初三中考数学毕业班综合测试
中考冲刺--初中毕业班综合测试(一)数学试题
![中考冲刺--初中毕业班综合测试(一)数学试题](https://img.taocdn.com/s3/m/9ed9a907f78a6529647d532a.png)
2010年南沙区初中毕业综合测试(一)试题数学一、选择题(每小题3分,共30分)1.5-的相反数是(※).A.15B.5-C.5D.15-2.1亿可记作108,如果每人每天浪费0.01千克粮食,我国13亿人每天就浪费粮食(※)A.1.3×108千克B.1.3×107千克C.1.3×106千克D.1.3×105 千克3.我区某街道进行街边人行道路翻新,准备选用同一种正多边形地砖铺设地面.下列正多边形的地砖中,不能进行平面镶嵌的是(※).A.正三角形B.正方形C.正五边形D.正六边形4.下列运算正确的是(※)A.1243xxx=∙ B.623(6)(2)3x x x-÷-=C.22(2)4x x-=- D.23a a a-=-5.关于x的一元二次方程0122=+-xx根的情况是(※).A.有两个相等的实数根 B.有两个不相等的实数根C.没有实数根 D.不能确定6. 在下面的四个几何体中,它们各自的左视图与主视图可能不相同的是( * )正方体长方体圆柱圆锥A B C D7.下列命题中,真命题是( ※ ).A .同位角相等B .内错角相等C .同旁内角互补D .对顶角相等8.如图,已知直线 25,115,//=∠=∠A C CD AB , 则=∠E ( ※ ).A .70ºB .80ºC . 90ºD .100º9. Rt ABC △中,90C ∠=,8AC =,6BC =,两个相等的圆⊙A,⊙B 外切,那么图中两个扇形(即阴影部分)的面积之和为( ※ )A .254π B .258π C .2516π D .2532π 10.如图,有一张直角三角形纸片,两直角边6AC cm =,9BC cm =,将△ABC 折叠,使点B 与点A 重合,折痕为DE ,则CD 等于( )cm .A 、254B 、223C 、74D 、25第二部分 非选择题 (共120分)二、填空题(每小题3分,共18分) 11.在函数y x 的取值范围是 *** .12.方程121x x =+的解是 *** . 13.如果反比例函数的图象经过点(-3,2),那么这个函数的解析析式是 *** . 14.分解因式: 24x -= *** 。
中考初三九年级数学考试试卷试题(含详细答案)
![中考初三九年级数学考试试卷试题(含详细答案)](https://img.taocdn.com/s3/m/08ff0872f4335a8102d276a20029bd64783e62b5.png)
数学试卷 第1页(共78页) 数学试卷 第2页(共78页)绝密★启用前初中毕业生学业暨升学统一考试数 学本试卷满分150分,考试时间120分钟.第Ⅰ卷(选择题 共40分)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.计算24-的结果等于( ) A .8-B .16-C .16D .82.如图,ABC △的顶点均在O 上,若36A ∠=,则BOC ∠的度数为( ) A .18 B .36 C .60D .723.如图,AB CD ∥CB DE ∥,若72B ∠=,则D ∠的度数为( ) A .36B .72C .108D .1184.如图,点B ,F ,C ,E 在一条直线上AB ED ∥,AC FD ∥,那么添加下列一个条件后,仍无法判ABC DEF ∆∆≌的是 ( ) A .AB DE = B .AC DF = C .A D ∠=∠D .BF EC =5.如图,在ABC △中,点D 在AB 上,2BD AD =,DE BC ∥交AC 于E ,则下列结论不正确的是( )A .3BC DE =B .BD CEBA CA=C .ADE ABC △∽△D .13ADEABCSS =6.甲、乙、丙三人站成一排拍照,则甲站在中间的概率是( ) A .16B .13C .12D .237.某校在国学文化进校园活动中,随机统计50名学生一周的课外阅读时间如下表所示,这组数据的众数和中位数分别是( )学生数(人) 5 8 14 19 4 时间(小时) 6 7 8 9 10 A .14,9B .9,9C .9,8D .8,98.如图,是由几个完全相同的小正方体搭建的几何体,它的左视图是( )ABCD9.如图,反比例函数2y x=的图象经过矩形OABC 的边AB 的中点D ,则矩形OABC 的面积为( )A .2B .4C .5D .810.如图,矩形ABCD 绕点B 逆时针旋转30后得到矩形111A BC D ,11C D 与AD 交于点M ,延长DA 交11A D 于F ,若1AB =,3BC =,则AF 的长度为( )A .23-B .313- C .333-D .31-毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共78页) 数学试卷 第4页(共78页)第Ⅱ卷(非选择题 共110分)二、填空题(本大题共10小题,每小题3分,共30分.请把答案填写在题中的横线上) 11.计算:2(2)ab -= .12.0.0000156用科学记数法表示为 .13.分解因式:34x x -= .14.若一个多边形的内角和为1080,则这个多边形的边数为 . 15.函数y 自变量x 的取值范围是 .16.如图,AB 是O 的直径,CD 为弦,CD AB ⊥于E ,若6CD =,1BE =,则O的直径为 .17.关于x 的两个方程260x x --=与213x m x =+-有一个解相同,则m = .18.已知1O 和2O 的半径分别为m ,n ,且m ,n满足2(2)0n -=,圆心距1252O O =,则两圆的位置关系为 .19.如图,小明购买一种笔记本所付款金额y (元)与购买量x (本)之间的函数图象由线段OB 和射线BE 组成,则一次购买8个笔记本比分8次购买每次购买1个可节省 元.20.阅读材料并解决问题:求23201412222+++++的值.令23201412222S =+++++,等式两边同时乘以2,则2320142015222222S =+++++.两式相减,得2015221S S -=-所以201521S =-. 依据以上计算方法,计算23201513333+++++= .三、解答题(本大题共6小题,共80分.解答应写出文字说明、证明过程或演算步骤) 21.(本小题满分12分,每题6分) (1)计算:101π|2cos45()(tan80)22016---+-.(2)化简:2222(2)211x x x x x x +---÷-++,再代入一个合适的x 求值.22.(本小题满分12分)如图,点A 是O 直径BD 延长线上的一点,点C 在O 上,AC BC =,AD CD =.(1)求证:AC 是O 的切线;(2)若O 的半径为2,求ABC △的面积.23.(本小题满分14分)知识竞赛结束后,通过网上查询,某校一名班主任对本班成绩(成绩取整数,数学试卷 第5页(共78页) 数学试卷 第6页(共78页)满分100分)做了统计分析,绘制成如下频数分布表和频数分布直方图,请你根据图表提供的信息,解答下列问题.频数分布表分组(分) 频数 频率 5060x <≤ 2 0.046070x <≤ 12a 7080x <≤b 0.36 8090x <≤ 14 0.2890100x <≤c 0.08 合计 50 1(1)频数分布表中a = ,b = ,c = ; (2)补全频数分布直方图;(3)为了激励学生增强安全意识,班主任准备从超过90分的学生中选2人介绍学习经验,那么取得100分的小亮和小华同时被选上的概率是多少?请用列表法或画树状图加以说明,并列出所有等可能结果.24.(本小题满分14分)黔西南州某养殖场计划购买甲、乙两种鱼苗600条,甲种鱼苗每条16元,乙种鱼苗每条20元.相关资料表明:甲、乙两种鱼苗的成活率为80%,90%.(1)若购买这两种鱼苗共用去11000元,则甲、乙两种鱼苗各购买多少条? (2)若要使这批鱼苗的总成活率不低于85%,则乙种鱼苗至少购买多少条?(3)在(2)的条件下,应如何选购鱼苗,使购买鱼苗的总费用最低?最低费用是多少?25.(本小题满分12分)求两个正整数的最大公约数是常见的数学问题,中国古代数学专著《九章算术》中便记载了求两个正整数最大公约数的一种方法——更相减损术,术曰:“可半者半之,不可半者,副置分母、子之数,以少成多,更相减损,求其等也.以等数约之.”意思是说,要求两个正整数的最大公约数,先用较大的数减去较小的数,得到差,然后用减数与差中的较大数减去较小数,以此类推,当减数与差相等时,此时的差(或减数)即为这两个正整数的最大公约数.例如:求91与56的最大公约数解:请用以上方法解决下列问题: (1)求108与45的最大公约数. (2)求三个数78,104,143的最大公约数.26.(本小题满分16分)如图,二次函数23y x x m =-++的图象与x 轴的一个交点为(4,0)B ,另一个交点为A ,且与y 轴相交于C 点. (1)求m 的值及C 点坐标;915635-=563521-= 352114-= 21147-= 1477-=所以91与56的最大公约数是7._____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题------------------数学试卷 第7页(共78页) 数学试卷 第8页(共78页)(2)在直线BC 上方的抛物线上是否存在一点M ,使得它与B ,C 两点构成的三角形面积最大?若存在,求出此时M 点坐标;若不存在,请简要说明理由;(3)P 为抛物线上一点,它关于直线BC 的对称点为Q . ①当四边形PBQC 为菱形时,求点P 的坐标;②点P 的横坐标为(04)t t <<,当t 为何值时,四边形PBQC 的面积最大,请说明理由.数学试卷 第9页(共78页) 数学试卷 第10页(共78页)初中毕业生学业暨升学统一考试数学答案解析 第Ⅰ卷一、选择题 1.【答案】B【解析】24(44)16-=-⨯=-,故选B.【提示】乘方就是求几个相同因数积的运算,24(44)16-=-⨯=-. 【考点】有理数的乘方 2.【答案】D【解析】由题意得2BOC ∠=,272BOC A ∠=∠=︒,故选D.【提示】在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半,由此可得出答案. 【考点】圆周角定理 3.【答案】C【解析】∵AB ∥CD ,CB ∥DE ,72B ∠=︒,∴72C B ∠=∠=︒,180D C ∠+∠=︒,∴18072108D ∠=︒-︒=︒;故选C.【提示】由平行线的性质得出72C B ∠=∠=︒,180D C ∠+∠=︒,即可求出结果. 【考点】平行线的性质 4.【答案】C【解析】添加AB DE =可用AAS 进行判定,故本选项A 错误;添加AC DF=可用AAS 进行判定,故本选项B 错误;添加A D ∠=∠不能判定ABC DEF △≌△,故本选项C 正确;添加BF EC =可得出BC EF =,然后可用ASA 进行判定,故本选项D 错误;故选C.【提示】分别判断选项所添加的条件,根据三角形的判定定理:SSS 、SAS 、AAS 进行判断即可.【考点】全等三角形的判定 5.【答案】D632OA OD=.∵2=OA AB AD22=⨯OA【提示】由反比例函数的系数k的几何意义可知:2OA OD=,然后可求得的值,从而可求得矩形【考点】反比例函数系数k的几何意义BD,如图所示,在矩形90=︒,CD13==2DF BD==,∴23AF DF AD=-=-;故选:A.【解析】222(2)4ab a b-=.故答案为:224a b.【提示】直接利用积的乘方运算法则以及幂的乘方运算法则求出答案.【考点】幂的乘方与积的乘方12.【答案】51.5610-⨯【解析】50.0000156 1.5610-=⨯,故答案为:51.5610-⨯.【提示】绝对值小于1的正数也可以利用科学记数法表示,一般形式为10na-⨯,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【考点】科学记数法—表示较小的数13.【答案】(2)(2)x x x+-【解析】324(4)(2)(2)x x xx x x x--=+-=;故答案为:(2)(2)x x x+-.【提示】应先提取公因式x,再对余下的多项式利用平方差公式继续分解.【考点】提公因式法与公式法的综合运用14.【答案】8【解析】根据n边形的内角和公式,得(2) 1801080n-=,解得8n=;∴这个多边形的边数是8;故答案为:8.【提示】n边形的内角和是(2) 180n-,如果已知多边形的边数,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数.【考点】多边形内角与外角15.【答案】1x<【解析】根据题意得:10x->,解可得1x<;故答案为1x<.【提示】根据二次根式有意义的条件就是被开方数大于或等于0,分式有意义的条件是分母不为0;可得关系式10x->,解不等式即可.【考点】函数自变量的取值范围16.【答案】10【解析】如图,,∵AB是O的直径,而且CD AB⊥于E,∴1226DE CE==÷=,在Rt△ODE中,设OD x=,222(1)3x x=-+,解得5x=,∵5210⨯=,∴数学试卷第11页(共78页)数学试卷第12页(共78页)数学试卷 第13页(共78页) 数学试卷 第14页(共78页)O 的直径为10.故答案为:10.的长,即可求出O 的直径为多少60x --=2x =-时,1(2)(2)12 222212x x x x x x x x x x x ++-+-=-=+---+-)根据特殊角的三角函数值、负整数整数幂和零指数幂的意义计)先把括号内通分,再把除法运算化为乘法运算,然后约分后合并得到原数学试卷 第15页(共78页) 数学试卷 第16页(共78页)22图形如图;列表如下:或画树状图如图:数学试卷 第17页(共78页) 数学试卷 第18页(共78页)【提示】(1)根据频数、频率和样本容量的关系可分别求得a 、b 、c ; (2)由(1)中求得的b 、c 的值可补全图形;(3)由题可知超过90分的学生人数有4人,再利用树状图可求得概率. 【考点】列表法与树状图法;频数(率)分布表;频数(率)分布直方图 24.【答案】(1)设购买甲种鱼苗x 条,乙种鱼苗y 条, 根据题意得:600162011000x y x y +=⎧⎨+=⎩,解得:250350x y =⎧⎨=⎩,答:购买甲种鱼苗250条,乙种鱼苗350条;(2)设购买乙种鱼苗m 条,则购买甲种鱼苗(600)m -条, 根据题意得:90%80%(600)85%600m m +-≥⨯, 解得:300m ≥,答:购买乙种鱼苗至少300条;(3)设购买鱼苗的总费用为w 元,则2016(600)49600w m m m =+-=+, ∵40>,∴w 随m 的增大而增大, 又∵300m ≥,∴当300m =时,w 取最小值,4300960010800w =⨯+=最小值(元).答:当购买甲种鱼苗300条,乙种鱼苗300条时,总费用最低,最低费用为10800元.【提示】(1)设购买甲种鱼苗x 条,乙种鱼苗y 条,根据“购买甲、乙两种鱼苗600条,甲种鱼苗每条16元,乙种鱼苗每条20元”即可列出关于x 、y 的二元一次方程组,解方程组即可得出结论;(2)设购买乙种鱼苗m 条,则购买甲种鱼苗(600)m -条,根据“甲、乙两种鱼苗的成活率为80%,90%,要使这批鱼苗的总成活率不低于85%”即可列出关于m 的一元一次不等式,解不等式即可得出m 的取值范围; (3)设购买鱼苗的总费用为w 元,根据“总费用=甲种鱼苗的单价×购买数量+乙种鱼苗的单价×购买数量”即可得出w 关于m 的函数关系式,根据一次函数的性质结合m 的取值范围,即可解决最值问题.【考点】一次函数的应用;二元一次方程组的应用;一元一次不等式的应用25.【答案】(1)1084563-=,634518-=, 451827-=, 27189-=, 1899-=,所以108与45的最大公约数是9; (2)先求104与78的最大公约数,1047826-=, 782652-=, 522626-=,所以104与78的最大公约数是26; 再求26与143的最大公约数,14326117-=, 1172691-=, 912665-=, 652639-=, 392613-=, 261313-=,所以,26与143的最大公约数是13, ∴78、104、143的最大公约数是13.【提示】(1)根据题目,首先弄懂题意,然后根据例子写出答案即可; (2)可以先求出104与78的最大公约数为26,再利用辗转相除法,我们可以求出26与143的最大公约数为13,进而得到答案. 【考点】有理数的混合运算26.【答案】(1)将(4,0)B 代入23y x x m =-++,解得:4m =, ∴二次函数解析式为234y x x =-++, 令0x =,得4y =,数学试卷 第19页(共78页)数学试卷 第20页(共78页)∴或;t∵04t <<,∴当2t =时,16PBQC S =四边形最大.【提示】(1)用待定系数法求出抛物线解析式;(2)先判断出面积最大时,平移直线BC 的直线和抛物线只有一个交点,从而求出点M 坐标;(3)①先判断出四边形PBQC 时菱形时,点P 是线段BC 的垂直平分线,利用该特殊性建立方程求解;②先求出四边形PBCQ 的面积与t 的函数关系式,从而确定出它的最大值. 【考点】二次函数综合题2中考数学试卷一、选择题(每小题3分,满分30分,在每小题给出的四个选项中,只有一项是正确的,请将正确选项的代号填写在答题卷相应的空格内)1.(3.00分)下列实数中,无理数是()A.﹣2B.0C.πD .2.(3.00分)把不等式组的解集表示在数轴上,正确的是()A .B .C .D .3.(3.00分)如图是正方体的一个平面展开图,如果叠成原来的正方体,与“创”字相对的字是()A.都B.美C.好D.凉4.(3.00分)已知两圆的半径分别为1和2,圆心距为5,那么这两个圆的位置关系是()A.内切B.相交C.外离D.外切5.(3.00分)下列运算中,结果正确的是()A.(a﹣b)2=a2﹣b2B.(﹣a4)3=a7C.2a+4b=6ab D.﹣(1﹣a)=a﹣1 6.(3.00分)下列事件是必然事件的是()A.若a>b,则ac>bcB.在正常情况下,将水加热到100℃时水会沸腾C.投掷一枚硬币,落地后正面朝上D.长为3cm、3cm、7cm的三条线段能围成一个三角形7.(3.00分)如图,火车匀速通过隧道(隧道长等于火车长)时,火车进入隧道的时间x与火车在隧道内的长度y之间的关系用图象描述大致是()A .B . C.D .8.(3.00分)若点(﹣3,y1)、(﹣2,y2)、(1,y3)在反比例函数的图象上,则下列结论正确的是()A.y1>y2>y3B.y2>y1>y3C.y3>y1>y2D.y3>y2>y19.(3.00分)“标准对数视力表”对我们来说并不陌生,如图是视力表的一部分,其中最上面较大的“E”与下面四个较小“E”中的哪一个是位似图形()A.左上B.左下C.右下D.以上选项都正确10.(3.00分)如图,在菱形ABCD中,对角线AC=6,BD=8,点E、F分别是边AB、BC的中点,点P在AC上运动,在运动过程中,存在PE+PF 的最小值,则这个最小值是()A.3B.4C.5D.6二、填空题(每小题4分,满分32分,请将答案填写在答题卷相应题号后的横线上)11.(4.00分)如果上升10米记作+10米,那么下降5米记作米.12.(4.00分)通过第六次全国人口普查得知,六盘水市人口总数约为2851180人,这个数用科学记数法表示是人(保留两个有效数字).13.(4.00分)请写出两个既是轴对称图形又是中心对称图形的平面几何图形名称(写出两个即可)14.(4.00分)在平面直角坐标系中,点P(2,3)与点P′(2a+b,a+2b)关于原点对称,则a﹣b的值为.15.(4.00分)一个正方形的面积是20,通过估算,它的边长在整数与之间.16.(4.00分)小明将两把直尺按如图所示叠放,使其中一把直尺的一个顶点恰好落在另一把直尺的边上,则∠1+∠2=度.17.(4.00分)从美学角度来说,人的上身长与下身长之比为黄金比时,可以给人一种协调的美感.某女老师上身长约61.80cm,下身长约93.00cm,她要穿约cm的高跟鞋才能达到黄金比的美感效果(精确到0.01cm).18.(4.00分)有一列数:,,,…,则它的第7个数是;第n个数是.三、解答题(本大题共7道题,满分88分,请在答题卷中作答,必须写出运算步骤,推理过程,文字说明或作图痕迹)19.(9.00分)计算:.20.(9.00分)先化简代数式:,再从你喜欢的数中选择一个恰当的作为x的值,代入求出代数式的值.21.(14.00分)在我市举行的“祖国好,家乡美”唱红歌比赛活动中,共有40支参赛队.市教育局对本次活动的获奖情况进行了统计,并根据收集的数据绘制了图1、图2两幅不完整的统计图,请你根据图中提供的信息解答下面的问题:(1)获一、二、三等奖各有多少参赛队?(2)在答题卷上将统计图图1补充完整;(3)计算统计图图2中“没获将”部分所对应的圆心角的度数;(4)求本次活动的获奖概率.22.(14.00分)小明家有一块长8m、宽6m的矩形空地,妈妈准备在该空地上建造一个花园,并使花园面积为空地面积的一半,小明设计了如下的四种方案供妈妈挑选,请你选择其中的一种方案帮小明求出图中的x值.23.(14.00分)如图,已知:△ABC是⊙O的内接三角形,D是OA延长线上的一点,连接DC,且∠B=∠D=30°.(1)判断直线CD与⊙O的位置关系,并说明理由.(2)若AC=6,求图中弓形(即阴影部分)的面积.24.(12.00分)某一特殊路段规定:汽车行驶速度不超过36千米/时.一辆汽车在该路段上由东向西行驶,如图所示,在距离路边10米O处有一“车速检测仪”,测得该车从北偏东60°的A点行驶到北偏东30°的B点,所用时间为1秒.(1)试求该车从A点到B点的平均速度.(2)试说明该车是否超速.(、)25.(16.00分)如图所示,Rt△ABC是一张放在平面直角坐标系中的纸片,点C与原点O重合,点A在x轴的正半轴上,点B在y轴的正半轴上,已知OA=3,OB=4.将纸片的直角部分翻折,使点C落在AB边上,记为D点,AE为折痕,E在y轴上.(1)在如图所示的直角坐标系中,求E点的坐标及AE的长.(2)线段AD上有一动点P(不与A、D重合)自A点沿AD方向以每秒1个单位长度向D点作匀速运动,设运动时间为t秒(0<t<3),过P点作PM∥DE交AE于M点,过点M作MN∥AD交DE于N点,求四边形PMND的面积S与时间t之间的函数关系式,当t取何值时,S有最大值?最大值是多少?(3)当t(0<t<3)为何值时,A、D、M三点构成等腰三角形?并求出点M 的坐标.中考数学试卷参考答案与试题解析一、选择题(每小题3分,满分30分,在每小题给出的四个选项中,只有一项是正确的,请将正确选项的代号填写在答题卷相应的空格内)1.(3.00分)下列实数中,无理数是()A.﹣2B.0C.πD .【分析】根据无理数的定义进行解答即可.【解答】解:∵=2是整数,∴﹣2、0、2是整数,故是有理数;π是无理数.故选:C.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.2.(3.00分)把不等式组的解集表示在数轴上,正确的是()A .B .C .D .【分析】先把不等式组的解集在数轴上表示出来,再找出符合条件的选项即可.【解答】解:不等式组的解集在数轴上表示为:故选:B.【点评】本题考查的是在数轴上表示不等式组的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.3.(3.00分)如图是正方体的一个平面展开图,如果叠成原来的正方体,与“创”字相对的字是()A.都B.美C.好D.凉【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,∴与“创”字相对的字是“都”.故选:A.【点评】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.4.(3.00分)已知两圆的半径分别为1和2,圆心距为5,那么这两个圆的位置关系是()A.内切B.相交C.外离D.外切【分析】由两圆的半径分别为1和2,圆心距为5,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系即可得出两圆位置关系.【解答】解:∵两圆的半径分别为1和2,圆心距为5,又∵1+2=3<5,∴这两个圆的位置关系是外离.故选:C.【点评】此题考查了圆与圆的位置关系.解题的关键是掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系.5.(3.00分)下列运算中,结果正确的是()A.(a﹣b)2=a2﹣b2B.(﹣a4)3=a7C.2a+4b=6ab D.﹣(1﹣a)=a﹣1【分析】根据去括号法则、合并同类项、幂的乘方与积的乘方和完全平方公式计算后利用排除法求解.【解答】解:A、(a﹣b)2=a2﹣2ab+b2,故本选项错误;B、(﹣a4)3=﹣a12,故本选项错误;C、不是同类项,不能合并,故本选项错误;D、﹣(1﹣a)=a﹣1,故本选项正确.故选:D.【点评】本题考查了去括号法则、合并同类项、幂的乘方与积的乘方和完全平方公式,需熟练掌握且区分清楚,才不容易出错.6.(3.00分)下列事件是必然事件的是()A.若a>b,则ac>bcB.在正常情况下,将水加热到100℃时水会沸腾C.投掷一枚硬币,落地后正面朝上D.长为3cm、3cm、7cm的三条线段能围成一个三角形【分析】根据事件的分类对四个选项进行逐一分析即可.【解答】解:A、若a>b,则ac>bc是随机事件,故本选项错误;B、在正常情况下,将水加热到100℃时水会沸腾是必然事件,故本选项正确;C、掷一枚硬币,落地后正面朝上是随机事件,故本选项错误;D、长为3cm、3cm、7cm的三条线段能围成一个三角形,是不可能事件,故本选项错误.故选:B.【点评】本题主要考查必然事件、不可能事件、随机事件的概念,理解概念是解决基础题的主要方法.用到的知识点为:必然事件指在一定条件下一定发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.7.(3.00分)如图,火车匀速通过隧道(隧道长等于火车长)时,火车进入隧道的时间x与火车在隧道内的长度y之间的关系用图象描述大致是()A .B .C .D .【分析】先分析题意,把各个时间段内y与x之间的关系分析清楚,本题是分段函数,分为二段.【解答】解:根据题意可知火车进入隧道的时间x与火车在隧道内的长度y 之间的关系具体可描述为:当火车开始进入时y逐渐变大,当火车完全进入隧道,由于隧道长等于火车长,此时y最大,当火车开始出来时y逐渐变小.故选:B.【点评】主要考查了根据实际问题作出函数图象的能力.解题的关键是要知道本题是分段函数,分情况讨论y与x之间的函数关系.8.(3.00分)若点(﹣3,y1)、(﹣2,y2)、(1,y3)在反比例函数的图象上,则下列结论正确的是()A.y1>y2>y3B.y2>y1>y3C.y3>y1>y2D.y3>y2>y1【分析】把点的坐标代入函数解析式,分别求出函数值,即可比较大小.【解答】解:根据题意,y1==﹣,y2==﹣1,y3==2,∵2>﹣>﹣1,∴y3>y1>y2.故选:C.【点评】本题考查了反比例函数图象上点的坐标特征,利用把点的坐标代入函数解析式求函数值比较简单.9.(3.00分)“标准对数视力表”对我们来说并不陌生,如图是视力表的一部分,其中最上面较大的“E”与下面四个较小“E”中的哪一个是位似图形()A.左上B.左下C.右下D.以上选项都正确【分析】开口向上的两个“E”形状相似,但大小不同,因此它们之间的变换属于位似变换,故最上面较大的“E”与右上和左下的“E“是位似图形.【解答】解:根据位似变换的特点可知:最上面较大的“E”与右上和左下的“E“是位似图形.故选:B.【点评】本题考查了位似变换的相关知识,位似是相似的特殊形式,平移、旋转、对称的图形都是全等形.10.(3.00分)如图,在菱形ABCD中,对角线AC=6,BD=8,点E、F分别是边AB、BC的中点,点P在AC上运动,在运动过程中,存在PE+PF 的最小值,则这个最小值是()A.3B.4C.5D.6【分析】先根据菱形的性质求出其边长,再作E关于AC的对称点E′,连接E′F,则E′F即为PE+PF的最小值,再根据菱形的性质求出E′F的长度即可.【解答】解:∵四边形ABCD是菱形,对角线AC=6,BD=8,∴AB==5,作E关于AC的对称点E′,连接E′F,则E′F即为PE+PF的最小值,∵AC是∠DAB的平分线,E是AB的中点,∴E′在AD上,且E′是AD的中点,∵AD=AB,∴AE=AE′,∵F是BC的中点,∴E′F=AB=5.故选:C.【点评】本题考查的是轴对称﹣最短路线问题及菱形的性质,熟知菱形的性质是解答此题的关键.二、填空题(每小题4分,满分32分,请将答案填写在答题卷相应题号后的横线上)11.(4.00分)如果上升10米记作+10米,那么下降5米记作﹣5米.【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:“正”和“负”相对,所以,如果上升10米记作+10米,那么下降5米记作﹣5米.故答案为:﹣5.【点评】此题考查的知识点是正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.12.(4.00分)通过第六次全国人口普查得知,六盘水市人口总数约为2851180人,这个数用科学记数法表示是 2.9×106人(保留两个有效数字).【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于2851180有7位,所以可以确定n=7﹣1=6.有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字.用科学记数法表示的数的有效数字只与前面的a有关,与10的多少次方无关.【解答】解:2851180=2.851180×106≈2.9×106.故答案为2.9×106.【点评】此题考查科学记数法的表示方法,以及用科学记数法表示的数的有效数字的确定方法.13.(4.00分)请写出两个既是轴对称图形又是中心对称图形的平面几何图形名称正方形、矩形(写出两个即可)【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:正方形和矩形都是中心对称图形和轴对称图形.故本题答案为:正方形;矩形.【点评】本题考查了中心对称图形和轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合.注意本题答案不唯一.14.(4.00分)在平面直角坐标系中,点P(2,3)与点P′(2a+b,a+2b)关于原点对称,则a﹣b 的值为1.【分析】平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),即求关于原点的对称点时,横、纵坐标都变成原数的相反数.【解答】解:根据两个点关于原点对称,则横、纵坐标都是原数的相反数,得:2a+b=﹣2,a+2b=﹣3,解得:a=﹣,b=﹣,a﹣b=1.故答案为:1.【点评】本题考查了关于原点对称的点的坐标,这一类题目是需要识记的基础题,记忆方法是结合平面直角坐标系的图形记忆.15.(4.00分)一个正方形的面积是20,通过估算,它的边长在整数4与5之间.【分析】本题需要先算出4的平方为16与5的平方为25,所以16的算术平方根是4,25的算术平方根是5,进而得出20的算术平方根在4与5之间.【解答】解:∵正方形的面积是20,∴它的边长为20的算术平方根,即,∵<<,∴它的边长在整数:在4与5之间.故答案为:4,5.【点评】本题主要考查了估算无理数的大小,解题关键是确定无理数的整数部分即可解决问题.16.(4.00分)小明将两把直尺按如图所示叠放,使其中一把直尺的一个顶点恰好落在另一把直尺的边上,则∠1+∠2=90度.【分析】首先过点E作EF∥AB,根据题意可得:AB∥CD,∠MEN=90°,即可证得AB∥CD∥EF,然后根据两直线平行,内错角相等,即可求得答案.【解答】解:过点E作EF∥AB,根据题意得:AB∥CD,∠MEN=90°,∴AB∥CD∥EF,∴∠3=∠2,∠4=∠1,∴∠1+∠2=∠3+∠4=∠MEN=90°.故答案为:90.【点评】此题考查了平行线的性质.解题的关键是注意掌握两直线平行,内错角相等定理的应用.17.(4.00分)从美学角度来说,人的上身长与下身长之比为黄金比时,可以给人一种协调的美感.某女老师上身长约61.80cm,下身长约93.00cm,她要穿约7.00cm的高跟鞋才能达到黄金比的美感效果(精确到。
2024广东省广州市天河区中考一模数学试题含答案解析
![2024广东省广州市天河区中考一模数学试题含答案解析](https://img.taocdn.com/s3/m/c13d1f3e3a3567ec102de2bd960590c69ec3d88b.png)
2024届初三毕业班综合测试数学本试卷共三大越25小题,共4页,满分120分.考试时间120分钟注意事项:1.答卷前,考生必须用黑色字迹的钢笔或签字笔将自己的学校、姓名、班级、座位号和考生号填写在答题卡相应的位置上,再用2B 铅笔把考号的对应数字涂黑.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案;不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔或涂改液.不按以上要求作答的答案无效.4.考生必须保证答题卡的整洁,考试结束后,将试卷和答题卡一并交回.一、选择题(本题有10个小题,每小题3分,满分30分,每小题给出的四个选项中.只有一个是正确的)1. 如图,数轴上点A 所表示的数的相反数为( )A. 3−B. 3C. 13−D. 13【答案】A【解析】【分析】通过识图可得点A 所表示的数为3,然后结合相反数的概念求解.【详解】解:由图可得,点A 所表示的数为3,∴数轴上点A 所表示的数的相反数为-3,故选:A .【点睛】本题考查了数轴上的点击相反数的概念,准确识图,理解相反数的定义是解题关键. 2. 据国家统计局公布,2023年第一季度,全国居民人均可支配收入10870元.数据10870用科学记数法表示为( )A. 41.08710×B. 410.8710×C. 310.8710×D. 31.08710× 【答案】A【解析】【分析】用科学记数法表示较大的数的一般形式为10n a ×,其中110a ≤<,n 等于原数的整数位数减1,即可得到答案.【详解】解:用科学记数法表示较大的数的一般形式为10n a ×,其中110a ≤<,n 等于原数的整数位数减1,∴410870 1.08710=×,故答案选:A .【点睛】本题考查了科学记数法,掌握科学记数法的表示方法是解题的关键.3. 下列几何体中,各自的三视图完全一样的是( ).A. B. C. D.【答案】D【解析】【分析】本题主要考查了常见的几何体的三视图,熟知常见几何体的三视图是解题的关键.【详解】解:A 、俯视图是三角形,主视图是长方形,左视图是长方形,中间有一条竖直实线,不符合题意;B 、俯视图是一个圆,左视图和主视图都是等腰三角形,不符合题意;C 、俯视图是一个圆,左视图和主视图都是长方形,不符合题意;D 、主视图,俯视图,左视图都是圆,符合题意;故选:D .4. 下列运算正确的是( )A. ()2211m m −=−B. ()3326m m =C. 734m m m ÷=D. 257m m m +=【答案】C【解析】【分析】根据幂的运算法则,完全平方公式处理.【详解】解:A. ()22121m m m −=−+,原运算错误,本选项不合题意;B. ()3328m m =,原运算错误,本选项不合题意;C. 734m m m ÷=,符合运算法则,本选项符合题意;D. 25m m +,不能进一步运算化简,原运算错误,本选项不合题意;故选:C .【点睛】本题考查乘法公式在整式乘法中的运用,幂的运算法则,掌握相关法则和公式是解题的关键. 5. 一组数据:3,4,4,4,5,若去掉一个数据4,则下列统计量中发生变化的是( )A. 众数B. 中位数C. 平均数D. 方差【答案】D【解析】【分析】根据众数、中位数、平均数及方差可直接进行排除选项.【详解】解:由题意得: 原中位数为4,原众数为4,原平均数为3444545x ++++==,原方差为()()()()()2222223444444454255S −+−+−+−+− =; 去掉一个数据4后的中位数为4442+=,众数为4,平均数为344544x +++==,方差为()()()()2222234444454142S −+−+−+− =;∴统计量发生变化的是方差;故选D .【点睛】本题主要考查平均数、众数、众数及方差,熟练掌握求一组数据的平均数、众数、众数及方差是解题的关键.6. 某运输公司运输一批货物,已知大货车比小货车每辆多运输5吨货物,且大货车运输75吨货物所用车辆数与小货车运输50吨货物所用车辆数相同,设有大货车每辆运输x 吨,则所列方程正确的是( ) A 75505x x =− B. 75505x x =− C. 75505x x =+ D. 75505x x =+ 【答案】B【解析】【分析】根据“大货车运输75吨货物所用车辆数与小货车运输50吨货物所用车辆数相同”即可列出方程.【详解】解:设有大货车每辆运输x 吨,则小货车每辆运输()5x −吨,则75505x x =−. 故选B【点睛】本题考查分式方程应用,理解题意准确找到等量关系是解题的关键..的7. 下列四个函数图象中,当x <0时,函数值y 随自变量x 的增大而减小的是( )A. B. C. D.A. 55.5mB. 【答案】D【解析】【详解】A 、根据函数的图象可知y 随x 的增大而增大,故本选项不符合题意;B 、根据函数的图象可知在第二象限内y 随x 的增大而减增大,故本选项不符合题意;C 、根据函数的图象可知,当x <0时,在对称轴的右侧y 随x 的增大而减小,在对称轴的左侧y 随x 的增大而增大,故本选项不符合题意;D 、根据函数的图象可知,当x <0时,y 随x 的增大而减小;故本选项符合题意.故选 D .【点睛】本题考查了函数的图象,函数的增减性,熟练掌握各函数的性质是解题的关键.8. 如图,小亮为了测量校园里教学楼AB 的高度,将测角仪CD 竖直放置在与教学楼水平距离为的地面上,若测角仪的高度为1.5m ,测得教学楼的顶部A 处的仰角为30 ,则教学楼的高度是( )54m C. 19.5m D. 18m【答案】C【解析】 【分析】过D 作DE AB ⊥交AB 于E ,得到DE ,在Rt ADE △中,tan 30AE DE=o ,求出AE ,从而求出AB 【详解】过D 作DE AB ⊥交AB 于E ,DE BC ==Rt ADE △中,tan 30AE DE =o18m AE ∴= 18 1.519.5m AB ∴=+=在故选C【点睛】本题主要考查解直角三角形,能够构造出直角三角形是本题解题关键9. 如图,O 是ABC 的外接圆,且AB AC =,30BAC ∠=°,在 AB 上取点D (不与点A ,B 重合),连接BD ,AD ,则BAD ABD ∠+∠的度数是( )A. 60°B. 105°C. 75°D. 72°【答案】C【解析】 【分析】连接CD ,根据题意,得,BAD BCD ABD ACD ∠=∠∠=∠,结合AB AC =,30BAC ∠=°,得到180752−=°∠∠=°BAC ACB ,计算BAD ABD ∠+∠即可,本题考查了圆周角定理,等腰三角形的性质,熟练掌握圆周角定理,等腰三角形的性质是解题的关键.【详解】连接CD ,根据题意,得,BAD BCD ABD ACD ∠=∠∠=∠, ∵AB AC =,30BAC ∠=°, ∴180752−=°∠∠=°BAC ACB , ∴75BAD ABD BCD ACD ACB ∠+∠=∠+∠=∠=°,故选C ..10. 如图,M 是ABC 三条角平分线的交点,过M 作DE AM ⊥,分别交AB 、AC 于点D 、E 两点,设BD a =,DE b =,CE c =,关于x 的方程()210ax b x c +++=的根的情况是( )A. 一定有两个相等的实数根B. 一定有两个不相等的实数根C. 有两个实数根,但无法确定是否相等D. 没有实数根【答案】B【解析】 【分析】M 是ABC 三条角平分线的交点,过M 作DE AM ⊥,则得出BDM MEC BMC ∠=∠=∠,即可得出DBM MBC ∽,再求出BMC MEC ∽,DBM EMC ∽,即可得出:214ac b =,即可求解. 【详解】AM 平分BAC ∠,DE AM ⊥, ADM AEM ∴∠=∠,1122MDME DE b ===, 1902BDM MEC BAC ∴∠=∠=°+∠, 1902BMC BAC ∴∠=°+∠, BDM MEC BMC ∴∠=∠=∠,M 是ABC 的内角平分线的交点,∴DBM MBC ∽,同理可得出:BMC MEC ∽,∴DBM EMC ∽, ∴BD MD ME CE=, BD EC MD ME ∴⋅=⋅,即:214ac b =, ∴222(1)421210b ac b b b b ∆=+−=++−=+>,∴关于x 的方程2(1)0ax b x c +++=的根的情况是:一定有两个不相等的实数根.故选:B .【点睛】此题主要考查了根的判别式,相似三角形的判定与性质,根据已知得出BDM MEC BMC ∠=∠=∠是解题关键.二、填空题(本题有6个小题,每小题3分,共18分)11. 方程420x +=的解为______.【答案】2x =−【解析】【分析】根据解方程的基本步骤解答即可,本题考查了解方程的基本步骤,熟练掌握步骤是解题的关键.【详解】420x +=,24x =−,解得2x =−,故答案为:2x =−.12. 因式分解:x 2﹣3x=_____.【答案】x (x ﹣3)【解析】【详解】试题分析:提取公因式x 即可,即x 2﹣3x=x (x ﹣3). 考点:因式分解.13. 现有50张大小、质地及背面图案均相同的《西游记》人物卡片,正面朝下放置在桌面上,从中随机抽取一张并记下卡片正面所绘人物的名字后原样放回,洗匀后再抽.通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3.估计这些卡片中绘有孙悟空这个人物的卡片张数约为____.【答案】15【解析】【详解】因为通过多次试验后,发现抽到绘有孙悟空这个人物卡片的频率约为0.3,则这些卡片中绘有孙悟空这个人物的卡片张数=0.3×50=15(张).所以估计这些卡片中绘有孙悟空这个人物的卡片张数约为15张.故答案为15.14. 已知()1,1P x ,()2,1Q x 两点都在抛物线231y x x =−+上,那么12x x +=________.【答案】3【解析】【分析】根据题意可得点P 和点Q 关于抛物线的对称轴对称,求出函数的对称轴即可进行解答. 【详解】解:根据题意可得:抛物线的对称轴为直线:33222b x a −=−=−=, ∵()1,1P x ,()2,1Q x , ∴12322x x +=, ∴123x x +=. 故答案为:3.【点睛】此题考查了二次函数的性质,解题的关键是根据题意,找到P 、Q 两点关于对称轴对称求解. 15. 如图,平面直角坐标系中,A 与x 轴相切于点B ,作直径BC ,函数()200yx x=>的图象经过点C ,D 为y 轴上任意一点,则ACD 的面积为_______.【答案】5【解析】【分析】本题考查了反比例函数系数k 的几何意义,切线的性质;根据反比例函数系数k 的几何意义可得20OB BC ⋅=,由切线的性质可得BC x ⊥轴,再根据三角形的面积公式列式求解即可.【详解】解:∵点C 在函数()200y x x=>的图象上, ∴20OB BC ⋅=,∵A 与x 轴相切于点B ,∴BC x ⊥轴,∴BC y ∥轴, ∴111205244ACD S AC OB BC OB =???, 故答案为:5.16. 如图,在矩形ABCD 中,6AB =,8AD =,点E ,F 分别是边CD ,BC 上的动点,且90AFE ∠=°.(1)当5BF =时,tan FEC ∠=______; (2)当AED ∠最大时,DE 的长为_______.【答案】 ①.65 ②. 103##133 【解析】【分析】(1)证明90AFB EFC FEC ∠=°−∠=∠,利用tan tan AFB FEC ∠=∠计算即可; (2)当BC 与O 相切时,AFD ∠的值最大,此时, AED ∠也最大,利用三角形相似计算即可.【详解】(1)∵矩形ABCD 中,6AB =,8AD =,∴90,90ABF FCE °°∠=∠=∵90AFE ∠=°,∴90AFB EFC FEC ∠=°−∠=∠,∴6tan tan 5AB AFB FEC BF ∠=∠==, 故答案为:65. (2)如图,取AE 的中点O ,连接,,OD OF DF .∵矩形ABCD 中,6AB =,8AD =,∴90ADE ∠=°,∵90AFE ∠=°,∴A 、D 、E 、F 四点共圆,∴AED AFD ∠=,∴当BC 与O 相切时,AFD ∠的值最大,此时, AED ∠也最大,∴OF BC ⊥,∵矩形ABCD 中,6AB =,8AD =,∴90ADE ABF ∠=∠=°,∴OF AB EC , ∴EO CF OA BF =, ∴142BF CF BC ===, ∵90AFE ∠=°,∵矩形ABCD 中,6AB =,8AD =,∴90,90ABF FCE °°∠=∠=∵90AFE ∠=°,∴90AFB EFC FEC ∠=°−∠=∠,∴AFB FEC ∽△△, ∴BF AB EC FC =, ∴464EC =, ∴83EC =, ∴810633DE CD EC =−=−=, 故答案为:103. 【点睛】本题考查了矩形的性质,正切函数,三角形相似的判定和性质,切线的性质,四点共圆,圆周角定理,熟练掌握正切函数,切线性质,四点共圆是解题的关键.三、解答题(本大题有9小题,共7分,解答要求写出文字说明,证明过程或计算步骤)17. 解不等式:6327x x −>−.【答案】1x −>【解析】【分析】按照解不等式的基本步骤解答即可.本题考查了解不等式,熟练掌握解题的基本步骤是解题的关键.【详解】6327x x −−>,移项,得6237x x −−>合并同类项,得44x −>,系数化为1,得1x −>.18. 如图,四边形ABCD 中,AB DC =,AB DC ,E ,F 是对角线AC 上两点,且AE CF =.求证:ABE CDF △≌△.【答案】见解析【解析】【分析】本题考查了平行线的性质,三角形全等的判定,熟练掌握判定定理是解题的关键.根据AB DC 得BAE DCF ∠=∠,证明即可.【详解】∵AB DC ,∴BAE DCF ∠=∠,在ABE 和CDF 中AB DC BAE DCF AE CF = ∠=∠ =∴ABE CDF △≌△.19. 为打造书香文化,培养阅读习惯,某中学计划在各班建设图书角,并开展主题为“我最喜欢阅读的书篇”的调查活动,学生根据自己的爱好选择一类书籍(A :科技类,B :文学类,C :政史类,D :艺术类,E :其他类).张老师组织数学兴趣小组对学校部分同学进行了问卷调查.根据收集到的数据,绘制了两幅不完整的统计图(如图所示).根据图中信息,请回答下列问题:(1)填空:参与本次问卷调查活动的学生人数是______;(2)甲同学从A ,B ,C 三类书籍中随机选择一种,乙同学从B ,C ,D 三类书籍中随机选择一种,请用画树状图或者列表法求甲乙两位同学选择相同类别书籍的概率.【答案】(1)50 (2)29【解析】【分析】(1)根据样本容量=频数÷所占百分数,求得样本容量后,计算解答.(2)利用画树状图计算即可.本题考查了条形统计图、扇形统计图,画树状图求概率,熟练掌握统计图的意义,准确画树状图是解题的关键.【小问1详解】∵4?8%50÷=(人),故答案为:50.【小问2详解】画树状图如下:共有9种等可能的结果,其中抽到相同类有2种可能的结果,∴相同的概率为:29. 20. 已知关于x 的函数()31111m m y x m m m +=+≠−++图象经过点()1,A m n −. (1)用含m 的代数式表示n ;(2)当m =k y x=的图象也经过点A ,求k 的值. 【答案】(1)1nm =+ (2)4【解析】【分析】(1)把点的坐标代入解析式,化简计算即可;(2)当m =)1A +,代入解析式,计算即可. 本题本题考查了反比例函数与点的关系,熟练掌握这些知识是解题的关键.【小问1详解】 解:根据题意,得()()213111111m m m n m m m m m ++=×−+==++++. 【小问2详解】解:当m =时,此时点)1A −+,故)11514k =+=−=. 21. 如图,在ABC 中,90ABC ∠=°,60A ∠=°,3AB =.(1)尺规作图:在BC 上找一点P ,作P 与AC ,AB 都相切,与AC 的切点为Q ;(保留作图痕迹) (2)在(1)所作的图中,连接BQ ,求sin CBQ ∠的值.【答案】(1)见解析 (2)1sin 2CBQ ∠= 【解析】【分析】(1)结合切线的判定与性质,作BAC ∠的平分线,交BC 于点P ,以点P 为圆心,PB 的长为半径画圆即可.(2)由题意可得Rt Rt ABP AQP △≌△,则AB AQ =,可得ABQ 为等边三角形,即60ABQ ∠=°,则30CBQ ∠=°,进而可得答案.【小问1详解】解:如图,作BAC ∠的平分线,交BC 于点P ,以点P 为圆心,PB 的长为半径画圆,交AC 于点Q , 则P 即为所求.;【小问2详解】解:由(1)可得,BP PQ =,PQ AC ⊥,90AQP ∴∠=°,AP AP = ,()Rt Rt HL ABP AQP ∴ ≌,AB AQ ∴=,60BAC ∠=° ,ABQ ∴ 为等边三角形,60ABQ ∴∠=°,30CBQ ∴∠=°,1sin sin 302CBQ ∴∠=°=. 【点睛】本题考查作图—复杂作图、切线的判定与性质、等边三角形的性质、特殊角的三角函数值等知识点,熟练掌握相关知识点是解答本题的关键.22. 如图是气象台某天发布的某地区气象信息,预报了次日0时至8时气温随着时间变化情况,其中0时至5时的图象满足一次函数关系式y kx b =+,5时至8时的图象满足函数关系式21660y x x =−+−.请根据图中信息,解答下列问题:(1)填空:次日0时到8时的最低气温是______;(2)求一次函数y kx b =+解析式; (3)某种植物在气温0℃以下持续时间超过4小时,即遭到霜冻灾害,需采取预防措施.请判断次日是否的需要采取防霜措施,并说明理由.【答案】(1)5−℃(2)835y x =−+ (3)需要采取防霜措施,见解析【解析】【分析】(1)根据题意,当5x =时,函数最小值,代入解析式21660y x x =−+−计算即可.(2)把()()0,3,5,5−分别代入y kx b =+中,计算即可; (3)令0y kx b =+=,216600y x x =−+−=,计算交点坐标的横坐标的差,对照标准判断即可. 本题考查了待定系数法,图象信息识读,图象与x 轴交点坐标的计算,熟练掌握待定系数法,交点坐标的计算是解题的关键.【小问1详解】根据题意,当5x =时,函数有最小值,代入解析式21660y x x =−+−得,2580605y =−+−=−,故答案为:5−℃.【小问2详解】把()()0,3,5,5−分别代入y kx b =+中, 得553k b b +=− = , 解得853k b =− = , ∴835y x =−+. 【小问3详解】 令0835y x =−+=, 解得158x =; 令216600y x x =−+−=,解得126,10x x ==(舍去), 故()156 4.125h 8−=, ∵4.1254>∴遭到霜冻灾害,故需要采取防霜措施.23. 在初中物理中我们学过凸透镜的成像规律.如图MN 为一凸透镜,F 是凸透镜的焦点.在焦点以外的主光轴上垂直放置一小蜡烛AB ,透过透镜后呈的像为CD .光路图如图所示:经过焦点的光线AE ,通过透镜折射后平行于主光轴,并与经过凸透镜光心的光线AO 汇聚于C 点.(1)若焦距4OF =,物距6OB =.小蜡烛高度1AB =,求蜡烛的像CD 的长度;(2)设OB x OF =,AB y CD=,求y 关于x 的函数关系式,并通过计算说明当物距大于2倍焦距时,呈缩小的像.【答案】(1)2米 (2)1y x =−,说明见解析【解析】【分析】本题主要考查了相似三角形的实际应用,平行四边形的性质与判定;(1)先证明ABF EOF ∽,利用相似三角形的性质得到2OE =,再证明四边形OECD 是平行四边形,可得2CD OE ==米;(2)由(1)得ABF EOF ∽,2CD OE ==,则AB OB OF CD OF −=,据此可得1y x =−,当2OB OF>,即2x >时,11y x =−>,据此可得结论. 【小问1详解】解:由题意得,AB OE ∥,∴ABF EOF ∽, ∴AB BF OE OF =,即1644OE −=, ∴2OE =,∵OE CD CE OD ∥,∥,的∴四边形OECD 是平行四边形,∴2CD OE ==米,∴蜡烛的像CD 的长度为2米;【小问2详解】解:由(1)得ABF EOF ∽,2CD OE == ∴AB BF OE OF =,即AB OB OF CD OF−=, ∴1y x =−, 当2OB OF >,即2x >时,11y x =−>, ∴1AB CD>,即AB CD >, ∴物高大于像高,即呈缩小的像.24. 矩形ABCD 中,4AB =,8BC =.(1)如图1,矩形的对角线AC ,BD 相交于点O .①求证:A ,B ,C ,D 四个点在以O 为圆心的同一个圆上;②在O 的劣弧AD 上取一点E ,使得AE AB =,连接DE ,求AED △的面积.(2)如图2,点P 是该矩形的边AD 上一动点,若四边形ABCP 与四边形GHCP 关于直线PC 对称,连接GD ,HD ,求GDH 面积的最小值.【答案】(1)①见解析;②485(2)8【解析】【分析】(1)①根据矩形的性质,得到90ABC ∠=°,得到点A ,B ,C 在以O 为圆心,OA 为半径的圆上,根据矩形的性质,得OA OB OC OD ===,判定点D 在以O 为圆心的同一个圆上,继而得到四点共圆;②过点E 作在EG AD ⊥于点D ,根据AE AB =,得到ADE ADB ∠=∠,结合4AE AB ==,8BC =,得到1tan tan 2AB EG ADE ADB BC GD ∠=∠===,设2EG x GD x ==,,则82AG AD GD x =−=−,利用勾股定理计算x ,利用面积公式解答即可.(2)根据折叠的性质,得到8,4,90CB CH BA HG CHG ====∠=°,根据CH CD DH ≤+,得到4DH CH CD −=≥,当点C ,D ,H 三点共线时,4DH =最小,此时GDH 面积的为1144822GH DH ×=××=,最小. 【小问1详解】①∵矩形ABCD ,∴90ABC ∠=°,OA OB OC OD ===,∴点A ,B ,C 在以O 为圆心,OA 为半径的圆上,∵OA OB OC OD ===,∴点D 在以O 为圆心的同一个圆上,故A ,B ,C ,D 四个点在以O 为圆心的同一个圆上;②如图,过点E 作在EG AD ⊥于点D ,∵AE AB =,∴ADE ADB ∠=∠,∵4AE AB ==,8BC =, ∴1tan tan 2AB EG ADE ADB BC GD ∠=∠===, 设2EG x GD x ==,,则82AG AD GD x =−=−, ∴()228216x x −+=, 解得12,45x x ==(舍去), ∴AED △的面积112488255××=. 【小问2详解】根据折叠的性质,得到8,4,90CB CH BA HG CHG ====∠=°, ∵CH CD DH ≤+,∴4DH CH CD −=≥,∴当点C ,D ,H 三点共线时,4DH =最小,此时GDH 面积的为1144822GH DH ×=××=,最小.【点睛】本题考查了矩形的性质,构造辅助圆,正切函数,勾股定理,三角形不等式,熟练掌握正切函数,辅助圆,勾股定理,三角形不等式是解题的关键.25. 已知抛物线()21:1C y a x h =−−,直线()2:1l y k x h =−−,其中02a ≤<,0k >. (1)求证:直线l 与抛物线C 至少有一个交点;(2)若抛物线C 与x 轴交于()1,0A x ,()2,0B x 两点,其中12x x <,且121033x x <+<,求当1a =时,抛物线C 存在两个横坐标为整数的顶点;(3)若在直线l 下方的抛物线C 上至少存在两个横坐标为整数的点,求k 的取值范围.【答案】(1)见解析 (2)()()1,1,2,1−−(3)4k >【解析】【分析】(1)联立()()211y a x h y k x h =−− =−− ,解方程,判断方程的解得个数即可解答;(2)根据1a =时,()21:1C y x h =−−,结合抛物线C 与x 轴交于()1,0A x ,()2,0B x 两点,结合12x x <,则12,11x h x h ==+−,且121033x x <+<,求得11124h <<,确定h 的整数解有1,2两个,得证.(3)根据题意,得当2x h =+时,21y y >恒成立.建立不等式解答即可.本题考查了抛物线与一次函数的综合,不等式组的解集与整数解,熟练掌握抛物线的性质是解题的关键.【小问1详解】联立()()211y a x h y k x h =−− =−−, 解方程,得,ah k x h x a+==, 当x h =时,1y =−,即直线与抛物线恒过点(),1h −,故直线l 与抛物线C 至少有一个交点.【小问2详解】当1a =时,()21:1C y x h =−−,∵抛物线C 与x 轴交于()1,0A x ,()2,0B x 两点, ∴1x h −=±,∵12x x <, ∴12,11x hx h ==+−, ∵121033x x <+<, ∴420333h <−< 解得11124h <<, ∵h 时整数,∴1,2h h ==, 故抛物线C 存在两个横坐标为整数的顶点,且顶点坐标为()()1,1,2,1−−.【小问3详解】.∵如图所示:由(1)可知:抛物线C 与直线l 都过点(),1A h −.当02a ≤<,0k >,在直线l 下方的抛物线C 上至少存在两个横坐标为整数点, 即当2x h =+时,21y y >恒成立.故()()22121k h h a h h +−−+−−>,整理得:2k a >.又∵2k a >,∴024a <<,∴4k >.。
人教版数学九年级上、下册综合达标测试卷(含答案)
![人教版数学九年级上、下册综合达标测试卷(含答案)](https://img.taocdn.com/s3/m/a5cb24072bf90242a8956bec0975f46527d3a7a1.png)
人教版数学九年级上、下册综合达标测试卷(本试卷满分120分)一、选择题(本大题共10小题,每小题3分,共30分)1.在Rt△ABC中,∠C=90°,AC=3,BC=4,则tan A的值为()A.34B.43C.35D.452.(2021·泰州)如图所示几何体的左视图是()A B C D 第2题图3.一个不透明的袋子里装有黄、红两种颜色的小球,摇匀后每次随机从袋中摸出1个小球,记录下颜色后放回袋中.通过多次试验后,发现摸到红球的频率稳定在0.4,则摸到黄球的概率约为()A.0.2 B.0.4 C.0.6 D.0.84.如图,将△OAB绕点O顺时针旋转40°得到△OCD,则∠BOD的度数是()A.33°B.35°C.40°D.45°第4题图第5题图第6题图5.如图,四边形ABCD为⊙O的内接四边形.若四边形OBCD是菱形,则∠BAD的度数为()A.45°B.60°C.72°D.36°6. (2021·朝阳)如图,O是坐标原点,点B在x轴上,在△OAB中,AO=AB=5,OB=6,点A在反比例函数y=kx(k≠0)图象上,则k的值()A.﹣12B.﹣15C.﹣20D.﹣307.若关于x的方程kx2+2x+1=0有实数根,则实数k的取值范围是()A.k≠0B.k≤1C.k≥1D.k≤1且k≠08.(2021·深圳)二次函数y=ax2+bx+1的图象与一次函数y=2ax+b在同一平面直角坐标系中的图象可能是()A B C D9.《几何原本》里有一个图形:在△ABC 中,D ,E 是边AB 上的两点(AD <AE ),且满足AD =BE .过点D ,E 分别作BC 的平行线,过点D 作AC 的平行线,将△ABC 分成如图的5个部分,其面积依次记为S 1,S 2,S 3,S 4,S 5.若S 2=18,S 3=6,则S 4的值为( ) A .9B .18C .27D .54第9题图 第10题图10.如图,已知抛物线y =-x 2+px+q 的对称轴为直线x =-3,过其顶点M 的一条直线y =kx+b 与该抛物线的另一个交点为N (-1,1).若要在坐标轴上找一点P ,使得△PMN 的周长最小,则点P 的坐标为( ) A .(0,2) B .4,03⎛⎫- ⎪⎝⎭ C .(0,2)或4,03⎛⎫- ⎪⎝⎭D .以上都不正确 二、填空题(本大题共6小题,每小题3分,共18分)11.已知∠A 是锐角,且1-2sin A=0,则∠A 的度数为 . 12.若m 是方程x 2-3x+1=0的一个根,则3m 2-9m-2021的值为 .13.(2021·阜新)如图,在6×8的正方形网格中,每个小正方形的边长均为1,点A ,B ,D ,E 均在网格的交点上,则△ABC 与△CDE 的周长比为 .第13题图 第14题图 第16题图14.如图,AB 是⊙O 的直径,半径OA 的垂直平分线交⊙O 于C ,D 两点.若∠C=30°,CD=23,则图中阴影部分的面积是 .15.已知抛物线y =ax 2+2ax+c 经过点A (3,m ),B (-2,n ),且函数y 有最大值,则m ,n 的大小关系为 . 16.(2021·抚顺)如图,在△ABC 和△DEC 中,∠ACB =∠DCE =90°,∠BAC =∠EDC =60°,AC =2 cm ,DC =1 cm .下列结论:①△ACD ∽△BCE ;②AD ⊥BE ;③∠CBE+∠DAE =45°;④在△CDE 绕点C 旋转的过程中,△ABD 面积的最大值为(23+2)cm 2.其中正确的是 .(填序号)三、解答题(本大题共8小题,共72分) 17.(每小题4分,共8分)(1)计算:4sin 45°-2tan 30°cos 30°+cos 45cos 60︒︒; (2)解方程:x 2-4x-5=0.18.(8分) (2021·黑龙江)在正方形网格中,每个小正方形的边长均为1,建立平面直角坐标系xOy ,△ABC 的位置如图所示.(1)在图中以点C 为位似中心,将△ABC 放大至原来的2倍,得到位似图形△A 1B 1C ,作出△A 1B 1C 并写出点A 1的坐标;(2)作出△ABC 绕点C 逆时针旋转90°后的图形△A 2B 2C ; (3)在(2)的条件下,求点B 所经过的路径长.第18题图 第19题图19.(8分)(2021·重庆)在如图所示的电路图中,有四个断开的开关A ,B ,C ,D 和一个灯泡L . (1)若任意闭合其中一个开关,则灯泡L 发亮的概率为 ; (2)若任意闭合其中两个开关,请用列表法求灯泡L 发亮的概率.20.(8分)(2021·枣庄)2020年7月23日,我国首次火星探测“天问一号”探测器,由长征五号遥四运载火箭在中国文昌航天发射场发射成功,正式开启了中国的火星探测之旅.运载火箭从地面O 处发射,当火箭到达A 处时,地面D 处的雷达站测得AD =4000米,仰角为30°,经过3秒后,火箭直线上升到达B 处,此时地面C 处的雷达站测得B 处的仰角为45°.已知点O ,C ,D 在同一条直线上,C ,D 两处相距460米,求火箭从A处到B 处的平均速度.(结果精确到1米/ 1.732 1.414)第20题图 第22题图 第23题图21.(2021·辽阳)某网店销售一款市场上畅销的蒸蛋器,进价为每个40元,在销售过程中发现,这款蒸蛋器销售单价为60元时,每星期卖出100个.如果调整销售单价,每涨价1元,每星期少卖出2个,现网店决定提价销售,设销售单价为x 元,每星期销售量为y 个. (1)请直接写出y (个)与x (元)之间的函数关系式;(2)当销售单价是多少元时,该网店每星期的销售利润是2400元?(3)当销售单价是多少元时,该网店每星期的销售利润最大?最大利润是多少元?22.(10分)(2021·湘潭)如图,点A(a,2)在反比例函数y=4x的图象上,AB∥x轴,且交y轴于点C,交反比例函数y=kx于点B,已知AC=2BC.(1)求直线OA的解析式;(2)求反比例函数y=kx的解析式;(3)D为反比例函数y=kx上一动点,连接AD交y轴于点E,当E为AD的中点时,求△OAD的面积.23.(10分)(2021·柳州)如图,在四边形ABCD中,AD∥BC,AD⊥AB,AD=AB=1,,以点A 为圆心,AD长为半径作圆,延长CD交⊙A于点F,延长DA交⊙A于点E,连接BF,交DE于点G.(1)求证:BC为⊙A的切线;(2)求cos ∠EDF的值;(3)求线段BG的长.24.(12分)(2021·黔东南州)如图,抛物线y=ax2-2x+c(a≠0)与x轴交于点A,B(3,0),与y轴交于点C(0,-3),抛物线的顶点为D.(1)求抛物线的解析式;(2)已知点P在抛物线的对称轴上,点Q在x轴上,若以P,Q,B,C为顶点,BC为边的四边形是平行四边形,求点P,Q的坐标;(3)已知M是x轴上的动点,过点M作x轴的垂线交抛物线于点G,是否存在这样的点M,使得以点A,M,G为顶点的三角形与△BCD相似?若存在,求点M的坐标;若不存在,请说明理由.第24题图人教版数学九年级上、下册综合达标测试卷参考答案一、1.B 2.C 3.C 4.C 5.B 6.A 7.D 8.A 9.C 10.A二、11.30°12.-2024 13.2∶1 14.2π315.m<n 16.①②④三、17.(1)1.(2)x1=5,x2=-1.18. 解:(1)如图,△A1B1C即为所求作,点A1的坐标为(3,-3).(2)如图,△A2B2C即为所求作.第18题图(3)因为CB B .19.解:(1)14(2)列表如下:由表格知,任意闭合两个开关,所有机会均等的结果共有12种,其中能使灯泡L 发亮的结果有6种,所以P (灯泡L 发亮)=612=12. 20.解:由题意,知AD =4000,CD =460,∠ADO =30°,∠BCO =45°.在Rt △AOD 中,OA =12AD =2000,OD =AD·cos 30°=在Rt △BOC 中,OB =OC =OD-CD =.所以AB =OB-OA =2000≈1004. 所以1004÷3≈335(米/秒).答:火箭从A 处到B 处的平均速度约为335米/秒. 21. 解:(1)根据题意,得y=100-2(x-60)=-2x+220.(2)根据题意,得(-2x+220)(x-40)=2400,解得x1=70,x2=80. 答:当销售单价是70元或80元时,该网店每星期的销售利润是2400元. (3)设该网店每星期的销售利润为w 元.根据题意,得w=(-2x+220)(x-40)=-2x2+300x-8800=-2(x-75)2+2450. 当x=75时,w 有最大值,最大值为2450.答:当销售单价是75元时,该网店每星期的销售利润最大,最大利润是2450元. 22.解:(1)将A (a ,2)代入y =4x,解得a =2.所以A (2,2). 设直线OA 的解析式为y =mx ,将A (2,2)代入,解得m =1.所以直线OA 的解析式为y =x. (2)由(1)可得AC =2.因为AC =2BC ,AB ∥x 轴,所以B (﹣1,2). 将B (﹣1,2)代入y =k x ,解得k =﹣2.所以反比例函数y =k x 的解析式为y =﹣2x. (3)因为A (2,2),E 为AD 的中点,点E 在y 轴上,所以x D =-2. 将x D =-2代入y =﹣2x ,解得y D =1.所以D (﹣2,1).所以E 302⎛⎫ ⎪⎝⎭,. 所以S △OAD =S △AOE +S △DOE =12×32×2+12×32×2=3. 23.(1)证明:因为AD ⊥AB ,所以∠BAD =90°.因为AD ∥BC ,所以∠ABC =180°﹣∠BAD =90°,即AB ⊥BC . 因为AB =AD ,即AB 为⊙A 的半径,所以BC 为⊙A 的切线.(2)解:过点D 作DH ⊥BC 于点H ,则∠DHB =∠ABH =∠BAD =90°.所以四边形ABHD 是矩形. 又因为AB =AD =1,所以矩形ABHD 是正方形.所以BH =DH =AB =1.在Rt △DHC 中,,由勾股定理,得,所以cos C=CH CD ==因为AD ∥BC ,所以∠EDF =∠C .所以cos ∠EDF =. (3)解:连接EF .因为DE 是⊙A 的直径,所以∠EFD =90°.在Rt △EFD 中,DE =2AD =2,所以DF =DE·cos ∠EDF .所以CF ==因为AD ∥BC ,所以△DFG ∽△CFB .所以DF DGCF CB =,12DG =+.所以DG=43.所以AG =DG ﹣AD=13.在Rt △BAG 中,. 24.解:(1)将点B (3,0),C (0,-3)分别代入y =ax 2-2x+c ,得92303a c c -⨯+=⎧⎨=-⎩,,解得13.a c =⎧⎨=-⎩,所以抛物线的解析式为y =x 2-2x-3.(2)由抛物线的解析式,知其对称轴为直线x =1. 设P (1,b ),Q (x ,0).当以点P ,Q ,B ,C 为顶点,BC 为边的四边形是平行四边形时,点C 向右平移3个单位,向上平移3个单位得到点B ,同样P (Q )向右平移3个单位,向上平移3个单位可得到点Q (P ). 所以1+3,30x b =⎧⎨+=⎩或+31,03.x b =⎧⎨+=⎩解得34b x =-⎧⎨=⎩,或32.b x =⎧⎨=-⎩,所以点P ,Q 的坐标分别为(1,-3),(4,0)或(1,3),(-2,0). (3)在y =x 2-2x-3中,令y =0,解得x 1=-1,x 2=3.所以A (-1,0). 因为y =x 2-2x-3=(x-1)2-4,所以顶点D (1,-4).因为B (3,0),C (0,-3),所以BD 2=20,CD 2=2,BC 2=18.所以BD 2=CD 2+BC 2.所以△BCD 是直角三角形,且∠BCD =90°.由题意,知∠AMG =∠BCD =90°,所以要使以点A ,M ,G 为顶点的三角形与△BCD 相似,需满足的条件为AM MG BC CD =或AM MGCD BC=. 设M (m ,0),则G (m ,m 2-2m-3). ①当m <-12=,解得83m =或m =-1;2=,解得m =0或m =-1.均不符合m <-1,所以舍去;②当-1<m≤3223m m ---=,解得83m =或m =-1(舍去);223m m ---=m =0或m =-1(舍去).所以M 8,03⎛⎫⎪⎝⎭或M (0,0);③当m >32103m =或m =-1(舍去); 2m =6,m =-1(舍去).所以M 10,03⎛⎫ ⎪⎝⎭或M (6,0). 综上,存在点M 使得以点A ,M ,G 为顶点的三角形与△BCD 相似,点M 的坐标为(0,0),8,03⎛⎫ ⎪⎝⎭,10,03⎛⎫ ⎪⎝⎭或(6,0).。
2022年黑龙江省省龙东地区(初三学业水平考试)中考数学真题试卷含详解
![2022年黑龙江省省龙东地区(初三学业水平考试)中考数学真题试卷含详解](https://img.taocdn.com/s3/m/690705035627a5e9856a561252d380eb629423d6.png)
黑龙江省龙东地区2022年初中毕业学业统一考试数学试卷一、选择题(每题3分,满分30分)1.下列运算中,计算正确的是()A.()222b a b a -=- B.326a a a ⋅=C.()224x x -= D.623a a a ÷=2.下列图形是汽车的标识,其中是中心对称图形但不是轴对称图形的是()A.B.C.D.3.学校举办跳绳比赛,九年(2)班参加比赛的6名同学每分钟跳绳次数分别是172,169,180,182,175,176,这6个数据的中位数是()A .181B.175C.176D.175.54.如图是由若干个相同的小正方体搭成的一个几何体的左视图和俯视图,则所需的小正方体的个数最多是()A.7B.8C.9D.105.2022年北京冬奥会女子冰壶比赛有若干支队伍参加了单循环比赛,单循环比赛共进行了45场,共有多少支队伍参加比赛?()A.8B.10C.7D.96.已知关于x 的分式方程23111x m x x--=--的解是正数,则m 的取值范围是()A.4m > B.4m < C.4m >且5m ≠ D.4m <且1m ≠7.国家“双减”政策实施后,某校开展了丰富多彩的社团活动.某班同学报名参加书法和围棋两个社团,班长为参加社团的同学去商场购买毛笔和围棋(两种都购买)共花费360元.其中毛笔每支15元,围棋每副20元,共有多少种购买方案?()A.5B.6C.7D.88.如图,在平面直角坐标系中,点O 为坐标原点,平行四边形OBAD 的顶点B 在反比例函数3y x=的图象上,顶点A 在反比例函数ky x=的图象上,顶点D 在x 轴的负半轴上.若平行四边形OBAD 的面积是5,则k 的值是()A.2B.1C.1-D.2-9.如图,ABC 中,AB AC =,AD 平分BAC ∠与BC 相交于点D ,点E 是AB 的中点,点F 是DC 的中点,连接EF 交AD 于点P .若ABC 的面积是24, 1.5PD =,则PE 的长是()A.2.5B.2C.3.5D.310.如图,正方形ABCD 的对角线AC ,BD 相交于点O ,点F 是CD 上一点,OE OF ⊥交BC 于点E ,连接AE ,BF 交于点P ,连接OP .则下列结论:①AE BF ⊥;②45OPA ∠=︒;③AP BP -=;④若:2:3BE CE =,则4tan 7CAE ∠=;⑤四边形OECF 的面积是正方形ABCD 面积的14.其中正确的结论是()A.①②④⑤B.①②③⑤C.①②③④D.①③④⑤二、填空题(每题3分,满分30分)11.我国南水北调东线北延工程2021-2022年度供水任务顺利完成,共向黄河以北调水1.89亿立方米,将数据1.89亿用科学记数法表示为________.12.函数y =中自变量x 的取值范围是______.13.如图,在四边形ABCD 中,对角线AC ,BD 相交于点O ,OA OC =,请你添加一个条件________,使AOB COD ≌.14.在一个不透明的口袋中,有2个红球和4个白球,这些球除颜色外其余完全相同,摇匀后随机摸出一个球,摸到红球的概率是________.15.若关于x 的一元一次不等式组2130x x a -⎧⎨-<⎩<的解集为2x <,则a 的取值范围是________.16.如图,在O 中,AB 是O 的弦,O 的半径为3cm ,C 为O 上一点,60ACB ∠=︒,则AB 的长为________cm.17.若一个圆锥的母线长为5cm ,它的侧面展开图的圆心角为120°,则这个圆锥的底面半径为________cm .18.如图,菱形ABCD 中,对角线AC ,BD 相交于点O ,60BAD ∠=︒,3AD =,AH 是BAC ∠的平分线,CE AH ⊥于点E ,点P 是直线AB 上的一个动点,则OP PE +的最小值是________.19.在矩形ABCD 中,9AB =,12AD =,点E 在边CD 上,且4CE =,点P 是直线BC 上的一个动点.若APE V 是直角三角形,则BP 的长为________.20.如图,在平面直角坐标系中,点1A ,2A ,3A ,4A ……在x 轴上且11OA =,212OA OA =,322OA OA =,432OA OA =……按此规律,过点1A ,2A ,3A ,4A ……作x 轴的垂线分别与直线y =交于点1B ,2B ,3B ,4B ……记11OA B ,22OA B △,33 OA B ,44 OA B ……的面积分别为1S ,2S ,3S ,4S ……,则2022S =______.三、解答题(满分60分)21.先化简,再求值:22221111a a a a a ⎛⎫---÷ ⎪-+⎝⎭,其中2cos301a =︒+.22.如图,在正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,ABC 的三个顶点坐标分别为()1,1A -,()2,5B -,()5,4C -.(1)将ABC 先向左平移6个单位,再向上平移4个单位,得到111A B C △,画出两次平移后的111A B C △,并写出点1A 的坐标;(2)画出111A B C △绕点1C 顺时针旋转90°后得到221A B C △,并写出点2A 的坐标;(3)在(2)的条件下,求点1A 旋转到点2A 的过程中所经过的路径长(结果保留π).23.如图,抛物线2y x bx c =++经过点()1,0A -,点()2,3B -,与y 轴交于点C ,抛物线的顶点为D .(1)求抛物线的解析式;(2)抛物线上是否存在点P ,使PBC 的面积是BCD △面积的4倍,若存在,请直接写出点P 的坐标:若不存在,请说明理由.24.为进一步开展“睡眠管理”工作,某校对部分学生的睡眠情况进行了问卷调查.设每名学生平均每天的睡眠时间为x 小时,其中的分组情况是:A 组:8.5x <B 组:8.59x ≤<C 组:99.5x ≤<D 组:9.510x ≤<E 组:10x ≥根据调查结果绘制成两幅不完整的统计图,请根据图中提供的信息,解答下列问题:(1)本次共调查了_______名学生;(2)补全条形统计图;(3)在扇形统计图中,求D 组所对应的扇形圆心角的度数;(4)若该校有1500名学生,请估计该校睡眠时间不足9小时的学生有多少人?25.为抗击疫情,支援B 市,A 市某蔬菜公司紧急调运两车蔬菜运往B 市.甲、乙两辆货车从A 市出发前往B 市,乙车行驶途中发生故障原地维修,此时甲车刚好到达B 市.甲车卸载蔬菜后立即原路原速返回接应乙车,把乙车的蔬菜装上甲车后立即原路原速又运往B 市.乙车维修完毕后立即返回A 市.两车离A 市的距离y (km )与乙车所用时间x (h )之间的函数图象如图所示.(1)甲车速度是_______km/h ,乙车出发时速度是_______km/h ;(2)求乙车返回过程中,乙车离A 市的距离y (km )与乙车所用时间x (h )的函数解析式(不要求写出自变量的取值范围);(3)乙车出发多少小时,两车之间的距离是120km ?请直接写出答案.26.ABC 和ADE 都是等边三角形.(1)将ADE 绕点A 旋转到图①的位置时,连接BD ,CE 并延长相交于点P (点P 与点A 重合),有PA PB PC +=(或PA PC PB +=)成立;请证明.(2)将ADE 绕点A 旋转到图②的位置时,连接BD ,CE 相交于点P ,连接PA ,猜想线段PA 、PB 、PC 之间有怎样的数量关系?并加以证明;(3)将ADE 绕点A 旋转到图③的位置时,连接BD ,CE 相交于点P ,连接PA ,猜想线段PA 、PB 、PC 之间有怎样的数量关系?直接写出结论,不需要证明.27.学校开展大课间活动,某班需要购买A 、B 两种跳绳.已知购进10根A 种跳绳和5根B 种跳绳共需175元:购进15根A 种跳绳和10根B 种跳绳共需300元.(1)求购进一根A 种跳绳和一根B 种跳绳各需多少元?(2)设购买A 种跳绳m 根,若班级计划购买A 、B 两种跳绳共45根,所花费用不少于548元且不多于560元,则有哪几种购买方案?(3)在(2)的条件下,哪种购买方案需要的总费用最少?最少费用是多少元?28.如图,在平面直角坐标系中,平行四边形ABCD 的边AB 在x 轴上,顶点D 在y 轴的正半轴上,M 为BC 的中点,OA 、OB 的长分别是一元二次方程27120x x -+=的两个根()OA OB <,4tan 3DAB ∠=,动点P 从点D 出发以每秒1个单位长度的速度沿折线DC CB -向点B 运动,到达B 点停止.设运动时间为t 秒,APC △的面积为S .(1)求点C的坐标;(2)求S关于t的函数关系式,并写出自变量t的取值范围;!是等腰三角形?若存在,请直接写出点P的坐标;若不存在,(3)在点P的运动过程中,是否存在点P,使CMP请说明理由.黑龙江省龙东地区2022年初中毕业学业统一考试数学试卷一、选择题(每题3分,满分30分)1.下列运算中,计算正确的是()A.()222b a b a -=- B.326a a a ⋅=C.()224x x -= D.623a a a ÷=【答案】C【分析】根据完全平方公式、同底数幂相乘除,积的乘方进行计算,即可判断.【详解】()2222b b b a a a =--+,故A 选项错误,不符合题意;2326a a a ⋅=,故B 选项错误,不符合题意;()224x x -=,故C 选项正确,符合题意;624a a a ÷=,,故D 选项错误,不符合题意;故选:C .【点睛】本题考查了完全平方公式、同底数幂相乘除,积的乘方,熟练掌握运算法则是解题的关键.2.下列图形是汽车的标识,其中是中心对称图形但不是轴对称图形的是()A. B.C.D.【答案】C【分析】根据中心对称图形的定义判断即可.【详解】解:∵是轴对称图形,也是中心对称图形,∴不符合题意;∵是轴对称图形,不是中心对称图形∴不符合题意;∵不是轴对称图形,是中心对称图形∴符合题意;∵是轴对称图形,不是中心对称图形∴不符合题意;故选C.【点睛】本题考查了了轴对称图形即沿着某条直线折叠,直线两旁的部分完全重合、中心对称图形即将图形绕某点旋转180°后与原图形完全重合,准确理解定义是解题的关键.3.学校举办跳绳比赛,九年(2)班参加比赛的6名同学每分钟跳绳次数分别是172,169,180,182,175,176,这6个数据的中位数是()A.181B.175C.176D.175.5【答案】D【分析】先将这6个数从小到大进行排序,找出排在中间的两个数,求出这两个数的平均数,即为这组数据的中位数.【详解】解:将172,169,180,182,175,176从小到大进行排序为:169,172,175,176,180,182,排在中间的两个数为175,176,∴这6个数据的中位数为175176175.52+=,故D正确.故选:D.【点睛】本题主要考查了求一组数据的中位数,解题的关键是将这组数据从小到大进行排序,找出排在中间的一个数或两个数,注意偶数个数是求中间两个数的平均数.4.如图是由若干个相同的小正方体搭成的一个几何体的左视图和俯视图,则所需的小正方体的个数最多是()A.7B.8C.9D.10【答案】B【分析】这个几何体共有2层,由俯视图可得第一层小正方体的个数,由左视图可得第二层小正方体的最多个数,再相加即可.【详解】由俯视图可知最底层有5个小正方体,由左视图可知这个几何体有两层,其中第二层最多有3个,那么搭成这个几何体所需小正方体最多有538+=个.故选:B .【点睛】本题主要考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.5.2022年北京冬奥会女子冰壶比赛有若干支队伍参加了单循环比赛,单循环比赛共进行了45场,共有多少支队伍参加比赛?()A.8B.10C.7D.9【答案】B【分析】设有x 支队伍,根据题意,得1(1)452x x -=,解方程即可.【详解】设有x 支队伍,根据题意,得1(1)452x x -=,解方程,得x 1=10,x 2=-9(舍去),故选B .【点睛】本题考查了一元二次方程的应用,熟练掌握一元二次方程的解法是解题的关键.6.已知关于x 的分式方程23111x m x x --=--的解是正数,则m 的取值范围是()A.4m > B.4m < C.4m >且5m ≠ D.4m <且1m ≠【答案】C【分析】先将分式方程去分母转化为整式方程,求出整式方程的解,根据分式方程的解为正数得到40m ->且410m --≠,即可求解.【详解】方程两边同时乘以(1)x -,得231x m x -+=-,解得4x m =-,关于x 的分式方程23111x m x x--=--的解是正数,0x ∴>,且10x -≠,即40m ->且410m --≠,4m ∴>且5m ≠,故选:C .【点睛】本题考查了分式方程的解,涉及解分式方程和分式方程分母不为0,熟练掌握知识点是解题的关键.7.国家“双减”政策实施后,某校开展了丰富多彩的社团活动.某班同学报名参加书法和围棋两个社团,班长为参加社团的同学去商场购买毛笔和围棋(两种都购买)共花费360元.其中毛笔每支15元,围棋每副20元,共有多少种购买方案?()A.5B.6C.7D.8【答案】A【分析】设设购买毛笔x支,围棋y副,根据总价=单价×数量,即可得出关于x,y的二元一次方程,结合x,y均为正整数即可得出购买方案的数量.【详解】解:设购买毛笔x支,围棋y副,根据题意得,15x+20y=360,即3x+4y=72,∴y=18-34x.又∵x,y均为正整数,∴415xy=⎧⎨=⎩或812xy=⎧⎨=⎩或129xy=⎧⎨=⎩或166xy=⎧⎨=⎩或203xy=⎧⎨=⎩,∴班长有5种购买方案.故选:A.【点睛】本题考查了二元一次方程的应用,找准等量关系“共花费360元”,列出二元一次方程是解题的关键.8.如图,在平面直角坐标系中,点O为坐标原点,平行四边形OBAD的顶点B在反比例函数3yx=的图象上,顶点A在反比例函数kyx=的图象上,顶点D在x轴的负半轴上.若平行四边形OBAD的面积是5,则k的值是()A.2B.1C.1- D.2-【答案】D【分析】连接OA ,设AB 交y 轴于点C ,根据平行四边形的性质可得1522AOB OBAD S S == ,AB ∥OD ,再根据反比例函数比例系数的几何意义,即可求解.【详解】解:如图,连接OA ,设AB 交y 轴于点C ,∵四边形OBAD 是平行四边形,平行四边形OBAD 的面积是5,∴1522AOB OBAD S S == ,AB ∥OD ,∴AB ⊥y 轴,∵点B 在反比例函数3y x =的图象上,顶点A 在反比例函数k y x =的图象上,∴3,22COB COA k S S ==- ,∴35222AOB COB COA k S S S =+=-= ,解得:2k =-.故选:D .【点睛】本题主要考查了平行四边形的性质,反比例函数比例系数的几何意义,熟练掌握平行四边形的性质,反比例函数比例系数的几何意义是解题的关键.9.如图,ABC 中,AB AC =,AD 平分BAC ∠与BC 相交于点D ,点E 是AB 的中点,点F 是DC 的中点,连接EF 交AD 于点P .若ABC 的面积是24, 1.5PD =,则PE 的长是()A .2.5 B.2 C.3.5 D.3【答案】A【分析】连接DE ,取AD 的中点G ,连接EG ,先由等腰三角形“三线合一“性质,证得AD ⊥BC ,BD =CD ,再由E 是AB 的中点,G 是AD 的中点,求出S △EGD =3,然后证△EGP ≌△FDP (AAS ),得GP =CP =1.5,从而得DG =3,即可由三角形面积公式求出EG 长,由勾股定理即可求出PE 长.【详解】解:如图,连接DE ,取AD 的中点G ,连接EG ,∵AB =AC ,AD 平分BAC ∠与BC 相交于点D ,∴AD ⊥BC ,BD =CD ,∴S △ABD =112422ABC S =⨯ =12,∵E 是AB 的中点,∴S △AED =111222ABD S =⨯ =6,∵G 是AD 的中点,∴S △EGD =11622AED S =⨯ =3,∵E 是AB 的中点,G 是AD 的中点,∴EG ∥BC ,EG =12BD =12CD ,∴∠EGP =∠FDP =90°,∵F 是CD 的中点,∴DF =12CD ,∴EG =DF ,∵∠EPG =∠FPD ,∴△EGP ≌△FDP (AAS ),∴GP =PD =1.5,∴GD =3,∵S △EGD =12GD EG ⋅=3,即1332EG ⨯=,∴EG =2,在Rt △EGP 中,由勾股定理,得PE ==2.5,故选:A .【点睛】本题考查等腰三角形的性质,三角形面积,全等三角形判定与性质,勾股定理,熟练掌握三角形中线分三角形两部分的面积相等是解题的关键.10.如图,正方形ABCD 的对角线AC ,BD 相交于点O ,点F 是CD 上一点,OE OF ⊥交BC 于点E ,连接AE ,BF 交于点P ,连接OP .则下列结论:①AE BF ⊥;②45OPA ∠=︒;③AP BP -=;④若:2:3BE CE =,则4tan 7CAE ∠=;⑤四边形OECF 的面积是正方形ABCD 面积的14.其中正确的结论是()A.①②④⑤B.①②③⑤C.①②③④D.①③④⑤【答案】B 【分析】分别对每个选项进行证明后进行判断:①通过证明()DOF COE ASA ≌ 得到EC =FD ,再证明()EAC FBD SAS ≌ 得到∠EAC =∠FBD ,从而证明∠BPQ =∠AOQ =90°,即AE BF ⊥;②通过等弦对等角可证明45OPA OBA ∠=∠=︒;③通过正切定义得tan BE BP BAE AB AP ∠==,利用合比性质变形得到CE BP AP BP BE ⋅-=,再通过证明AOP AEC ∽ 得到OP AE CE AO ⋅=,代入前式得OP AE BP AP BP AO BE⋅⋅-=⋅,最后根据三角形面积公式得到AE BP AB BE ⋅=⋅,整体代入即可证得结论正确;④作EG ⊥AC 于点G 可得EG ∥BO ,根据tan EG EG CAE AG AC CG∠==-,设正方形边长为5a ,分别求出EG 、AC 、CG 的长,可求出3tan 7CAE ∠=,结论错误;⑤将四边形OECF 的面积分割成两个三角形面积,利用()DOF COE ASA ≌ ,可证明S 四边形OECF =S △COE +S △COF =S △DOF +S △COF =S △COD 即可证明结论正确.【详解】①∵四边形ABCD 是正方形,O 是对角线AC 、BD 的交点,∴OC =OD ,OC ⊥OD ,∠ODF =∠OCE =45°∵OE OF⊥∴∠DOF +∠FOC =∠FOC +∠EOC =90°∴∠DOF =∠EOC在△DOF 与△COE 中ODF OCE OC OD DOF EOC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()DOF COE ASA ≌ ∴EC =FD∵在△EAC 与△FBD 中45EC FD ECA FDB AC BD =⎧⎪∠=∠=︒⎨⎪=⎩∴()EAC FBD SAS ≌ ∴∠EAC =∠FBD又∵∠BQP =∠AQO∴∠BPQ =∠AOQ =90°∴AE ⊥BF所以①正确;②∵∠AOB =∠APB =90°∴点P 、O 在以AB 为直径的圆上∴AO 是该圆的弦∴45OPA OBA ∠=∠=︒所以②正确;③∵tan BE BP BAE AB AP ∠==∴AB AP BE BP =∴AB BE AP BP BE BP --=∴AP BP CE BP BE-=∴CE BPAP BP BE ⋅-=∵,45EAC OAP OPA ACE ∠=∠∠=∠=︒∴AOP AEC∽ ∴OP AO CE AE=∴OP AECE AO⋅=∴OP AE BPAP BP AO BE ⋅⋅-=⋅∵1122ABE AE BP AB BE S ⋅=⋅= ∴AE BP AB BE ⋅=⋅∴OP AB BE AB AP BP OP AO BE AO ⋅⋅-===⋅所以③正确;④作EG ⊥AC 于点G ,则EG ∥BO ,∴EG CE CG OB BC OC==设正方形边长为5a ,则BC =5a ,OB =OC =522a ,若:2:3BE CE =,则23BE CE =,∴233BE CE CE ++=∴35CE BC =∴35CE EG OB BC =⋅==∵EG ⊥AC ,∠ACB =45°,∴∠GEC =45°∴CG =EG∴3232tan 7a EG EG CAE AG AC CG ∠===-所以④错误;⑤∵()DOF COE ASA ≌ ,S 四边形OECF =S △COE +S △COF∴S 四边形OECF =S △DOF +S △COF =S △COD ∵S △COD =14ABCD S 正方形∴S 四边形OECF =14ABCD S 正方形所以⑤正确;综上,①②③⑤正确,④错误,故选B【点睛】本题综合考查了三角形、正方形、圆和三角函数,熟练运用全等三角形、相似三角形、等弦对等角和三角函数的定义是解题的关键.二、填空题(每题3分,满分30分)11.我国南水北调东线北延工程2021-2022年度供水任务顺利完成,共向黄河以北调水1.89亿立方米,将数据1.89亿用科学记数法表示为________.【答案】81.8910⨯【分析】把亿写成810,最后统一写成10n a ⨯的形式即可.【详解】解:由题意得:1.89亿=81.8910⨯,故答案为:81.8910⨯.【点睛】本题考查了科学记数法表示较大的数,移动小数点,熟记科学记数法的表示形式是解题的关键.12.函数y =中自变量x 的取值范围是______.【答案】 1.5x ≥【分析】根据二次根式的性质,被开方数大于等于0,即可求出答案.【详解】解:根据题意,230x -≥,∴ 1.5x ≥;故答案为: 1.5x ≥.【点睛】本题考查了二次根式的性质,解题的关键是熟练掌握二次根式被开方数大于等于0进行解题.13.如图,在四边形ABCD 中,对角线AC ,BD 相交于点O ,OA OC =,请你添加一个条件________,使AOB COD ≌.【答案】OB =OD (答案不唯一)【分析】根据SAS 添加OB =OD 即可【详解】解:添加OB =OD ,在△AOB 和△COD 中,AO CO AOB COD OB OD =⎧⎪∠=∠⎨⎪=⎩,∴AOB COD ≌(SAS )故答案为OB =OD (答案不唯一)【点睛】本题考查三角形全等判定添加条件,掌握三角形全等判定方法是解题关键.14.在一个不透明的口袋中,有2个红球和4个白球,这些球除颜色外其余完全相同,摇匀后随机摸出一个球,摸到红球的概率是________.【答案】13【分析】利用概率公式计算即可.【详解】∵不透明的口袋中,有2个红球和4个白球,∴摸到红球的概率是21243=+,故答案为:13.【点睛】本题考查了概率计算,熟练掌握概率计算公式是解题的关键.15.若关于x 的一元一次不等式组2130x x a -⎧⎨-<⎩<的解集为2x <,则a 的取值范围是________.【答案】2a ≥##2a≤【分析】先求出每个不等式的解集,根据已知不等式组的解集即可得出答案.【详解】解:2130x x a -⎧⎨-<⎩<①②,解不等式①得:2x <,解不等式②得:x a <,关于x 的不等式组2130x x a -⎧⎨-<⎩<的解集为2x <,2a ∴≥.故答案为:2a ≥.【点睛】本题主要考查了一元一次不等式组解集的求法,其简便求法就是用口诀求解,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).16.如图,在O 中,AB 是O 的弦,O 的半径为3cm ,C 为O 上一点,60ACB ∠=︒,则AB 的长为________cm.【答案】【分析】连接OA 、OB ,过点O 作OD ⊥AB 于点D ,由垂径定理和圆周角定理可得12AD BD AB ==,120AOB ∠=︒,再根据等腰三角形的性质可得30OAB OBA ==︒∠∠,利用含30°角的直角三角形的性质和勾股定理即可求解.【详解】解:连接OA 、OB ,过点O 作OD ⊥AB 于点D ,12AD BD AB ∴==,90ODA =∠°, 60ACB ∠=︒,120AOB ∴∠=︒,OA OB = ,30OAB OBA ∴∠=∠=︒,3cm OA = ,3cm 2OD ∴=,cm 2AD ∴==,AB ∴=,故答案为:【点睛】本题考查了垂径定理,圆周角定理,等腰三角形的性质,含30°角的直角三角形的性质和勾股定理,熟练掌握知识点是解题的关键.17.若一个圆锥的母线长为5cm ,它的侧面展开图的圆心角为120°,则这个圆锥的底面半径为________cm .【答案】53【分析】由于圆锥的母线长为5cm ,侧面展开图是圆心角为120°扇形,设圆锥底面半径为r cm ,那么圆锥底面圆周长为2πr cm ,所以侧面展开图的弧长为2πr cm ,然后利用弧长公式即可得到关于r 的方程,解方程即可求解.【详解】解:设圆锥底面半径为r cm ,则圆锥底面周长为:2r πcm ,∴侧面展开图的弧长为:2r πcm ,∴12052=180ππ⨯r ,解得:r =53,故答案为:53.【点睛】本题主要考查圆锥侧面展开图的知识;正确理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.18.如图,菱形ABCD 中,对角线AC ,BD 相交于点O ,60BAD ∠=︒,3AD =,AH 是BAC ∠的平分线,CE AH⊥于点E ,点P 是直线AB 上的一个动点,则OP PE +的最小值是________.【答案】362【分析】作点O 关于AB 的对称点F ,连接OF 交AB 于G ,连接PE 交直线AB 于P ,连接PO ,则PO =PF ,此时,PO +PE 最小,最小值=EF ,利用菱形的性质与直角三角形的性质,勾股定理,求出OF ,OE 长,再证明△EOF 是直角三角形,然后由勾股定理求出EF 长即可.【详解】解:如图,作点O 关于AB 的对称点F ,连接OF 交AB 于G ,连接PE 交直线AB 于P ,连接PO ,则PO =PF ,此时,PO +PE 最小,最小值=EF ,∵菱形ABCD,∴AC⊥BD,OA=OC,O=OD,AD=AB=3,∵∠BAD=60°,∴△ABD是等边三角形,∴BD=AB=3,∠BAO=30°,∴OB=3 2,∴OA 33 2∴点O关于AB的对称点F,∴OF⊥AB,OF=2OG=OA 33 2∴∠AOG=60°,∵CE⊥AH于E,OA=OC,∴OE=OC=OA 33 2,∵AH平分∠BAC,∴∠CAE=15°,∴∠AEC=∠CAE=15°,∴∠DOE=∠AEC+∠CAE=30°,∴∠DOE+∠AOG=30°+60°=90°,∴∠FOE=90°,∴由勾股定理,得EF2222333336222 OF OE⎛⎫⎛⎫+=+=⎪ ⎪⎝⎭⎝⎭,∴PO +PE 最小值=362.故答案为:2.【点睛】本题考查菱形的性质,利用轴对称求最短距离问题,直角三角形的性质,勾股定理,作点O 关于AB 的对称点F ,连接OF 交AB 于G ,连接PE 交直线AB 于P ,连接PO ,则PO =PF ,则PO +PE 最小,最小值=EF 是解题的关键.19.在矩形ABCD 中,9AB =,12AD =,点E 在边CD 上,且4CE =,点P 是直线BC 上的一个动点.若APE V 是直角三角形,则BP 的长为________.【答案】313或154或6【分析】分三种情况讨论:当∠APE =90°时,当∠AEP =90°时,当∠PAE =90°时,过点P 作PF ⊥DA 交DA 延长线于点F ,即可求解.【详解】解:在矩形ABCD 中,9AB CD ==,12AD BC ==,∠BAD =∠B =∠BCD =∠ADC =90°,如图,当∠APE =90°时,∴∠APB +∠CPE =90°,∵∠BAP +∠APB =90°,∴∠BAP =∠CPE ,∵∠B =∠C =90°,∴△ABP ∽△PCE ,∴AB BP PC CE=,即9124BP BP =-,解得:BP =6;如图,当∠AEP =90°时,∴∠AED+∠PEC=90°,∵∠DAE+∠AED=90°,∴∠DAE=∠PEC,∵∠C=∠D=90°,∴△ADE∽△ECP,∴AD DECE PC=,即12944PC-=,解得:53 PC=,∴313 BP BC PC=-=;如图,当∠PAE=90°时,过点P作PF⊥DA交DA延长线于点F,根据题意得∠BAF=∠ABP=∠F=90°,∴四边形ABPF为矩形,∴PF=AB=9,AF=PB,∵∠PAF+∠DAE=90°,∠PAF+∠APF=90°,∴∠DAE=∠APF,∵∠F=∠D=90°,∴△APF∽△EAD,∴AF PFDE AD=,即99412AF=-,解得:154=AF,即154PB=;综上所述,BP的长为313或154或6.故答案为:313或154或6【点睛】本题主要考查了相似三角形的判定和性质,矩形的性质,熟练掌握相似三角形的判定和性质,矩形的性质,并利用分类讨论思想解答是解题的关键.20.如图,在平面直角坐标系中,点1A ,2A ,3A ,4A ……在x 轴上且11OA =,212OA OA =,322OA OA =,432OA OA =……按此规律,过点1A ,2A ,3A ,4A ……作x 轴的垂线分别与直线y =交于点1B ,2B ,3B ,4B ……记11OA B ,22OA B △,33 OA B ,44 OA B ……的面积分别为1S ,2S ,3S ,4S ……,则2022S =______.【答案】2【分析】先求出11A B =,可得1132OA B S = ,再根据题意可得112233n n A B A B A B A B ⋯⋯∥∥∥,从而得到11OA B ∽22OA B △∽33 OA B ∽44 OA B ……∽n n OA B △,再利用相似三角形的性质,可得11OA B S ∶22OA B S ∶33OA B S ∶44OA B S ……∶n n OA B S =()()()2222231:2:2:2:2n ,即可求解.【详解】解:当x =1时,y =∴点(1B ,∴11A B =∴1113122OA B S =⨯= ,∵根据题意得:112233n n A B A B A B A B ⋯⋯∥∥∥,∴11OA B ∽22OA B △∽33 OA B ∽44 OA B ……∽n n OA B △,∴11OA B S ∶22OA B S ∶33OA B S ∶44OA B S ……∶n n OA B S =OA 12∶OA 22∶OA 32……∶OA n 2,∵11OA =,212OA OA =,322OA OA =,432OA OA =……,∴22OA =,2342OA ==,3482OA ==……12n n OA -=,∴11OA B S ∶22OA B S ∶33OA B S ∶44OA B S ……∶n n OA B S =()()()2222231246221:2:2:2:21:2:2:2:2n n --= ,∴11222n n n OA B OA B S S -= ,∴22022220223222S ⨯-=⨯=故答案为:2.【点睛】本题主要考查了图形与坐标的规律题,相似三角形的判定和性质,明确题意,准确得到规律,是解题的关键.三、解答题(满分60分)21.先化简,再求值:22221111a a a a a ⎛⎫---÷ ⎪-+⎝⎭,其中2cos301a =︒+.【答案】11a -,3-【分析】先根据分式的混合运算法则化简分式,再把特殊角的三角函数值代入,求出a 值,然后把a 值代入化简式计算即可.【详解】解:原式22222112111a a a a a a a ⎛⎫--+=-⋅ ⎪---⎝⎭2121211a a a a -+=⋅--11a=-,当2cos3011a =︒+=时,原式3==-【点睛】本题考查分式化简求值,熟练掌握分式运算法则和熟记特殊角的三角函数值是解题的关键.22.如图,在正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,ABC 的三个顶点坐标分别为()1,1A -,()2,5B -,()5,4C -.(1)将ABC 先向左平移6个单位,再向上平移4个单位,得到111A B C △,画出两次平移后的111A B C △,并写出点1A 的坐标;(2)画出111A B C △绕点1C 顺时针旋转90°后得到221A B C △,并写出点2A 的坐标;(3)在(2)的条件下,求点1A 旋转到点2A 的过程中所经过的路径长(结果保留π).【答案】(1)见解析;()15,3A -(2)见解析;()22,4A (3)点1A 旋转到点2A 所经过的路径长为5π2【分析】(1)根据题目中的平移方式进行平移,然后读出点的坐标即可;(2)先找出旋转后的对应点,然后顺次连接即可;(3)根据旋转可得点1A 旋转到点2A 为弧长,利用勾股定理确定圆弧半径,然后根据弧长公式求解即可.【小问1详解】解:如图所示△A 1B 1C 1即为所求,()15,3A -;【小问2详解】如图所示△A 2B 2C 2即为所求,()22,4A ;【小问3详解】∵115A C ==∴点1A 旋转到点2A 所经过的路径长为90π55π1802⨯=.【点睛】题目主要考查坐标与图形,图形的平移,旋转,勾股定理及弧长公式等,数量掌握运用这些知识点是解题关键.23.如图,抛物线2y x bx c =++经过点()1,0A -,点()2,3B -,与y 轴交于点C ,抛物线的顶点为D .(1)求抛物线的解析式;(2)抛物线上是否存在点P ,使PBC 的面积是BCD △面积的4倍,若存在,请直接写出点P 的坐标:若不存在,请说明理由.【答案】(1)223y x x =--(2)存在,()11P +,()21P -【分析】(1)将点()1,0A -,点()2,3B -,代入抛物线得10423b c b c -+=⎧⎨++=-⎩,求出b c ,的值,进而可得抛物线的解析式.(2)将解析式化成顶点式得()222314y x x x =--=--,可得D 点坐标,将0x =代入得,3y =-,可得C 点坐标,求出1BCD S =△的值,根据4PBC BCD S S = 可得4PBC S = ,设()2,23P m m m --,则()21223342PBC S m m =⨯⨯--+= ,求出m 的值,进而可得P 点坐标.【小问1详解】解:∵抛物线2y x bx c =++过点()1,0A -,点()2,3B -,∴10423b c b c -+=⎧⎨++=-⎩,解得23b c =-⎧⎨=-⎩,∴抛物线的解析式为:223y x x =--.【小问2详解】解:存在.∵()222314y x x x =--=--,∴()1,4D -,将0x =代入得,3y =-,∴()0,3C -,∴D 到线段BC 的距离为1,2BC =,∴12112BCD S =⨯⨯=V ,∴44PBC BCD S S == ,设()2,23P m m m --,则()21223342PBC S m m =⨯⨯--+= ,整理得,224m m -=,解得11m =+,或21m =,∴()11P +,()21P -,∴存在点P ,使PBC 的面积是BCD △面积的4倍,点P 的坐标为()11P +,()21P .【点睛】本题考查了待定系数法求二次函数解析式,二次函数顶点式,二次函数与三角形面积综合等知识.解题的关键在于对知识的熟练掌握与灵活运用.24.为进一步开展“睡眠管理”工作,某校对部分学生的睡眠情况进行了问卷调查.设每名学生平均每天的睡眠时间为x 小时,其中的分组情况是:A 组:8.5x <B 组:8.59x ≤<C 组:99.5x ≤<D 组:9.510x ≤<E 组:10x ≥根据调查结果绘制成两幅不完整的统计图,请根据图中提供的信息,解答下列问题:(1)本次共调查了_______名学生;(2)补全条形统计图;(3)在扇形统计图中,求D 组所对应的扇形圆心角的度数;(4)若该校有1500名学生,请估计该校睡眠时间不足9小时的学生有多少人?【答案】(1)100(2)补全统计图见解析(3)D 组所对应的扇形圆心角度数为72︒(4)估计该校睡眠时间不足9小时的学生有375人【分析】(1)根据统计图中B 组的人数与占比,计算求解即可;(2)根据E 组人数占比为15%,求出E 组人数为10015⨯%人,然后作差求出A 组人数,最后补全统计图即可;(3)根据D 组人数的占比乘以360︒计算求解即可;(4)根据A B ,两组人数的占比,乘以总人数,计算求解即可.【小问1详解】解:由统计图可知,本次共调查了2020100÷=%(人),故答案为:100.【小问2详解】解:由统计图可知,E 组人数占比为15%,∴E 组人数为1001515⨯=%(人),∴A 组人数为100204020155----=(人),∴补全统计图如图所示【小问3详解】解:由题意知,D 组所对应的扇形圆心角度数为2036072100⨯︒=︒,∴D 组所对应的扇形圆心角度数为72︒.【小问4详解】解:由题意知,5201500375100+⨯=(人)∴估计该校睡眠时间不足9小时的学生有375人.【点睛】本题考查了条形统计图与扇形统计图,画条形统计图,用样本估计总体等知识.解题的关键在于从统计图中获取正确的信息.25.为抗击疫情,支援B 市,A 市某蔬菜公司紧急调运两车蔬菜运往B 市.甲、乙两辆货车从A 市出发前往B 市,乙车行驶途中发生故障原地维修,此时甲车刚好到达B 市.甲车卸载蔬菜后立即原路原速返回接应乙车,把乙车的蔬菜装上甲车后立即原路原速又运往B 市.乙车维修完毕后立即返回A 市.两车离A 市的距离y (km )与乙车所用时间x (h )之间的函数图象如图所示.(1)甲车速度是_______km/h ,乙车出发时速度是_______km/h ;(2)求乙车返回过程中,乙车离A 市的距离y (km )与乙车所用时间x (h )的函数解析式(不要求写出自变量的取值范围);(3)乙车出发多少小时,两车之间的距离是120km ?请直接写出答案.【答案】(1)10060(2)1001200y x =-+(3)3,6.3,9.1【分析】(1)根据图象分别得出甲车5h 的路程为500km ,乙车5h 的路程为300km ,即可确定各自的速度;(2)设()0y kx b k =+≠,由图象可得经过点(9,300),(12,0)点,利用待定系数法即可确定函数解析式;(3)乙出发的时间为t 时,相距120km ,根据图象分多个时间段进行分析,利用速度与路程、时间的关系求解即可.【小问1详解】。
最新浙教版九年级数学中考试题(含答案)
![最新浙教版九年级数学中考试题(含答案)](https://img.taocdn.com/s3/m/ab42b254591b6bd97f192279168884868662b857.png)
2022年初中毕业升学适应性检测数学试题卷一、选择题(本题有10小题, 每小题3分, 共30分)1.的相反数是.. )A.3B.C.D.2.计算的结果是.. )A. B. C. D.3.如图是由5个大小相同的小正方体摆成的几何体,它的俯视图是()A./B./C./D./4.不透明的袋子中有3个白球和2个红球, 这些球除颜色外无其他差别, 从袋子中随机摸出1个球, 恰好是白球的概率()A. B. C. D.5.已知, 则一定有, “□”中应填的符号是.. )A. B. C. D.6.某市2018年底森林覆盖率为63%. 为贯彻落实“绿水青山就是金山银山”的发展理念, 该市大力开展植树造林活动, 2020年底森林覆盖率达到68%, 如果这两年森林覆盖率的年平均增长率为x, 那么, 符合题意的方程是.. )A. B.C. D.7.将抛物线向左平移1个单位, 再向下平移2个单位得到的抛物线必定经过.. )A. B. C. D.8.已知线段AB,下列尺规作图中,PQ与AB的交点O不一定是AB的中点的是.. )A.AB.BC.CD.D9.如图,是圆锥的母线,已知底面圆直径,圆锥的侧面积为,则的值为.. )A. B. C. D.10.如图,平行四边形的顶点在轴的正半轴上,点在对角线上,反比例函数的图像经过、两点.已知平行四边形的面积是,则点的坐标为. )A. B. C. D.二、填空题(本题有6小题, 每小题4分, 共24分)11.因式分解: ______.12.使有意义的x的取值范围是______.13.如图是小明某一天测得的7次体温情况的折线统计图,这组数据的中位数是______.14.我国明代数学读本《算法统宗》一书中有这样一道题: 一支竿子一条索, 索比竿子长一托, 对折索子来量竿, 却比竿子短一托. 如果1托为5尺, 那么索长为_______尺. (其大意为: 现有一根竿和一条绳索, 如果用绳索去量竿, 绳索比竿长5尺;如果将绳索对折后再去量竿, 就比竿短5尺, 则绳索长几尺. )15.如图,在等腰三角形中,,,为的中点,为上任意一点,则的范围是______.16.已知关于, 的二元一次方程组(, 为实数).(1)若, 则/值是__________;(2)若, 同时满足, , 则的值是__________.三、解答题(本题有8小题, 第17~19题每题6分, 第20, 21题每题8分, 第22, 23题每题10分, 第24题12分, 共66分, 各小题都必须写出解答过程)17.计算: .18.解方程:.19.在“双减政策”下,某校开展学生社团活动,组建摄影社、国学社、篮球社、科技制作社四个社团.每名学生最多只能报一个社团,也可以不报.为了估计各社团人数,现在该校随机抽取50名学生做问卷调查,得到如图所示的两个不完全统计图.结合以上信息, 回答下列问题:(1)请你补全条形统计图, 并在图上标明具体数据;(2)计算参与科技制作社团所在扇形的圆心角度数;(3)已知该校共有学生3000人, 请你估计全校有多少学生报名参加篮球社团活动. 20.如图,在的方格纸中,的顶点均在格点上,请按要求画图.(仅用无刻度的直尺,且不能用直尺的直角,保留作图痕迹)(1)在图1中, 找一格点, 使四边形是中心对称图形, 并补全该四边形;(2)在图2中, 在上作点, 使得.21.甲、乙两地/路程为290千米,一辆汽车早上8:00从甲地出发,匀速向乙地行驶,途中休息一段时间后,按原速继续前进,当离甲地路程为240千米时接到通知,要求中午12:00准时到达乙地.设汽车出发小时后离甲地的路程为千米,图中折线表示接到通知前与之间的函数关系.(1)根据图象可知, 休息前汽车行驶的速度为千米/小时;(2)求线段DE所表示的y与x之间的函数表达式;(3)接到通知后, 汽车仍按原速行驶能否准时到达?请说明理由.22.如图,在中,,以的边为直径作,交于点,过点作,垂足为点.(1)试证明DE是O的切线;(2)若的半径为5, , 求此时的长.23.如图,抛物线与x轴,y轴分别交于A,D,C三点,已知点A(4,0),点C(0,4).若该抛物线与正方形OABC交于点G且CG:GB=3:1.(1)求抛物线的解析式和点D的坐标;(2)若线段OA, OC上分别存在点E, F, 使EF⊥FG.已知OE=m, OF=t.①当t为何值时, m有最大值?最大值是多少?②若点E与点R关于直线FG对称, 点R与点Q关于直线OB对称. 问是否存在t, 使点Q 恰好落在抛物线上?若存在, 直接写出t的值;若不存在, 请说明理由.24.如图,矩形,点是对角线上的动点(不与、重合),连接,作交射线于点.已知,.设的长为.(1)如图1, 于点, 交于点. 求证: ;(2)试探究: 是否是定值?若是, 请求出这个值;若不是, 请说明理由;(3)当是等腰三角形时, 请求出所有的值.2022年初中毕业升学适应性检测数学试题卷一、选择题(本题有10小题, 每小题3分, 共30分)【1题答案】【答案】A【2题答案】【答案】D【3题答案】【答案】D【4题答案】【答案】C【5题答案】【答案】B【6题答案】【答案】B【7题答案】【答案】B【8题答案】【答案】C【9题答案】【答案】D【10题答案】【答案】B二、填空题(本题有6小题, 每小题4分, 共24分)【11题答案】【答案】()()22y y +-【12题答案】【答案】2x ≥【13题答案】【答案】36.8【14题答案】【答案】20【15题答案】 372t ≤≤【16题答案】【答案.. ①... ②.8三、解答题(本题有8小题, 第17~19题每题6分, 第20, 21题每题8分, 第22, 23题每题10分, 第24题12分, 共66分, 各小题都必须写出解答过程)【17题答案】【答案】1【18题答案】【答案】32 x=【19题答案】【答案】(1)补全条形统计图见解析, 图上标明具体数据15, 10 (2)参与科技制作社团所在扇形的圆心角度数为86.4︒(3)全校有600学生报名参加篮球社团活动【20题答案】【答案】(1)见解析(2)见解析【21题答案】【答案】(1)80;(2);(3)不能, 理由见解析.【22题答案】【答案】(1)详见解析;(2)3DE=【23题答案】【答案】(1), 点D的坐标为(-1, 0);(2)①当时, m有最大值, ;②存在, 当时点恰好落在抛物线上【24题答案】【答案】(1)见解析(2)的值为定值, 这个值为(3)x值为145或8。
初三数学综合测试卷及答案
![初三数学综合测试卷及答案](https://img.taocdn.com/s3/m/e7f9275802d8ce2f0066f5335a8102d276a2619b.png)
一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √16B. √-9C. πD. 0.1010010001……2. 已知等腰三角形底边长为8cm,腰长为10cm,则其面积为()A. 32cm²B. 40cm²C. 48cm²D. 80cm²3. 下列函数中,一次函数是()A. y = 2x² - 3x + 1B. y = √x + 1C. y = 2x + 3D. y = 3/x4. 已知一元二次方程x² - 5x + 6 = 0,则其解为()A. x₁ = 2, x₂ = 3B. x₁ = 3, x₂ = 2C. x₁ = 6, x₂ = 1D. x₁ = 1, x₂ = 65. 在平面直角坐标系中,点A(2,3)关于原点的对称点是()A.(-2,-3)B.(2,-3)C.(-2,3)D.(3,-2)6. 下列各组数中,成等差数列的是()A. 1,4,7,10B. 2,5,8,11C. 3,6,9,12D. 4,7,10,137. 若直角三角形的两条直角边长分别为3cm和4cm,则斜边长为()A. 5cmB. 6cmC. 7cmD. 8cm8. 下列命题中,正确的是()A. 若a > b,则a² > b²B. 若a > b,则ac > bcC. 若a > b,则a² > b²D. 若a > b,则ac > bc9. 已知正方形的边长为a,则其对角线长为()A. aB. √2aC. 2aD. a√210. 在等腰三角形ABC中,若底边BC=8cm,腰AB=AC=10cm,则三角形ABC的周长为()A. 24cmB. 26cmC. 28cmD. 30cm二、填空题(每题4分,共40分)11. 分数 3/4 与 -1/2 的差是 ________。
2022年黑龙江省哈尔滨市(初三学业水平考试)中考数学真题试卷含详解
![2022年黑龙江省哈尔滨市(初三学业水平考试)中考数学真题试卷含详解](https://img.taocdn.com/s3/m/de04f1d35ff7ba0d4a7302768e9951e79b896982.png)
哈尔滨市2022年初中升学考试数学试卷一、选择题(每小题3分,共计30分)1.16的相反数是()A.16 B.6- C.6 D.16-2.下列运算一定正确的是()A.()22346a b a b =B.22434b b b +=C.()246a a =D.339a a a ⋅=3.下列图形中既是轴对称图形又是中心对称图形的是()A. B. C. D.4.六个大小相同的正方体搭成的几何体如图所示,其左视图是()A. B. C. D.5.抛物线22(9)3y x =+-的顶点坐标是()A.(9,3)- B.(9,3)-- C.(9,3) D.(9,3)-6.方程233x x =-的解为()A.3x =B.9x =-C.9x =D.3x =-7.如图,,AD BC 是O 的直径,点P 在BC 的延长线上,PA 与O 相切于点A ,连接BD ,若40P ∠=︒,则ADB ∠的度数为()A.65︒B.60︒C.50︒D.25︒8.某种商品原来每件售价为150元,经过连续两次降价后,该种商品每件售价为96元,设平均每次降价的百分率为x ,根据随意,所列方程正确的是()A.()2150196x -= B.150(1)96x -= C.2150(1)96x -= D.150(12)96x -=9.如图,,,AB CD AC BD ∥相交于点E ,1,2,3AE EC DE ===,则BD 的长为()A.32 B.4 C.92 D.610.一辆汽车油箱中剩余的油量(L)y 与已行驶的路程(km)x 的对应关系如图所示,如果这辆汽车每千米的耗油量相同,当油箱中剩余的油量为35L 时,那么该汽车已行驶的路程为()A.150kmB.165kmC.125kmD.350km第Ⅱ卷非选择题(共90分)二、填空题(每小题3分,共计30分)11.风能是一种清洁能源,我国风能储量很大,仅陆地上风能储量效有253000兆瓦,用科学记数法表示为___________兆瓦.12.在函数53x y x =+中,自变量x 的取值范围是___________.13.计算+的结果是___________.14.把多项式29mn m -分解因式的结果是______.15.不等式组340,421x x +≥⎧⎨-<-⎩的解集是___________.16.已知反比例函数6y x=-的图象经过点()4,a ,则a 的值为___________.17.在ABC 中,AD 为边BC 上的高,30ABC ∠=︒,20CAD ∠=︒,则BAC ∠是___________度.18.同时抛掷两枚质地均匀的硬币,一枚硬币正面向上,一枚硬币反面向上的概率是_____.19.一个扇形的面积为27πcm ,半径为6cm ,则此扇形的圆心角是___________度.20.如图,菱形ABCD 的对角线,AC BD 相交于点O ,点E 在OB 上,连接AE ,点F 为CD 的中点,连接OF ,若AE BE =,3OE =,4OA =,则线段OF 的长为___________.三、解答题(其中21-22题各7分,23-24题各8分,25-27题各10分,共计60分)21.先化简,再求代数式21321211x x x x x -⎛⎫-÷ ⎪--+-⎝⎭的值,其中2cos 451x =︒+.22.如图,方格纸中每个小正方形的边长均为1,ABC 的顶点和线段EF 的端点均在小正方形的顶点上.(1)在方格纸中面出ADC ,使ADC 与ABC 关于直线AC 对称(点D 在小正方形的顶点上);(2)在方格纸中画出以线段EF 为一边的平行四边形EFGH (点G ,点H 均在小正方形的顶点上),且平行四边形EFGH 的面积为4.连接DH ,请直接写出线段DH 的长.23.民海中学开展以“我最喜欢的健身活动”为主题的调查活动,围绕“在跑步类、球类、武术类、操舞类四类健身活动中,你最喜欢哪一类?(必选且只选一类)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的条形统计图,其中最喜欢操舞类的学生人数占所调查人数的25%.请你根据图中提供的信息解答下列问题:(1)在这次调查中,一共抽取了多少名学生?(2)请通过计算补全条形统计图;(3)若民海中学共有1600名学生,请你估计该中学最喜欢球类的学生共有多少名.24.已知矩形ABCD 的对角线,AC BD 相交于点O ,点E 是边AD 上一点,连接,,BE CE OE ,且BE CE .(1)如图1,求证:BEO CEO △≌△;(2)如图2,设BE 与AC 相交于点F ,CE 与BD 相交于点H ,过点D 作AC 的平行线交BE 的延长线于点G ,在不添加任何辅助线的情况下,请直接写出图2中的四个三角形(AEF 除外),使写出的每个三角形的面积都与AEF 的面积相等.25.绍云中学计划为绘画小组购买某种品牌的A 、B 两种型号的颜料,若购买1盒A 种型号的颜料和2盒B 种型号的颜料需用56元;若购买2盒A 种型号的颜料和1盒B 种型号的颜料需用64元.(1)求每盒A 种型号的颜料和每盒B 种型号的颜料各多少元;(2)绍云中学决定购买以上两种型号的颜料共200盒,总费用不超过3920元,那么该中学最多可以购买多少盒A 种型号的颜料?26.已知CH 是O 的直径,点A ,点B 是O 上的两个点,连接,OA OB ,点D ,点E 分别是半径,OA OB 的中点,连接,,CD CE BH ,且2AOC CHB ∠=∠.(1)如图1,求证:ODC OEC ∠=∠;(2)如图2,延长CE 交BH 于点F ,若CD OA ⊥,求证:FC FH =;(3)如图3,在(2)的条件下,点G 是 BH上一点,连接,,,AG BG HG OF ,若:5:3AG BG =,2HG =,求OF 的长.27.在平面直角坐标系中,点O 为坐标原点,抛物线2y ax b =+经过点521,28A ⎛⎫⎪⎝⎭,点13,28B ⎛⎫- ⎪⎝⎭,与y 轴交于点C .(1)求a ,b 的值;(2)如图1,点D 在该抛物线上,点D 的横坐标为2-,过点D 向y 轴作垂线,垂足为点E .点P 为y 轴负半轴上的一个动点,连接DP 、设点P 的纵坐标为t ,DEP 的面积为S ,求S 关于t 的函数解析式(不要求写出自变量t 的取值范围);(3)如图2,在(2)的条件下,连接OA ,点F 在OA 上,过点F 向y 轴作垂线,垂足为点H ,连接DF 交y 轴于点G ,点G 为DF 的中点,过点A 作y 轴的平行线与过点P 所作的x 轴的平行线相交于点N ,连接CN ,PB ,延长PB 交AN 于点M ,点R 在PM 上,连接RN ,若35CP GE =,2PMN PDE CNR ∠+∠=∠,求直线RN 的解析式.哈尔滨市2022年初中升学考试数学试卷一、选择题(每小题3分,共计30分)1.16的相反数是()A.16 B.6- C.6 D.16-【答案】D【分析】根据相反数的定义选出正确选项.【详解】解:16的相反数是16-.故选:D .【点睛】本题考查相反数的定义,解题关键是掌握相反数的定义.2.下列运算一定正确的是()A.()22346a b a b = B.22434b b b += C.()246a a = D.339a a a ⋅=【答案】A【分析】根据积的乘方运算、幂的乘方运算、合并同类项运算和同底数幂的乘法运算逐项验证即可得到结论.【详解】解:A 、根据积的乘方运算、幂的乘方运算法则可知()22346a b a b =,该选项符合题意;B 、根据合并同类项运算可知2224344b b b b +=≠,该选项不符合题意;C 、根据幂的乘方运算可知()244286⨯==≠a a a a ,该选项不符合题意;D 、根据同底数幂的乘法运算可知333369a a a a a +⋅==≠,该选项不符合题意;故选:A .【点睛】本题考查整式的运算,涉及到积的乘方运算、幂的乘方运算、合并同类项运算和同底数幂的乘法运算等知识点,熟练掌握相关运算法则是解决问题的关键.3.下列图形中既是轴对称图形又是中心对称图形的是()A. B. C. D.【答案】B【分析】根据轴对称图形和中心对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;中心对称图形的定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心,进行逐一判断即可.【详解】解:A、是轴对称图形,不是中心对称图形,故此选项不符合题意;B、既是轴对称图形,也是中心对称图形,故此选项符合题意;C、是轴对称图形,不是中心对称图形,故此选项符合题意;D、是轴对称图形,不是中心对称图形,故此选项符合题意;故选B.【点睛】本题主要考查了中心对称图形和轴对称图形的识别,解题的关键在于能够熟练掌握二者的定义:4.六个大小相同的正方体搭成的几何体如图所示,其左视图是()A. B. C. D.【答案】D【分析】根据从左边看得到的图形是左视图,可得答案.【详解】解:从左边看下面一层是两个小正方形,上面一层左边一个小正方形,故选:D.【点睛】本题主要考查左视图,掌握三视图是解题的关键.5.抛物线22(9)3y x =+-的顶点坐标是()A.(9,3)- B.(9,3)-- C.(9,3) D.(9,3)-【答案】B【分析】根据二次函数的顶点式2()y a x h k =-+可得顶点坐标为(,)h k 即可得到结果.【详解】∵二次函数解析式为22(9)3y x =+-,∴顶点坐标为(9,3)--;故选:B .【点睛】本题主要考查了二次函数顶点式的顶点坐标的求解,准确理解是解题的关键.6.方程233x x =-的解为()A.3x = B.9x =- C.9x = D.3x =-【答案】C【分析】把分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:233x x=-去分母得:23(3)x x =-,去括号得:239x x =-,移项、合并同类项得:9x -=-,解得:x =9,经检验:x =9是原分式方程的解,故选:C .【点睛】本题考查了解分式方程,利用了转化的思想,解题的关键是解分式方程注意要检验,避免出现增根.7.如图,,AD BC 是O 的直径,点P 在BC 的延长线上,PA 与O 相切于点A ,连接BD ,若40P ∠=︒,则ADB ∠的度数为()A.65︒B.60︒C.50︒D.25︒【答案】A 【分析】由切线性质得出90PAO ∠=︒,根据三角形的内角和是180︒、对顶角相等求出50BOD AOP ∠=∠=︒,即可得出答案;【详解】解: PA 与⊙O 相切于点A ,AD 是⊙O 的直径,∴OA PA ⊥,∴90PAO ∠=︒,40P ∠=︒ ,∴50AOP ∠=︒,∴50BOD AOP ∠=∠=︒,OB OD = ,∴OBD ODB ∠=∠,∴()118050652ADB ∠=⨯︒-︒=︒,故选:A .【点睛】本题考查圆内求角的度数,涉及知识点:切线的性质、对顶角相等、等腰三角形的性质、三角形的内角和是180︒,解题关键根据切线性质推出90PAO ∠=︒.8.某种商品原来每件售价为150元,经过连续两次降价后,该种商品每件售价为96元,设平均每次降价的百分率为x ,根据随意,所列方程正确的是()A.()2150196x-= B.150(1)96x -= C.2150(1)96x -= D.150(12)96x -=【答案】C【分析】结合题意分析:第一次降价后的价格=原价×(1-降低的百分率),第二次降价后的价格=第一次降价后的价格×(1-降低的百分率),把相关数值代入即可.【详解】解:设平均每次降价的百分率为x ,根据题意可列方程150(1-x )2=96,故选:C .【点睛】本题考查了由实际问题抽象出一元二次方程的知识,解题的关键是能够分别表示出两次降价后的售价.9.如图,,,AB CD AC BD ∥相交于点E ,1,2,3AE EC DE ===,则BD 的长为()A.32B.4C.92 D.6【答案】C【分析】根据相似三角形对应边长成比例可求得BE 的长,即可求得BD 的长.【详解】∵//AB CD∴ABE CDE∽∴AE BE EC DE=∵1,2,3AE EC DE ===,∴32BE =∵BD BE ED=+∴92BD =故选:C .【点睛】本题考查了相似三角形的对应边长成比例,解题的关键在于找到对应边长.10.一辆汽车油箱中剩余的油量(L)y 与已行驶的路程(km)x 的对应关系如图所示,如果这辆汽车每千米的耗油量相同,当油箱中剩余的油量为35L 时,那么该汽车已行驶的路程为()A.150kmB.165kmC.125kmD.350km【答案】A 【分析】根据题意所述,设函数解析式为y =kx +b ,将(0,50)、(500,0)代入即可得出函数关系式.【详解】解:设函数解析式为y =kx +b ,将(0,50)、(500,0)代入得505000b k b =⎧⎨+=⎩解得:50110b k =⎧⎪⎨=-⎪⎩∴函数解析式为15010y x =-+当y =35时,代入解析式得:x =150故选A【点睛】本题考查了一次函数的简单应用,解答本题时要注意细心审题,利用自变量与因变量的关系进行解答.第Ⅱ卷非选择题(共90分)二、填空题(每小题3分,共计30分)11.风能是一种清洁能源,我国风能储量很大,仅陆地上风能储量效有253000兆瓦,用科学记数法表示为___________兆瓦.【答案】52.5310⨯【分析】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.分别确定a 和n 的值即可.【详解】5253000 2.5310=⨯故答案为52.5310⨯【点睛】本题考查了科学记数法的表示方法,科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数,确定a 和n 的值是解题的关键.12.在函数53x y x =+中,自变量x 的取值范围是___________.【答案】35x ≠-【分析】根据分式中分母不能等于零,列出不等式530x +≠,计算出自变量x 的范围即可.【详解】根据题意得:530x +≠∴53x ≠-∴35x ≠-故答案为:35x ≠-【点睛】本题考查了函数自变量的取值范围,分式有意义的条件,分母不为零,解答本题的关键是列出不等式并正确求解.13.计算+的结果是___________.【答案】【分析】先化简二次根式,再合并同类二次根式即可.++=故答案为:【点睛】本题考查了二次根式的加减,把二次根式化为最简二次根式是解题的关键.14.把多项式29mn m -分解因式的结果是______.【答案】()()33m n n +-【分析】先提公因式m 再按照平方差公式分解因式即可得到答案.【详解】解:29mn m-()29m n =-()()=+33.m n n -故答案为:()()+33.m n n -【点睛】本题考查的是提公因式与公式法分解因式的综合应用,掌握提公因式与平方差公式分解因式是解题的关键.15.不等式组340,421x x +≥⎧⎨-<-⎩的解集是___________.【答案】52x >【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集.【详解】340421x x +≥⎧⎨-<-⎩①②由①得34x ≥-,解得43x ≥-;由②得25x >,解得52x >;∴不等式组的解集为52x >.故答案为:52x >.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.16.已知反比例函数6y x=-的图象经过点()4,a ,则a 的值为___________.【答案】32-【分析】把点的坐标代入反比例函数解析式,求出a 的值即可.【详解】解:把点()4,a 代入6y x =-得:6342a =-=-.故答案为:32-.【点睛】本题考查了反比例函数图像上点的坐标特征,明确函数图像经过一个点,这个点的坐标就符合函数解析式是解题关键.17.在ABC 中,AD 为边BC 上的高,30ABC ∠=︒,20CAD ∠=︒,则BAC ∠是___________度.【答案】40或80##80或40【分析】根据题意,由于ABC 类型不确定,需分三种情况:高在三角形内部、高在三角形边上和高在三角形外部讨论求解.【详解】解:根据题意,分三种情况讨论:①高在三角形内部,如图所示:在ABD ∆中,AD 为边BC 上的高,30ABC ∠=︒,90903060BAD ABC ∴∠=︒-∠=︒-︒=︒,20CAD ∠=︒,602080BAC BAD CAD ∴∠=∠+∠=︒+︒=︒;②高在三角形边上,如图所示:可知0CAD ∠=︒,20CAD ∠=︒,故此种情况不存在,舍弃;③高在三角形外部,如图所示:在ABD ∆中,AD 为边BC 上的高,30ABC ∠=︒,90903060BAD ABC ∴∠=︒-∠=︒-︒=︒,20CAD ∠=︒,602040BAC BAD CAD ∴∠=∠-∠=︒-︒=︒;综上所述:80BAC ∠=︒或40︒,故答案为:40或80.【点睛】本题考查求角度问题,在没有图形的情况下,必须考虑清楚各种不同的情况,根据题意分情况讨论是解决问题的关键.18.同时抛掷两枚质地均匀的硬币,一枚硬币正面向上,一枚硬币反面向上的概率是_____.【答案】12【分析】用列表法与树状图法求解即可.【详解】解:用列表法列举出总共4种情况,分别为:正正、正反、反正、反反,其中一枚硬币正面向上,一枚硬币反面向上的情况为:正反、反正所以概率是2142=,故答案是12.【点睛】本题考查了求随机事件的概率,用到的知识点为:概率=所求情况数与总情况数之比.得到所求的情况数是解决本题的关键.19.一个扇形的面积为27πcm ,半径为6cm ,则此扇形的圆心角是___________度.【答案】70【分析】设扇形的圆心角是n ︒,根据扇形的面积公式即可得到一个关于n 的方程,解方程即可求解.【详解】解:设扇形的圆心角是n ︒,根据扇形的面积公式得:26π7π360n =解得n =70.故答案是:70.【点睛】此题主要考查扇形的面积公式,解题的关键是熟知扇形的面积公式的运用.20.如图,菱形ABCD 的对角线,AC BD 相交于点O ,点E 在OB 上,连接AE ,点F 为CD 的中点,连接OF ,若AE BE =,3OE =,4OA =,则线段OF 的长为___________.【答案】【分析】先根据菱形的性质找到Rt △AOE 和Rt △AOB ,然后利用勾股定理计算出菱形的边长BC 的长,再根据中位线性质,求出OF 的长.【详解】已知菱形ABCD ,对角线互相垂直平分,∴AC ⊥BD ,在Rt △AOE 中,∵OE =3,OA =4,∴根据勾股定理得5AE ==,∵AE =BE ,∴8OB AE OE =+=,在Rt △AOB 中AB ==,即菱形的边长为∵点F 为CD 的中点,点O 为DB 中点,∴12OF BC ==.故答案为【点睛】本题考查了菱形的性质、勾股定理、中位线的判定与性质;熟练掌握菱形性质,并能结合勾股定理、中位线的相关知识点灵活运用是解题的关键.三、解答题(其中21-22题各7分,23-24题各8分,25-27题各10分,共计60分)21.先化简,再求代数式21321211x x x x x -⎛⎫-÷ ⎪--+-⎝⎭的值,其中2cos 451x =︒+.【答案】11x -,2【分析】先根据分式的混合运算顺序和运算法则化简原式,再根据特殊角三角函数值求出x ,继而代入计算可得.【详解】解:原式22131(1)(1)2x x x x x ⎡⎤---=-⋅⎢⎥--⎣⎦2(1)(3)1(1)2x x x x ----=⋅-221(1)2x x -=⋅-11x =-∵2112x =⨯+=+∴原式22==.【点睛】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则以及特殊角三角函数值.22.如图,方格纸中每个小正方形的边长均为1,ABC 的顶点和线段EF 的端点均在小正方形的顶点上.(1)在方格纸中面出ADC ,使ADC 与ABC 关于直线AC 对称(点D 在小正方形的顶点上);(2)在方格纸中画出以线段EF 为一边的平行四边形EFGH (点G ,点H 均在小正方形的顶点上),且平行四边形EFGH 的面积为4.连接DH ,请直接写出线段DH 的长.【答案】(1)见解析(2)图见解析,5=DH 【分析】(1)根据轴对称的性质可得△ADC ;(2)利用平行四边形的性质即可画出图形,利用勾股定理可得DH 的长.【小问1详解】如图【小问2详解】如图,22345DH =+=【点睛】本题考查了作图,轴对称变换,平行四边形的性质,勾股定理等知识,准确画出图形是解题的关键.23.民海中学开展以“我最喜欢的健身活动”为主题的调查活动,围绕“在跑步类、球类、武术类、操舞类四类健身活动中,你最喜欢哪一类?(必选且只选一类)”的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的条形统计图,其中最喜欢操舞类的学生人数占所调查人数的25%.请你根据图中提供的信息解答下列问题:(1)在这次调查中,一共抽取了多少名学生?(2)请通过计算补全条形统计图;(3)若民海中学共有1600名学生,请你估计该中学最喜欢球类的学生共有多少名.【答案】(1)80(2)作图见解析(3)480【分析】(1)利用操舞类的人数以及操舞类学生所占调查人数的比例,可求出抽取的总人数.(2)根据总人数以及其他类学生的人数可计算出武术类学生人数,进而将统计图补充完整即可.(3)利用样本估计总体,先算出样本中喜欢球类学生所占的比例,再乘以总人数即可.【小问1详解】÷=(名)解:2025%80∴在这次调查中,一共抽取了80名学生.【小问2详解】---=(名)解:8016242020补全统计图如图【小问3详解】解:24160048080⨯=(名)∴估计该中学最喜欢球类的学生共有480名.【点睛】本题主要考查了条形统计图以及用样本估计总体,能够利用统计图获取重要信息是解决问题的关键.24.已知矩形ABCD 的对角线,AC BD 相交于点O ,点E 是边AD 上一点,连接,,BE CE OE ,且BE CE =.(1)如图1,求证:BEO CEO △≌△;(2)如图2,设BE 与AC 相交于点F ,CE 与BD 相交于点H ,过点D 作AC 的平行线交BE 的延长线于点G ,在不添加任何辅助线的情况下,请直接写出图2中的四个三角形(AEF 除外),使写出的每个三角形的面积都与AEF 的面积相等.【答案】(1)见解析(2)DEG △、DEH △、BFO V 、CHO【分析】(1)利用SSS 证明两个三角形全等即可;(2)先证明Rt △ABE ≌Rt △DCE 得到AE =DE ,则=AOE DOE S S △△,根据三线合一定理证明∴OE ⊥AD ,推出AB OE ∥,得到=AOE BOE S S △,即可证明=BFO AEF S S △△由BEO CEO △≌△,得到∠OBF =∠OCH ,=BOE COE S S △△,证明△BOF ≌△COH ,即可证明=BFO CHO AEF S S S =△△△,则=OEF OEH S S △△,即可推出DEH AEF S S =△△,最后证明AEF DEG ≌,即可得到=AEF DEG S S △△;【小问1详解】证明:∵四边形ABCD 是矩形,∴AC 与BD 相等且互相平分,∴OB OC =,∵BE CE =,OE OE =,∴BEO CEO △≌△(SSS );【小问2详解】解:∵四边形ABCD 是矩形,∴AB =CD ,∠BAE =∠CDE =90°,OA =OD =OB =OC ,又∵BE =CE ,∴Rt △ABE ≌Rt △DCE (HL )∴AE =DE ,∴=AOE DOE S S △△,∵OA =OD ,AE =DE ,∴OE ⊥AD ,∴AB OE ∥,∴=AOE BOE S S △,∴=AOE EOF BOE EOF S S S S --△△△△,∴=BFO AEF S S △△;∵BEO CEO △≌△,∴∠OBF =∠OCH ,=BOE COE S S △△,又∵∠BOF =∠COH ,OB =OC ,∴△BOF ≌△COH (ASA ),∴=BFO CHO AEF S S S =△△△,∴BOE BOF COE COH S S S S -=-△△△△,∴=OEF OEH S S △△,∴=AOE OEF DOE OEH S S S S --△△△△,∴DEH AEF S S =△△;∵AC DG ∥,∴∠AFE =∠DGE ,∠EAF =∠EDG ,又∵AE =DE ,∴()AEF DEG AAS △≌△,∴=AEF DEG S S △△;综上所述,DEG △、DEH △、BFO V 、CHO 这4个三角形的面积与△AEF 的面积相等.【点睛】本题主要考查了全等三角形的性质与判定,三线合一定理,矩形的性质,平行线的性质与判定等等,熟知全等三角形的性质与判定条件是解题的关键.25.绍云中学计划为绘画小组购买某种品牌的A 、B 两种型号的颜料,若购买1盒A 种型号的颜料和2盒B 种型号的颜料需用56元;若购买2盒A 种型号的颜料和1盒B 种型号的颜料需用64元.(1)求每盒A 种型号的颜料和每盒B 种型号的颜料各多少元;(2)绍云中学决定购买以上两种型号的颜料共200盒,总费用不超过3920元,那么该中学最多可以购买多少盒A 种型号的颜料?【答案】(1)每盒A 种型号的颜料24元,每盒B 种型号的颜料16元(2)该中学最多可以购买90盒A 种型号的颜料【分析】(1)设每盒A 种型号的颜料x 元,每盒B 种型号的颜料y 元,根据题意,可列出关于x ,y 的二元一次方程组,解之即可;(2)设该中学可以购买a 盒A 种型号的颜料,则可以购买(200)a -盒B 种型号的颜料,根据总费用不超过3920元,列出不等式求解即可.【小问1详解】解:设每盒A 种型号的颜料x 元,每盒B 种型号的颜料y 元.根据题意得256264x y x y +=⎧⎨+=⎩解得2416x y =⎧⎨=⎩∴每盒A 种型号的颜料24元,每盒B 种型号的颜料16元.【小问2详解】解:设该中学可以购买a 盒A 种型号的颜料,根据题意得2416(200)3920a a +-≤解得90a ≤∴该中学最多可以购买90盒A 种型号的颜料.【点睛】本题考查了二元一次方程组的应用、一元一次不等式的应用,关键是(1)根据题意找出对应关系,正确列出二元一次方程组;(2)根据数量关系正确列出一元一次不等式.26.已知CH 是O 的直径,点A ,点B 是O 上的两个点,连接,OA OB ,点D ,点E 分别是半径,OA OB 的中点,连接,,CD CE BH ,且2AOC CHB ∠=∠.(1)如图1,求证:ODC OEC ∠=∠;(2)如图2,延长CE 交BH 于点F ,若CD OA ⊥,求证:FC FH =;(3)如图3,在(2)的条件下,点G 是 BH上一点,连接,,,AG BG HG OF ,若:5:3AG BG =,2HG =,求OF 的长.【答案】(1)见解析(2)见解析(3)3OF =【分析】(1)根据SAS 证明COD COE ≅ 即可得到结论;(2)证明H ECO ∠=∠即可得出结论;(3)先证明OF CH ⊥,连接AH ,证明AH BH =,设5AG x =,3BG x =,在AG 上取点M ,使得AM BG =,连接MH ,证明MHG △为等边三角形,得2MG HG ==,根据AG AM MG =+可求出1x =,得5AG =,3BG =,过点H 作HN MG ⊥于点N ,求出HB =,再证2HF OF =,根据3HB OF ==【小问1详解】如图1.∵点D ,点E 分别是半径,OA OB 的中点∴12OD OA =,12OE OB =∵OA OB =,∴OD OE=∵2BOC CHB ∠=∠,2AOC CHB∠=∠∴AOC BOC∠=∠∵OC OC=∴COD COE ≅ ,∴CDO CEO ∠=∠;【小问2详解】如图2.∵CD OA ⊥,∴90CDO ∠=︒由(1)得90CEO CDO ∠=∠=︒,∴1sin 2OE OCE OC ∠==∴30OCE ∠=︒,∴9060COE OCE ∠=︒-∠=︒∵11603022H BOC ︒∠=∠=⨯=︒∴H ECO ∠=∠,∴FC FH=【小问3详解】如图3.∵CO OH =,∴OF CH⊥∴90FOH =︒∠连接AH .∵60AOC BOC ∠=∠=︒∴120AOH BOH ∠=∠=︒,∴AH BH =,60AGH ∠=︒∵:5:3AG BG =设5AG x =,∴3BG x=在AG 上取点M ,使得AM BG =,连接MH∵HAM HBG ∠=∠,∴HAM HBG△≌△∴MH GH =,∴MHG △为等边三角形∴2MG HG ==∵AG AM MG =+,∴532x x =+∴1x =,∴5AG =∴3BG AM ==,过点H 作HN MG ⊥于点N112122MN GM ==⨯=,sin 60HN HG =⋅︒=∴4AN MN AM =+=,∴HB HA ===∵90FOH =︒∠,30OHF ∠=︒,∴60OFH ∠=︒∵OB OH =,∴30BHO OBH ∠=∠=︒,∴30FOB OBF ∠=∠=︒∴OF BF =,在Rt OFH 中,30OHF ∠=︒,∴2HF OF=∴3HB BF HF OF =+==∴3OF =.【点睛】本题主要考查了圆周角定理,等边三角形的判定和性质,全等三角形的判定与性质,等腰三角形的性质,勾股定理以及解直角三角形等知识,正确作出辅助线构造全等三角形是解答本题的关键.27.在平面直角坐标系中,点O 为坐标原点,抛物线2y ax b =+经过点521,28A ⎛⎫⎪⎝⎭,点13,28B ⎛⎫- ⎪⎝⎭,与y 轴交于点C .(1)求a ,b 的值;(2)如图1,点D 在该抛物线上,点D 的横坐标为2-,过点D 向y 轴作垂线,垂足为点E .点P 为y轴负半轴上的一个动点,连接DP 、设点P 的纵坐标为t ,DEP 的面积为S ,求S 关于t 的函数解析式(不要求写出自变量t 的取值范围);(3)如图2,在(2)的条件下,连接OA ,点F 在OA 上,过点F 向y 轴作垂线,垂足为点H ,连接DF 交y 轴于点G ,点G 为DF 的中点,过点A 作y 轴的平行线与过点P 所作的x 轴的平行线相交于点N ,连接CN ,PB ,延长PB 交AN 于点M ,点R 在PM 上,连接RN ,若35CP GE =,2PMN PDE CNR ∠+∠=∠,求直线RN 的解析式.【答案】(1)1212a b ⎧=⎪⎪⎨⎪=-⎪⎩(2)32S t =-+(3)31124y x =-+【分析】(1)将521,28A ⎛⎫ ⎪⎝⎭,13,28B ⎛⎫- ⎪⎝⎭代入抛物线2y a b =+中,进行计算即可得;(2)由(1)得32,2D ⎛⎫- ⎪⎝⎭,根据DE y ⊥轴得2DE =,30,2E ⎛⎫ ⎪⎝⎭,根据点P 的纵坐标为t ,得32PE t =-,即可得;(3)过点C 作CK CN ⊥,交NR 的延长线于点K ,过点K 作KT y ⊥轴于点T ,根据二次函数的性质得10,2C ⎛⎫- ⎪⎝⎭,则12OC =,根据FH y ⊥轴,DE y ⊥轴得90FHG DEG ∠=∠=︒,根据点G 为DF 的中点得DG FG =,根据AAS 得FHG DEG △≌△,得2HF ED ==,12HG EG HE ==,再运用待定系数法求得直线OA 的解析式为2120y x =,得出21(2,10F ,可得13210GE HE ==,再由35CP GE =得出(0,1)P ,5(,1)2N -,再运用待定系数法求得直线BP 的解析式为514y x =-,进而推出PN DE MN EP =,证得PMN DPE △∽△,进而得出90PMN PDE ∠+∠=︒,由2PMN PDE CNR ∠+∠=∠得45CNR ∠=︒,用AAS 可证明CKT NCP ≌△△,求得1(,2)2K ,设直线RN 的解析式为:y ex f =+,再运用待定系数法即可得.【小问1详解】解:∵抛物线2y a b =+经过521,28A ⎛⎫ ⎪⎝⎭,13,28B ⎛⎫- ⎪⎝⎭,∴2125843184a b a b ⎧=+⎪⎪⎨⎪-=+⎪⎩,解得1212a b ⎧=⎪⎪⎨⎪=-⎪⎩,【小问2详解】解:由(1)得21122y x =-,点D 的横坐标为2-∴点D 纵坐标为32∴32,2D ⎛⎫- ⎪⎝⎭,∵DE y ⊥轴∴2DE =,30,2E ⎛⎫ ⎪⎝⎭∵点P 的纵坐标为t ,∴32PE t =-,∴113322222S DE PE t t ⎛⎫=⋅=⨯⨯-=-+ ⎪⎝⎭;【小问3详解】解:如图所示,过点C 作CK CN ⊥,交NR 的延长线于点K ,过点K 作KT y ⊥轴于点T ,∵21122y x =-,当0x =时,12y =-,∴10,2C ⎛⎫- ⎪⎝⎭,∴12OC =,∵FH y ⊥轴,DE y ⊥轴,∴90FHG DEG ∠=∠=︒,∵点G 为DF 的中点,∴DG FG =,在FHG △和DEG △中,FHG DEG HGF DEG FG DG ∠=∠⎧⎪∠=∠⎨⎪=⎩∴FHG DEG △≌△(AAS ),∴2HF ED ==,12HG EG HE ==,设直线OA 的解析式为:y kx =,将点521(,)28A 代入得,52128k =,解得,2120k =,∴直线OA 的解析式:2120y x =,当x =2时,212122010y =⨯=,∴21(2,10F ,21(0,)20H ,∴21331025HE =-=,∴113322510GE HE ==⨯=,∵35CP GE =,∴553133102CP GE ==⨯=,∴(0,1)P ,∵AN y ∥轴,PN x ∥轴,∴5(,1)2N -,∴52PN =,∵3(0,2E ,∴35(1)22EP =--=,设直线BP 的解析式为y mx n =+,则13281m n n ⎧+=-⎪⎨⎪=-⎩,解得,541m n ⎧=⎪⎨⎪=-⎩,∴直线BP 的解析式为:514y x =-,当52x =时,55171428y =⨯-=,∴点M 的坐标为517(,28,∴1725(1)88MN =--=,∵5422558PN MN ==,24552DE EP ==,∴PN DE MN EP=,∵90PNM DEP ∠=∠=︒,∴PMN DPE △∽△,∴PMN DPE ∠=∠,∵90DPE PDE ∠+∠=︒,∴90PMN PDE ∠+∠=︒,∵2PMN PDE CNR∠+∠=∠∴45CNR ∠=︒,∵CK CN ⊥,∴90NCK ∠=︒,∴CNK △是等腰直角三角形,∴CK =CN ,∵90CTK NPC ∠=∠=︒,∴90KCT CKT ∠+∠=︒,∵90NCP KCT ∠+∠=︒,∴CKT NCP ∠=∠,在CKT △和NCP 中,CTK NPC CKT NCP CK NC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴CKT NCP ≌△△(AAS ),∴52CT PN ==,12KT CP ==,∴2OT CT OC =-=,∴1(,2)2K ,设直线RN 的解析式为:y ex f =+,将点1(,2)2K ,5(,1)2N -得,122512e f e f ⎧+=⎪⎪⎨⎪+=-⎪⎩,解得,32114e f ⎧=-⎪⎪⎨⎪=⎪⎩,∴直线RN 的解析式为:31124y x =-+.【点睛】本题考查了二次函数,全等三角形的判定与性质,相似三角形的判定于性质,等腰直角三角形的判定与性质,解题的关键是掌握这些知识点,能够添加辅助线构造相似三角形或全等三角形.。
中考冲刺--初中毕业班综合测试(一)答题卡(数学)
![中考冲刺--初中毕业班综合测试(一)答题卡(数学)](https://img.taocdn.com/s3/m/ef577a1b866fb84ae45c8d2a.png)
注意事项: 1. 选择题作答必须用 2B 铅笔,修改时用塑 料橡皮擦干净。笔答题作答必须用黑色签 字笔填写,答题不得超出答题框。 2. 保持卡面清洁,不要折叠,不要弄破。
姓名:__________ 试室号:__________
南沙区教育发展中心制
22. (12 分)
23. (12 分)
l D C B
A
O
学校:_________ 24.(14 分)
姓名:__________ 试室号:__________
座位号:________
D
G
C
F H
A 图1
D1
E
B
G1 H1
C1
F1 E1 图2
A1 j
B1
D H A 图3 E B
考
座位号:________
号
一、选择题(每小题 3 分,共 30 分)
1 2 3 6 7 8
9 分) 4 二、填空题 (每小题 3 分,共 18 11. 5 12. 10 13.
14.
15.
16.
三、解答题(共 102 分) 17.(9 分)
数学答题卡第ຫໍສະໝຸດ 1 面/共 6 面南沙区教育发展中心制
请不要在此区域答题或书写
G F
C
数学答题卡 第 5 面/共 6 面
南沙区教育发展中心制
y C B D 1 O 1 A x
18.(9 分)
19.(10 分) 解:(1)
平均数 甲 乙 7 众数 方差 1.2 2.2
(2)
学校:_________ 20. (10 分)
姓名:__________ 试室号:__________
2024-2025学年度上学期九年级期初数学学业测评卷(含答案)
![2024-2025学年度上学期九年级期初数学学业测评卷(含答案)](https://img.taocdn.com/s3/m/391fb99bba4cf7ec4afe04a1b0717fd5360cb2dd.png)
C. 2 2 2
B. 4 2 2
D. 2 2
)
D. 3 2
3.(本题 3 分)已知点 2, y1 , 1, y2 , 1, y3 都在直线 y 3 x 2 上,则 y1 , y2 , y3 为的大小关系是(
A. y1 y2 y3
(2)若 ABC 30 , AB 8 ,求 BN 的长.
22.(本题 12 分)已知 A,B 两港口相距 150 海里,甲船从 A 港行驶到 B 港后,休息一段时间,速度不变,沿原航
线返回,同时,乙船从 A 港出发驶向 B 港,甲、乙两船离 A 港的距离 s(海里)与甲船行驶时间 t(小时)之间的
平行四边形 ABCD 的周长为 38,
1
AD AB 38 19 ,
2
四边形 AEFD 的周长 19 8 27 ,
故选:D.
5.B
解:过点 N 作 NH AC 于点 H ,如图所示,
根据尺规作图过程可知, AN 为 CAB 的平分线,
在矩形 ABCD 中, ÐB = 90° ,即 NB AB ,又 NH AC ,
2024-2025 学年度上学期育英学校九年级期初学业测评卷
学校:___________姓名:___________班级:___________考号:___________
一、单选题(共 30 分)
1.(本题 3 分)计算 2
A. 3
6 3 的结果是(
B. 2
)
C.2
2.(本题 3 分)已知 a b 2 1 , ab 1 ,则 a 2 ab b 2 的值是(
A.19
B.20
1990年福建省初中毕业班升学考试(中考会考)数学真题
![1990年福建省初中毕业班升学考试(中考会考)数学真题](https://img.taocdn.com/s3/m/f9be73b0941ea76e58fa048a.png)
1990年福建省初中毕业班升学、会考考试数学试题(分值∶120分,考试时间∶90分钟)一.填空题(每小题2分,共30分)1.-2.4的相反数是:2.比较两数的大小:-|-2|-(-2)3.已知∠a=32°18′,则∠a 的余角=,∠a 的补角=4.计算:-a 2x 4y 3÷(-axy 2)=5.任意多边形的外角和等于6.计算:(-3a 2)(5a 2-94a)=7.分解因式:x 3-6x 2+9x =8.计算:=9.计算:10.半径为R 的圆的内接正六边形的周长等于11.化简:x y1x y 1-+=12.弦AB 和CD 相交于⊙0内一点P,且AP=3,PB=5,PD=6,则PC=13.从一个小组中,抽测6名学生的身高状况,数据如下(单位:厘米cm):163.158.161.156.165.159,则样本平均数是(结果保留到个位)14.在Rt△ABC 中,∠C=90°,CD 是斜边上的高,AC=18.AD=12,则BD=15.△ABC 中,已知c=√2,∠C=45°,∠B=60°,则b=二、单项选择题(每小题3分,共18分)本题共有6个小题,每小题都有(A)、(B)、(C)、(D)四个答案,其中有一个且只有一个答案是正确的,请把你认为正确的答案选项的代号,写在题后的括号内,答对得3分,答错或答案超过一个的得0分。
1.下列各式计算正确的是:()2.函数y=√1-x的自变量x的取值范围是:()(A)x<1(B)x≤1(C)x≥1(D)x>13.不等式I x-5I<8的解集是:()(A)x<13(B)2>-3(C)-3<x<13(D)3<x<134.解方程组x2+y2=13的解是()x+y=55.已知等腰梯形中位线长9cm,上底长8cm,则下底长是()(A)10cm(B)17cm(C)8.5cm(D)以上答案都不对6.下列命题正确的是()(A)两条对角线相等的四边形是矩形。
数学初三毕业考试卷及答案
![数学初三毕业考试卷及答案](https://img.taocdn.com/s3/m/f7123bd8e43a580216fc700abb68a98271feac38.png)
一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √2B. πC. -1/3D. 0.1010010001...2. 若a > b,则下列不等式中正确的是()A. a + 2 > b + 2B. a - 2 < b - 2C. a 2 > b 2D. a / 2 < b / 23. 已知一元二次方程x^2 - 5x + 6 = 0,则该方程的解为()A. x = 2, x = 3B. x = 3, x = 2C. x = 1, x = 4D. x = 4, x = 14. 在平面直角坐标系中,点A(2,3)关于原点的对称点是()A.(-2,-3)B.(2,-3)C.(-2,3)D.(3,-2)5. 下列函数中,是反比例函数的是()A. y = 2x + 1B. y = 1/xC. y = x^2D. y = 3x6. 在梯形ABCD中,AD || BC,若AD = 4cm,BC = 6cm,AB = 3cm,CD = 5cm,则梯形ABCD的面积是()A. 12cm^2B. 15cm^2C. 18cm^2D. 20cm^27. 若等差数列的前三项分别是a,b,c,且a + b + c = 9,a + c = 6,则该数列的公差是()A. 1B. 2C. 3D. 48. 下列命题中,正确的是()A. 所有的实数都是有理数B. 所有的有理数都是整数C. 所有的整数都是自然数D. 所有的自然数都是整数9. 若等比数列的首项为a,公比为q,则第n项an =()A. a q^(n-1)B. a q^nC. a / q^(n-1)D. a / q^n10. 在三角形ABC中,角A、B、C的对边分别为a、b、c,若a = 5,b = 8,c = 10,则角A的余弦值cosA =()A. 1/2B. 1/3C. 2/3D. 3/4二、填空题(每题3分,共30分)11. 若x + y = 5,xy = 6,则x^2 + y^2 = _______。
初三毕业班数学试题及答案
![初三毕业班数学试题及答案](https://img.taocdn.com/s3/m/eaacc93859fafab069dc5022aaea998fcd224059.png)
初三毕业班数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 0.33333…(循环)B. πC. √2D. 1/3答案:C2. 如果一个二次方程的解为x1 = 2和x2 = -3,那么这个方程可以表示为:A. x^2 - 5x + 6 = 0B. x^2 + 5x - 6 = 0C. x^2 - 5x - 6 = 0D. x^2 + 5x + 6 = 0答案:A3. 一个圆的半径是5,那么它的面积是:A. 25πB. 50πC. 75πD. 100π答案:B4. 下列哪个表达式是正确的?A. (-2)^3 = -8B. (-2)^4 = 16C. (-2)^5 = 32D. (-2)^6 = -64答案:A5. 如果一个三角形的三边长分别为a、b、c,且满足a^2 + b^2 = c^2,那么这个三角形是:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不等边三角形答案:B6. 一个数的相反数是-5,这个数是:A. 5B. -5C. 0D. 10答案:A7. 一个多项式P(x) = x^3 - 6x^2 + 11x - 6,它的根是:A. x = 1, 2, 3B. x = 2, 3, 4C. x = -1, 2, 5D. x = 1, 3, 5答案:B8. 一个正方体的体积是27立方厘米,它的棱长是:A. 3厘米B. 6厘米C. 9厘米D. 12厘米答案:A9. 如果函数f(x) = 2x - 3,那么f(5)的值是:A. 7B. 10C. 12D. 14答案:A10. 下列哪个选项不能表示一个函数?A. y = x^2B. y = √xC. y = |x|D. y = x + 1/x答案:D二、填空题(每题2分,共20分)11. 一个数的平方根是2,这个数是________。
答案:412. 如果一个数的立方是-8,那么这个数是________。
答案:-213. 一个直角三角形的两条直角边分别是3和4,斜边的长度是________。
贵州省贵阳市南明区2022-2023学年九年级数学中考复习第一次综合模拟训练题(含答案)
![贵州省贵阳市南明区2022-2023学年九年级数学中考复习第一次综合模拟训练题(含答案)](https://img.taocdn.com/s3/m/69be20874128915f804d2b160b4e767f5acf809b.png)
贵州省贵阳市南明区2022-2023学年九年级数学中考复习第一次综合模拟训练题一、选择题:共36分.1.计算:﹣3+1的结果为()A.﹣4B.﹣2C.4D.22.下列几何体中,俯视图是长方形的是()A.B.C.D.3.在一个不透明的袋子里,有2个白球和2个红球,它们只有颜色上的区别,从袋子里随机摸出一个球记下颜色放回,再随机地摸出一个球,则两次都摸到白球的概率为()A.B.C.D.4.用一副三角板拼成如图所示的形状,使得两个三角形的直角边互相平行,则∠1与∠2相等的依据是()A.两直线平行,同位角相等B.两直线平行,内错角相等C.两直线平行,同旁内角互补D.对顶角相等5.当x=2时,下列二次根式没有意义的是()A.B.C.D.6.泰勒斯是古希腊时期的思想家,科学家,哲学家,他最早提出了命题的证明.泰勒斯曾通过测量同一时刻标杆的影长,标杆的高度,金字塔的影长,推算出金字塔的高度,这种测量原理,就是我们所学的()A.图形的平移B.图形的旋转C.图形的轴对称D.图形的相似7.如图,数轴上有A,B两个点,如果点C也在数轴上,且AC+BC=3,那么点C所在的位置可能在()A.点A左侧B.点A和点B之间C.点B右侧D.无法确定8.圆周率π是无限不循环小数.目前,超级计算机已计算出π的小数部分超过31.4万亿位.有学者发现,随着π小数部分位数的增加,0~9这10个数字出现的频率趋于稳定接近相同.从π的小数部分随机取出一个数字,估计数字是9的概率为()A.B.C.D.9.如图,在∠AOB中,以O为圆心,任意长为半径画弧,分别交OA,OB于点M,N,再分别以M,N为圆心,大于MN的长为半径画弧,两弧交于点P.过点P作PD∥OB,交OA于D.下列结论正确的是()A.PD=DOB.PD>DOC.PD<DOD.PD与DO的大小无法确定10.路程s,速度v,时间t三者之间的关系式为s=vt,当其中一个量是常量时,另外两个变量的函数图象不可能是()A.B.C.D.11.如图,四边形ABCD是菱形,对角线BD等于4,sin∠CBD,则AB的长是()A.2B.5C.D.12.如图,在平面直角坐标系中,二次函数y=ax2+bx+c(a>0)与x轴交于A(m,0),(m<0)B(n,0),e,f是方程ax2+(b+1)x+c=0的两个根,且e<f,则下列不等式正确的是()A.e<f<m<n B.e<m<n<f C.m<n<e<f D.e<m<f<n二、填空题:共12分.13.分式方程的解是.14.若关于x的一元二次方程x2+(m﹣1)x+2=0有两个不相等的实数根,则m的值可以是(写出一个值即可).15.“五一小长假”身高为1.6m的小星到一条平均水深为1m的小河游泳,小星在这条河里游泳,小星的行为是否一定没有危险.(填是或否)16.如图,一个长为6m的梯子斜靠在墙上,梯子的顶端在墙AB上滑动,随之梯子的底端也在地面AC上滑动.D是梯子的中点,平面内有一点E,且点E到AB,AC的距离分别是3m,2m,则点D与点E距离的最小值为.三、解答题:共72分17.古人喜欢使用几何图形直观地验证代数恒等式.那么如何构造图形来得到代数恒等式?(1)小红的作法是:作边长为(a+b)的正方形如图1所示,正方形被两条线分割成两个正方形和两个小长方形,由于面积不变,可以直观地发现恒等式为.(2)小星说:我还可以构造出边长为(a+b)的正方形如图2所示,内部有4个全等的小长形和1个小正方形,同样根据面积不变,可以直观地发现与(1)中不同恒等式为.(3)若a+b=7(a>b),图中一个小长方形的面积为10,利用图1,图2得到的等式,求a2+b2与(a﹣b)的值.18.如图,在▱ABCD中,点E在边CD上,CE=2ED,连接AE并延长交BC的延长线于点F交BD于点G.(1)写出图中的三对相似三角形,并选取其中一对三角形证明它们相似.(2)若EG=1,求EF的长.19.为增进学生对安全知识的了解,某校开展了两次知识问答活动,从中随机抽取了20名学生两次活动的成绩(百分制),并对数据(成绩)进行整理、描述和分析.如图是这20名学生第一次活动和第二次活动成绩情况统计图.(某一个点的横坐标代表第一次成绩,纵坐标代表第二次成绩)(1)①学生甲第一次成绩是85分,他两次活动的平均成绩是分;②学生乙第一次成绩低于80分,第二次成绩高于90分,请在图中用“〇”圈出代表乙的点.(2)为了解每位学生两次活动平均成绩的情况,A,B,C三人分别作出了每位学生两次活动平均成绩的频数分布直方图(数据分成6组:70≤x<75,75≤x<80,80≤x<85,85≤x<90,90≤x<95,95≤x<100):已知这三人中只有一人正确作出了统计图,则作图正确的是.(3)假设有1200名学生参加此次活动,估计两次活动平均成绩不低于90分的学生人数.20.如图,直线y=﹣x+b与x轴,y轴分别交于点A,B,与反比例函数的图象交于C,D两点,且点C的坐标为(3,1).(1)求出点D的坐标.(2)直接写出不等式的解集.21.“环保低碳”是现代社会提倡的主题.某咖啡店倡导顾客自备容器,对自备容器的顾客进行优惠活动,每个品种小杯都优惠2元/杯,大杯都优惠5元/杯.咖啡店部分点餐牌如图:(1)有顾客反馈,某种咖啡自备容器后大杯每毫升的价格比自备容器后小杯每毫升的价格高,请用你所学习的数学知识分析顾客反映的是哪种咖啡?(2)若想要让所有商品在自备容器后大杯每毫升价格都比小杯的便宜,则针对大杯自备容器顾客每杯至少优惠多少元?(取整数)22.数学课题研究小组针对所在城市住房窗户“如何设计遮阳篷”这一课题进行了探究,过程如下:【方案设计】要求设计的遮阳篷既能最大限度地遮住夏天炎热的阳光,又能最大限度地使冬天温暖的阳光射入室内.该数学课题研究小组通过调查研究,设计安装了如图1的遮阳篷,其中垂直于墙面AC的遮阳篷CD,AB表示窗户,BCD表示直角遮阳篷.【数据收集】如图,通过查阅相关资料和实际测量:夏至日这一天的正午时刻太阳光线DA与遮阳篷CD的夹角∠ADC 最大,且最大角∠ADC=75°;冬至日这一天的正午时刻,太阳光线DB与遮阳篷CD的夹角∠BDC最小,且最小角∠BDC=35°.【问题提出】(1)如图2,若只要求设计的遮阳篷能最大限度地遮住夏天炎热的阳光,当CD=1m时,求AC的长.(2)如图3,要求设计的遮阳篷能最大限度地遮住夏天炎热的阳光,又能最大限度地使冬天温暖的阳光射入室内.当AB=1.5m时,根据上述方案及数据,求遮阳篷CD的长.(结果精确到0.1m)(参考数据:sin75°≈0.97,cos75°≈0.26,tan75°≈3.73,sin35°≈0.57,cos35°≈0.83,tan35°≈0.7)23.如图,四边形ABCD内接于⊙O,AB为直径,过C作CE⊥AD,交AD的延长线于点E,AC平分∠EAB.(1)求证:CE是⊙O的切线.(2)连接OC,若OC=AD,求∠COB的度数.(3)在(2)的条件下,若AC=4,求图中阴影部分的面积.24.小红在学习了图形与几何后,探究了三角形边的关系问题,发现了三角形中的边与边之间存在一定的大小关系.(1)观察猜想如图1,在△ABC中,D为△ABC内一点,连接AD,BD.判断AC+BC与AD+BD的大小关系,即AC+BC AD+BD.(2)类比探究如图2,当D为△ABC外一点,且∠CAB>∠DAB,∠CBA>∠DBA时,(1)中大小关系仍然成立,写出这个关系式,并证明.(3)问题解决如图3,在△ABC中,D,E是AB的三等分点,判断AC+BC与CD+CE的大小关系,并说明理由.25.(1)阅读理解在代数学习中,我们时常会遇到含参数的式子.解决此类问题的常用方法,可以采用主元法.其路径是确定主元——分离主元——分析参数满足条件——列方程或不等式或函数求解.例:无论x取何值时,关于x 的方程mx+n=x+2恒成立,求m,n的值.此题解题策略:第一步:确定方程的主元为x,再分离主元,将方程变形为(m﹣1)x=2﹣n;第二步:分析参数满足条件为当m﹣1=0且2﹣n=0时方程恒成立;第三步:解得m=,n=.(2)迁移运用无论m取何值,函数y=(m+3)x﹣2m+1(m为常数,且m≠﹣3)的图象恒过一定点,求此定点的坐标.(3)拓展延伸无论m,n取何值,函数,y2=(n+1)x﹣3n﹣4(m,n为常数,且n≠﹣1)的图象都恒过一定点,求此定点的坐标;若0<x<3,总有y1>y2,求m﹣n的取值范围.参考答案一、选择题:共36分.1.解:﹣3+1=﹣2.故选:B.2.解:A、六棱柱的俯视图是六边形,故A选项不符合题意;B、圆锥的俯视图是带圆心的圆,故B选项不符合题意;C、长方体的俯视图是长方形,故C选项符合题意;D、五棱锥的俯视图是五边形,五边形内部有一点分别与五个顶点连接,故D选项不符合题意.故选:C.3.解:画树状图得:∵共有16种等可能的结果,两次都摸到白球的有4种情况,∴两次都摸到白球的概率为:.故选:C.4.解:∠1与∠2相等的依据是两直线平行,内错角相等,故选:B.5.解:当x=2时,,,,故选项A、B、C不符合题意;x﹣3=2﹣3=﹣1<0,即没有意义,选项D符合题意.故选:D.6.解:泰勒斯曾通过测量同一时刻标杆的影长,标杆的高度,金字塔的影长,推算出金字塔的高度,这种测量原理,就是我们所学的图形的相似,故选:D.7.解:由数轴可知:点A表示的数为﹣2,点B表示的数为1,∴AB=|﹣2﹣1|=3,∵AC+BC=3,∴点C一定在点A和点B之间,故选:B.8.解:∵随着π小数部分位数的增加,0~9这10个数字出现的频率趋于稳定接近相同,∴从π的小数部分随机取出一个数字共有10种等可能的结果,其中出现数字9的只有1种结果,∴P(数字是9).故选:A.9.解:由作图可知,∠DOP=∠BOP,∵PD∥OB,∴∠BOP=∠DPO,∴∠DOP=∠DPO,∴PD=DO;故选:A.10.解:当v是常量时,s是t的正比例函数,故A正确,当t是常量时,s也是v的正比例函数,故B正确,当S是常量时,v,s是t的反比例函数,故C正确,当t是常量,v•s,v是s的正比例函数,故D错误,故选:D.11.解:连接AC交BD于点O,∵四边形ABCD是菱形,对角线BD等于4,∴AB=CB,BD⊥AC,OB=OD BD=2,∴∠ABD=∠CBD,∠AOB=90°,∴sin∠ABD=sin∠CBD,∴OA AB,∴OB AB=2,∴AB,故选:C.12.解:ax2+(b+1)x+c=0,可化为ax2+bx+c=﹣x,∵e,f是方程ax2+(b+1)x+c=0的两个根,∴二次函数y=ax2+bx+c(a>0)与y=﹣x的交点横坐标分别为e,f,如图:C的横坐标为e,A的横坐标为m,D的横坐标为f,B的横坐标为n,∴e<m<f<n.故选:D.二、填空题:共12分.13.解:原方程去分母得:2x﹣3=0,移项,合并同类项得:2x=3,系数化为1得:x,经检验,x是分式方程的解,即原方程的解为:x,故答案为:x.14.解:∵关于x的一元二次方程x2+(m﹣1)x+2=0有两个不相等的实数根,∴Δ=(m﹣1)2﹣4×1×2>0,解得:m>1+2或x<1﹣2,取m=4,故答案为:4(不唯一).15.解:小星的行为是不一定没有危险,因为平均水深为1m是水深的平均水平,并不能说明具体各个地点的深度,可能各个地点的水深有很大的差异,如果有的地方水深超过1.6m,甚至更深,小星在这条河里游泳,就有危险,故答案为:否.16.解:连接ED、AD、AE,∵点E到AB,AC的距离分别是3m,2m,∴AE m,∵D是梯子的中点,∠BAC=90°,∴AD BF=3m,∵DE≥AE﹣AD,∴当E,D,A三点共线时DE最小,DE最为AE﹣AD=(3)m,∴点D与点E距离的最小值为(3)m.故答案为:(3)m.三、解答题:共72分17.解:(1)观察图1可得,(a+b)2=a2+2ab+b2,故答案为:(a+b)2=a2+2ab+b2;(2)观察图2可得,(a+b)2=4ab+(a﹣b)2,故答案为:(a+b)2=4ab+(a﹣b)2;(3)∵a+b=7,ab=10,∴(a+b)2=a2+2ab+b2,72=a2+b2+20,a2+b2=29,∴(a+b)2=4ab+(a﹣b)2,72=40+(a﹣b)2,(a﹣b)2=9,a﹣b=3.18.解:(1)△FEC∽△F AB,△ADG∽△FBG,△EDG∽△ABG,答案不唯一,选△FEC∽△F AB,证明:∵四边形ABCD是平行四边形,∴CE∥AB,∴∠FEC=∠F AB,∵∠F=∠F,∴△FEC∽△F AB;选△ADG∽△FBG,证明:∵四边形ABCD是平行四边形,∴DA∥FB,∴∠ADG=∠FBG,∵∠AGD=∠FGB,∴△ADG∽△FBG;选△DEG∽△BAG,证明:∵四边形ABCD是平行四边形,∴DE∥AB,∴∠EDG=∠ABG,∵∠DGE=∠BGA,∴△DEG∽△BAG;(2)∵△DEG∽△BAG,∴,∴,∴AG=3,∵△FEC∽△F AB,∴,∴,∴,∴EF=8.19.解:(1)①由统计图可以看出横坐标为85的直线上只有一个点,其纵坐标为90,因此这两次的平均分是(85+90)÷2=87.5,故答案为:87.5;②如图所示,符合题目要求的范围在直线x=80的左边,直线y=90以上,在图中圈出的就是所求,(2)由统计图可以看出,第一次成绩70≤x<75的点有5个,75≤x<80的点有2个,80≤x<85的点有1个,85≤x<90的点有2个,90≤x<95的点有4个,95≤x≤100的点有6个,第二次成绩70≤x<75的点有3个,75≤x<80的点有3个,80≤x<85的点有1个,85≤x<90的点有1个,90≤x<95的点有3个,95≤x≤100的点有8个,∴由图可知,只有一个两次成绩都是75分的平均成绩在75≤x<80内,∴B作图正确;故答案为:B;(3)1200600(人),故:估计两次活动平均成绩不低于90分的学生人数为600.20.解:(1)将点C(3,1)代入反比例函数,y=﹣x+b,∴1,1=﹣3+b,解得k=3,b=4,∴反比例的函数为y,一次函数的解析式为:y=﹣x+4;联立,解得或,∴D(1,3);(2)由图象可知,1<x<3.21.解:(1)摩卡:小杯每毫升价格为(元),大杯每毫升价格为(元);美式:小杯每毫升价格为(元),大杯每毫升价格为(元);∵,∴顾客反映的是美式咖啡;(2)设针对大杯自备容器顾客每杯优惠x元,根据题意得:,解得x>8,∵x为整数,∴x最小取9,答:针对大杯自备容器顾客每杯至少优惠9元.22.解:(1)如图1,在Rt△ACD中,∵∠ADC=75°,CD=1m,∴tan∠ADC 3.73,∴AC≈3.7m,∴AC的长为3.7m;(2)如图2,在Rt△BCD中,∵∠BDC=35°,∴tan∠BDC0.7,∴BC=0.7CD,在Rt△ADC中,∵∠ADC=75°,∴tan∠ADC 3.73,∴AC=3.73CD,∴AB=AC﹣BC=(3.73﹣0.7)CD=1.5,∴CD≈0.5m,∴遮阳篷CD的长为0.5m.23.(1)证明:如图,连接OC,∵AC平分∠EAB,∴∠EAC=∠CAB,又∵OC=OA,∴∠CAB=∠ACO,∴∠EAC=∠ACO,∴OC∥AE,∵∠AEC=90°,∴∠ECO=90°,∴OC⊥CE,又∵OC是半径,∴CE是⊙O切线;(2)解:如图,连接OC,OD.∵OC=AD,OC=OA=OD,∴OA=OD=AD,∴△OAD是等边三角形,∴∠DAB=60°,∵AC平分∠EAB,∴∠EAC=∠CAB=30°,∵AB为直径,∴∠ACB=90°,∴∠COB=60°;(3)解:如图,过C作CF⊥AB.∵∠COB=∠AOD=60°,∴∠COD=60°,∴BC=CD,∴弓形BC与弓形CD面积相等,∴S阴影=S△CDE,在Rt△ACF中,∠CAB=30°,AC=4,∴CF=2.又∵AC平分∠EAB,CF⊥AB,CE⊥AE,∴CE=CF=2.∵∠EDC=180°﹣∠ADO﹣∠CDO=60°,∴DE,∴S阴影=S△CDE DE•CE.24.解:(1)AC+BC>AD+BD,理由如下:如图1,延长AD交BC于点E,在△ACE中,AC+CE>AE,在△BDE中,BE+DE>BD,∴AC+CE+BE+DE>AE+BD,∴AC+CE+BE>AE﹣DE+BD,即AC+BC>AD+BD,故答案为:>;(2)(1)中大小关系仍然成立,AC+BC>AD+BD,证明如下:如图2,将△ABC沿AB折叠得到△ABE,延长AD交BE于点F,由折叠的性质得:AC=AE,BC=BE,在△AEF中,AE+EF>AF,在△BDF中,BF+DF>BD,∴AE+EF+BF+DF>AF+BD,∴AE+EF+BF>AF﹣DF+BD,即AE+BE>AD+BD,∴AC+BC>AD+BD;(3)AC+BC>CD+CE,理由如下:如图3,取AB的中点F,连接CF并延长至H,使得HF=CF,连接AH、DH,则AF=BF,在△AFH和△BFC中,,∴△AFH≌△BFC(SAS),∴AH=BC,∵D、E是AB的三等分点,F是AB的中点,∴DF=EF,在△DFH和△CFE中,,∴△DFH≌△CFE(SAS),∴DH=CE,同(1)得:AC+AH>CD+DH,∴AC+BC>CD+CE.25.解:(1)解m﹣1=0,得m=1,解2﹣n=0,得n=2.故答案为:1;2.(2)将函数关系式变形为y=(x﹣2)m+3x+1,当x﹣2=0时,函数值与m的取值无关,解得x=2.将x=2代入y=(x﹣2)m+3x+1,得y=7,∴函数图象恒过的定点坐标为(2,7).(3)将y1的函数关系式变形为,当x﹣3=0时,函数值与m的取值无关,解得x=3.将x=3代入,得y1=﹣1,∴函数y1的图象恒过的定点坐标为(3,﹣1).将y2的函数关系式变形为y2=(x﹣3)n+x﹣4,当x﹣3=0时,函数值与n的取值无关,解得x=3.将x=3代入y2=(x﹣3)n+x﹣4,得y2=﹣1,∴函数y2的图象恒过的定点坐标为(3,﹣1),即函数y1,y2的图象都恒过的定点坐标为(3,﹣1).∵函数y1,y2的图象都经过定点(3,﹣1),且0<x<3时,总有y1>y2,∴当x=0时,y1≥y2恒成立,即﹣3m+5≥﹣3n﹣4,∴m﹣n≤3.。
初三毕业中考试卷数学答案
![初三毕业中考试卷数学答案](https://img.taocdn.com/s3/m/5c92f77b182e453610661ed9ad51f01dc381575f.png)
---初三毕业中考数学试卷答案一、选择题(每题3分,共30分)1. 若一个数的平方根是2,则这个数是()A. 4B. -4C. 2D. -2答案:A2. 下列函数中,是反比例函数的是()A. y = x^2B. y = 2xC. y = 1/xD. y = x + 1答案:C3. 在直角坐标系中,点P(-3,2)关于x轴的对称点坐标是()A. (-3,-2)B. (3,2)C. (3,-2)D. (-3,2)答案:A4. 若a,b是方程x^2 - 3x + 2 = 0的两个实数根,则a+b的值是()A. 2B. 3C. 4D. 5答案:B5. 下列命题中,正确的是()A. 平行四边形的对角线互相平分B. 等腰三角形的底角相等C. 直角三角形的两条直角边相等D. 等边三角形的三个角都是直角答案:A6. 若一个等差数列的前三项分别为3,5,7,则该数列的公差是()A. 2B. 3C. 4D. 5答案:A7. 在锐角三角形ABC中,若∠A = 30°,∠B = 45°,则∠C的度数是()A. 60°B. 75°C. 90°D. 105°答案:B8. 下列不等式中,正确的是()A. 2x > 4B. 3x ≤ 6C. x ≥ 5D. x < 3答案:B9. 下列图形中,是轴对称图形的是()A. 正方形B. 长方形C. 平行四边形D. 梯形答案:A10. 若a,b是方程2x^2 - 5x + 3 = 0的两个实数根,则a^2 + b^2的值是()A. 4B. 9C. 16D. 25答案:B二、填空题(每题4分,共40分)11. 若|a| = 5,则a的值是__________。
12. 二项式(x + 2)^3展开式中x^2的系数是__________。
13. 在直角坐标系中,点A(2,3)到原点O的距离是__________。
14. 等差数列1,4,7,…的前10项和是__________。
2020—2021年人教版初中数学九年级下册毕业升学考试试题及答案(精品试题).docx
![2020—2021年人教版初中数学九年级下册毕业升学考试试题及答案(精品试题).docx](https://img.taocdn.com/s3/m/81802583700abb68a882fb07.png)
初中毕业生学业(升学)考试数学试卷注意事项:1. 所有试题均在答题卡上作答,并不得超过规定答题范围,否则视为无效。
2. 本试题卷共4页,满分150分,考试时间150分钟。
3. 选择题用2B 铅笔作答,其他试题用兰、黑墨水的钢笔或圆珠笔作答,作图用铅笔。
4. 考试结束后试卷和答题卡一并交回。
第I 卷一、单项选择题(每小题4分,共13小题,满分52分) 1.下列说法错误的是A .-2的相反数是2 B.3的倒数是31 C .(-3)-(-5)=2 D.-11, 0, 4这三个数中最小的数是02.在“青春脉动.畅想黔南校园青年歌手大赛”总决赛中,7位评委对某位选手平分为(单位:分)9, 8, 9, 7, 8, 9,7.这组数据的众数和中位数分别是 A.9、8 B.9、7 C.8、7 D.8、8 3.下列各数表示正确的是A.57000000=61057⨯ B. 0.0158(用四舍五入法精确到0.001)≈0.015 C.1.804(用四舍五入法精确到十分位)≈1.8 D.0.0000257=41057.2-⨯ 4.下列运算正确的是A .55a a a =⋅ B.357a a a =÷C.336)2(a a = D.232)5(10b ab ab -=-÷ 5. 如图所示,该几何体的左视图是DCB A6.下列说法错误的是 A. 若a ∥b,b ∥c, 则a ∥c B. 若∠1=∠2, 则b ∥c C. 若∠3=∠2, b ∥cD. 若∠3+∠5=180°,则a ∥c7.下列说法正确的是A.为了检测一批电池使用时间的长短,应该采用全面调查的方法 B .方差反映了一组数据的波动性大小,方差越大,波动越大 C.打开电视正在播放新闻节目是必然事件D.为了解某县初中学生的升高情况,从八年级学生中随机抽取50名学生作为总体的一个样本 8.函数x y -=3+41-x 的自变量x 的取值范围是 A.3≤x B.4≠x C. 3≥x 且4≠x D.3≤x 或4≠x9.如图,AB 是⊙O 的直径,CD 为弦,CD ⊥AB 且相较于点E,则下列结论中不成立的是A.∠A=∠DB.C. ∠ACB=90°D.∠COB=3∠D=CB BD (第6题)2cdc b a543110.同时抛掷2枚质地均匀的硬币,则下列事件发生的概率最大的是 A.两正面都朝上 B.两背面都朝上C.一个正面朝上,另一个反面朝上D.三种情况发生的概率一样大11.如图,直线l 外不重合的两点A 、B ,在直线l 上求作一点C ,使得AC+BC 的长度最短,作法为:①作点B 关于直线l 的对称点'B ; ②连接A 'B ,与直线l 相较于点C,则点C 为所求作的点,在解决这件问题时没有运用到的知识或思想方法是 A.转化思想 B.三角形的两边之和大于第三边C.两点之间,线段最短D.三角形的一个外角大于和它不相邻的任意一个内角,。
广东省广州市天河区天2021届初三毕业班综合测试九年级数学试卷
![广东省广州市天河区天2021届初三毕业班综合测试九年级数学试卷](https://img.taocdn.com/s3/m/4438d11a5fbfc77da369b1b6.png)
天河区2021届初三毕业班综合测试九年级数学(本试卷共三大题25小题,共4页,满分120分,考试时间120分钟。
)注意事项:1.答卷前,考生必须用黑色字迹的钢笔或签字笔将自己的姓名和考生号填写在答题卡相应的位置上,2.选择题每小题选出答案后,用2B铅笔把答题卡上对应的题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其它答案;不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔或涂改液。
不按以上要求作答的答案无效。
4.考生必须保持答题卡的整洁,考试结束后,将试卷和答题卡一并交回。
一、选择题(本题有10个小题,每小题3分,满分30分,每小题给出的四个选项中,只有一个是正确的。
)1.2021的相反数是()。
A.2021B.-2021C.±2021D.1 20212.下列选项的图形是用数学家名字命名的,其中是中心对称图形但不是轴对称图形的是()。
A.赵爽弦图B.笛卡尔心形线C.科克曲线D.斐波那契螺旋线3.人民网北京2021年1月7日电,截至1月3日6时,我国首次火星探测任务“天问一号”火星探测器已经在轨飞行约163天,飞行里程突破4亿公里,距离地球接近1.3亿公里,距离火星约830万公里.若对后两个数据中的一个用科学记数法表示,则正确的是()A.1.3×109公里B.13×108公里C. 8.3×106公里D. 8.3×105公里4.已知O与点P在同一平面内,如果O的直径为6,线段OP的长为4,则下列说法正确的是()A.点P在O上B.点P在O内C.点P在O外D.无法判断点P与O的位置关系5.下列运算正确的是( )。
A. (a +b )2=a 2+b 2B. 5a -a =5C. 2122a a a +=--D.(-2a 2b )3=-6a 6b 3 6.若方程x 2-c x +4=0有两个不相等的实数根,则c 的值不能是( )A.c=10B.c=5C. c=-5D. c=47.若分式2545x x x ---的值为0,则x 的值为( ) A.-5 B.5 C.-5和5 D.无法确定8.已知a =21-,b=21+,则a 2+b 2的值为( )A.8B.1C.6D. 429.二次函数y =ax 2+bx +c 的图象如图所示,反比例函数ab y x=与正比例函数y =(2a +c )x 在同一坐标系内的大致图象是( A. B. C. D.10.尺规作图特有的魅力曾使无数人沉湎其中,传说拿破仑通过下列尺规作图考他的大臣: ①将半径为r 的O 六等分,依次得到A ,B ,C ,D ,E ,F 六个分点;②分别以点A ,D 为圆心,AC 长为半径画弧,G 是两弧的一个交点;③连结OG.问:OG 的长是多少?大臣给出的正确答案应是( )。
2024年山东省青岛市九年级中考三模数学试题
![2024年山东省青岛市九年级中考三模数学试题](https://img.taocdn.com/s3/m/f56f77b0162ded630b1c59eef8c75fbfc67d9455.png)
2024年山东省青岛市九年级中考三模数学试题一、单选题1.下列用于证明勾股定理的图形中,是轴对称图形的是( )A .B .C .D . 2.爱达·魔都号,是中国第一艘国产大型邮轮,全长323.6米,总吨位为13.55万吨,可搭载乘客5246人.将13.55万用科学记数法表示为( )A .4135510⨯B .51.35510⨯C .41.35510⨯D .90.135510⨯ 3.中国古代数学名著《九章算术注》中记载:“邪解立方,得两堑堵.”意即把一长方体沿对角面一分为二,这相同的两块叫做“堑堵”.如图是“堑堵”的立体图形,它的俯视图为( )A .B .C .D .4.某校计划对教室进行多媒体安装改造,现安排两家公司共同完成.已知A 公司的工作效率是B 公司工作效率的1.2倍,B 公司安装30间教室比A 公司安装同样数量的教室多用2天.若设B 公司每天安装x 间教室,则可列方程为( )A .303021.2x x-= B .303021.2x x -= C .3063025x x ⨯-= D .6303025x x ⨯-= 5.如图,在直角坐标系中,一次函数12y x =-+的图象与反比例函数23y x=-的图象交于(1,3),(3,1)A B --两点,与y 轴、x 轴分别交于C ,D 两点,下列结论正确的是( )A .tan 2CDO ∠=B .AC BD CD +> C .当11x -<<时,12y y >D .连接,OA OB ,则AOC BOD S S =△△ 6.反比例函数(0)k y k x=≠在第二象限内的图象与一次函数y x b =+的图象如图所示.则函数3y bx k =+-的图象大致为( )A .B .C .D . 7.如图,在O e 中,直径AB 与弦CD 相交于点P ,连接AC ,AD ,BD ,若15C ∠=︒,40ADC ∠=︒,则BPC ∠的度数为( )A .50︒B .55°C .60︒D .65︒8.已知二次函数()20y ax bx c a =++<的图象与x 轴的一个交点坐标为()2,0-,对称轴为直线1x =,下列结论中:①0a b c -+>;②若点()13,y -,()22,y ,()36,y 均在该二次函数图象上,则132y y y <<;③方程210ax bx c +++=的两个实数根为12,x x ,且12x x <,则12x <-,24x >;④若m 为任意实数,则29am bm c a ++≤-.正确结论的序号为( )A .①②④B .①③④C .②③④D .①③9.1的绝对值是( )A .0B .1C .2D .7二、填空题10.南山植物园坐落在省级南山风景名胜区群山之中,与重庆主城区夹长江面峙,是一个以森林为基础;每到春季,上山赏花的人络绎不绝,开办了植物花卉门市;将A 、B 、C 三种花卉包装成“如沐春风”、“懵懂少女”、“粉色回忆”三种不同的礼盒进行销售;用A 花卉2支、B 花卉4支、C 种花卉10支包装成“如沐春风”礼盒;用A 花卉2支、B 花卉2支、C 种花卉4支包装成“懵懂少女”礼盒;用A 花卉2支、B 花卉3支、C 花卉6支包装成“粉色回忆”礼盒,且每支B 花卉的成本是每支C 花卉成本的4倍,每盒“如沐春风”礼盒的总成本是每盒“懵懂少女”礼盒总成本的2倍;该商家将三种礼盒均以利润率50%进行定价销售;某周末,该门市为了加大销量,将“如沐春风”、“懵懂少女”两种礼盒打八折进行销售,且两种礼盒的销量相同,“粉色回忆”礼盒打九折销售,三种礼盒的总成本恰好为总利润的4倍,则该周末“粉色回忆”礼盒的总利润与三种礼盒的总利润的比值为 .11.如图,在平面直角坐标系xOy 中,抛物线26y ax bx =+-与直线=1y x --交于A ,B 两点(点A 在x 轴上),与y 轴交于点C ,且90ABC ∠=︒,那么本抛物线的表达式为.12.如图,将长方形纸片沿EB ,CF 折叠成图1,使AB 与CD 在一条直线上,再沿BF 折叠成图2,使点D 落在点D '处,若39CEB ∠=︒,则BPF ∠的度数为︒.13.如图,矩形ABCD 中,点E 在BC 边上,且AE AD =,AE 平分BAD ∠.作D F AE ⊥于点F ,连接DE ,BF ,BF 的延长线交DE 于点O ,交CD 于点G .以下结论:①AF BE =;②20CDE ∠=︒;③12OF DE =;④若1AB =,则OB =(填写序号)14.已知2340x x --=,求值:223111x x x x +⎛⎫÷-- ⎪-+⎝⎭= 15.如图,在正方形ABCD 中,以BC 为直径作半圆O ,以D 为圆心,DA 为半径作»AC ,与半圆O 交于点P ,我们称:点P 为正方形ABCD 的一个“奇妙点”,过奇妙点的多条线段与正方形ABCD 无论是位置关系还是数量关系,都具有不少优美的性质值得探究.连接PA 、PB 、PC 、PD ,并延长PD 交AB 于点F .下列结论中:①FD FB BC =+;②135APC ∠=︒;③212PBC S AP =V ;④1tan 3BAP ∠=;其中正确的结论的序号为.三、解答题16.设计一个有关青岛旅游宣传的图案,使它既是中心对称图形,又是轴对称图形. 17.计算(1)解不等式组()11233151x x x x -⎧-≤⎪⎨⎪+<-⎩;(2)化简211x x x -++. 18.已知:以AB 为直径的O e 中,弦CD AB ⊥,垂足为E,CD =3AE =.(1)如图,求O e 的周长;(2)如图,P 为优弧CD 上一动点(不与A 、C 、D 三点重合),M 为半径OP 的中点,连接ME ,若MEO x ∠=︒,弧AP 的长为y ,求y 与x 之间的函数关系式,并写出x 的取值范围;(3)如图,在(2)的条件下,过点P 作PN CD ⊥于点N ,连接MN ,当t a n 2P N M ∠=-求PN 的长,并判断以OP 为直径的圆与直线ON 的位置关系.19.如图,抛物线215y x bx c =++与x 轴交于点()1,0A 和点B ,与y 轴交于点C 0,1 ,抛物线的对称轴交x 轴于点D .过点B 作直线l x ⊥轴,连接CD ,过点D 作DE CD ⊥,交直线l 于点E ,作直线CE .(1)求抛物线的函数表达式并直接写出直线CE 的函数表达式;(2)如图,点P 为抛物线上第二象限内的点,设点P 的横坐标为m ,连接BP 与CE 交于点Q ,当点Q 为线段BP 的中点时,求m ;(3)若点M 为x 轴上一个动点,点N 为抛物线上一动点,试判断是否存在这样的点M ,使得以点D ,E ,M ,N 为顶点的四边形是平行四边形,若存在,请直接写出点M 的坐标;若不存在,请说明理由.20.阅读以下信息,完成下列小题材料一:对数是高中数学必修一中的一个重要知识点,是高中运算的基础.材料二:对数的基本运算法则:对数公式是数学中的一种常见公式,如果x a N =(a >0,且1a ≠),则x 叫做以a 为底N 的对数,记做log a x N =,其中a 要写于log 右下.其中a 叫做对数的底,N 叫做真数.通常以10为底的对数叫做常用对数,记作lg ;以e 为底的对数称为自然对数,记作ln .(1)请把下列算式写成对数的形式:328=,3101000=,2416=(2)平方运算是对数运算的基础.完成下列运算:33=99=1212=(3)对数和我们在初中阶段学习的平方根的运算也有相似之处.请完成有关平方根的知识点的填空.平方根,又叫二次方根,表示为〔〕,其中属于的平方根称之为算术平方根(arithmeticsquareroot ),是一种方根.一个正数有个实平方根,它们互为,负数在范围内没有平方根,0的平方根是021.已知1y 是自变量x 的函数,当21y xy =时,称函数2y 为函数1y 的“升幂函数”.在平面直角坐标系中,对于函数1y 图象上任意一点(,)A m n ,称点(,)B m mn 为点A “关于1y 的升幂点”,点B 在函数1y 的“升幂函数”2y 的图象上.例如:函数12y x =,当22122y xy x x x ==⋅=时,则函数222y x =是函数12y x =的“升幂函数”.在平面直角坐标系中,函数12y x =的图象上任意一点(,2)A m m ,点()2,2B m m 为点A “关于1y 的升幂点”,点B 在函数12y x =的“升幂函数”222y x =的图象上.(1)求函数112y x =的“升幂函数”2y 的函数表达式; (2)如图1,点A 在函数13(0)y x x=>的图象上,点A “关于1y 的升幂点”B 在点A 上方,当2AB =时,求点A 的坐标;(3)点A 在函数14y x =-+的图象上,点A “关于1y 的升幂点”为点B ,设点A 的横坐标为m .①若点B 与点A 重合,求m 的值;②若点B 在点A 的上方,过点B 作x 轴的平行线,与函数1y 的“升幂函数”2y 的图象相交于点C ,以AB ,BC 为邻边构造矩形ABCD ,设矩形ABCD 的周长为y ,求y 关于m 的函数表达式;③在②的条件下,当直线1y t =与函数y 的图象的交点有3个时,从左到右依次记为E ,F ,G ,当直线2y t =与函数y 的图象的交点有2个时,从左到右依次记为M ,N ,若EF M N =,请直接写出....21t t -的值. 22.在平行四边形ABCD 中,4AB =,45ABC ∠=︒,将ABC V 沿对角线AC 翻折,点B 的对应点为点E ,线段EC 与边AD 交于点F .(1)如图1,30ACB ∠=︒,求FCD ∠的度数;(2)若CDF V 是以CF 为腰的等腰三角形,求线段BC 的长;(3)如图2,连接BE ,CA 的延长线交BE 于点N ,BA 的延长线交EC 于点M ,当点M 至BC 的距离最小值时,求出此时BCN △的面积.23.阅读材料,完成下列小题.集合,简称集,是数学中一个基本概念,也是集合论的主要研究对象.集合论的基本理论创立于19世纪,关于集合的最简单的说法就是在朴素集合论(最原始的集合论)中的定义,即集合是“确定的一堆东西”,集合里的“东西”则称为元素.现代的集合一般被定义为:由一个或多个确定的元素所构成的整体.我们把这个抽象的概念具体化:关于1+1=这个算式答案的集合,我们表示为{2}.交集指的是两个集合的共同部分,用“∩”表示;比如“小于4大于1的实数”这个集合与“小于5大于2的实数”的交集就是{3}并集指的是把两个集合合并在一起,用“∪”表示;比如“小于4大于1的实数”这个集合与“小于5大于2的实数”的并集就是{4,3,2}【开胃小菜】请表示不等式组23789x x x x⎧>⎪⎨⎪-<⎩的解集.【拓展延伸】集合论在离散数学中有着非常重要的地位.对于非空集合A 和B ,定义和集{},A B a b a A b B +=+∈∈,用符号()d A B +表示和集A B +内的元素个数.(1)已知集合{}1,3,5A =,{}1,2,6B =,{}1,2,6,C x =,若A B A C +=+,求x 的值;(2)记集合{}1,2,,n A n =L,,n B =L ,n n n C A B =+,n a 为n C 中所有元素之和,n是正整数,求证:12121)nn a a a +++<L ; (3)若A 与B 都是由()*3,m m m ≥∈N 个整数构成的集合,且()21d A B m +=-,证明:若按一定顺序排列,集合A 与B 中的元素是两个公差相等的等差数列.【知识卡片】“∈”的意思是属于,*N 的意思是正整数.。
2024—2025学年度第一学期期中学业质量检测九年级数学试题
![2024—2025学年度第一学期期中学业质量检测九年级数学试题](https://img.taocdn.com/s3/m/3ccf93f7dbef5ef7ba0d4a7302768e9951e76ef0.png)
2024—2025学年度第一学期期中学业质量检测九年级数学试题(满分分值:150分考试时间:120分钟)一、选择题(本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填写在答题卡相应位置上........)1.下列方程中,是关于x 的一元二次方程的是(▲)A.2x=72.下列图形中,既是中心对称图形、又是轴对称图形的是(▲)3.O 是ABC ∆的内切圆,则点O 是ABC ∆的()A.三条边的垂直平分线的交点B.三条中线的交点C.三条角平分线的交点D.三条高的交点4.已知O 的半径为3,点P 在O 外,则OP 的长可以是()A.1B.2C.3D.45.习近平总书记强调:“青年一代有理想、有本领、有担当,国家就有前途,民族就有希望”.如图①是一块弘扬“新时代青年励志奋斗”的扇面宣传展板,该展板的部分示意图如图②所示,它是以O 为圆心,OA ,OB 长分别为半径,圆心角120O ∠=︒形成的扇面,若3OA m =, 1.5OB m =,则阴影部分的面积为()A.294m πB.23m C.2174m πD.253m π6.如图,在长为100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644平方米,则道路的宽应为多少米?设道路的宽为x 米,则可列方程为()A.10080100807644x x ⨯--=B.2(100)(80)7644x x x --+=C.(100)(80)7644x x --=D.10080356x x +=7.如图,在ABC ∆中,90C ∠=︒,25B ∠=︒.若以点C 为圆心,CA 长为半径的圆与AB 交于点D ,则 AD 的度数为()A.25︒B.50︒C.60︒D.65︒8.有两个一元二次方程:2:0A ax bx c ++=,2:0B cx bx a ++=,其中a-c≠0,下列四个结论中,错误的是()A.如果方程A 有两个不相等的实数根,那么方程B 也有两个不相等的实数根;B.如果方程A 两根符号相同,那么方程B 的两根符号也相同;C.如果2是方程A 的一个根,那么12是方程B 的一个根D.如果方程A 和方程B 有一个相同的根,那么这个根必是1.二、填空题(本大题共10小题,每小题3分,共30分.不需要写出解答过程,只需把答案直接填写在答题卡相应位置.......上)9.写出一个解为2的一元二次方程:▲.10.已知圆锥的底面半径是1cm ,母线长为3cm ,则该圆锥的侧面积为2cm .11.如图,四边形ABCD 内接于O ,110A ∠=︒,则C ∠=︒,依据是.12.如图,点A ,B ,C 在O 上,54BAC ∠=︒,则BOC ∠的度数为.13.如图,一个宽为2厘米的刻度尺(刻度单位:厘米),放在圆形玻璃杯的杯口上,刻度尺的一边与杯口外沿相切,另一边与杯口外沿两个交点处的读数恰好是3和9,那么玻璃杯的杯口外沿半径为厘米.14.某药品由原售价连续两次降价,每次下降的百分率相同,每瓶零售价由150元降为96元,那么下降的百分率是.15.如图,点O 是正五边形ABCDE 的中心,连接BD 、OD ,则BDO ∠=︒.16.若x m =是一元二次方程2310x x ++=的一个解,则22023412m m --的值为.17.如图,点A ,B ,C 在O 上,90AOC ∠=︒,AB =,1BC =,则O 的半径为.18.如图,在平面直角坐标系xOy 中,O 的半径是1.过O 上一点P 作等边三角形PDE ,使点D ,E 分别落在x 轴、y 轴上,则PD 的取值范围是.三、解答题(本大题共9小题,共96分.请在答题卡上指定区域内作答.解答时写出必要的文字说明、证明过程或演算步骤...............)19.(本题满分8分)解方程:20.关于x 的方程22(2)0x m x m +++=.(1)求证:方程总有两个实数根;(2)请你选择一个合适的m 的值,使得方程的两个根都是整数,并求此时方程的根.21.已知ABC∆在平面直角坐标系中位置如图.(1)利用格点画出ABC,并写出圆心P的坐标为.∆的外接圆P(2)画出ABC∆绕点C按顺时针方向旋转90︒后的△A B C'';(3)求(2)中点A旋转到点A'所经过的路线长(结果保留)π.22.如图,在ABC∠=︒.∆中,90BAC(1)请你画一个半圆使得圆心O在边BC上,并与AB、AC都相切(保留画图痕迹);(2)已知4AB=,3AC=,求(1)中所画圆的半径.23.如图,在Rt ABC∠=︒,BD是角平分线,以点D为圆心,DA为半径的D与AC相交BAC∆中,90于点E(1)求证:BC是D的切线;(2)若5BC=,求CE的长.AB=,1324.某水果商场销售一种高档水果,若每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下商场决定采取适当的涨价措施,若每千克涨价1元,日销售量将减少20千克,(1)若每千克涨价2元,则每天可售▲千克.(直接写出答案);(2)现该商场要保证这种水果每天盈利6000元,且尽可能减轻顾客负担,那么每千克应涨价多少元?(3)商场每天能盈利7000元吗?为什么?(4)请直接写出商场这种水果每天盈利的最大值为▲元.25.“转化”是一种重要的数学思想,回顾我们学过的各类方程的解法:解二元一次方程组,把它利用消元法转化为一元一次方程;解一元二次方程,利用直接开平方法或因式分解法,将它转化为解两个一元一次方程;解分式方程,利用去分母的方法,将它转化为整式方程,由于“去分母”可能产生增根,所以解分式方程必须检验,用“转化”的数学思想,我们还可以解一些新的方程,例如:=2解:方程两边同时平方,得:14x+=,解这个一元一次方程,得:3x=,检验:当3===右边,x=时,左边2所以,3x=是原方程的解.通过“方程两边平方”,有可能产生增根,必须对解得的根进行检验.通过上面的学习,请解决以下两个问题:(1x=;(2)如图,在平面直角坐标系xOy中,点(5,3)B,90OC BC+=,求点C的坐标.∠=∠=︒,7OAB B26.由两个全等的Rt△ABE 和构成如图①所示的四边形ABCD,已知直角三角形的直角边长分别为m、n,斜边长为q.分别以m、q、n 为二次项系数、一次项系数和常数项构造的一元二次方程称为勾股方程.(1)方程(填“是”或“不是”)“勾股方程”;(2)若勾股方程20mx n ++=有两个相等的实数根,求m q 的值.27.某数学活动小组对一个数学问题作如下探究:(1)【问题发现】如图①,正方形ABCD的四个顶点在⊙O上,点E在AB上,连接AE、BE、DE,若在DE上取一点F,使得DF=BE,连接AF,发现与△ABE全等,请说明理由;(2)【变式探究】如图②,正方形ABCD的四个顶点在⊙O上,若点E在AD上,过点A作AG⊥BE,探究线段BE、DE、AG间的数量关系,并说明理由;(3)【结论运用】如图③,在Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=4.点D为AB边上一动点,连接CD,点E为CD边上一动点,连接BE,以BE为边,在BE右侧作等边△BEF,连接CF.当点D从AB的四等分点(靠近点B)出发,向终点A运动,同时,点E从点D 出发,向终点C运动,运动过程中,始终保持∠BEC=90°,则CF的最小值为▲,点F所经过的路径长为▲.(直接写出结果)。
山东省菏泽市鄄城县2024届九年级下学期中考三模数学试卷(含答案)
![山东省菏泽市鄄城县2024届九年级下学期中考三模数学试卷(含答案)](https://img.taocdn.com/s3/m/758bf48bc0c708a1284ac850ad02de80d5d8061b.png)
2023-2024学年度第三次质量监测九年级数学试题时间:120分钟总分120分一、选择题(本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是正确的,请把最后结果填在答题卡的相应位置)1.如图所示,实数a,b在数轴上的位置,那么化简的结果是()A.B.C.D.2.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.下列各式计算正确的是()A.B.C.D.4.如图,直线a∥b,将含30°角的直角三角板ABC(∠ABC=30°)按图中位置摆放,若∠1=110°,则∠2的度数为()A.30°B.40°C.36°D.50°5.实数a,b在数轴上对应点的位置如图所示,下列结论正确的是()A.B.C.D.6.如图为某品牌椅子的侧面图,若∠DEF=120°,DE与地面AB平行,∠ACB=70°,则∠ABC的度数为()A.50°B.60°C.65°D.70°7.若分式运算结果为x,则在“□”中添加的运算符号为()A.+B.-C.+或×D.-或÷8.如图,AB是⊙O的直径,点D是的中点,∠A=40°,则∠ACD的度数是()A.40°B.25°C.40°D.30°9.已知点,,在同一个函数图象上,则这个函数的图象可能是()A.B.C.D.10.已知某几何体的三视图如图所示,则该几何体的侧面展开图的面积为()A.B.C.D.二、填空题(共6小题,每小题3分,共18分,把结果填在答题卡相应区域内)11.若实数x满足,则代数式的值为 .12.若关于x的一元二次方程有两个不相等的实数根,则k的取值范围是 .13.如图,将弧长为,圆心角为120°的扇形纸片AOB围成圆锥形纸帽,使扇形的两条半径OA与OB 重合(粘连部分忽略不计),则圆锥形纸帽的高是 .14.如图,Rt△ABC中,∠ACB=90°,AC=4,BC=6,点D在BC上,延长BC至点E,使,F是AD的中点,连接EF,则EF的长是 .第14题图15.已知:如图,⊙A的圆心为,半径为2,OP切⊙A于P点,则阴影部分的面积为 .第15题图16.已知一组数据为:10;8,10,10,7,则这组数据的方差是 .三、解答题(本题共72分,把解答或证明过程写在答题卡的相应区域内)17.(每小题4分,共8分)(1)解方程:(2)解不等式组18.(本题满分8分)四五月份春夏之交,正值我区冬小麦浇灌拔穗的关键时期.某种粮大户计划安排甲乙两台水泵灌溉小麦,若只让甲水泵开机,可在规定时间内灌溉完成,若只让乙水泵开机,则比规定时间晚4天完成灌溉任务.若两台水泵同时开机3天,剩下的由乙水泵单独开机工作,也能按规定的时间完成灌溉任务.若甲水泵单独开机完成灌溉任务需要1920元,乙水泵单独开机完成灌溉任务需要2240元.求甲乙两台水泵单独工作一天各需要多少元钱?19.(本题满分8分)小明准备利用所学的知识测量旗杆AB的高度.他设计了如下的测量方案:选取一个合适观测点,在地面C 处垂直地面竖立高度为2米的标杆CD,小明调整自己的位置到F处,使得视线与D、B在同一直线上,此时测得CF=1米,然后小明从点F沿着FC方向前进11米到G处,利用随身携带的等腰直角三角尺测得视线HB与水平面的夹角∠BHP=45°,已知小明眼睛到地面距离为1.5米(EF=GH=1.5米),点F、C、G、A在一条直线上,EF⊥AF,DC⊥AF,HG⊥AF,BA⊥AF.请计算旗杆AB的高度.第19题图20.(本题满分8分)学习一定要讲究方法,比如有效的预习可大幅提高听课效率.九年级(1)班学习兴趣小组为了了解全校九年级学生的预习情况,对该校九年级学生每天的课前预习时间(单位:min)进行了抽样调查.并将抽查得到的数据分成5组,下面是未完成的频数、频率分布表和频数分布扇形图.组别课前预习时间t/min频数(人数)频率10≤t<102210≤t<20a0.10320≤t<30160.32430≤t<40b c5t≥403第20题图请根据图表中的信息,回答下列问题:(1)本次调查的样本容量为,表中的a=,b=,c=;(2)试计算第4组人数所对应的扇形圆心角的度数;(3)该校九年级其有1000名学生,请估计这些学生中每天课前预习时间不少于20min的学生人数.21.(本题满分9分)如图,一次函数的图象与反比例函数的图象相交于A,B两点,与,轴的正半轴相交于点C,与轴的负半轴交于点D,,.第21题图(1)求反比例的表达式;(2)若点A的横坐标为,求△AOC的面积.22.(本题满分9分)如图,以△ABC的边AB为直径的半圆O分别交BC,AC于点D,,过点D作DF⊥AC于点F.第22题图(1)求证:DF是⊙O的切线;(2)若AB=10,BC=12,求DF和AE的长.23.(本题满分10分)在Rt△ABC中,∠BAC=90°,AB=AC,点D在边BC上,DE⊥DA且DE=DA,AE交边BC于点F,连接CE.(1)如图(1),当AD=AF时,第23题图(1)①求证:BD=CF;②求∠ACE的度数.(2)如图(2),若CD=8,DF=5,求AE的长.第23题图(2)24.(本题满分12分)如图,在平面直角坐标系xOy中,二次函数的图象经过点,,与y轴交于点C,连接BC、AC.第24题图(1)求二次函数的函数表达式;(2)设二次函数的图象的顶点为D,求直线BD的函数表达式以及的值;(3)若点M在线段AB上(不与A、B重合),点N在线段BC上(不与B、C重合),是否存在△CMN与△AOC相似,若存在,请直接写出点N的坐标,若不存在,请说明理由。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中毕业班综合测试(一)
数学试题
本试卷分选择题和非选择题两部分,共三大题25小题,满分150分.考试时间为120分钟.
注意事项:
1.答卷前,考生务必在答题卡第1页上用黑色字迹的钢笔或签字笔填写自己的学校、班级、姓名、试室号、座位号、准考证号,再用2B铅笔把准考证号对应的号码标号涂黑.
2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号;不能答在试卷上.
3.非选择题必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B铅笔画图.答案必须写在答题卡各题目指定区域内的相应位置上;如需要改动,先划掉原来的答案,然后再写上新的答案;改动的答案也不能超出指定的区域.不准使用铅笔、圆珠笔和涂改液.不按以上要求作答的答案无效.
4.考生必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回.
第一部分选择题(共30分)
一、选择题(本大题共10小题,每小题3分,满分30分.在每小题给出的四个选项中,
只有一项是符合题目要求的)
1.数据3,1,5,2,7,2的极差是(*)
(A)2(B)7(C)6(D)5
2.单项式-2
2x y的系数为(*)
(A)2(B)-2(C)3(D)-3
3.不等式组
260
20
x
x
-<
⎧
⎨
+≥
⎩
的解集是(*)
(A)x>3(B)-2≤x<3(C)x≥-2(D)-2<x≤34.一个多边形的内角和与它的外角和相等,则这个多边形的边数为(*)
(A)4(B)5(C)6(D)7
5.如图1,△ABC中,∠C=90°,∠A的正切是(*)
(A)BC
AB
(B)
BC
AC
(C)
AC
BC
(D)
AC
AB
6.已知两条线段的长度分别为2cm、8cm,下列能与它们构成三角形的线段长度为(*)(A)4cm(B)6cm(C)8cm(D)10cm
7.64的算术平方根与64的立方根的差是(*)
(A)-12(B)±8(C)±4(D)4
8.如图2,⊙O是△ABC的外接圆,∠A=50°,则∠OBC的度数等于(*)(A)50°(B)40°(C)45°(D)100°
9.如图3,梯形ABCD中,AD∥BC,AC、BD交于点O,AD=1,BC=3,
则S△AOD︰S△BOC等于(*)
(A)1︰2 (B)1︰3 (C)4︰9 (D)1︰9
10.若一次函数y =kx +b ,当x 的值增大1时,y 值减小3,则当x 的值减小3时,
y 值(*)
(A)增大3 (B)减小3 (C)增大9 ( D)减小9
第二部分 非选择题(共120分)
二、填空题(本大题共6小题,每小题3分,满分18分)
11.已知∠α=50°,则∠α的余角的度数为 * °. 12.不等式-26x >的解集为 * .
13.点P (-2,1)关于原点对称的点P '的坐标为 * .
14.在一次数学测验中,某学习小组的六位同学的分数分别是54,85,92,73,
61,85.这组数据的平均数是 * ,众数是 * ,中位数是 * .
15.计算并化简式子2
224()22y x x x x y y y
⋅-÷的结果为 * .
16.如图4,»
AD 是以边长为6的等边△ABC一边AB为半径的四分之一圆周,P为»
AD 上一动点.当BP经过弦AD的中点E时,四边形ACBE的周长为 * (结果用根号表示).
三、解答题(本大题共9小题,满分102分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分9分)
O
C B A
图2
图1 C
B A O
D
C
B A 图3 图4
B
C P D
A
·
解方程组:324
35
x y x y +=⎧⎨
-=⎩.
18.(本小题满分9分)
已知,如图5,E、F分别为矩形ABCD的边AD和BC上的点,AE=CF. 求证:BE=DF.
19.(本小题满分10分) 先化简,再求值:2
(2)(3)(3)x x x +-+-,其中x =-
3
2
.
20.(本小题满分10分)
如图6,等腰△OAB的顶角∠AOB=30°,点B在x 轴上,腰OA=4.
(1)B点的坐标为: ;
(2)画出△OAB关于y 轴对称的图形△OA1B1(不
写画法,保留画图痕迹),求出A1与B1的坐标; (3)求出经过A1点的反比例函数解析式.
(注:若涉及无理数,请用根号表示) 21.(本小题满分12分)
在-2,-3,4这三个数中任选2个数分别作为点P的横坐标和纵坐标. (1)可得到的点的个数为 ;
(2)求过P点的正比例函数图象经过第二、四象限的概率(用树形图或列表法求解); (3)过点P的正比例函数中,函数y 随自变量x 的增大而增大的概率为 .
22.(本小题满分11分)
在同一间中学就读的李浩与王真是两邻居,平时他们一起骑自行车上学.清明节后的一天,李浩因有事,比王真迟了10分钟出发,为了能赶上王真,李浩用了王真速度的1.2倍骑车追赶,结果他们在学校大门处相遇.已知他们家离学校大门处的骑车距离为15千米.求王真的速度.
23.(本小题满分13分) 如图7,已知⊙O的弦AB等于半径,连结OB并延长使BC=OB. (1)∠ABC= °;
(2)AC与⊙O有什么关系?请证明你的结论;
y
1
x 1 O 图6 B A
A
B
C
D
E
F 图5
(3)在⊙O上,是否存在点D,使得AD=AC?若存在,请画出图形,并给出证明;
若不存在,请说明理由.
24.(本小题满分14分)
如图8,正方形ABCD的边长是4,∠DAC的平分线
交DC于点E,点P、Q分别是边AD和AE上的动点(两动点都不与端点重合).
(1)PQ+DQ的最小值是 ;
(2)说出PQ+DQ取得最小值时,点P、点Q的位置,
并在图8中画出;
(3)请对(2)中你所给的结论进行证明.
25.(本小题满分14分)
已知抛物线y =2
x +kx +2k -4.
(1)当k =2时,求出此抛物线的顶点坐标;
(2)求证:无论k 为什么实数,抛物线都与x 轴有交点,且经过x 轴上的一定点; (3)已知抛物线与x 轴交于A(x 1,0)、B(x 2,0)两点(A在B的左边),|x 1|<|x 2|,
与y 轴交于C 点,且S△ABC =15.问:过A,B,C三点的圆与该抛物线是否有第
四个交点?试说明理由.如果有,求出其坐标.
-5
5
4
2
-2
-4
-6
O
y
x
1
备用图
A B C
D E 图8。