2014-2015学年高三数学总复习选修1-2教学课件:2.2.2
2014-2015学年高中数学(人教版选修2-2)配套课件第二章 2.2 2.2.1 综合法和分析法
综合法是中学数学证明中最常用的方法. 综合法是 从已知到未知、从题设条件到结论的逻辑推理方法. 综合法是一种由因导果的证明方法. 用 P 表示已知条件、已有的定义、公理、定理等, Q 表示所要证明的结论,则综合法用框图表示为: P⇒Q1 → Q1⇒Q2 → Q2⇒Q3 →„→ Qn⇒Q
栏 目 链 接
栏 目 链 接
πL2 L2 πL2 L2 4 式成立, 只需证明 2 > 成立, 即证明 2 > , 两边同乘以 2, 4π 16 4π 16 L
L 2 L2 1 1 得 > ,因为上式成立,所以 π2π > 4 . π 4
所以,如果一个圆与一个正方形的周长相等,那么这 个圆的面积比这个正方形的面积大. 点评:分析法.
栏 目 链 接
从要证明的结论出发,逐步寻求推证过程中使每一步
结论成立的充分条件,直至最后,把要证明的结论归结
为判定一个明显成立的条件(已知条件、定理、定义、公
理等)为止,这种证明的方法叫做分析法.
分析法是从未知到已知、从结论到条件的逻辑推理 方法. 分析法是一种执果索因的证明方法. 用 P 表示已知条件、已有的定义、公理、定理等, Q 表示所要证明的结论,则分析法用框图表示为:
跟 踪 训 练
1 2 3 1.证明: + + <2. log519 log319 log219
1 证明: 因为 logab= , 所以左式=log195+2log193 logba +3log192= log19(5×32×23)=log19360. 因为 log19360<log19361=2, 1 2 3 所以 + + <2. log519 log319 log219
第二章
推理与证明
2.2 直接证明与间接证明 2.2.1 综合法和分析法
苏教版高三数学选修1-2电子课本课件【全册】
0002页 0056页 0108页 0161页 0201页 0251页 0298页
第一章统计案例 1.2回归分析 2.1合情推理与演绎推理 第三章数系的扩充与复数的引入 3.2复数的四则运算 第四章 框图 4.2结构图
第一章统计案例
苏教版高三数学选修1-2电子课本 源自件【全册】2.1合情推理与演绎推理
苏教版高三数学选修1-2电子课本 课件【全册】
2.2直接证明与间接证明
苏教版高三数学选修1-2电子课本 课件【全册】
第三章数系的扩充与复数的引 入
苏教版高三数学选修1-2电子课本 课件【全册】
3.1数系的扩充
苏教版高三数学选修1-2电子课本 课件【全册】
3.2复数的四则运算
苏教版高三数学选修1-2电子课本 课件【全册】
3.3复数的几何意义
苏教版高三数学选修1-2电子课本 课件【全册】
第四章 框图
苏教版高三数学选修1-2电子课本 课件【全册】
4.1流程图
苏教版高三数学选修1-2电子课本 课件【全册】
1.1独立性检验
苏教版高三数学选修1-2电子课本 课件【全册】
1.2回归分析
苏教版高三数学选修1-2电子课本 课件【全册】
第二章推理与证明
苏教版高三数学选修1-2电子课本 课件【全册】
2013-2014学年 高中数学 人教A版选修1-1 第二章 2.2.2(一)双曲线的简单几何性质(一)
2.2.2(一)
(3)与椭圆 x2+5y2=5 共焦点且一条渐近线方程为 y- 3x
本 讲 栏 目 开 关
=0. 解 (1)设所求双曲线方程为 4x2-9y2=λ (λ≠0),点(1,2)在双
填一填·知识要点、记下疑难点
2.2.2(一)
1.双曲线的几何性质
本 讲 栏 目 开 关
标准方 程
x2 y2 2- 2= 1 a b (a>0,b>0)
y2 x2 2- 2= 1 a b (a>0,b>0)
图形
填一填·知识要点、记下疑难点
范围 对称性 性 质 顶点 坐标 渐近线 离心率
2.2.2(一)
2 2 y x 解 把方程 9y2-16x2=144 化为标准方程 2- 2=1. 4 3 由此可知,半实轴长 a=4,半虚轴长 b=3;
点坐标、离心率、渐近线方程.
本 讲 栏 目 开 关
c= a2+b2= 42+32=5, 焦点坐标是(0,-5),(0,5); c 5 4 离心率 e= = ;渐近线方程为 y=± x. 3 a 4
2.2.2(一)
2.2.2
【学习要求】
本 讲 栏 目 开 关
双曲线的简单几何性质(一)
1.掌握双曲线的简单几何性质. 2.了解双曲线的渐近性及渐近线的概念. 3.能区别椭圆与双曲线的性质. 【学法指导】 利用双曲线的方程研究其图象和几何性质,在自主探究合 作交流中通过类比椭圆的几何性质,分析双曲线的几何性质.
研一研·问题探究、课堂更高效
2.2.2(一)
2014-2015学年高中数学(人教版选修1-2)课时训练第二章 2.2.1 综合法和分析法
基础 自测
( 1.设 x,y∈R+,且 x+y=6,则 lg x+lg y 的取值范围是 ) A.(-∞,lg 6] B.(-∞,2lg 3] 栏 C.[lg 6,+∞) 目 链 D.[2lg 3,+∞) 接
解析:∵x,y∈R+,x+y=6,∴2 xy≤6,即 0<xy≤9,∴lg xy≤lg 9,即 lg x+lg y≤2lg 3.故选 B. 答案:B
基础 自测
2.分析法又称执果索因法,若用分析法证明:“设 a>b >c, 且 a+b+c=0, 求证: b2-ac< 3a”索的因应是( ) A.a-b>0 B.a-c>0 栏 C.(a-b)(a-c)>0 目 链 D.(a-b)(a-c)<0
接
解析: b2-ac< 3 a ⇐ b2 - ac < 3a2⇐ 3a2+ ac- (a + c)2 > 0⇐ (2a + c)(a-c)>0⇐(a-b)(a-c)>0.故选 C. 答案:C
栏 目 链 接
跟 踪 训 练
证明:(1)∵ sin θ 与 cos θ 的等差中项是 sin x, 等比中项是 sin y, ∴ sin θ+cos θ=2sin x,① 2 sin θcos θ=sin y,② ①2-②×2,可得 (sin θ+cos θ)2-2sin θcos θ=4sin2x-2sin2y, 即 4sin2x-2sin2y=1. 1-cos 2x 1-cos 2y ∴ 4× -2× =1, 2 2 即 2-2cos 2x-(1-cos 2y)=1. 故证得 2cos 2x=cos 2y.
第二章
推理与证明
2.2 直接证明与间接证明 2.2.1 综合法和分析法
栏 目 链 接
1.结合已经学习过的数学实例,了解直接证明的两种最基 本的方法:综合法和分析法. 2.了解用综合法和分析法解决问题的思考特点和过程,会 栏 目 用综合法和分析法证明具体的问题.通过实例充分认识这两种证 链 接 明方法的特点,认识证明的重要性
【全程复习方略】2014-2015学年高中数学 2.2.2 反证法课件 新人教A版选修1-2
类型二
用反证法证明存在性命题
【典例2】 (1)(2014·西安高二检测)“任何三角形的外角都至少有两 个钝角”的否定是 .
(2)(2014·石家庄高二检测)已知a,b,c均为实数,且a= x2-2y+ ,b=y2-2z+ ,c=z2-2x+ ,求证:a,b,c中至少有一个大
2 3 6
于0.
【解题探究】1.题(1)中“至少有两个钝角”的含义是什么? 2.题(2)中a,b,c有什么特点?怎样应用这些特点? 【探究提示】1.“至少有两个钝角”的含义是“有两个钝角或 两个以上钝角”,即钝角的个数大于等于2.
2.题(2)中a,b,c是含有x,y,z的代数式,将a,b,c三个加起来,重
新组合,把含x,y,z的各项分别放在一起.
(3)反证法的实质是否定结论导出矛盾.
【解析】(1)正确.反证法其实是证明其逆否命题成立,所以它 属于间接证明问题的方法.
(2)错误.反证法从证明过程看是一种严谨的演绎推理.
(3)正确.否定结论导出矛盾就是反证法的实质,从而肯定原结
论.
答案:(1)√ (2)× (3)√
2.做一做(请把正确的答案写在横线上)
2z+1+π-3=(x-1)2+(y-1)2+(z-1)2+π-3>0,即a+b+c>0与 a+b+c≤0矛盾, 所以假设不成立,即a,b,c中至少有一个大于0.
【延伸探究】本例题(1)改为“任何三角形的内角至少有一个 大于或等于60°”的否定为 .
【解析】“至少有一个大于或等于60°”的否定是“三个内角 都小于60°”. 答案:存在一个三角形,其三个内角都小于60°
2014-2015学年高三数学总复习选修2-1教学课件:2.3 2.3.1
基础预习点拨 要点探究归纳 知能达标演练 课后巩固作业
基础预习点拨 要点探究归纳 知能达标演练 课后巩固作业
基础预习点拨 要点探究归纳 知能达标演练 课后巩固作业
基础预习点拨 要点探究归纳 知能达标演练 课后巩固作业
基础预习点拨 要点探究归纳 知能达标演练 课后巩固作业
基础预习点拨 要点探究归纳 知能达标演练 课后巩固作业
基础预习点拨 要点探究归纳 知能达标演练 课后巩固作业
基础预习点拨 要点探究归纳 知能达标演练 课后巩固作业
基础预习点拨 要点探究归纳 知能达标演练 课后巩固作业
基础预习点拨 要点探究归纳 知能达标演练 课后巩固作业
基础预习点拨 要点探究归纳 知能达标演练 课后巩固作业
基础预习点拨 要点探究归纳 知能达标演练 课后巩固作业
基础预习点拨 要点探究归纳 知能达标演练 课后巩固作业
基础预习点拨 要点探究归纳 知能达标演练 课后巩固作业
基础预习点拨 要点探究归纳 知能达标演练 课后巩固作业
基础预习点拨 要点探究归纳 知能达标演练 课后巩固作业
基础预习点拨 要点探究归纳 知能达标演练 课后巩固作业
基础预习点拨 要点探究归纳 知能达标演练 课后巩固作业
基础预习点拨 要点探究归纳 知能达标演练 课后巩固作业
基础预习点拨 要点探究归纳 知能达标演练 课后巩固作业
基础预习点拨 要点探究归纳 知能达标演练 课后巩固作业
基础预习点拨 要点探究归纳 知能达标演练 课后巩固作业
基础预习点拨 要点探究归纳 知能达标演练 课后巩固作业
基础预习点拨 要点探究归纳 知能达标演练 课后巩固作业
基础预习点拨 要点探究归纳 知能达标演练 课后巩固作业
基础预习点拨 要点探究归纳 知能达标演练 课后巩固作业
2014-2015学年高中数学(人教版选修1-2)课时训练第二章 2.2.2反 证 法
栏 目 链 接
栏 目 链 接
题型一
用反证法证明否定性命题
例1 设{an},{bn}分别是公比为 p,q(p,q∈R,且 p≠q)的两个等比
数列,如果 cn=an+bn,证明数列{cn}不可能是等比数列.
栏 分析:因为结论是否定的,所以用反证法证明. 目 2 证明:假设{cn}是等比数列,则 c2=c1c3, 链 2 2 2 接 即(a1p+b1q) =(a1+b1)(a1p +b1q ), 展开并整理得 a1b1(p-q)2=0. 由于 a1,b1 是等比数列中的项, 所以 a1≠0,b1≠0,那么 p=q,这与已知条件矛盾,所以,数 列{cn}不可能是等比数列.
分析:由于不知道到底是哪条抛物线一定与 x 轴有交点, 因而直接证明很难入手,可采取间接证明的方法来完成. 证明:假设三条抛物线都与 x 轴无交点,则方程 ax2+2bx +c=0 的判别式 Δ1=4b2-4ac<0. 同理,Δ2=4c2-4ab<0,Δ3=4a2-4bc<0, 栏 则 Δ1+Δ2+Δ3<0,即 目 链 Δ1+Δ2+Δ3=4a2+4b2+4c2-4ab-4bc-4ac 接 2 2 2 =2(a-b) +2(b-c) +2(c-a) <0, 这与 2(a-b)2+2(b-c)2+2(c-a)2≥0 相矛盾, 故假设错误. 所以,三条抛物线 y = ax2 + 2bx + c , y = bx2 + 2cx + a , +b(a,b,c 为非零实数)中至少有一条与 x 轴有交 点.
证明:假设 1, 3,2 是公差为 d 的等差数列 的三项,则 1= 3-md,2= 3+nd,其中 m,n 为 正整数. 由上面两式消去 d, 得 n+2m= 3(n+m).栏 目 因为 n+2m 为有理数, 而 3(n+m)为无理数,链 所以 3(n+m),因此假设不成立,即 1, 3,2 不能是同一等差数列中的三项.
高中数学选修1-2(A版)课件:第四章 阶段复习课 (共125张PPT)
播下一个行动,收获一种习惯;播下一种习惯,收获一种性格;播下一种性格,收获一种命运。思想会变成语言,语言会变成行动,行动会变成习惯,习惯会变成性格。性 制,会变成生活的必需品,不良的习惯随时改变人生走向。人往往难以改变习惯,因为造习惯的就是自己,结果人又成为习惯的奴隶!人生重要的不是你从哪里来,而是你 时侯,一定要抬头看看你去的方向。方向不对,努力白费!你来自何处并不重要,重要的是你要去往何方,人生最重要的不是所站的位置,而是所去的方向。人只要不失去 这个世界唯一不变的真理就是变化,任何优势都是暂时的。当你在占有这个优势时,必须争取主动,再占据下一个优势,这需要前瞻的决断力,需要的是智慧!世上本无移 是:山不过来,我就过去。人生最聪明的态度就是:改变可以改变的一切,适应不能改变的一切!亿万财富不是存在银行里,而是产生在人的思想里。你没找到路,不等于 什么,你必须知道现在应该先放弃什么!命运把人抛入最低谷时,往往是人生转折的最佳期。谁能积累能量,谁就能获得回报;谁若自怨自艾,必会坐失良机人人都有两个 一个是心门,成功的地方。能赶走门中的小人,就会唤醒心中的巨人!要想事情改变,首先自己改变,只有自己改变,才可改变世界。人最大的敌人不是别人,而是自己, 1、烦恼的时候,想一想到底为什么烦恼,你会发现其实都不是很大的事,计较了,就烦恼。我们要知道,所有发生的一切都是该发生的,都是因缘。顺利的就感恩,不顺 渡寒潭,雁过而潭不留影;风吹疏竹,风过而竹不留声。”修行者的心境,就是“过而不留”。忍得住孤独;耐得住寂寞;挺得住痛苦;顶得住压力;挡得住诱惑;经得起 子;担得起责任;1提得起精神。闲时多读书,博览凝才气;众前慎言行,低调养清气;交友重情义,慷慨有人气;困中善负重,忍辱蓄志气;处事宜平易,不争添和气; 泊且致远,修身立正气;居低少卑怯,坦然见骨气;卓而能合群,品高养浩气淡然于心,自在于世间。云淡得悠闲,水淡育万物。世间之事,纷纷扰扰,对错得失,难求完 反而深陷于计较的泥潭,不能自拔。若凡事但求无愧于心,得失荣辱不介怀,自然落得清闲自在。人活一世,心态比什么都重要。财富名利毕竟如云烟,心情快乐才是人生 在路上,在脚踏实地的道路上;我们的期待在哪里?在路上,在勤劳勇敢的心路上;我们的快乐在哪里?在路上,在健康阳光的大道上;我们的朋友在哪里?在心里,在真 钟,对自己负责;善于发现看问题的角度;不满足于现状,别自我设限;勇于承认错误;不断反省自己,向周围的成功者学习;不轻言放弃。做事要有恒心;珍惜你所拥有 学会赞美;不找任何借口。与贤人相近,则可重用;与小人为伍,则要当心;只满足私欲,贪图享乐者,则不可用;处显赫之位,任人唯贤,秉公办事者,是有为之人;身 则可重任;贫困潦倒时,不取不义之财者,品行高洁;见钱眼开者,则不可用。人最大的魅力,是有一颗阳光的心态。韶华易逝,容颜易老,浮华终是云烟。拥抱一颗阳光 随缘。心无所求,便不受万象牵绊;心无牵绊,坐也从容,行也从容,故生优雅。一个优雅的人,养眼又养心,才是魅力十足的人。容貌乃天成,浮华在身外,心里满是阳 飞,心随流水宁。心无牵挂起,开阔空净明。幸福并不复杂,饿时,饭是幸福,够饱即可;渴时,水是幸福,够饮即可;裸时,衣是幸福,够穿即可;穷时,钱是幸福,够 畅即可;困时,眠是幸福,够时即可。爱时,牵挂是幸福,离时,回忆是幸福。人生,由我不由天,幸福,由心不由境。心是一个人的翅膀,心有多大,世界就有多大。很 的环境,也不是他人的言行,而是我们自己。人心如江河,窄处水花四溅,宽时水波不兴。世间太大,一颗心承载不起。生活的最高境界,一是痛而不言,二是笑而不语。 人生的幸福在于祥和,生命的祥和在于宁静,宁静的心境在于少欲。无意于得,就无所谓失去,无所谓失去,得失皆安谧。闹市间虽见繁华,却有名利争抢;田园间无争, 和升平,最终不过梦一场。心静,则万象皆静。知足者常在静中邂逅幸福。顺利人生,善于处理关系;普通人生,只会使用关系;不顺人生,只会弄僵关系。为人要心底坦 脑清醒,不为假象所惑。智者,以别人惨痛的教训警示自己;愚者,用自己沉重的代价唤醒别人。对人多一份宽容,多一份爱心;对事多一份认真,多一份责任;对己多一 长,志不可满,乐不可极,警醒自己。静能生慧。让心静下来,你才能看淡一切。静中,你才会反观自己,知道哪些行为还需要修正,哪些地方还需要精进,在静中让生命 觉悟。让心静下来,你才能学会放下。你放下了,你的心也就静了。心不静,是你没有放下。静,通一切境界。人与人的差距,表面上看是财富的差距,实际上是福报的差 实际上是人品的差距;表面上看是气质的差距,实际上是涵养的差距;表面上看是容貌的差距,实际上是心地的差距;表面上看是人与人都差不多,内心境界却大不相同, 很重要的一件事。因为当一个人具有感恩的心,心会常常欢喜,总是觉得很满足,一个不感恩不满足的人,总是会觉得欠缺、饥渴。一个常感恩的人,会觉得自己很幸运, 这样一想、一感恩,就变得很快乐。这种感恩的心,对自己其实是有很大利益。压力最大的时候,效率可能最高;最忙碌的时候,学的东西可能最多;最惬意的时候,往往 太阳就要光临。成长不是靠时间,而是靠勤奋;时间不是靠虚度,而是靠利用;感情不是靠缘分,而是靠珍惜;金钱不是靠积攒,而是靠投资;事业不是靠满足,而是靠踏 件事。因为当一个人具有感恩的心,心会常常欢喜,总是觉得很满足,一个不感恩不满足的人,总是会觉得欠缺、饥渴。一个常感恩的人,会觉得自己很幸运,有时候其实 一感恩,就变得很快乐。这种感恩的心,对自己其实是有很大利益。压力最大的时候,效率可能最高;最忙碌的时候,学的东西可能最多;最惬意的时候,往往是失败的开 光临。成长不是靠时间,而是靠勤奋;时间不是靠虚度,而是靠利用;感情不是靠缘分,而是靠珍惜;金钱不是靠积攒,而是靠投资;事业不是靠满足,而是靠踏实。以平 在危险面前,平常心就是勇敢;在利诱面前,平常心就是纯洁;在复杂的环境面前,平常心就是保持清醒智慧。平常心不是消极遁世,而是一种境界,一种积极的人生。不 一个有价值的人而努力。命运不是机遇,而是选择;命运不靠等待,全靠争取。成熟就是学会在逆境中保持坚强,在顺境时保持清醒。时间告诉你什么叫衰老,回忆告诉你 要外来的赞许时,心灵才会真的自由。你没那么多观众,别那么累。温和对人对事。不要随意发脾气,谁都不欠你的。现在很痛苦,等过阵子回头看看,会发现其实那都不 交。人有绝交,才有至交学会宽容伤害自己的人,因为他们很可怜,各人都有自己的难处,大家都不容易前没人爱听那些借口。慎言,独立,学会妥协的同时,也要坚持自己最基本的原则。付出并不一定有结果。坚持可能会导致失去更多过去的事情可以不忘记,但一定 作一个最好的打算和最坏的打算。做一个简单的人,踏实而务实。不沉溺幻想。不庸人自扰。不说谎话,因为总有被拆穿的一天。别人光鲜的背后或者有着太多不为人知的 学习。不管学习什么,语言,厨艺,各种技能。注意自己的修养,你就是孩子的第一位老师。孝顺父母。不只是嘴上说说,即使多打几个电话也是很好的。爱父母,因为他 爱的最无私的人。
高中数学选修1-2全套精品PPT讲义课件
• 5月31日是世界无烟日.有关医学研究表明,许多疾病,例如:心脏 病、癌症、脑血管病、慢性阻塞性肺病等都与吸烟有关,吸烟已成为 继高血压之后的第二号全球杀手.这些疾病与吸烟有关的结论是怎样 得出的呢?若从数学角度区分,这里的疾病和吸烟就是彼此相关的两 个变量. • 如何用数学的方法来刻画这种变量之间的关系呢?本章要学习的统计 案例就是通过对一对变量使用线性回归的方法来研究变量之间的对应 关系.通过本章的学习,我们将知道如何研究变量之间的相关关系, 如何模拟变量之间的函数关系,如何检验两个变量之间的独立性.
• R2=________________. • 在线性回归模型中,R2表示解释变量对预报变量变化的__________. • R2的值越大,说明残差平方和越小,也就是说模型的拟合效果越 ________.
贡献率
Байду номын сангаас
好
残差分析
• 新知导学 • 7.在研究两个变量间的关系时,首先要根据散点图来粗略判断它们是 否线性相关,是否可以用线性回归模型来拟合数据,然后,通过残差 ________________来判断模型拟合的效果,判断原始数据中是否存在可 疑数据,这方面的分析工作称为残差分析.
• 回归分析问题有线性回归问题和非线性回归问题,对于非线性回归问题, 往往利用转换变量的方法转化为线性回归问题.
水平的
带状区域 窄
牛刀小试 1.设有一个回归方程为y=2-2.5x,当变量 x 增加一个单 位时( ) A.y 平均增加 2.5 个单位 B.y 平均增加 2 个单位 C.y 平均减少 2.5 个单位
随机性
线性回归分析
• 思维导航 • 2.上图2中各点散布在一条直线附近,可否用这条直线对y随x的变化 作出近似估计?如果可以,这条直线怎样求?如何刻画这种估计的可 靠性?
高中数学选修1-2全套教学课件讲义ppt幻灯片
• [答案]C • [解析] ①反映的正是最小二乘法思想,故正确. • ②反映的是画散点图的作用,也正确. • ③解释的是回归方程=x+的作用,故也正确.
• ④是不正确的,在求回归方程之前必须进行相关性 检验,以体现两变量的关系. • [点评] 线性回归分析的过程: • (1)随机抽取样本,确定数据,形成样本点 • (2) 由样本点形成散点图,判定是否具有线性相关 关系; • (3)由最小二乘法确定线性回归方程; • (4)由回归方程观察变量的取值及变化趋势.
^ x+ a ^ 可以估计观测变量的取值和 ③通过回归方程^ y =b
• ④因为由任何一组观测值都可以求得一个线性回 变化趋势; 归方程,所以没有必要进行相关性检验. • 其中正确命题的个数是 (
)
• A.1 B.2 • C.3 D.4 • [分析] 由题目可获取以下信息: • ①线性回归分析; • ②散点图; • ③相关性检验等的相关概念及意义. • 解答本题可先逐一核对相关概念及其性质,然后 再逐一作出判1 (x1+x2+…+xn),y =n(y1+y2+…+yn), ∑i=1xiyi=x1y1+x2y2 ^ 2 2 2 2 ^ +…+xnyn, ∑i=1xi =x1+x2+…+xn.再由a= y -b n
^的 x 求出a
值,并写出回归直线方程.
^ ^ 2.回归直线中的截距a和斜率b都是通过样本估计而来
• 回归分析问题有线性回归问题和非线性回归问题, 对于非线性回归问题,往往利用转换变量的方法 进行转化,转变为线性回归问题.
• [例1] 有下列说法: • ①线性回归分析就是由样本点去寻找一条直线, 使之贴近这些样本点的数学方法; • ②利用样本点的散点图可以直观判断两个变量的 关系是否可以用线性关系表示;
人教版高中数学选修1-2(A版)课件:第二章 2.2.1综合法 (共91张PPT)
明朝未及,我只有过好每一个今天,唯一的今天。
昨日的明天是今天。明天的昨日是今天。为什么要计较于过去呢(先别急着纠正我的错误,你确实可以在评判过去中学到许多)。但是我发现有的人过分地瞻前顾后了。为 何不想想“现在”呢?为何不及时行乐呢?如果你的回答是“不”,那么是时候该重新考虑一下了。成功的最大障碍是惧怕失败。这些句子都教育我们:不要惧怕失败。如 果你失败了他不会坐下来说:“靠,我真失败,我放弃。”并且不是一个婴儿会如此做,他们都会反反复复,一次一次地尝试。如果一条路走不通,那就走走其他途径,不 断尝试。惧怕失败仅仅是社会导致的一种品质,没有人生来害怕失败,记住这一点。宁愿做事而犯错,也不要为了不犯错而什么都不做。不一定要等到时机完全成熟才动手。 开头也许艰难,但是随着时间的流逝,你会渐渐熟悉你的事业。世上往往没有完美的时机,所以当你觉得做某事还不是时候,先做起来再说吧。喜欢追梦的人,切记不要被 梦想主宰;善于谋划的人,切记空想达不到目标;拥有实干精神的人,切记选对方向比努力做事重要。太阳不会因为你的失意,明天不再升起;月亮不会因为你的抱怨,今 晚不再降落。蒙住自己的眼睛,不等于世界就漆黑一团;蒙住别人的眼睛,不等于光明就属于自己!鱼搅不浑大海,雾压不倒高山,雷声叫不倒山岗,扇子驱不散大雾。鹿 的脖子再长,总高不过它的脑袋。人的脚指头再长,也长不过他的脚板。人的行动再快也快不过思想!以前认为水不可能倒流,那是还没有找到发明抽水机的方法;现在认 为太阳不可能从西边出来,这是还没住到太阳从西边出来的星球上。这个世界只有想不到的,没有做不到的!不是井里没有水,而是挖的不够深;不是成功来的慢,而是放 弃速度快。得到一件东西需要智慧,放弃一样东西则需要勇气!终而复始,日月是也。死而复生,四时是也。奇正相生,循环无端,涨跌相生,循环无端,涨跌相生,循环 无穷。机遇孕育着挑战,挑战中孕育着机遇,这是千古验证了的定律!种子放在水泥地板上会被晒死,种子放在水里会被淹死,种子放到肥沃的土壤里就生根发芽结果。选
【全程复习方略】2014-2015学年高中数学 2.2.2 反证法课时提升作业 新人教A版选修1-2
反证法一、选择题(每小题3分,共18分)1.(2014·合肥高二检测)用反证法证明“三角形中最多只有一个内角为钝角”,下列假设中正确的是( )A.有两个内角是钝角B.有三个内角是钝角C.至少有两个内角是钝角D.没有一个内角是钝角【解析】选C.“最多有一个”的反设是“至少有两个”.2.实数a,b,c满足a+2b+c=2,则( )A.a,b,c都是正数B.a,b,c都大于1C.a,b,c都小于2D.a,b,c中至少有一个不小于【解析】选D.假设a,b,c均小于,则a+2b+c<+1+=2,与已知矛盾,故假设不成立,所以a,b,c中至少有一个不小于.3.(2014·唐山高二检测)(1)已知:p3+q3=2,求证:p+q≤2.用反证法证明时,可假设p+q≥2.(2)已知:a,b∈R,|a|+|b|<1,求证:方程x2+ax+b=0的两根的绝对值都小于1.用反证法证明时可假设方程有一根x1的绝对值大于或等于1,即假设|x1|≥1,以下结论正确的是( )A.(1)与(2)的假设都错误B.(1)与(2)的假设都正确C.(1)的假设正确,(2)的假设错误D.(1)的假设错误,(2)的假设正确【解析】选D.(1)错,应假设为p+q>2.(2)假设正确.故选D.4.(2014·杭州高二检测)设a,b,c大于0,则3个数:a+,b+,c+的值( )A.都大于2B.至少有一个不大于2C.都小于2D.至少有一个不小于2【解题指南】因为三个数的和不小于6,可以判断三个数至少有一个不小于2,所以可假设这三个数都小于2来推出矛盾.【解析】选D.假设a+,b+,c+都小于2,即a+<2,b+<2,c+<2,所以++<6,又a>0,b>0,c>0,所以++=++≥2+2+2=6.这与假设矛盾,所以假设不成立.【变式训练】已知x1>0,且x1≠1,且x n+1=(n=1,2,3…).试证:数列{x n}对任意正整数n都满足x n<x n+1,或者对任意正整数n都满足x n>x n+1.当此题用反证法否定结论时,应为( )A.对任意的正整数n,都有x n=x n+1B.存在正整数n,使得x n=x n+1C.存在正整数n,使x n≥x n-1且x n≥x n+1D.存在正整数n,使得(x n-x n-1)(x n-x n+1)≥0【解析】选B.对于数列中的连续两项来说,要么不相等,要么相等.5.设a,b,c是正数,P=a+b-c,Q=b+c-a,R=c+a-b,则“PQR>0”是“P,Q,R同时大于零”的( )A.充分条件B.必要条件C.充分必要条件D.既不充分也不必要条件【解析】选C.必要性显然,充分性:若PQR>0,则P,Q,R同时大于零或其中两个为负,不妨设P<0,Q<0,R>0,因为P<0,Q<0,即a+b<c,b+c<a,所以a+b+b+c<c+a,即b<0,这与b>0矛盾,所以P,Q,R同时大于零,故选C.6.若△ABC能被一条直线分成两个与自身相似的三角形,那么这个三角形的形状是( )A.钝角三角形B.直角三角形C.锐角三角形D.不能确定【解析】选B.分△ABC的直线只能过一个顶点且与对边相交,如直线AD(点D在BC上),则∠ADB+∠ADC=π,若∠ADB为钝角,则∠ADC为锐角.而∠ADC>∠BAD,∠ADC>∠ABD,△ABD与△ACD不可能相似,与已知不符,只有当∠ADB=∠ADC=∠BAC=时,才符合题意.二、填空题(每小题4分,共12分)7.(2014·南昌高二检测)命题“任意多面体的面至少有一个是三角形或四边形或五边形”的结论的否定是.【解析】“至少有一个”的否定是“没有一个”.答案:没有一个是三角形或四边形或五边形8.(2014·石家庄高二检测)设a,b是两个实数,给出下列条件:①a+b=1;②a+b=2;③a+b>2;④a2+b2>2.其中能推出“a,b中至少有一个大于1”的条件是(填序号).【解题指南】可采用特殊值法或反证法逐一验证.【解析】若a=,b=,则a+b=1,但a<1,b<1,故①不能推出.若a=b=1,则a+b=2,故②不能推出.若a=-2,b=1,则a2+b2>2,故④不能推出.对于③,即a+b>2,则a,b中至少有一个大于1.反证法:假设a≤1且b≤1,则a+b≤2与a+b>2矛盾,因此假设不成立,故a,b中至少有一个大于1.答案:③9.用反证法证明命题:“一个三角形中不能有两个直角”的过程归纳为以下三个步骤:①∠A+∠B+∠C=90°+90°+∠C>180°,这与三角形内角和为180°相矛盾,则∠A=∠B=90°不成立;②所以一个三角形中不能有两个直角;③假设∠A,∠B,∠C中有两个角是直角,不妨设∠A=∠B=90°.正确顺序的序号排列为__________.【解析】由反证法证明的步骤知,先反设即③,再推出矛盾即①,最后作出判断,肯定结论即②,即顺序应为③①②.答案:③①②三、解答题(每小题10分,共20分)10.(2013·南阳高二检测)已知a,b,c,d∈R,且a+b=c+d=1,ac+bd>1,求证:a,b,c,d中至少有一个是负数.【解题指南】反证法来证明正难则反的运用,先否定结论,假设a,b,c,d都是非负数,然后推出矛盾来得到证明.【证明】假设a,b,c,d都是非负数,因为a+b=c+d=1,所以(a+b)(c+d)=1.又(a+b)(c+d)=ac+bd+ad+bc≥ac+bd,所以ac+bd≤1,这与已知ac+bd>1矛盾,所以a,b,c,d中至少有一个是负数.【拓展提升】适用反证法证明的题型适用反证法证明的题型有:(1)一些基本命题、基本定理.(2)易导出与已知矛盾的命题.(3)“否定性”命题.(4)“唯一性”命题.(5)“必然性”命题.(6)“至多”“至少”类命题.(7)“必然性”命题.(8)涉及“无限”结论的命题等.11.求证过一点只有一条直线与已知平面垂直.【解题指南】文字叙述题的证明应先写出已知,求证,本题证明时应分两种情况,即点P在平面α内和点P 在平面α外.【证明】已知:平面α和一点P.求证:过点P与平面α垂直的直线只有一条.证明:如图所示,不论点P在α内或α外,设PA⊥α,垂足为A(或P).假设过点P还有另一条直线PB⊥α,设PA,PB确定的平面为β,且α∩β=a,于是在平面β内过点P有两条直线PA,PB垂直于a,这与在同一平面内过一点有且只有一条直线与已知直线垂直相矛盾,所以假设不成立,原命题成立.一、选择题(每小题4分,共16分)1.(2014·济宁高二检测)用反证法证明命题“+是无理数”时,假设正确的是( )A.假设是有理数B.假设是有理数C.假设或是有理数D.假设+是有理数【解析】选D.假设结论的反面成立,+不是无理数,则+是有理数.2.(2014·潍坊高二检测)否定结论“至多有两个解”的说法中,正确的是( )A.有一个解B.有两个解C.至少有三个解D.至少有两个解【解析】选C.在逻辑中“至多有n个”的否定是“至少有n+1个”,所以“至多有两个解”的否定为“至少有三个解”.3.已知直线a,b为异面直线,直线c平行于直线a,那么c与b的位置关系为( )A.一定是异面直线B.一定是相交直线C.不可能是平行直线D.不可能是相交直线【解析】选C.假设c∥b,而由c∥a,可得a∥b,这与a,b异面矛盾,故c与b不可能是平行直线.4.已知数列{a n},{b n}的通项公式分别为a n=an+2,b n=bn+1(a,b是常数,且a>b),那么两个数列中序号与相应项的数值相同的项的个数是( )A.0B.1C.2D.无穷多个【解题指南】假设存在两个数列中序号与相应项的数值相同的项,推理得出矛盾.【解析】选A.假设存在两个数列中序号与相应项的数值相同的项,则有an+2=bn+1,得到(a-b)n=-1,这样的n是不存在的,故假设不成立.二、填空题(每小题5分,共10分)5.(2014·郑州高二检测)若下列两个方程x2+(a-1)x+a2=0,x2+2ax-2a=0中至少有一个方程有实根,则实数a 的取值范围是.【解析】假设两个一元二次方程均无实根,则有即解得{a|-2<a<-1},所以其补集{a|a≤-2或a≥-1}即为所求的a的取值范围.答案:{a|a≤-2或a≥-1}6.完成反证法证题的全过程.设a1,a2,…,a7是1,2,…,7的一个排列,求证:乘积p=(a1-1)(a2-2)…(a7-7)为偶数.证明:假设p为奇数,则a1-1,a2-2,…,a7-7均为奇数.因奇数个奇数之和为奇数,故有奇数= = =0.但0≠奇数,这一矛盾说明p为偶数.【解题指南】利用奇数个奇数之和为奇数,把a1-1,a2-2,…,a7-7相加,利用a1+a2+…+a7=1+2+…+7可推出矛盾.【解析】据题目要求及解题步骤,因为a1-1,a2-2,…,a7-7均为奇数,所以(a1-1)+(a2-2)+…+(a7-7)也为奇数.即(a1+a2+…+a7)-(1+2+…+7)为奇数.又因为a1,a2,…,a7是1,2,…,7的一个排列,所以a1+a2+…+a7=1+2+…+7,故上式为0.所以奇数=(a1-1)+(a2-2)+…+(a7-7)=(a1+a2+…+a7)-(1+2+…+7)=0.答案:(a1-1)+(a2-2)+…+(a7-7)(a1+a2+...+a7)-(1+2+ (7)三、解答题(每小题12分,共24分)7.(2013·临沂高二检测)已知a,b,c∈(0,1).求证:(1-a)b,(1-b)c,(1-c)a不能都大于.【证明】假设(1-a)b,(1-b)c,(1-c)a都大于.因为0<a<1,0<b<1,所以1-a>0.由基本不等式,得≥>=.同理,>,>.将这三个不等式两边分别相加,得++>++,即>,这是不成立的,故(1-a)b,(1-b)c,(1-c)a不能都大于.8.(2014·温州高二检测)设{a n},{b n}是公比不相等的两个等比数列,c n=a n+b n.证明数列{c n}不是等比数列. 【解题指南】假设数列{c n}是等比数列,利用{a n},{b n}是公比不相等的等比数列的条件推出矛盾,即知假设不成立.【证明】假设数列{c n}是等比数列,则(a n+b n)2=(a n-1+b n-1)(a n+1+b n+1). ①因为{a n},{b n}是公比不相等的两个等比数列,设公比分别为p,q,所以=a n-1a n+1,=b n-1b n+1.代入①并整理,得2a n b n=a n+1b n-1+a n-1b n+1=a n b n(+),即2=+②.当p,q异号时,+<0,与②相矛盾;当p,q同号时,由于p≠q,所以+>2,与②相矛盾.故数列{c n}不是等比数列.【拓展延伸】适用反证法证明的题型适用反证法证明的题型有:(1)一些基本命题、基本定理.(2)易导出与已知矛盾的命题.(3)“否定性”命题.(4)“唯一性”命题.(5)“必然性”命题.(6)“至多”“至少”类命题.(7)涉及“无限”结论的命题等. 【变式训练】已知f(x)=x2+px+q.求证:(1)f(1)+f(3)-2f(2)=2.(2)|f(1)|,|f(2)|,|f(3)|中至少有一个不小于.【解题提示】至少有一个不小于的反面是都小于.【证明】(1)f(1)+f(3)-2f(2)=(1+p+q)+(9+3p+q)-2(4+2p+q)=2.(2)假设|f(1)|,|f(2)|,|f(3)|都小于,则|f(1)|+2|f(2)|+|f(3)|<2,而|f(1)|+2|f(2)|+|f(3)|≥f(1)+f(3)-2f(2) =(1+p+q)+(9+3p+q)-(8+4p+2q)=2,这与|f(1)|+2|f(2)|+|f(3)|<2相矛盾,从而假设不成立,原命题成立.。
2014-2015学年人教A版选修2-1高中数学《2.2.1椭圆及其标准方程》 t课件
【方法技巧】 1.求椭圆方程的方法 方法 内容 适合题型或条件
分析条件判断出点 的轨迹是椭圆,然 动点满足|MA|+|MB|= 定义法 后根据定义确定方 2a,且2a>|AB| 程
由题设条件能确定 方程类型,设出标 待定 准方程,再代入已 系数法 知数据,求出相关 参数
2 2 x y 故所求椭圆的标准方程为 1. 25 9
②由于椭圆的焦点在y轴上,
2 2 y x 所以设它的标准方程为 2 2 1 (a>b>0). a b
由于椭圆经过点(0,2)和(1,0),
4 0 2 1, 2 2 a 4, 所以 a b 2 b 1. 0 1 1 a 2 b2
焦点的椭圆的方程是(
x 2 y2 A. 1 15 10 x 2 y2 C. 1 10 15
)
x2 y2 B. 1 225 100 x2 y2 D. 1 100 225
(2)求适合下列条件的椭圆的标准方程: ①两个焦点的坐标分别为(-4,0)和(4,0),且椭圆经过点(5, 0). ②焦点在y轴上,且经过两个点(0,2)和(1,0). ③经过点 A( 3, 2) 和点 B 2 3,1 .
2 2 y x (3)椭圆的方程为 1,则a= 9 4
. . ,b= ,
c=
.
【解析】(1)由a2=b2+c2,得b2=52-32=42=16,
2 2 x y 所以椭圆的方程为 1. 25 16 2 2 答案:x y 1 25 16 2 2 1 1 5 x y 2 2 (2)由4x +9y =1,得 所以 c . 1, 1 1 4 9 6 4 9 所以焦点坐标为 ( 5 ,0). 6 答案:( 5 ,0) 6
【全程复习方略】2014-2015学年高中数学 2.2.1.2 分析法课件 新人教A版选修1-2
x 2 1 -x)(
2 2 x 2 1 +x)=x +1-x =1,
而log21=0所以上式成立. 故函数f(x)=log2(
x 2 1 +x)是奇函数.
(2)方法一:(分析法)要证(a+b)-1+(b+c)-1=3(a+b+c)-1,
即证 1 1
ab bc 即证 c a 1, ab bc 3 a bc a bc ,即证 3, abc ab bc
2
1 2
2
【补偿训练】已知a>6.求证: a 3 a 4< a 5 a 6. 【证明】要证 a 3 a 4< a 5 a 6, 只需证 a 3 a 6< a 5 a 4 即证
a 3 a 6
2
a 5 a 4
1
【规范解答】用分析法证明不等式 【典例】(12分)若已知n∈N*,求证:log(n+1)(n+2)<logn(n+1).
【审题】抓信息,找思路
【解题】明步骤,得高分
【点题】警误区,促提升
失分点1:解题时若漏掉①处的条件,即使过程正确,但逻辑不强,
不严谨,至多给10分.
失分点2:解题时若漏掉②处不等式转化,则本例无法证明,导致
a a 只需证 a 2 1 2 a 1 2, a2 a 因为a>0,只需证 ( a 2 1 2) 2 (a 1 2) 2, a2 a 1 1 1 1 即a 2 2 4 a 2 2 4 a 2 2 2 2(a ) 4, a a a a
理过程实际上是逐步寻求结论成立的充分条件的过程.
人教A版高中数学选修1-2课件2、2-2-2
(2)b∥平面α. 则平面α内有直线b′,使b∥b′. 而a∥b,故a∥b′,因为a⊄平面α,所以a∥平面α,这 也与题设矛盾. 综上所述,b与平面α只能相交. [点评] 直接证明直线与平面相交比较困难,故可考 虑用反证法,注意该命题的否定形式不止一种,需一一驳 倒,才能推出命题结论正确.
1.反证法的定义 一般地,假设原命题不成立,经过,正最确后的得推出理,因此
说明假设,从矛而盾证明了原命题,这样的证错明误方法叫做反证
法.反证法是的成一立种基本方法.
2.间反接证证法明的关键是在正确的推理下得出矛盾,这个矛
盾可以是与矛盾,或与矛盾,或与定义、公理、、矛盾
等.
已知条件
假设
定理
事实
[例1] 求证:若两条平行直线a,b中的一条与平面α 相交,则另一条也与平面α相交.
C.a>c且b>d
D.a>c或b>d
[答案] D
[解析] A,B是既不充分也不必要条件,C是充分不
必要条件,只有D正确,可用反证法证明;若a>c或b>d
不成立,则a≤c且b≤d,相加得,a+b≤c+d,与a+b>c+d
矛盾,故条件是必要的.又取a=10,b=1,c=间四点中有三点共线,则这四点 必共面;②空间四点,其中任何三点不共线,则这四点不 共面;③垂直于同一直线的两直线平行;④两组对边相等 的四边形是平行四边形.其中真命题是________. [答案] ① 6.和两条异面直线AB、CD都相交的两条直线AC、 BD的位置关系是________. [答案] 异面
【人教A版】高中数学选修1-2精品教学课件PPT 第2章2.2.1
知新益能 综合法和分析法
综合法
分析法
定义
利用已__知__条__件__和某些数学 _定__义__、公___理__、_定__理__等,经过 一系列的_推__理__论___证__,最后推 导出所要证明的结论成立,这
用分析法去思考,寻找解题途径,用综合法进行 书写,或者联合使用分析法与综合法,即从“欲 知”想“已知”(分析),双管齐下,两面夹击,找到 沟通已知条件和结论的途径.
例3 已知 0<a≤1,0<b≤1,0<c≤1,求证: 1a++abb++cb+c+abcca≥1.
【思路点拨】 本题所要证明的不等式看 不出与已知条件有怎样的因果关系,故可 先采用分析法寻找该不等式成立的充分条 件是.
∴a+1 b+b+1 c=a+3b+c成立.
方法感悟
方法技巧 1.综合法证明问题的步骤 第一步:分析条件,选择方向.仔细分析题目的 已知条件(包括隐含条件),分析已知与结论之间 的联系与区别,选择相关的公理、定理、公式、 结论,确定恰当的解题方法
第二步:转化条件,组织过程.把题目的已知条 件,转化成解题所需要的语言,主要是文字、符 号、图形三种语言之间的转化.组织过程时要有 清晰的思路,严密的逻辑,简洁的语言. 第三步:适当调整,回顾反思.解题后回顾解题 过程,可对部分步骤进行调整,有些语言可做适 当的修饰,反思总结解题方法的选取.
法三:1a+1b=a+a b+a+b b=1+ba+ab+1
≥2+2 ba·ab=4,当且仅当 a=b 时,
取“=”号.
【思维总结】 综合法证明不等式所 依赖的主要是不等式的基本性质和已 知的重要不等式,其中常用的有如下 几个: (1)a2≥0(a∈R).
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基础预习点拨 要点探究归纳 基础预习点拨 知能达标演练 要点探究归纳 课后巩固作业 知能达标演练
课后巩固作业
基础预习点拨 要点探究归纳 基础预习点拨 知能达标演练 要点探究归纳 课后巩固作业 知能达标演练
课后巩固作业
基础预习点拨 要点探究归纳 基础预习点拨 知能达标演练 要点探究归纳 课后巩固作业 知能达标演练
课后巩固作业
基础预习点拨 要点探究归纳 基础预习点拨 知能达标演练 要点探究归纳 课后巩固作业 知能达标演练
课后巩固作业
基础预习点拨 要点探究归纳 基础预习点拨 知能达标演练 要点探究归纳 课后巩固作业 知能达标演练
课后巩固作业
基础预习点拨 要点探究归纳 基础预习点拨 知能达标演练 要点探究归纳 课后巩固作业 知能达标演练
基础预习点拨 要点探究归纳 基础预习点拨 知能达标演练 要点探究归纳 课后巩固作业 知能达标演练
课后巩固作业
基础预习点拨 要点探究归纳 基础预习点拨 知能达标演练 要点探究归纳 课后巩固作业 知能达标演练
课后巩固作业
基础预习点拨 要点探究归纳 基础预习点拨 知能达标演练 要点探究归纳 课后巩固作业 知能达标演练
课后巩固作业
基础预习点拨 要点探究归纳 基础预习点拨 知能达标演练 要点探究归纳 课后巩固作业 知能达标演练
课后巩固作业
基础预习点拨 要点探究归纳 基础预习点拨 知能达标演练 要点探究归纳 课后巩固作业 知能达标演练
课后巩固作业
基础预习点拨 要点探究归纳 基础预习点拨 知能达标演练 要点探究归纳 课后巩固作业 知能达标演练
课后巩固作业
基础预习点拨 要点探究归纳 基础预习点拨 知能达标演练 要点探究归纳 课后巩固作业 知能达标演练
课后巩固作业
基础预习点拨 要点探究归纳 基础预习点拨 知能达标演练 要点探究归纳 课后巩固作业 知能达标演练
课后巩固作业
基础预习点拨 要点探究归纳 基础预习点拨 知能达标演练 要点探究归纳 课后巩固作业 知能达标演练
课后巩固作业
基础预习点拨 要点探究归纳 基础预习点拨 知能达标演练 要点探究归纳 课后巩固作业 知能达标演练
课后巩固作业
基础预习点拨 要点探究归纳 基础预习点拨 知能达标演练 要点探究归纳 课后巩固作业 知能达标演练
课后巩固作业
基础预习点拨 要点探究归纳 基础预习点拨 知能达标演练 要点探究归纳 课后巩固作业 知能达标演练
课后巩固作业
基础预习点拨 要点探究归纳 基础预习点拨 知能达标演练 要点探究归纳 课后巩固作业 知能达标演练
课后巩固作业
基础预习点拨 要点探究归纳 基础预习点拨 知能达标演练 要点探究归纳 课后巩固作业 知能达标演练
课后巩固作业
基础预习点拨 要点探究归纳 基础预习点拨 知能达标演练 要点探究归纳 课后巩固作业 知能达标演练
课后巩固作业
基础预习点拨 要点探究归纳 基础预习点拨 知能达标演练 要点探究归纳 课后巩固作业 知能达标演练
课后巩固作业
基础预习点拨 要点探究归纳 基础预习点拨 知能达标演练 要点探究归纳 课后巩固作业 知能达标演练
课后巩固作业
基础预习点拨 要点探究归纳 基础预习点拨 知能达标演练 要点探究归纳 课后巩固作业 知能达标演练
课后巩固作业
基础预习点拨 要点探究归纳 基础预习点拨 知能达标演练 要点探究归纳 课后巩固作业 知能达标演练
课后巩固作业
基础预习点拨 要点探究归纳 基础预习点拨 知能达标演练 要点探究归纳 课后巩固作业 知能达标演练
课后巩固作业
基础预习点拨 要点探究归纳 基础预习点拨 知能达标演练 要点探究归纳 课后巩固作业 知能达标演练
课后巩固作业
基础预习点拨 要点探究归纳 基础预习点拨 知能达标演练 要点探究归纳 课后巩固作业 知能达标演练
课后巩固作业
基础预习点拨 要点探究归纳 基础预习点拨 知能达标演练 要点探究归纳 课后巩固作业 知能达标演练
课后巩固作业
基础预习点拨 要点探究归纳 基础预习点拨 知能达标演练 要点探究归纳 课后巩固作业 知能达标演练
课后巩固作业
基础预习点拨 要点探究归纳 基础预习点拨 知能达标演练 要点探究归纳 课后巩固作业 知能达标演练
课后巩固作业
基础预习点拨 要点探究归纳 基础预习点拨 知能达标演练 要点探究归纳 课后巩固作业 知能达标演练
课后巩固作业
基础预习点拨 要点探究归纳 基础预习点拨 知能达标演练 要点探究归纳 课后巩固作业 知能达标演练
课后巩固作业
基础预习点拨 要点探究归纳 基础预习点拨 知能达标演练 要点探究归纳 课后巩固作业 知能达标演练
课后巩固作业
基础预习点拨 要点探究归纳 基础预习点拨 知能达标演练 要点探究归纳 课后巩固作业 知能达标演练
课后巩固作业
基础预习点拨 要点探究归纳 基础预习点拨 知能达标演练 要点探究归纳 课后巩固作业 知能达标演练
课后巩固作业
基础预习点拨 要点探究归纳 基础预习点拨 知能达标演练 要点探究归纳 课后巩固作业 知能达标演练
课后巩固作业
基础预习点拨 要点探究归纳 基来自预习点拨 知能达标演练 要点探究归纳 课后巩固作业 知能达标演练
课后巩固作业
基础预习点拨 要点探究归纳 基础预习点拨 知能达标演练 要点探究归纳 课后巩固作业 知能达标演练
课后巩固作业
基础预习点拨 要点探究归纳 基础预习点拨 知能达标演练 要点探究归纳 课后巩固作业 知能达标演练
课后巩固作业
基础预习点拨 要点探究归纳 基础预习点拨 知能达标演练 要点探究归纳 课后巩固作业 知能达标演练
课后巩固作业
基础预习点拨 要点探究归纳 基础预习点拨 知能达标演练 要点探究归纳 课后巩固作业 知能达标演练
课后巩固作业
基础预习点拨 要点探究归纳 基础预习点拨 知能达标演练 要点探究归纳 课后巩固作业 知能达标演练
课后巩固作业
基础预习点拨 要点探究归纳 基础预习点拨 知能达标演练 要点探究归纳 课后巩固作业 知能达标演练
课后巩固作业
基础预习点拨 要点探究归纳 基础预习点拨 知能达标演练 要点探究归纳 课后巩固作业 知能达标演练
课后巩固作业
基础预习点拨 要点探究归纳 基础预习点拨 知能达标演练 要点探究归纳 课后巩固作业 知能达标演练