2015四川省高考文科数学真题及答案(标准版)

合集下载

四川省高考数学试题及答案文科解析版

四川省高考数学试题及答案文科解析版

2015年四川省高考数学试卷(文科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)(2015?四川)设集合A={x|﹣1<x<2},集合B={x|1<x<3},则A∪B=()A.{x|﹣1<x<3} B. {x|﹣1<x<1} C. {x|1<x<2} D.{x|2<x<3}考点:并集及其运算.专题:集合.分析:直接利用并集求解法则求解即可.解答:解:集合A={x|﹣1<x<2},集合B={x|1<x<3},则A∪B={x|﹣1<x<3}.故选:A.点评:本题考查并集的求法,基本知识的考查.2.(5分)(2015?四川)设向量=(2,4)与向量=(x,6)共线,则实数x=()A.2B. 3 C. 4 D.6平面向量共线(平行)的坐标表示.考点:专平面向量及应用.题:利用向量共线的充要条件得到坐标的关系求出x.分析:解解;因为向量=(2,4)与向量=(x,6)共线,答:所以4x=2×6,解得x=3;故选:B.点本题考查了向量共线的坐标关系;如果两个向量向量=(x,y)与向量=(m,n)共线,评:那么xn=yn.3.(5分)(2015?四川)某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显着差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是()A.抽签法B.系统抽样法C.分层抽样法D.随机数法考点:收集数据的方法.专题:应用题;概率与统计.分析:若总体由差异明显的几部分组成时,经常采用分层抽样的方法进行抽样.解答:解:我们常用的抽样方法有:简单随机抽样、分层抽样和系统抽样,而事先已经了解到三年级、六年级、九年级这三个年级之间的学生视力是否存在显着差异,这种方式具有代表性,比较合理.故选:C.点评:本小题考查抽样方法,主要考查抽样方法,属基本题.4.(5分)(2015?四川)设a,b为正实数,则“a>b>1”是“log2a>log2b>0”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件考点:充要条件.专题:简易逻辑.分析:先求出log2a>log2b>0的充要条件,再和a>b>1比较,从而求出答案.解答:解:若log2a>log2b>0,则a>b>1,故“a>b>1”是“log2a>log2b>0”的充要条件,故选:A.点评:本题考察了充分必要条件,考察对数函数的性质,是一道基础题.5.(5分)(2015?四川)下列函数中,最小正周期为π且图象关于原点对称的函数是()A.y=cos(2x+)B.y=sin(2x+)C. y=sin2x+cos2x D.y=sinx+cosx考点:两角和与差的正弦函数;三角函数的周期性及其求法.专题:三角函数的图像与性质.分析:求出函数的周期,函数的奇偶性,判断求解即可.解答:解:y=cos(2x+)=﹣sin2x,是奇函数,函数的周期为:π,满足题意,所以A正确y=sin(2x+)=cos2x,函数是偶函数,周期为:π,不满足题意,所以B不正确;y=sin2x+cos2x=sin(2x+),函数是非奇非偶函数,周期为π,所以C不正确;y=sinx+cosx=sin(x+),函数是非奇非偶函数,周期为2π,所以D不正确;故选:A.点评:本题考查两角和与差的三角函数,函数的奇偶性以及红丝带周期的求法,考查计算能力.6.(5分)(2015?四川)执行如图所示的程序框图,输出s的值为()A.﹣B.C.﹣D.考点:程序框图.专题:图表型;算法和程序框图.分析:模拟执行程序框图,依次写出每次循环得到的k的值,当k=5时满足条件k>4,计算并输出S的值为.解答:解:模拟执行程序框图,可得k=1k=2不满足条件k>4,k=3不满足条件k>4,k=4不满足条件k>4,k=5满足条件k>4,S=sin=,输出S的值为.故选:D.点评:本题主要考查了循环结构的程序框图,属于基础题.7.(5分)(2015?四川)过双曲线x2﹣=1的右焦点且与x轴垂直的直线,交该双曲线的两条渐近线于A、B两点,则|AB|=()A.B.2C. 6 D.4考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:求出双曲线的渐近线方程,求出AB的方程,得到AB坐标,即可求解|AB|.解答:解:双曲线x2﹣=1的右焦点(2,0),渐近线方程为y=,过双曲线x2﹣=1的右焦点且与x轴垂直的直线,x=2,可得y A=2,y B=﹣2,∴|AB|=4.故选:D.点评:本题考查双曲线的简单性质的应用,考查基本知识的应用.8.(5分)(2015?四川)某食品保鲜时间y(单位:小时)与储藏温度x(单位:℃)满足函数关系y=e kx+b (e=2.718…为自然对数的底数,k,b为常数).若该食品在0℃的保鲜时间是192小时,在22℃的保鲜时间是48小时,则该食品在33℃的保鲜时间是()A.16小时B. 20小时C. 24小时D.28小时考点:指数函数的实际应用.专题:函数的性质及应用.分析:由已知中保鲜时间与储藏温度是一种指数型关系,由已知构造方程组求出e k,e b的值,运用指数幂的运算性质求解e33k+b即可.解答:解:y=e kx+b(e=2.718…为自然对数的底数,k,b为常数).当x=0时,e b=192,当x=22时e22k+b=48,∴e16k==e11k=e b=192当x=33时,e33k+b=(e k)33?(e b)=()3×192=24故选:C点评:本题考查的知识点是函数解析式的运用,列出方程求解即可,注意整体求解.9.(5分)(2015?四川)设实数x,y满足,则xy的最大值为()A.B.C. 12 D.16考点:简单线性规划.专题:不等式的解法及应用.分析:作出不等式组对应的平面区域,利用基本不等式进行求解即可.解答:解:作出不等式组对应的平面区域如图;则动点P在BC上运动时,xy取得最大值,此时2x+y=10,则xy==,当且仅当2x=y=5,即x=,y=5时,取等号,故xy的最大值为,故选:A点评:本题主要考查线性规划以及基本不等式的应用,利用数形结合是解决本题的关键.10.(5分)(2015?四川)设直线l与抛物线y2=4x相交于A、B两点,与圆(x﹣5)2+y2=r2(r>0)相切于点M,且M为线段AB的中点,若这样的直线l恰有4条,则r的取值范围是()A.(1,3)B.(1,4)C.(2,3)D.(2,4)考点:抛物线的简单性质;直线与圆的位置关系.专题:综合题;直线与圆;圆锥曲线的定义、性质与方程.分析:先确定M的轨迹是直线x=3,代入抛物线方程可得y=±2,所以交点与圆心(5,0)的距离为4,即可得出结论.解答:解:设A(x1,y1),B(x2,y2),M(x0,y0),则斜率存在时,设斜率为k,则y12=4x1,y22=4x2,利用点差法可得ky0=2,因为直线与圆相切,所以=﹣,所以x0=3,即M的轨迹是直线x=3,代入抛物线方程可得y=±2,所以交点与圆心(5,0)的距离为4,所以2<r<4时,直线l有2条;斜率不存在时,直线l有2条;所以直线l恰有4条,2<r<4,故选:D.点评:本题考查直线与抛物线、圆的位置关系,考查点差法,考查学生分析解决问题的能力,属于中档题.二、填空题:本大题共5小题,每小题5分,共25分.11.(5分)(2015?四川)设i是虚数单位,则复数i﹣=2i.考点:复数代数形式的混合运算.专题:数系的扩充和复数.分析:直接利用复数的运算法则求解即可.解答:解:复数i﹣=i﹣=i+i=2i.故答案为:2i.点评:本题考查复数的基本运算,考查计算能力.12.(5分)(2015?四川)lg0.01+log216的值是2.考点:对数的运算性质.专题:函数的性质及应用.分析:直接利用对数的运算法则化简求解即可.解答:解:lg0.01+log216=﹣2+4=2.故答案为:2.点评:本题考查对数的运算法则的应用,考查计算能力.13.(5分)(2015?四川)已知sinα+2cosα=0,则2sinαcosα﹣cos2α的值是﹣1.考点:同角三角函数基本关系的运用.专题:三角函数的求值.分析:已知等式移项变形求出tanα的值,原式利用同角三角函数间的基本关系化简,将tanα的值代入计算即可求出值.解答:解:∵sinα+2cosα=0,即sinα=﹣2cosα,∴tanα=﹣2,则原式=====﹣1,故答案为:﹣1点评:此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.14.(5分)(2015?四川)在三棱住ABC﹣A1B1C1中,∠BAC=90°,其正视图和侧视图都是边长为1的正方形,俯视图是直角边长为1的等腰直角三角形,设M,N,P分别是AB,BC,B1C1的中点,则三棱锥P﹣A1MN的体积是.考点:棱柱、棱锥、棱台的体积.专题:空间位置关系与距离.分析:判断三视图对应的几何体的形状,画出图形,利用三视图的数据,求解三棱锥P﹣A1MN的体积即可.解答:解:由三视图可知,可知几何体的图形如图:几何体是底面为等腰直角三角形直角边长为1,高为1的直三棱柱,所求三棱锥的高为NP=1,底面AMN的面积是底面三角形ABC的,所求三棱锥P﹣A1MN的体积是:=.故答案为:.点评:本题考查三视图与直观图的关系,组作出几何体的直观图是解题的关键之一,考查几何体的体积的求法,考查空间想象能力以及计算能力.15.(5分)(2015?四川)已知函数f(x)=2x,g(x)=x2+ax(其中a∈R).对于不相等的实数x1、x2,设m=,n=.现有如下命题:①对于任意不相等的实数x1、x2,都有m>0;②对于任意的a及任意不相等的实数x1、x2,都有n>0;③对于任意的a,存在不相等的实数x1、x2,使得m=n;④对于任意的a,存在不相等的实数x1、x2,使得m=﹣n.其中的真命题有①④(写出所有真命题的序号).考点:命题的真假判断与应用.专题:函数的性质及应用.分析:运用指数函数的单调性,即可判断①;由二次函数的单调性,即可判断②;通过函数h(x)=x2+ax﹣2x,求出导数判断单调性,即可判断③;通过函数h(x)=x2+ax+2x,求出导数判断单调性,即可判断④.解答:解:对于①,由于2>1,由指数函数的单调性可得f(x)在R上递增,即有m>0,则①正确;对于②,由二次函数的单调性可得g(x)在(﹣∞,﹣)递减,在(,+∞)递减,则n>0不恒成立,则②错误;对于③,由m=n,可得f(x1)﹣f(x2)=g(x1)﹣g(x2),考查函数h(x)=x2+ax﹣2x,h′(x)=2x+a﹣2x ln2,当a→﹣∞,h′(x)小于0,h(x)单调递减,则③错误;对于④,由m=﹣n,可得f(x1)﹣f(x2)=﹣[g(x1)﹣g(x2)],考查函数h(x)=x2+ax+2x,h′(x)=2x+a+2x ln2,对于任意的a,h′(x)不恒大于0或小于0,则④正确.故答案为:①④.点评:本题考查函数的单调性及运用,注意运用指数函数和二次函数的单调性,以及导数判断单调性是解题的关键.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(12分)(2015?四川)设数列{a n}(n=1,2,3…)的前n项和S n,满足S n=2a n﹣a1,且a1,a2+1,a3成等差数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设数列的前n项和为T n,求T n.考点:等差数列的前n项和;等差数列的通项公式.专题:等差数列与等比数列.分析:(Ⅰ)由条件S n满足S n=2a n﹣a1,求得数列{a n}为等比数列,且公比q=2;再根据a1,a2+1,a3成等差数列,求得首项的值,可得数列{a n}的通项公式.(Ⅱ)由于=,利用等比数列的前n项和公式求得数列的前n项和T n.解答:解:(Ⅰ)由已知S n=2a n﹣a1,有a n=S n﹣S n﹣1=2a n﹣2a n﹣1(n≥2),即a n=2a n﹣1(n≥2),从而a2=2a1,a3=2a2=4a1.又因为a1,a2+1,a3成等差数列,即a1+a3=2(a2+1)所以a1+4a1=2(2a1+1),解得:a1=2.所以,数列{a n}是首项为2,公比为2的等比数列.故a n=2n.(Ⅱ)由(Ⅰ)得=,所以T n=+++…+==1﹣.点评:本题主要考查数列的前n项和与第n项的关系,等差、等比数列的定义和性质,等比数列的前n项和公式,属于中档题.17.(12分)(2015?四川)一辆小客车上有5名座位,其座号为1,2,3,4,5,乘客P1,P2,P3,P4,P5的座位号分别为1,2,3,4,5.他们按照座位号顺序先后上车,乘客P1因身体原因没有坐自己1号座位,这时司机要求余下的乘客按以下规则就坐:如果自己的座位空着,就只能坐自己的座位.如果自己的座位已有乘客就坐,就在这5个座位的剩余空位中选择座位.(Ⅰ)若乘客P1坐到了3号座位,其他乘客按规则就座,则此时共有4种坐法.下表给出其中两种坐法,请填入余下两种坐法(将乘客就坐的座位号填入表中空格处)乘客P1P2P3P4P5座位号 3 2 1 4 53 245 13241532541(Ⅱ)若乘客P1坐到了2号座位,其他乘客按规则就坐,求乘客P1坐到5号座位的概率.考点:概率的应用.专题:应用题;概率与统计.分析:(Ⅰ)根据题意,可以完成表格;(Ⅱ)列表,确定所有可能的坐法,再求出乘客P1坐到5号座位的概率.解答:解:(Ⅰ)余下两种坐法:乘客P1P2P3P4P5座位号 3 2 1 4 53 245 13 24 1 53 2 54 1(Ⅱ)若乘客P1坐到了2号座位,其他乘客按规则就坐,则所有可能的坐法可用下表表示为乘客P1P2P3P4P5座位号 2 1 3 4 52 3 1 4 52 3 4 1 52 3 4 5 12 3 5 4 12 43 1 52 43 5 12 534 1于是,所有可能的坐法共8种,设“乘客P1坐到5号座位”为事件A,则事件A中的基本事件的个数为4,所以P(A)==.答:乘客P1坐到5号座位的概率是.点评:本题考查概率的运用,考查学生的计算能力,列表确定基本事件的个数是关键.18.(12分)(2015?四川)一个正方体的平面展开图及该正方体的直观图的示意图如图所示.(Ⅰ)请按字母F,G,H标记在正方体相应地顶点处(不需要说明理由)(Ⅱ)判断平面BEG与平面ACH的位置关系.并说明你的结论.(Ⅲ)证明:直线DF⊥平面BEG.考点:直线与平面垂直的判定;平面与平面之间的位置关系.专题:空间位置关系与距离.分析:(Ⅰ)直接标出点F,G,H的位置.(Ⅱ)先证BCHE为平行四边形,可知BE∥平面ACH,同理可证BG∥平面ACH,即可证明平面BEG∥平面ACH.(Ⅲ)连接FH,由DH⊥EG,又DH⊥EG,EG⊥FH,可证EG⊥平面BFHD,从而可证DF⊥EG,同理DF⊥BG,即可证明DF⊥平面BEG.解答:解:(Ⅰ)点F,G,H的位置如图所示.(Ⅱ)平面BEG∥平面ACH,证明如下:∵ABCD﹣EFGH为正方体,∴BC∥FG,BC=EH,又FG∥EH,FG=EH,∴BC∥EH,BC=EH,∴BCHE为平行四边形.∴BE∥CH,又CH?平面ACH,BE?平面ACH,∴BE∥平面ACH,同理BG∥平面ACH,又BE∩BG=B,∴平面BEG∥平面ACH.(Ⅲ)连接FH,∵ABCD﹣EFGH为正方体,∴DH⊥EG,又∵EG?平面EFGH,∴DH⊥EG,又EG⊥FH,EG∩FH=O,∴EG⊥平面BFHD,又DF?平面BFHD,∴DF⊥EG,同理DF⊥BG,又∵EG∩BG=G,∴DF⊥平面BEG.点评:本题主要考查了简单空间图形的直观图、空间线面平行与垂直的判定与性质等基础知识,考查了空间想象能力和推理论证能力,属于中档题.19.(12分)(2015?四川)已知A、B、C为△ABC的内角,tanA,tanB是关于方程x2+px﹣p+1=0(p∈R)两个实根.(Ⅰ)求C的大小(Ⅱ)若AB=3,AC=,求p的值.考点:正弦定理的应用;两角和与差的正切函数.专题:函数的性质及应用;解三角形.分析:(Ⅰ)由判别式△=3p2+4p﹣4≥0,可得p≤﹣2,或p≥,由韦达定理,有tanA+tanB=﹣p,tanAtanB=1﹣p,由两角和的正切函数公式可求tanC=﹣tan(A+B)=,结合C的范围即可求C的值.(Ⅱ)由正弦定理可求sinB==,解得B,A,由两角和的正切函数公式可求tanA=tan75°,从而可求p=﹣(tanA+tanB)的值.解答:解:(Ⅰ)由已知,方程x2+px﹣p+1=0的判别式:△=(p)2﹣4(﹣p+1)=3p2+4p ﹣4≥0,所以p≤﹣2,或p≥.由韦达定理,有tanA+tanB=﹣p,tanAtanB=1﹣p.所以,1﹣tanAtanB=1﹣(1﹣p)=p≠0,从而tan(A+B)==﹣=﹣.所以tanC=﹣tan(A+B)=,所以C=60°.(Ⅱ)由正弦定理,可得sinB===,解得B=45°,或B=135°(舍去).于是,A=180°﹣B﹣C=75°.则tanA=tan75°=tan(45°+30°)===2+.所以p=﹣(tanA+tanB)=﹣(2+)=﹣1﹣.点评:本题主要考查了和角公式、诱导公式、正弦定理等基础知识,考查了运算求解能力,考查了函数与方程、化归与转化等数学思想的应用,属于中档题.20.(13分)(2015?四川)如图,椭圆E:=1(a>b>0)的离心率是,点P(0,1)在短轴CD 上,且?=﹣1(Ⅰ)求椭圆E的方程;(Ⅱ)设O为坐标原点,过点P的动直线与椭圆交于A、B两点.是否存在常数λ,使得?+λ?为定值?若存在,求λ的值;若不存在,请说明理由.考点:直线与圆锥曲线的综合问题.专题:向量与圆锥曲线;圆锥曲线的定义、性质与方程.分析:(Ⅰ)通过e=、?=﹣1,计算即得a=2、b=,进而可得结论;(Ⅱ)分情况对直线AB斜率的存在性进行讨论:①当直线AB的斜率存在时,联立直线AB与椭圆方程,利用韦达定理计算可得当λ=1时?+λ?=﹣3;②当直线AB的斜率不存在时,?+λ?=﹣3.解答:解:(Ⅰ)根据题意,可得C(0,﹣b),D(0,b),又∵P(0,1),且?=﹣1,∴,解得a=2,b=,∴椭圆E的方程为:+=1;(Ⅱ)结论:存在常数λ=1,使得?+λ?为定值﹣3.理由如下:对直线AB斜率的存在性进行讨论:①当直线AB的斜率存在时,设直线AB的方程为y=kx+1,A(x1,y1),B(x2,y2),联立,消去y并整理得:(1+2k2)x2+4kx﹣2=0,∵△=(4k)2+8(1+2k2)>0,∴x1+x2=﹣,x1x2=﹣,从而?+λ?=x1x2+y1y2+λ[x1x2+(y1﹣1)(y2﹣1)]=(1+λ)(1+k2)x1x2+k(x1+x2)+1==﹣﹣λ﹣2.∴当λ=1时,﹣﹣λ﹣2=﹣3,此时?+λ?=﹣3为定值;②当直线AB的斜率不存在时,直线AB即为直线CD,此时?+λ?=+=﹣2﹣1=﹣3;故存在常数λ=1,使得?+λ?为定值﹣3.点评:本题考查椭圆的标准方程、直线方程等基础知识,考查推理论证能力、运算求解能力,考查数形结合、化归与转化、特殊与一般、分类与整合等数学思想,注意解题方法的积累,属于难题.21.(14分)(2015?四川)已知函数f(x)=﹣2xlnx+x2﹣2ax+a2,其中a>0.(Ⅰ)设g(x)是f(x)的导函数,讨论g(x)的单调性;(Ⅱ)证明:存在a∈(0,1),使得f(x)≥0恒成立,且f(x)=0在区间(1,+∞)内有唯一解.考点:利用导数研究函数的极值;利用导数研究函数的单调性.专题:导数的综合应用.分析:(I)函数f(x)=﹣2xlnx+x2﹣2ax+a2,其中a>0.可得:x>0.g(x)=f′(x)=2(x ﹣1﹣lnx﹣a),可得g′(x)==,分别解出g′(x)<0,g′(x)>0,即可得出单调性.(II)由f′(x)=2(x﹣1﹣lnx﹣a)=0,可得a=x﹣1﹣lnx,代入f(x)可得:u(x)=(1+lnx)2﹣2xlnx,利用函数零点存在定理可得:存在x0∈(1,e),使得u(x0)=0,令a0=x0﹣1﹣lnx0=v(x0),再利用导数研究其单调性即可得出.解答:(I)解:函数f(x)=﹣2xlnx+x2﹣2ax+a2,其中a>0.可得:x>0.g(x)=f′(x)=2(x﹣1﹣lnx﹣a),∴g′(x)==,当0<x<1时,g′(x)<0,函数g(x)单调递减;当1<x时,g′(x)>0,函数g(x)单调递增.(II)证明:由f′(x)=2(x﹣1﹣lnx﹣a)=0,解得a=x﹣1﹣lnx,令u(x)=﹣2xlnx+x2﹣2(x﹣1﹣lnx)x+(x﹣1﹣lnx)2=(1+lnx)2﹣2xlnx,则u(1)=1>0,u(e)=2(2﹣e)<0,∴存在x0∈(1,e),使得u(x0)=0,令a0=x0﹣1﹣lnx0=v(x0),其中v(x)=x﹣1﹣lnx(x≥1),由v′(x)=1﹣≥0,可得:函数v(x)在区间(1,+∞)上单调递增.∴0=v(1)<a0=v(x0)<v(e)=e﹣2<1,即a0∈(0,1),当a=a0时,有f′(x0)=0,f(x0)=u(x0)=0.再由(I)可知:f′(x)在区间(1,+∞)上单调递增,当x∈(1,x0)时,f′(x)<0,∴f(x)>f(x0)=0;当x∈(x0,+∞)时,f′(x)>0,∴f(x)>f(x0)=0;又当x∈(0,1],f(x)=﹣2xlnx>0.故当x∈(0,+∞)时,f(x)≥0恒成立.综上所述:存在a∈(0,1),使得f(x)≥0恒成立,且f(x)=0在区间(1,+∞)内有唯一解.点评:本题考查了导数的运算法则、函数的零点、利用导数研究函数的单调性极值,考查了分类讨论思想方法、推理能力与计算能力,属于难题.2015年四川省高考数学试卷(文科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)(2015?四川)设集合A={x|﹣1<x<2},集合B={x|1<x<3},则A∪B=()A.{x|﹣1<x<3} B. {x|﹣1<x<1} C. {x|1<x<2} D.{x|2<x<3}2.(5分)(2015?四川)设向量=(2,4)与向量=(x,6)共线,则实数x=()A.2B. 3 C. 4 D.63.(5分)(2015?四川)某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显着差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是()A.抽签法B.系统抽样法C.分层抽样法D.随机数法4.(5分)(2015?四川)设a,b为正实数,则“a>b>1”是“log2a>log2b>0”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件5.(5分)(2015?四川)下列函数中,最小正周期为π且图象关于原点对称的函数是()A.y=cos(2x+)B.y=sin(2x+)C.y=sin2x+cos2x D.y=sinx+cosx 6.(5分)(2015?四川)执行如图所示的程序框图,输出s的值为()A.﹣B.C.﹣D.7.(5分)(2015?四川)过双曲线x2﹣=1的右焦点且与x轴垂直的直线,交该双曲线的两条渐近线于A、B两点,则|AB|=()A.B.2C. 6 D.48.(5分)(2015?四川)某食品保鲜时间y(单位:小时)与储藏温度x(单位:℃)满足函数关系y=e kx+b (e=2.718…为自然对数的底数,k,b为常数).若该食品在0℃的保鲜时间是192小时,在22℃的保鲜时间是48小时,则该食品在33℃的保鲜时间是()A.16小时B. 20小时C. 24小时D.28小时9.(5分)(2015?四川)设实数x,y满足,则xy的最大值为()A.B.C. 12 D.1610.(5分)(2015?四川)设直线l与抛物线y2=4x相交于A、B两点,与圆(x﹣5)2+y2=r2(r>0)相切于点M,且M为线段AB的中点,若这样的直线l恰有4条,则r的取值范围是()A.(1,3)B.(1,4)C.(2,3)D.(2,4)二、填空题:本大题共5小题,每小题5分,共25分.11.(5分)(2015?四川)设i是虚数单位,则复数i﹣=.12.(5分)(2015?四川)lg0.01+log216的值是.13.(5分)(2015?四川)已知sinα+2cosα=0,则2sinαcosα﹣cos2α的值是.14.(5分)(2015?四川)在三棱住ABC﹣A1B1C1中,∠BAC=90°,其正视图和侧视图都是边长为1的正方形,俯视图是直角边长为1的等腰直角三角形,设M,N,P分别是AB,BC,B1C1的中点,则三棱锥P﹣A1MN的体积是.15.(5分)(2015?四川)已知函数f(x)=2x,g(x)=x2+ax(其中a∈R).对于不相等的实数x1、x2,设m=,n=.现有如下命题:①对于任意不相等的实数x1、x2,都有m>0;②对于任意的a及任意不相等的实数x1、x2,都有n>0;③对于任意的a,存在不相等的实数x1、x2,使得m=n;④对于任意的a,存在不相等的实数x1、x2,使得m=﹣n.其中的真命题有(写出所有真命题的序号).三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(12分)(2015?四川)设数列{a n}(n=1,2,3…)的前n项和S n,满足S n=2a n﹣a1,且a1,a2+1,a3成等差数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设数列的前n项和为T n,求T n.17.(12分)(2015?四川)一辆小客车上有5名座位,其座号为1,2,3,4,5,乘客P1,P2,P3,P4,P5的座位号分别为1,2,3,4,5.他们按照座位号顺序先后上车,乘客P1因身体原因没有坐自己1号座位,这时司机要求余下的乘客按以下规则就坐:如果自己的座位空着,就只能坐自己的座位.如果自己的座位已有乘客就坐,就在这5个座位的剩余空位中选择座位.(Ⅰ)若乘客P1坐到了3号座位,其他乘客按规则就座,则此时共有4种坐法.下表给出其中两种坐法,请填入余下两种坐法(将乘客就坐的座位号填入表中空格处)乘客P1P2P3P4P5座位号 3 2 1 4 53 245 1(Ⅱ)若乘客P1坐到了2号座位,其他乘客按规则就坐,求乘客P1坐到5号座位的概率.18.(12分)(2015?四川)一个正方体的平面展开图及该正方体的直观图的示意图如图所示.(Ⅰ)请按字母F,G,H标记在正方体相应地顶点处(不需要说明理由)(Ⅱ)判断平面BEG与平面ACH的位置关系.并说明你的结论.(Ⅲ)证明:直线DF⊥平面BEG.19.(12分)(2015?四川)已知A、B、C为△ABC的内角,tanA,tanB是关于方程x2+px﹣p+1=0(p∈R)两个实根.(Ⅰ)求C的大小(Ⅱ)若AB=3,AC=,求p的值.20.(13分)(2015?四川)如图,椭圆E:=1(a>b>0)的离心率是,点P(0,1)在短轴CD上,且?=﹣1(Ⅰ)求椭圆E的方程;(Ⅱ)设O为坐标原点,过点P的动直线与椭圆交于A、B两点.是否存在常数λ,使得?+λ?为定值?若存在,求λ的值;若不存在,请说明理由.21.(14分)(2015?四川)已知函数f(x)=﹣2xlnx+x2﹣2ax+a2,其中a>0.(Ⅰ)设g(x)是f(x)的导函数,讨论g(x)的单调性;(Ⅱ)证明:存在a∈(0,1),使得f(x)≥0恒成立,且f(x)=0在区间(1,+∞)内有唯一解.。

2015四川省高考数学(文科)(精校word版有答案)

2015四川省高考数学(文科)(精校word版有答案)

2015年普通高等学校招生全国统一考试(四川卷)数学(文科)一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一个是符合题目要求的。

1、设集合A ={x|-1<x <2},集合B ={x|1<x <3},则A ∪B =(A){x|-1<x <3} (B){x|-1<x <1} (C){x|1<x <2} (D){x|2<x <3} 2、设向量a =(2,4)与向量b =(x,6)共线,则实数x =(A)2 (B)3 (C)4 (D)63、某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是(A)抽签法 (B)系统抽样法 (C)分层抽样法 (D)随机数法 4、设a,b 为正实数,则“a >b >1”是“log 2a >log 2b >0”的(A)充要条件 (B)充分不必要条件 (C)必要不充分条件 (D)既不充分也不必要条件 5、下列函数中,最小正周期为π的奇函数是(A)y =sin(2x +2π) (B)y =cos(2x +2π) (C)y =sin2x +cos2x (D)y =sinx +cosx 6、执行如图所示的程序框图,输出S 的值为(A)-2 (B) 2 (C)-12 (D) 127、过双曲线2213y x -=的右焦点且与x 轴垂直的直线交该双曲线的两条渐近线于A 、B 两点,则|AB|=(C)6 8、某食品保鲜时间y(单位:小时)与储藏温度x(单位:℃)满足函数关系y =e tx (e =2.718…为自然对数的底数,t,b 为常数)。

若该食品在0℃的保鲜时间是192小时,在22℃的保鲜时间是48小时 ,则该食品在33℃的保鲜时间是(A)16小时 (B)20小时 (C)24小时 (D)28小时9、设实数x,y 满足2102146x y x y x y +≤⎧⎪+≤⎨⎪+≥⎩,则xy 的最大值为(A)252(B) 492 (C)12 (D)1610、设直线l 与抛物线y 2=4x 相较于A,B 两点,与圆(x -5)2+y 2=r 2(r >0)相切于点M ,且M 为线段AB 中点,若这样的直线l 恰有4条,则r 的取值范围是(A)(1,3) (B)(1,4) (C)(2,3) (D)(2,4) 二、填空题:本大题共5小题,每小题5分,共25分。

2015年四川省高考数学试题及答案文科解析版

2015年四川省高考数学试题及答案文科解析版

2015年四川省高考数学试卷(文科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分•在每小题给出的四个选项中,只有一个是符合题目要求的.1. (5 分)(2015?四川)设集合A={x| - 1v x v 2},集合B={x|1 v x v 3},则A U B=()A • {x|- 1 v x v 3}B . {x| - 1 v x v 1} C. {x|1 v x v 2} D. {x|2v x v 3}考点:并集及其运算.专题:集合.分析:直接利用并集求解法则求解即可.解答:解:集合A={x| - 1v x v 2},集合B={x|1 v x v 3},则A U B={x| - 1 v x v 3}.故选:A.点评:本题考查并集的求法,基本知识的考查.2. (5分)(2015?四川)设向量|」=(2, 4)与向量「= (x, 6)共线,则实数x=()A . 2B . 3 C. 4 D. 6考点:平面向量共线(平行)的坐标表示.专题:平面向量及应用.分析:利用向量共线的充要条件得到坐标的关系求出x.解答:解;因为向量3= (2, 4)与向量b= (x, 6)共线,所以4x=2 >6,解得x=3 ;故选:B.点评:本题考查了向量共线的坐标关系;如果两个向量向量a= (x, y)与向量国=(m, n)共线,那么xn=yn .3. (5分)(2015?四川)某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是()A .抽签法B .系统抽样法C.分层抽样法D.随机数法考点:收集数据的方法.专题:应用题;概率与统计.分析:若总体由差异明显的几部分组成时,经常采用分层抽样的方法进行抽样.解答:解:我们常用的抽样方法有:简单随机抽样、分层抽样和系统抽样,而事先已经了解到三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,这种方式具有代表性,比较合理.故选:C.点评:本小题考查抽样方法,主要考查抽样方法,属基本题.4. ( 5 分)(2015?四川)设 a , b 为正实数,则 a > b > 1 "是 “0g 2a > Iog 2b >0"的()A . 充要条件B . 充分不必要条件C .必要不充分条件D .既不充分也不必要条件考点: 充要条件. 专题:简易逻辑.分析: 先求出Iog 2a > Iog 2b > 0的充要条件,再和 a > b > 1比较,从而求出答案. 解答: 解:若 Iog 2a >Iog 2b > 0,贝U a >b > 1,故a > b > 1”是Ibg 2a > Iog 2b > 0”的充要条件, 故选:A .点评:本题考察了充分必要条件,考察对数函数的性质,是一道基础题.5. ( 5分)(2015?四川)下列函数中,最小正周期为 n 且图象关于原点对称的函数是()A . By=cos (2x+——) y=sin (2x+——)C . y=sin2x+cos2xD . y=sinx+cosx两角和与差的正弦函数;三角函数的周期性及其求法. 三角函数的图像与性质. 求出函数的周期,函数的奇偶性,判断求解即可. 解: TCy=cos (2x+——)=-sin2x ,是奇函数,函数的周期为: A 正确y=sin (2x+兮)=cos2x ,函数是偶函数,周期为:n ,不满足题意,所以 B不正确;y=sinx+cosx="空sin (x^—),函数是非奇非偶函数,周期为2 n 所以D 不正确; 故选:A .点评:本题考查两角和与差的三角函数,函数的奇偶性以及红丝带周期的求法,考 查计算能力.6. ( 5分)(2015?四川)执行如图所示的程序框图,输出 s 的值为(考点: 专题: 分析: 解答:n ,满足题意,所以不正确;y=sin2x+cos2x= _sin (周期为n ,所以C),函数是非奇非偶函数,A . —氏B •晅2 2C.—12D. 12考点:程序框图.专题:图表型;算法和程序框图.分析:模拟执行程序框图,依次写出每次循环得到的k的值,当k=5时满足条件k > 4,计算并输出S的值为2.解答:解:模拟执行程序框图,可得k=1 k=2不满足条件k>4, k=3不满足条件k>4, k=4不满足条件k>4, k=5满足条件k> 4, S=si,6 2输出S的值为丄.2故选:D.点评:本题主要考查了循环结构的程序框图,属于基础题.2x2-2=1的右焦点且与x轴垂直的直线,交该双曲线的两条渐近线于A、B两点,贝U |AB|=()A • ':,;B . 2 .「;C. 6考点:双曲线的简单性质.7. (5分)(2015?四川)过双曲线专题: 圆锥曲线的定义、性质与方程. 分析: 求出双曲线的渐近线方程,求出AB 的方程,得到 AB 坐标,即可求解|AB| 解答:解:双曲线X 2 - 丁 =1的右焦点3(2, 0),渐近线方程为y=±{5A ,2过双曲线X 2-' =1的右焦点且与x 轴垂直的直线,x=2 ,3可得 Y A =2" ! y , y B =— 2 二•••|AB|=4 .:.故选:D .点评:本题考查双曲线的简单性质的应用,考查基本知识的应用.& ( 5分)(2015?四川)某食品保鲜时间 y (单位:小时)与储藏温度 x (单位:C )满足 函数关系y=eg b(e=2.718…为自然对数的底数,k , b 为常数).若该食品在0C 的保鲜时 间是192小时,在22C 的保鲜时间是48小时,则该食品在 33C 的保鲜时间是( )A . 16小时B . 20小时C . 24小时D . 28小时考点:指数函数的实际应用. 专题:函数的性质及应用. 分析:由已知中保鲜时间与储藏温度是一种指数型关系,由已知构造方程组求出 值,运用指数幕的运算性质求解 e 33k+b 即可.解答: 解:yneS b (e=2.718…为自然对数的底数,k , b 为常数).当 x=0 时,e b =192, 当 x=22 时 e 22k+b =48 ,16k開. .1e =be =192当 x=33 时,e 33k+b = (e k ) 33? (e b ) = (*) 3XI92=24 故选:C点评:本题考查的知识点是函数解析式的运用,列出方程求解即可,注意整体求解.考点:简单线性规划. 专题: 不等式的解法及应用.(5分)(2015?四川)设实数x , y 满足-Z-F2y<14,则xy 的最大值为()LA. 25 B .49 C . 12D . 162 29. e 11k.12作出不等式组对应的平面区域,利用基本不等式进行求解即可. 解:作出不等式组对应的平面区域如图;则动点P在BC 上运动时,xy取得最大值,此时2x+y=10 ,则xy=「「「一 ::='当且仅当2x=y=5 ,即x=_J, y=5时,取等号2故xy的最大值为―,2故选:A本题主要考查线性规划以及基本不等式的应用,利用数形结合是解决本题的关键.2 2 2 210. (5分)(2015?四川)设直线I与抛物线y =4x相交于A、B两点,与圆(x-5) +y =r(r >0)相切于点M,且M为线段AB的中点,若这样的直线I恰有4条,则r的取值范围是( )A . (1 , 3)B . (1 , 4) C. (2, 3) D. (2, 4)考点:抛物线的简单性质;直线与圆的位置关系.专题:综合题;直线与圆;圆锥曲线的定义、性质与方程.分析:先确定M的轨迹是直线x=3,代入抛物线方程可得y=翌:;,所以交点与圆心(5, 0) 的距离为4,即可得出结论.解:设A (X1, y1), B (x2, y2), M (x0, y0),贝V 斜率存在时,设斜率为k,则y12=4x 1 , y22=4x2 ,利用点差法可得即M的轨迹是直线x=3 ,代入抛物线方程可得y=翌.一;,所以交点与圆心(5, 0)的距离为4, 所以2 v r v 4时,直线I有2条;斜率不存在时,直线I有2条;所以直线I恰有4条,2v r v 4,分析:解答:点评:解答:ky0=2,因为直线与圆相切,所以-二,所以x o=3, k点评:本题考查直线与抛物线、圆的位置关系,考查点差法,考查学生分析解决问题的能力, 属于中档题.二、填空题:本大题共5小题,每小题5分,共25分.11. (5分)(2015?四川)设i是虚数单位,则复数i-一= 2i1考点:复数代数形式的混合运算.专题:数系的扩充和复数.分析:直接利用复数的运算法则求解即可.解答:解:复数i - _ =i -- =i+i=2i . i i >i故答案为:2i.点评:本题考查复数的基本运算,考查计算能力.12. (5 分)(2015?四川)Ig0.01+log2l6 的值是2考点:对数的运算性质.专题:函数的性质及应用.分析:直接利用对数的运算法则化简求解即可.解答:解:Ig0.01+log 216= - 2+4=2 .故答案为:2.点评:本题考查对数的运算法则的应用,考查计算能力.213. (5 分)(2015?四川)已知sin a+2cosa=0,贝U 2sin^cos a- cos a 的值是 -1考点:冋角三角函数基本关系的运用.专题:三角函数的求值.分析:已知等式移项变形求出tan a的值,原式利用冋角三角函数间的基本关系化简, 将tan a的值代入计算即可求出值.解答:解:■/ sin a+2cos a=0 ,即卩sin a= - 2cos a,••• tan a= - 2,则原式2sinCl cos a -ca s2 Ci s22吕inCt cos Ct co s CL 2tana -1-5=4+1'1sin2Cl.4-co s2口■tan2□ +11,故答案为:-1点评:此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.14. (5分)(2015?四川)在三棱住ABC - A1B1C1中,/ BAC=90 °其正视图和侧视图都是边长为1的正方形,俯视图是直角边长为1的等腰直角三角形,设M, N , P分别是AB ,BC , B1C1的中点,则三棱锥P- A1MN的体积是-一24—考点:棱柱、棱锥、棱台的体积.专题:空间位置关系与距离.分析:判断三视图对应的几何体的形状,画出图形,利用三视图的数据,求解三棱锥P -A1MN的体积即可.解答:解:由三视图可知,可知几何体的图形如图:几何体是底面为等腰直角三角形直角边长为1,高为1的直三棱柱,所求三棱锥的高为NP=1,底面AMN的面积是底面三角形ABC的二,4所求三棱锥P- A1MN的体积是:=—.3 4 2 24点评:本题考查三视图与直观图的关系,组作出几何体的直观图是解题的关键之一,考查几何体的体积的求法,考查空间想象能力以及计算能力.15. (5分)(2015?四川)已知函数f (x)=2x, g (x)=x2+ax (其中a€R).对于不相等的, f C Xi) _f ( Xn)实数X1、x2,设m=—y l _ K2①对于任意不相等的实数x1、x2,都有m> 0;②对于任意的a及任意不相等的实数x1、x2,都有n > 0;③对于任意的a,存在不相等的实数X1、X2,使得m=n ;④对于任意的a,存在不相等的实数x1、x2,使得m= - n.其中的真命题有①④(写出所有真命题的序号).考点:命题的真假判断与应用.专题:函数的性质及应用.分析:运用指数函数的单调性,即可判断①;由二次函数的单调性,即可判断②;通过函数h (x)=x2+ax- 2x,求出导数判断单调性,即可判断③;通过函数h (x)=x2+ax+2x,求出导数判断单调性,即可判断④.故答案为:丄.现有如下命题:解答:解:对于①,由于2> 1,由指数函数的单调性可得 f (x)在R上递增,即有m>0,则①正确;对于②,由二次函数的单调性可得g (x )在(-a,-_J)递减,在(_!, +8)递减,2 2则n > 0不恒成立,则②错误;对于③,由m=n,可得f (X1)- f (x2) =g (x1)- g (x2),考查函数h (x) =x2+ax -2X,h'( x) =2x+a - 2X ln2,当厂-汽h'(x)小于0, h (x)单调递减,则③ 错误;对于④,由m= - n,可得f (X1)- f (x2) =- [g (x1)- g (x2)],考查函数h (x)2 x=x +ax+2 ,h'( x) =2x+a+2x l n2,对于任意的a, h' (x )不恒大于0或小于0,则④ 正确. 故答案为:①④.点评:本题考查函数的单调性及运用,注意运用指数函数和二次函数的单调性,以及导数判断单调性是解题的关键.三、解答题:本大题共6小题,共75分•解答应写出文字说明、证明过程或演算步骤.16.( 12 分)(2015?四川)设数列{a n}(n=1, 2,3…)的前n 项和S n,满足S n=2a n-a l, 且a i, a2+1 , a3成等差数列.(I )求数列{a n}的通项公式;(n )设数列-的前n项和为T n,求T n.考点:等差数列的前n项和;等差数列的通项公式.专题:等差数列与等比数列.分析:(I )由条件S n满足S n=2a n- a1,求得数列{a n}为等比数列,且公比q=2;再根据a1, a2+1, a3成等差数列,求得首项的值,可得数列{a n}的通项公式.(n)由于.=■,禾U用等比数列的前n项和公式求得数列的前n项和T n.it |2 丨n解答:解:(I )由已知S n=2a n- a1,有a n=S n- S n-1=2a n- 2a n-1 (n 疑),即a n=2a n-1 (n呈),从而a2=2a1, a3=2a2=4a1.又因为a1, a2+1, a3成等差数列,即a1+a3=2 (a2+1)所以a1+4a1=2 (2a1+1),解得:a1=2.所以,数列{a n}是首项为2,公比为2的等比数列. 故a n=2n.(n)由(I)得-=-,吋2冲E T 1 1 1 1 1泸11所以T n- c+ + _ + •- + ----- 1 =1 '.2 4 8 711] ——9112点评:本题主要考查数列的前 n 项和与第n 项的关系,等差、等比数列的定义和性质, 等 比数列的前n 项和公式,属于中档题.17. (12分)(2015?四川)一辆小客车上有 5名座位,其座号为1, 2, 3, 4, 5,乘客P 1, P 2,P 3,P 4, P 5的座位号分别为1, 2, 3, 4, 5 .他们按照座位号顺序先后上车,乘客P 1因身体原因没有坐自己 1号座位,这时司机要求余下的乘客按以下规则就坐: 如果自己的座 位空着,就只能坐自己的座位. 如果自己的座位已有乘客就坐, 就在这5个座位的剩余空位 中选择座位.(I )若乘客P 1坐到了 3号座位,其他乘客按规则就座,则此时共有4种坐法.下表给出其中两种坐法,请填入余下两种坐法(将乘客就坐的座位号填入表中空格处) 乘客 P 1 P 2 P 3 P 4 P 5 座位号3 2 14 53 245 13 24 1 532541(H )若乘客P 1坐到了 2号座位,其他乘客按规则就坐,求乘客P 1坐到5号座位的概率.概率的应用.应用题;概率与统计. (I )根据题意,可以完成表格;(n )列表,确定所有可能的坐法,再求出乘客P 1坐到5号座位的概率.解:(I )余下两种坐法:乘客 P 1 P 2P 3 P 4 P 5 座位号3 2 145 3 2 4 5 13 24 1532541(n)若乘客P 1坐到了 2号座位,其他乘客按规则就坐,则所有可能的坐法可用下表表示为乘客 P 1 P 2 P 3 P 4 P 5 座位号2 1345 2 3 1 4 523 4 1 523 4 5 123 54 124 3 1 524 35 125341于是,所有可能的坐法共 8种,设乘客P 1坐到5号座位”为事件A ,则事件A 中的基本事件的个数为4,所以P( A )」4 1 =2= 2考点: 专题: 分析:解答:答:乘客P 1坐到5号座位的概率是点评:本题考查概率的运用,考查学生的计算能力,列表确定基本事件的个数是关键.18. (12分)(2015?四川)一个正方体的平面展开图及该正方体的直观图的示意图如图所示.(I )请按字母F, G , H标记在正方体相应地顶点处(不需要说明理由)(H )判断平面BEG与平面ACH的位置关系.并说明你的结论.(川)证明:直线DF丄平面BEG .考点:直线与平面垂直的判定;平面与平面之间的位置关系. 专题:空间位置关系与距离.分析:(I )直接标出点F, G , H的位置.(II )先证BCHE为平行四边形,可知BE //平面ACH ,同理可证BG //平面ACH , 即可证明平面BEG //平面ACH .(川)连接FH,由DH丄EG,又DH丄EG, EG丄FH,可证EG丄平面BFHD,从而可证DF丄EG,同理DF丄BG,即可证明DF丄平面BEG .解答:解:(I )点F, G, H的位置如图所示.(I )平面BEG //平面ACH,证明如下:•/ ABCD - EFGH为正方体,••• BC // FG, BC=EH , 又FG // EH , FG=EH ,•BC // EH , BC=EH ,•BCHE为平行四边形.•BE // CH ,又CH?平面ACH , BE?平面ACH ,•BE // 平面ACH ,同理BG //平面ACH ,又BE ABG=B ,•平面BEG //平面ACH .(川)连接FH ,•/ ABCD - EFGH为正方体,•DH 丄EG,又••• EG?平面EFGH ,•DH 丄EG,又EG 丄FH , EG A FH=O ,•EG丄平面BFHD ,又DF?平面BFHD ,••• DF 丄 EG , 同理DF 丄BG , 又•/ EG ABG=G ,• DF 丄平面BEG .A B点评:本题主要考查了简单空间图形的直观图、空间线面平行与垂直的判定与性质等基础知识,考查了空间想象能力和推理论证能力,属于中档题.19. (12 分)(2015?四川)已知 A 、B 、C ABC 的内角,tanA , tanB 是关于方程 x 2+ 二 px -p+1=0 ( p€R )两个实根.(I )求C 的大小(H )若AB=3 , AC=」,求p 的值.考点: 正弦定理的应用;两角和与差的正切函数. 专题: 函数的性质及应用;解三角形. 分析:(I )由判别式 △ =3p +4p - 4为,可得p w- 2,或p 干,由韦达疋理,有 tanA+tanB=3-:;p ,tanAtanB=1 - p ,由两角和的正切函数公式可求 tanC= - tan (A+B )=:;,结合C 的范围即可求 C 的值.(n )由正弦定理可求 sinB=「—',解得B ,A ,由两角和的正切函数公式可AB 2求 tanA=tan75 ° 从而可求 p=-)= (tanA+tanB )的值.N J解答:解:(I )由已知,方程 x 2 + 「;px - p+仁0 的判别式:△ =(. : p) 2 - 4 (- p+1) =3p 2+4p -4为,所以p<- 2,或p由韦达定理,有 ta nA+ta nB= - p , tan Ata nB=1 - p. 所以,1 - tan Ata nB=1 -(1 - p ) =p 和, 从而 tan ( A+B ) =〜=-■.1 - t anAtanB p 所以 tanC= - tan (A+B ) = :_;, 所以C=60 °/ r 、亠“亠宀TB f 白• r ACsinC h/^siriB (r V2 (n )由正弦定理,可得 sinB= = ... =..,,A D 3 2解得B=45 °或B=135 ° (舍去). 是,A=180。

2015四川高考数学文科试卷带详解

2015四川高考数学文科试卷带详解

2015年普通高等学校招生全国统一考试(四川卷)文科一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合要求的) 1.设集合A ={|12}x x -<<,集合B ={|13}x x <<,则A B =( )A. {|13}x x <-<B. {|11}x x <-<C. {|12}x x <<D. {|23}x x << 【参考答案】A【测量目标】考查集合的并集运算.【试题分析】集合(12)(13)A B =-,,=,,故(13)A B =-,,选A. 2.设向量(24)a =,与向量(6)b x =,共线,则实数x =( ) A.2 B.3 C.4 D.6 【参考答案】B【测量目标】考查向量平行的性质.【试题分析】 由向量平行的性质,有2:4=x :6,解得x =3,选B.3.某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是( )A.抽签法B.系统抽样法C.分层抽样法D.随机数法 【参考答案】C【测量目标】考查抽样方法的适用范围.【试题分析】按照各种抽样方法的适用范围可知,应使用分层抽样.选C.4.设a b ,为正实数,则1a b “>>”是22log log 0a b “>>”的( ) A.充要条件 B.充分不必要条件 C.必要不充分条件 D.既不充分也不必要条件 【参考答案】A【测量目标】考查充分、必要条件.【试题分析】1a b >>时,有22log log 0a b >>成立,反之也正确.选A. 5.下列函数中,最小正周期为π的奇函数是( )A.πsin(2)2y x =+B.πcos(2)2y x =+C.sin2cos2y x x =+D.sin cos y x x =+ 【参考答案】B【测量目标】考查三角函数的周期.【试题分析】A 、B 、C 的周期都是π,D 的周期是2π,但A 中,cos2y x =是偶函数,C 中π)4y x +是非奇非偶函数. 故正确答案为B.6.执行如图所示的程序框图,输出S 的值为( )第6题图A. - C.12-D.12【参考答案】D【测量目标】考查算法的程序框图,求值运算能力. 【试题分析】第四次循环后,5k =,输出5π1sin62S ==,选D. 7.过双曲线2213y x -=的右焦点且与x 轴垂直的直线交该双曲线的两条渐近线于A 、B 两点,则|AB |=( )B. C.6 D.【参考答案】D【测量目标】考查双曲线的交点、渐近线.【试题分析】由题意,1,a b ==2c =,渐近线方程为y =,将2x =代入渐近线方程,得y =±AB = D.8.某食品的保鲜时间y (单位:小时)与储藏温度x (单位:℃)满足函数关系e kx b y += (e 2.718= 为自然对数的底数,,k b 为常数).若该食品在0℃的保鲜时间是192小时,在22℃的保鲜时间是48小时,则该食品在33℃的保鲜时间是( )A.16小时B.20小时C.24小时D.21小时 【参考答案】C【测量目标】考查函数在实际问题中的应用.【试题分析】由题意,22192e 48ebk b+⎧=⎨=⎩得11192e 1e 2b k⎧=⎪⎨=⎪⎩,于是当33x =时 ,()33311eee k bk by +==⋅=31192242⎛⎫⨯= ⎪⎝⎭(小时).9.设实数x y ,满足2102146x y x y x y +≤⎧⎪+≤⎨⎪+≥⎩,则xy 4<的最大值为( )A.252B.492C.12D.14【参考答案】A【测量目标】考查运用线性规划求最值. 【试题分析】画出可行域如图,第9题图在ABC △区域中结合图象可知, 当动点在线段AC 上时xy 取得最大, 此时210x y +=,()112522222x y xy x y +⎛⎫=⋅≤ ⎪⎝⎭22=,当且仅当552x y =,=时取等号,对应点落在线段AC 上, 故最大值为25.2选A. 10.设直线l 与抛物线24y x =相较于A ,B 两点,与圆C :222(5)(0)x y r r -+=>相切于点M ,且M 为线段AB 中点,若这样的直线l 恰有4条,则r 的取值范围是( )A.(1,3)B.(1,4)C.(2,3)D.(2,4) 【参考答案】D【测量目标】考查抛物线、圆、直线的综合问题. 【试题分析】不妨设直线:l x ty m =+, 代入抛物线方程有:2440y ty m --=, 则216160t m ∆=+>,又中点2(2,2)M t m t +,则1MC l k k =-,即232m t =-(当0t ≠时),代入21616t m ∆=+,可得230t ->,即203t <<. 又由圆心到直线的距离等于半径,可得2d r ====由203t <<,可得(2,4)r ∈.选D.二、填空题(每小题5分,共25分,将答案填在答题纸上) 11.设i 是虚数单位,则复数1i i-=_____________.【参考答案】2i【测量目标】考查复数的四则运算. 【试题分析】1i i i 2i i-=+=. 12.2lg0.01log 16=+ _____________.【参考答案】2【测量目标】考查对数函数的求值运算. 【试题分析】2lg0.01log 16242+=-+=.13.已知sin 2cos 0αα+=,则22sin cos cos ααα-的值是______________.【参考答案】-1【测量目标】考查三角函数的求值运算. 【试题分析】由已知可得tan 2α=-,22sin cos cos ααα=-22222sin cos cos 2tan 1411sin cos tan 141ααααααα---===-+++-. 14.在三棱柱111ABC A B C -中,90BAC ∠︒=,其正视图和侧视图都是边长为1的正方形,俯视图是直角边长为1的等腰直角三角形,设点M ,N ,P 分别是AB ,BC ,B 1C 1的中点,则三棱锥P AMN -的体积是______.【参考答案】124【测量目标】空间几何体的体积.【试题分析】由题意,三棱柱是底面为直角边长为1的等腰直角三角形, 高为1的直三棱柱,底面积为12. 如图,三棱锥P AMN -底面积是三棱锥底面积的14,高为1, 故三棱锥P AMN -的体积为111132424⨯⨯=.第14题图15.已知函数()()22x f x g x x ax =,=+ (其中a ∈R ).对于不相等的实数12x x ,,设()()()()12121212,f x f x g x g x m n x x x x --=--=,现有如下命题:①对于任意不相等的实数12x x ,,都有0m >;②对于任意的a 及任意不相等的实数12x x ,,都有0n >; ③对于任意的a ,存在不相等的实数12x x ,,使得m n =; ④对于任意的a ,存在不相等的实数12x x ,,使得m n =-. 其中真命题有___________________(写出所有真命题的序号).【参考答案】①④【测量目标】考查函数与命题判断相结合的问题.【试题分析】对于①,因为()xf x '=2l n2>0恒成立,故①正确.对于②,取8a =-,即()28g x x '=-,当12x x ,<4时,0n <,②错误.对于③,令()()f x g x ''=,即2ln22xx a =+,记()2ln 22x h x x =-,则()()22ln22xh x '=-,存在()00,1x ∈,使得()00h x =,可知函数()h x 先减后增,有最小值. 因此,对任意的a ,m n =不一定成立. ③错误. 对于④,由()()f x g x ''=-,即2ln 22xx a =--,令()2ln 22xh x x =+,则()()22ln 220xh x '=+>恒成立,即()h x 是单调递增函数, 当x →+∞时,()h x →+∞; 当x →-∞时,()h x →-∞.因此,对任意的a ,存在y a =与函数()h x 有交点. ④正确.三、解答题(本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤). 16.(本小题满分12分)设数列{}(123)n a n ⋯=,,的前n 项和n S 满足12n n S a a =-,且1231a a a ,+,成等差数列. (1)求数列的通项公式;(2)设数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,求n T . 【测量目标】(1)考查等差数列与等比数列的概念、等比数列通项公式;(2)考查等比数列前n 项和、运算求解能力. 【试题分析】 (1) 由已知12n n S a a =-, 有1122(2)n n n n n a S S a a n ≥--=-=-, 即12(2)n n a a n ≥-=. 从而21321224a a a a a =,==, 又因为1231a a a ,+,成等差数列, 即1322(1)a a a +=+.所以111+4=2(2+1)a a a ,解得1=2a .所以,数列{}n a 是首项为2,公比为2的等比数列 故=2.n n a (2)由(1)得112n n a =, 所以211122111111222212nn n nT ⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦=+++==-- .17.(本小题满分12分)一辆小客车上有5个座位,其座位号为1,2,3,4,5,乘客12345,,,,P P P P P 的座位号分别为1,2,3,4,5,他们按照座位号顺序先后上车,乘客1P 因身体原因没有坐自己号座位,这时司机要求余下的乘客按以下规则就坐:如果自己的座位空着,就只能坐自己的座位.如果自己的座位已有乘客就坐,就在这5个座位的剩余空位中选择座位.(1)若乘客1P 坐到了3号座位,其他乘客按规则就座,则此时共有4种坐法.下表给出其中两种坐法,请填入余下两种坐法(将乘客就坐的座位号填入表中空格处);(2)若乘客1P 坐到了2号座位,其他乘客按规则就坐,求乘客1P 坐到5号座位的概率.【测量目标】(1)考查排列组合;(2)考查排列组合、古典概型.【试题分析】 (1)余下两种坐法如下表所示:做到了2号座位,其他乘客按规则就坐,则所有可能坐法可用下表表示为于是,所有可能的坐法共8种.设“乘客5P 坐到5号座位”为事件A ,则事件A 中的基本事件的个数为4, 所以()4182P A ==. 答:乘客5P 坐到5号座位的概率为12. 18.(本小题满分12分)一个正方体的平面展开图及该正方体的直观图的示意图如图所示. (1)请按字母F ,G ,H 标记在正方体相应地顶点处 (不需要说明理由) ; (2)判断平面BEG 与平面ACH 的位置关系.并说明你的结论; (3)证明:直线DF ⊥平面BEG .第18题图【测量目标】(1)考查简单空间图形的直观图,空间想象能力;(2)考查空间线面平行与面面平行的判定与性质,空间想象能力、推理论证能力;(3)考查空间线面垂直的判定与性质,空间想象能力、推理论证能力.【试题分析】(1)点F,G,H的位置如图所示第18题图(2)平面BEG∥平面ACH.证明如下:因为ABCD-EFGH为正方体,所以BC∥FG,BC=FG.又FG∥EH,FG=EH,所以BC∥EH,BC=EH.于是BCEH为平行四边形,所以BE∥CH.又CH⊂平面ACH,BE⊄平面ACH,所以BE∥平面ACH,同理BG∥平面ACH.又BE∩BG=B,所以平面BEG∥平面ACH.第18题图(3)连接FH,因为ABCD-EFGH为正方体,所以DH⊥平面EFGH.因为EG⊂平面EFGH,所以DH⊥EG.又EG⊥FH,DH∩FH=H,所以EG⊥平面BFHD.又DF⊂平面BFHD,所以DF⊥EG.同理DF ⊥BG , 又EG ∩BG =G ,所以DF ⊥平面BEG . 19.(本小题满分12分)已知A 、B 、C 为△ABC 的内角,tan A 、tan B 是关于方程x 2-p +1=0(p ∈R )两个实根. (1)求C 的大小;(2)若AB =3,ACp 的值. 【测量目标】(1)考查韦达定理,解三角形; (2)考查正弦定理的应用,正切值的计算.【试题分析】 (1)由已知,方程210x p -+=的判别式22)4(1)3440p p p ∆≥=--+=+-, 所以2p ≤-或2.3p ≥由韦达定理,有tan tan tan tan 1A B A B p +=,=-, 于是1tan tan 1(1)0A B p p =≠-=--,从而tan()A B +=tan tan 1tan tan A B A B +==-所以tan tan()C A B =-+ 所以60.C ︒=(2)由正弦定理,得sin B =sin AC C AB ==解得45B ︒=或135B ︒=(舍去), 于是18075,A B C ︒︒=--=则tan tan75tan(4530)A ︒︒︒==+=1tan 45tan 3021tan 45tan 303++==-所以tan )1p A B =-+=--20.(本小题满分13分)如图,椭圆E :()222210x y a b a b +=>>的离心率是2,点P (0,1)在短轴CD 上,且1PC PD ⋅=- . (1)求椭圆E 的方程;(2)设O 为坐标原点,过点P 的动直线与椭圆交于A 、B 两点.是否存在常数λ,使得OA OB PA PB λ⋅+⋅ 为定值?若存在,求λ的值;若不存在,请说明理由.第20题图【测量目标】(1)考查椭圆的标准方程,运算求解能力;(2)考查直线方程,推理论证能力、运算求解能力,数形结合、化归与转化、特殊与一般、分类与整合等数学思想.【试题分析】(1)由已知,点C ,D 的坐标分别为(0)(0),b b ,-,,又点P 的坐标为(01),,且1PC PD ⋅=- ,于是2222112b c a a b c ⎧-=-⎪⎪=⎨⎪-=⎪⎩,解得2a b =, 所以椭圆E 方程为22142x y +=. (2)当直线AB 斜率存在时,设直线AB 的方程为1y kx =+,A ,B 的坐标分别为1122()()x y x y ,,,. 联立221421x y y kx ⎧+=⎪⎨⎪=+⎩,得22(21)420k x kx ++-=, 其判别式()224+8(21)0k k ∆=+>. 所以12122242,,2121k x x x x k k +=-=-++ 从而OA OB PA PB λ⋅+⋅ 12121212[(1)(1)]x x y y x x y y λ=+++-- 21212(1)(1)()1k x x k x x λ=+++++()2224(21)21k k λλ--+--=+ 21221k λλ---+=-所以,当1λ=时,212321k λλ---=-+-,此时,OA OB PA PB λ⋅+⋅ 3=-为定值. 当直线AB 斜率不存在时,直线AB 即为直线CD ,此时OA OB PA PB OC OD PC PD λ⋅+⋅=⋅+⋅ 21=3=---.故存在常数1λ=,使得OA OB PA PB λ⋅+⋅ 为定值3-.21.(本小题满分14分)已知函数()222ln 2+f x x x x ax a =-+-,其中0a >.(1)设()g x 为()f x 的导函数,讨论g (x )的单调性;(2)证明:存在(01)a ∈,,使得()0f x ≥在区间(0,)+∞内恒成立,且()0f x =在(1,)+∞内有唯一解. 【测量目标】(1)考查导数的运算、导数在研究函数中的应用、函数的零点;(2) 函数与方程,推理论证能力、运算求解能力、创新意识,数形结合、化归与转化等数学思想.(1)由已知,函数()f x 的定义域为(0)∞,+,()()==2(1ln )g x f x x x a '---,所以()()2122x g x x x-'==-. 当(01)x ∈,时,()0g x '<,()g x 单调递减; 当(1)x ∈∞,+时,()g x '>0,()g x 单调递增.(2)由()'2(1ln )0f x x x a =---=,解得1ln a x x =--.令()x ϕ2222ln 2(1ln )(1ln )(1+ln )2ln x x x x x x x x x x x =-+---+--=-, 则()()110e 2(2e)0ϕϕ<=>,=-,于是存在0(1e)x ∈,,使得()00x ϕ=.令()00001ln a x x u x =--=,其中()1ln (1)u x x x x ≥=--,由()110u x x'≥=-知,函数()u x 在区间(1)∞,+上单调递增, 故()()0001()e e 21u a u x u <=<==-<,即0(01)a ∈,.当0a a =时,有()()()00000f x f x x ϕ'=,==.再由(1)知,()f x '在区间(1)∞,+上单调递增,当0(1)x x ∈, 时,()0f x '<,从而()()00f x f x >=; 当0()x x ∈∞,+时,()'0f x >,从而()()00f x f x >=;又当(01]x ∈,时,()20()2ln 0f x x a x x =-->, 故(0)x ∈∞,+时,()0f x ≥.综上所述,存在(01)a ∈,,使得()0f x ≥,在区间(0+)∞,内恒成立,且()0f x =在区间(1)∞,+内有唯一解.。

2015年高考文科数学四川卷及答案

2015年高考文科数学四川卷及答案

数学试卷 第1页(共15页)数学试卷 第2页(共15页)数学试卷 第3页(共15页)绝密★启用前2015年普通高等学校招生全国统一考试(四川卷)数学(文科)本试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题).第Ⅰ卷1至3页,第Ⅱ卷4至6页,共6页.满分150分.考试时间120分钟.考生作答时,须将答案答在答题卡上.在本试题卷、草稿纸上答题无效.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷(选择题 共50分)注意事项:必须使用2B 铅笔在答题卡上将所选答案对应的标号涂黑. 第Ⅰ卷共10小题.一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{|12}A x x =-<<,集合{|13}B x x =<<,则A B = ( ) A .{|13}x x -<<B .{|11}x x -<<C .{|12}x x <<D .{|23}x x << 2.设向量a ()2,4=与向量b (),6x =共线,则实数x =( )A .2B .3C .4D .53.某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是( )A .抽签法B .系统抽样法C .分层抽样法D .随机数法4.设,a b 为正实数,则“1a b >>”是“22log log 0a b >>”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件5.下列函数中,最小正周期为π的奇函数是( )A .sin(2)2πy x =+ B .πcos(2)2y x =+ C .sin 2cos2y x x =+D .sin cos y x x =+6.执行如图所示的程序框图,输出S 的值为( )A.2-B.2C .12-D .127.过双曲线2213yx -=的右焦点且与x 轴垂直的直线,交该双曲线 的两条渐近线于A ,B 两点,则||=AB( ) A.3B.C .6D.8.某食品的保鲜时间y (单位:小时)与储藏温度x (单位:℃) 满足函数关系ekx by +=(e 2.718=…为自然对数的底数,k ,b为常数).若该食品在0℃的保鲜时间是192小时,在22℃的保 鲜时间是48小时,则该食品在33℃的保鲜时间是( ) A .16小时 B .20小时 C .24小时D .28小时9.设实数x ,y 满足2102146x y x y x y +⎧⎪+⎨⎪+⎩≤,≤,≥,则xy 的最大值为( )A .252B .492C .12D .1610.设直线l 与抛物线24y x =相交于A ,B 两点,与圆222(5)(0)x y r r -+=>相切于点M ,且M 为线段AB 的中点.若这样的直线l 恰有4条,则r 的取值范围是 ( )A .(1,3)B .(1,4)C .(2,3)D .(2,4)第Ⅱ卷(非选择题 共100分)注意事项:必须使用0.5毫米黑色墨迹签字笔在答题卡上题目所指示的答题区域内作答.作图题可先用铅笔绘出,确认后再用0.5毫米黑色墨迹签字笔描清楚.答在试题卷、草稿纸上无效.第Ⅱ卷共11小题.二、填空题:本大题共5小题,每小题5分,共25分.把答案填在题中的横线上.11.设i 是虚数单位,则复数1i i-=__________. 12.2lg0.01log 16+的值是___________.13.已知sin 2cos 0αα+=,则22sin cos cos ααα-的值是___________.14.在三棱柱111ABC A B C -中,90BAC ∠=︒,其正视图和侧视图都是边长为1的正方形,俯视图是直角边的长为1的等腰直角三角形,设点M ,N ,P 分别是棱AB ,BC ,11B C 的中点,则三棱锥1P A MN -的体积是__________.15.已知函数()2x f x =,2()g x x ax =+(其中a ∈R ).对于不相等的实数1x ,2x ,设1212()()f x f x m x x -=-,1212()()g x g x n x x -=-,现有如下命题:①对于任意不相等的实数1x ,2x ,都有0m >;②对于任意的a 及任意不相等的实数1x ,2x ,都有0n >; ③对于任意的a ,存在不相等的实数1x ,2x ,使得m n =; ④对于任意的a ,存在不相等的实数1x ,2x ,使得m n =-. 其中的真命题有__________(写出所有真命题的序号).三、解答题:本大题共6小题,共75分.解答应写出必要的文字说明、证明过程或演算步骤. 16.(本小题满分12分)设数列{}n a (1,2,3,)n =⋅⋅⋅的前n 项和n S 满足12n n S a a =-,且1a ,21a +,3a 成等差数列.(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设数列1{}na 的前n 项和为n T ,求n T .17.(本小题满分12分)一辆小客车上有5个座位,其座位号为1,2,3,4,5.乘客1P ,2P ,3P ,4P ,5P 的-------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------姓名________________ 准考证号_____________数学试卷 第4页(共15页)数学试卷 第5页(共15页) 数学试卷 第6页(共15页)座位号分别为1,2,3,4,5,他们按照座位号从小到大的顺序先后上车.乘客1P 因身体原因没有坐自己的1号座位,这时司机要求余下的乘客按以下规则就座:如果自己的座位空着,就只能坐自己的座位;如果自己的座位已有乘客就座,就在这5个座位的剩余空位中任意选择座位.(Ⅰ)若乘客1P 坐到了3号座位,其他乘客按规则就座,则此时共有4种坐法.下表给;(Ⅱ)若乘客1P 坐到了2号座位,其他乘客按规则就座,求乘客5P 坐到5号座位的概率.18.(本小题满分12分)一个正方体的平面展开图及该正方体的直观图的示意图如图所示.(Ⅰ)请将字母F ,G ,H 标记在正方体相应的顶点处(不需说明理由); (Ⅱ)判断平面BEG 与平面ACH 的位置关系,并证明你的结论. (Ⅲ)证明:直线DF ⊥平面BEG19.(本小题满分12分)已知A ,B ,C 为ABC △的内角,tan A ,tan B 是关于x 的方程210x p +-+=(p ∈R )的两个实根. (Ⅰ)求C 的大小.(Ⅱ)若3AB =,AC =p 的值.20.(本小题满分13分)如图,椭圆2222:+1(0)x y E a b a b =>>,点P (0,1)在短轴CD 上,且1PC PD =-.(Ⅰ)求椭圆E 的方程;(Ⅱ)设O 为坐标原点,过点P 的动直线与椭圆交于A ,B 两点.是否存在常数λ,使 OB PA PB λ+为定值?若存在,求λ的值;若不存在,请说明理由.21.(本小题满分14分)已知函数22()2ln 2f x x x x ax a =-+-+,其中0a >.(Ⅰ)设()g x 是()f x 的导函数,讨论()g x 的单调性;(Ⅱ)证明:存在(0,1)a ∈,使得()0f x ≥恒成立,且()0f x =在区间(1,)+∞内有唯一解.数学试卷 第7页(共15页)数学试卷 第8页(共15页)数学试卷 第9页(共15页)2015年普通高等学校招生全国统一考试(四川卷)数学(文科)答案解析第Ⅰ卷(13)A B =-,【提示】直接利用并集求解法则求解即可. :6x ,解得1)2x x y ⎛≤ ⎝2故最大值为25.2【提示】画出不等式组对应的平面区域,利用基本不等式进行求解即可. 第Ⅱ卷32424【提示】判断三视图对应的几何体的形状,画出图形,利用三视图的数据,求解三棱锥。

2015年四川省高考数学试卷(文科)

2015年四川省高考数学试卷(文科)

2015年四川省高考数学试卷(文科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)(2015•四川)设集合M={x|﹣1<x<2},集合N={x|1<x<3},则M∪N=()A.{x|﹣1<x<3}B.{x|﹣1<x<2}C.{x|1<x<3}D.{x|1<x<2}2.(5分)(2015•四川)设向量=(2,4)与向量=(x,6)共线,则实数x=()A.2 B.3 C.4 D.63.(5分)(2015•四川)某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是()A.抽签法B.系统抽样法C.分层抽样法D.随机数法4.(5分)(2015•四川)设a,b为正实数,则“a>b>1”是“log2a>log2b>0”的()A.充要条件 B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件5.(5分)(2015•四川)下列函数中,最小正周期为π且图象关于原点对称的函数是()A.y=cos(2x+)B.y=sin(2x+)C.y=sin2x+cos2x D.y=sinx+cosx6.(5分)(2015•四川)执行如图所示的程序框图,输出s的值为()A.﹣B.C.﹣D.7.(5分)(2015•四川)过双曲线x2﹣=1的右焦点且与x轴垂直的直线,交该双曲线的两条渐近线于A、B两点,则|AB|=()A.B.2C.6 D.48.(5分)(2015•四川)某食品保鲜时间y(单位:小时)与储藏温度x(单位:℃)满足函数关系y=e kx+b(e=2.718…为自然对数的底数,k,b为常数).若该食品在0℃的保鲜时间是192小时,在22℃的保鲜时间是48小时,则该食品在33℃的保鲜时间是()A.16小时B.20小时C.24小时D.28小时9.(5分)(2015•四川)设实数x,y满足,则xy的最大值为()A.B.C.12 D.1610.(5分)(2015•四川)设直线l与抛物线y2=4x相交于A、B两点,与圆(x﹣5)2+y2=r2(r>0)相切于点M,且M为线段AB的中点,若这样的直线l恰有4条,则r的取值范围是()A.(1,3)B.(1,4)C.(2,3)D.(2,4)二、填空题:本大题共5小题,每小题5分,共25分.11.(5分)(2015•四川)设i是虚数单位,则复数i﹣=.12.(5分)(2015•四川)lg0.01+log216的值是.13.(5分)(2015•四川)已知sinα+2cosα=0,则2sinαcosα﹣cos2α的值是.14.(5分)(2015•四川)在三棱住ABC﹣A1B1C1中,∠BAC=90°,其正视图和侧视图都是边长为1的正方形,俯视图是直角边长为1的等腰直角三角形,设M,N,P分别是AB,BC,B1C1的中点,则三棱锥P﹣AMN的体积是.15.(5分)(2015•四川)已知函数f(x)=2x,g(x)=x2+ax(其中a∈R).对于不相等的实数x1、x2,设m=,n=.现有如下命题:①对于任意不相等的实数x1、x2,都有m>0;②对于任意的a及任意不相等的实数x1、x2,都有n>0;③对于任意的a,存在不相等的实数x1、x2,使得m=n;④对于任意的a,存在不相等的实数x1、x2,使得m=﹣n.其中的真命题有(写出所有真命题的序号).三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(12分)(2015•四川)设数列{a n}(n=1,2,3…)的前n项和S n,满足S n=2a n﹣a1,且a1,a2+1,a3成等差数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设数列的前n项和为T n,求T n.17.(12分)(2015•四川)一辆小客车上有5名座位,其座号为1,2,3,4,5,乘客P1,P2,P3,P4,P5的座位号分别为1,2,3,4,5.他们按照座位号顺序先后上车,乘客P1因身体原因没有坐自己1号座位,这时司机要求余下的乘客按以下规则就坐:如果自己的座位空着,就只能坐自己的座位.如果自己的座位已有乘客就坐,就在这5个座位的剩余空位中选择座位.(Ⅰ)若乘客P1坐到了3号座位,其他乘客按规则就座,则此时共有4种坐法.下表给出其中两种坐法,请填入余下两种坐法(将乘客就坐的座位号填入表中空格处)乘客P1P2P3P4P5座位号3 2 1 4 5 3 2 4 5 1(Ⅱ)若乘客P1坐到了2号座位,其他乘客按规则就坐,求乘客P5坐到5号座位的概率.18.(12分)(2015•四川)一个正方体的平面展开图及该正方体的直观图的示意图如图所示.(Ⅰ)请按字母F ,G,H标记在正方体相应地顶点处(不需要说明理由)(Ⅱ)判断平面BEG 与平面ACH 的位置关系.并说明你的结论.(Ⅲ)证明:直线DF⊥平面BEG.19.(12分)(2015•四川)已知A、B 、C为△ABC的内角,tanA,tanB是关于方程x2+px ﹣p+1=0(p∈R)两个实根.(Ⅰ)求C的大小(Ⅱ)若AB=3,AC=,求p的值.20.(13分)(2015•四川)如图,椭圆E:=1(a>b>0)的离心率是,点P(0,1)在短轴CD上,且•=﹣1(Ⅰ)求椭圆E的方程;(Ⅱ)设O为坐标原点,过点P的动直线与椭圆交于A、B两点.是否存在常数λ,使得•+λ•为定值?若存在,求λ的值;若不存在,请说明理由.21.(14分)(2015•四川)已知函数f(x)=﹣2xlnx+x2﹣2ax+a2,其中a>0.(Ⅰ)设g(x)是f(x)的导函数,讨论g(x)的单调性;(Ⅱ)证明:存在a∈(0,1),使得f(x)≥0恒成立,且f(x)=0在区间(1,+∞)内有唯一解.2015年四川省高考数学试卷(文科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)(2015•四川)设集合M={x|﹣1<x<2},集合N={x|1<x<3},则M∪N=()A.{x|﹣1<x<3}B.{x|﹣1<x<2}C.{x|1<x<3}D.{x|1<x<2}【分析】根据并集的定义解答即可.【解答】解:根据并集的定义知:M∪N={x|﹣1<x<3},故选:A.【点评】本题考查了并集运算,熟练掌握并集的定义是解题的关键.2.(5分)(2015•四川)设向量=(2,4)与向量=(x,6)共线,则实数x=()A.2 B.3 C.4 D.6【分析】利用向量共线的充要条件得到坐标的关系求出x.【解答】解;因为向量=(2,4)与向量=(x,6)共线,所以4x=2×6,解得x=3;故选:B.【点评】本题考查了向量共线的坐标关系;如果两个向量向量=(x,y)与向量=(m,n)共线,那么xn=ym.3.(5分)(2015•四川)某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是()A.抽签法B.系统抽样法C.分层抽样法D.随机数法【分析】若总体由差异明显的几部分组成时,经常采用分层抽样的方法进行抽样.【解答】解:我们常用的抽样方法有:简单随机抽样、分层抽样和系统抽样,而事先已经了解到三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,这种方式具有代表性,比较合理.故选:C.【点评】本小题考查抽样方法,主要考查抽样方法,属基本题.4.(5分)(2015•四川)设a,b为正实数,则“a>b>1”是“log2a>log2b>0”的()A.充要条件 B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件【分析】先求出log2a>log2b>0的充要条件,再和a>b>1比较,从而求出答案.【解答】解:若log2a>log2b>0,则a>b>1,故“a>b>1”是“log2a>log2b>0”的充要条件,故选:A.【点评】本题考察了充分必要条件,考察对数函数的性质,是一道基础题.5.(5分)(2015•四川)下列函数中,最小正周期为π且图象关于原点对称的函数是()A.y=cos(2x+)B.y=sin(2x+)C.y=sin2x+cos2x D.y=sinx+cosx【分析】求出函数的周期,函数的奇偶性,判断求解即可.【解答】解:y=cos(2x+)=﹣sin2x,是奇函数,函数的周期为:π,满足题意,所以A正确y=sin(2x+)=cos2x,函数是偶函数,周期为:π,不满足题意,所以B不正确;y=sin2x+cos2x=sin(2x+),函数是非奇非偶函数,周期为π,所以C不正确;y=sinx+cosx=sin(x+),函数是非奇非偶函数,周期为2π,所以D不正确;故选:A.【点评】本题考查两角和与差的三角函数,函数的奇偶性以及红丝带周期的求法,考查计算能力.6.(5分)(2015•四川)执行如图所示的程序框图,输出s的值为()A.﹣B.C.﹣D.【分析】模拟执行程序框图,依次写出每次循环得到的k的值,当k=5时满足条件k>4,计算并输出S的值为.【解答】解:模拟执行程序框图,可得k=1k=2不满足条件k>4,k=3不满足条件k>4,k=4不满足条件k>4,k=5满足条件k>4,S=sin=,输出S的值为.故选:D.【点评】本题主要考查了循环结构的程序框图,属于基础题.7.(5分)(2015•四川)过双曲线x2﹣=1的右焦点且与x轴垂直的直线,交该双曲线的两条渐近线于A、B两点,则|AB|=()A.B.2C.6 D.4【分析】求出双曲线的渐近线方程,求出AB的方程,得到AB坐标,即可求解|AB|.【解答】解:双曲线x2﹣=1的右焦点(2,0),渐近线方程为y=,过双曲线x2﹣=1的右焦点且与x轴垂直的直线,x=2,可得y A=2,y B=﹣2,∴|AB|=4.故选:D.【点评】本题考查双曲线的简单性质的应用,考查基本知识的应用.8.(5分)(2015•四川)某食品保鲜时间y(单位:小时)与储藏温度x(单位:℃)满足函数关系y=e kx+b(e=2.718…为自然对数的底数,k,b为常数).若该食品在0℃的保鲜时间是192小时,在22℃的保鲜时间是48小时,则该食品在33℃的保鲜时间是()A.16小时B.20小时C.24小时D.28小时【分析】由已知中保鲜时间与储藏温度是一种指数型关系,由已知构造方程组求出e k,e b 的值,运用指数幂的运算性质求解e33k+b即可.【解答】解:y=e kx+b(e=2.718…为自然对数的底数,k,b为常数).当x=0时,e b=192,当x=22时e22k+b=48,∴e22k==e11k=e b=192当x=33时,e33k+b=(e k)33•(e b)=()3×192=24故选:C【点评】本题考查的知识点是函数解析式的运用,列出方程求解即可,注意整体求解.9.(5分)(2015•四川)设实数x,y满足,则xy的最大值为()A.B.C.12 D.16【分析】作出不等式组对应的平面区域,利用基本不等式进行求解即可.【解答】解:作出不等式组对应的平面区域如图;由图象知y≤10﹣2x,则xy≤x(10﹣2x)=2x(5﹣x))≤2()2=,当且仅当x=,y=5时,取等号,经检验(,5)在可行域内,故xy的最大值为,故选:A【点评】本题主要考查线性规划以及基本不等式的应用,利用数形结合是解决本题的关键.10.(5分)(2015•四川)设直线l与抛物线y2=4x相交于A、B两点,与圆(x﹣5)2+y2=r2(r>0)相切于点M,且M为线段AB的中点,若这样的直线l恰有4条,则r的取值范围是()A.(1,3)B.(1,4)C.(2,3)D.(2,4)【分析】先确定M的轨迹是直线x=3,代入抛物线方程可得y=±2,所以交点与圆心(5,0)的距离为4,即可得出结论.【解答】解:设A(x1,y1),B(x2,y2),M(x0,y0),斜率存在时,设斜率为k,则y12=4x1,y22=4x2,则,相减,得(y1+y2)(y1﹣y2)=4(x1﹣x2),当l的斜率存在时,利用点差法可得ky0=2,因为直线与圆相切,所以=﹣,所以x0=3,即M的轨迹是直线x=3.将x=3代入y2=4x,得y2=12,∴,∵M在圆上,∴,∴r2=,∵直线l恰有4条,∴y0≠0,∴4<r2<16,故2<r<4时,直线l有2条;斜率不存在时,直线l有2条;所以直线l恰有4条,2<r<4,故选:D.【点评】本题考查直线与抛物线、圆的位置关系,考查点差法,考查学生分析解决问题的能力,属于中档题.二、填空题:本大题共5小题,每小题5分,共25分.11.(5分)(2015•四川)设i是虚数单位,则复数i﹣=2i.【分析】直接利用复数的运算法则求解即可.【解答】解:复数i﹣=i﹣=i+i=2i.故答案为:2i.【点评】本题考查复数的基本运算,考查计算能力.12.(5分)(2015•四川)lg0.01+log216的值是2.【分析】直接利用对数的运算法则化简求解即可.【解答】解:lg0.01+log216=﹣2+4=2.故答案为:2.【点评】本题考查对数的运算法则的应用,考查计算能力.13.(5分)(2015•四川)已知sinα+2cosα=0,则2sinαcosα﹣cos2α的值是﹣1.【分析】已知等式移项变形求出tanα的值,原式利用同角三角函数间的基本关系化简,将tanα的值代入计算即可求出值.【解答】解:∵sinα+2cosα=0,即sinα=﹣2cosα,∴tanα=﹣2,则原式=====﹣1,故答案为:﹣1【点评】此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.14.(5分)(2015•四川)在三棱住ABC﹣A1B1C1中,∠BAC=90°,其正视图和侧视图都是边长为1的正方形,俯视图是直角边长为1的等腰直角三角形,设M,N,P分别是AB,BC,B1C1的中点,则三棱锥P﹣AMN的体积是.【分析】判断三视图对应的几何体的形状,画出图形,利用三视图的数据,求解三棱锥P﹣AMN的体积即可.【解答】解:由三视图可知,可知几何体的图形如图:几何体是底面为等腰直角三角形直角边长为1,高为1的直三棱柱,所求三棱锥的高为NP=1,底面AMN的面积是底面三角形ABC的,所求三棱锥P﹣AMN的体积是:=.故答案为:.【点评】本题考查三视图与直观图的关系,组作出几何体的直观图是解题的关键之一,考查几何体的体积的求法,考查空间想象能力以及计算能力.15.(5分)(2015•四川)已知函数f(x)=2x,g(x)=x2+ax(其中a∈R).对于不相等的实数x1、x2,设m=,n=.现有如下命题:①对于任意不相等的实数x1、x2,都有m>0;②对于任意的a及任意不相等的实数x1、x2,都有n>0;③对于任意的a,存在不相等的实数x1、x2,使得m=n;④对于任意的a,存在不相等的实数x1、x2,使得m=﹣n.其中的真命题有①④(写出所有真命题的序号).【分析】运用指数函数的单调性,即可判断①;由二次函数的单调性,即可判断②;通过函数h(x)=x2+ax﹣2x,求出导数判断单调性,即可判断③;通过函数h(x)=x2+ax+2x,求出导数判断单调性,即可判断④.【解答】解:对于①,由于2>1,由指数函数的单调性可得f(x)在R上递增,即有m>0,则①正确;对于②,由二次函数的单调性可得g(x)在(﹣∞,﹣)递减,在(﹣,+∞)递增,则n>0不恒成立,则②错误;对于③,由m=n,可得f(x1)﹣f(x2)=g(x1)﹣g(x2),即为g(x1)﹣f(x1)=g(x2)﹣f(x2),考查函数h(x)=x2+ax﹣2x,h′(x)=2x+a﹣2x ln2,当a→﹣∞,h′(x)小于0,h(x)单调递减,则③错误;对于④,由m=﹣n,可得f(x1)﹣f(x2)=﹣[g(x1)﹣g(x2)],考查函数h(x)=x2+ax+2x,h′(x)=2x+a+2x ln2,对于任意的a,h′(x)不恒大于0或小于0,则④正确.故答案为:①④.【点评】本题考查函数的单调性及运用,注意运用指数函数和二次函数的单调性,以及导数判断单调性是解题的关键.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(12分)(2015•四川)设数列{a n}(n=1,2,3…)的前n项和S n,满足S n=2a n﹣a1,且a1,a2+1,a3成等差数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设数列的前n项和为T n,求T n.【分析】(Ⅰ)由条件S n满足S n=2a n﹣a1,求得数列{a n}为等比数列,且公比q=2;再根据a1,a2+1,a3成等差数列,求得首项的值,可得数列{a n}的通项公式.(Ⅱ)由于=,利用等比数列的前n项和公式求得数列的前n项和T n.【解答】解:(Ⅰ)由已知S n=2a n﹣a1,有a n=S n﹣S n﹣1=2a n﹣2a n﹣1(n≥2),即a n=2a n﹣1(n≥2),从而a2=2a1,a3=2a2=4a1.又因为a1,a2+1,a3成等差数列,即a1+a3=2(a2+1)所以a1+4a1=2(2a1+1),解得:a1=2.所以,数列{a n}是首项为2,公比为2的等比数列.故a n=2n.(Ⅱ)由(Ⅰ)得=,所以T n=+++…+==1﹣.【点评】本题主要考查数列的前n项和与第n项的关系,等差、等比数列的定义和性质,等比数列的前n项和公式,属于中档题.17.(12分)(2015•四川)一辆小客车上有5名座位,其座号为1,2,3,4,5,乘客P1,P2,P3,P4,P5的座位号分别为1,2,3,4,5.他们按照座位号顺序先后上车,乘客P1因身体原因没有坐自己1号座位,这时司机要求余下的乘客按以下规则就坐:如果自己的座位空着,就只能坐自己的座位.如果自己的座位已有乘客就坐,就在这5个座位的剩余空位中选择座位.(Ⅰ)若乘客P1坐到了3号座位,其他乘客按规则就座,则此时共有4种坐法.下表给出其中两种坐法,请填入余下两种坐法(将乘客就坐的座位号填入表中空格处)乘客P1P2P3P4P5座位号3 2 1 4 5 3 2 4 5 132415 32541(Ⅱ)若乘客P1坐到了2号座位,其他乘客按规则就坐,求乘客P5坐到5号座位的概率.【分析】(Ⅰ)根据题意,可以完成表格;(Ⅱ)列表,确定所有可能的坐法,再求出乘客P1坐到5号座位的概率.【解答】解:(Ⅰ)余下两种坐法:乘客P1P2P3P4P5座位号3 2 1 4 5 3 2 4 5 1 3 2 4 1 5 3 2 5 4 1(Ⅱ)若乘客P1坐到了2号座位,其他乘客按规则就坐,则所有可能的坐法可用下表表示为乘客P1P2P3P4P5座位号2 1 3 4 5 2 3 1 4 5 2 3 4 1 5 2 3 4 5 1 2 3 5 4 1 2 4 3 1 5 2 4 3 5 1 2 5 3 4 1于是,所有可能的坐法共8种,设“乘客P5坐到5号座位”为事件A,则事件A中的基本事件的个数为4,所以P(A)==.答:乘客P5坐到5号座位的概率是.【点评】本题考查概率的运用,考查学生的计算能力,列表确定基本事件的个数是关键.18.(12分)(2015•四川)一个正方体的平面展开图及该正方体的直观图的示意图如图所示.(Ⅰ)请按字母F,G,H标记在正方体相应地顶点处(不需要说明理由)(Ⅱ)判断平面BEG与平面ACH的位置关系.并说明你的结论.(Ⅲ)证明:直线DF⊥平面BEG.【分析】(Ⅰ)直接标出点F,G,H的位置.(Ⅱ)先证BCHE为平行四边形,可知BE∥平面ACH,同理可证BG∥平面ACH,即可证明平面BEG∥平面ACH.(Ⅲ)连接FH,由DH⊥EG,又DH⊥EG,EG⊥FH,可证EG⊥平面BFHD,从而可证DF⊥EG,同理DF⊥BG,即可证明DF⊥平面BEG.【解答】解:(Ⅰ)点F,G,H的位置如图所示.(Ⅱ)平面BEG∥平面ACH,证明如下:∵ABCD﹣EFGH为正方体,∴BC∥FG,BC=EH,又FG∥EH,FG=EH,∴BC∥EH,BC=EH,∴BCHE为平行四边形.∴BE∥CH,又CH⊂平面ACH,BE⊄平面ACH,∴BE∥平面ACH,同理BG∥平面ACH,又BE∩BG=B,∴平面BEG∥平面ACH.(Ⅲ)连接FH,∵ABCD﹣EFGH为正方体,∴DH⊥EG,又∵EG⊂平面EFGH,∴DH⊥EG,又EG⊥FH,EG∩FH=O,∴EG⊥平面BFHD,又DF⊂平面BFHD,∴DF⊥EG,同理DF⊥BG,又∵EG∩BG=G,∴DF⊥平面BEG.【点评】本题主要考查了简单空间图形的直观图、空间线面平行与垂直的判定与性质等基础知识,考查了空间想象能力和推理论证能力,属于中档题.19.(12分)(2015•四川)已知A、B、C为△ABC的内角,tanA,tanB是关于方程x2+px ﹣p+1=0(p∈R)两个实根.(Ⅰ)求C的大小(Ⅱ)若AB=3,AC=,求p的值.【分析】(Ⅰ)由判别式△=3p2+4p﹣4≥0,可得p≤﹣2,或p≥,由韦达定理,有tanA+tanB=﹣p,tanAtanB=1﹣p,由两角和的正切函数公式可求tanC=﹣tan(A+B)=,结合C 的范围即可求C的值.(Ⅱ)由正弦定理可求sinB==,解得B,A,由两角和的正切函数公式可求tanA=tan75°,从而可求p=﹣(tanA+tanB)的值.【解答】解:(Ⅰ)由已知,方程x2+px﹣p+1=0的判别式:△=(p)2﹣4(﹣p+1)=3p2+4p﹣4≥0,所以p≤﹣2,或p≥.由韦达定理,有tanA+tanB=﹣p,tanAtanB=1﹣p.所以,1﹣tanAtanB=1﹣(1﹣p)=p≠0,从而tan(A+B)==﹣=﹣.所以tanC=﹣tan(A+B)=,所以C=60°.(Ⅱ)由正弦定理,可得sinB===,解得B=45°,或B=135°(舍去).于是,A=180°﹣B﹣C=75°.则tanA=tan75°=tan(45°+30°)===2+.所以p=﹣(tanA+tanB)=﹣(2+)=﹣1﹣.【点评】本题主要考查了和角公式、诱导公式、正弦定理等基础知识,考查了运算求解能力,考查了函数与方程、化归与转化等数学思想的应用,属于中档题.20.(13分)(2015•四川)如图,椭圆E:=1(a>b>0)的离心率是,点P(0,1)在短轴CD上,且•=﹣1(Ⅰ)求椭圆E的方程;(Ⅱ)设O为坐标原点,过点P的动直线与椭圆交于A、B两点.是否存在常数λ,使得•+λ•为定值?若存在,求λ的值;若不存在,请说明理由.【分析】(Ⅰ)通过e=、•=﹣1,计算即得a=2、b=,进而可得结论;(Ⅱ)分情况对直线AB斜率的存在性进行讨论:①当直线AB的斜率存在时,联立直线AB与椭圆方程,利用韦达定理计算可得当λ=1时•+λ•=﹣3;②当直线AB的斜率不存在时,•+λ•=﹣3.【解答】解:(Ⅰ)根据题意,可得C(0,﹣b),D(0,b),又∵P(0,1),且•=﹣1,∴,解得a=2,b=,∴椭圆E的方程为:+=1;(Ⅱ)结论:存在常数λ=1,使得•+λ•为定值﹣3.理由如下:对直线AB斜率的存在性进行讨论:①当直线AB的斜率存在时,设直线AB的方程为y=kx+1,A(x1,y1),B(x2,y2),联立,消去y并整理得:(1+2k2)x2+4kx﹣2=0,∵△=(4k)2+8(1+2k2)>0,∴x1+x2=﹣,x1x2=﹣,从而•+λ•=x1x2+y1y2+λ[x1x2+(y1﹣1)(y2﹣1)]=(1+λ)(1+k2)x1x2+k(x1+x2)+1==﹣﹣λ﹣2.∴当λ=1时,﹣﹣λ﹣2=﹣3,此时•+λ•=﹣3为定值;②当直线AB的斜率不存在时,直线AB即为直线CD,此时•+λ•=+=﹣2﹣1=﹣3;故存在常数λ=1,使得•+λ•为定值﹣3.【点评】本题考查椭圆的标准方程、直线方程等基础知识,考查推理论证能力、运算求解能力,考查数形结合、化归与转化、特殊与一般、分类与整合等数学思想,注意解题方法的积累,属于难题.21.(14分)(2015•四川)已知函数f(x)=﹣2xlnx+x2﹣2ax+a2,其中a>0.(Ⅰ)设g(x)是f(x)的导函数,讨论g(x)的单调性;(Ⅱ)证明:存在a∈(0,1),使得f(x)≥0恒成立,且f(x)=0在区间(1,+∞)内有唯一解.【分析】(I)函数f(x)=﹣2xlnx+x2﹣2ax+a2,其中a>0.可得:x>0.g(x)=f′(x)=2(x﹣1﹣lnx﹣a),可得g′(x)==,分别解出g′(x)<0,g′(x)>0,即可得出单调性.(II)由f′(x)=2(x﹣1﹣lnx﹣a)=0,可得a=x﹣1﹣lnx,代入f(x)可得:u(x)=(1+lnx)2﹣2xlnx,利用函数零点存在定理可得:存在x0∈(1,e),使得u(x0)=0,令a0=x0﹣1﹣lnx0=v(x0),再利用导数研究其单调性即可得出.【解答】(I)解:函数f(x)=﹣2xlnx+x2﹣2ax+a2,其中a>0.可得:x>0.g(x)=f′(x)=2(x﹣1﹣lnx﹣a),∴g′(x)==,当0<x<1时,g′(x)<0,函数g(x)单调递减;当1<x时,g′(x)>0,函数g(x)单调递增.(II)证明:由f′(x)=2(x﹣1﹣lnx﹣a)=0,解得a=x﹣1﹣lnx,令u(x)=﹣2xlnx+x2﹣2(x﹣1﹣lnx)x+(x﹣1﹣lnx)2=(1+lnx)2﹣2xlnx,则u(1)=1>0,u(e)=2(2﹣e)<0,∴存在x0∈(1,e),使得u(x0)=0,令a0=x0﹣1﹣lnx0=v(x0),其中v(x)=x﹣1﹣lnx(x≥1),由v′(x)=1﹣≥0,可得:函数v(x)在区间(1,+∞)上单调递增.∴0=v(1)<a0=v(x0)<v(e)=e﹣2<1,即a0∈(0,1),当a=a0时,有f′(x0)=0,f (x0)=u(x0)=0.再由(I)可知:f′(x)在区间(1,+∞)上单调递增,当x∈(1,x0)时,f′(x)<0,∴f(x)>f(x0)=0;当x∈(x0,+∞)时,f′(x)>0,∴f(x)>f(x0)=0;又当x∈(0,1],f(x)=﹣2xlnx>0.故当x∈(0,+∞)时,f(x)≥0恒成立.综上所述:存在a∈(0,1),使得f(x)≥0恒成立,且f(x)=0在区间(1,+∞)内有唯一解.【点评】本题考查了导数的运算法则、函数的零点、利用导数研究函数的单调性极值,考查了分类讨论思想方法、推理能力与计算能力,属于难题.参与本试卷答题和审题的老师有:gongjy;changq;刘长柏;1619495736;qiss;w3239003;sdpyqzh;maths;sllwyn;双曲线;LOL;cst;沂蒙松(排名不分先后)菁优网2016年8月29日。

2015年高考文科数学四川卷(含详细答案)

2015年高考文科数学四川卷(含详细答案)
2
13.已知sin2cos0,则2sincoscos2的值是___________.
14.在三棱柱ABCABC中,BAC90,其正视图和侧视图都是边长为1的正方形,
111
俯视图是直角边的长为1的等腰直角三角形,设点M,N,P分别是棱AB,BC,
BC的中点,则三棱锥PAMN的体积是__________.
__1.设集合A{x|1x2},集合B{x|1x3},则AB()
__
_答
_--------------------x|1x3}B.{x|1x1}C.{x|1x2}D.{x|2x3}
__



--------------------试题卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题).第Ⅰ卷1至3页,第Ⅱ卷4
至6页,共6页.满分150分.考试时间120分钟.考生作答时,须将答案答在答题卡上.
在本试题卷、草稿纸上答题无效.考试结束后,将本试卷和答题卡一并交回.
卷第Ⅰ卷(选择题共50分)
注意事项:
必须使用2B铅笔在答题卡上将所选答案对应的标号涂黑.
第Ⅰ卷共10小题.
准一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有
(Ⅱ)证明:存在a(0,1),使得f(x)≥0恒成立,且f(x)0在区间(1,)内有唯一
解.
5.下列函数中,最小正周期为π的奇函数是()
注意事项:
必须使用0.5毫米黑色墨迹签字笔在答题卡上题目所指示的答题区域内作答.作
图题可先用铅笔绘出,确认后再用0.5毫米黑色墨迹签字笔描清楚.答在试题卷、草稿
纸上无效.
_--------------------
__

考--------------------

2015年四川省高考数学试卷文科

2015年四川省高考数学试卷文科

2015年四川省高考数学试卷(文科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)(2015•四川)设集合M={x|﹣1<x<2},集合N={x|1<x<3},则M∪N=()A.{x|﹣1<x<3}B.{x|﹣1<x<2}C.{x|1<x<3}D.{x|1<x<2}2.(5分)(2015•四川)设向量=(2,4)与向量=(x,6)共线,则实数x=()A.2 B.3 C.4 D.63.(5分)(2015•四川)某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是()A.抽签法B.系统抽样法C.分层抽样法D.随机数法4.(5分)(2015•四川)设a,b为正实数,则“a>b>1”是“log2a>log2b>0”的()A.充要条件 B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件5.(5分)(2015•四川)下列函数中,最小正周期为π且图象关于原点对称的函数是()A.y=cos(2x+)B.y=sin(2x+)C.y=sin2x+cos2x D.y=sinx+cosx6.(5分)(2015•四川)执行如图所示的程序框图,输出s的值为()A.﹣B.C.﹣D.7.(5分)(2015•四川)过双曲线x2﹣=1的右焦点且与x轴垂直的直线,交该双曲线的两条渐近线于A、B两点,则|AB|=()A.B.2C.6 D.48.(5分)(2015•四川)某食品保鲜时间y(单位:小时)与储藏温度x(单位:℃)满足函数关系y=e kx+b(e=2.718…为自然对数的底数,k,b为常数).若该食品在0℃的保鲜时间是192小时,在22℃的保鲜时间是48小时,则该食品在33℃的保鲜时间是()A.16小时B.20小时C.24小时D.28小时9.(5分)(2015•四川)设实数x,y满足,则xy的最大值为()A.B.C.12 D.1610.(5分)(2015•四川)设直线l与抛物线y2=4x相交于A、B两点,与圆(x﹣5)2+y2=r2(r>0)相切于点M,且M为线段AB的中点,若这样的直线l恰有4条,则r的取值范围是()A.(1,3)B.(1,4)C.(2,3)D.(2,4)二、填空题:本大题共5小题,每小题5分,共25分.11.(5分)(2015•四川)设i是虚数单位,则复数i﹣=.12.(5分)(2015•四川)lg0.01+log216的值是.13.(5分)(2015•四川)已知sinα+2cosα=0,则2sinαcosα﹣cos2α的值是.14.(5分)(2015•四川)在三棱住ABC﹣A1B1C1中,∠BAC=90°,其正视图和侧视图都是边长为1的正方形,俯视图是直角边长为1的等腰直角三角形,设M,N,P分别是AB,BC,B1C1的中点,则三棱锥P﹣AMN的体积是.15.(5分)(2015•四川)已知函数f(x)=2x,g(x)=x2+ax(其中a∈R).对于不相等的实数x1、x2,设m=,n=.现有如下命题:①对于任意不相等的实数x1、x2,都有m>0;②对于任意的a及任意不相等的实数x1、x2,都有n>0;③对于任意的a,存在不相等的实数x1、x2,使得m=n;④对于任意的a,存在不相等的实数x1、x2,使得m=﹣n.其中的真命题有(写出所有真命题的序号).三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(12分)(2015•四川)设数列{a n}(n=1,2,3…)的前n项和S n,满足S n=2a n﹣a1,且a1,a2+1,a3成等差数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设数列的前n项和为T n,求T n.17.(12分)(2015•四川)一辆小客车上有5名座位,其座号为1,2,3,4,5,乘客P1,P2,P3,P4,P5的座位号分别为1,2,3,4,5.他们按照座位号顺序先后上车,乘客P1因身体原因没有坐自己1号座位,这时司机要求余下的乘客按以下规则就坐:如果自己的座位空着,就只能坐自己的座位.如果自己的座位已有乘客就坐,就在这5个座位的剩余空位中选择座位.(Ⅰ)若乘客P1坐到了3号座位,其他乘客按规则就座,则此时共有4种坐法.下表给出其中两种坐法,请填入余下两种坐法(将乘客就坐的座位号填入表中空格处)乘客P1P2P3P4P5座位号3 2 1 4 5 3 2 4 5 1(Ⅱ)若乘客P1坐到了2号座位,其他乘客按规则就坐,求乘客P5坐到5号座位的概率.18.(12分)(2015•四川)一个正方体的平面展开图及该正方体的直观图的示意图如图所示.(Ⅰ)请按字母F ,G,H标记在正方体相应地顶点处(不需要说明理由)(Ⅱ)判断平面BEG 与平面ACH 的位置关系.并说明你的结论.(Ⅲ)证明:直线DF⊥平面BEG.19.(12分)(2015•四川)已知A、B 、C为△ABC的内角,tanA,tanB是关于方程x2+px ﹣p+1=0(p∈R)两个实根.(Ⅰ)求C的大小(Ⅱ)若AB=3,AC=,求p的值.20.(13分)(2015•四川)如图,椭圆E:=1(a>b>0)的离心率是,点P(0,1)在短轴CD上,且•=﹣1(Ⅰ)求椭圆E的方程;(Ⅱ)设O为坐标原点,过点P的动直线与椭圆交于A、B两点.是否存在常数λ,使得•+λ•为定值?若存在,求λ的值;若不存在,请说明理由.21.(14分)(2015•四川)已知函数f(x)=﹣2xlnx+x2﹣2ax+a2,其中a>0.(Ⅰ)设g(x)是f(x)的导函数,讨论g(x)的单调性;(Ⅱ)证明:存在a∈(0,1),使得f(x)≥0恒成立,且f(x)=0在区间(1,+∞)内有唯一解.2015年四川省高考数学试卷(文科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)(2015•四川)设集合M={x|﹣1<x<2},集合N={x|1<x<3},则M∪N=()A.{x|﹣1<x<3}B.{x|﹣1<x<2}C.{x|1<x<3}D.{x|1<x<2}【分析】根据并集的定义解答即可.【解答】解:根据并集的定义知:M∪N={x|﹣1<x<3},故选:A.【点评】本题考查了并集运算,熟练掌握并集的定义是解题的关键.2.(5分)(2015•四川)设向量=(2,4)与向量=(x,6)共线,则实数x=()A.2 B.3 C.4 D.6【分析】利用向量共线的充要条件得到坐标的关系求出x.【解答】解;因为向量=(2,4)与向量=(x,6)共线,所以4x=2×6,解得x=3;故选:B.【点评】本题考查了向量共线的坐标关系;如果两个向量向量=(x,y)与向量=(m,n)共线,那么xn=ym.3.(5分)(2015•四川)某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是()A.抽签法B.系统抽样法C.分层抽样法D.随机数法【分析】若总体由差异明显的几部分组成时,经常采用分层抽样的方法进行抽样.【解答】解:我们常用的抽样方法有:简单随机抽样、分层抽样和系统抽样,而事先已经了解到三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,这种方式具有代表性,比较合理.故选:C.【点评】本小题考查抽样方法,主要考查抽样方法,属基本题.4.(5分)(2015•四川)设a,b为正实数,则“a>b>1”是“log2a>log2b>0”的()A.充要条件 B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件【分析】先求出log2a>log2b>0的充要条件,再和a>b>1比较,从而求出答案.【解答】解:若log2a>log2b>0,则a>b>1,故“a>b>1”是“log2a>log2b>0”的充要条件,故选:A.【点评】本题考察了充分必要条件,考察对数函数的性质,是一道基础题.5.(5分)(2015•四川)下列函数中,最小正周期为π且图象关于原点对称的函数是()A.y=cos(2x+)B.y=sin(2x+)C.y=sin2x+cos2x D.y=sinx+cosx【分析】求出函数的周期,函数的奇偶性,判断求解即可.【解答】解:y=cos(2x+)=﹣sin2x,是奇函数,函数的周期为:π,满足题意,所以A正确y=sin(2x+)=cos2x,函数是偶函数,周期为:π,不满足题意,所以B不正确;y=sin2x+cos2x=sin(2x+),函数是非奇非偶函数,周期为π,所以C不正确;y=sinx+cosx=sin(x+),函数是非奇非偶函数,周期为2π,所以D不正确;故选:A.【点评】本题考查两角和与差的三角函数,函数的奇偶性以及红丝带周期的求法,考查计算能力.6.(5分)(2015•四川)执行如图所示的程序框图,输出s的值为()A.﹣B.C.﹣D.【分析】模拟执行程序框图,依次写出每次循环得到的k的值,当k=5时满足条件k>4,计算并输出S的值为.【解答】解:模拟执行程序框图,可得k=1k=2不满足条件k>4,k=3不满足条件k>4,k=4不满足条件k>4,k=5满足条件k>4,S=sin=,输出S的值为.故选:D.【点评】本题主要考查了循环结构的程序框图,属于基础题.7.(5分)(2015•四川)过双曲线x2﹣=1的右焦点且与x轴垂直的直线,交该双曲线的两条渐近线于A、B两点,则|AB|=()A.B.2C.6 D.4【分析】求出双曲线的渐近线方程,求出AB的方程,得到AB坐标,即可求解|AB|.【解答】解:双曲线x2﹣=1的右焦点(2,0),渐近线方程为y=,过双曲线x2﹣=1的右焦点且与x轴垂直的直线,x=2,可得y A=2,y B=﹣2,∴|AB|=4.故选:D.【点评】本题考查双曲线的简单性质的应用,考查基本知识的应用.8.(5分)(2015•四川)某食品保鲜时间y(单位:小时)与储藏温度x(单位:℃)满足函数关系y=e kx+b(e=2.718…为自然对数的底数,k,b为常数).若该食品在0℃的保鲜时间是192小时,在22℃的保鲜时间是48小时,则该食品在33℃的保鲜时间是()A.16小时B.20小时C.24小时D.28小时【分析】由已知中保鲜时间与储藏温度是一种指数型关系,由已知构造方程组求出e k,e b 的值,运用指数幂的运算性质求解e33k+b即可.【解答】解:y=e kx+b(e=2.718…为自然对数的底数,k,b为常数).当x=0时,e b=192,当x=22时e22k+b=48,∴e22k==e11k=e b=192当x=33时,e33k+b=(e k)33•(e b)=()3×192=24故选:C【点评】本题考查的知识点是函数解析式的运用,列出方程求解即可,注意整体求解.9.(5分)(2015•四川)设实数x,y满足,则xy的最大值为()A.B.C.12 D.16【分析】作出不等式组对应的平面区域,利用基本不等式进行求解即可.【解答】解:作出不等式组对应的平面区域如图;由图象知y≤10﹣2x,则xy≤x(10﹣2x)=2x(5﹣x))≤2()2=,当且仅当x=,y=5时,取等号,经检验(,5)在可行域内,故xy的最大值为,故选:A【点评】本题主要考查线性规划以及基本不等式的应用,利用数形结合是解决本题的关键.10.(5分)(2015•四川)设直线l与抛物线y2=4x相交于A、B两点,与圆(x﹣5)2+y2=r2(r>0)相切于点M,且M为线段AB的中点,若这样的直线l恰有4条,则r的取值范围是()A.(1,3)B.(1,4)C.(2,3)D.(2,4)【分析】先确定M的轨迹是直线x=3,代入抛物线方程可得y=±2,所以交点与圆心(5,0)的距离为4,即可得出结论.【解答】解:设A(x1,y1),B(x2,y2),M(x0,y0),斜率存在时,设斜率为k,则y12=4x1,y22=4x2,则,相减,得(y1+y2)(y1﹣y2)=4(x1﹣x2),当l的斜率存在时,利用点差法可得ky0=2,因为直线与圆相切,所以=﹣,所以x0=3,即M的轨迹是直线x=3.将x=3代入y2=4x,得y2=12,∴,∵M在圆上,∴,∴r2=,∵直线l恰有4条,∴y0≠0,∴4<r2<16,故2<r<4时,直线l有2条;斜率不存在时,直线l有2条;所以直线l恰有4条,2<r<4,故选:D.【点评】本题考查直线与抛物线、圆的位置关系,考查点差法,考查学生分析解决问题的能力,属于中档题.二、填空题:本大题共5小题,每小题5分,共25分.11.(5分)(2015•四川)设i是虚数单位,则复数i﹣=2i.【分析】直接利用复数的运算法则求解即可.【解答】解:复数i﹣=i﹣=i+i=2i.故答案为:2i.【点评】本题考查复数的基本运算,考查计算能力.12.(5分)(2015•四川)lg0.01+log216的值是2.【分析】直接利用对数的运算法则化简求解即可.【解答】解:lg0.01+log216=﹣2+4=2.故答案为:2.【点评】本题考查对数的运算法则的应用,考查计算能力.13.(5分)(2015•四川)已知sinα+2cosα=0,则2sinαcosα﹣cos2α的值是﹣1.【分析】已知等式移项变形求出tanα的值,原式利用同角三角函数间的基本关系化简,将tanα的值代入计算即可求出值.【解答】解:∵sinα+2cosα=0,即sinα=﹣2cosα,∴tanα=﹣2,则原式=====﹣1,故答案为:﹣1【点评】此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.14.(5分)(2015•四川)在三棱住ABC﹣A1B1C1中,∠BAC=90°,其正视图和侧视图都是边长为1的正方形,俯视图是直角边长为1的等腰直角三角形,设M,N,P分别是AB,BC,B1C1的中点,则三棱锥P﹣AMN的体积是.【分析】判断三视图对应的几何体的形状,画出图形,利用三视图的数据,求解三棱锥P﹣AMN的体积即可.【解答】解:由三视图可知,可知几何体的图形如图:几何体是底面为等腰直角三角形直角边长为1,高为1的直三棱柱,所求三棱锥的高为NP=1,底面AMN的面积是底面三角形ABC的,所求三棱锥P﹣AMN的体积是:=.故答案为:.【点评】本题考查三视图与直观图的关系,组作出几何体的直观图是解题的关键之一,考查几何体的体积的求法,考查空间想象能力以及计算能力.15.(5分)(2015•四川)已知函数f(x)=2x,g(x)=x2+ax(其中a∈R).对于不相等的实数x1、x2,设m=,n=.现有如下命题:①对于任意不相等的实数x1、x2,都有m>0;②对于任意的a及任意不相等的实数x1、x2,都有n>0;③对于任意的a,存在不相等的实数x1、x2,使得m=n;④对于任意的a,存在不相等的实数x1、x2,使得m=﹣n.其中的真命题有①④(写出所有真命题的序号).【分析】运用指数函数的单调性,即可判断①;由二次函数的单调性,即可判断②;通过函数h(x)=x2+ax﹣2x,求出导数判断单调性,即可判断③;通过函数h(x)=x2+ax+2x,求出导数判断单调性,即可判断④.【解答】解:对于①,由于2>1,由指数函数的单调性可得f(x)在R上递增,即有m>0,则①正确;对于②,由二次函数的单调性可得g(x)在(﹣∞,﹣)递减,在(﹣,+∞)递增,则n>0不恒成立,则②错误;对于③,由m=n,可得f(x1)﹣f(x2)=g(x1)﹣g(x2),即为g(x1)﹣f(x1)=g(x2)﹣f(x2),考查函数h(x)=x2+ax﹣2x,h′(x)=2x+a﹣2x ln2,当a→﹣∞,h′(x)小于0,h(x)单调递减,则③错误;对于④,由m=﹣n,可得f(x1)﹣f(x2)=﹣[g(x1)﹣g(x2)],考查函数h(x)=x2+ax+2x,h′(x)=2x+a+2x ln2,对于任意的a,h′(x)不恒大于0或小于0,则④正确.故答案为:①④.【点评】本题考查函数的单调性及运用,注意运用指数函数和二次函数的单调性,以及导数判断单调性是解题的关键.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(12分)(2015•四川)设数列{a n}(n=1,2,3…)的前n项和S n,满足S n=2a n﹣a1,且a1,a2+1,a3成等差数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设数列的前n项和为T n,求T n.【分析】(Ⅰ)由条件S n满足S n=2a n﹣a1,求得数列{a n}为等比数列,且公比q=2;再根据a1,a2+1,a3成等差数列,求得首项的值,可得数列{a n}的通项公式.(Ⅱ)由于=,利用等比数列的前n项和公式求得数列的前n项和T n.【解答】解:(Ⅰ)由已知S n=2a n﹣a1,有a n=S n﹣S n﹣1=2a n﹣2a n﹣1(n≥2),即a n=2a n﹣1(n≥2),从而a2=2a1,a3=2a2=4a1.又因为a1,a2+1,a3成等差数列,即a1+a3=2(a2+1)所以a1+4a1=2(2a1+1),解得:a1=2.所以,数列{a n}是首项为2,公比为2的等比数列.故a n=2n.(Ⅱ)由(Ⅰ)得=,所以T n=+++…+==1﹣.【点评】本题主要考查数列的前n项和与第n项的关系,等差、等比数列的定义和性质,等比数列的前n项和公式,属于中档题.17.(12分)(2015•四川)一辆小客车上有5名座位,其座号为1,2,3,4,5,乘客P1,P2,P3,P4,P5的座位号分别为1,2,3,4,5.他们按照座位号顺序先后上车,乘客P1因身体原因没有坐自己1号座位,这时司机要求余下的乘客按以下规则就坐:如果自己的座位空着,就只能坐自己的座位.如果自己的座位已有乘客就坐,就在这5个座位的剩余空位中选择座位.(Ⅰ)若乘客P1坐到了3号座位,其他乘客按规则就座,则此时共有4种坐法.下表给出其中两种坐法,请填入余下两种坐法(将乘客就坐的座位号填入表中空格处)乘客P1P2P3P4P5座位号3 2 1 4 5 3 2 4 5 132415 32541(Ⅱ)若乘客P1坐到了2号座位,其他乘客按规则就坐,求乘客P5坐到5号座位的概率.【分析】(Ⅰ)根据题意,可以完成表格;(Ⅱ)列表,确定所有可能的坐法,再求出乘客P1坐到5号座位的概率.【解答】解:(Ⅰ)余下两种坐法:乘客P1P2P3P4P5座位号3 2 1 4 5 3 2 4 5 1 3 2 4 1 5 3 2 5 4 1(Ⅱ)若乘客P1坐到了2号座位,其他乘客按规则就坐,则所有可能的坐法可用下表表示为乘客P1P2P3P4P5座位号2 1 3 4 5 2 3 1 4 5 2 3 4 1 5 2 3 4 5 1 2 3 5 4 1 2 4 3 1 5 2 4 3 5 1 2 5 3 4 1于是,所有可能的坐法共8种,设“乘客P5坐到5号座位”为事件A,则事件A中的基本事件的个数为4,所以P(A)==.答:乘客P5坐到5号座位的概率是.【点评】本题考查概率的运用,考查学生的计算能力,列表确定基本事件的个数是关键.18.(12分)(2015•四川)一个正方体的平面展开图及该正方体的直观图的示意图如图所示.(Ⅰ)请按字母F,G,H标记在正方体相应地顶点处(不需要说明理由)(Ⅱ)判断平面BEG与平面ACH的位置关系.并说明你的结论.(Ⅲ)证明:直线DF⊥平面BEG.【分析】(Ⅰ)直接标出点F,G,H的位置.(Ⅱ)先证BCHE为平行四边形,可知BE∥平面ACH,同理可证BG∥平面ACH,即可证明平面BEG∥平面ACH.(Ⅲ)连接FH,由DH⊥EG,又DH⊥EG,EG⊥FH,可证EG⊥平面BFHD,从而可证DF⊥EG,同理DF⊥BG,即可证明DF⊥平面BEG.【解答】解:(Ⅰ)点F,G,H的位置如图所示.(Ⅱ)平面BEG∥平面ACH,证明如下:∵ABCD﹣EFGH为正方体,∴BC∥FG,BC=EH,又FG∥EH,FG=EH,∴BC∥EH,BC=EH,∴BCHE为平行四边形.∴BE∥CH,又CH⊂平面ACH,BE⊄平面ACH,∴BE∥平面ACH,同理BG∥平面ACH,又BE∩BG=B,∴平面BEG∥平面ACH.(Ⅲ)连接FH,∵ABCD﹣EFGH为正方体,∴DH⊥EG,又∵EG⊂平面EFGH,∴DH⊥EG,又EG⊥FH,EG∩FH=O,∴EG⊥平面BFHD,又DF⊂平面BFHD,∴DF⊥EG,同理DF⊥BG,又∵EG∩BG=G,∴DF⊥平面BEG.【点评】本题主要考查了简单空间图形的直观图、空间线面平行与垂直的判定与性质等基础知识,考查了空间想象能力和推理论证能力,属于中档题.19.(12分)(2015•四川)已知A、B、C为△ABC的内角,tanA,tanB是关于方程x2+px ﹣p+1=0(p∈R)两个实根.(Ⅰ)求C的大小(Ⅱ)若AB=3,AC=,求p的值.【分析】(Ⅰ)由判别式△=3p2+4p﹣4≥0,可得p≤﹣2,或p≥,由韦达定理,有tanA+tanB=﹣p,tanAtanB=1﹣p,由两角和的正切函数公式可求tanC=﹣tan(A+B)=,结合C 的范围即可求C的值.(Ⅱ)由正弦定理可求sinB==,解得B,A,由两角和的正切函数公式可求tanA=tan75°,从而可求p=﹣(tanA+tanB)的值.【解答】解:(Ⅰ)由已知,方程x2+px﹣p+1=0的判别式:△=(p)2﹣4(﹣p+1)=3p2+4p﹣4≥0,所以p≤﹣2,或p≥.由韦达定理,有tanA+tanB=﹣p,tanAtanB=1﹣p.所以,1﹣tanAtanB=1﹣(1﹣p)=p≠0,从而tan(A+B)==﹣=﹣.所以tanC=﹣tan(A+B)=,所以C=60°.(Ⅱ)由正弦定理,可得sinB===,解得B=45°,或B=135°(舍去).于是,A=180°﹣B﹣C=75°.则tanA=tan75°=tan(45°+30°)===2+.所以p=﹣(tanA+tanB)=﹣(2+)=﹣1﹣.【点评】本题主要考查了和角公式、诱导公式、正弦定理等基础知识,考查了运算求解能力,考查了函数与方程、化归与转化等数学思想的应用,属于中档题.20.(13分)(2015•四川)如图,椭圆E:=1(a>b>0)的离心率是,点P(0,1)在短轴CD上,且•=﹣1(Ⅰ)求椭圆E的方程;(Ⅱ)设O为坐标原点,过点P的动直线与椭圆交于A、B两点.是否存在常数λ,使得•+λ•为定值?若存在,求λ的值;若不存在,请说明理由.【分析】(Ⅰ)通过e=、•=﹣1,计算即得a=2、b=,进而可得结论;(Ⅱ)分情况对直线AB斜率的存在性进行讨论:①当直线AB的斜率存在时,联立直线AB与椭圆方程,利用韦达定理计算可得当λ=1时•+λ•=﹣3;②当直线AB的斜率不存在时,•+λ•=﹣3.【解答】解:(Ⅰ)根据题意,可得C(0,﹣b),D(0,b),又∵P(0,1),且•=﹣1,∴,解得a=2,b=,∴椭圆E的方程为:+=1;(Ⅱ)结论:存在常数λ=1,使得•+λ•为定值﹣3.理由如下:对直线AB斜率的存在性进行讨论:①当直线AB的斜率存在时,设直线AB的方程为y=kx+1,A(x1,y1),B(x2,y2),联立,消去y并整理得:(1+2k2)x2+4kx﹣2=0,∵△=(4k)2+8(1+2k2)>0,∴x1+x2=﹣,x1x2=﹣,从而•+λ•=x1x2+y1y2+λ[x1x2+(y1﹣1)(y2﹣1)]=(1+λ)(1+k2)x1x2+k(x1+x2)+1==﹣﹣λ﹣2.∴当λ=1时,﹣﹣λ﹣2=﹣3,此时•+λ•=﹣3为定值;②当直线AB的斜率不存在时,直线AB即为直线CD,此时•+λ•=+=﹣2﹣1=﹣3;故存在常数λ=1,使得•+λ•为定值﹣3.【点评】本题考查椭圆的标准方程、直线方程等基础知识,考查推理论证能力、运算求解能力,考查数形结合、化归与转化、特殊与一般、分类与整合等数学思想,注意解题方法的积累,属于难题.21.(14分)(2015•四川)已知函数f(x)=﹣2xlnx+x2﹣2ax+a2,其中a>0.(Ⅰ)设g(x)是f(x)的导函数,讨论g(x)的单调性;(Ⅱ)证明:存在a∈(0,1),使得f(x)≥0恒成立,且f(x)=0在区间(1,+∞)内有唯一解.【分析】(I)函数f(x)=﹣2xlnx+x2﹣2ax+a2,其中a>0.可得:x>0.g(x)=f′(x)=2(x﹣1﹣lnx﹣a),可得g′(x)==,分别解出g′(x)<0,g′(x)>0,即可得出单调性.(II)由f′(x)=2(x﹣1﹣lnx﹣a)=0,可得a=x﹣1﹣lnx,代入f(x)可得:u(x)=(1+lnx)2﹣2xlnx,利用函数零点存在定理可得:存在x0∈(1,e),使得u(x0)=0,令a0=x0﹣1﹣lnx0=v(x0),再利用导数研究其单调性即可得出.【解答】(I)解:函数f(x)=﹣2xlnx+x2﹣2ax+a2,其中a>0.可得:x>0.g(x)=f′(x)=2(x﹣1﹣lnx﹣a),∴g′(x)==,当0<x<1时,g′(x)<0,函数g(x)单调递减;当1<x时,g′(x)>0,函数g(x)单调递增.(II)证明:由f′(x)=2(x﹣1﹣lnx﹣a)=0,解得a=x﹣1﹣lnx,令u(x)=﹣2xlnx+x2﹣2(x﹣1﹣lnx)x+(x﹣1﹣lnx)2=(1+lnx)2﹣2xlnx,则u(1)=1>0,u(e)=2(2﹣e)<0,∴存在x0∈(1,e),使得u(x0)=0,令a0=x0﹣1﹣lnx0=v(x0),其中v(x)=x﹣1﹣lnx(x≥1),由v′(x)=1﹣≥0,可得:函数v(x)在区间(1,+∞)上单调递增.∴0=v(1)<a0=v(x0)<v(e)=e﹣2<1,即a0∈(0,1),当a=a0时,有f′(x0)=0,f (x0)=u(x0)=0.再由(I)可知:f′(x)在区间(1,+∞)上单调递增,当x∈(1,x0)时,f′(x)<0,∴f(x)>f(x0)=0;当x∈(x0,+∞)时,f′(x)>0,∴f(x)>f(x0)=0;又当x∈(0,1],f(x)=﹣2xlnx>0.故当x∈(0,+∞)时,f(x)≥0恒成立.综上所述:存在a∈(0,1),使得f(x)≥0恒成立,且f(x)=0在区间(1,+∞)内有唯一解.【点评】本题考查了导数的运算法则、函数的零点、利用导数研究函数的单调性极值,考查了分类讨论思想方法、推理能力与计算能力,属于难题.参与本试卷答题和审题的老师有:gongjy;changq;刘长柏;1619495736;qiss;w3239003;sdpyqzh;maths;sllwyn;双曲线;LOL;cst;沂蒙松(排名不分先后)菁优网2016年8月29日。

2015年四川省高考数学试卷文科解析

2015年四川省高考数学试卷文科解析

2015年四川省高考数学试卷(文科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)(2015•四川)设集合A={x|﹣1<x<2},集合B={x|1<x<3},则A∪B=()A.{x|﹣1<x<3} B.{x|﹣1<x<1}C.{x|1<x<2} D.{x|2<x<3}2.(5分)(2015•四川)设向量=(2,4)与向量=(x,6)共线,则实数x=()A. 2 B. 3 C. 4 D. 63.(5分)(2015•四川)某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是()A.抽签法B.系统抽样法C.分层抽样法D.随机数法4.(5分)(2015•四川)设a,b为正实数,则“a>b>1”是“log2a>log2b>0”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件5.(5分)(2015•四川)下列函数中,最小正周期为π且图象关于原点对称的函数是()A.y=cos(2x+)B.y=sin(2x+)C.y=sin2x+cos2x D.y=sinx+cosx6.(5分)(2015•四川)执行如图所示的程序框图,输出s的值为()A.﹣B.C.﹣D.7.(5分)(2015•四川)过双曲线x2﹣=1的右焦点且与x轴垂直的直线,交该双曲线的两条渐近线于A、B两点,则|AB|=()A.B.2C. 6 D.48.(5分)(2015•四川)某食品保鲜时间y(单位:小时)与储藏温度x(单位:℃)满足函数关系y=e kx+b(e=2.718…为自然对数的底数,k,b为常数).若该食品在0℃的保鲜时间是192小时,在22℃的保鲜时间是48小时,则该食品在33℃的保鲜时间是()A.16小时B.20小时C.24小时D.28小时9.(5分)(2015•四川)设实数x,y满足,则xy的最大值为()A.B.C.12 D.1610.(5分)(2015•四川)设直线l与抛物线y2=4x相交于A、B两点,与圆(x﹣5)2+y2=r2(r>0)相切于点M,且M为线段AB的中点,若这样的直线l恰有4条,则r的取值范围是()A.(1,3)B.(1,4)C.(2,3)D.(2,4)二、填空题:本大题共5小题,每小题5分,共25分.11.(5分)(2015•四川)设i是虚数单位,则复数i﹣=.12.(5分)(2015•四川)lg0.01+log216的值是.13.(5分)(2015•四川)已知sinα+2cosα=0,则2sinαcosα﹣cos2α的值是.14.(5分)(2015•四川)在三棱住ABC﹣A1B1C1中,∠BAC=90°,其正视图和侧视图都是边长为1的正方形,俯视图是直角边长为1的等腰直角三角形,设M,N,P分别是AB,BC,B1C1的中点,则三棱锥P﹣A1MN的体积是.15.(5分)(2015•四川)已知函数f(x)=2x,g(x)=x2+ax(其中a∈R).对于不相等的实数x1、x2,设m=,n=.现有如下命题:①对于任意不相等的实数x1、x2,都有m>0;②对于任意的a及任意不相等的实数x1、x2,都有n>0;③对于任意的a,存在不相等的实数x1、x2,使得m=n;④对于任意的a,存在不相等的实数x1、x2,使得m=﹣n.其中的真命题有(写出所有真命题的序号).三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(12分)(2015•四川)设数列{a n}(n=1,2,3…)的前n项和S n,满足S n=2a n﹣a1,且a1,a2+1,a3成等差数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设数列的前n项和为T n,求T n.17.(12分)(2015•四川)一辆小客车上有5名座位,其座号为1,2,3,4,5,乘客P1,P2,P3,P4,P5的座位号分别为1,2,3,4,5.他们按照座位号顺序先后上车,乘客P1因身体原因没有坐自己1号座位,这时司机要求余下的乘客按以下规则就坐:如果自己的座位空着,就只能坐自己的座位.如果自己的座位已有乘客就坐,就在这5个座位的剩余空位中选择座位.(Ⅰ)若乘客P1坐到了3号座位,其他乘客按规则就座,则此时共有4种坐法.下表给出其中两种坐法,请填入余下两种坐法(将乘客就坐的座位号填入表中空格处)乘客P1P2P3P4P5座位号 3 2 1 4 53 245 1(Ⅱ)若乘客P1坐到了2号座位,其他乘客按规则就坐,求乘客P1坐到5号座位的概率.18.(12分)(2015•四川)一个正方体的平面展开图及该正方体的直观图的示意图如图所示.(Ⅰ)请按字母F,G,H标记在正方体相应地顶点处(不需要说明理由)(Ⅱ)判断平面BEG与平面ACH的位置关系.并说明你的结论.(Ⅲ)证明:直线DF⊥平面BEG.19.(12分)(2015•四川)已知A、B、C为△ABC的内角,tanA,tanB是关于方程x2+px ﹣p+1=0(p∈R)两个实根.(Ⅰ)求C的大小(Ⅱ)若AB=3,AC=,求p的值.20.(13分)(2015•四川)如图,椭圆E:=1(a>b>0)的离心率是,点P(0,1)在短轴CD上,且•=﹣1(Ⅰ)求椭圆E的方程;(Ⅱ)设O为坐标原点,过点P的动直线与椭圆交于A、B两点.是否存在常数λ,使得•+λ•为定值?若存在,求λ的值;若不存在,请说明理由.21.(14分)(2015•四川)已知函数f(x)=﹣2xlnx+x2﹣2ax+a2,其中a>0.(Ⅰ)设g(x)是f(x)的导函数,讨论g(x)的单调性;(Ⅱ)证明:存在a∈(0,1),使得f(x)≥0恒成立,且f(x)=0在区间(1,+∞)内有唯一解.2015年四川省高考数学试卷(文科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)(2015•四川)设集合A={x|﹣1<x<2},集合B={x|1<x<3},则A∪B=()A.{x|﹣1<x<3} B.{x|﹣1<x<1}C.{x|1<x<2} D.{x|2<x<3}考点:并集及其运算.专题:集合.分析:直接利用并集求解法则求解即可.解答:解:集合A={x|﹣1<x<2},集合B={x|1<x<3},则A∪B={x|﹣1<x<3}.故选:A.点评:本题考查并集的求法,基本知识的考查.2.(5分)(2015•四川)设向量=(2,4)与向量=(x,6)共线,则实数x=()A. 2 B. 3 C. 4 D. 6考点:平面向量共线(平行)的坐标表示.专题:平面向量及应用.分析:利用向量共线的充要条件得到坐标的关系求出x.解答:解;因为向量=(2,4)与向量=(x,6)共线,所以4x=2×6,解得x=3;故选:B.点评:本题考查了向量共线的坐标关系;如果两个向量向量=(x,y)与向量=(m,n)共线,那么xn=yn.3.(5分)(2015•四川)某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是()A.抽签法B.系统抽样法C.分层抽样法D.随机数法考点:收集数据的方法.专题:应用题;概率与统计.分析:若总体由差异明显的几部分组成时,经常采用分层抽样的方法进行抽样.解答:解:我们常用的抽样方法有:简单随机抽样、分层抽样和系统抽样,而事先已经了解到三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,这种方式具有代表性,比较合理.故选:C.点评:本小题考查抽样方法,主要考查抽样方法,属基本题.4.(5分)(2015•四川)设a,b为正实数,则“a>b>1”是“log2a>log2b>0”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件考点:充要条件.专题:简易逻辑.分析:先求出log2a>log2b>0的充要条件,再和a>b>1比较,从而求出答案.解答:解:若log2a>log2b>0,则a>b>1,故“a>b>1”是“log2a>log2b>0”的充要条件,故选:A.点评:本题考察了充分必要条件,考察对数函数的性质,是一道基础题.5.(5分)(2015•四川)下列函数中,最小正周期为π且图象关于原点对称的函数是()A.y=cos(2x+)B.y=sin(2x+)C.y=sin2x+cos2x D.y=sinx+cosx考点:两角和与差的正弦函数;三角函数的周期性及其求法.专题:三角函数的图像与性质.分析:求出函数的周期,函数的奇偶性,判断求解即可.解答:解:y=cos(2x+)=﹣sin2x,是奇函数,函数的周期为:π,满足题意,所以A正确y=sin(2x+)=cos2x,函数是偶函数,周期为:π,不满足题意,所以B不正确;y=sin2x+cos2x=sin(2x+),函数是非奇非偶函数,周期为π,所以C不正确;y=sinx+cosx=sin(x+),函数是非奇非偶函数,周期为2π,所以D不正确;故选:A.点评:本题考查两角和与差的三角函数,函数的奇偶性以及红丝带周期的求法,考查计算能力.6.(5分)(2015•四川)执行如图所示的程序框图,输出s的值为()A.﹣B.C.﹣D.考点:程序框图.专题:图表型;算法和程序框图.分析:模拟执行程序框图,依次写出每次循环得到的k的值,当k=5时满足条件k>4,计算并输出S的值为.解答:解:模拟执行程序框图,可得k=1k=2不满足条件k>4,k=3不满足条件k>4,k=4不满足条件k>4,k=5满足条件k>4,S=sin=,输出S的值为.故选:D.点评:本题主要考查了循环结构的程序框图,属于基础题.7.(5分)(2015•四川)过双曲线x2﹣=1的右焦点且与x轴垂直的直线,交该双曲线的两条渐近线于A、B两点,则|AB|=()A.B.2C. 6 D.4考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:求出双曲线的渐近线方程,求出AB的方程,得到AB坐标,即可求解|AB|.解答:解:双曲线x2﹣=1的右焦点(2,0),渐近线方程为y=,过双曲线x2﹣=1的右焦点且与x轴垂直的直线,x=2,可得y A=2,y B=﹣2,∴|AB|=4.故选:D.点评:本题考查双曲线的简单性质的应用,考查基本知识的应用.8.(5分)(2015•四川)某食品保鲜时间y(单位:小时)与储藏温度x(单位:℃)满足函数关系y=e kx+b(e=2.718…为自然对数的底数,k,b为常数).若该食品在0℃的保鲜时间是192小时,在22℃的保鲜时间是48小时,则该食品在33℃的保鲜时间是()A.16小时B.20小时C.24小时D.28小时考点:指数函数的实际应用.专题:函数的性质及应用.分析:由已知中保鲜时间与储藏温度是一种指数型关系,由已知构造方程组求出e k,e b的值,运用指数幂的运算性质求解e33k+b即可.解答:解:y=e kx+b(e=2.718…为自然对数的底数,k,b为常数).当x=0时,e b=192,当x=22时e22k+b=48,∴e16k==e11k=e b=192当x=33时,e33k+b=(e k)33•(e b)=()3×192=24故选:C点评:本题考查的知识点是函数解析式的运用,列出方程求解即可,注意整体求解.9.(5分)(2015•四川)设实数x,y满足,则xy的最大值为()A.B.C.12 D.16考点:简单线性规划.专题:不等式的解法及应用.分析:作出不等式组对应的平面区域,利用基本不等式进行求解即可.解答:解:作出不等式组对应的平面区域如图;则动点P在BC上运动时,xy取得最大值,此时2x+y=10,则xy==,当且仅当2x=y=5,即x=,y=5时,取等号,故xy的最大值为,故选:A点评:本题主要考查线性规划以及基本不等式的应用,利用数形结合是解决本题的关键.10.(5分)(2015•四川)设直线l与抛物线y2=4x相交于A、B两点,与圆(x﹣5)2+y2=r2(r>0)相切于点M,且M为线段AB的中点,若这样的直线l恰有4条,则r的取值范围是()A.(1,3)B.(1,4)C.(2,3)D.(2,4)考点:抛物线的简单性质;直线与圆的位置关系.专题:综合题;直线与圆;圆锥曲线的定义、性质与方程.分析:先确定M的轨迹是直线x=3,代入抛物线方程可得y=±2,所以交点与圆心(5,0)的距离为4,即可得出结论.解答:解:设A(x1,y1),B(x2,y2),M(x0,y0),则斜率存在时,设斜率为k,则y12=4x1,y22=4x2,利用点差法可得ky0=2,因为直线与圆相切,所以=﹣,所以x0=3,即M的轨迹是直线x=3,代入抛物线方程可得y=±2,所以交点与圆心(5,0)的距离为4,所以2<r<4时,直线l有2条;斜率不存在时,直线l有2条;所以直线l恰有4条,2<r<4,故选:D.点评:本题考查直线与抛物线、圆的位置关系,考查点差法,考查学生分析解决问题的能力,属于中档题.二、填空题:本大题共5小题,每小题5分,共25分.11.(5分)(2015•四川)设i是虚数单位,则复数i﹣=2i.考复数代数形式的混合运算.点:专题:数系的扩充和复数.分析:直接利用复数的运算法则求解即可.解答:解:复数i﹣=i﹣=i+i=2i.故答案为:2i.点评:本题考查复数的基本运算,考查计算能力.12.(5分)(2015•四川)lg0.01+log216的值是2.考点:对数的运算性质.专题:函数的性质及应用.分析:直接利用对数的运算法则化简求解即可.解答:解:lg0.01+log216=﹣2+4=2.故答案为:2.点评:本题考查对数的运算法则的应用,考查计算能力.13.(5分)(2015•四川)已知sinα+2cosα=0,则2sinαcosα﹣cos2α的值是﹣1.考点:同角三角函数基本关系的运用.专题:三角函数的求值.分析:已知等式移项变形求出tanα的值,原式利用同角三角函数间的基本关系化简,将tanα的值代入计算即可求出值.解答:解:∵sinα+2cosα=0,即sinα=﹣2cosα,∴tanα=﹣2,则原式=====﹣1,故答案为:﹣1点评:此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.14.(5分)(2015•四川)在三棱住ABC﹣A1B1C1中,∠BAC=90°,其正视图和侧视图都是边长为1的正方形,俯视图是直角边长为1的等腰直角三角形,设M,N,P分别是AB,BC,B1C1的中点,则三棱锥P﹣A1MN的体积是.考点:棱柱、棱锥、棱台的体积.专题:空间位置关系与距离.分析:判断三视图对应的几何体的形状,画出图形,利用三视图的数据,求解三棱锥P﹣A1MN的体积即可.解答:解:由三视图可知,可知几何体的图形如图:几何体是底面为等腰直角三角形直角边长为1,高为1的直三棱柱,所求三棱锥的高为NP=1,底面AMN的面积是底面三角形ABC的,所求三棱锥P﹣A1MN的体积是:=.故答案为:.点评:本题考查三视图与直观图的关系,组作出几何体的直观图是解题的关键之一,考查几何体的体积的求法,考查空间想象能力以及计算能力.15.(5分)(2015•四川)已知函数f(x)=2x,g(x)=x2+ax(其中a∈R).对于不相等的实数x1、x2,设m=,n=.现有如下命题:①对于任意不相等的实数x1、x2,都有m>0;②对于任意的a及任意不相等的实数x1、x2,都有n>0;③对于任意的a,存在不相等的实数x1、x2,使得m=n;④对于任意的a,存在不相等的实数x1、x2,使得m=﹣n.其中的真命题有①④(写出所有真命题的序号).考点:命题的真假判断与应用.专函数的性质及应用.题:分析:运用指数函数的单调性,即可判断①;由二次函数的单调性,即可判断②;通过函数h(x)=x2+ax﹣2x,求出导数判断单调性,即可判断③;通过函数h(x)=x2+ax+2x,求出导数判断单调性,即可判断④.解答:解:对于①,由于2>1,由指数函数的单调性可得f(x)在R上递增,即有m>0,则①正确;对于②,由二次函数的单调性可得g(x)在(﹣∞,﹣)递减,在(,+∞)递减,则n>0不恒成立,则②错误;对于③,由m=n,可得f(x1)﹣f(x2)=g(x1)﹣g(x2),考查函数h(x)=x2+ax ﹣2x,h′(x)=2x+a﹣2x ln2,当a→﹣∞,h′(x)小于0,h(x)单调递减,则③错误;对于④,由m=﹣n,可得f(x1)﹣f(x2)=﹣[g(x1)﹣g(x2)],考查函数h(x)=x2+ax+2x,h′(x)=2x+a+2x ln2,对于任意的a,h′(x)不恒大于0或小于0,则④正确.故答案为:①④.点评:本题考查函数的单调性及运用,注意运用指数函数和二次函数的单调性,以及导数判断单调性是解题的关键.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(12分)(2015•四川)设数列{a n}(n=1,2,3…)的前n项和S n,满足S n=2a n﹣a1,且a1,a2+1,a3成等差数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设数列的前n项和为T n,求T n.考点:等差数列的前n项和;等差数列的通项公式.专题:等差数列与等比数列.分析:(Ⅰ)由条件S n满足S n=2a n﹣a1,求得数列{a n}为等比数列,且公比q=2;再根据a1,a2+1,a3成等差数列,求得首项的值,可得数列{a n}的通项公式.(Ⅱ)由于=,利用等比数列的前n项和公式求得数列的前n项和T n.解答:解:(Ⅰ)由已知S n=2a n﹣a1,有a n=S n﹣S n﹣1=2a n﹣2a n﹣1(n≥2),即a n=2a n﹣1(n≥2),从而a2=2a1,a3=2a2=4a1.又因为a1,a2+1,a3成等差数列,即a1+a3=2(a2+1)所以a1+4a1=2(2a1+1),解得:a1=2.所以,数列{a n}是首项为2,公比为2的等比数列.故a n=2n.(Ⅱ)由(Ⅰ)得=,所以T n=+++…+==1﹣.点评:本题主要考查数列的前n项和与第n项的关系,等差、等比数列的定义和性质,等比数列的前n项和公式,属于中档题.17.(12分)(2015•四川)一辆小客车上有5名座位,其座号为1,2,3,4,5,乘客P1,P2,P3,P4,P5的座位号分别为1,2,3,4,5.他们按照座位号顺序先后上车,乘客P1因身体原因没有坐自己1号座位,这时司机要求余下的乘客按以下规则就坐:如果自己的座位空着,就只能坐自己的座位.如果自己的座位已有乘客就坐,就在这5个座位的剩余空位中选择座位.(Ⅰ)若乘客P1坐到了3号座位,其他乘客按规则就座,则此时共有4种坐法.下表给出其中两种坐法,请填入余下两种坐法(将乘客就坐的座位号填入表中空格处)乘客P1P2P3P4P5座位号 3 2 1 4 53 245 13241532541(Ⅱ)若乘客P1坐到了2号座位,其他乘客按规则就坐,求乘客P1坐到5号座位的概率.考点:概率的应用.专题:应用题;概率与统计.分析:(Ⅰ)根据题意,可以完成表格;(Ⅱ)列表,确定所有可能的坐法,再求出乘客P1坐到5号座位的概率.解答:解:(Ⅰ)余下两种坐法:乘客P1P2P3P4P5座位号 3 2 1 4 53 245 13 24 1 53 2 54 1(Ⅱ)若乘客P1坐到了2号座位,其他乘客按规则就坐,则所有可能的坐法可用下表表示为乘客P1P2P3P4P5座位号 2 1 3 4 52 3 1 4 52 3 4 1 52 3 4 5 12 3 5 4 12 43 1 52 43 5 12 534 1于是,所有可能的坐法共8种,设“乘客P1坐到5号座位”为事件A,则事件A中的基本事件的个数为4,所以P(A)==.答:乘客P1坐到5号座位的概率是.点评:本题考查概率的运用,考查学生的计算能力,列表确定基本事件的个数是关键.18.(12分)(2015•四川)一个正方体的平面展开图及该正方体的直观图的示意图如图所示.(Ⅰ)请按字母F,G,H标记在正方体相应地顶点处(不需要说明理由)(Ⅱ)判断平面BEG与平面ACH的位置关系.并说明你的结论.(Ⅲ)证明:直线DF⊥平面BEG.考点:直线与平面垂直的判定;平面与平面之间的位置关系.专题:空间位置关系与距离.分析:(Ⅰ)直接标出点F,G,H的位置.(Ⅱ)先证BCHE为平行四边形,可知BE∥平面ACH,同理可证BG∥平面ACH,即可证明平面BEG∥平面ACH.(Ⅲ)连接FH,由DH⊥EG,又DH⊥EG,EG⊥FH,可证EG⊥平面BFHD,从而可证DF⊥EG,同理DF⊥BG,即可证明DF⊥平面BEG.解答:解:(Ⅰ)点F,G,H的位置如图所示.(Ⅱ)平面BEG∥平面ACH,证明如下:∵ABCD﹣EFGH为正方体,∴BC∥FG,BC=EH,又FG∥EH,FG=EH,∴BC∥EH,BC=EH,∴BCHE为平行四边形.∴BE∥CH,又CH⊂平面ACH,BE⊄平面ACH,∴BE∥平面ACH,同理BG∥平面ACH,又BE∩BG=B,∴平面BEG∥平面ACH.(Ⅲ)连接FH,∵ABCD﹣EFGH为正方体,∴DH⊥EG,又∵EG⊂平面EFGH,∴DH⊥EG,又EG⊥FH,EG∩FH=O,∴EG⊥平面BFHD,又DF⊂平面BFHD,∴DF⊥EG,同理DF⊥BG,又∵EG∩BG=G,∴DF⊥平面BEG.点评:本题主要考查了简单空间图形的直观图、空间线面平行与垂直的判定与性质等基础知识,考查了空间想象能力和推理论证能力,属于中档题.19.(12分)(2015•四川)已知A、B、C为△ABC的内角,tanA,tanB是关于方程x2+px ﹣p+1=0(p∈R)两个实根.(Ⅰ)求C的大小(Ⅱ)若AB=3,AC=,求p的值.考点:正弦定理的应用;两角和与差的正切函数.专题:函数的性质及应用;解三角形.分析:(Ⅰ)由判别式△=3p2+4p﹣4≥0,可得p≤﹣2,或p≥,由韦达定理,有tanA+tanB=﹣p,tanAtanB=1﹣p,由两角和的正切函数公式可求tanC=﹣tan(A+B)=,结合C的范围即可求C的值.(Ⅱ)由正弦定理可求sinB==,解得B,A,由两角和的正切函数公式可求tanA=tan75°,从而可求p=﹣(tanA+tanB)的值.解解:(Ⅰ)由已知,方程x2+px﹣p+1=0的判别式:△=(p)2﹣4(﹣p+1)=3p2+4p答:﹣4≥0,所以p≤﹣2,或p≥.由韦达定理,有tanA+tanB=﹣p,tanAtanB=1﹣p.所以,1﹣tanAtanB=1﹣(1﹣p)=p≠0,从而tan(A+B)==﹣=﹣.所以tanC=﹣tan(A+B)=,所以C=60°.(Ⅱ)由正弦定理,可得sinB===,解得B=45°,或B=135°(舍去).于是,A=180°﹣B﹣C=75°.则tanA=tan75°=tan(45°+30°)===2+.所以p=﹣(tanA+tanB)=﹣(2+)=﹣1﹣.点评:本题主要考查了和角公式、诱导公式、正弦定理等基础知识,考查了运算求解能力,考查了函数与方程、化归与转化等数学思想的应用,属于中档题.20.(13分)(2015•四川)如图,椭圆E:=1(a>b>0)的离心率是,点P(0,1)在短轴CD上,且•=﹣1(Ⅰ)求椭圆E的方程;(Ⅱ)设O为坐标原点,过点P的动直线与椭圆交于A、B两点.是否存在常数λ,使得•+λ•为定值?若存在,求λ的值;若不存在,请说明理由.考点:直线与圆锥曲线的综合问题.专题:向量与圆锥曲线;圆锥曲线的定义、性质与方程.分析:(Ⅰ)通过e=、•=﹣1,计算即得a=2、b=,进而可得结论;(Ⅱ)分情况对直线AB斜率的存在性进行讨论:①当直线AB的斜率存在时,联立直线AB与椭圆方程,利用韦达定理计算可得当λ=1时•+λ•=﹣3;②当直线AB的斜率不存在时,•+λ•=﹣3.解答:解:(Ⅰ)根据题意,可得C(0,﹣b),D(0,b),又∵P(0,1),且•=﹣1,∴,解得a=2,b=,∴椭圆E的方程为:+=1;(Ⅱ)结论:存在常数λ=1,使得•+λ•为定值﹣3.理由如下:对直线AB斜率的存在性进行讨论:①当直线AB的斜率存在时,设直线AB的方程为y=kx+1,A(x1,y1),B(x2,y2),联立,消去y并整理得:(1+2k2)x2+4kx﹣2=0,∵△=(4k)2+8(1+2k2)>0,∴x1+x2=﹣,x1x2=﹣,从而•+λ•=x1x2+y1y2+λ[x1x2+(y1﹣1)(y2﹣1)]=(1+λ)(1+k2)x1x2+k(x1+x2)+1==﹣﹣λ﹣2.∴当λ=1时,﹣﹣λ﹣2=﹣3,此时•+λ•=﹣3为定值;②当直线AB的斜率不存在时,直线AB即为直线CD,此时•+λ•=+=﹣2﹣1=﹣3;故存在常数λ=1,使得•+λ•为定值﹣3.点评:本题考查椭圆的标准方程、直线方程等基础知识,考查推理论证能力、运算求解能力,考查数形结合、化归与转化、特殊与一般、分类与整合等数学思想,注意解题方法的积累,属于难题.21.(14分)(2015•四川)已知函数f(x)=﹣2xlnx+x2﹣2ax+a2,其中a>0.(Ⅰ)设g(x)是f(x)的导函数,讨论g(x)的单调性;(Ⅱ)证明:存在a∈(0,1),使得f(x)≥0恒成立,且f(x)=0在区间(1,+∞)内有唯一解.考点:利用导数研究函数的极值;利用导数研究函数的单调性.专题:导数的综合应用.分析:(I)函数f(x)=﹣2xlnx+x2﹣2ax+a2,其中a>0.可得:x>0.g(x)=f′(x)=2(x﹣1﹣lnx﹣a),可得g′(x)==,分别解出g′(x)<0,g′(x)>0,即可得出单调性.(II)由f′(x)=2(x﹣1﹣lnx﹣a)=0,可得a=x﹣1﹣lnx,代入f(x)可得:u(x)=(1+lnx)2﹣2xlnx,利用函数零点存在定理可得:存在x0∈(1,e),使得u(x0)=0,令a0=x0﹣1﹣lnx0=v(x0),再利用导数研究其单调性即可得出.解答:(I)解:函数f(x)=﹣2xlnx+x2﹣2ax+a2,其中a>0.可得:x>0.g(x)=f′(x)=2(x﹣1﹣lnx﹣a),∴g′(x)==,当0<x<1时,g′(x)<0,函数g(x)单调递减;当1<x时,g′(x)>0,函数g(x)单调递增.(II)证明:由f′(x)=2(x﹣1﹣lnx﹣a)=0,解得a=x﹣1﹣lnx,令u(x)=﹣2xlnx+x2﹣2(x﹣1﹣lnx)x+(x﹣1﹣lnx)2=(1+lnx)2﹣2xlnx,则u(1)=1>0,u(e)=2(2﹣e)<0,∴存在x0∈(1,e),使得u(x0)=0,令a0=x0﹣1﹣lnx0=v(x0),其中v(x)=x﹣1﹣lnx(x≥1),由v′(x)=1﹣≥0,可得:函数v(x)在区间(1,+∞)上单调递增.∴0=v(1)<a0=v(x0)<v(e)=e﹣2<1,即a0∈(0,1),当a=a0时,有f′(x0)=0,f(x0)=u(x0)=0.再由(I)可知:f′(x)在区间(1,+∞)上单调递增,当x∈(1,x0)时,f′(x)<0,∴f(x)>f(x0)=0;当x∈(x0,+∞)时,f′(x)>0,∴f(x)>f(x0)=0;又当x∈(0,1],f(x)=﹣2xlnx>0.故当x∈(0,+∞)时,f(x)≥0恒成立.综上所述:存在a∈(0,1),使得f(x)≥0恒成立,且f(x)=0在区间(1,+∞)内有唯一解.点评:本题考查了导数的运算法则、函数的零点、利用导数研究函数的单调性极值,考查了分类讨论思想方法、推理能力与计算能力,属于难题.参与本试卷答题和审题的老师有:qiss;changq;刘长柏;1619495736;w3239003;sdpyqzh;maths;sllwyn;双曲线;LOL;cst;孙佑中(排名不分先后)菁优网2015年6月14日。

2015年四川省高考数学试卷(文科)附详细解析(1)

2015年四川省高考数学试卷(文科)附详细解析(1)

2015年四川省高考数学试卷(文科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的.2.(5分)(2015•四川)设向量=(2,4)与向量=(x,6)共线,则实数x=()2x+﹣7.(5分)(2015•四川)过双曲线x2﹣=1的右焦点且与x轴垂直的直线,交该双曲线的两条渐近线于A、B8.(5分)(2015•四川)某食品保鲜时间y(单位:小时)与储藏温度x(单位:℃)满足函数关系y=e(e=2.718…为自然对数的底数,k,b为常数).若该食品在0℃的保鲜时间是192小时,在22℃的保鲜时间是48小时,则9.(5分)(2015•四川)设实数x,y满足,则xy的最大值为()10.(5分)(2015•四川)设直线l与抛物线y=4x相交于A、B两点,与圆(x﹣5)+y=r(r>0)相切于点M,11.(5分)(2015•四川)设i是虚数单位,则复数i﹣=.12.(5分)(2015•四川)lg0.01+log216的值是.13.(5分)(2015•四川)已知sinα+2cosα=0,则2sinαcosα﹣cos2α的值是.14.(5分)(2015•四川)在三棱住ABC﹣A1B1C1中,∠BAC=90°,其正视图和侧视图都是边长为1的正方形,俯视图是直角边长为1的等腰直角三角形,设M,N,P分别是AB,BC,B1C1的中点,则三棱锥P﹣AMN的体积是.15.(5分)(2015•四川)已知函数f(x)=2x,g(x)=x2+ax(其中a∈R).对于不相等的实数x1、x2,设m=,n=.现有如下命题:①对于任意不相等的实数x1、x2,都有m>0;②对于任意的a及任意不相等的实数x1、x2,都有n>0;③对于任意的a,存在不相等的实数x1、x2,使得m=n;④对于任意的a,存在不相等的实数x1、x2,使得m=﹣n.其中的真命题有(写出所有真命题的序号).三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(12分)(2015•四川)设数列{a n}(n=1,2,3…)的前n项和S n,满足S n=2a n﹣a1,且a1,a2+1,a3成等差数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设数列的前n项和为T n,求T n.17.(12分)(2015•四川)一辆小客车上有5名座位,其座号为1,2,3,4,5,乘客P1,P2,P3,P4,P5的座位号分别为1,2,3,4,5.他们按照座位号顺序先后上车,乘客P1因身体原因没有坐自己1号座位,这时司机要求余下的乘客按以下规则就坐:如果自己的座位空着,就只能坐自己的座位.如果自己的座位已有乘客就坐,就在这5个座位的剩余空位中选择座位.(Ⅰ)若乘客P1坐到了3号座位,其他乘客按规则就座,则此时共有4种坐法.下表给出其中两种坐法,请填(Ⅱ)若乘客P1坐到了2号座位,其他乘客按规则就坐,求乘客P5坐到5号座位的概率.18.(12分)(2015•四川)一个正方体的平面展开图及该正方体的直观图的示意图如图所示.(Ⅰ)请按字母F,G,H标记在正方体相应地顶点处(不需要说明理由)(Ⅱ)判断平面BEG与平面ACH的位置关系.并说明你的结论.(Ⅲ)证明:直线DF⊥平面BEG.19.(12分)(2015•四川)已知A、B、C为△ABC的内角,tanA,tanB是关于方程x2+px﹣p+1=0(p∈R)两个实根.(Ⅰ)求C的大小(Ⅱ)若AB=3,AC=,求p的值.20.(13分)(2015•四川)如图,椭圆E:=1(a>b>0)的离心率是,点P(0,1)在短轴CD上,且•=﹣1(Ⅰ)求椭圆E的方程;(Ⅱ)设O为坐标原点,过点P的动直线与椭圆交于A、B两点.是否存在常数λ,使得•+λ•为定值?若存在,求λ的值;若不存在,请说明理由.21.(14分)(2015•四川)已知函数f(x)=﹣2xlnx+x2﹣2ax+a2,其中a>0.(Ⅰ)设g(x)是f(x)的导函数,讨论g(x)的单调性;(Ⅱ)证明:存在a∈(0,1),使得f(x)≥0恒成立,且f(x)=0在区间(1,+∞)内有唯一解.2015年四川省高考数学试卷(文科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的.2.(5分)(2015•四川)设向量=(2,4)与向量=(x,6)共线,则实数x=()解;因为向量=)与向量=本题考查了向量共线的坐标关系;如果两个向量向量=)与向量)2x+))y=sin2x+cos2x=2x+y=sinx+cosx=).=,的值为.7.(5分)(2015•四川)过双曲线x2﹣=1的右焦点且与x轴垂直的直线,交该双曲线的两条渐近线于A、B=1y=﹣,kx+b(e=2.718…为自然对数的底数,k,b为常数).若该食品在0℃的保鲜时间是192小时,在22℃的保鲜时间是48小时,则=(9.(5分)(2015•四川)设实数x,y满足,则xy的最大值为()),x=经检验(,的最大值为,10.(5分)(2015•四川)设直线l与抛物线y=4x相交于A、B两点,与圆(x﹣5)+y=r(r>0)相切于点M,,因为直线与圆相切,所以,所以交点与圆心(11.(5分)(2015•四川)设i是虚数单位,则复数i﹣=2i.=i﹣==14.(5分)(2015•四川)在三棱住ABC﹣A1B1C1中,∠BAC=90°,其正视图和侧视图都是边长为1的正方形,俯视图是直角边长为1的等腰直角三角形,设M,N,P分别是AB,BC,B1C1的中点,则三棱锥P﹣AMN的体积是.的的体积是:=.故答案为:.12m=,n=.现有如下命题:①对于任意不相等的实数x1、x2,都有m>0;②对于任意的a及任意不相等的实数x1、x2,都有n>0;③对于任意的a,存在不相等的实数x1、x2,使得m=n;④对于任意的a,存在不相等的实数x1、x2,使得m=﹣n.)递减,在(16.(12分)(2015•四川)设数列{a n}(n=1,2,3…)的前n项和S n,满足S n=2a n﹣a1,且a1,a2+1,a3成等差数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设数列的前n项和为T n,求T n.(Ⅱ)由于=,利用等比数列的前项和公式求得数列(Ⅱ)由(Ⅰ)得=,++=17.(12分)(2015•四川)一辆小客车上有5名座位,其座号为1,2,3,4,5,乘客P1,P2,P3,P4,P5的座位号分别为1,2,3,4,5.他们按照座位号顺序先后上车,乘客P1因身体原因没有坐自己1号座位,这时司机要求余下的乘客按以下规则就坐:如果自己的座位空着,就只能坐自己的座位.如果自己的座位已有乘客就坐,就在这5个座位的剩余空位中选择座位.(Ⅰ)若乘客P1坐到了3号座位,其他乘客按规则就座,则此时共有4种坐法.下表给出其中两种坐法,请填=.号座位的概率是.(Ⅰ)请按字母F,G,H标记在正方体相应地顶点处(不需要说明理由)(Ⅱ)判断平面BEG与平面ACH的位置关系.并说明你的结论.两个实根.(Ⅰ)求C的大小,由韦达定理,有,结合=﹣px(.p===,=.((.20.(13分)(2015•四川)如图,椭圆E:=1(a>b>0)的离心率是,点P(0,1)在短轴CD上,且•=﹣1(Ⅰ)求椭圆E的方程;(Ⅱ)设O为坐标原点,过点P的动直线与椭圆交于A、B两点.是否存在常数λ,使得•+λ•为定值?e=•=,进而可得结论;时•λ••+λ=•=,解得,的方程为:=1,使得+λ•联立,﹣从而+λ•﹣时,﹣此时+λ•此时+λ•=,使得•+λ为定值﹣21.(14分)(2015•四川)已知函数f(x)=﹣2xlnx+x﹣2ax+a,其中a>0.(Ⅰ)设g(x)是f(x)的导函数,讨论g(x)的单调性;==,≥2015年6月29日。

2015四川高考数学试题(文科解析版)

2015四川高考数学试题(文科解析版)

2015年普通高等学校招生全国统一考试(四川卷)数 学(文史类)第Ⅰ卷(选择题 共50分)一、选择题:本大题共10个小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合{|(1)(2)0}A x x x =+-<,集合{|13}B x x =<<,则A B =(A ){}1|3x x -<< (B ){}|11x x -<< (C ){}|12x x << (D ){}|23x x <<【答案】A【解析】∵{|12}A x x =-<<,{|13}B x x =<<,{|13}A B x x ∴=-<<,选A.2.设向量(2,4)a =与向量(,6)bx =共线,则实数x =(A)2 (B)3 (C) 4 (D)6【答案】B【解析】由共线向量()11,a x y =,()22,b x y =的坐标运算可知12210x y x y -=, 即26403x x ⨯-=⇒=,选B.3.某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是 (A)抽签法 (B )系统抽样法 (C )分层抽样法 (D )随机数法 【答案】C【解析】因为是为了解各年级之间的学生视力是否存在显著差异,所以选择分层抽样法。

4.设a ,b 为正实数,则“1a b >>”是“22log log a b >”的(A)充要条件 (B)充分不必要条件 (C)必要不充分条件 (D)既不充分也不必要条件 【答案】A【解析】由已知当1a b >>时,22log log 0a b >>∴,“1a b >>”是“22log log a b >”的充分条件。

反过来由22log log 0a b >>,可得1a b >>,∴“1a b >>”是“22log log a b >”的必要条件,综上,“1a b >>”是“22log log a b >”的充要条件,选A.5.下列函数中,最小正周期为π的奇函数是A.sin(22y x π=+B.cos(22y x π=+C.sin 2cos 2y x x =+D.sin cos y x x =+ 【答案】A【解析】A. cos(2)sin 22y x x π=+=-,可知其满足题意;B. sin(2cos 22y x x π=+=,可知其最小正周期为π,偶函数;C. sin 2cos 2)4y x x x π=+=+,最小正周期为π,非奇非偶函数;D. sin cos )4y x x x π=+=+,可知其最小正周期为2π,非奇非偶函数.选A6.执行如图所示的程序框图,输出S 的值是(A) 2- (B) 2(C)-12 (D) 12【答案】D【解析】易得当k =1,2,3,4时执行的是否,当k =5时就执行是的步骤, 所以51sin62S π==,选D. 7.过双曲线2213y x -=的右焦点且与x 轴垂直的直线,交该双曲线的两条渐近线于A ,B 两点,则AB =(A(B) (C )6 (D)【答案】D【解析】由题意可知双曲线的渐近线方程为y =,且右焦点(2,0),则直线2x =与两条渐近线的交点分别为A ,B (2,-,∴||AB =,选D. 8. 某食品的保鲜时间y (单位:小时)与储藏温度x (单位:°C )满足函数关系kx by e+=( e=2.718⋅⋅⋅ 为自然对数的底数,k ,b 为常数)。

2015年四川省高考数学试卷(文科)

2015年四川省高考数学试卷(文科)

2015年四川省高考数学试卷(文科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的.2.(5分)(2015•四川)设向量=(2,4)与向量=(x,6)共线,则实数x=()3.(5分)(2015•四川)某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽)6.(5分)(2015•四川)执行如图所示的程序框图,输出s的值为()﹣7.(5分)(2015•四川)过双曲线x2﹣=1的右焦点且与x轴垂直的直线,交该双曲线的B8.(5分)(2015•四川)某食品保鲜时间y(单位:小时)与储藏温度x(单位:℃)满足函数关系y=e kx+b(e=2.718…为自然对数的底数,k,b为常数).若该食品在0℃的保鲜时间是9.(5分)(2015•四川)设实数x,y满足,则xy的最大值为()B10.(5分)(2015•四川)设直线l与抛物线y2=4x相交于A、B两点,与圆(x﹣5)2+y2=r2(r>0)相切于点M,且M为线段AB的中点,若这样的直线l恰有4条,则r的取值范围二、填空题:本大题共5小题,每小题5分,共25分.11.(5分)(2015•四川)设i是虚数单位,则复数i﹣=.12.(5分)(2015•四川)lg0.01+log216的值是.13.(5分)(2015•四川)已知sinα+2cosα=0,则2sinαcosα﹣cos2α的值是.14.(5分)(2015•四川)在三棱住ABC﹣A1B1C1中,∠BAC=90°,其正视图和侧视图都是边长为1的正方形,俯视图是直角边长为1的等腰直角三角形,设M,N,P分别是AB,BC,B1C1的中点,则三棱锥P﹣AMN的体积是.15.(5分)(2015•四川)已知函数f(x)=2x,g(x)=x2+ax(其中a∈R).对于不相等的实数x1、x2,设m=,n=.现有如下命题:①对于任意不相等的实数x1、x2,都有m>0;②对于任意的a及任意不相等的实数x1、x2,都有n>0;③对于任意的a,存在不相等的实数x1、x2,使得m=n;④对于任意的a,存在不相等的实数x1、x2,使得m=﹣n.其中的真命题有(写出所有真命题的序号).三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(12分)(2015•四川)设数列{a n}(n=1,2,3…)的前n项和S n,满足S n=2a n﹣a1,且a1,a2+1,a3成等差数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设数列的前n项和为T n,求T n.17.(12分)(2015•四川)一辆小客车上有5名座位,其座号为1,2,3,4,5,乘客P1,P2,P3,P4,P5的座位号分别为1,2,3,4,5.他们按照座位号顺序先后上车,乘客P1因身体原因没有坐自己1号座位,这时司机要求余下的乘客按以下规则就坐:如果自己的座位空着,就只能坐自己的座位.如果自己的座位已有乘客就坐,就在这5个座位的剩余空位中选择座位.(Ⅰ)若乘客P1坐到了3号座位,其他乘客按规则就座,则此时共有4种坐法.下表给出其155号座位的概率.18.(12分)(2015•四川)一个正方体的平面展开图及该正方体的直观图的示意图如图所示.(Ⅰ)请按字母F,G,H标记在正方体相应地顶点处(不需要说明理由)(Ⅱ)判断平面BEG与平面ACH的位置关系.并说明你的结论.(Ⅲ)证明:直线DF⊥平面BEG.19.(12分)(2015•四川)已知A、B、C为△ABC的内角,tanA,tanB是关于方程x2+px ﹣p+1=0(p∈R)两个实根.(Ⅰ)求C的大小(Ⅱ)若AB=3,AC=,求p的值.20.(13分)(2015•四川)如图,椭圆E:=1(a>b>0)的离心率是,点P(0,1)在短轴CD上,且•=﹣1(Ⅰ)求椭圆E的方程;(Ⅱ)设O为坐标原点,过点P的动直线与椭圆交于A、B两点.是否存在常数λ,使得•+λ•为定值?若存在,求λ的值;若不存在,请说明理由.21.(14分)(2015•四川)已知函数f(x)=﹣2xlnx+x2﹣2ax+a2,其中a>0.(Ⅰ)设g(x)是f(x)的导函数,讨论g(x)的单调性;(Ⅱ)证明:存在a∈(0,1),使得f(x)≥0恒成立,且f(x)=0在区间(1,+∞)内有唯一解.。

2015年普通高等学校招生全国统一考试数学文试题 含解析 (四川卷)

2015年普通高等学校招生全国统一考试数学文试题 含解析 (四川卷)

2015年高考四川卷文数试题解析(精编版)(解析版)一、选择题1、设集合A={x|-1<x<2},集合B={x|1<x<3},则A∪B=( )(A){x|-1<x<3} (B){x|-1<x<1} (C){x|1<x<2} (D){x|2<x<3}【答案】A【考点定位】本题主要考查集合的概念,集合的表示方法和并集运算.【名师点睛】集合的运算通常作为试卷的第一小题,是因为概念较为简单,学生容易上手,可以让考生能够信心满满的尽快进入考试状态.另外,集合问题一般与函数、方程、不等式及其性质关联,也需要考生熟悉相关知识点和方法.本题最后求两个集合的并集,相对来说比较容易,与此相关的交集、补集等知识点也是常考点,应多加留意.属于简单题.2、设向量a=(2,4)与向量b=(x,6)共线,则实数x=( )(A)2 (B)3 (C)4 (D)6【答案】B【考点定位】本题考查平面向量的坐标表示,向量共线的性质,考查基本的运算能力.【名师点睛】平面向量的共线、垂直以及夹角问题,我们通常有两条解决通道:一是几何法,可以结合正余弦定理来处理.二是代数法,特别是非零向量的平行与垂直,一般都直接根据坐标之间的关系,两个非零向量平行时,对应坐标成比例(坐标中有0时单独讨论);两个向量垂直时,对应坐标乘积之和等于0,即通常所采用的“数量积”等于0.属于简单题.3、某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是( )(A)抽签法 (B)系统抽样法 (C)分层抽样法 (D)随机数法【答案】C【考点定位】本题考查几种抽样方法的概念、适用范围的判断,考查应用数学方法解决实际问题的能力.【名师点睛】样本抽样是现实生活中常见的事件,一般地,抽签法和随机数表法适用于样本总体较少的抽样,系统抽样法适用于要将样本总体均衡地分为n 个部分,从每一部分中按规则抽取一个个体;分层抽样法则是当总体明显的分为几个层次时,在每一个层次中按照相同的比例抽取抽取样本.本题条件适合于分层抽样的条件,故应选用分层抽样法.属于简单题.4、设a ,b 为正实数,则“a >b >1”是“log 2a >log 2b >0”的( )(A )充要条件 (B )充分不必要条件(C )必要不充分条件 (D )既不充分也不必要条件【答案】A【考点定位】本题考查对数函数的概念和性质、充要条件等基本概念,考查学生综合运用数学知识和方法解决问题的能力.【名师点睛】判断条件的充要性,必须从“充分性”和“必要性”两个方向分别判断,同时注意涉及的相关概念和方法.本题中涉及对数函数基本性质——单调性和函数值的符号,因此可以结合对数函数的图象进行判断,从而得出结论.属于简单题.5、下列函数中,最小正周期为π的奇函数是( )(A )y =sin (2x +2π) (B )y =cos (2x +2π) (C )y =sin 2x +cos 2x (D )y =sinx +cosx【答案】B【考点定位】本题考查三角函数的基本概念和性质,考查函数的周期性和奇偶性,考查简单的三角函数恒等变形能力.【名师点睛】讨论函数性质时,应该先注意定义域,在不改变定义域的前提下,将函数化简整理为标准形式,然后结合图象进行判断.本题中,C 、D 两个选项需要先利用辅助角公式整理,再结合三角函数的周期性和奇偶性(对称性)进行判断即可.属于中档题.6、执行如图所示的程序框图,输出S的值为( )(A)B(C)-12(D)12【答案】D【考点定位】本题考查循环结构形式的程序框图,考查特殊角的三角函数值,考查基本运算能力.【名师点睛】在算法的考点上,四川省以程序框图的考查为主,而考查程序框图,必定是以循环结构形式出现,它可以包括程序框图的所有结构类型.本题只需对循环后的k值进行判定,最后输出相应的三角函数值即可,属于简单题.7、过双曲线2213yx-=的右焦点且与x轴垂直的直线交该双曲线的两条渐近线于A、B两点,则|AB|=( )(A B C)6 (D【答案】D。

2015年四川省高考数学试卷(文科)附详细解析(1)

2015年四川省高考数学试卷(文科)附详细解析(1)

2015年四川省高考数学试卷(文科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)(2015•四川)设集合A={x|﹣1<x<2},集合B={x|1<x<3},则A∪B=()A.{x|﹣1<x<3}B.{x|﹣1<x<1}C.{x|1<x<2} D.{x|2<x<3}2.(5分)(2015•四川)设向量=(2,4)与向量=(x,6)共线,则实数x=()A.2B.3C.4D.63.(5分)(2015•四川)某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是()A.抽签法B.系统抽样法C.分层抽样法D.随机数法4.(5分)(2015•四川)设a,b为正实数,则“a>b>1”是“log2a>log2b>0”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件5.(5分)(2015•四川)下列函数中,最小正周期为π且图象关于原点对称的函数是()A.y=cos(2x+)B.y=sin(2x+)C.y=sin2x+cos2x D.y=sinx+cosx6.(5分)(2015•四川)执行如图所示的程序框图,输出s的值为()A.﹣B.C.﹣D.7.(5分)(2015•四川)过双曲线x2﹣=1的右焦点且与x轴垂直的直线,交该双曲线的两条渐近线于A、B两点,则|AB|=()A.B.2C.6D.48.(5分)(2015•四川)某食品保鲜时间y(单位:小时)与储藏温度x(单位:℃)满足函数关系y=e kx+b(e=2。

718…为自然对数的底数,k,b为常数).若该食品在0℃的保鲜时间是192小时,在22℃的保鲜时间是48小时,则该食品在33℃的保鲜时间是()A.16小时B.20小时C.24小时D.28小时9.(5分)(2015•四川)设实数x,y满足,则xy的最大值为()A.B.C.12 D.1610.(5分)(2015•四川)设直线l与抛物线y2=4x相交于A、B两点,与圆(x﹣5)2+y2=r2(r >0)相切于点M,且M为线段AB的中点,若这样的直线l恰有4条,则r的取值范围是()A.(1,3)B.(1,4)C.(2,3) D.(2,4)二、填空题:本大题共5小题,每小题5分,共25分.11.(5分)(2015•四川)设i是虚数单位,则复数i﹣=.12.(5分)(2015•四川)lg0.01+log216的值是.13.(5分)(2015•四川)已知sinα+2cosα=0,则2sinαcosα﹣cos2α的值是.14.(5分)(2015•四川)在三棱住ABC﹣A1B1C1中,∠BAC=90°,其正视图和侧视图都是边长为1的正方形,俯视图是直角边长为1的等腰直角三角形,设M,N,P分别是AB,BC,B1C1的中点,则三棱锥P﹣AMN的体积是.15.(5分)(2015•四川)已知函数f(x)=2x,g(x)=x2+ax(其中a∈R).对于不相等的实数x1、x2,设m=,n=.现有如下命题:①对于任意不相等的实数x1、x2,都有m>0;②对于任意的a及任意不相等的实数x1、x2,都有n>0;③对于任意的a,存在不相等的实数x1、x2,使得m=n;④对于任意的a,存在不相等的实数x1、x2,使得m=﹣n.其中的真命题有(写出所有真命题的序号).三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(12分)(2015•四川)设数列{a n}(n=1,2,3…)的前n项和S n,满足S n=2a n﹣a1,且a1,a2+1,a3成等差数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设数列的前n项和为T n,求T n.17.(12分)(2015•四川)一辆小客车上有5名座位,其座号为1,2,3,4,5,乘客P1,P2,P3,P4,P5的座位号分别为1,2,3,4,5.他们按照座位号顺序先后上车,乘客P1因身体原因没有坐自己1号座位,这时司机要求余下的乘客按以下规则就坐:如果自己的座位空着,就只能坐自己的座位.如果自己的座位已有乘客就坐,就在这5个座位的剩余空位中选择座位.(Ⅰ)若乘客P1坐到了3号座位,其他乘客按规则就座,则此时共有4种坐法.下表给出其中两种坐法,请填入余下两种坐法(将乘客就坐的座位号填入表中空格处)乘客P1P2P3P4P5座位号 3 2 1 4 53 245 1(Ⅱ)若乘客P1坐到了2号座位,其他乘客按规则就坐,求乘客P5坐到5号座位的概率.18.(12分)(2015•四川)一个正方体的平面展开图及该正方体的直观图的示意图如图所示.(Ⅰ)请按字母F,G,H标记在正方体相应地顶点处(不需要说明理由)(Ⅱ)判断平面BEG与平面ACH的位置关系.并说明你的结论.(Ⅲ)证明:直线DF⊥平面BEG.19.(12分)(2015•四川)已知A、B、C为△ABC的内角,tanA,tanB是关于方程x2+px ﹣p+1=0(p∈R)两个实根.(Ⅰ)求C的大小(Ⅱ)若AB=3,AC=,求p的值.20.(13分)(2015•四川)如图,椭圆E:=1(a>b>0)的离心率是,点P(0,1)在短轴CD上,且•=﹣1(Ⅰ)求椭圆E的方程;(Ⅱ)设O为坐标原点,过点P的动直线与椭圆交于A、B两点.是否存在常数λ,使得•+λ•为定值?若存在,求λ的值;若不存在,请说明理由.21.(14分)(2015•四川)已知函数f(x)=﹣2xlnx+x2﹣2ax+a2,其中a>0.(Ⅰ)设g(x)是f(x)的导函数,讨论g(x)的单调性;(Ⅱ)证明:存在a∈(0,1),使得f(x)≥0恒成立,且f(x)=0在区间(1,+∞)内有唯一解.2015年四川省高考数学试卷(文科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)(2015•四川)设集合A={x|﹣1<x<2},集合B={x|1<x<3},则A∪B=() A.{x|﹣1<x<3} B.{x|﹣1<x<1} C.{x|1<x<2} D.{x|2<x<3}考点:并集及其运算.专题:集合.分析:直接利用并集求解法则求解即可.解答:解:集合A={x|﹣1<x<2},集合B={x|1<x<3},则A∪B={x|﹣1<x<3}.故选:A.点评:本题考查并集的求法,基本知识的考查.2.(5分)(2015•四川)设向量=(2,4)与向量=(x,6)共线,则实数x=()A.2B.3C.4D.6考点: 平面向量共线(平行)的坐标表示.专题: 平面向量及应用.分析:利用向量共线的充要条件得到坐标的关系求出x.解答:解;因为向量=(2,4)与向量=(x,6)共线,所以4x=2×6,解得x=3;故选:B.点评:本题考查了向量共线的坐标关系;如果两个向量向量=(x,y)与向量=(m,n)共线,那么xn=yn.3.(5分)(2015•四川)某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是()A.抽签法B.系统抽样法C.分层抽样法D.随机数法考点:收集数据的方法.专题:应用题;概率与统计.分析:若总体由差异明显的几部分组成时,经常采用分层抽样的方法进行抽样.解答:解:我们常用的抽样方法有:简单随机抽样、分层抽样和系统抽样,而事先已经了解到三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,这种方式具有代表性,比较合理.故选:C.点评:本小题考查抽样方法,主要考查抽样方法,属基本题.4.(5分)(2015•四川)设a,b为正实数,则“a>b>1"是“log2a>log2b>0”的() A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件考点:充要条件.专题:简易逻辑.分析:先求出log2a>log2b>0的充要条件,再和a>b>1比较,从而求出答案.解答:解:若log2a>log2b>0,则a>b>1,故“a>b>1”是“log2a>log2b>0”的充要条件,故选:A.点评:本题考察了充分必要条件,考察对数函数的性质,是一道基础题.5.(5分)(2015•四川)下列函数中,最小正周期为π且图象关于原点对称的函数是()A.y=cos(2x+)B.y=sin(2x+)C.y=sin2x+cos2x D.y=sinx+cosx考点: 两角和与差的正弦函数;三角函数的周期性及其求法.专题:三角函数的图像与性质.分析:求出函数的周期,函数的奇偶性,判断求解即可.解答:解:y=cos(2x+)=﹣sin2x,是奇函数,函数的周期为:π,满足题意,所以A正确y=sin(2x+)=cos2x,函数是偶函数,周期为:π,不满足题意,所以B不正确;y=sin2x+cos2x=sin(2x+),函数是非奇非偶函数,周期为π,所以C不正确;y=sinx+cosx=sin(x+),函数是非奇非偶函数,周期为2π,所以D不正确;故选:A.点评:本题考查两角和与差的三角函数,函数的奇偶性以及红丝带周期的求法,考查计算能力.6.(5分)(2015•四川)执行如图所示的程序框图,输出s的值为()A.﹣B.C.﹣D.考点:程序框图.专题:图表型;算法和程序框图.分析:模拟执行程序框图,依次写出每次循环得到的k的值,当k=5时满足条件k>4,计算并输出S的值为.解答:解:模拟执行程序框图,可得k=1k=2不满足条件k>4,k=3不满足条件k>4,k=4不满足条件k>4,k=5满足条件k>4,S=sin=,输出S的值为.故选:D.点评:本题主要考查了循环结构的程序框图,属于基础题.7.(5分)(2015•四川)过双曲线x2﹣=1的右焦点且与x轴垂直的直线,交该双曲线的两条渐近线于A、B两点,则|AB|=()A.B.2C.6D.4考点:双曲线的简单性质.专题: 圆锥曲线的定义、性质与方程.分析:求出双曲线的渐近线方程,求出AB的方程,得到AB坐标,即可求解|AB|.解答:解:双曲线x2﹣=1的右焦点(2,0),渐近线方程为y=,过双曲线x2﹣=1的右焦点且与x轴垂直的直线,x=2,可得y A=2,y B=﹣2,∴|AB|=4.故选:D.点评:本题考查双曲线的简单性质的应用,考查基本知识的应用.8.(5分)(2015•四川)某食品保鲜时间y(单位:小时)与储藏温度x(单位:℃)满足函数关系y=e kx+b(e=2.718…为自然对数的底数,k,b为常数).若该食品在0℃的保鲜时间是192小时,在22℃的保鲜时间是48小时,则该食品在33℃的保鲜时间是()A.16小时B.20小时C.24小时D.28小时考点:指数函数的实际应用.专题:函数的性质及应用.分析:由已知中保鲜时间与储藏温度是一种指数型关系,由已知构造方程组求出e k,e b的值,运用指数幂的运算性质求解e33k+b即可.解答:解:y=e kx+b(e=2。

2015年四川省高考数学试卷(文科)

2015年四川省高考数学试卷(文科)

2015年四川省高考数学试卷(文科)一、选择题:本大题共10小题.每小题5分.共50分.在每小题给出的四个选项中.只有一个是符合题目要求的.1.(5分)(2015•四川)设集合M={x|﹣1<x<2}.集合N={x|1<x<3}.则M∪N=()A.{x|﹣1<x<3} B.{x|﹣1<x<2} C.{x|1<x<3} D.{x|1<x<2}2.(5分)(2015•四川)设向量=(2.4)与向量=(x.6)共线.则实数x=()A.2 B.3 C.4 D.63.(5分)(2015•四川)某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异.拟从这三个年级中按人数比例抽取部分学生进行调查.则最合理的抽样方法是()A.抽签法B.系统抽样法C.分层抽样法D.随机数法4.(5分)(2015•四川)设a.b为正实数.则“a>b>1”是“log2a>log2b>0”的()A.充要条件 B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件5.(5分)(2015•四川)下列函数中.最小正周期为π且图象关于原点对称的函数是()A.y=cos(2x+)B.y=sin(2x+)C.y=sin2x+cos2x D.y=sinx+cosx6.(5分)(2015•四川)执行如图所示的程序框图.输出s的值为()A.﹣B.C.﹣ D.7.(5分)(2015•四川)过双曲线x2﹣=1的右焦点且与x轴垂直的直线.交该双曲线的两条渐近线于A、B两点.则|AB|=()A.B.2 C.6 D.48.(5分)(2015•四川)某食品保鲜时间y(单位:小时)与储藏温度x(单位:℃)满足函数关系y=e kx+b(e=2.718…为自然对数的底数.k.b为常数).若该食品在0℃的保鲜时间是192小时.在22℃的保鲜时间是48小时.则该食品在33℃的保鲜时间是()A.16小时B.20小时C.24小时D.28小时9.(5分)(2015•四川)设实数x.y满足.则xy的最大值为()A.B.C.12 D.1610.(5分)(2015•四川)设直线l与抛物线y2=4x相交于A、B两点.与圆(x﹣5)2+y2=r2(r>0)相切于点M.且M为线段AB的中点.若这样的直线l恰有4条.则r的取值范围是()A.(1.3)B.(1.4)C.(2.3)D.(2.4)二、填空题:本大题共5小题.每小题5分.共25分.11.(5分)(2015•四川)设i是虚数单位.则复数i﹣= .12.(5分)(2015•四川)lg0.01+log216的值是.13.(5分)(2015•四川)已知sinα+2cosα=0.则2sinαcosα﹣cos2α的值是.14.(5分)(2015•四川)在三棱住ABC﹣A1B1C1中.∠BAC=90°.其正视图和侧视图都是边长为1的正方形.俯视图是直角边长为1的等腰直角三角形.设M.N.P分别是AB.BC.B1C1的中点.则三棱锥P﹣AMN的体积是.15.(5分)(2015•四川)已知函数f(x)=2x.g(x)=x2+ax(其中a∈R).对于不相等的实数x1、x2.设m=.n=.现有如下命题:①对于任意不相等的实数x1、x2.都有m>0;②对于任意的a及任意不相等的实数x1、x2.都有n>0;③对于任意的a.存在不相等的实数x1、x2.使得m=n;④对于任意的a.存在不相等的实数x1、x2.使得m=﹣n.其中的真命题有(写出所有真命题的序号).三、解答题:本大题共6小题.共75分.解答应写出文字说明、证明过程或演算步骤.16.(12分)(2015•四川)设数列{a n}(n=1.2.3…)的前n项和S n.满足S n=2a n﹣a1.且a1.a2+1.a3成等差数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设数列的前n项和为T n.求T n.(2015•四川)一辆小客车上有5名座位.其座号为1.2.3.4.5.乘客P1.P2.P3.P4.P5(12分)17.的座位号分别为1.2.3.4.5.他们按照座位号顺序先后上车.乘客P1因身体原因没有坐自己1号座位.这时司机要求余下的乘客按以下规则就坐:如果自己的座位空着.就只能坐自己的座位.如果自己的座位已有乘客就坐.就在这5个座位的剩余空位中选择座位.(Ⅰ)若乘客P 1坐到了3号座位.其他乘客按规则就座.则此时共有4种坐法.下表给出其(Ⅱ)若乘客P 1坐到了2号座位.其他乘客按规则就坐.求乘客P 5坐到5号座位的概率.18.(12分)(2015•四川)一个正方体的平面展开图及该正方体的直观图的示意图如图所示.(Ⅰ)请按字母F.G.H 标记在正方体相应地顶点处(不需要说明理由) (Ⅱ)判断平面BEG 与平面ACH 的位置关系.并说明你的结论. (Ⅲ)证明:直线DF ⊥平面BEG .19.(12分)(2015•四川)已知A 、B 、C 为△ABC 的内角.tanA.tanB 是关于方程x 2+px﹣p+1=0(p ∈R )两个实根. (Ⅰ)求C 的大小(Ⅱ)若AB=3.AC=.求p 的值. 20.(13分)(2015•四川)如图.椭圆E :=1(a >b >0)的离心率是.点P (0.1)在短轴CD 上.且•=﹣1(Ⅰ)求椭圆E 的方程;(Ⅱ)设O 为坐标原点.过点P 的动直线与椭圆交于A 、B 两点.是否存在常数λ.使得•+λ•为定值?若存在.求λ的值;若不存在.请说明理由.21.(14分)(2015•四川)已知函数f(x)=﹣2xlnx+x2﹣2ax+a2.其中a>0.(Ⅰ)设g(x)是f(x)的导函数.讨论g(x)的单调性;(Ⅱ)证明:存在a∈(0.1).使得f(x)≥0恒成立.且f(x)=0在区间(1.+∞)内有唯一解.2015年四川省高考数学试卷(文科)参考答案与试题解析一、选择题:本大题共10小题.每小题5分.共50分.在每小题给出的四个选项中.只有一个是符合题目要求的.1.(5分)(2015•四川)设集合M={x|﹣1<x<2}.集合N={x|1<x<3}.则M∪N=()A.{x|﹣1<x<3} B.{x|﹣1<x<2} C.{x|1<x<3} D.{x|1<x<2}【分析】根据并集的定义解答即可.【解答】解:根据并集的定义知:M∪N={x|﹣1<x<3}.故选:A.【点评】本题考查了并集运算.熟练掌握并集的定义是解题的关键.2.(5分)(2015•四川)设向量=(2.4)与向量=(x.6)共线.则实数x=()A.2 B.3 C.4 D.6【分析】利用向量共线的充要条件得到坐标的关系求出x.【解答】解;因为向量=(2.4)与向量=(x.6)共线.所以4x=2×6.解得x=3;故选:B.【点评】本题考查了向量共线的坐标关系;如果两个向量向量=(x.y)与向量=(m.n)共线.那么xn=ym.3.(5分)(2015•四川)某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异.拟从这三个年级中按人数比例抽取部分学生进行调查.则最合理的抽样方法是()A.抽签法B.系统抽样法C.分层抽样法D.随机数法【分析】若总体由差异明显的几部分组成时.经常采用分层抽样的方法进行抽样.【解答】解:我们常用的抽样方法有:简单随机抽样、分层抽样和系统抽样.而事先已经了解到三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异.这种方式具有代表性.比较合理.故选:C.【点评】本小题考查抽样方法.主要考查抽样方法.属基本题.4.(5分)(2015•四川)设a.b为正实数.则“a>b>1”是“log2a>log2b>0”的()A.充要条件 B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件【分析】先求出log2a>log2b>0的充要条件.再和a>b>1比较.从而求出答案.【解答】解:若log2a>log2b>0.则a>b>1.故“a>b>1”是“log2a>log2b>0”的充要条件.故选:A.【点评】本题考察了充分必要条件.考察对数函数的性质.是一道基础题.5.(5分)(2015•四川)下列函数中.最小正周期为π且图象关于原点对称的函数是()A.y=cos(2x+)B.y=sin(2x+)C.y=sin2x+cos2x D.y=sinx+cosx【分析】求出函数的周期.函数的奇偶性.判断求解即可.【解答】解:y=cos(2x+)=﹣sin2x.是奇函数.函数的周期为:π.满足题意.所以A正确y=sin(2x+)=cos2x.函数是偶函数.周期为:π.不满足题意.所以B不正确;y=sin2x+cos2x=sin(2x+).函数是非奇非偶函数.周期为π.所以C不正确;y=sinx+cosx=sin(x+).函数是非奇非偶函数.周期为2π.所以D不正确;故选:A.【点评】本题考查两角和与差的三角函数.函数的奇偶性以及红丝带周期的求法.考查计算能力.6.(5分)(2015•四川)执行如图所示的程序框图.输出s的值为()A.﹣B.C.﹣ D.【分析】模拟执行程序框图.依次写出每次循环得到的k的值.当k=5时满足条件k>4.计算并输出S的值为.【解答】解:模拟执行程序框图.可得k=1k=2不满足条件k>4.k=3不满足条件k>4.k=4不满足条件k>4.k=5满足条件k>4.S=sin=.输出S的值为.故选:D.【点评】本题主要考查了循环结构的程序框图.属于基础题.7.(5分)(2015•四川)过双曲线x2﹣=1的右焦点且与x轴垂直的直线.交该双曲线的两条渐近线于A、B两点.则|AB|=()A.B.2 C.6 D.4【分析】求出双曲线的渐近线方程.求出AB的方程.得到AB坐标.即可求解|AB|.【解答】解:双曲线x2﹣=1的右焦点(2.0).渐近线方程为y=.过双曲线x2﹣=1的右焦点且与x轴垂直的直线.x=2.可得y A=2.y B=﹣2.∴|AB|=4.故选:D.【点评】本题考查双曲线的简单性质的应用.考查基本知识的应用.8.(5分)(2015•四川)某食品保鲜时间y(单位:小时)与储藏温度x(单位:℃)满足函数关系y=e kx+b(e=2.718…为自然对数的底数.k.b为常数).若该食品在0℃的保鲜时间是192小时.在22℃的保鲜时间是48小时.则该食品在33℃的保鲜时间是()A.16小时B.20小时C.24小时D.28小时【分析】由已知中保鲜时间与储藏温度是一种指数型关系.由已知构造方程组求出e k.e b的值.运用指数幂的运算性质求解e33k+b即可.【解答】解:y=e kx+b(e=2.718…为自然对数的底数.k.b为常数).当x=0时.e b=192.当x=22时e22k+b=48.∴e22k==e11k=e b=192当x=33时.e33k+b=(e k)33•(e b)=()3×192=24故选:C【点评】本题考查的知识点是函数解析式的运用.列出方程求解即可.注意整体求解.9.(5分)(2015•四川)设实数x.y满足.则xy的最大值为()A.B.C.12 D.16【分析】作出不等式组对应的平面区域.利用基本不等式进行求解即可.【解答】解:作出不等式组对应的平面区域如图;由图象知y≤10﹣2x.则xy≤x(10﹣2x)=2x(5﹣x))≤2()2=.当且仅当x=.y=5时.取等号.经检验(.5)在可行域内.故xy的最大值为.故选:A【点评】本题主要考查线性规划以及基本不等式的应用.利用数形结合是解决本题的关键.10.(5分)(2015•四川)设直线l与抛物线y2=4x相交于A、B两点.与圆(x﹣5)2+y2=r2(r>0)相切于点M.且M为线段AB的中点.若这样的直线l恰有4条.则r的取值范围是()A.(1.3)B.(1.4)C.(2.3)D.(2.4)【分析】先确定M的轨迹是直线x=3.代入抛物线方程可得y=±2.所以交点与圆心(5.0)的距离为4.即可得出结论.【解答】解:设A(x1.y1).B(x2.y2).M(x0.y0).斜率存在时.设斜率为k.则y12=4x1.y22=4x2.则.相减.得(y1+y2)(y1﹣y2)=4(x1﹣x2).当l的斜率存在时.利用点差法可得ky0=2.因为直线与圆相切.所以=﹣.所以x0=3.即M的轨迹是直线x=3.将x=3代入y2=4x.得y2=12.∴.∵M在圆上.∴.∴r2=.∵直线l恰有4条.∴y0≠0.∴4<r2<16.故2<r<4时.直线l有2条;斜率不存在时.直线l有2条;所以直线l恰有4条.2<r<4.故选:D.【点评】本题考查直线与抛物线、圆的位置关系.考查点差法.考查学生分析解决问题的能力.属于中档题.二、填空题:本大题共5小题.每小题5分.共25分.11.(5分)(2015•四川)设i是虚数单位.则复数i﹣= 2i .【分析】直接利用复数的运算法则求解即可.【解答】解:复数i﹣=i﹣=i+i=2i.故答案为:2i.【点评】本题考查复数的基本运算.考查计算能力.12.(5分)(2015•四川)lg0.01+log216的值是 2 .【分析】直接利用对数的运算法则化简求解即可.【解答】解:lg0.01+log216=﹣2+4=2.故答案为:2.【点评】本题考查对数的运算法则的应用.考查计算能力.13.(5分)(2015•四川)已知sinα+2cosα=0.则2sinαcosα﹣cos2α的值是﹣1 .【分析】已知等式移项变形求出tanα的值.原式利用同角三角函数间的基本关系化简.将tanα的值代入计算即可求出值.【解答】解:∵sinα+2cosα=0.即sinα=﹣2cosα.∴tanα=﹣2.则原式=====﹣1.故答案为:﹣1【点评】此题考查了同角三角函数基本关系的运用.熟练掌握基本关系是解本题的关键.14.(5分)(2015•四川)在三棱住ABC﹣A1B1C1中.∠BAC=90°.其正视图和侧视图都是边长为1的正方形.俯视图是直角边长为1的等腰直角三角形.设M.N.P分别是AB.BC.B1C1的中点.则三棱锥P﹣AMN的体积是.【分析】判断三视图对应的几何体的形状.画出图形.利用三视图的数据.求解三棱锥P﹣AMN 的体积即可.【解答】解:由三视图可知.可知几何体的图形如图:几何体是底面为等腰直角三角形直角边长为1.高为1的直三棱柱.所求三棱锥的高为NP=1.底面AMN的面积是底面三角形ABC的.所求三棱锥P﹣AMN的体积是:=.故答案为:.【点评】本题考查三视图与直观图的关系.组作出几何体的直观图是解题的关键之一.考查几何体的体积的求法.考查空间想象能力以及计算能力.15.(5分)(2015•四川)已知函数f(x)=2x.g(x)=x2+ax(其中a∈R).对于不相等的实数x1、x2.设m=.n=.现有如下命题:①对于任意不相等的实数x1、x2.都有m>0;②对于任意的a及任意不相等的实数x1、x2.都有n>0;③对于任意的a.存在不相等的实数x1、x2.使得m=n;④对于任意的a.存在不相等的实数x1、x2.使得m=﹣n.其中的真命题有①④(写出所有真命题的序号).【分析】运用指数函数的单调性.即可判断①;由二次函数的单调性.即可判断②;通过函数h(x)=x2+ax﹣2x.求出导数判断单调性.即可判断③;通过函数h(x)=x2+ax+2x.求出导数判断单调性.即可判断④.【解答】解:对于①.由于2>1.由指数函数的单调性可得f(x)在R上递增.即有m>0.则①正确;对于②.由二次函数的单调性可得g(x)在(﹣∞.﹣)递减.在(﹣.+∞)递增.则n>0不恒成立.则②错误;对于③.由m=n.可得f(x1)﹣f(x2)=g(x1)﹣g(x2).即为g(x1)﹣f(x1)=g(x2)﹣f(x2).考查函数h(x)=x2+ax﹣2x.h′(x)=2x+a﹣2x ln2.当a→﹣∞.h′(x)小于0.h(x)单调递减.则③错误;对于④.由m=﹣n.可得f(x1)﹣f(x2)=﹣[g(x1)﹣g(x2)].考查函数h(x)=x2+ax+2x. h′(x)=2x+a+2x ln2.对于任意的a.h′(x)不恒大于0或小于0.则④正确.故答案为:①④.【点评】本题考查函数的单调性及运用.注意运用指数函数和二次函数的单调性.以及导数判断单调性是解题的关键.三、解答题:本大题共6小题.共75分.解答应写出文字说明、证明过程或演算步骤.(12分)(2015•四川)设数列{a n}(n=1.2.3…)的前n项和S n.满足S n=2a n﹣a1.且a1.a2+1.a3 16.成等差数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设数列的前n项和为T n.求T n.【分析】(Ⅰ)由条件S n满足S n=2a n﹣a1.求得数列{a n}为等比数列.且公比q=2;再根据a1.a2+1.a3成等差数列.求得首项的值.可得数列{a n}的通项公式.(Ⅱ)由于=.利用等比数列的前n项和公式求得数列的前n项和T n.【解答】解:(Ⅰ)由已知S n=2a n﹣a1.有a n=S n﹣S n﹣1=2a n﹣2a n﹣1(n≥2).即a n=2a n﹣1(n≥2).从而a2=2a1.a3=2a2=4a1.又因为a1.a2+1.a3成等差数列.即a1+a3=2(a2+1)所以a1+4a1=2(2a1+1).解得:a1=2.所以.数列{a n}是首项为2.公比为2的等比数列.故a n=2n.(Ⅱ)由(Ⅰ)得=.所以T n=+++…+==1﹣.【点评】本题主要考查数列的前n项和与第n项的关系.等差、等比数列的定义和性质.等比数列的前n项和公式.属于中档题.(2015•四川)一辆小客车上有5名座位.其座号为1.2.3.4.5.乘客P1.P2.P3.P4.P5(12分)17.的座位号分别为1.2.3.4.5.他们按照座位号顺序先后上车.乘客P1因身体原因没有坐自己1号座位.这时司机要求余下的乘客按以下规则就坐:如果自己的座位空着.就只能坐自己的座位.如果自己的座位已有乘客就坐.就在这5个座位的剩余空位中选择座位.(Ⅰ)若乘客P 1坐到了3号座位.其他乘客按规则就座.则此时共有4种坐法.下表给出其(Ⅱ)若乘客P 1坐到了2号座位.其他乘客按规则就坐.求乘客P 5坐到5号座位的概率.【分析】(Ⅰ)根据题意.可以完成表格; (Ⅱ)列表.确定所有可能的坐法.再求出乘客P 1坐到5号座位的概率. (Ⅱ)若乘客P 1坐到了2号座位.其他乘客按规则就坐.则于是.所有可能的坐法共8种.设“乘客P 5坐到5号座位”为事件A.则事件A 中的基本事件的个数为4.所以P (A )==. 答:乘客P 5坐到5号座位的概率是.【点评】本题考查概率的运用.考查学生的计算能力.列表确定基本事件的个数是关键. 18.(12分)(2015•四川)一个正方体的平面展开图及该正方体的直观图的示意图如图所示.(Ⅰ)请按字母F.G.H标记在正方体相应地顶点处(不需要说明理由)(Ⅱ)判断平面BEG与平面ACH的位置关系.并说明你的结论.(Ⅲ)证明:直线DF⊥平面BEG.【分析】(Ⅰ)直接标出点F.G.H的位置.(Ⅱ)先证BCHE为平行四边形.可知BE∥平面ACH.同理可证BG∥平面ACH.即可证明平面BEG∥平面ACH.(Ⅲ)连接FH.由DH⊥EG.又DH⊥EG.EG⊥FH.可证EG⊥平面BFHD.从而可证DF⊥EG.同理DF ⊥BG.即可证明DF⊥平面BEG.【解答】解:(Ⅰ)点F.G.H的位置如图所示.(Ⅱ)平面BEG∥平面ACH.证明如下:∵ABCD﹣EFGH为正方体.∴BC∥FG.BC=EH.又FG∥EH.FG=EH.∴BC∥EH.BC=EH.∴BCHE为平行四边形.∴BE∥CH.又CH⊂平面ACH.BE⊄平面ACH.∴BE∥平面ACH.同理BG∥平面ACH.又BE∩BG=B.∴平面BEG∥平面ACH.(Ⅲ)连接FH.∵ABCD﹣EFGH为正方体.∴DH⊥EG.又∵EG⊂平面EFGH.∴DH⊥EG.又EG⊥FH.EG∩FH=O.∴EG⊥平面BFHD.又DF⊂平面BFHD.∴DF⊥EG.同理DF⊥BG.又∵EG∩BG=G.∴DF⊥平面BEG.【点评】本题主要考查了简单空间图形的直观图、空间线面平行与垂直的判定与性质等基础知识.考查了空间想象能力和推理论证能力.属于中档题.19.(12分)(2015•四川)已知A、B、C为△ABC的内角.tanA.tanB是关于方程x2+px ﹣p+1=0(p∈R)两个实根.(Ⅰ)求C的大小(Ⅱ)若AB=3.AC=.求p的值.【分析】(Ⅰ)由判别式△=3p2+4p﹣4≥0.可得p≤﹣2.或p≥.由韦达定理.有tanA+tanB=﹣p.tanAtanB=1﹣p.由两角和的正切函数公式可求tanC=﹣tan(A+B)=.结合C的范围即可求C的值.(Ⅱ)由正弦定理可求sinB==.解得B.A.由两角和的正切函数公式可求tanA=tan75°.从而可求p=﹣(tanA+tanB)的值.【解答】解:(Ⅰ)由已知.方程x2+px﹣p+1=0的判别式:△=(p)2﹣4(﹣p+1)=3p2+4p ﹣4≥0.所以p≤﹣2.或p≥.由韦达定理.有tanA+tanB=﹣p.tanAtanB=1﹣p.所以.1﹣tanAtanB=1﹣(1﹣p)=p≠0.从而tan(A+B)==﹣=﹣.所以tanC=﹣tan(A+B)=.所以C=60°.(Ⅱ)由正弦定理.可得sinB===.解得B=45°.或B=135°(舍去).于是.A=180°﹣B﹣C=75°.则tanA=tan75°=tan(45°+30°)===2+.所以p=﹣(tanA+tanB)=﹣(2+)=﹣1﹣.【点评】本题主要考查了和角公式、诱导公式、正弦定理等基础知识.考查了运算求解能力.考查了函数与方程、化归与转化等数学思想的应用.属于中档题.20.(13分)(2015•四川)如图.椭圆E:=1(a>b>0)的离心率是.点P(0.1)在短轴CD上.且•=﹣1(Ⅰ)求椭圆E的方程;(Ⅱ)设O为坐标原点.过点P的动直线与椭圆交于A、B两点.是否存在常数λ.使得•+λ•为定值?若存在.求λ的值;若不存在.请说明理由.【分析】(Ⅰ)通过e=、•=﹣1.计算即得a=2、b=.进而可得结论;(Ⅱ)分情况对直线AB斜率的存在性进行讨论:①当直线AB的斜率存在时.联立直线AB与椭圆方程.利用韦达定理计算可得当λ=1时•+λ•=﹣3;②当直线AB的斜率不存在时.•+λ•=﹣3.【解答】解:(Ⅰ)根据题意.可得C(0.﹣b).D(0.b).又∵P(0.1).且•=﹣1.∴.解得a=2.b=.∴椭圆E的方程为:+=1;(Ⅱ)结论:存在常数λ=1.使得•+λ•为定值﹣3.理由如下:对直线AB斜率的存在性进行讨论:①当直线AB的斜率存在时.设直线AB的方程为y=kx+1.A(x1.y1).B(x2.y2).联立.消去y并整理得:(1+2k2)x2+4kx﹣2=0.∵△=(4k)2+8(1+2k2)>0.∴x1+x2=﹣.x1x2=﹣.从而•+λ•=x1x2+y1y2+λ[x1x2+(y1﹣1)(y2﹣1)]=(1+λ)(1+k2)x1x2+k(x1+x2)+1==﹣﹣λ﹣2.∴当λ=1时.﹣﹣λ﹣2=﹣3.此时•+λ•=﹣3为定值;②当直线AB的斜率不存在时.直线AB即为直线CD.此时•+λ•=+=﹣2﹣1=﹣3;故存在常数λ=1.使得•+λ•为定值﹣3.【点评】本题考查椭圆的标准方程、直线方程等基础知识.考查推理论证能力、运算求解能力.考查数形结合、化归与转化、特殊与一般、分类与整合等数学思想.注意解题方法的积累.属于难题.21.(14分)(2015•四川)已知函数f(x)=﹣2xlnx+x2﹣2ax+a2.其中a>0.(Ⅰ)设g(x)是f(x)的导函数.讨论g(x)的单调性;(Ⅱ)证明:存在a∈(0.1).使得f(x)≥0恒成立.且f(x)=0在区间(1.+∞)内有唯一解.【分析】(I)函数f(x)=﹣2xlnx+x2﹣2ax+a2.其中a>0.可得:x>0.g(x)=f′(x)=2(x﹣1﹣lnx﹣a).可得g′(x)==.分别解出g′(x)<0.g′(x)>0.即可得出单调性.(II)由f′(x)=2(x﹣1﹣lnx﹣a)=0.可得a=x﹣1﹣lnx.代入f(x)可得:u(x)=(1+lnx)2﹣2xlnx.利用函数零点存在定理可得:存在x∈(1.e).使得u(x0)=0.令a0=x0﹣1﹣lnx0=v(x0).再利用导数研究其单调性即可得出.【解答】(I)解:函数f(x)=﹣2xlnx+x2﹣2ax+a2.其中a>0.可得:x>0.g(x)=f′(x)=2(x﹣1﹣lnx﹣a).∴g′(x)==.当0<x<1时.g′(x)<0.函数g(x)单调递减;当1<x时.g′(x)>0.函数g(x)单调递增.(II)证明:由f′(x)=2(x﹣1﹣lnx﹣a)=0.解得a=x﹣1﹣lnx.令u(x)=﹣2xlnx+x2﹣2(x﹣1﹣lnx)x+(x﹣1﹣lnx)2=(1+lnx)2﹣2xlnx.则u(1)=1>0.u(e)=2(2﹣e)<0.∴存在x0∈(1.e).使得u(x0)=0.令a0=x0﹣1﹣lnx0=v(x0).其中v(x)=x﹣1﹣lnx(x≥1).由v′(x)=1﹣≥0.可得:函数v(x)在区间(1.+∞)上单调递增.∴0=v(1)<a0=v(x0)<v(e)=e﹣2<1.即a0∈(0.1).当a=a0时.有f′(x0)=0.f(x0)=u(x0)=0.再由(I)可知:f′(x)在区间(1.+∞)上单调递增.当x∈(1.x0)时.f′(x)<0.∴f(x)>f(x0)=0;当x∈(x0.+∞)时.f′(x)>0.∴f(x)>f(x0)=0;又当x∈(0.1].f(x)=﹣2xlnx>0.故当x∈(0.+∞)时.f(x)≥0恒成立.综上所述:存在a∈(0.1).使得f(x)≥0恒成立.且f(x)=0在区间(1.+∞)内有唯一解.【点评】本题考查了导数的运算法则、函数的零点、利用导数研究函数的单调性极值.考查了分类讨论思想方法、推理能力与计算能力.属于难题.参与本试卷答题和审题的老师有:gongjy;changq;刘长柏;1619495736;qiss;w3239003;sdpyqzh;maths;sllwyn;双曲线;LOL;cst;沂蒙松(排名不分先后)菁优网2016年8月29日。

2015年四川省高考数学试题及答案【解析版】

2015年四川省高考数学试题及答案【解析版】

2015年四川省高考数学试卷(文科)参考答案与试题解析一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)(2015?四川)设集合A={x|﹣1<x<2},集合B={x|1<x<3},则A∪B=()|1.(5分)(2015?四川)设集合A={x|﹣1<x<2},集合B={x|1<x<3},则A∪B=()|1.(5分)(2015?四川)设集合A={x|﹣1<x<2},集合B={x|1<x<3},则A∪B=()A.{x|﹣1<x <3}B.{x|﹣1<x<1}C.{x|1<x<2}D.{x|2<x<3}考点:并集及其运算.专题:集合.分析:直接利用并集求解法则求解即可.解答:解:集合A={x|﹣1<x<2},集合B={x|1<x<3},则A∪B={x|﹣1<x<3}.故选:A.点评:本题考查并集的求法,基本知识的考查.2.(5分)(2015?四川)设向量=(2,4)与向量=(x,6)共线,则实数x=()A.2B.3C.4D.6考点:平面向量共线(平行)的坐标表示.专题:平面向量及应用.分析:利用向量共线的充要条件得到坐标的关系求出x.解答:解;因为向量=(2,4)与向量=(x,6)共线,所以4x=2×6,解得x=3;故选:B.点评:本题考查了向量共线的坐标关系;如果两个向量向量=(x,y)与向量=(m,n)共线,那么xn=yn.3.(5分)(2015?四川)某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显着差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是()A.抽签法B.系统抽样法C.分层抽样法D.随机数法考点:收集数据的方法.专题:应用题;概率与统计.分析:若总体由差异明显的几部分组成时,经常采用分层抽样的方法进行抽样.解答:解:我们常用的抽样方法有:简单随机抽样、分层抽样和系统抽样,而事先已经了解到三年级、六年级、九年级这三个年级之间的学生视力是否存在显着差异,这种方式具有代表性,比较合理.故选:C.点评:本小题考查抽样方法,主要考查抽样方法,属基本题.4.(5分)(2015?四川)设a,b为正实数,则“a>b>1”是“log2a>log2b>0”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件考点:充要条件.专题:简易逻辑.分析:先求出log2a>log2b>0的充要条件,再和a>b>1比较,从而求出答案.解答:解:若log2a>log2b>0,则a>b>1,故“a>b>1”是“log2a>log2b>0”的充要条件,故选:A.点评:本题考察了充分必要条件,考察对数函数的性质,是一道基础题.5.(5分)(2015?四川)下列函数中,最小正周期为π且图象关于原点对称的函数是()A.y=cos(2x+)B.y=sin(2x+)C.y=sin2x+co s2x D.y=sinx+cos x考点:两角和与差的正弦函数;三角函数的周期性及其求法.专题:三角函数的图像与性质.分析:求出函数的周期,函数的奇偶性,判断求解即可.解答:解:y=cos(2x+)=﹣sin2x,是奇函数,函数的周期为:π,满足题意,所以A正确y=sin(2x+)=cos2x,函数是偶函数,周期为:π,不满足题意,所以B不正确;y=sin2x+cos2x=sin(2x+),函数是非奇非偶函数,周期为π,所以C不正确;y=sinx+cosx=sin(x+),函数是非奇非偶函数,周期为2π,所以D不正确;故选:A.点评:本题考查两角和与差的三角函数,函数的奇偶性以及红丝带周期的求法,考查计算能力.6.(5分)(2015?四川)执行如图所示的程序框图,输出s的值为()A.﹣B.C.﹣D.考点:程序框图.专题:图表型;算法和程序框图.分析:模拟执行程序框图,依次写出每次循环得到的k的值,当k=5时满足条件k>4,计算并输出S 的值为.解答:解:模拟执行程序框图,可得k=1k=2不满足条件k>4,k=3不满足条件k>4,k=4不满足条件k>4,k=5满足条件k>4,S=sin =,输出S 的值为.故选:D.点评:本题主要考查了循环结构的程序框图,属于基础题.7.(5分)(2015?四川)过双曲线x2﹣=1的右焦点且与x轴垂直的直线,交该双曲线的两条渐近线于A、B两点,则|AB|=()A.B.2C.6D.4考点:双曲线的简单性质.专题:圆锥曲线的定义、性质与方程.分析:求出双曲线的渐近线方程,求出AB的方程,得到AB坐标,即可求解|AB|.解答:解:双曲线x2﹣=1的右焦点(2,0),渐近线方程为y=,过双曲线x2﹣=1的右焦点且与x轴垂直的直线,x=2,可得y A =2,y B=﹣2,∴|AB|=4.故选:D.点评:本题考查双曲线的简单性质的应用,考查基本知识的应用.8.(5分)(2015?四川)某食品保鲜时间y(单位:小时)与储藏温度x(单位:℃)满足函数关系y=e kx+b(e=2.718…为自然对数的底数,k,b为常数).若该食品在0℃的保鲜时间是192小时,在22℃的保鲜时间是48小时,则该食品在33℃的保鲜时间是()A.16小时B.20小时C.24小时D.28小时考点:指数函数的实际应用.专题:函数的性质及应用.分析:由已知中保鲜时间与储藏温度是一种指数型关系,由已知构造方程组求出e k,e b的值,运用指数幂的运算性质求解e33k+b即可.解答:解:y=e kx+b(e=2.718…为自然对数的底数,k,b为常数).当x=0时,e b=192,当x=22时e22k+b=48,∴e16k==e11k=e b=192当x=33时,e33k+b=(e k)33?(e b)=()3×192=24故选:C点评:本题考查的知识点是函数解析式的运用,列出方程求解即可,注意整体求解.9.(5分)(2015?四川)设实数x,y 满足,则xy的最大值为()A.B.C.12D.16考点:简单线性规划.专题:不等式的解法及应用.分析:作出不等式组对应的平面区域,利用基本不等式进行求解即可.解答:解:作出不等式组对应的平面区域如图;则动点P在BC上运动时,xy取得最大值,此时2x+y=10,则xy==,当且仅当2x=y=5,即x=,y=5时,取等号,故xy的最大值为,故选:A点评:本题主要考查线性规划以及基本不等式的应用,利用数形结合是解决本题的关键.10.(5分)(2015?四川)设直线l与抛物线y2=4x相交于A、B两点,与圆(x﹣5)2+y2=r2(r>0)相切于点M,且M为线段AB的中点,若这样的直线l恰有4条,则r 的取值范围是()A.(1,3)B.(1,4)C.(2,3)D.(2,4)考点:抛物线的简单性质;直线与圆的位置关系.专题:综合题;直线与圆;圆锥曲线的定义、性质与方程.分析:先确定M的轨迹是直线x=3,代入抛物线方程可得y=±2,所以交点与圆心(5,0)的距离为4,即可得出结论.解答:解:设A(x1,y1),B(x2,y2),M(x0,y0),则斜率存在时,设斜率为k,则y12=4x1,y22=4x2,利用点差法可得ky0=2,因为直线与圆相切,所以=﹣,所以x0=3,即M的轨迹是直线x=3,代入抛物线方程可得y=±2,所以交点与圆心(5,0)的距离为4,所以2<r<4时,直线l有2条;斜率不存在时,直线l有2条;所以直线l恰有4条,2<r<4,故选:D.点评:本题考查直线与抛物线、圆的位置关系,考查点差法,考查学生分析解决问题的能力,属于中档题.二、填空题:本大题共5小题,每小题5分,共25分.11.(5分)(2015?四川)设i是虚数单位,则复数i﹣= 2i .考点:复数代数形式的混合运算.专题:数系的扩充和复数.分析:直接利用复数的运算法则求解即可.解答:解:复数i ﹣=i ﹣=i+i=2i.故答案为:2i.点评:本题考查复数的基本运算,考查计算能力.12.(5分)(2015•四川)lg0.01+log216的值是 2 .考对数的运算性质.点:函数的性质及应用.专题:直接利用对数的运算法则化简求解即可.分析:解:lg0.01+log216=﹣2+4=2.解答:故答案为:2.本题考查对数的运算法则的应用,考查计算能力.点评:13.(5分)(2015•四川)已知sinα+2cosα=0,则2sinαcosα﹣cos2α的值是﹣1 .考点:同角三角函数基本关系的运用.专题:三角函数的求值.分析:已知等式移项变形求出tanα的值,原式利用同角三角函数间的基本关系化简,将tanα的值代入计算即可求出值.解答:解:∵sinα+2cosα=0,即sinα=﹣2c osα,∴tanα=﹣2,则原式=====﹣1,故答案为:﹣1点评:此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.14.(5分)(2015?四川)在三棱住ABC﹣A1B1C1中,∠BAC=90°,其正视图和侧视图都是边长为1的正方形,俯视图是直角边长为1的等腰直角三角形,设M,N,P分别是AB,BC,B1C1的中点,则三棱锥P﹣A1MN的体积是.考点:棱柱、棱锥、棱台的体积.专题:空间位置关系与距离.分析:判断三视图对应的几何体的形状,画出图形,利用三视图的数据,求解三棱锥P﹣A1MN的体积即可.解答:解:由三视图可知,可知几何体的图形如图:几何体是底面为等腰直角三角形直角边长为1,高为1的直三棱柱,所求三棱锥的高为NP=1,底面AMN的面积是底面三角形ABC的,所求三棱锥P﹣A1MN的体积是:=.故答案为:.点评:本题考查三视图与直观图的关系,组作出几何体的直观图是解题的关键之一,考查几何体的体积的求法,考查空间想象能力以及计算能力.15.(5分)(2015?四川)已知函数f(x)=2x,g(x)=x2+ax(其中a∈R).对于不相等的实数x1、x2,设m=,n=.现有如下命题:①对于任意不相等的实数x1、x2,都有m>0;②对于任意的a及任意不相等的实数x1、x2,都有n>0;③对于任意的a,存在不相等的实数x1、x2,使得m=n;④对于任意的a,存在不相等的实数x1、x2,使得m=﹣n.其中的真命题有①④(写出所有真命题的序号).考点:命题的真假判断与应用.专题:函数的性质及应用.分析:运用指数函数的单调性,即可判断①;由二次函数的单调性,即可判断②;通过函数h(x)=x2+ax﹣2x,求出导数判断单调性,即可判断③;通过函数h(x)=x2+ax+2x,求出导数判断单调性,即可判断④.解答:解:对于①,由于2>1,由指数函数的单调性可得f(x)在R 上递增,即有m>0,则①正确;对于②,由二次函数的单调性可得g(x)在(﹣∞,﹣)递减,在(,+∞)递减,则n>0不恒成立,则②错误;对于③,由m=n,可得f(x1)﹣f(x2)=g(x1)﹣g(x2),考查函数h(x)=x2+ax﹣2x,h′(x)=2x+a﹣2x ln2,当a→﹣∞,h′(x)小于0,h(x)单调递减,则③错误;对于④,由m=﹣n,可得f(x1)﹣f(x2)=﹣[g(x1)﹣g(x2)],考查函数h(x)=x2+ax+2x,h′(x)=2x+a+2x ln2,对于任意的a,h′(x)不恒大于0或小于0,则④正确.故答案为:①④.点评:本题考查函数的单调性及运用,注意运用指数函数和二次函数的单调性,以及导数判断单调性是解题的关键.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(12分)(2015?四川)设数列{a n}(n=1,2,3…)的前n项和S n,满足S n=2a n ﹣a1,且a1,a2+1,a3成等差数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设数列的前n项和为T n,求T n.考点:等差数列的前n项和;等差数列的通项公式.专题:等差数列与等比数列.分析:(Ⅰ)由条件S n满足S n=2a n﹣a1,求得数列{a n}为等比数列,且公比q=2;再根据a1,a2+1,a3成等差数列,求得首项的值,可得数列{a n}的通项公式.(Ⅱ)由于=,利用等比数列的前n项和公式求得数列的前n项和T n.解答:解:(Ⅰ)由已知S n=2a n﹣a1,有a n=S n﹣S n﹣1=2a n﹣2a n﹣1(n≥2),即a n=2a n﹣1(n≥2),从而a2=2a1,a3=2a2=4a1.又因为a1,a2+1,a3成等差数列,即a1+a3=2(a2+1)所以a1+4a1=2(2a1+1),解得:a1=2.所以,数列{a n}是首项为2,公比为2的等比数列.故a n=2n.(Ⅱ)由(Ⅰ)得=,所以T n=+++…+==1﹣.点评:本题主要考查数列的前n项和与第n项的关系,等差、等比数列的定义和性质,等比数列的前n项和公式,属于中档题.17.(12分)(2015?四川)一辆小客车上有5名座位,其座号为1,2,3,4,5,乘客P1,P2,P3,P4,P5的座位号分别为1,2,3,4,5.他们按照座位号顺序先后上车,乘客P1因身体原因没有坐自己1号座位,这时司机要求余下的乘客按以下规则就坐:如果自己的座位空着,就只能坐自己的座位.如果自己的座位已有乘客就坐,就在这5个座位的剩余空位中选择座位.(Ⅰ)若乘客P1坐到了3号座位,其他乘客按规则就座,则此时共有4种坐法.下表给出其中两种坐法,请填入余下两种坐法(将乘客就坐的座位号填入表中空格处)乘客P1P2P3P4P5座位号32145324513 24 1 53 2 54 1(Ⅱ)若乘客P1坐到了2号座位,其他乘客按规则就坐,求乘客P1坐到5号座位的概率.考点:概率的应用.专题:应用题;概率与统计.分析:(Ⅰ)根据题意,可以完成表格;(Ⅱ)列表,确定所有可能的坐法,再求出乘客P1坐到5号座位的概率.解答:解:(Ⅰ)余下两种坐法:乘客P1P2P3P4P5座位号32145324513241532541(Ⅱ)若乘客P1坐到了2号座位,其他乘客按规则就坐,则所有可能的坐法可用下表表示为乘客 P1 P2 P3 P4 P5座位号 2 1 3 4 52 3 1 4 52 3 4 1 52 3 4 5 12 3 5 4 12 43 1 52 43 5 12 534 1于是,所有可能的坐法共8种,设“乘客P1坐到5号座位”为事件A,则事件A中的基本事件的个数为4,所以P(A)==.答:乘客P1坐到5号座位的概率是.点评:本题考查概率的运用,考查学生的计算能力,列表确定基本事件的个数是关键.18.(12分)(2015?四川)一个正方体的平面展开图及该正方体的直观图的示意图如图所示.(Ⅰ)请按字母F,G,H标记在正方体相应地顶点处(不需要说明理由)(Ⅱ)判断平面BEG与平面ACH的位置关系.并说明你的结论.(Ⅲ)证明:直线DF⊥平面BEG.考点:直线与平面垂直的判定;平面与平面之间的位置关系.专题:空间位置关系与距离.分析:(Ⅰ)直接标出点F,G,H的位置.(Ⅱ)先证BCHE为平行四边形,可知BE∥平面ACH,同理可证BG∥平面ACH,即可证明平面BEG∥平面ACH.(Ⅲ)连接FH,由DH⊥EG,又DH⊥EG,EG⊥FH,可证EG⊥平面BFHD,从而可证DF⊥EG,同理DF⊥BG,即可证明DF⊥平面BEG.解解:(Ⅰ)点F,G,H的位置如图所示.答:(Ⅱ)平面BEG∥平面ACH,证明如下:∵ABCD﹣EFGH为正方体,∴BC∥FG,BC=EH,又FG∥EH,FG=EH,∴BC∥EH,BC=EH,∴BCHE为平行四边形.∴BE∥CH,又CH?平面ACH,BE?平面ACH,∴BE∥平面ACH,同理BG∥平面ACH,又BE∩BG=B,∴平面BEG∥平面ACH.(Ⅲ)连接FH,∵ABCD﹣EFGH为正方体,∴DH⊥EG,又∵EG?平面EFGH,∴DH⊥EG,又EG⊥FH,EG∩FH=O,∴EG⊥平面BFHD,又DF?平面BFHD,∴DF⊥EG,同理DF⊥BG,又∵EG∩BG=G,∴DF⊥平面BEG.点评:本题主要考查了简单空间图形的直观图、空间线面平行与垂直的判定与性质等基础知识,考查了空间想象能力和推理论证能力,属于中档题.19.(12分)(2015?四川)已知A、B、C为△ABC的内角,tanA,tanB是关于方程x2+px﹣p+1=0(p∈R)两个实根.(Ⅰ)求C的大小(Ⅱ)若AB=3,AC=,求p的值.考点:正弦定理的应用;两角和与差的正切函数.专题:函数的性质及应用;解三角形.分析:(Ⅰ)由判别式△=3p2+4p﹣4≥0,可得p≤﹣2,或p≥,由韦达定理,有tanA+tanB=﹣p,tanAtanB=1﹣p,由两角和的正切函数公式可求tanC=﹣tan(A+B)=,结合C的范围即可求C的值.(Ⅱ)由正弦定理可求sinB==,解得B,A,由两角和的正切函数公式可求tanA=tan75°,从而可求p=﹣(tanA+tanB)的值.解答:解:(Ⅰ)由已知,方程x2+px﹣p+1=0的判别式:△=(p)2﹣4(﹣p+1)=3p2+4p﹣4≥0,所以p≤﹣2,或p≥.由韦达定理,有tanA+tanB=﹣p,tanAtanB=1﹣p.所以,1﹣tanAtanB=1﹣(1﹣p)=p≠0,从而tan(A+B)==﹣=﹣.所以tanC=﹣tan(A+B)=,所以C=60°.(Ⅱ)由正弦定理,可得sinB===,解得B=45°,或B=135°(舍去).于是,A=180°﹣B﹣C=75°.则tanA=tan75°=tan(45°+30°)===2+.所以p=﹣(tanA+tanB)=﹣(2+)=﹣1﹣.点评:本题主要考查了和角公式、诱导公式、正弦定理等基础知识,考查了运算求解能力,考查了函数与方程、化归与转化等数学思想的应用,属于中档题.20.(13分)(2015?四川)如图,椭圆E:=1(a>b>0)的离心率是,点P (0,1)在短轴CD上,且?=﹣1(Ⅰ)求椭圆E的方程;(Ⅱ)设O为坐标原点,过点P的动直线与椭圆交于A、B两点.是否存在常数λ,使得?+λ?为定值?若存在,求λ的值;若不存在,请说明理由.考点:直线与圆锥曲线的综合问题.专题:向量与圆锥曲线;圆锥曲线的定义、性质与方程.分析:(Ⅰ)通过e=、?=﹣1,计算即得a=2、b=,进而可得结论;(Ⅱ)分情况对直线AB斜率的存在性进行讨论:①当直线AB的斜率存在时,联立直线AB与椭圆方程,利用韦达定理计算可得当λ=1时?+λ?=﹣3;②当直线AB的斜率不存在时,+λ?=﹣3.解答:解:(Ⅰ)根据题意,可得C(0,﹣b),D(0,b),又∵P(0,1),且?=﹣1,∴,解得a=2,b=,∴椭圆E的方程为:+=1;(Ⅱ)结论:存在常数λ=1,使得?+λ?为定值﹣3.理由如下:对直线AB斜率的存在性进行讨论:①当直线AB的斜率存在时,设直线AB的方程为y=kx+1,A(x1,y1),B(x2,y2),联立,消去y并整理得:(1+2k2)x2+4kx﹣2=0,∵△=(4k)2+8(1+2k2)>0,∴x1+x2=﹣,x1x2=﹣,从而?+λ?=x1x2+y1y2+λ[x1x2+(y1﹣1)(y2﹣1)]=(1+λ)(1+k2)x1x2+k(x1+x2)+1==﹣﹣λ﹣2.∴当λ=1时,﹣﹣λ﹣2=﹣3,此时?+λ?=﹣3为定值;②当直线AB的斜率不存在时,直线AB即为直线CD,此时?+λ?=+=﹣2﹣1=﹣3;故存在常数λ=1,使得?+λ?为定值﹣3.点评:本题考查椭圆的标准方程、直线方程等基础知识,考查推理论证能力、运算求解能力,考查数形结合、化归与转化、特殊与一般、分类与整合等数学思想,注意解题方法的积累,属于难21.(14分)(2015•四川)已知函数f(x)=﹣2xlnx+x2﹣2ax+a2,其中a>0.(Ⅰ)设g(x)是f(x)的导函数,讨论g(x)的单调性;(Ⅱ)证明:存在a∈(0,1),使得f(x)≥0恒成立,且f(x)=0在区间(1,+∞)内有唯一解.考点:利用导数研究函数的极值;利用导数研究函数的单调性.专题:导数的综合应用.分析:(I)函数f(x)=﹣2xlnx+x2﹣2ax+a2,其中a>0.可得:x>0.g(x)=f′(x)=2(x﹣1﹣lnx﹣a),可得g′(x)==,分别解出g′(x)<0,g′(x)>0,即可得出单调性.(II)由f′(x)=2(x﹣1﹣lnx﹣a)=0,可得a=x﹣1﹣lnx,代入f(x)可得:u(x)=(1+lnx)2﹣2xlnx,利用函数零点存在定理可得:存在x0∈(1,e),使得u(x0)=0,令a0=x0﹣1﹣lnx0=v(x0),再利用导数研究其单调性即可得出.解答:(I)解:函数f(x)=﹣2xlnx+x2﹣2ax+a2,其中a>0.可得:g(x)=f′(x)=2(x﹣1﹣lnx﹣a),∴g′(x)==,当0<x<1时,g′(x)<0,函数g(x)单调递减;当1<x时,g′(x)>0,函数g(x)单调递增.(II)证明:由f′(x)=2(x﹣1﹣lnx﹣a)=0,解得a=x ﹣1﹣lnx,令u(x)=﹣2xlnx+x2﹣2(x﹣1﹣lnx)x+(x﹣1﹣lnx)2=(1+lnx)2﹣2xlnx,则u(1)=1>0,u(e)=2(2﹣e)<0,∴存在x0∈(1,e),使得u(x0)=0,令a0=x0﹣1﹣lnx0=v(x0),其中v(x)=x﹣1﹣lnx(x≥1),由v′(x)=1﹣≥0,可得:函数v(x)在区间(1,+∞)上单调递增.∴0=v(1)<a0=v(x0)<v(e)=e﹣2<1,即a0∈(0,1),当a=a0时,有f′(x0)=0,f(x0)=u(x0)=0.再由(I)可知:f′(x)在区间(1,+∞)上单调递增,当x∈(1,x0)时,f′(x)<0,∴f(x)>f(x0)=0;当x∈(x0,+∞)时,f′(x)>0,∴f(x)>f(x0)=0;又当x∈(0,1],f(x)=﹣2xlnx>0.故当x∈(0,+∞)时,f(x)≥0恒成立.综上所述:存在a∈(0,1),使得f(x)≥0恒成立,且f(x)=0在区间(1,+∞)内有唯一解.点评:本题考查了导数的运算法则、函数的零点、利用导数研究函数的单调性极值,考查了分类讨论思想方法、推理能力与计算能力,属于难题.2015年四川省高考数学试卷(文科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个是符合题目要求的.1.(5分)(2015?四川)设集合A={x|﹣1<x<2},集合B={x|1<x<3},则A∪B=()|1.(5分)(2015?四川)设集合A={x|﹣1<x<2},集合B={x|1<x<3},则A∪B=()|1.(5分)(2015?四川)设集合A={x|﹣1<x<2},集合B={x|1<x<3},则A∪B=()A.{x|﹣1<x <3}B.{x|﹣1<x<1}C.{x|1<x<2}D.{x|2<x<3}2.(5分)(2015?四川)设向量=(2,4)与向量=(x,6)共线,则实数x=()A.2B.3C.4D.63.(5分)(2015?四川)某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显着差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是()A.抽签法B.系统抽样法C.分层抽样法D.随机数法4.(5分)(2015?四川)设a,b为正实数,则“a>b>1”是“log2a>log2b>0”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件5.(5分)(2015?四川)下列函数中,最小正周期为π且图象关于原点对称的函数是()A.y=cos(2x+)B.y=sin(2x+)C.y=sin2x+cos2x D.y=sinx+cosx6.(5分)(2015?四川)执行如图所示的程序框图,输出s的值为()A.﹣B.C.﹣D.7.(5分)(2015?四川)过双曲线x2﹣=1的右焦点且与x轴垂直的直线,交该双曲线的两条渐近线于A、B两点,则|AB|=()A.B.2C.6D.48.(5分)(2015?四川)某食品保鲜时间y(单位:小时)与储藏温度x(单位:℃)满足函数关系y=e kx+b(e=2.718…为自然对数的底数,k,b为常数).若该食品在0℃的保鲜时间是192小时,在22℃的保鲜时间是48小时,则该食品在33℃的保鲜时间是()A.16小时B.20小时C.24小时D.28小时9.(5分)(2015?四川)设实数x,y 满足,则xy的最大值为()A.B.C.12D.1610.(5分)(2015?四川)设直线l与抛物线y2=4x相交于A、B两点,与圆(x﹣5)2+y2=r2(r>0)相切于点M,且M为线段AB的中点,若这样的直线l恰有4条,则r 的取值范围是()A.(1,3)B.(1,4)C.(2,3)D.(2,4)二、填空题:本大题共5小题,每小题5分,共25分.11.(5分)(2015?四川)设i是虚数单位,则复数i﹣= .12.(5分)(2015•四川)lg0.01+log216的值是.13.(5分)(2015•四川)已知sinα+2cosα=0,则2sinαcosα﹣cos2α的值是.14.(5分)(2015?四川)在三棱住ABC﹣A1B1C1中,∠BAC=90°,其正视图和侧视图都是边长为1的正方形,俯视图是直角边长为1的等腰直角三角形,设M,N,P分别是AB,BC,B1C1的中点,则三棱锥P﹣A1MN的体积是.15.(5分)(2015?四川)已知函数f(x)=2x,g(x)=x2+ax(其中a∈R).对于不相等的实数x1、x2,设m=,n=.现有如下命题:①对于任意不相等的实数x1、x2,都有m>0;②对于任意的a及任意不相等的实数x1、x2,都有n>0;③对于任意的a,存在不相等的实数x1、x2,使得m=n;④对于任意的a,存在不相等的实数x1、x2,使得m=﹣n.其中的真命题有(写出所有真命题的序号).三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(12分)(2015?四川)设数列{a n}(n=1,2,3…)的前n项和S n,满足S n=2a n﹣a1,且a1,a2+1,a3成等差数列.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设数列的前n项和为T n,求T n.17.(12分)(2015?四川)一辆小客车上有5名座位,其座号为1,2,3,4,5,乘客P1,P2,P3,P4,P5的座位号分别为1,2,3,4,5.他们按照座位号顺序先后上车,乘客P1因身体原因没有坐自己1号座位,这时司机要求余下的乘客按以下规则就坐:如果自己的座位空着,就只能坐自己的座位.如果自己的座位已有乘客就坐,就在这5个座位的剩余空位中选择座位.(Ⅰ)若乘客P1坐到了3号座位,其他乘客按规则就座,则此时共有4种坐法.下表给出其中两种坐法,请填入余下两种坐法(将乘客就坐的座位号填入表中空格处)乘客P1P2P3P4P5座位号3214532451(Ⅱ)若乘客P1坐到了2号座位,其他乘客按规则就坐,求乘客P1坐到5号座位的概率.18.(12分)(2015?四川)一个正方体的平面展开图及该正方体的直观图的示意图如图所示.(Ⅰ)请按字母F,G,H标记在正方体相应地顶点处(不需要说明理由)(Ⅱ)判断平面BEG与平面ACH的位置关系.并说明你的结论.(Ⅲ)证明:直线DF⊥平面BEG.19.(12分)(2015?四川)已知A、B、C为△ABC的内角,tanA,tanB是关于方程x2+px﹣p+1=0(p∈R)两个实根.(Ⅰ)求C的大小(Ⅱ)若AB=3,AC=,求p的值.20.(13分)(2015?四川)如图,椭圆E:=1(a>b>0)的离心率是,点P (0,1)在短轴CD上,且?=﹣1(Ⅰ)求椭圆E的方程;(Ⅱ)设O为坐标原点,过点P的动直线与椭圆交于A、B两点.是否存在常数λ,使得?+λ?为定值?若存在,求λ的值;若不存在,请说明理由.21.(14分)(2015•四川)已知函数f(x)=﹣2xlnx+x2﹣2ax+a2,其中a>0.(Ⅰ)设g(x)是f(x)的导函数,讨论g(x)的单调性;(Ⅱ)证明:存在a∈(0,1),使得f(x)≥0恒成立,且f(x)=0在区间(1,+∞)内有唯一解.2020-2-8。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

绝密★启用前2015年普通高等学校招生全国统一考试(四川)数学(文科)本试题卷分第I 卷(选择题)和第II 卷(非选择题)。

第I 卷1至2页,第II 卷2至4页,共4页。

满分150分。

考试时间120分钟。

考生作答时,必须将答案答在答题卡上,在本试题卷、草稿纸上答题无效。

考试结束后,将本试题卷和答题卡一并交回。

第I 卷(选择题 共50分)注意事项:必须使用2B 铅笔在答题卡上将所选答案对应的标号涂黑。

本卷共10小题。

一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一个是符合题目要求的。

1、设集合A ={x |12x -<<},集合B ={x |13x <<},则AB =(A){ x |13x -<<} (B){ x |11x -<<} (C){ x |12x <<} (D){ x |23x <<} 2、设向量a =(2,4)与向量b =(x ,6)共线,则实数x =(A)2 (B)3 (C)4 (D)63、某学校为了了解三年级、六年级、九年级这三个年级之间的学生视力是否存在显著差异,拟从这三个年级中按人数比例抽取部分学生进行调查,则最合理的抽样方法是(A)抽签法 (B)系统抽样法 (C)分层抽样法 (D)随机数法4、设,a b 为正实数,则“1a b >>”是“22log log 0a b >>”的(A)充要条件 (B)充分不必要条件 (C)必要不充分条件 (D)既不充分也不必要条件 5、下列函数中,最小正周期为π的奇函数是(A)y =sin(2x +2π) (B)y =cos(2x +2π) (C)y =sin2x +cos2x (D)y =sinx +cosx 6、执行如图所示的程序框图,输出S 的值为(A)-2 (B) 2(C)-12 (D) 127、过双曲线2213y x -=的右焦点且与x 轴垂直的直线交该双曲线的两条渐近线于A 、B 两点,则|AB|=(C)68、某食品保鲜时间y (单位:小时)与储藏温度x (单位:℃)满足函数关系kx b y e +=(e =2.718…为自然对数的底数,,k b 为常数)。

若该食品在6℃的保鲜时间是192小时,在22℃的保鲜时间是48小时 ,则该食品在33℃的保鲜时间是(A)16小时 (B)20小时 (C)24小时 (D)21小时9、设实数x,y 满足2102146x y x y x y +≤⎧⎪+≤⎨⎪+≥⎩,则xy 的最大值为(A)252(B) 492 (C)12 (D)1610、设直线l 与抛物线24y x =相较于A,B 两点,与圆()()22250x y r r -+=>相切于点M ,且M为线段AB 中点,若这样的直线l 恰有4条,则r 的取值范围是(A)(1,3) (B)(1,4) (C)(2,3) (D)(2,4)二、填空题:本大题共5小题,每小题5分,共25分。

11、设i 是虚数单位,则复数1i i-=_____________. 12、2lg0.01log 16+=_____________.13、已知sin 2cos 0αα+=,则22sin cos cos ααα-的值是______________.14、在三棱住ABC -A 1B 1C 1中,∠BAC =90°,其正视图和侧视图都是边长为1的正方形,俯视图是直角边长为1的等腰直角三角形,设点M,N,P 分别是AB,BC,B 1C 1的中点,则三棱锥P -A 1MN 的体积是______.15、已知函数()2xf x =,()2g x x ax =+ (其中a ∈R).对于不相等的实数12,x x ,设m =1212()()f x f x x x --,n =1212()()g x g x x x --,现有如下命题:(1)对于任意不相等的实数12,x x ,都有m >0;(2)对于任意的a 及任意不相等的实数12,x x 2,都有n >0; (3)对于任意的a ,存在不相等的实数12,x x ,使得m =n ; (4)对于任意的a ,存在不相等的实数12,x x ,使得m =-n 。

其中真命题有___________________(写出所有真命题的序号)。

三、解答题:本大题共6小题,共75分。

解答应写出文字说明、证明过程或演算步骤。

16、(本小题满分12分)设数列{}n a (n=1,2,3…)的前n 项和n S 满足n S =2n a -1a ,且1a ,1a +1,3a 成等差数列。

(1)求数列{}n a 的通项公式; (2)设数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,求n T .17、(本小题满分12分)一辆小客车上有5个座位,其座位号位为1,2,3,4,5,乘客12345,,,,P P P P P 的座位号分别为1,2,3,4,5,他们按照座位号顺序先后上车,乘客1P 因身体原因没有坐自己号座位,这时司机要求余下的乘客按以下规则就坐:如果自己的座位空着,就只能坐自己的座位,如果自己的座位已有乘客就坐,就在这5个座位的剩余空位中选择座位.(1)若乘客1P 坐到了3号座位,其他乘客按规则就座,则此时共有4种坐法。

下表给出其中两种坐法,请填入余下两种坐法(将乘客就坐的座位号填入表中空格处)(2)若乘客1P 坐到了2号座位,其他乘客按规则就坐,求乘客1P 坐到5号座位的概率。

18、(本小题满分12分)一个正方体的平面展开图及该正方体的直观图的示意图如图所示。

(1)请按字母F,G,H 标记在正方体相应地顶点处(不需要说明理由) (2)判断平面BEG 与平面ACH 的位置关系。

并说明你的结论。

(3)证明:直线DF ⊥平面BEG19、(本小题满分12分)已知A 、B 、C 为△ABC 的内角,tan ,A tan B 是关于方程210x p -+=(p ∈R )两个实根.(1) 求C 的大小(2) 若AB=3,p 的值20、(本小题满分13分)如图,椭圆E 上,且1PC PD =-(1) 求椭圆E 的方程;(2) 设O 为坐标原点,过点P 的动直线与椭圆交于A 、OA OB PA PB λ+为定值?若存在,求λ的值;若不存在,请说明理由。

21、(本小题满分14分)已知函数()f x =222ln 2x x ax a -+-+,其中a>0.(I) 设()g x 为()f x 的导函数,讨论()g x 的单调性;(II)证明:存在a ∈(0,1),使得()0f x ≥恒成立,且()0f x =在区间()1,+∞内有唯一解。

参考答案1.【答案】A【解析】:{|12},{|13},{|13}A x x B x x A B x x =-<<=<<∴=-<<2.【答案】B【解析】由向量平行的性质,有2:4=x:6,解得x =3,选B 3.【答案】C【解析】按照各种抽样方法的适用范围可知,应使用分层抽样。

选C 4.【答案】A【解析】a >b >1时,有log 2a >log 2b >0成立,反之也正确。

选A 【答案】A 5.【答案】B【解析】:ππ==-=+=22,2sin )22cos(:T x p x y B ,是奇函数,所以选B 6.【答案】D【解析】:当K=5时,大于4,所以S=2165sin ==πS 7.【答案】D【解析】:F (2,0),过F 与x 轴垂直的直线为x=2,渐近线方程为:0322=-y x ,将x=2代入得:32,122±==y y ,所以|AB|=348.【答案】C【解析】由题意,2219248bk bee+⎧=⎪⎨=⎪⎩得1119212bke e ⎧=⎪⎨=⎪⎩ 于是当x =33时,y =e 33k +b =(e 11k )3·e b =31()2×192=24(小时)9.【答案】C【解析】画出可行域如图在△ABC 区域中经试验可得,在A(2,4)点处时 xy 取得最大值,为12 选C10、【答案】D 【解析】:)(4))((,4,4),,(),,(),,212121222121002211x x y y y y x y x y y x M y x B y x A -=-+∴==则(设当k 不存在时,符合条件的直线有2条 当k 存在时,2,22,021212121==--∙+≠k y x x y y y y x x 即则42,164,44,164124.3232-3,3,5,2202020000<<<<∴>+=+≤+=∴<<∴==∴-=r r y y r y x M x x k y 即又上。

必在那么由题第Ⅱ卷(共100分)二、填空题(每题5分,满分25分,将答案填在答题纸上)11.【答案】2i【解析】12i i i i i-=+= 12.【答案】2【解析】lg0.01+log 216=-2+4=2 13.【答案】35-【解析】由已知可得tan α=-22sin αcos α-cos 2α=22222sin cos cos tan 1213sin cos tan 1415ααααααα----===-+++ 14.【答案】124【解析】由题意,三棱柱是底面为直角边长为1的等腰直角三角形,高为1的直三棱柱,底面积为12 如图,三棱锥P -A 1MN 底面积是三棱锥底面积的14,高为1故三棱锥P -A 1MN 的体积为111132424⨯⨯=15.【答案】①④:【解析】三、解答题:本大题共6小题,共75分。

解答时应写出文字说明、证明过程或演算步骤。

16.(1).nn n n n n n n n a a a a a a a a a a a a a n a a a a S Sn a a a S 2.2),1(2,1,42,2)2(2,22,2n 1231321123121111==∴+=+∴+===≥=-=-=-=---故是等差,从而即有由已知(2)n n n n n T a 211211])21(1[21,2111-=--=∴=得由(1)余下两种坐标法表示如下:(2)若乘客P 1坐到了2号座位,其他乘客按规则就坐, 则所以的可能性如下坐标表示于是,所以共8种坐法。

设“乘客P 5坐到了5号座位”为事件A ,则A 的基本事件个数为4 所以P (A )=2184= 18.(1)、(2)、,平面平面ACH BEG //因为ABCD-EFGH 为正方体,所以BC//FG,BC=FG 又FG//EH,FG=EH,所以BC//EH,BC=EH, 于是BCHE 是平行四边形,所以BE//CH 又CH ⊂平面ACH ,BE ⊄平面ACH所以BE//平面ACH ,同理,BG//平面ACH 又BE ⋂BG=B ,所以平面BEG//平面ACH(3)连接FH ,因为ABCD-EFGH 为正方体,所以DH ⊥平面EFGH 因为EG ⊂平面EFGH ,所以DH ⊥EG又EG ⊥FH ,EG ⋂FH=O,所以EG ⊥平面BFHD 又DF ⊂平面BFHD,所以DF ⊥EG 同理,DF ⊥BG又EG ⋂BG=G,所以DF ⊥平面BEG19.(1)由已知,方程0132=+-+p px x 的判别式0443)1(4)3(22≥-+=+--=∆p p p p 所以322≥-≤p p 或,由韦达定理得p B A p B A -=-=+1tan tan ,3tan tan 于是0)1(1tan tan 1≠=--=-p p B A从而60,3)tan(tan 3tan tan 1tan tan )tan(==+-=-=-+=+C B A C BA BA B A 即所以(2)由正弦定理得22sin 6sin sin ===AB C AB C AC B解得B=450或者C=1350(舍去)所以A=1800-B-C=75031)tan (tan 313275tan tan 0--=+-=+==B A p A 所以则20.(1)由已知点(2,1)在椭圆E 上,12y 4x E ,2b 2,a 22,,1122222222=+====-=+的方程:所以得得a c cb a b a(2)当直线l 的斜率存在时,设直线方程为y=kx+1,A,B 的坐标分别为(11,y x ),(22,y x ) 联立椭圆与直线方程得122,124,0)12(8)4(024)12(2212212222+-=+-=+>++=∆=-++k x x k k x x k k kx x k所以)]1)(1([21212121--+++=⋅+⋅y y x x y y x x λλ=212112)12()42(1)()1)(1(22221212--+--=+--+--=+++++λλλλλk k k x x k x x k所以当时,1=λ21212--+--λλk =-3此时,PB PA OB OA ⋅+⋅λ=-3为定值 当直线AB 斜率不存在时,AB=CD此时⋅+⋅λ=⋅+⋅=-2-1=-3 故存在常数1,使得PB PA OB OA ⋅+⋅λ为定值-321、(1)由题,函数)(x f 的定义域为),0(+∞ xx x x g a x x x f x g )1(222)('),ln 1(2)(')(-=-=∴---== 所以当单调递增时,单调递减。

相关文档
最新文档