AB = 1,tan A=43,过AB边上一点P作PE⊥AC于E,PF⊥BC 于F,E、F是垂足,那么EF的最小值等于.三、解答题:本大题共7个小题,共90分.解承诺写出文字讲明、证明过程或演算步骤.19.〔此题共2个小题,每题8分,共16分〕〔1〕运算:〔-2-2 +31〕×86-20180÷sin 45°.〔2〕运算:)1111()12(22122+---+⋅-+mmmmmmm.20.〔此题总分值12分〕某面粉批发商通过统计前48个星期的面粉销售量〔单位:吨〕,对数据适当分组后,列出了如下频数分布表:销售量18.5≤x<19.519.5≤x<20.520.5≤x<21.521.5≤x<22.522.5≤x<23.523.5≤x<24.5合计划记频数 6 7 9 12 8 6 48〔1〕在图1、图2中分不画出频数分布直方图和频数折线图;〔2〕试讲明这位面粉批发商每星期进面粉多少吨比较合适〔精确到0.1吨〕?21.〔此题总分值12分〕如以下图,点A〔m,3〕与点B〔n,2〕关于直线y = x对称,且都在反比例函数xky=的图象上,点D的坐标为〔0,-2〕.〔1〕求反比例函数的解析式;〔2〕假设过B 、D 的直线与x 轴交于点C ,求sin ∠DCO 的值.22.〔此题总分值12分〕A 、B 两地相距176 km ,其间一处因山体滑坡导致连接这两地的公路受阻.甲、乙两个工程队接到指令,要求于早上8时,分不从A 、B 两地同时动身赶往滑坡点疏通公路.10时,甲队赶到赶忙开始作业,半小时后乙队赶到,并迅速投入〝斗争〞与甲队共同作业,现在甲队已完成了工程量的241. 〔1〕假设滑坡受损公路长1 km ,甲队行进的速度是乙队的23倍多5 km ,求甲、乙两队赶路的速度;〔2〕假设下午4点时两队就完成公路疏通任务,胜利会师.那么假设只由乙工程队疏通这段公路时,需要多少时刻能完成任务?23.〔此题总分值12分〕青年企业家刘敏预备在北川禹里乡投资修建一个有30个房间供旅客住宿的旅行度假村,并将其全部利润用于灾后重建.据测算,假设每个房间的定价为60元∕天,房间将会住满;假设每个房间的定价每增加5元∕天时,就会有一个房间闲暇.度假村对旅客住宿的房间将支出各种费用20元∕天·间〔没住宿的不支出〕.咨询房价每天定为多少时,度假村的利润最大?24.〔此题总分值12分〕如以下图,⊙O 的直径AB 为10 cm ,弦AC 为6 cm ,∠ACB 的平分线交AB 于E ,交⊙O 于D .求弦AD 、CD 的长.25.〔此题总分值14分〕如以下图,矩形ABCD 中,AB = 8,BC = 10,点P 在矩形的边DC 上由D 向C 运动.沿直线AP 翻折△ADP ,形成如下四种情形.设DP = x ,△ADP 和矩形重叠部分〔阴影〕的面积为y .〔1〕如图丁,当点P 运动到与C 重合时,求重叠部分的面积y ;〔2〕如图乙,当点P 运动到何处时,翻折△ADP 后,点D 恰好落在BC 边上?这时重叠部分的面积y 等于多少?〔3〕阅读材料:锐角α≠45°,tan2α 是角2α 的正切值,它能够用角α 的正切值tan α 来表示,即2)(tan 1tan 22tan ααα-=〔α≠45°〕. 依照上述阅读材料,求出用x 表示y 的解析式,并指出x 的取值范畴.〔提示:在图丙中可设∠DAP = α 〕。

2020年四川省绵阳市中考数学试卷及答案解析

2020年四川省绵阳市中考数学试卷及答案解析

2020年四川省绵阳市中考数学试卷一、选择题:本大题共12小题,每小题3分,共36分.每小题只有一个选项符合题目要求.1.(3分)﹣3的相反数是()A.﹣3B.−13C.√3D.32.(3分)如图是以正方形的边长为直径,在正方形内画半圆得到的图形,则此图形的对称轴有()A.2条B.4条C.6条D.8条3.(3分)近年来,华为手机越来越受到消费者的青睐.截至2019年12月底,华为5G手机全球总发货量突破690万台.将690万用科学记数法表示为()A.0.69×107B.69×105C.6.9×105D.6.9×1064.(3分)下列四个图形中,不能作为正方体的展开图的是()A.B.C.D.5.(3分)若√a−1有意义,则a的取值范围是()A.a≥1B.a≤1C.a≥0D.a≤﹣16.(3分)《九章算术》中记载“今有共买羊,人出五,不足四十五;人出七,不足三,问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?此问题中羊价为()A.160钱B.155钱C.150钱D.145钱7.(3分)如图,在四边形ABCD 中,∠A =∠C =90°,DF ∥BC ,∠ABC 的平分线BE 交DF 于点G ,GH ⊥DF ,点E 恰好为DH 的中点,若AE =3,CD =2,则GH =( )A .1B .2C .3D .48.(3分)将一个篮球和一个足球随机放入三个不同的篮子中,则恰有一个篮子为空的概率为( )A .23B .12C .13D .16 9.(3分)在螳螂的示意图中,AB ∥DE ,△ABC 是等腰三角形,∠ABC =124°,∠CDE =72°,则∠ACD =( )A .16°B .28°C .44°D .45°10.(3分)甲、乙二人同驾一辆车出游,各匀速行驶一半路程,共用3小时,到达目的地后,甲对乙说:“我用你所花的时间,可以行驶180km ”,乙对甲说:“我用你所花的时间,只能行驶80km ”.从他们的交谈中可以判断,乙驾车的时长为( )A .1.2小时B .1.6小时C .1.8小时D .2小时11.(3分)三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小完全相同.当水面刚好淹没小孔时,大孔水面宽度为10米,孔顶离水面1.5米;当水位下降,大孔水面宽度为14米时,单个小孔的水面宽度为4米,若大孔水面宽度为20米,则单个小孔的水面宽度为( )A.4√3米B.5√2米C.2√13米D.7米12.(3分)如图,在四边形ABCD中,AD∥BC,∠ABC=90°,AB=2√7,BB'=2,AD =2,将△ABC绕点C顺时针方向旋转后得△A′B′C,当A′B′恰好经过点D时,△B′CD为等腰三角形,则AA′=()A.√11B.2√3C.√13D.√14二、填空题:本大题共6小题,每小题4分,共24分.将答案填写在答题卡相应的横线上.13.(4分)因式分解:x3y﹣4xy3=.14.(4分)平面直角坐标系中,将点A(﹣1,2)先向左平移2个单位,再向上平移1个单位后得到的点A1的坐标为.15.(4分)若多项式xy|m﹣n|+(n﹣2)x2y2+1是关于x,y的三次多项式,则mn=.16.(4分)我市认真落实国家“精准扶贫”政策,计划在对口帮扶的贫困县种植甲、乙两种火龙果共100亩,根据市场调查,甲、乙两种火龙果每亩的种植成本分别为0.9万元、1.1万元,每亩的销售额分别为2万元、2.5万元,如果要求种植成本不少于98万元,但不超过100万元,且所有火龙果能全部售出,则该县在此项目中获得的最大利润是万元.(利润=销售额﹣种植成本)17.(4分)如图,四边形ABCD中,AB∥CD,∠ABC=60°,AD=BC=CD=4,点M是四边形ABCD内的一个动点,满足∠AMD=90°,则点M到直线BC的距离的最小值为.。

四川省绵阳市2020年中考数学试卷

四川省绵阳市2020年中考数学试卷

四川省绵阳市2020年中考数学试卷一、单选题(共12题;共24分)1.﹣3的相反数是()A. ﹣3B. ﹣C.D. 32.如图是以正方形的边长为直径,在正方形内画半圆得到的图形,则此图形的对称轴有()A. 2条B. 4条C. 6条D. 8条3.近年来,华为手机越来越受到消费者的青睐.截至2019年12月底,华为5G手机全球总发货量突破690万台.将690万用科学记数法表示为()A. 0.69×107B. 69×105C. 6.9×105D. 6.9×1064.下列四个图形中,不能作为正方体的展开图的是()A. B. C. D.5.若有意义,则a的取值范围是()A. a≥1B. a≤1C. a≥0D. a≤﹣16.《九章算术》中记载“今有共买羊,人出五,不足四十五;人出七,不足三,问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?此问题中羊价为()A. 160钱B. 155钱C. 150钱D. 145钱7.如图,在四边形ABCD中,∠A=∠C=90°,DF∥BC,∠ABC的平分线BE交DF于点G,GH⊥DF,点E 恰好为DH的中点,若AE=3,CD=2,则GH=()A. 1B. 2C. 3D. 48.将一个篮球和一个足球随机放入三个不同的篮子中,则恰有一个篮子为空的概率为()A. B. C. D.9.在螳螂的示意图中,AB∥DE,△ABC是等腰三角形,∠ABC=124°,∠CDE=72°,则∠ACD=()A. 16°B. 28°C. 44°D. 45°10.甲、乙二人同驾一辆车出游,各匀速行驶一半路程,共用3小时,到达目的地后,甲对乙说:“我用你所花的时间,可以行驶180km”,乙对甲说:“我用你所花的时间,只能行驶80km”.从他们的交谈中可以判断,乙驾车的时长为()A. 1.2小时B. 1.6小时C. 1.8小时D. 2小时11.三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小完全相同.当水面刚好淹没小孔时,大孔水面宽度为10米,孔顶离水面1.5米;当水位下降,大孔水面宽度为14米时,单个小孔的水面宽度为4米,若大孔水面宽度为20米,则单个小孔的水面宽度为()A. 4 米B. 5 米C. 2 米D. 7米12.如图,在四边形ABCD中,AD∥BC,∠ABC=90°,AB=2 ,AD=2,将△ABC绕点C顺时针方向旋转后得△,当恰好经过点D时,△CD为等腰三角形,若B =2,则A =()A. B. 2 C. D.二、填空题(共7题;共16分)13.因式分解:x3y﹣4xy3=________.14.平面直角坐标系中,将点A(﹣1,2)先向左平移2个单位,再向上平移1个单位后得到的点A1的坐标为________.15.若多项式是关于x,y的三次多项式,则________.16.我市认真落实国家“精准扶贫”政策,计划在对口帮扶的贫困县种植甲、乙两种火龙果共100亩,根据市场调查,甲、乙两种火龙果每亩的种植成本分别为0.9万元、1.1万元,每亩的销售额分别为2万元、2.5万元,如果要求种植成本不少于98万元,但不超过100万元,且所有火龙果能全部售出,则该县在此项目中获得的最大利润是________万元.(利润=销售额﹣种植成本)17.如图,四边形ABCD中,AB∥CD,∠ABC=60°,AD=BC=CD=4,点M是四边形ABCD内的一个动点,满足∠AMD=90°,则点M到直线BC的距离的最小值为________.18.若不等式>﹣x﹣的解都能使不等式(m﹣6)x<2m+1成立,则实数m的取值范围是________.19.如图,在平面直角坐标系xOy中,一次函数的图象与反比例函数y=(k<0)的图象在第二象限交于A(﹣3,m),B(n,2)两点.(1)当m=1时,求一次函数的解析式;(2)若点E在x轴上,满足∠AEB=90°,且AE=2﹣m,求反比例函数的解析式.三、解答题(共6题;共75分)20.(1)计算:| ﹣3|+2 cos60°﹣× ﹣(﹣)0.(2)先化简,再求值:(x+2+ )÷ ,其中x=﹣1.21.4月23日是“世界读书日”,甲、乙两个书店在这一天举行了购书优惠活动.甲书店:所有书籍按标价8折出售;乙书店:一次购书中标价总额不超过100元的按原价计费,超过100元后的部分打6折.(1)以x(单位:元)表示标价总额,y(单位:元)表示应支付金额,分别就两家书店的优惠方式,求y 关于x的函数解析式;(2)“世界读书日”这一天,如何选择这两家书店去购书更省钱?22.为助力新冠肺炎疫情后经济的复苏,天天快餐公司积极投入到复工复产中.现有A、B两家农副产品加工厂到该公司推销鸡腿,两家鸡腿的价格相同,品质相近.该公司决定通过检查质量来确定选购哪家的鸡腿.检察人员从两家分别抽取100个鸡腿,然后再从中随机各抽取10个,记录它们的质量(单位:克)如表:(1)根据表中数据,求A加工厂的10个鸡腿质量的中位数、众数、平均数;(2)估计B加工厂这100个鸡腿中,质量为75克的鸡腿有多少个?(3)根据鸡腿质量的稳定性,该快餐公司应选购哪家加工厂的鸡腿?23.如图,△ABC内接于⊙O,点D在⊙O外,∠ADC=90°,BD交⊙O于点E,交AC于点F,∠EAC=∠DCE,∠CEB=∠DCA,CD=6,AD=8.(1)求证:AB∥CD;(2)求证:CD是⊙O的切线;(3)求tan∠ACB的值.24.如图,抛物线过点A(0,1)和C,顶点为D,直线AC与抛物线的对称轴BD的交点为B(,0),平行于y轴的直线EF与抛物线交于点E,与直线AC交于点F,点F的横坐标为,四边形BDEF为平行四边形.(1)求点F的坐标及抛物线的解析式;(2)若点P为抛物线上的动点,且在直线AC上方,当△PAB面积最大时,求点P的坐标及△PAB面积的最大值;(3)在抛物线的对称轴上取一点Q,同时在抛物线上取一点R,使以AC为一边且以A,C,Q,R为顶点的四边形为平行四边形,求点Q和点R的坐标.25.如图,在矩形ABCD中,对角线相交于点O,⊙M为△BCD的内切圆,切点分别为N,P,Q,DN=4,BN=6.(1)求BC,CD;(2)点H从点A出发,沿线段AD向点D以每秒3个单位长度的速度运动,当点H运动到点D时停止,过点H作HI∥BD交AC于点I,设运动时间为t秒.①将△AHI沿AC翻折得△A I,是否存在时刻t,使点恰好落在边BC上?若存在,求t的值;若不存在,请说明理由;②若点F为线段CD上的动点,当△OFH为正三角形时,求t的值.答案解析部分一、单选题1.【解析】【解答】解:-3的相反数是3故答案为:D.【分析】利用相反数的定义得出即可.2.【解析】【解答】解:如图,因为以正方形的边长为直径,在正方形内画半圆得到的图形,所以此图形的对称轴有4条.故答案为:B.【分析】根据轴对称的性质即可画出对称轴进而可得此图形的对称轴的条数.3.【解析】【解答】解:690万=6900000=6.9×106.故答案为:D.【分析】绝对值大于10的数用科学记数法表示一般形式为,为整数位数减1.4.【解析】【解答】解:正方体展开图的11种情况可分为“1﹣4﹣1型”6种,“2﹣3﹣1型”3种,“2﹣2﹣2型”1种,“3﹣3型”1种,因此选项D符合题意,故答案为:D.【分析】根据正方体的展开图的11种不同情况进行判断即可.5.【解析】【解答】解:若有意义,则,解得:.故答案为:A.【分析】直接利用二次根式有意义的条件分析得出答案.6.【解析】【解答】解:设共有x人合伙买羊,羊价为y钱,依题意,得:,解得:.故答案为:C.【分析】设共有x人合伙买羊,羊价为y钱,根据“若每人出5钱,还差45钱;若每人出7钱,还差3钱”,即可得出关于x,y的二元一次方程组,解之即可得出结论.7.【解析】【解答】解:过作,交于点,,,,,为中点,,,即,,四边形为矩形,,平分,,,,,则.故答案为:B.【分析】过作,交于点,可得,得到与平行,再由为中点,得到,同时得到四边形为矩形,再由角平分线定理得到,进而求出的长,得到的长.8.【解析】【解答】解:三个不同的篮子分别用A、B、C表示,根据题意画图如下:共有9种等可能的情况数,其中恰有一个篮子为空的有6种,则恰有一个篮子为空的概率为.故答案为:A.【分析】根据题意画出树状图得出所有等可能的情况数,找出恰有一个篮子为空的情况数,然后根据概率公式即可得出答案.9.【解析】【解答】解:延长,交于F,是等腰三角形,,,,,,,故答案为:C.【分析】延长,交于F,根据等腰三角形的性质得出,根据平行线的性质得出,10.【解析】【解答】解:设乙驾车时长为x小时,则乙驾车时长为(3﹣x)小时,根据两人对话可知:甲的速度为km/h,乙的速度为km/h,根据题意得:,解得:x1=1.8或x2=9,经检验:x1=1.8或x2=9是原方程的解,x2=9不合题意,舍去,故答案为:C.【分析】设乙驾车时长为x小时,则乙驾车时长为(3﹣x)小时,根据两人对话可知:甲的速度为km/h,乙的速度为km/h,根据“各匀速行驶一半路程”列出方程求解即可.11.【解析】【解答】解:如图,建立如图所示的平面直角坐标系,由题意可得MN=4,EF=14,BC=10,DO= ,设大孔所在抛物线解析式为y=ax2+ ,∵BC=10,∴点B(﹣5,0),∴0=a×(﹣5)2+ ,∴a=- ,∴大孔所在抛物线解析式为y=- x2+ ,设点A(b,0),则设顶点为A的小孔所在抛物线的解析式为y=m(x﹣b)2,∵EF=14,∴点E的横坐标为-7,∴点E坐标为(-7,- ),∴- =m(x﹣b)2,∴x1= +b,x2=- +b,∴MN=4,∴| +b-(- +b)|=4∴m=- ,∴顶点为A的小孔所在抛物线的解析式为y=- (x﹣b)2,∵大孔水面宽度为20米,∴当x=-10时,y=- ,∴- =- (x﹣b)2,∴x1= +b,x2=- +b,∴单个小孔的水面宽度=|(+b)-(- +b)|=5 (米),故答案为:B.【分析】根据题意,可以画出相应的抛物线,然后即可得到大孔所在抛物线解析式,再求出顶点为A的小孔所在抛物线的解析式,将x=﹣10代入可求解.12.【解析】【解答】解:过D作于,则,,,,四边形是矩形,,,将绕点C顺时针方向旋转后得△,,,,,△△,,△为等腰三角形,△为等腰直角三角形,,设,则,,,,(负值舍去),,,,,故答案为:A.【分析】过D作于,则,根据矩形的性质得,,根据旋转的性质得到,,,,推出△为等腰直角三角形,得到,设,则,,根据勾股定理即可得到结论.二、填空题13.【解析】【解答】解:x3y﹣4xy3,=xy(x2﹣4y2),=xy(x+2y)(x﹣2y).故答案为:xy(x+2y)(x﹣2y).【分析】原式提取公因式xy,再利用平方差公式分解即可;14.【解析】【解答】解:∵将点A(﹣1,2)先向左平移2个单位横坐标﹣2,再向上平移1个单位纵坐标+1,∴平移后得到的点A1的坐标为:(﹣3,3).故答案为:(﹣3,3).【分析】根据在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a,相应的新图形就是把原图形向右(或向左)平移a个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a,相应的新图形就是把原图形向上(或向下)平移a个单位长度.(即:横坐标,右移加,左移减;纵坐标,上移加,下移减.)即可得结论.15.【解析】【解答】解:多项式是关于,的三次多项式,,,,,或,或,或8.故答案为:0或8.【分析】直接利用多项式的次数确定方法得出答案.16.【解析】【解答】解:设甲种火龙果种植亩,乙钟火龙果种植亩,此项目获得利润,甲、乙两种火龙果每亩利润为1.1万元,1.4万元,由题意可知:,解得:,此项目获得利润,∵∴随的增大而减小,∴当时,的最大值为万元,故答案为:125.【分析】设甲种火龙果种植x 亩,乙钟火龙果种植(100-x) 亩,此项目获得利润w ,根据题意列出不等式求出x 的范围,然后根据题意列出w 与x 的函数关系即可求出答案.17.【解析】【解答】解:取AD的中点O,连接OM,过点M作ME⊥BC交BC的延长线于E,点点O作OF⊥BC于F,交CD于G,则OM+ME≥OF.∵∠AMD=90°,AD=4,OA=OD,∴OM=AD=2,∵AB∥CD,∴∠GCF=∠B=60°,∴∠DGO=∠CGE=30°,∵AD=BC,∴∠DAB=∠B=60°,∴∠ADC=∠BCD=120°,∴∠DOG=30°=∠DGO,∴DG=DO=2,∵CD=4,∴CG=2,∴OG=2 ,GF=,OF=3 ,∴ME≥OF﹣OM=3 ﹣2,∴当O,M,E共线时,ME的值最小,最小值为3 ﹣2.【分析】取AD的中点O,连接OM,过点M作ME⊥BC交BC的延长线于E,点点O作OF⊥BC于F,交CD于G,则OM+ME≥OF.求出OM,OF即可解决问题.18.【解析】【解答】解:解不等式>﹣x﹣得x>﹣4,∵x>﹣4都能使不等式(m﹣6)x<2m+1成立,①当m﹣6=0,即m=6时,则x>﹣4都能使0•x<13恒成立;②当m﹣6≠0,则不等式(m﹣6)x<2m+1的解要改变方向,∴m﹣6<0,即m<6,∴不等式(m﹣6)x<2m+1的解集为x>,∵x>﹣4都能使x>成立,∴﹣4≥ ,∴﹣4m+24≤2m+1,∴m≥ ,综上所述,m的取值范围是≤m≤6.故答案为:≤m≤6.【分析】解不等式>﹣x﹣得x>﹣4,据此知x>﹣4都能使不等式(m﹣6)x<2m+1成立,再分m﹣6=0和m﹣6≠0两种情况分别求解.19.【解析】【分析】(1)将点坐标代入反比例函数解析式中求出,进而得出点坐标,最后用待定系数法求出直线的解析式;(2)先判断出,进而得出,得出,,即,再求出,进而得出,,即,再判断出,得出,得出,最后用勾股定理求出m,即可得出结论.三、解答题20.【解析】【分析】(1)先去绝对值符号、代入三角函数值、化简二次根式、计算零指数幂,再计算乘法,最后计算加减可得;(2)先根据分式的混合运算顺序和运算法则化简原式,再将x的值代入计算可得.21.【解析】【分析】(1)根据题意给出的等量关系即可求出答案.(2)先求出两书店所需费用相同时的书本数量,从而可判断哪家书店省钱.22.【解析】【分析】(1)根据中位数、众数和平均数的计算公式分别进行解答即可;(2)用总数乘以质量为75克的鸡腿所占的百分比即可;(3)根据方差的定义,方差越小数据越稳定即可得出答案.23.【解析】【分析】(1)由圆周角定理与已知得,即可得出结论;(2)连接并延长交于G,连接,则为的直径,,证明,得出,即可得出结论;(3)由三角函数定义求出,证出,求出,,过点作于,设,则,由勾股定理得出方程,解方程得,由勾股定理求出,由三角函数定义即可得答案.24.【解析】【分析】(1)由待定系数法求出直线AB的解析式为y=﹣x+1,求出F点的坐标,由平行四边形的性质得出﹣3a+1=a﹣8a+1﹣(﹣),求出a的值,则可得出答案;(2)设P(n,﹣n2+2 n+1),作PP'⊥x轴交AC于点P',则P'(n,﹣n+1),得出PP'=﹣n2+ n,由二次函数的性质可得出答案;(3)联立直线AC和抛物线解析式求出C(,﹣),设Q(,m),分两种情况:①当AQ为对角线时,②当AR为对角线时,分别求出点Q和R的坐标即可.25.【解析】【分析】(1)由切线长定理得出BP=BN=6,DQ=DN=4,CP=CQ,BD=BN+DN=10,设CP=CQ=a,由勾股定理得出BC2+CD2=BD2,得出方程,解方程即可;(2)①由折叠的性质得∠AH'I =∠AHI,AH'=AH=3t,证明△AIH'∽△AH'C,则AH'2=AI×AC,证△AIH∽△AOD,求出AI=t,得出(3t)2=t×10,解方程即可;②作PH⊥OH于H,交OF的延长线于P,作OM⊥AD于M,PN⊥AD于N,证出FH=FP=OF,HP=OH,DN=DM=4,证明△OMH∽△HNP,求出HN=OM=3 ,则DH=HN﹣DN=3 ﹣4,得出AH=AD﹣DH=12﹣3 ,即可得出答案.。

四川省绵阳市2020年某重点初中招生考试数学试卷

四川省绵阳市2020年某重点初中招生考试数学试卷

四川省绵阳市2020年某重点初中招生考试数学试卷姓名:________ 班级:________ 成绩:________亲爱的同学,经过一段时间的学习,你们一定学到不少知识,今天就让我们大显身手吧!一、填空。

(共20分) (共12题;共20分)1. (1分)(2015·揭东) 如果小明向南走80米,记作+80米,那么小华从同一地点向北走50米,记作________米,这时他们两人相距________米.2. (2分)(2016·牟定模拟) 一个九位数,最高位上的数是最大的一位数,十万位上的数是最小的质数,千位上是最小的合数,个位上的数既不是质数也不是合数,其它各位上的数都是最小的自然数,这个数写作________,把这个数改写成用“万”作单位的数是________.3. (1分)北京距天津140千米,一辆货车从北京出发,平均每时行70千米,________时后到达天津。

4. (2分)(1) 6.25平方米=________平方米________平方分米(2) 75分=________小时5. (2分)用“>”、“<”或“=”表示下列各组数关系(1)三成五________3.5%(2)25%________二成五6. (1分)如果a与b成正比例,那么x是________;如果a与b成反比例,那么x是________.a200160b4x7. (1分)(2018·永川) 等底等高的圆柱和圆锥,体积之差是3.2立方分米,圆柱的体积是________立方分米。

8. (2分)如图,正方形ABCD的边长是3厘米,DE是4厘米.AF垂直于DE,则AF是________厘米.9. (2分)一个长方体的长5厘米,宽4厘米,高3厘米.它的体积是________立方厘米,表面积是________平方厘米,棱长总和是________厘米.10. (2分)夏至是一年中白天最长、黑夜最短的一天,其中北京的白天时间与黑夜时间的比是5∶3,白天有________小时,黑夜有________小时。

四川省绵阳市涪城区东辰国际学校-2020-2021学年九年级上学期自主招生数学试卷

四川省绵阳市涪城区东辰国际学校-2020-2021学年九年级上学期自主招生数学试卷

2020-2021学年四川省绵阳市涪城区东辰国际学校九年级(上)自主招生数学试卷一、选择题(共12小题,每小题3分,共36分)1.下面的图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.2.在平面直角坐标系中,点P(﹣3,﹣5)关于原点对称的点的坐标是()A.(3,﹣5)B.(﹣3,5)C.(3,5)D.(﹣3,﹣5)3.如图,A、B、C是⊙O上三点,∠ACB=24°,则∠AOB的度数是()A.56°B.68°C.48°D.12°4.已知关于x的一元二次方程有实数根,则m的取值范围是()A.m≥2B.m≤5C.m>2D.m<55.把抛物线y=(x+1)2﹣4先向左平移1个单位,再向下平移2个单位,得到的新抛物线的表达式为()A.y=x2﹣4B.y=x2+4x﹣2C.y=x2﹣4x﹣2D.y=x2+4x+26.如图,将Rt△ABC绕直角顶点C顺时针旋转90°,得到△A′B′C,连接AA′,若∠AA′B′=20°,则∠BAA′的度数是()A.70°B.65°C.60°D.55°7.若m是关于x的方程x2﹣2020x+1=0的根,则(m2﹣2020m+4)•(m2﹣2020m﹣5)的值为()A.18B.﹣18C.20D.﹣208.如图,四边形ABCD内接于⊙O,AB为直径,BC=CD,连接AC.若∠DAB=50°,则∠B的度数为()A.50°B.65°C.75°D.130°9.下列说法正确的是()A.等弦所对的弧相等B.弦所对的两条弧的中点的连线垂直平分弦,且过圆心C.垂直于半径的直线是圆的切线D.平分弦的直径垂直于弦,并且平分弦所对的弧10.函数y=ax+b和y=ax2+bx+c在同一直角坐标系内的图象大致是()A.B.C.D.11.已知点(﹣1,y1),(2,y2),(3,y3)在二次函数y=x2﹣4x﹣2020的图象上,则下列结论正确的是()A.y1>y2>y3B.y1>y3>y2C.y3>y1>y2D.y2>y3>y112.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,过点(0,1)和(﹣1,0),给出以下结论:①ab>0;②4a+c>1+b2;③0<a+b+c<2;④0<b<1;⑤当x>﹣1时,y>0;⑥8a+7b+2c﹣9<0.其中正确结论的个数是()A.6B.5C.4D.3二、填空题(共6小题,每小题3分,共18分)13.已知﹣2是关于x的方程x2﹣4x﹣m2=0的一个根,则m=.14.如图是一个隧道的横截面,它的形状是以点O为圆心的圆的一部分.如果M是⊙O中弦CD的中点,EM经过圆心O交⊙O于点E,CD=10,EM=25,则⊙O的半径.15.如图,直线y=﹣x+2与x轴、y轴分别交于A、B两点,把△AOB绕点A顺时针旋转60°后得到△AO′B′,则点B′的坐标是.16.若关于x的函数y=kx2+3x﹣1与x轴仅有一个公共点,则实数k的值为.17.某城市规划修建一座观光人行桥,此工程由桥梁工程与桥上拱形工程组成,桥上拱形工程包含三组完全相同的拱形,观光人行桥的正视图如图所示,已知桥面上三组拱桥都为抛物线的一部分,拱高(抛物线最高点到桥面AB的距离)都为16米,三条抛物线依次与桥面AB相交于点A,C,D,B.则桥长AB=米.18.在平面直角坐标系中,△OAB的位置如图所示,将△OAB绕点O顺时针旋转90°得△OA1B1;再将△OA1B1绕点O顺时针旋转90°得△OA2B2;再将△OA2B2绕点O顺时针旋转90°得△OA3B3;……依此类推,第2020次旋转得到△OA2020B2020,则顶点A的对应点A2020的坐标是.二、填空题(共6小题,每小题3分,共18分)19.(1)计算:﹣12020+(﹣)﹣2﹣﹣(π﹣3)0;(2)解方程:x2﹣2x﹣7=0.20.如图,在边长为1的正方形组成的网格中,△AOB的顶点均在格点上,点A、B的坐标分别是A(3,2)、B(1,3).将△AOB绕点O逆时针旋转90°后得到△A1OB1.(1)画出旋转后的A1OB1;(2)直接写出点A1、B1的坐标分别为、;(3)试求A1OB1的面积.21.已知关于x的一元二次方程2x2﹣2x+3m﹣1=0的两个实数根是x1,x2,且(x1﹣1)(x2﹣1)>﹣3,求m的取值范围.22.如图,AB是⊙O的直径,弦EF⊥AB于点C,点D是AB延长线上一点,∠A=30°,∠D=30°.(1)求证:FD是⊙O的切线;(2)取BE的中点M,连接MF,若⊙O的半径为2,求MF的长.23.如图,有长为30m的篱笆,一面利用墙(墙的最大可用长度为10m),围成中间隔有一道篱笆(平行于AB)的矩形花圃,设花圃的一边AB为xm.(1)如果要围成面积为63m2的花圃,AB的长是多少?(2)能否围成面积为67m2的花圃?如果能,请求出AB的长;如果不能,请说明理由.24.如图1.在平面直角坐标系中,直线y=x+1分别与x轴,y轴交于点A,B,抛物线y=﹣x2+bx+c经过点B,且与直线y=x+1的另一个交点为C(﹣4,n).(1)求抛物线的解析式;(2)如图2,点D是抛物线上一动点,且点D的横坐标为t(﹣4<t<0),求△DBC面积的最大值;(3)抛物线的对称轴上是否存在一点P,使得△BCP是以BC为直角边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.B卷一、填空题(共5小题,每小题4分,共20分)25.已知关于x的一元二次方程(1﹣2k)x2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围.26.如图,正方形ABCD的对角线相交于点O,正三角形OEF绕点O旋转.在旋转过程中,当AE=BF时,∠AOE的大小是.27.⊙O的半径为5,弦AB=8,弦CD=6,AB∥CD,则AC=.28二次函数y=﹣(x﹣1)2+5.当m≤x≤n且mn<0时,y的最小值为2m,最大值为2n,则m+2n的值为.29在平面直角坐标系中,已知点A的坐标为(1,0),函数y=x2+(m﹣2)x+2m﹣1的图象与线段OA只有一个公共点.则m的取值为.二、解答题(共3小题,共30分)30.关于x的一元二次方程x2+(2m+1)x+m2﹣1=0有两个不相等的实数根.(1)求m的取值范围;(2)若m为不大于1的整数,且方程的根为整数,求满足条件的m的值及对应的方程的根.31.已知⊙O是△ABC的外接圆,P为劣弧BC上一动点.(1)如图1,若△ABC为正三角形,探究P A,PB,PC之间的数量关系,并说明理由;(2)如图2,若△ABC为等腰直角三角形,且AC=BC.①若Q为半圆AB一点,AQ+BQ=14,求四边形ACBQ的面积;②探究P A,PB,PC之间的数量关系,并说明理由.32.如图1,抛物线y=x2﹣(a+1)x+a与x轴交于A,B两点(点A位于点B的左侧),与y轴负半轴交于点C,若AB=4.(1)求抛物线的解析式;(2)如图2,E是第三象限内抛物线上的动点,过点E作EF∥AC交抛物线于点F,过E作EG⊥x轴交AC于点M,过F作FH⊥x轴交AC于点N,当四边形EMNF的周长最大值时,求点E的横坐标;(3)在x轴下方的抛物线上是否存在一点Q,使得以Q、C、B、O为顶点的四边形被对角线分成面积相等的两部分?如果存在,求点Q的坐标;如果不存在,请说明理由.参考答案一.选择题(共12小题)1.B.2.C.3.C.4.B.5.B.6.A.7.B.8.B.9.B.10.C.11.B.12.B.二.填空题(共6小题)13.±2.14.13.15.(2,4).16.﹣或0.17.96.18.(1,2).三、解答题(共6小题,共46分)19.解:(1)原式=﹣1+4﹣(2﹣)﹣1=﹣1+4﹣2+﹣1=;(2)∵x2﹣2x﹣7=0,∴x2﹣2x=7,则x2﹣2x+1=7+1,即(x﹣1)2=8,∴x﹣1=±2,∴x1=1+2,x2=1﹣2.20.解:(1)如图,(2)点A1、B1的坐标分别为:(﹣2,3),(﹣3,1);故答案为:(﹣2,3),(﹣3,1);(3)S△A1OB1=3×3﹣×2×3﹣×1×2﹣×3×1=.21.解:∵关于x的一元二次方程2x2﹣2x+3m﹣1=0的两个实数根是x1,x2,∴Δ=b2﹣4ac=4﹣4×2(3m﹣1)≥0,x1+x2=1,x1•x2=,∵(x1﹣1)(x2﹣1)>﹣3,依题意有,解①得m≤,解②得m>﹣.故m的取值范围是﹣<m≤.22.解:(1)连接OE,OF,如图1所示:∵EF⊥AB,AB是⊙O的直径,∴,∴∠DOF=∠DOE,∵∠DOE=2∠A,∠A=30°,∴∠DOF=60°,∵∠D=30°,∴∠OFD=90°.∴OF⊥FD.∴FD为⊙O的切线;(2)连接OM.如图2所示:∵O是AB中点,M是BE中点,∴OM∥AE.∴∠MOB=∠A=30°.∵OM过圆心,M是BE中点,∴OM⊥BE.∴,.∵∠DOF=60°,∴∠MOF=90°.∴MF===.23.解:(1)设该花圃的一边AB的长为xm,则与AB相邻的边的长为(30﹣3x)m,由题意得:(30﹣3x)x=63,即:x2﹣10x+21=0,解得:x1=3,x2=7当x=3m时,平行于墙的一边长为:30﹣3x=21m>10m,不合题意舍去;当x=7m时,平行于墙的一边长为:30﹣3x=9m<10m,符合题意,所以,AB的长是7m.(2)能围成面积为67m2的花圃,理由如下:根据题意,得:(30﹣3x)x=67.即:3x2﹣30x+67=0,此时△=302﹣4×3×67=96>0,x=,x=不符合30﹣3x<10,所以AB的长度为m.24.解:(1)将C点的坐标代入y=x+1,得n=×(﹣4)+1=﹣2,故点C坐标(﹣4,﹣2),当x=0时,y=×0+1=1,故点B(0,1),将点B,C的坐标代入抛物线表达式,得;解得,故抛物线的表达式y=﹣x2﹣x+1;(2)过点D作DE∥y轴交直线BC于点E,如图,设点D坐标为(t,﹣t2﹣t+1),则点E(t,t+1),∴DE=y D﹣y E=﹣t2﹣t+1﹣(t+1)=﹣t2﹣2t,∴S△DBC=S△CDE+S△BDE=×DE×(x D﹣x C)+×DE×(x B﹣x D)=×DE×(x B﹣x C)=2DE=2(﹣t2﹣2t)=﹣t2﹣4t=﹣(t+2)2+4,∴当t=﹣2时,满足﹣4<t<0,S△DBC有最大值为4;(3)根据抛物线的表达式知,对称轴x=﹣=﹣,设点P(﹣,m),点B(0,1),点C(﹣4,﹣2),∴PB2=(﹣0)2+(m﹣1)2=m2﹣2m+,PC2=(﹣+4)2+(m+2)2=m2+4m+,BC2=(0+4)2+(1+2)2=25,当PB为斜边时,PC2+BC2=PB2,∴m2+4m++25=m2﹣2m+,解得m=﹣,点P坐标(﹣,﹣);当PC为斜边时,PB2+BC2=PC2,∴m2﹣2m++25=m2+4m+,解得m=,点P坐标(﹣,);综上所述,P点坐标(﹣,﹣)或(﹣,).B卷一、填空题(共5小题,每小题4分,共20分)25.﹣3≤k<4且k≠.26. 15°或165°.27.或5或7.28 .0.5.29:m=6﹣2或≤m<.二、解答题(共3小题,共30分)30.解:(1)∵关于x的一元二次方程x2+(2m+1)x+m2﹣1=0有两个不相等的实数根,∴b2﹣4ac=(2m+1)2﹣4(m2﹣1)=4m+5>0,解得:m>﹣,即m的取值范围是m>﹣;(2)由(1)知:当m>﹣时,方程有两个不相等的实数根,∵m为不大于1的整数,∴m=0,﹣1,1,又m=0时,方程x2+x﹣1=0的根不是整数,当m=﹣1时,则方程为x2﹣x=0,解得:x1=1,x2=0,即当m=﹣1时,方程的解是x1=1,x2=0.当m=1时,则方程为x2+3x=0,解得:x1=﹣3,x2=0,即当m=1时,方程的解是x1=﹣3,x2=0.31.解:(1)结论:PB+PC=P A.理由:延长BP至E,使PE=PC,连接CE,如图1,∵A、B、P、C四点共圆,∴∠BAC+∠BPC=180°,∵∠BPC+∠EPC=180°,∴∠BAC=∠CPE=60°,PE=PC,∴△PCE是等边三角形,∴CE=PC,∠E=60°,又∵∠BCE=60°+∠BCP,∠ACP=60°+∠BCP,∴∠BCE=∠ACP,∵△ABC、△ECP为等边三角形,∴CE=PC,AC=BC,在△BEC和△APC中,∴△BEC≌△APC(SAS),∴P A=BE=PB+PC;(2)①如图2﹣1中,过点C作CM⊥BQ于M,CN⊥QA交QA的延长线于N.∵AB是直径,∴∠MQN=∠ACB=90°,∵∠CMQ=∠N=90°,∴四边形CMQN是矩形,∴∠MCN=∠ACB=90°,∴∠ACN=∠BCM,∵∠N=∠CMB=90°,CA=CB,∴△CNA≌△CMB(AAS),∴CN=CM,AN=BM,∴四边形CMQN是正方形,∴QN=QM,∵QA+QB=QN﹣AN+QM+BM=2QN=14,∴QN=7,∵△CNA≌△CMB,∴S△CNA=S△CMB,∴S四边形ACBQ=S正方形CMQN=72=49;②结论:P A﹣PB=PC.理由:如图1,在P A上截取AD=PB,连接CD.在△ADC和△BPC中,∴△ADC≌△BPC(SAS),∴CD=PC,∠ACD=∠BCP,∵∠ACB=90°,∴∠DCP=90°,∴△DCP是等腰直角三角形,∴PD=PC,∵PD=P A﹣AD=P A﹣PB,∴P A﹣PB=PC.32.解:(1)x2﹣(a+1)x+a=0,则x1+x2=a+1,x1x2=a,则AB==(a﹣1)2=16,解得:a=5或﹣3,抛物线与y轴负半轴交于点C,故a=5舍去,则a=﹣3,则抛物线的表达式为:y=x2+2x﹣3…①;(2)由y=x2+2x﹣3得:点A、B、C的坐标分别为:(﹣3,0)、(1,0)、(0,﹣3),设点E(m,m2+2m﹣3),OA=OC,故直线AC的倾斜角为45°,EF∥AC,直线AC的表达式为:y=﹣x﹣3,则设直线EF的表达式为:y=﹣x+b,将点E的坐标代入上式并解得:直线EF的表达式为:y=﹣x+(m2+3m﹣3)…②,联立①②并解得:x=m或﹣3﹣m,故点F(﹣3﹣m,m2+4m),点M、N的坐标分别为:(m,﹣m﹣3)、(﹣3﹣m,m+3),则EF=(x F﹣x E)=(﹣2m﹣3)=MN,四边形EMNF的周长S=ME+MN+EF+FN=﹣2m2﹣(6+4)m﹣6,∵﹣2<0,故S有最大值,此时m=﹣,故点E的横坐标为:﹣;(3)①当点Q在第三象限时,﹣﹣﹣﹣当QC平分四边形面积时,则|x Q|=x B=1,故点Q(﹣1,﹣4);﹣﹣﹣﹣当BQ平分四边形面积时,则S△OBQ=×1×|y Q|,S四边形QCBO=1×3+×3×|x Q|,则2(×1×|y Q|)=1×3+×3×|x Q|,解得:x Q=﹣,故点Q(﹣,﹣);②当点Q在第四象限时,同理可得:点Q(,);综上,点Q的坐标为:(﹣1,﹣4)或(﹣,﹣)或(,)。

绵阳市2020版中考数学试卷(II)卷

绵阳市2020版中考数学试卷(II)卷

绵阳市2020版中考数学试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分)-的倒数是()A .B . -C .D . -2. (2分)(2017·濮阳模拟) 如图,是由5个相同的小正方体搭成的几何体,那么这个几何体的俯视图是()A .B .C .D .3. (2分)不等式组的解集在数轴上表示如图,则该不等式组是()A .B .C .D .4. (2分) (2018八下·禄劝期末) 下列计算错误的是()A . ÷ =3B . =5C . 2 + =2D . 2 • =25. (2分)甲、乙、丙、丁四位选手各10次射击成绩的平均数和方差如下表:则这四人中成绩发挥最稳定的是()A . 甲B . 乙C . 丙D . 丁6. (2分)函数中自变量x的取值范围为()A . x≥0B . x≥﹣1C . x>﹣1D . x≥17. (2分)(2018·成都) 如图,在中,,的半径为3,则图中阴影部分的面积是()A .B .C .D .8. (2分)如图,直线y=kx+b经过点A(-1,-2)和点B(-2,0),直线y=2x过点A,则不等式2x<kx+b<0的解集为()A . x<-2B . -2<x<-1C . -2<x<0D . -1<x<0二、填空题 (共8题;共8分)9. (1分)分解因式4x2﹣4x+1=________10. (1分)一天有8.64×104秒,一年如果按365天计算,用科学记数法表示一年有________秒.11. (1分)(2018·乐山) 化简的结果是________12. (1分)某校举行以“保护环境,从我做起”为主题的演讲比赛.经预赛,七、八年级各有一名同学进入决赛,九年级有两名同学进入决赛.前两名都是九年级同学的概率是________ .13. (1分)(2011·宁波) 如图,△ABC中,∠BAC=60°,∠ABC=45°,AB=2 ,D是线段BC上的一个动点,以AD为直径画⊙O分别交AB,AC于E,F,连接EF,则线段EF长度的最小值为________.14. (1分)(2012·南京) 如图,在▱ABCD中,AD=10cm,CD=6cm,E为AD上一点,且BE=BC,CE=CD,则DE=________cm.15. (1分) (2019八上·通化期末) 如图,等腰三角形 ABC 的底边 BC 长为 4,面积是 12,腰 AB 的垂直平分线 EF 分别交AB,AC 于点 E、F,若点 D 为底边 BC 的中点,点 M 为线段 EF 上一动点,则△BDM 的周长的最小值为 ________16. (1分)(2018·随州) 如图,在平面直角坐标系xOy中,菱形OABC的边长为2,点A在第一象限,点C 在x轴正半轴上,∠AOC=60°,若将菱形OABC绕点O顺时针旋转75°,得到四边形OA′B′C′,则点B的对应点B′的坐标为________.三、解答题 (共10题;共101分)17. (5分)(2016·怀化) 计算:20160+2|1﹣sin30°|﹣()﹣1+ .18. (5分)两批货物,第一批360吨,用5节火车皮和12辆汽车正好装完;第二批500吨,用7节火车皮和16辆汽车正好装完.每节火车皮和每辆汽车平均各装货物多少吨?19. (10分) (2016九上·东城期末) 石头剪子布,又称“猜丁壳”,是一种起源于中国流传多年的猜拳游戏.游戏时的各方每次用一只手做“石头”、“剪刀”、“布”三种手势中的一种,规定“石头”胜“剪刀”、“剪刀”胜“布”、“布”胜“石头” .两人游戏时,若出现相同手势,则不分胜负游戏继续,直到分出胜负,游戏结束.三人游戏时,若三种手势都相同或都不相同,则不分胜负游戏继续;若出现两人手势相同,则视为一种手势与第三人所出手势进行对决,此时,参照两人游戏规则.例如甲、乙二人同时出石头,丙出剪刀,则甲、乙获胜.假定甲、乙、丙三人每次都是随机地做这三种手势,那么:(1)直接写出一次游戏中甲、乙两人出第一次手势时,不分胜负的概率;(2)请你画出树状图求出一次游戏中甲、乙、丙三人出第一次手势时,不分胜负的概率.20. (10分)如图,已知▱ABCD的对角线AC、BD交于O,且∠1=∠2.(1)求证:▱ABCD是菱形;(2) F为AD上一点,连结BF交AC于E,且AE=AF,求证:AO= (AF+AB).21. (11分)(2018·泸县模拟) 学校实施新课程改革以来,学生的学习能力有了很大提高.王老师为进一步了解本班学生自主学习、合作交流的现状,对该班部分学生进行调查,把调查结果分成四类(A:特别好,B:好,C:一般,D:较差)后,再将调查结果绘制成两幅不完整的统计图(如图).请根据统计图解答下列问题:(1)本次调查中,王老师一共调查了________名学生;(2)将条形统计图补充完整;(3)为了共同进步,王老师从被调查的A类和D类学生中分别选取一名学生进行“兵教兵”互助学习,请用列表或画树状图的方法求出恰好选中一名男生和一名女生的概率.22. (10分)仔细阅读下面例题,解答问题:例题:已知关于x的多项式x2﹣4x+m有一个因式是(x+3),求另一个因式以及m的值.解:设另一个因式为(x+n),得:x2﹣4x+m=(x+3)(x+n),则x2﹣4x+m=x2+(n+3)x+3n,∴ ,解得:n=﹣7,m=﹣21.∴另一个因式为(x﹣7),m的值为﹣21.问题:仿照以上方法解答下面问题:(1)已知关于x的多项式2x2+3x﹣k有一个因式是(x+4),求另一个因式以及k的值.(2)已知关于x的多项式2x3+5x2﹣x+b有一个因式为x+2,求b的值.23. (10分)(2018·沾益模拟) 如图,点E在正方形ABCD的边AB上,连接DE,过点C作CF⊥DE于F,过点A作AG∥CF交DE于点G.(1)求证:△DCF≌△ADG.(2)若点E是AB的中点,设∠DCF=α,求sinα的值.24. (10分)已知反比例函数的图象经过点M(2,1)(1)该函数的表达式(2)当2<x<4时,求y的取值范围(直接写出结果).25. (20分)如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)的顶点为B(2,1),且过点A(0,2),直线y=x与抛物线交于点D,E(点E在对称轴的右侧),抛物线的对称轴交直线y=x于点C,交x轴于点G,EF⊥x 轴,垂足为F,点P在抛物线上,且位于对称轴的右侧,PQ⊥x轴,垂足为点Q,△PCQ为等边三角形(1)求该抛物线的解析式;(2)求点P的坐标;(3)求证:CE=EF;(4)连接PE,在x轴上点Q的右侧是否存在一点M,使△CQM与△CPE全等?若存在,试求出点M的坐标;若不存在,请说明理由.[注:3+=(+1)2].26. (10分)(2018·贵阳) 如图,AB为⊙O的直径,且AB=4,点C在半圆上,OC⊥AB,垂足为点O,P为半圆上任意一点,过P点作PE⊥OC于点E,设△OPE的内心为M,连接OM、PM.(1)求∠OMP的度数;(2)当点P在半圆上从点B运动到点A时,求内心M所经过的路径长.参考答案一、选择题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共8题;共8分)9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共10题;共101分)17-1、18-1、19-1、19-2、20-1、20-2、21-1、21-2、21-3、22-1、22-2、23-1、23-2、24-1、24-2、25-1、25-2、25-3、25-4、26-1、26-2、。

绵阳中考数学试题及答案2020

绵阳中考数学试题及答案2020

绵阳中考数学试题及答案2020 2020年绵阳市的中考数学试题如下:一、选择题1. 设a、b为实数,且a > 0,b < 0,则下列哪个选项中不一定为真?A. ab < 0B. a + b > 0C. ab > aD. |b| < a2. 已知二次函数y = ax^2 + bx + c的图像过点(1,-1),且在x = 2处的函数值为3。

则a、b、c的值分别为:A. 2,-2,-1B. -2,0,1C. 2,-4,1D. 2,2,-13. 若正方形ABCD的边长为x,M为AB的中点,N为BC的中点,P为CD的中点,Q为DA的中点,则下列等式成立的是:A. 3x = 2CMB. 2x = PNC. 2x = 3ADD. 3x = 4PN二、填空题4. 已知数列{an}的通项公式为an = 2n - 1,其中n为正整数。

则当n取3时,数列的前三项分别为____、____、____。

5. 在空格中填入适当的整数,使得5的立方根加上这个整数的和等于8。

6. 设甲、乙、丙三位同学参加了一场考试,他们三人的总分为190分。

已知甲比乙多得20分,丙比甲多得15分。

则甲、乙、丙三人的总分之和等于______分。

三、解答题7. 已知三角形ABC中,AC = BC,∠ACB = 80°。

点D在边BC上,且AD = BD。

连结AD,交AC于点E。

求∠ABE的度数。

8. 某超市部分商品打折销售,原价为270元的商品打八折出售,原价为180元的商品打五折出售。

小明购买了一个原价270元的商品和两个原价180元的商品。

求小明购买这三个商品的总价。

答案及解析:一、选择题1. B。

由于a > 0,b < 0,所以a + b > 0一定成立。

2. C。

根据已知条件可列方程:a +b +c = -1 (1)4a + 2b + c = 3 (2)解方程组得a = 2,b = -4,c = 1。

2020年绵阳市中考数学试卷

2020年绵阳市中考数学试卷

绵阳市初2020级学业考试暨高中阶段招生考试数学第Ⅰ卷(选择题,共36分)一、选择题:本大题共12个小题,每小题3分,共36分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1、计算:-1-2=A、-1B、1C、-3D、32、下列运算正确的是A、a+a2=a3B、2a+3b=5abC、(a3)2=a9D、a3÷a2=a3、掷一个质地均匀且六个面上分别刻有1到6的点数的正方体骰子,如图。

观察向上的一面的点数,下列属于必然事件的是A、出现点数是7B、出现点数不会是0C、出现点数是2D、出现点数为奇数4、使函数y=1-2x有意义的自变量x的取值范围是A、x≤12B、x≠12C、x≥12D、x<125、将一副常规三角尺按如图方式放置,则图中∠AOB的度数为A、75°B、95°C、105°D、120°6、王师傅用4根木条钉成一个四边形木架,如图。

要使这个木架不变形,他至少要再钉上几根木条A、0根B、1根C、2根D、3根7、下列关于矩形的说法正确的是A、对角线相等的四边形是矩形B、对角线互相平分的四边形是矩形C、矩形的对角线互相垂直且平分D、矩形的对角线相等且互相平分8、由四个相同的正方体搭建了一个积木,它的三视图如图所示,则这个积木可能是9、灾后重建,四川从悲壮走向豪迈。

灾民发扬伟大的抗震救灾精神,桂花村派男女村民共15人到山外采购建房所需的水泥。

已知男村民一人挑两包,女村民两人一包,共购回15包。

请问这次采购派男女村民各多少人?A、男村民3人,女村民12人B、男村民5人,女村民10人C、男村民6人,女村民9人D、男村民7人,女村民8人10、周末,身高都为1.6米得小芳、小丽来到溪江公园,准备用她们所学的知识测算南塔的高度,如图。

小芳站在A处测得她看塔顶的仰角α为45°,小丽站在B处测得她看塔顶的仰角β为30°。

她们又测出A、B两点的距离为30米。

2020年四川省绵阳市中考数学试卷及其答案

2020年四川省绵阳市中考数学试卷及其答案

2020年四川省绵阳市中考数学试卷一、选择题:本大题共12小题,每小题3分,共36分.每小题只有一个选项符合题目要求.1.(3分)﹣3的相反数是()A.﹣3B.﹣C.D.32.(3分)如图是以正方形的边长为直径,在正方形内画半圆得到的图形,则此图形的对称轴有()A.2条B.4条C.6条D.8条3.(3分)近年来,华为手机越来越受到消费者的青睐.截至2019年12月底,华为5G手机全球总发货量突破690万台.将690万用科学记数法表示为()A.0.69×107B.69×105C.6.9×105D.6.9×1064.(3分)下列四个图形中,不能作为正方体的展开图的是()A.B.C.D.5.(3分)若有意义,则a的取值范围是()A.a≥1B.a≤1C.a≥0D.a≤﹣16.(3分)《九章算术》中记载“今有共买羊,人出五,不足四十五;人出七,不足三,问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?此问题中羊价为()A.160钱B.155钱C.150钱D.145钱7.(3分)如图,在四边形ABCD中,∠A=∠C=90°,DF∥BC,∠ABC的平分线BE交DF于点G,GH ⊥DF,点E恰好为DH的中点,若AE=3,CD=2,则GH=()A.1B.2C.3D.48.(3分)将一个篮球和一个足球随机放入三个篮子中,则恰有一个篮子为空的概率为()A.B.C.D.9.(3分)在螳螂的示意图中,AB∥DE,△ABC是等腰三角形,∠ABC=124°,∠CDE=72°,则∠ACD =()A.16°B.28°C.44°D.45°10.(3分)甲、乙二人同驾一辆车出游,各匀速行驶一半路程,共用3小时,到达目的地后,甲对乙说:“我用你所花的时间,可以行驶180km”,乙对甲说:“我用你所花的时间,只能行驶80km”.从他们的交谈中可以判断,乙驾车的时长为()A.1.2小时B.1.6小时C.1.8小时D.2小时11.(3分)三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小完全相同.当水面刚好淹没小孔时,大孔水面宽度为10米,孔顶离水面1.5米;当水位下降,大孔水面宽度为14米时,单个小孔的水面宽度为4米,若大孔水面宽度为20米,则单个小孔的水面宽度为()A.4米B.5米C.2米D.7米12.(3分)如图,在四边形ABCD中,AD∥BC,∠ABC=90°,AB=7,AD=4,将△ABC绕点C顺时针方向旋转后得△A′B′C,当A′B′恰好经过点D时,△B′CD为等腰三角形,则AA′=()A.B.2C.D.二、填空题:本大题共6小题,每小题4分,共24分.将答案填写在答题卡相应的横线上.13.(4分)因式分解:x3y﹣4xy3=.14.(4分)平面直角坐标系中,将点A(﹣1,2)先向左平移2个单位,再向上平移1个单位后得到的点A的坐标为.115.(4分)若多项式xy|m﹣n|+(n﹣2)x2y2+1是关于x,y的三次多项式,则mn=.16.(4分)我市认真落实国家“精准扶贫”政策,计划在对口帮扶的贫困县种植甲、乙两种火龙果共100亩,根据市场调查,甲、乙两种火龙果每亩的种植成本分别为0.9万元、1.1万元,每亩的销售额分别为2万元、2.5万元,如果要求种植成本不少于98万元,但不超过100万元,且所有火龙果能全部售出,则该县在此项目中获得的最大利润是万元.(利润=销售额﹣种植成本)17.(4分)如图,四边形ABCD中,AB∥CD,∠ABC=60°,AD=BC=CD=4,点M是四边形ABCD内的一个动点,满足∠AMD=90°,则点M到直线BC的距离的最小值为.18.(4分)若不等式>﹣x﹣的解都能使不等式(m﹣6)x<2m+1成立,则实数m的取值范围是.三、解答题:本大题共7小题,共计90分.解答应写出文字说明、证明过程或演算步骤.19.(16分)(1)计算:|﹣3|+2cos60°﹣×﹣(﹣)0.(2)先化简,再求值:(x+2+)÷,其中x=﹣1.20.(12分)4月23日是“世界读书日”,甲、乙两个书店在这一天举行了购书优惠活动.甲书店:所有书籍按标价8折出售;乙书店:一次购书中标价总额不超过100元的按原价计费,超过100元后的部分打6折.(1)以x(单位:元)表示标价总额,y(单位:元)表示应支付金额,分别就两家书店的优惠方式,求y关于x的函数解析式;(2)“世界读书日”这一天,如何选择这两家书店去购书更省钱?21.(12分)为助力新冠肺炎疫情后经济的复苏,天天快餐公司积极投入到复工复产中.现有A、B 两家农副产品加工厂到该公司推销鸡腿,两家鸡腿的价格相同,品质相近.该公司决定通过检查质量来确定选购哪家的鸡腿.检查人员从两家分别抽取100个鸡腿,然后再从中随机各抽取10个,记录它们的质量(单位:克)如表:A加工厂74757575737778727675B加工厂78747873747574747575(1)根据表中数据,求A加工厂的10个鸡腿质量的中位数、众数、平均数;(2)估计B加工厂这100个鸡腿中,质量为75克的鸡腿有多少个?(3)根据鸡腿质量的稳定性,该快餐公司应选购哪家加工厂的鸡腿?22.(12分)如图,△ABC内接于⊙O,点D在⊙O外,∠ADC=90°,BD交⊙O于点E,交AC于点F,∠EAC=∠DCE,∠CEB=∠DCA,CD=6,AD=8.(1)求证:AB∥CD;(2)求证:CD是⊙O的切线;(3)求tan∠ACB的值.23.(12分)如图,在平面直角坐标系xOy中,一次函数的图象与反比例函数y=(k<0)的图象在第二象限交于A(﹣3,m),B(n,2)两点.(1)当m=1时,求一次函数的解析式;(2)若点E在x轴上,满足∠AEB=90°,且AE=2﹣m,求反比例函数的解析式.24.(12分)如图,抛物线过点A(0,1)和C,顶点为D,直线AC与抛物线的对称轴BD的交点为B(,0),平行于y轴的直线EF与抛物线交于点E,与直线AC交于点F,点F的横坐标为,四边形BDEF为平行四边形.(1)求点F的坐标及抛物线的解析式;(2)若点P为抛物线上的动点,且在直线AC上方,当△PAB面积最大时,求点P的坐标及△PAB 面积的最大值;(3)在抛物线的对称轴上取一点Q,同时在抛物线上取一点R,使以AC为一边且以A,C,Q,R 为顶点的四边形为平行四边形,求点Q和点R的坐标.25.(14分)如图,在矩形ABCD中,对角线相交于点O,⊙M为△BCD的内切圆,切点分别为N,P,Q,DN=4,BN=6.(1)求BC,CD;(2)点H从点A出发,沿线段AD向点D以每秒3个单位长度的速度运动,当点H运动到点D时停止,过点H作HI∥BD交AC于点I,设运动时间为t秒.①将△AHI沿AC翻折得△AH′I,是否存在时刻t,使点H′恰好落在边BC上?若存在,求t的值;若不存在,请说明理由;②若点F为线段CD上的动点,当△OFH为正三角形时,求t的值.2020年四川省绵阳市中考数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题3分,共36分.每小题只有一个选项符合题目要求.1.(3分)﹣3的相反数是()A.﹣3B.﹣C.D.3【解答】解:﹣3的相反数是3,故选:D.2.(3分)如图是以正方形的边长为直径,在正方形内画半圆得到的图形,则此图形的对称轴有()A.2条B.4条C.6条D.8条【解答】解:如图,因为以正方形的边长为直径,在正方形内画半圆得到的图形,所以此图形的对称轴有4条.故选:B.3.(3分)近年来,华为手机越来越受到消费者的青睐.截至2019年12月底,华为5G手机全球总发货量突破690万台.将690万用科学记数法表示为()A.0.69×107B.69×105C.6.9×105D.6.9×106【解答】解:690万=6900000=6.9×106.故选:D.4.(3分)下列四个图形中,不能作为正方体的展开图的是()A.B.C.D.【解答】解:正方体展开图的11种情况可分为“1﹣4﹣1型”6种,“2﹣3﹣1型”3种,“2﹣2﹣2型”1种,“3﹣3型”1种,因此选项D符合题意,故选:D.5.(3分)若有意义,则a的取值范围是()A.a≥1B.a≤1C.a≥0D.a≤﹣1【解答】解:若有意义,则a﹣1≥0,解得:a≥1.故选:A.6.(3分)《九章算术》中记载“今有共买羊,人出五,不足四十五;人出七,不足三,问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?此问题中羊价为()A.160钱B.155钱C.150钱D.145钱【解答】解:设共有x人合伙买羊,羊价为y钱,依题意,得:,解得:.故选:C.7.(3分)如图,在四边形ABCD中,∠A=∠C=90°,DF∥BC,∠ABC的平分线BE交DF于点G,GH ⊥DF,点E恰好为DH的中点,若AE=3,CD=2,则GH=()A.1B.2C.3D.4【解答】解:过E作EM⊥BC,交FD于点N,∵DF∥BC,∴EN⊥DF,∴EN∥HG,∴∠DEN=∠DHG,∠END=∠HGD,∴△END∽△HGD,∴=,∵E为HD中点,∴=,∴=,即HG=2EN,∴∠DNM=∠NMC=∠C=90°,∴四边形NMCD为矩形,∴MN=DC=2,∵BE平分∠ABC,EA⊥AB,EM⊥BC,∴EM=AE=3,∴EN=EM﹣MN=3﹣2=1,则HG=2EN=2.故选:B.8.(3分)将一个篮球和一个足球随机放入三个篮子中,则恰有一个篮子为空的概率为()A.B.C.D.【解答】解:三个不同的篮子分别用A、B、C表示,根据题意画图如下:共有9种等可能的情况数,其中恰有一个篮子为空的有6种,则恰有一个篮子为空的概率为=.故选:A.9.(3分)在螳螂的示意图中,AB∥DE,△ABC是等腰三角形,∠ABC=124°,∠CDE=72°,则∠ACD =()A.16°B.28°C.44°D.45°【解答】解:延长ED,交AC于F,∵△ABC是等腰三角形,∠ABC=124°,∴∠A=∠ACB=28°,∵AB∥DE,∴∠CFD=∠A=28°,∵∠CDE=∠CFD+∠ACD=72°,∴∠ACD=72°﹣28°=44°,故选:C.10.(3分)甲、乙二人同驾一辆车出游,各匀速行驶一半路程,共用3小时,到达目的地后,甲对乙说:“我用你所花的时间,可以行驶180km”,乙对甲说:“我用你所花的时间,只能行驶80km”.从他们的交谈中可以判断,乙驾车的时长为()A.1.2小时B.1.6小时C.1.8小时D.2小时【解答】解:设乙驾车时长为x小时,则甲驾车时长为(3﹣x)小时,根据两人对话可知:甲的速度为km/h,乙的速度为km/h,根据题意得:=,解得:x1=1.8,x2=9,经检验:x1=1.8,x2=9是原方程的解,x2=9不合题意,舍去,故选:C.11.(3分)三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小完全相同.当水面刚好淹没小孔时,大孔水面宽度为10米,孔顶离水面1.5米;当水位下降,大孔水面宽度为14米时,单个小孔的水面宽度为4米,若大孔水面宽度为20米,则单个小孔的水面宽度为()A.4米B.5米C.2米D.7米【解答】解:如图,建立如图所示的平面直角坐标系,由题意可得MN =4,EF =14,BC =10,DO =,设大孔所在抛物线解析式为y =ax 2+,∵BC =10,∴点B (﹣5,0),∴0=a ×(﹣5)2+,∴a =﹣,∴大孔所在抛物线解析式为y =﹣x 2+,设点A (b ,0),则设顶点为A 的小孔所在抛物线的解析式为y =m (x ﹣b )2,∵EF =14,∴点E 的横坐标为﹣7,∴点E 坐标为(﹣7,﹣),∴﹣=m (x ﹣b )2,∴x 1=+b ,x 2=﹣+b ,∴MN =4,∴|+b﹣(﹣+b)|=4∴m=﹣,∴顶点为A的小孔所在抛物线的解析式为y=﹣(x﹣b)2,∵大孔水面宽度为20米,∴当x=﹣10时,y=﹣,∴﹣=﹣(x﹣b)2,∴x1=+b,x2=﹣+b,∴单个小孔的水面宽度=|(+b)﹣(﹣+b)|=5(米),故选:B.12.(3分)如图,在四边形ABCD中,AD∥BC,∠ABC=90°,AB=7,AD=4,将△ABC绕点C顺时针方向旋转后得△A′B′C,当A′B′恰好经过点D时,△B′CD为等腰三角形,则AA′=()A.B.2C.D.【解答】解:过D作DE⊥BC于E,则BE=AD=4,DE=7,设B′C=BC=x,则DC=x,∴DC2=DE2+EC2,即2x2=49+(x﹣4)2,解得:x=5(负值舍去),∴BC=5,AC=,在AB上取一点F,使得BF=BC=5,连接DF,则△DFC∽△CB′B,且相似比为:1,∴AF=7﹣5=2,∵AD=4,∴DF=2,∴BB′==,∵将△ABC绕点C顺时针方向旋转后得△A′B′C,∴∠DB′C=∠ABC=90°,B′C=BC,A′C=AC,∠A′CA=∠B′CB,∴△A′CA∽△B′CB,∴=,∴AA′=×=,故选:A.二、填空题:本大题共6小题,每小题4分,共24分.将答案填写在答题卡相应的横线上.13.(4分)因式分解:x3y﹣4xy3=xy(x+2y)(x﹣2y).【解答】解:x3y﹣4xy3,=xy(x2﹣4y2),=xy(x+2y)(x﹣2y).故答案为:xy(x+2y)(x﹣2y).14.(4分)平面直角坐标系中,将点A(﹣1,2)先向左平移2个单位,再向上平移1个单位后得到的坐标为(﹣3,3).的点A1【解答】解:∵将点A(﹣1,2)先向左平移2个单位,横坐标﹣2,再向上平移1个单位纵坐标+1,的坐标为:(﹣3,3).∴平移后得到的点A1故答案为:(﹣3,3).15.(4分)若多项式xy|m﹣n|+(n﹣2)x2y2+1是关于x,y的三次多项式,则mn=0或8.【解答】解:∵多项式xy|m﹣n|+(n﹣2)x2y2+1是关于x,y的三次多项式,∴n﹣2=0,1+|m﹣n|=3,∴n=2,|m﹣n|=2,∴m﹣n=2或n﹣m=2,∴m=4或m=0,∴mn=0或8.故答案为:0或8.16.(4分)我市认真落实国家“精准扶贫”政策,计划在对口帮扶的贫困县种植甲、乙两种火龙果共100亩,根据市场调查,甲、乙两种火龙果每亩的种植成本分别为0.9万元、1.1万元,每亩的销售额分别为2万元、2.5万元,如果要求种植成本不少于98万元,但不超过100万元,且所有火龙果能全部售出,则该县在此项目中获得的最大利润是125万元.(利润=销售额﹣种植成本)【解答】解:设甲种火龙果种植x亩,乙种火龙果种植(100﹣x)亩,此项目获得利润w,甲、乙两种火龙果每亩利润为1.1万元,1.4万元,由题意可知:,解得:50≤x≤60,此项目获得利润w=1.1x+1.4(100﹣x)=140﹣0.3x,当x=50时,w的最大值为140﹣15=125万元.17.(4分)如图,四边形ABCD中,AB∥CD,∠ABC=60°,AD=BC=CD=4,点M是四边形ABCD内的一个动点,满足∠AMD=90°,则点M到直线BC的距离的最小值为3﹣2.【解答】解:取AD的中点O,连接OM,过点M作ME⊥BC交BC的延长线于E,过点O作OF⊥BC于F,交CD于G,则OM+ME≥OF.∵∠AMD=90°,AD=4,OA=OD,∴OM=AD=2,∵AB∥CD,∴∠GCF=∠B=60°,∴∠DGO=∠CGF=30°,∵AD=BC,∴∠DAB=∠B=60°,∴∠ADC=∠BCD=120°,∴∠DOG=30°=∠DGO,∴DG=DO=2,∵CD=4,∴CG=2,∴OG=2OD•cos30°=2,GF=,OF=3,∴ME≥OF﹣OM=3﹣2,∴当O,M,E共线时,ME的值最小,最小值为3﹣2.18.(4分)若不等式>﹣x﹣的解都能使不等式(m﹣6)x<2m+1成立,则实数m的取值范围是≤m≤6.【解答】解:解不等式>﹣x﹣得x>﹣4,∵x>﹣4都能使不等式(m﹣6)x<2m+1成立,①当m﹣6=0,即m=6时,则x>﹣4都能使0•x<13恒成立;②当m﹣6≠0,则不等式(m﹣6)x<2m+1的解要改变方向,∴m﹣6<0,即m<6,∴不等式(m﹣6)x<2m+1的解集为x>,∵x>﹣4都能使x>成立,∴﹣4≥,∴﹣4m+24≤2m+1,∴m≥,综上所述,m的取值范围是≤m≤6.故答案为:≤m≤6.三、解答题:本大题共7小题,共计90分.解答应写出文字说明、证明过程或演算步骤.19.(16分)(1)计算:|﹣3|+2cos60°﹣×﹣(﹣)0.(2)先化简,再求值:(x+2+)÷,其中x=﹣1.【解答】解:(1)原式=3﹣+2×﹣×2﹣1=3﹣+﹣2﹣1=0;(2)原式=(+)÷=•=,当x=﹣1时,原式===1﹣.20.(12分)4月23日是“世界读书日”,甲、乙两个书店在这一天举行了购书优惠活动.甲书店:所有书籍按标价8折出售;乙书店:一次购书中标价总额不超过100元的按原价计费,超过100元后的部分打6折.(1)以x(单位:元)表示标价总额,y(单位:元)表示应支付金额,分别就两家书店的优惠方式,求y关于x的函数解析式;(2)“世界读书日”这一天,如何选择这两家书店去购书更省钱?【解答】解:(1)甲书店:y=0.8x,乙书店:y=.(2)当x≤100时,∴0.8x<x,∴甲书店比较便宜.当x>100时,令0.8x=0.6x+40,解得:x=200,当100<x<200时,选择甲书店更省钱,当x=200,甲乙书店所需费用相同,当x>200,选择乙书店更省钱.综上所述:当x<200时,选择甲书店更省钱,当x=200,甲乙书店所需费用相同,当x>200,选择乙书店更省钱.21.(12分)为助力新冠肺炎疫情后经济的复苏,天天快餐公司积极投入到复工复产中.现有A、B两家农副产品加工厂到该公司推销鸡腿,两家鸡腿的价格相同,品质相近.该公司决定通过检查质量来确定选购哪家的鸡腿.检查人员从两家分别抽取100个鸡腿,然后再从中随机各抽取10个,记录它们的质量(单位:克)如表:A加工厂74757575737778727675B加工厂78747873747574747575(1)根据表中数据,求A加工厂的10个鸡腿质量的中位数、众数、平均数;(2)估计B加工厂这100个鸡腿中,质量为75克的鸡腿有多少个?(3)根据鸡腿质量的稳定性,该快餐公司应选购哪家加工厂的鸡腿?【解答】解:(1)把这些数从小到大排列,最中间的数是第5和第6个数的平均数,则中位数是=75(克);因为75出现了4次,出现的次数最多,所以众数是75克;平均数是:(74+75+75+75+73+77+78+72+76+75)=75(克);(2)根据题意得:100×=30(个),答:质量为75克的鸡腿有30个;(3)选B加工厂的鸡腿.A的方差是:[(74﹣75)2+4×(75﹣75)2+(76﹣75)2+(73﹣75)2+(72﹣75)2+(77﹣75)2+(78﹣75)2]=2.8;B的平均数是:(78+74+78+73+74+75+74+74+75+75)=75,B的方差是:[2×(78﹣75)2+4×(74﹣75)2+(73﹣75)2+3×(75﹣75)2]=2.6;∵A、B平均值一样,B的方差比A的方差小,B更稳定,∴选B加工厂的鸡腿.22.(12分)如图,△ABC内接于⊙O,点D在⊙O外,∠ADC=90°,BD交⊙O于点E,交AC于点F,∠EAC=∠DCE,∠CEB=∠DCA,CD=6,AD=8.(1)求证:AB∥CD;(2)求证:CD是⊙O的切线;(3)求tan∠ACB的值.【解答】(1)证明:∵∠BAC=∠CEB,∠CEB=∠DCA,∴∠BAC=∠DCA,∴AB∥CD;(2)证明:连接EO并延长交⊙O于G,连接CG、OC,如图1所示:则EG为⊙O的直径,∴∠ECG=90°,∵OC=OG,∴∠OCG=∠EGC,∵∠EAC=∠EGC,∠EAC=∠DCE,∴∠DCE=∠EGC=∠OCG,∵∠OCG+∠OCE=∠ECG=90°,∴∠DCE+∠OCE=90°,即∠DCO=90°,∵OC是⊙O的半径,∴CD是⊙O的切线;(3)解:连接OA,如图2所示:∵OA=OC,∴∠OAC=∠OCA,∵∠AOC+∠OAC+∠OCA=180°,2∠ABC=∠AOC,∴∠ABC+∠OCA=90°,由(2)得:∠OCA+ACD=90°,∴∠ABC=∠ACD,在Rt△ADC中,由勾股定理得:AC===10,∴cos∠ACD===,∵AB∥CD,∴∠ABC=∠ACD=∠CAB,∴BC=AC=10,AB=2BC•cos∠ABC=2×10×=12,过点B作BG⊥AC于G,如图2所示:设GC=x,则AG=10﹣x,由勾股定理得:AB2﹣AG2=BG2=BC2﹣GC2,即:122﹣(10﹣x)2=102﹣x2,解得:x=,∴GC=,∴BG===,∴tan∠ACB===.23.(12分)如图,在平面直角坐标系xOy中,一次函数的图象与反比例函数y=(k<0)的图象在第二象限交于A(﹣3,m),B(n,2)两点.(1)当m=1时,求一次函数的解析式;(2)若点E在x轴上,满足∠AEB=90°,且AE=2﹣m,求反比例函数的解析式.【解答】解:(1)当m=1时,点A(﹣3,1),∵点A在反比例函数y=的图象上,∴k=﹣3×1=﹣3,∴反比例函数的解析式为y=﹣;∵点B(n,2)在反比例函数y=﹣图象上,∴2n=﹣3,∴n=﹣,设直线AB的解析式为y=ax+b,则,∴,∴直线AB的解析式为y=x+3;(2)如图,过点A作AM⊥x轴于M,过点B作BN⊥x轴于N,过点A作AF⊥BN于F,交BE于G,则四边形AMNF是矩形,∴FN=AM,AF=MN,∵A(﹣3,m),B(n,2),∴BF=2﹣m,∵AE=2﹣m,∴BF=AE,在△AEG和△BFG中,,∴△AEG≌△BFG(AAS),∴AG=BG,EG=FG,∴BE=BG+EG=AG+FG=AF,∵点A(﹣3,m),B(n,2)在反比例函数y=的图象上,∴k=﹣3m=2n,∴m=﹣n,∴BF=BN﹣FN=BN﹣AM=2﹣m=2+n,MN=n﹣(﹣3)=n+3,∴BE=AF=n+3,∵∠AEM+∠MAE=90°,∠AEM+∠BEN=90°,∴∠MAE=∠NEB,∵∠AME=∠ENB=90°,∴△AME∽△ENB,∴====,∴ME=BN=,在Rt△AME中,AM=m,AE=2﹣m,根据勾股定理得,AM2+ME2=AE2,∴m2+()2=(2﹣m)2,∴m=,∴k=﹣3m=﹣,∴反比例函数的解析式为y=﹣.24.(12分)如图,抛物线过点A(0,1)和C,顶点为D,直线AC与抛物线的对称轴BD的交点为B(,0),平行于y轴的直线EF与抛物线交于点E,与直线AC交于点F,点F的横坐标为,四边形BDEF为平行四边形.(1)求点F的坐标及抛物线的解析式;(2)若点P为抛物线上的动点,且在直线AC上方,当△PAB面积最大时,求点P的坐标及△PAB 面积的最大值;(3)在抛物线的对称轴上取一点Q,同时在抛物线上取一点R,使以AC为一边且以A,C,Q,R 为顶点的四边形为平行四边形,求点Q和点R的坐标.【解答】解:(1)设抛物线的解析式为y=ax2+bx+c(a≠0),∵A(0,1),B(,0),设直线AB的解析式为y=kx+m,∴,解得,∴直线AB的解析式为y=﹣x+1,∵点F的横坐标为,∴F点纵坐标为﹣+1=﹣,∴F点的坐标为(,﹣),又∵点A在抛物线上,∴c=1,对称轴为:x=﹣,∴b=﹣2a,∴解析式化为:y=ax2﹣2ax+1,∵四边形DBFE为平行四边形.∴BD=EF,∴﹣3a+1=a﹣8a+1﹣(﹣),解得a=﹣1,∴抛物线的解析式为y=﹣x2+2x+1;(2)设P(n,﹣n2+2n+1),作PP'⊥x轴交AC于点P',则P'(n,﹣n+1),∴PP'=﹣n2+n,S=OB•PP'=﹣n=﹣+,△ABP∴当n=时,△ABP的面积最大为,此时P(,).(3)∵,∴x=0或x=,∴C(,﹣),设Q(,m),①当AQ为对角线时,∴R(﹣),∵R在抛物线y=+4上,∴m+=﹣+4,解得m=﹣,∴Q,R;②当AR为对角线时,∴R(),∵R在抛物线y=+4上,∴m﹣+4,解得m=﹣10,∴Q(,﹣10),R().综上所述,Q,R;或Q(,﹣10),R().25.(14分)如图,在矩形ABCD中,对角线相交于点O,⊙M为△BCD的内切圆,切点分别为N,P,Q,DN=4,BN=6.(1)求BC,CD;(2)点H从点A出发,沿线段AD向点D以每秒3个单位长度的速度运动,当点H运动到点D时停止,过点H作HI∥BD交AC于点I,设运动时间为t秒.①将△AHI沿AC翻折得△AH′I,是否存在时刻t,使点H′恰好落在边BC上?若存在,求t的值;若不存在,请说明理由;②若点F为线段CD上的动点,当△OFH为正三角形时,求t的值.【解答】解:(1)∵⊙M为△BCD的内切圆,切点分别为N,P,Q,DN=4,BN=6,∴BP=BN=6,DQ=DN=4,CP=CQ,BD=BN+DN=10,设CP=CQ=a,则BC=6+a,CD=4+a,∵四边形ABCD是矩形,∴∠BCD=90°,∴BC2+CD2=BD2,即(6+a)2+(4+a)2=102,解得:a=2,∴BC=6+2=8,CD=4+2=6;(2)①存在时刻t=s,使点H′恰好落在边BC上;理由如下:如图1所示:由折叠的性质得:∠AH'I=∠AHI,AH'=AH=3t,∵四边形ABCD是矩形,∴AD=BC=8,AD∥BC,∠BCD=90°,OA=OC=AC,OB=OD=BD,AC=BD,∴AC=BD===10,OA=OD=5,∴∠ADO=∠OAD,∵HI∥BD,∴∠AHI=∠ADO,∴∠AH'I=∠AHI=∠ADO=∠OAD=∠ACH',∴△AIH'∽△AH'C,∴=,∴AH'2=AI×AC,∵HI∥BD,∴△AIH∽△AOD,∴=,即=,解得:AI=t,∴(3t)2=t×10,解得:t=,即存在时刻t=s,使点H′恰好落在边BC上;方法二:如图3所示:∵四边形ABCD是矩形,∴∠ABC=90°,AD∥BC,∴∠HAI=∠BCA,由折叠的性质得:AH'=AH=3t,∠H'AI=∠HAI,∴∠BCA=∠H'AI,∴AH'=CH'=3t,∴BH'=BC﹣CH'=8﹣3t,在Rt△ABH'中,由勾股定理得:62+(8﹣3t)2=(3t)2,解得:t=;即存在时刻t=s,使点H′恰好落在边BC上;②作KH⊥OH于H,交OF的延长线于K,作OL⊥AD于L,KN⊥AD于N,如图2所示:则OL∥CD∥KN,∠OLH=∠HNK=90°,OL是△ACD的中位线,∴OL=CD=3,∵△OFH是等边三角形,∴OF=FH,∠OHF=∠HOF=60°,∴∠FHK=∠HKO=30°,∴FH=FK=OF,HK=OH,∴DF是梯形OLNK的中位线,∴DN=DL=4,∵∠LHO+∠LOH=∠LHO+∠NHK=90°,∴∠LOH=∠NHK,∴△OLH∽△HNK,∴==,∴HN=OL=3,∴DH=HN﹣DN=3﹣4,∴AH=AD﹣DH=12﹣3,∴t==4﹣,即当△OFH为正三角形时,t的值为(4﹣)s.方法二:过O作OG⊥HF于G,过G作GT⊥AD于T,过O作OR⊥TG于R,过F作FS⊥TG于S,如图4所示:则DT=FS,∠GUH=∠GSF=90°,∵△OFH为正三角形,OG⊥HF,∴OH=FH,GH=GF,OG=GH,∵∠HGT=∠FGS,∴△GHT≌△GFS(AAS),∴HT=FS=DT,设HT=FS=DT=x,GT=y,由OR⊥TG,易证△OGR∽△GHT,∴===,∴OR=y,GH=x,由题意得:,解得:,即当△OFH为正三角形时,t的值为(4﹣)s.。

绵阳市2020年部编人教版中考数学试题及答案(word精析版).doc

绵阳市2020年部编人教版中考数学试题及答案(word精析版).doc

2020 年四川省绵阳市中考数学试卷一、选择题(共12 小题,每题3 分,满分36 分)1.( 3 分) (2020 年四川省绵阳市 )2 的相反数是( )A . ﹣2B . ﹣C .D .2剖析: 利用相反数的观点:只有符号不一样的两个数叫做互为相反数,从而得出答案. 解答:解: 2 的相反数是﹣ 2.应选: A .评论:本题主要考察了相反数的观点,正确掌握定义是解题重点.2.( 3 分) (2020 年四川省绵阳市A . B .)以下四个图案中,属于中心对称图形的是(C .D .)考点: 剖析:解答:中心对称图形.依据中心对称的观点和各图形的特点即可求解.解: A 、不是中心对称图形,故本选项错误;B 、不是中心对称图形,故本选项错误;C 、不是中心对称图形,故本选项错误;D 、是中心对称图形,故本选项正确. 应选 D .评论: 本题考察中心对称图形的观点: 在同一平面内, 如 果把一个图形绕某一点旋转 180 度,旋转后的图形能和原图形完整重合,那么这个图形就叫做中心对称图形.3.( 3 分) (2020 年四川省绵阳市 )以下计算正确的选项是( )A .a 2?a=a 2B . a 2 ÷a=aC . a 2+a=a3D . a2﹣a=a 考点: 同底数幂的除法;归并同类项;同底数幂的乘法.剖析: 依据归并同类项的法例,同底数幂的乘法与除法的知识求解即可求得答案.解答:解: A 、a 2a=a 3,故 A 选项错误;2B 、 a ÷a=a ,故 B 选项正确;C 、 a 2+a=a 3,不是同类项不可以计算,故错误;D 、 a 2﹣ a=a ,不是同类项不可以计算,故错误; 应选: B .评论: 本题主要考察归并同类项的法例, 同底数幂的乘法与除法的知识, 熟记法例是解题的重点.4.( 3 分) (2020 年四川省绵阳市 A .x < B .)若代数式存心义,则x ≤ C .x 的取值范围是(x >D .)x ≥考点: 剖析:解答:二次根式存心义的条件.依据被开方数大于等于0 列式计算即可得解.解:由题意得, 3x ﹣1≥0,解得 x ≥.应选 D.评论:本题考察的知识点为:二次根式的被开方数是非负数.5.( 3 分) (2020 年四川省绵阳市)一少儿行走在如下图的地板上,当他任意停下时,最后停在地板上暗影部分的概率是()A .B.C. D .考点:几何概率.剖析:依据几何概率的求法:最后逗留在黑色的方砖上的概率就是黑色地区的面积与总面积的比值.解答:解:察看这个图可知:黑色地区( 3 块)的面积占总面积( 9 块)的,故其概率为.应选: A.评论:本题考察几何概率的求法:第一依据题意将代数关系用面积表示出来,一般用暗影地区表示所求事件( A );而后计算暗影地区的面积在总面积中占的比率,这个比率即事件(A )发生的概率.6.( 3 分) (2020 年四川省绵阳市 )如下图的正三棱柱,它的主视图是()A .B.C. D .考点:简单几何体的三视图.剖析:依据主视图是从物体正面看所获得的图形求解.解答:解:从几何体的正面看所获得的形状是矩形.应选 B.评论:本题考察了几何体的三视图,掌握定义是重点.注意全部的看到的棱都应表此刻三视图中.7.( 3 分) (2020 年四川省绵阳市)线段 EF 是由线段PQ 平移获得的,点P(﹣ 1, 4)的对应点为 E( 4, 7),则点 Q(﹣ 3, 1)的对应点 F 的坐标为()A .(﹣ 8,﹣ 2)B.(﹣2,﹣ 2)C.(2,4) D.(﹣ 6,﹣ 1)考点:坐标与图形变化 -平移.剖析:第一依据 P 点的对应点为 E 可得点的坐标的变化规律,则点Q 的坐标的变化规律与 P 点的坐标的变化规律同样即可.解答:解:∵点 P(﹣ 1, 4)的对应点为E(4, 7),∴P 点是横坐标 +5,纵坐标 +3 获得的,∴点 Q(﹣ 3, 1)的对应点 N 坐标为(﹣3+5 , 1+3),即( 2, 4).应选: C.评论:本题主要考察了坐标与图形变化﹣平移,重点是掌握把一个图形平移后,个点的变化规律都同样.8.( 3 分) (2020 年四川省绵阳市)如图,一艘海轮位于灯塔80 海里的 A 处,它沿正南方向航行一段时间后,抵达位于灯塔处,这时,海轮所在的 B 处与灯塔P 的距离为()P 的北偏东30°方向,距离灯塔P 的南偏东45°方向上的BA .40 海里B. 40 海里C. 80 海里D.40海里考点:解直角三角形的应用-方向角问题.剖析:依据题意画出图形,从而得出PA, PC 的长,即可得出答案.解答:解:过点 P 作 PC⊥ AB 于点 C,由题意可得出:∠ A=30°,∠B=45°,AP=80海里,故CP=AP=40 (海里),则 PB==40 (海里).应选: A.评论:本题主要考察了方向角问题以及锐角三角函数关系等知识,得出各角度数是解题关键.9.( 3 分) (2020 年四川省绵阳市)以下命题中正确的选项是(A .对角线相等的四边形是矩形B.对角线相互垂直的四边形是菱形C.对角线相互垂直均分且相等的四边形是正方形D.一组对边相等,另一组对边平行的四边形是平行四边形)考点:剖析:解答:命题与定理.依据依据矩形、菱形、正方形和平行四边形的判断方法对各选项进行判断.解: A 、对角线相等的平行四边形是矩形,因此 A 选项错误;B、对角线相互垂直的平行四边形是菱形,因此 B 选项错误;C、对角线相互垂直均分且相等的四边形是正方形,因此 C 选项正确;D、一组对边相等且平行的四边形是平行四边形,因此 D 选项错误.应选 C.评论:本题考察了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.10.( 3 分) (2020 年四川省绵阳市)某商品的标价比成本价高降价 n%销售,为了不赔本,n 应知足()A .n≤m B. n≤m%,依据市场需要,该商品需C. n≤ D . n≤考点:一元一次不等式的应用.剖析:依据最大的降价率即是保证售价大于等于成本价相等,从而得出不等式即可.解答:解:设进价为 a 元,由题意可得:a( 1+m% )( 1﹣n%)﹣ a≥0,则( 1+m% )( 1﹣n% )﹣ 1≥0,整理得: 100n+mn≤100m,故 n≤.应选: B.评论:本题主要考察了一元一次不等式的应用,得出正确的不等关系是解题重点.11.( 3 分) (2020 年四川省绵阳市)在边长为正整数的△ ABC中,AB=AC,且AB边上的中线 CD 将△ ABC 的周长分为1:2 的两部分,则△ABC面积的最小值为(A.B.C. D .)考点:勾股定理;三角形的面积;三角形三边关系;等腰三角形的性质.剖析:设这个等腰三角形的腰为x,底为 y,分为的两部分边长分别为n和2n,再依据题意列出对于x、 n、 y 的方程组,用n 表示出 x、 y 的值,由三角形的三边关系舍去不切合条件的 x、 y 的值,由n 是正整数求出△ABC面积的最小值即可.解答:解:设这个等腰三角形的腰为x,底为 y,分为的两部分边长分别为n 和 2n,得或,解得或,∵2×<(此时不可以构成三角形,舍去)∴取,此中 n 是 3 的倍数∴三角形的面积 S△ =××=n 2,对于 S△=n2=n2,当 n≥0 时, S△跟着 n 的增大而增大,故当n=3 时, S△=取最小.应选: C.评论:本题考察的是三角形的面积及三角形的三边关系,依据题意列出对于x、n、y 的方程组是解答本题的重点.12.( 3 分)(2020 年四川省绵阳市 )如图,AB 是半圆 O 的直径, C 是半圆 O 上一点, OQ ⊥ BC 于点 Q,过点 B 作半圆 O 的切线,交 OQ 的延伸线于点 P,PA 交半圆 O 于 R,则以下等式中正确的选项是()A .= B.= C.= D .=考点:切线的性质;平行线的判断与性质;三角形中位线定理;垂径定理;相像三角形的判断与性质.专题:研究型.剖析:(1)连结 AQ ,易证△ OQB ∽ △ OBP ,获得,也就有,可得△ OAQ∽ OPA,从而有∠ OAQ= ∠ APO.易证∠CAP= ∠ APO,从而有∠ CAP= ∠ OAQ ,则有∠CAQ= ∠BAP ,从而可证△ ACQ ∽ △ ABP ,可得,因此 A 正确.(2)由△OBP ∽ △ OQB 得,即,由 AQ≠OP 得,故 C 不正确.(3)连结 OR,易得 =, =2,获得,故 B 不正确.(4)由及 AC=2OQ ,AB=2OB , OB=OR 可得,由 AB ≠AP 得,故 D 不正确.解答:解:( 1)连结 AQ ,如图 1,∵BP 与半圆 O 于点 B, AB 是半圆 O 的直径,∴∠ ABP= ∠ ACB=90 °.∵OQ⊥BC,∴∠OQB=90 °.∴∠ OQB= ∠ OBP=90 °.又∵∠ BOQ= ∠ POB,∴△ OQB∽△OBP .∴.∵OA=OB ,∴.又∵∠ AOQ= ∠ POA,∴△ OAQ ∽ △ OPA.∴∠ OAQ= ∠ APO.∵∠ OQB= ∠ ACB=90 °,∴AC ∥ OP.∴∠ CAP= ∠ APO .∴∠ CAP= ∠ OAQ .∴∠ CAQ= ∠ BAP .∵∠ ACQ= ∠ ABP=90 °,∴△ ACQ∽△ABP .∴.故A正确.(2)如图 1,∵△ OBP∽△ OQB ,∴.∴.∵AQ ≠OP,∴.故 C 不正确.(3)连结 OR,如图 2 所示.∵OQ⊥BC,∴BQ=CQ .∵AO=BO ,∴OQ=AC .∵OR=AB .∴=, =2.∴≠.∴.故 B 不正确.(4)如图2,∵,且 AC=2OQ , AB=2OB , OB=OR ,∴.∵AB ≠AP,∴.故 D 不正确.应选:A.评论: 本题考察了切线的性质, 相像三角形的判断与性质、平行线的判断与性质、 垂径定理、三角形的中位线等知识,综合性较强,有必定的难度.二、填空题(共 6 小题,每题 4 分,满分 24 分)13.( 4 分) (2020 年四川省绵阳市 )2 ﹣2.=考点: 负整数指数幂.剖析:依据负整数指数幂的运算法例直接进行计算即可.解答: 解: 2﹣2==.故答案为:.评论:本题主要考察负整数指数幂,幂的负整数指数运算, 先把底数化成其倒数, 而后将负整数指数幂当作正的进行计算.14.( 4 分) (2020 年四川省绵阳市 ) “五一 ”小长假,以生态休闲为特点的绵阳近郊游倍受青睐.假期三天, 我市主要景区景点人气火爆, 据市旅行局统计,本次小长假共实现旅行收入5610 万元,将这一数据用科学记数法表示为 5.61×107元.考点:科学记数法 —表示较大的数.剖析: 科学记数法的表示形式为a ×10n的形式, 此中 1≤|a|< 10,n 为整数. 确立 n 的值时,要看把原数变为 a 时,小数点挪动了多少位, n 的绝对值与小数点挪动的位数同样.当原数绝对值> 1 时, n 是正数;当原数的绝对值<1 时, n 是负数.解答:解:将 5610 万元用科学记数法表示为: 5.61×107.故答案为: 5.61×107. a ×10n的形式,此中评论: 本题考察了科学记数法的表示方法.科学记数法的表示形式为 1≤|a|< 10, n 为整数,表示时重点要正确确立 a 的值以 及 n 的值.15.( 4 分) (2020 年四川省绵阳市 )如图, l ∥ m ,等边 △ABC 的极点 A 在直线 m 上,则 ∠ α= 20° .考点: 平行线的性质;等边三角形的性质.剖析: 延伸 CB 交直线 m 于 D ,依据依据两直线平行,内错角相等解答即可,再依据三角形的一个外角等于与它不相邻的两个内角的和列式求出 ∠α.解答:解:如图,延伸 CB 交直线 m 于 D ,∵△ ABC 是等边三角形, ∴∠ ABC=60 °,∵ l ∥ m ,∴∠ 1=40°.∴∠ α=∠ ABC ﹣ ∠ 1=60°﹣ 40°=20 °. 故答案是: 20.评论: 本题考察了平行线的性质, 等边三角形的性质, 熟记性质并作协助线是解题的重点,也是本题的难点.16.( 4 分)(2020 年四川省绵阳市 )如图,⊙ O 的半径为1cm ,正六边形 ABCDEF 内接于 ⊙O ,则图中暗影部分面积为 cm 2.(结果保存 π)考点:正多边形和圆.剖析:依据题 意得出 △ COW ≌ △ABW出答案.,从而得出图中暗影部分面积为:S 扇形 OBC 从而得解答: 解:如下图:连结 BO , CO ,∵正六边形 ABCDEF 内接于 ⊙O ,∴ AB=BC=CO=1 ,∠ ABC=120 °, △ OBC 是等边三角形,∴ C O ∥AB ,在△ COW 和 △ABW 中 ,∴△ COW ≌ △ ABW ( AAS ), ∴图中暗影部分面积为: S 扇形 OBC ==.故答案为:.评论:本题主要考察了正多边形和圆以及扇形面积求法,得出暗影部分面积解题重点.=S扇形 OBC 是17.( 4 分) (2020 年四川省绵阳市 ) 如图,在正方形的点, ∠ EAF=45 °, △ ECF 的周长为 4,则正方形ABCD ABCD中, E 、 F 分别是边的边长为 2 .BC 、CD上考点:剖析:旋转的性质;全等三角形的判断与性质;勾股定理;正方形的性质.依据旋转的性质得出 ∠ EAF ′=45 °,从而得出 △ FAE ≌△ EAF ′,即可得出EF+EC+FC=FC+CE+EF ′=FC+BC+BF ′=4,得出正方形边长即可.解答: 解:将 △ DAF 绕点 A 顺时针旋转90 度到 △ BAF ′地点,由题意可得出:△ DAF ≌ △ BAF ′,∴ D F=BF ′, ∠ DAF= ∠BAF ′, ∴∠ EAF ′=45 °, 在△ FAE 和△ EAF ′中,∴△ FAE ≌△ EAF ′( SAS ), ∴ E F=EF ′,∵△ ECF 的周长为 4,∴ E F+EC+FC=FC+CE+EF ′=FC+BC+BF ′=4, ∴ 2BC=4 ,∴ B C=2 . 故答案为: 2.评论: 本题主要考察了旋转的性质以及全等三角形的判断与性质等知识,得出△FAE ≌ △EAF ′是解题重点.18.( 4 分)(2020 年四川省 阳市 )将 1 的正方形 片按 1 所示方法 行 折,第1 次 折后获得的 形面 S 1,第2 次 折后获得的 形面S 2,⋯,第 n 次 折后得到的 形面 S n , 依据2 化 , S 1+S 2+S 3+⋯+S 2020= 1.考点: 律型: 形的 化 .剖析: 察 形的 化 每次折叠后的面 与正方形的关系,从而写出头 和的通 公式.解答: 解: 察 S 1+S 2 +S 3+⋯+S 2020=+++ ⋯+=1 ,故答案 : 1 .点 : 本 考 了 形的 化 ,解 的关 是仔 察 形的 化,并找到 形的化 律.三、解答 (共7 小 , 分 90 分)19.( 16 分) (2020 年四川省 阳市 )(1) 算:( 2020 ) +|3| ;考点: 二次根式的混淆运算;分式的混淆运算;零指数 . : 算 .剖析:(1)依据零指数 和分母有理化获得原式=1+2 3 2,而后归并即可;( 2)先把前面括号内通分,再把分子分母因式分解和除法运算化 乘法运算,而后 分即可. 解答: 解:( 1)原式 =1+2 3 2 = 2;( 2)原式 =÷ =? =.点 : 本 考 了二次根式的混淆运算: 先把各二次根式化 最 二次根式, 再 行二次根式的乘除运算,而后归并同 二次根式.也考 了零指数 和分式的混淆运算.20.( 12 分) (2020 年四川省 阳市 )四川省 “ 独两孩 ”政策于 2020 年 3 月 20 日正式开始施, 政策的 施可能 我 的生活 来一些 化, 阳市人口 生部 抽 了部分市 民(每个参加 的市民必 且只好在以下 6 种 化中 一 ) ,并将 果 制成:种 A BC DE F化有益于延 社会老 化 象致人口暴增提高家庭抗 能力增大社会基本公共服 的 力 男女比率不均衡 象 促 人口与社会、 源、 境的可持 展依据统计图,回答以下问题:(1)参加检查的市民一共有2000人;(2)参加检查的市民中选择 C 的人数是400人;(3)∠ α= 54°;(4)请补全条形统计图.考点:条形统计图;统计表;扇形统计图.剖析:(1)依据 A 类的有 700 人,所占的比率是35%,据此即可求得总人数;(2)利用总人数乘以对应的比率即可求解;(3)利用 360°乘以对应的比率即可求解;(4)利用总人数乘以对应的比率求得 D 类的人数,而后依据( 1)即可作出统计图.解答:解:( 1)参加检查的市民一共有: 700÷35%=2000 (人);(2)参加检查的市民中选择 C 的人数是: 2000( 1﹣35%﹣ 5%﹣ 10%﹣ 15%﹣ 15%) =400(人);(3)α=360°×15%=54 °;(4) D 的人数: 2000×10%=200(人).评论:本题考察的是条形统计图的综合运用.读懂统计图,从统计图中获得必需的信息是解决问题的重点.条形统计图能清楚地表示出每个项目的数据.21.( 12 分) (2020 年四川省绵阳市 )绵州大剧院矩形专场音乐会,成人票每张20 元,学生票每张 5元,暑期时期,为了丰富广大师生的业余文化生活,影剧院拟订了两种优惠方案,方案 1:购置一张成人票赠予一张学生票;方案2:按总价的 90%付款,某校有 4 名老师与若干名(许多于 4 人)学生听音乐会.(1)设学生人数为 x(人),付款总金额为 y(元),分别成立两种优惠方案中y 与 x 的函数关系式;(2)请计算并确立出最节俭花费的购票方案.考点:一次函数的应用.剖析:(1)第一依据优惠方案①:付款总金额 =购置成人票金额 +除掉 4 人后的少儿票金额;优惠方案②:付款总金额 =(购置成人票金额+购置少儿票金额)×打折率,列出 y 对于 x的函数关系式,(2)依据( 1)的函数关系式求出当两种方案付款总金额相等时,购置的票数.再就三种状况议论.解答:解:( 1)按优惠方案 ① 可得y 1=20 ×4+( x ﹣ 4) ×5=5x+60 ( x ≥4), 按优惠方案 ② 可得y 2=( 5x+20 ×4) ×90%=4.5x+72 ( x ≥4);( 2)由于 y 1﹣ y 2=0.5x ﹣ 12( x ≥4), ① 当 y ﹣ y =0 时,得 0.5x ﹣ 12=0,解得 x=24,12∴当购置 24 张票时,两种优惠方案付款同样多.② 当 y 1﹣ y 2< 0 时,得 0.5x ﹣ 12< 0,解得 x < 24,∴4≤x < 24 时, y < y ,优惠方案 ① 付款较少.1 2③ 当 y 1﹣ y 2> 0 时,得 0.5x ﹣ 12> 0,解得 x > 24,当 x > 24 时, y 1> y 2,优惠方案 ② 付款较少.评论: 本题依据实质问题考察了一次函数的运用. 解决本题的重点是依据题意正确列出两种方案的分析式,从而计算出临界点x 的取值,再进一步议论.22.( 12 分) (2020 年四川省绵阳市 )如图,已知反比率函数y=( k > 0)的图象经过点 A ( 1,m ),过点 A 作 AB ⊥ y 轴于点 B ,且 △ AOB 的面积为 1.( 1)求 m , k 的值;( 2)若一次函数 y=nx+2 ( n ≠0)的图象与反比率函数 y= 的图象有两个不一样的公共点,务实数 n 的取值范围.考点: 反比率函数与一次函数的交点问题. 剖析:(1)依据三角形的面积公式即可求得m 的值;( 2)若一次函数 y=nx+2 ( n ≠0)的图象与反比率函数 y= 的图象有两个不一样的公共点,则方程=nx+2 有两个不一样的解,利用根的鉴别式即可求解. 解答:解:( 1)由已知得: S △AOB =×1×m=1,解得: m=2,把 A ( 1, 2)代入反比率函数分析式得:k=2;( 2)由( 1)知反比率函数分析式是 y=,则=nx+2 有两个不一样的解,2方程去分母,得: nx +2x ﹣ 2=0 ,解得: n >﹣且 n ≠0.评论: 本题综合考察反比率函数与方程组的有关知识点. 先由点的坐标求函数分析式,后解由分析式构成的方程组求出交点的坐标,表现了数形联合的思想.然23.( 12 分) (2020 年四川省绵阳市 )如图,已知 △ ABC 内接于 ⊙O ,AB 是 ⊙ O 的直径,点 F在 ⊙ O 上,且知足 =,过点 C 作⊙ O 的切线交 AB 的延伸线于 D 点,交 AF 的延伸线于 E 点.( 1)求证: AE ⊥ DE ;( 2)若 tan ∠ CBA= , AE=3 ,求 AF 的长.考点:切线的性质.剖析:(1)第一连结 OC,由 OC=OA ,=,易证得 OC∥ AE ,又由过点 C 作⊙ O 的切线交 AB 的延伸线于 D 点,易证得 AE ⊥ DE ;(2)由 AB 是⊙ O 的直径,可得△ABC 是直角三角形,易得△AEC 为直角三角形, AE=3 ,而后连结 OF,可得△ OAF 为等边三角形,既而求得答案.解答:(1)证明:连结 OC,∵OC=OA ,∴∠ BAC= ∠ OCA ,∵=,∴∠ BAC= ∠ EAC ,∴∠ EAC= ∠OCA ,∴OC∥AE ,∵DE 且⊙ O 于点 C,∴OC⊥DE ,∴AE ⊥DE;(2)解:∵AB 是⊙O 的直径,∴△ ABC 是直角三角形,∵tan∠CBA= ,∴∠ CBA=60 °,∴∠ BAC= ∠ EAC=30 °,∵△ AEC 为直角三角形,AE=3 ,∴A C=2 ,连结 OF,∵OF=OA ,∠ OAF= ∠ BAC+ ∠ EAC=60 °,∴△ OAF 为等边三角形,∴A F=OA=AB ,在 Rt△ ACB 中, AC=2 ,tan∠ CBA= ,∴B C=2 ,∴A B=4 ,∴A F=2 .评论:本题考察了切线的性质、直角三角形的性质、等边三角形的判断与性质以及圆周角定理.本题难度适中,注意掌握协助线的作法,注意掌握数形联合思想的应用.24.( 12 分) (2020 年四川省绵阳市 )如图 1,矩形 ABCD 中, AB=4 ,AD=3 ,把矩形沿直线AC 折叠,使点 B 落在点 E 处, AE 交 CD 于点 F,连结 DE .(1)求证:△ DEC≌ △ EDA ;(2)求 DF 的值;(3)如图 2,若 P 为线段 EC 上一动点,过点P 作△AEC 的内接矩形,使其定点Q 落在线段 AE 上,定点 M 、N 落在线段 AC 上,当线段 PE 的长为什么值时,矩形 PQMN 的面积最大?并求出其最大值.考点:四边形综合题.剖析:(1)由矩形的性质可知从而求得 △DEC ≌ △EDA ; (2)依据勾股定理即可求得.(3))有矩形 PQMN 的性质得 △ ADC ≌ △CEA ,得出 AD=CE ,DC=EA ,∠ ACD= ∠CAE ,PQ ∥ CA ,因此,从而求得 PQ ,由 PN ∥ EG ,得出 =,求得PN ,而后依据矩形的面积公式求得分析式,即可求得.解答: (1)证明:由矩形的性质可知 △ ADC ≌ △ CEA , ∴AD=CE , DC=EA ,∠ ACD= ∠ CAE , 在△ ADE 与△ CED 中∴△ DEC ≌△ EDA ( SSS );(2)解:如图 1,∵ ∠ ACD= ∠ CAE ,∴ A F=CF ,设 DF=x ,则 AF=CF=4 ﹣x ,在 RT △ ADF 中, AD 2+DF 2=AF 2,即 32+x 2=( 4﹣ x ) 2, 解得; x= , 即 DF=.(3)解:如图 2,由矩形 PQMN 的性质得 PQ ∥ CA∴又∵ CE=3, AC==5设 PE=x ( 0< x <3),则,即 PQ= 过 E 作 EG ⊥AC 于 G ,则 PN ∥ EG , ∴=又∵ 在 Rt △AEC 中, EG?AC=AE ?CE ,解得 EG=∴ =,即 PN=(3﹣ x )设矩形 PQMN 的面积为 S则 S=PQ?PN=﹣ x 2+4x= ﹣ +3(0< x < 3)因此当 x= ,即 PE=时,矩形 PQMN 的面积最大,最大面积为 3.评论:本题考察了全等三角形的判断和性质,勾股定理的应用, 平行线分线段成比率定理.25.( 14 分) (2020 年四川省绵阳市 )如图,抛物线 y=ax 2+bx+c ( a ≠0)的图象过点 M (﹣ 2,),极点坐标为 N (﹣ 1,),且与 x 轴交于 A 、 B 两点,与 y 轴交于 C 点.(1)求抛物线的分析式;(2)点 P 为抛物线对称轴上的动点,当 △ PBC (3)在直线 AC 上能否存在一点 Q ,使 △ QBM不存在,请说明原因.为等腰三角形时,求点P 的坐标;的周长最小?若存在,求出Q 点坐标;若考点: 二次函数综合题.剖析:(1)先由抛物线的极点坐标为 N (﹣ 1,),可设其分析式为 2y=a ( x+1 ) +,再将M (﹣ 2,)代入,得 =a (﹣ 2+1 )2+,解方程求出 a 的值即可获得抛物线的分析式;( 2)先求出抛物线 y= ﹣ x 2﹣ x+与 x 轴交点 A 、 B ,与 y 轴交点 C 的坐标,再依据勾股定理获得 BC==2 .设 P (﹣ 1, m ),明显 PB ≠PC ,因此当 △PBC 为等腰三角形时分两种状况进行议论: ① CP=CB ;② BP=BC ;( 3)先由勾股定理的逆定理得出BC ⊥AC ,连结 BC 并延伸至 B ′,使 B ′C=BC ,连结 B ′M , 交直线 AC 于点 Q ,由轴对称的性质可知此时 △ QBM 的周长最小, 由 B (﹣ 3,0),C ( 0,),依据中点坐标公式求出B ′( 3,2),再运用待定系数法求出直线 MB ′的分析式为 y=x+ ,直线AC 的分析式为 y= ﹣ x+,而后解方程组,即可求出 Q 点的坐标.y=a (x+1 ) 2+, 解答: 解:( 1)由抛物线极点坐标为 N (﹣ 1,),可设其分析式为将 M (﹣ 2,)代入,得 =a (﹣ 2+1) 2+,解得 a=﹣,故所求抛物线的分析式为 y=﹣ x 2﹣ x+ ;( 2) ∵ y=﹣ x 2﹣ x+ ,∴ x =0 时, y= , ∴ C ( 0,).y=0 时,﹣ x 2﹣x+=0 ,解得 x=1 或 x= ﹣ 3,∴A ( 1, 0), B (﹣ 3, 0), ∴ B C==2 .设 P (﹣ 1, m ),明显 PB ≠PC ,因此当 CP=CB 时,有 CP==2,解得 m= ±;当 BP=BC 时,有 BP==2 ,解得 m= ±2.综上,当 △ PBC 为等腰三角形时,点 P 的坐标为(﹣ 1, +),(﹣ 1,﹣),(﹣ 1, 2),(﹣ 1,﹣2);( 3)由( 2)知 BC=2 ,AC=2 , AB=4 ,因此 BC 2+AC 2=AB 2,即 BC ⊥ AC .连结 BC 并延伸至 B ′,使 B ′C=BC ,连结 B ′M ,交直线 AC 于点 Q , ∵B 、 B ′对于直线 AC 对称, ∴QB=QB ′,∴QB+QM=QB ′+QM=MB ′,又 BM=2 ,因此此时 △ QBM 的周长最小.由 B (﹣ 3, 0),C ( 0,),易得 B ′(3, 2).设直线 MB ′的分析式为 y=kx+n ,将 M (﹣ 2,), B ′( 3, 2)代入,得,解得,即直线 MB ′的分析式为y=x+ .同理可求得直线AC 的分析式为y= ﹣ x+ .由,解得,即Q(﹣,).因此在直线AC 上存在一点Q(﹣,),使△ QBM 的周长最小.评论:本题是二次函数的综合题型,此中波及到运用待定系数法求二次函数、一次函数的分析式,等腰三角形的性质,轴对称的性质,中点坐标公式,两函数交点坐标的求法等知识,运用数形联合、分类议论及方程思想是解题的重点.。

四川省绵阳市2020年中考数学试卷(II)卷

四川省绵阳市2020年中考数学试卷(II)卷

四川省绵阳市2020年中考数学试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)在-(-2),,(-2)2 , -2这4个数中,负数的个数是()A . 1B . 2C . 3D . 42. (2分)据科学家估计,地球的年龄大约是46亿年,46亿这个数用科学记数法表示为()A . 4.6×108B . 46×108C . 4.6×109D . 0.46×10103. (2分)(2019·扬中模拟) 如图,几何体的左视图是()A .B .C .D .4. (2分)(2020·定安模拟) 在一个不透明的盒子中装有10个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为,则黄球的个数为()A . 4B . 5C . 6D . 75. (2分) (2019七下·余杭期中) x2·x3的结果是()A . x5B . x6C . 5xD . 2x26. (2分)如图,某电信公司提供了A,B两种方案的移动通讯费用y(元)与通话时间x(元)之间的关系,则以下说法错误的是()A . 若通话时间少于120分,则A方案比B方案便宜20元B . 若通话时间超过200分,则B方案比A方案便宜12元C . 若通讯费用为60元,则B方案比A方案的通话时间多D . 若两种方案通讯费用相差10元,则通话时间是145分或185分7. (2分) (2020七上·遂宁期末) 如图,∠BCD=95°,AB∥DE,则∠α与∠β满足()A . ∠α+∠β=95°B . ∠β﹣∠α=95°C . ∠α+∠β=85°D . ∠β﹣∠α=85°8. (2分) (2017七下·威远期中) 若a:2=b:3=c:7,且a﹣b+c=12,则2a﹣3b+c等于()A . 2B . 4C .D . 129. (2分)二次函数的图象经过三点,则它的解析式为()A .B .C .D .10. (2分)(2019·蒙自模拟) 观察下图“d”形中各数之间的规律,根据观察到的规律得出n的值为()A . 241B . 113C . 143D . 271二、填空题 (共6题;共7分)11. (1分)(2011·苏州) 因式分解:a2﹣9=________.12. (1分) (2016七上·利州期末) 两个角的大小之比是7:3,他们的差是72°,则这两个角的关系是________﹙选填:相等或互余或互补﹚13. (1分) (2018九上·潮南期末) 如图,已知等边△ABC的边长为6,以AB为直径的⊙O与边AC、BC分别交于D、E两点,则劣弧的长为________.14. (2分) (2017八上·淅川期中) 如图,在△ABC和△DEF中,点B,E,C,F在同一直线上,请你再下列4个条件(①~④)中选3个条件作为题设,余下的1个作为结论,写出一个真命题,并证明.①AB=DE;②AC=DF;③∠ABC=∠DEF;④BE=CF.题设:________.结论:________.(填序号)15. (1分)(2020·无锡模拟) 如图,已知A(,y1),B(2,y2)为反比例函数y=图象上的两点,动点P(x,0)在x轴正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是________.16. (1分) (2019七下·揭西期末) 汽车以60千米/时速度匀速行驶,随着时间t(时)的变化,汽车的行驶路程s也随着变化,则它们之间的关系式为s=________.三、解答题 (共8题;共63分)17. (5分)(2019·福州模拟) 计算:|﹣3|+ •tan30°﹣(3.14﹣π)018. (3分)(2016·福田模拟) 景新中学为了进一步丰富学生的课外阅读,欲增购一些课外书,为此对该校一部分学生进行了一次“你最喜欢的书籍”问卷调查(每人只选一项).根据收集到的数据,绘制成如下统计图(不完整):请根据图中提供的信息,完成下列问题:(1)在这次问卷调查中,喜欢“科普书籍”出现的频率为________;(2)在扇形统计图中,喜欢“体育书籍”的所占的圆心角度数为________;(3)如果全校共有学生1500名,请估计该校最喜欢“科普书籍”的学生约有________人.19. (5分)从甲地到乙地,先是一段上坡路,然后是一段平路,小明骑车从甲地出发,到达乙地后休息一段时间,然后原路返回甲地.假设小明骑车在上坡、平路、下坡时分别保持匀速前进,已知小明骑车上坡的速度比平路上的速度每小时少5km,下坡的速度比在平路上的速度每小时多5km,设小明出发xh后,到达离乙地ykm的地方,图中的折线ABCDEF表示y与x之间的函数关系.(1)小明骑车在平路上的速度为多少km/h,他在乙地休息了多少小时.(2)分别求线段AB、EF所对应的函数关系式.(3)从甲地到乙地经过丙地,如果小明两次经过丙地的时间间隔为0.85h,求丙地与甲地之间的路程.20. (5分)(2020·淮安模拟) 已知二次函数的顶点坐标为,且其图象经过点,求此二次函数的解析式.21. (10分)图①是小明在健身器材上进行仰卧起坐锻炼时的情景,图②是小明锻炼时上半身由ON位置运动到与地面垂直的OM位置时的示意图.已知AC=0.66米,BD=0.26米,α=20°.(参考数据:sin20°≈0.342,cos20°≈0.940,tan20°≈0.364)(1)求AB的长(精确到0.01米);(2)若测得ON=0.8米,试计算小明头顶由N点运动到M点的路径的长度.(结果保留π)22. (10分)(2020·宁波) 图1是一种三角车位锁,其主体部分是由两条长度相等的钢条组成.当位于顶端的小挂锁打开时,钢条可放入底盒中(底盒固定在地面下),此时汽车可以进入车位;当车位锁上锁后,钢条按图1的方式立在地面上,以阻止底盘高度低于车位锁高度的汽车进入车位.图2是其示意图,经测量,钢条AB=AC=50cm, .(1)求车位锁的底盒长BC.(2)若一辆汽车的底盘高度为30cm,当车位锁上锁时,问这辆汽车能否进入该车位?(参考数据:,, )23. (10分)(2018·遵义) 如图,正方形ABCD的对角线交于点O,点E、F分别在AB、BC上(AE<BE),且∠EOF=90°,OE、DA的延长线交于点M,OF、AB的延长线交于点N,连接MN.(1)求证:OM=ON.(2)若正方形ABCD的边长为4,E为OM的中点,求MN的长.24. (15分)“中华紫薇园”景区今年“五一”期间开始营业,为方便游客在园区内游玩休息,决定向一家园艺公司采购一批户外休闲椅,经了解,公司出售两种型号休闲椅,如下表:可供使用人数(人/条)价格(元/条)长条椅3160弧形椅5200景区采购这批休闲椅共用去56000元,购得的椅子正好可让1300名游客同时使用.(1)求景区采购了多少条长条椅,多少条弧形椅?(2)景区现计划租用A、B两种型号的卡车共20辆将这批椅子运回景区,已知A型卡车每辆可同时装运4条长条椅和11条弧形椅,B型卡车每辆可同时装运12条长条椅和7条弧形椅.如何安排A、B两种卡车可一次性将这批休闲椅运回来?(3)又知A型卡车每辆的运费为1200元,B型卡车每辆的运费为1050元,在(2)的条件下,若要使此次运费最少,应采取哪种方案?并求出最少的运费为多少元.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共7分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共8题;共63分)17-1、18-1、18-2、18-3、19-1、20-1、21-1、21-2、22-1、22-2、23-1、23-2、24-1、24-2、24-3、第11 页共11 页。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四川省绵阳市某重点初中2020年招生考试数学试卷
姓名:________ 班级:________ 成绩:________
亲爱的同学,经过一段时间的学习,你们一定学到不少知识,今天就让我们大显身手吧!
一、填空。

(共18分) (共9题;共18分)
1. (2分)把下面横线上的数改写成以“万”或以“亿”为单位的数.
我国每年生产和丢弃的一次性筷子达45000000000双,需要砍伐的树木多达2500000棵.
45000000000=________亿2500000=________万
2. (2分)填空
3500kg=________t1000m=________km
3时45分=________时 6.80 =________
2000mL=________L 3.5公顷=________
3. (2分)能被3整除数的特征是________
4. (2分)在数轴上,负数都在0的________ 边,﹣8比较﹣5少________ ,2比﹣2多________ .
5. (2分)口算
________
6. (2分) (2019六上·长沙期末) =10:________=________÷40=________%=________(填小数)
7. (2分) (2019五上·东源期末) 买3元和5元的贴画共100张,总价390元,那么3元的贴画有________张,5元的贴画有________张。

8. (2分)直角=________度平角=________度周角=________度
9. (2分)把一根圆柱形木料截成3段,表面积增加了45.12平方厘米,这根木料的底面积是________平方厘米。

二、选择。

(共16分) (共8题;共16分)
10. (2分)下列说法中错误的是()。

A . 体重减少2千克记作-2千克,体重增加2千克记作+2千克。

B . 上升一定用正数表示,下降一定用负数表示。

C . +6°C和-6°C是一对相反意义的量。

D . 商店运来大米10吨,记作+10吨,卖出大米8吨,记作-8吨。

11. (2分) (2019四下·大田期末) 用三根长度为整厘米数的小棒围成一个三角形,如果其中两根小棒分别长8cm、10cm,那么第三根小棒最短是()cm.
A . 2
B . 3
C . 9
D . 17
12. (2分)从A城到B城,甲车要10小时,乙车要8小时,甲车速度比乙车()
A . 快25%
B . 慢20%
C . 慢80%
13. (2分) (2019六下·平舆月考) 一幅图的比例尺是1:5000,下面说法正确的是()
A . 相距100千米的两地图上距离是2cm
B . 图上距离是实际距离的5000倍
C . 实际距离是图上距离的5000倍
14. (2分)下列三个图形中,每个小正方形都一样大,那么()图形的周长最长。

A .
B .
C .
15. (2分) (2020五上·龙华期末) 五一班同学玩摸球游戏(每人摸一次,然后放回再摇匀)。

52人中,12人摸到了白球,40人拨到了红球。

那么箱子中最有可能装有()。

A . 5个红球,5个白球
B . 2个白球,8个红球
C . 8个白球,2个红球
D . 12个白球,4个红球
16. (2分)
用含有字母的式子表示下面的数量关系,写错了的是()。

A . 3加上x的和:3+x
B . 比a多19的数:a+19
C . 15个y的和:15+y
17. (2分)下列式子中是方程的是()
A . x+8
B . 5x+2=9
C . 4x-8>0
三、计算与操作。

(共26分) (共3题;共26分)
18. (4分) (2020五上·石碣期末) 列竖式计算。

(1)36.48÷3.8=
(2)9.25×6.4=
19. (18分)用合适的方法计算下列各题.
①89.3×43+38×89.3+19×89.3
②1.25×32×2.5
③4.68÷4.5×(0.25+0.5)
④20.08+(32﹣0.299÷0.23)
20. (4分) (2018六下·云南模拟) 解比例。

(1)
(2)
(3)
(4)
四、填空。

(共14分) (共7题;共14分)
21. (2分)美术老师想将这幅画放大后放在橱窗里展览,他调到200%来复印,将这幅画按________∶________复印出来。

22. (2分)“六一”儿童节,新华书店的图书一律九折优惠,小聪用21.6元的钱买了一本儿童读物,这本儿童读物原价________ 元.
23. (2分)(2018·杭州) 方叔叔在某投资平台上投资30万元,该项目年化收益率是11%(即每年收益是本金的11%),存期一年半,到期后可获利润________万元。

24. (2分)下面是金星电器厂2004年各季度产值统计图,看图回答下面的问题.
(1)第四季度的产值比第一季度多________万元。

(2)平均每季度的产值是________万。

(3)平均每月的产值是________万元。

25. (2分) (2020六上·巩义期末) 两圆的半径长分别是3cm和4cm,那么它们的周长比为________,面积比为________.
26. (2分) (2015六下·简阳期中) 混凝土是用水泥、沙子和石子拌制而成的.水泥、沙子和石子的比是2:3:5,要拌制60吨的混凝土需要沙子________吨,石子________吨.
27. (2分)一个长方体的长、宽、高分别是6厘米、5厘米和4厘米,若把它切割成三个大小相等的小长方体,这三个小长方体表面积的和最大是________平方厘米。

五、解决问题。

(共26分) (共6题;共26分)
28. (4分)在学校操场的一侧插彩旗,每两面彩旗之间的距离都是一样宽,从第1面到第9面之间的距离一共是72米,相邻两面彩旗之间平均相距多少米?
29. (4分)照样子,涂一涂.
30. (4分) (2020六上·苏州期末) 甲乙两个车间共有工人310人,甲车间人数的和乙车间的相等,则两个车间各有多少人?
31. (4分) (2019六下·合肥期中) 一个圆柱形水池,底面直径20米,深3米。

(1)水池的占地面积是多少平方米?
(2)水池最多可以盛水多少立方米?
(3)在水池的内侧和底面抹水泥,抹水泥部分的面积是多少?
32. (4分) (2019五上·淄博期末) 学校合唱队男生人数是女生人数的,后来调入3名女生,这时男生人数与女生人数的比是3:4,学校合唱队原来有多少名同学?
33. (6分)第4和第5幅图的个数是多少?你从中发现了什么数学规律?
参考答案一、填空。

(共18分) (共9题;共18分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
二、选择。

(共16分) (共8题;共16分)
10-1、
11-1、
12-1、
13-1、
14-1、
15-1、
16-1、
17-1、
三、计算与操作。

(共26分) (共3题;共26分) 18-1、
18-2、
19-1、20-1、20-2、20-3、
20-4、
四、填空。

(共14分) (共7题;共14分)
21-1、
22-1、
23-1、
24-1、
24-2、
24-3、
25-1、
26-1、
27-1、
五、解决问题。

(共26分) (共6题;共26分) 28-1、
29-1、
30-1、31-1、31-2、31-3、
32-1、
33-1、。

相关文档
最新文档