Investigation of mechanical properties of fractured marbles by uniaxial compression tests

合集下载

谢丹:女,汉族,1978年3月生,厦门理工学院机械与汽车

谢丹:女,汉族,1978年3月生,厦门理工学院机械与汽车

培养方向车辆传动、电控技术及其应用联系方式xiedan@谢丹:女,厦门理工学院机械与汽车工程学院副教授。

2010年6月毕业于华中科技大学机械科学与工程学院机械制造及其自动化(精微制造工程)专业,获工学博士学位。

国家自然科学基金同行评议专家,SCI源刊《Microelectronic Engineering》、《Optical Engineering》审稿人。

研究领域为非传统加工工艺及装备,主要从事微滴喷射、纳米压印及微接触印刷等技术的研发。

主持国家自然科学基金面上项目、国家自然科学基金青年基金、福建省自然科学基金、厦门市科技计划各1项,参与国家自然科学基金重点项目1项、面上项目1项、国家科技重大专项项目1项、高等学校博士点专项科研基金资助项目1项。

曾参与研制纳米压印机、高效微电火花加工机床、机械式喷胶设备、气动膜片式微喷射设备、压电式三维打印系统及滚筒式微接触印刷装置等。

先后在《Optics Express》、《Science China Technological Sciences》、《中国科学:技术科学》等期刊等国内外权威期刊发表论文10余篇(第一或通讯作者),其中SCI检索3篇,EI检索4篇,申请(授权)专利9项。

期刊论文(*通讯作者)[1]Dan Xie*, Honghai Zhang, Xiayun Shu, Junfeng Xiao. Fabrication of polymer micro-lens array withpneumatically diaphragm-driven drop-on-demand inkjet technology. Optics Express.20(14):15186-15195,2012 (SCI/EI, IF=3.587)[2]Xie Dan*,Zhang Honghai,Shu Xiayun,Xiao Junfeng,Cao Shu. Multi-materials drop-on-demand inkjettechnology based on pneumatic diaphragm actuator.Science China Technological Sciences.53(6):1605-1611,2010 (SCI/EI)[3]Xuefeng Chang, Xie Dan*. Noncontact Microembossing Technology for Fabricating Thermoplastic OpticalPolymer Microlens Array Sheets. Scientific World Journal, V olume 2014 ,(8)(SCI/EI,IF=1.29)[4]谢丹*,张鸿海,舒霞云,肖峻峰,曹澍.气动膜片式多材料微液滴按需喷射技术研究.中国科学:技术科学.40(7):794-801,2010[5]谢丹*,张鸿海,舒霞云等. 气动膜片式微滴喷射装置理论分析与实验研究. 中国机械工程.23(14):1732-1737,2012[6]谢丹*,张鸿海,陶晟等. PMMA微透镜阵列的非接触式热压印制作技术. 机械科学与技术.31(12):1955-1958,2012[7]Dan Xie*, Honghai Zhang, Sheng Liu.Mechanical Properties Investigation of PMMA PC and PS during ThermalNanoimprinting. The fourth International Symposium on Precision Mechanical Measurements 2008,(EI)[8]张鸿海,谢丹,刘胜等.基于荷花效应的双微观超疏水表面制作技术研究.中国机械工程.20(2):207-210,2009[9]王迎春,谢丹,张鸿海.基于非接触式热压印技术的微透镜阵列制作.机电工程. 27(11):13-16,2010[10]Shu Xiayun,Zhang Honghai,Liu Huayong,Xie Dan.Experimental study on high viscosity fluid micro-droplet jetting system.Science China Technological Sciences. 53(1):182-187,2010 (SCI/EI)[11]舒霞云,张鸿海,刘华勇, 谢丹.高黏度微量喷射系统的实验研究.中国科学:技术科学.40(2): 171-176,2010[12]舒霞云,张鸿海,张丰,谢丹.用于微喷嘴制作的高效微电火花加工技术.华中科技大学学报(自然科学版). 38(2):48-51, 2010[13]张鸿海,舒霞云,肖峻峰,谢丹.气动膜片式微滴喷射系统原理与实验.华中科技大学学报(自然科学版). 37(12):100-103,2009申请(授权)专利[1]微透镜阵列模具的制作方法,2013.7,申请号:201310292971.3(第一)[2]一种半球透镜模具的制作方法,2014.7,申请号:201410334276.3(第一)[3]一种基于音圈电机的微接触印刷装置及其工作流程,2013.10,申请号:201310501232.0(第二)[4]一种基于音圈电机的微接触印刷装置,2013.10,授权号:ZL201320654416.6(第二)[5]一种立式金刚石串珠绳锯机,2013.10,授权号:ZL201320730095.3(第二)[6]一种卧式微电火花机床及应用该机床进行在线加工的方法,2012.01,授权号:ZL201010502952.5(第三)[7]块状石材全自动磨抛机及其控制方法,2014.2,申请号:201410047484.5(第三)[8]块状石材全自动磨抛机,2014.2,申请号201420061641.3(第三)[9]一种气动膜片式微滴喷射方法及装置,2011.01,授权号:ZL200910305515.1(第四)科研项目(在研)[1]国家自然科学基金面上项目:基于热释电效应的碳基电子器件微纳复合喷射印刷机理与关键技术研究/51475400,起止时间:2015.01-2018.12(主持)[2]国家自然科学基金青年基金:有机电子薄膜连续式微接触图形化印刷原理与工艺研究/51105321,起止时间:2012.01-2014.12(主持)[3]福建省自然科学基金:仿生平面复眼透镜的非接触式可控压印制作技术研究/2013J05084,起止时间:2013.01-2015.12(主持)[4]厦门市科技计划项目:LED聚合物微透镜阵列的微滴喷射制作技术研究与开发/3502Z20113036,起止时间:2010.10-2013.12(主持)[5]福建省自然科学基金:非回转对称表面加工快刀伺服系统关键技术研究/2012J01237,起止时间:2012.01-2014.12(参与)[6]企业委托项目:一种异型石材外形检测识别及自动化图形编程系统开发/ HJ13010,起止时间:2013.09-2015.08(参与)。

mechanical properties

mechanical properties

工 艺性 能 不属 于 “ 力 学 性 能 ” 是 周 知 的 共 识 ,而 实 际上MP 包括 工 艺性 能 ,如 弯 曲 、压扁 、 顶 锻 和 成 形 性 等 等 ,更 包 括 液 压 和 润 滑 性 能 。力 学 中的力 具 有三 要 素 ,而这 些 性能 ( 包 括伸 长 率) 试 验 绝 大 多数 始 终 都 与力 的大 小 无 关 。MP 中的顶 锻 等 试 验 ,可 由用 户 根 据 是 否 出现 裂 纹 、裂 纹 的性

3 . “ 力 学性 能 ”用词 是否 正确 怀疑 “ 力 学性 能 ”是否 正确 的理 由如 下 :
( 1 ) 并不存在 “ 力 学性 能 ” 。材料 具 有 物 理 和 化 学性 能 ,但 力 学 是 研 究 物 体 运 动 规 律 的 , 力 学 有 原 理 、定 律 、判 据 和 行 为 ,也 可 以称 自 由落 体 具 有 力 学 的性 质 ,但 并 不 研 究物 体 本 身 的性 能 ,
例如并没有 “ 牛 顿 力 学 性 能 ” 。材 料 力学 研 究构 件 在 外 力 作 用 下 的变 形 、 破 坏 或 失 效 的规 律 。 既 是研究 “ 规 律 ” ,就无 “ 规律 ” 的性 能 , 即并 不
MP 的定 义 就是 机械 性 能 1 . MP 在广 义 上 的含 义 是机械 性 能

要 观 点摘 录 如 下 :
对 于 金 属 材 料 的 重 要 术 语 m e c h a n i C a 1 p r o p e r t i e s ( 以下 简 称 MP ) ,2 0 世纪8 O 年代 前 中 国 大 陆 称 为 “机 械 性 能 ” , 以 后 改 称 为 “力 学 性 能 ” , 并 成 了 固 定 的 术 语 。 笔 者 认 为 “力 学 性 能 ”的译 法 并不 合 适 , 阐 明 了MP 正 确 的 定名 应是 国际 通 用 、 概 念 确 切 的 “ 机械 性 能 ” , 并认 为 所 谓的 “ 力 学性 能 ”并 不存在 。

水泥搅拌桩试验方案

水泥搅拌桩试验方案

水泥搅拌桩试验方案1. 引言水泥搅拌桩是一种常用的地基处理技术,广泛应用于建筑工程、桥梁工程以及沿海、沿江、沿湖等地区的防护工程中。

本试验方案旨在详细介绍水泥搅拌桩试验的目的、试验方法、试验过程和数据分析等内容,以确保试验质量和工程效果。

2. 试验目的本试验旨在通过对水泥搅拌桩试验的详细记录和数据分析,评估其在工程中的可行性和效果,从而为实际工程提供参考依据。

试验目标包括但不限于以下几个方面: - 评估水泥搅拌桩在地基处理中的强度增加效果; - 评估水泥搅拌桩的稳定性和变形特性; - 评估水泥搅拌桩与周围土体的界面特性; - 提供水泥搅拌桩施工参数的优化建议。

3. 试验方法本试验采用以下方法进行: ### 3.1 试验准备首先,确定试验桩的尺寸和布置方案,并进行试验场地的准备工作。

选取适当位置进行水泥搅拌桩的试验施工,保证试验桩布设的均匀性和代表性。

3.2 试验设备与仪器本试验需要准备以下设备与仪器: - 搅拌桩机:用于搅拌水泥浆和土壤,形成水泥搅拌桩; - 钻孔设备:用于钻孔并确定桩的位置; - 馈浆设备:用于提供混合材料(水泥、水和骨料等); - 静力触探设备:用于评估桩的承载力和变形特性等;- 环境监测仪器:用于监测试验现场的温湿度、沉降等环境指标。

3.3 试验过程本试验需要按照以下步骤进行: 1. 钻孔:按照设计要求进行钻孔,确定桩的位置和布设方案; 2. 搅拌桩施工:搅拌桩机进行水泥浆和土壤的搅拌,在钻孔处形成水泥桩体; 3. 复合地基处理:将水泥搅拌桩与周围地基进行复合处理,提高整体地基的承载力和稳定性; 4. 牵引静力触探试验:在试验桩周围进行静力触探试验,评估桩的力学特性和承载力; 5. 环境监测:对试验现场的温湿度、沉降等环境因素进行监测; 6. 数据记录与分析:将试验过程中的数据进行记录,并进行数据分析和评估。

3.4 数据分析通过试验数据的分析和评估,可以得出水泥搅拌桩的力学性能和工程效果,为实际工程提供参考依据。

专业英语材料机械性能

专业英语材料机械性能
专业英语材料机械性能材料机械性能机械专业英语机械专业英语词汇机械工程专业英语机械专业英语翻译机械专业英语文章机械制造专业英语材料专业英语机械专业英语词典
Preface
The goal of the following pages :
To characterize materials in terms of some of the
The result of a tensile test is commonly displayed in a stress–strain diagram( 应力 - 应变图 ). Several important characteristics are immediately evident. During the initial stress period, the elongation of the material responds to in a linear fashion; the rod reverts back to its original length upon relief of the load(卸载). This region is called the elastic range. Once the stress exceeds, however, a critical value, called the yield strength(屈服强度), some of the deformation of the material becomes permanent.

The tensile test and the resulting stress–strain diagrams have been shown above to provide a comprehensive insight into many of the mechanical properties of materials. For specialized applications, however, a handful of further tests are commonly used.

Microstructure and mechanical properties

Microstructure and mechanical properties

Microstructure and mechanical properties of ZrB 2–SiC nanocomposite ceramicQiang Liu,*Wenbo Han and Ping HuCenter for Composite Materials,Harbin Institute of Technology,Harbin 150001,ChinaReceived 28March 2009;accepted 30May 2009Available online 6June 2009A ZrB 2–SiC nanocomposite ceramic in which 20vol.%nanosized SiC powder was introduced into a ZrB 2matrix was fabricated by hot-pressing at 1900°C for 60min under a 30MPa uniaxed load.The composite microstructure showed intragranular nanostruc-tures that were peculiar to this material.Investigation of the mechanical properties revealed a flexural strength of 930±28MPa and a fracture toughness of 6.5±0.3MPa m 1/2.These improved mechanical properties were strongly dependent on the formation of the unusual intragranular nanostructures.Ó2009Acta Materialia Inc.Published by Elsevier Ltd.All rights reserved.Keywords:Intragranular nanostructure;Mechanical properties;Microstructure;Fracture toughness;NanocompositeUltrahigh-temperature ceramics (UHTCs),suchas borides and carbides,were developed in the 1960s [1].Among UHTCs,zirconium diboride (ZrB 2)is a material of particular interest because of its excellent combination of high melting point,low theoretical den-sity,high electrical conductivity,good chemical inert-ness and superb wear resistance.These properties make it an attractive candidate for high-temperature applications such as refractory materials in foundries,electrical devices,nozzles and armor [2].Moreover,ZrB 2could be used for super-high-temperature struc-tural applications in aerospace [3,4].Its low mechanical properties,however,have long prevented this material from being used in a wide range of applications.Its sus-ceptibility to brittle fracture can lead to unexpected cat-astrophic failure,therefore its mechanical properties must be improved before the potential applications of ZrB 2can be fully realized.The introduction of a second phase of particles has been a successful strategy for improving the mechanical properties of monolithic diboride ceramics.With this aim,introduction of SiC particles [3–6]into ZrB 2yields a ZrB 2–SiC composite ceramic that is far stronger than monolithic ZrB 2.As a rule,however,improvement of mechanical properties is limited by the micro-sized par-ticles of the second phase.The mechanical properties of ceramics can be signif-icantly improved by introducing nanosized ceramic par-ticles into the ceramic-matrix grains or grain boundaries.The most significant achievements with this approach have been reported by Niihara and Nakahira [7–9],who first revealed that an introduction of 5vol.%of nanosized SiC particles into Al 2O 3increased the room-temperature strength of the composite from 350MPa to $1.0GPa (three-point flexure,30mm span).Similar improvements in strength have since been achieved in Al 2O 3–Si 3N 4,MgO–SiC and Si 3N 4–SiC composite systems.Materials constructed by these types of approaches are termed nanocomposite ceramics.At this point in time,however,there have been few attempts to create nanocomposite ceramics out of ZrB 2–SiC.Moreover,the effects of the composite micro-structure on the mechanical properties of ZrB 2–SiC nanocomposite ceramics have never been documented.Therefore,the aim of the present study was to investi-gate the microstructural features and effects on mechan-ical properties of a ZrB 2–SiC nanocomposite ceramic.The starting powders used in this study were:ZrB 2powder (Northwest Institute for Non-ferrous Metal Re-search,China),average particle size 2l m (>99%);and nanosized b -SiC powder (Kaier Nanotechnology Devel-opment Co.Ltd,China),average particle size 30nm (>98%).The nanosized SiC powder was first dispersed in ethanol,with 1h of ultrasonication.Then the powder mixture ZrB 2plus 20vol.%nanosized SiC particles were ball-milled using ZrO 2ball media and ethanol at1359-6462/$-see front matter Ó2009Acta Materialia Inc.Published by Elsevier Ltd.All rights reserved.doi:10.1016/j.scriptamat.2009.05.041*Corresponding author.Tel./fax:+8645186402382;e-mail:dqz0402@Available online at Scripta Materialia 61(2009)690–692/locate/scriptamat180rpm for 12h.All ball-milling was performed in polyethylene bottles.After mixing,the resulting slurry was dried by rotary evaporation and then screened.The obtained powder mixtures were hot-pressed at 1900°C for 60min at a uniaxial pressure of 30MPa in Ar atmosphere.The microstructure of hot-pressed specimens was ob-served by using scanning electron microscopy (SEM,FEI Sirion,Holland)and transmission electron micros-copy (TEM,Hitachi H-9000,Japan)with an X-ray en-ergy dispersive spectroscopy (EDS,EDAX Inc.)analyzer attachment.Flexural strength (r )was tested in three-point bending on 3Â4Â36mm bars,using a 30-mm span and a crosshead speed of 0.5mm min À1.Each specimen was ground and polished with diamond slurries to a 1-l m finish.The edges of all the specimens were chamfered to minimize the effect of stress concen-tration resulting from machining flaws.Fracture tough-ness (K IC )was evaluated by a single-edge notched-beam test with a 16-mm span and a crosshead speed of 0.05mm min À1using 2Â4Â22mm test bars on the same jig used for the flexural strength.All flexural bars were fabricated with the tensile surface perpendicular to the hot-pressing direction.A minimum of five specimens was tested in each experimental condition.Figure 1shows the typical microstructural morphol-ogies of the ZrB 2–SiC nanocomposite ceramic under SEM (Fig.1a)and TEM (Fig.1b).As shown in Figure 1a,a number of submicron SiC particles (dark contrast)are located along the grain boundaries of the ZrB 2(gray contrast).Some smaller SiC particles also appear inside the ZrB 2grains (indicated by arrows);these are termed intragranular nanostructures.Higher magnification examination of the ZrB 2–SiC nanocomposite ceramic by TEM (Fig.1b)showed that the intragranular SiC particles (indicated by arrows)were approximately 100nm in size.The formation of the intragranular nanostructures was dependent on both the migration speed of ZrB 2ma-trix grain boundary and the migration speed of the SiC second phase [10,11].When the migration speed of the second phase was less than that of the matrix grain boundary,the nanosized SiC particles tended to be trapped within the ZrB 2grains during sintering.The fine ZrB 2particles would then coalesce around them,form-ing the intragranular nanostructures.Figure 2shows that the specimen fracture surface used for testing fracture toughness exhibited the typicalcharacteristics of a transgranular fracture.In monolithic ZrB 2ceramic,the predominant fracture mode would have been intergranular [12].There are two possible interpretations for this difference in fracture mode.The first is that the intergranular SiC particles in the ZrB 2–SiC nanocomposite ceramic were firmly bonded to the ZrB 2/ZrB 2interfaces.This rigid bonding could then have suppressed intergranular fracture [13].The other explanation is that there are differences in relaxation of the tensile residual stress around the SiC particles located between the intergranular and intra-granular.Because of the different thermal expansion coefficients between SiC and ZrB 2,a large internal stress will be generated during cooling after sintering.Assum-ing that a SiC particle is spherical,an internal tension will occur in a tangential direction to the ZrB 2matrix around the SiC particle.This will cause a crack to al-ways propagate towards the SiC particle.The internal tangential tension also would be relaxed by lattice and grain-boundary diffusion around the intragranular and intergranular particles,respectively.However,the tem-perature at which the grain-boundary diffusion is acti-vated would be lower than that required by lattice diffusion,thus the internal tangential tension around the intergranular SiC particles would be further relaxed during cooling.As a result,the internal tangential ten-sion around the intragranular SiC particles of the sin-tered body would always be greater than that around the intergranular particles.This would lead to a fracture surface that would always tend to be characteristic of a transgranular fracture.Thus,it is the intragranular nanostructures that predominantly induce the trans-granular fracture characteristic of the ZrB 2–SiC nano-composite ceramic.Examination of the mechanical properties of the ZrB 2–SiC nanocomposite ceramic revealed a fracture toughness that ranged from 6.4to 6.7MPa m 1/2.This represented an increase of approximately 83%over that of the monolithic ZrB 2(2.3–3.5MPa m 1/2)[2].In addi-tion,the flexural strength (920–945MPa)of this nano-composite ceramic was also significantly higher than that recently reported for the monolithic ZrB 2($565MPa)[4].The formation of the intragranular nanostructures appeared to play an important role in the improved mechanical properties of the ZrB 2–SiC nanocomposite ceramic,especially its increased fracture toughness and flexural strength.In order to investigate effects of the intragranular nanostructures on the mechanical properties oftheFigure 1.Typical microstructural morphologies of the ZrB 2–SiC nanocomposite ceramic:(a)SEM image of the sample and (b)TEM image of thesample.Figure 2.SEM image of the fracture surface of the ZrB 2–SiC nanocomposite ceramic.Q.Liu et al./Scripta Materialia 61(2009)690–692691ZrB 2–SiC nanocomposite ceramic,it is necessary to investigate a crack propagation behavior in this mate-rial.Figure 3shows TEM micrographs of crack propa-gation behavior in the ZrB 2–SiC nanocomposite ceramic.It was evident that the crack had never propa-gated in a straight line,but had been deflected,selecting the neighboring particles (Fig.3a).As stated previously,this deflection was caused by thermal internal stress in this material.It can be also seen in Figure 3a that a crack has penetrated through an intragranular particle (indicated by black arrow).The possible reason for this case is that the cracked particle may be an agglomera-tion composed of many fine SiC particles.Because the bond strength of this agglomeration is not high enough,it tends to fracture when a crack meets this kind of par-ticle.However,for other intragranular particles (<100nm),neither crack penetration through the intra-granular particles nor propagation along the particle/matrix interfaces was evident (Fig.3b).This phenome-non indicates that the intragranular particles bridged the crack,pointing to the existence of a particle-bridging mechanism.Based on the experimental observation above,a spe-cific explanation for this effect is as follows.When a pri-mary crack meets an intragranular nanosized SiC particle,it is normally impeded and thus bows (Fig.3a).The bowing crack bypasses the impenetrable particles and instead interacts with neighboring cracks.At this point,the bridging particles firmly pin the cracks and further prevent the crack from extending.As a re-sult,only by increasing the crack extension force can the crack further extend.In other words,it is by means of the particle-bridging mechanism that the strength and toughness of the ZrB 2nanocomposite ceramic are signif-icantly improved.Besides the explanation mentioned above,there is an-other one for the improvement in strength.After the for-mation of the intragranular nanostructures,there are many sub-interfaces within the ZrB 2matrix grains that belong to the interfaces between intragranular particles and matrix grains.As stated previously,moreover,be-cause of the difference in thermal expansion coefficients between the ZrB 2matrix and the SiC second phase,a large number of microcracks were formed around the intragranular particles,as shown in Figure 4.The for-mation of the sub-interfaces and microcracks can cause the matrix grains to be at a potential differentiation state,corresponding to the further grain refining.Thisthen improves the strength of this material according to the Hall–Petch equation [10].As discussed above,it is concluded that the formation of intragranular nanostructure is the fundamental rea-son for the significant increase in the mechanical proper-ties of this nanocomposite ceramic.In conclusion,a hot-pressed ZrB 2–SiC nanocompos-ite ceramic was fabricated by introducing nanosized SiC powder into a ZrB 2matrix.the intragranular nanostruc-tures were peculiar to this ceramic-based composite and induced a transgranular fracture characteristic.The mechanical properties of this nanocomposite ceramic,especially its flexural strength and fracture toughness,were much higher than those of monolithic ZrB 2.It is believed that the formation of intragranular nanostructures is a main reason for the improvements in mechanical properties of the ZrB 2–SiC nanocompos-ite ceramic.Intragranular particle bridging is believed to be the predominant toughening mechanism imparting the improved characteristics to this material.This work was supported by the NSFC(10725207),the Research Fund for the Doctoral Pro-gram of Higher Education (24403037)and National Natural Science Fund for Outstanding Youths (24402052).[1]E.V.Clougherty,R.L.Pober,L.Kaufman,Trans.Met.Soc.AIME 242(1968)1077.[2]F.Monteverde,S.Guicciardi,A.Bellosi,Mater.Sci.Eng.A 346(2003)310.[3]A.L.Chamberlain,W.G.Fahrenholtz,G.E.Hilmas,D.T.Ellerby,J.Am.Ceram.Soc.87(2004)170.[4]F.Monteverde,C.Melandri,S.Gicciardi,Mater.Chem.Phys.100(2006)513.[5]F.Monteverde,Appl.Phys.A 82(2006)329.[6]S.S.Hwang,A.L.Vasiliev,N.P.Padture,Mater.Sci.Eng.A 464(2007)216.[7]K.Niihara, A.Nakahira,in:P.Vincentini (Ed.),Advanced Structural Inorganic Composites,Elsevier Sci-ence Publishers,Trieste,Italy,1990,pp.637–664.[8]K.Niihara,A.Nakahira,Ann.Chim.16(1991)479.[9]K.Niihara,J.Ceram.Soc.Jpn.99(1991)974.[10]W.D.Kingery,H.K.Bowen,D.R.Uhlmann,Introduc-tion to Ceramics,Wiley,1976.[11]C.M.Wang,J.Mater.Sci.30(1995)3222.[12]S.Q.Guo,J.M.Yang,H.Tanaka,Y.Kagawa,Compos.Sci.Technol.68(2008)3033.[13]I.A.Ovid’ko,A.G.Sheinerman,Scripta Mater.60(2009)627.Figure 3.TEM micrographs of crack propagation behavior in the ZrB 2–SiC nanocomposite ceramic:crack propagation is from upper right to lowerleft.Figure 4.TEM micrograph of microcracks around an intragranular particle.692Q.Liu et al./Scripta Materialia 61(2009)690–692。

mechanical properties中文名演变过程及定义

mechanical properties中文名演变过程及定义

mechanical properties中文名演变过程及定义作者:赵中平等来源:《中国科技术语》2015年第01期摘要:文章阐述了mechanical properties中译名由“机械性能”到“力学性能”的演变过程,认为mechanical properties译为“力学性能”并不合适,应译为“机械性能”。

指出了这种变更存在的问题,进一步说明了mechanical properties一词的定义。

关键词:术语,金属材料,机械性能,力学性能中图分类号:N04;H059;TH文献标识码:A文章编号:1673-8578(2015)01-0042-05Abstract: This article mainly elaborates the evolution process of the Chinese translation on “mechanical properties”. The author points out that “lixue xingnen” is not suitable for the Chinese tran slation of “mechanical properties”, and further illustrate that the definition on the term “mechanical properties”.Keywords: term,metal material,mechanical properties对于金属材料的重要的术语mechanical properties(以下简称MP),20世纪80年代前中国大陆称为“机械性能”,以后改称为“力学性能”,并成了固定的术语。

在资料[1]~[4]中,笔者认为“力学性能”的译法并不合适,阐明了MP正确的定名应是国际通用、概念确切的“机械性能”,并认为所谓的“力学性能”并不存在。

下面通过历史回顾和事实分析,叙述“机械性能”怎样被引导成“力学性能”,指出MP等同于“力学性能”的观点是由不恰当的翻译形成的误解,进一步阐明MP的定义就是“机械性能”。

探索人体机械运动规律及其与体育运动技术关系的学科。

探索人体机械运动规律及其与体育运动技术关系的学科。

探索人体机械运动规律及其与体育运动技术关系的学科。

The discipline that explores the mechanical principles of human body movement and its relationship to sports performance is called biomechanics. Biomechanics combines principles from physics, engineering, and biology to understand how forces and motion interact within the human body during different physical activities.人体机械运动规律及其与体育运动技术关系的学科被称为生物力学。

生物力学结合了物理、工程和生物学原理,以了解人体在不同体育活动中的内部力和运动如何相互作用。

Biomechanics seeks to understand the underlying mechanisms that enable humans to perform complex movements efficiently and safely. By studying factors such as joint angles,muscle activation patterns, and external forces acting on the body, biomechanics researchers can identify optimal movement patterns for specific sports techniques.生物力学旨在了解人类如何以高效安全的方式进行复杂运动的基本机制。

通过研究关节角度、肌肉激活模式以及对身体施加的外部力等因素,生物力学研究人员可以确定特定体育技术的最佳运动模式。

低温条件下QTD9008的力学性能研究

低温条件下QTD9008的力学性能研究

低温条件下QTD900-8的力学性能研究郑言彪,张军(湖北省机电研究设计院股份公司,湖北武汉430070)摘要:以2TD900-8材料为研究对象,采用拉伸、冲击、布氏硬度测试以及扫描电镜的分析方法,研究其在低温条件下的断 ,:(1)1 的 ,QTD900-8的 化大,-60#,对于强 高了19.8%,33.0%,韧 70E,高了18.4%;(2)的 ,QTD900-8发生了韧性断 断 断 化的 ;(3> ,断 墨产生,面,材料断。

关键词:ADI;1中图分类号:TG255 文献标识码:B 文章编号:1003-8345(2019)01-0005-04D0I:10.3969/j.issn.1003-8345.2019.01.002Investigation on Mechanical Properties of QTD900-8 under Low Temperature ConditionZHENG Yan-biao, ZHANG Jun(Hubei Mechanical and Electrical Research and Design Institute Co.,Ltd.,Wuhan 430070,China) Abstract:By using QTD900-8 material as investigation object,adopting tensile test,impact test,HB test and SEM analysis,the mechanical properties,fracture morphology characteristics of the material were investigated,the result showed: (1)With the decrease of temperature,the mechanical properties of QTD900-8 vary greatly:compared with normal temperature condition,at -60 +,the tensile strength was increased by 19.8%,the elongation decreased by 33.0%,the impact toughness decreased by more than 70%,the hardness elevated by 18.4%. (2)As the temperature drops,the process of ductile fracture,mixed mode fracture and brittle fracture occurred with QTD900-8. (3)At low temperature,cracks first occur in graphite in the process of tensile fracture,and then spread to the whole section,which led to the fracture of the material.Key words:ADI; low temperature; mechanical properties等 球墨铸铁(ADI)的,工机磨等面 广应用,是 对其 的研究。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档