10不等式问题的题型和方法
初一数学不等式题型及解题方法
初一数学不等式题型及解题方法
初一数学不等式题型及解题方法
一、不等式的概念
什么是不等式? 不等式就是用符号表示两个数量或几个数量之间的关系和大小的算术表达式,它一般由“大于、小于、大于等于、小于等于”等符号和“=”符号两部分组成,如:
3x-5 > 6
二、不等式的解题方法
(一)解不等式的共同方法:
1.把不等式的左右两边与右边的数比较:
(1)如果比较时左边的数大于右边的数,则原式为真,所以真不等式的结果是无穷大;
(2)如果比较时左边的数小于右边的数,则原式为假,所以假不等式的结果是无穷小。
2.变形法:
(1)把不等式左边的式子变形,使其变为等式或假不等式,继续上面的比较;
(2)把不等式转化为等式,再求解出等式的解,再进行排除法,排除掉不符合要求的解或将满足要求的解组成结果。
(二)不等式的分类
1.一元一次不等式
一元一次不等式是指x的一次幂不大于1,如:2x-3≤5。
解法:求得x ≤ 4/2,故不等式的解集为 x ≤ 4/2 。
2.一元二次不等式
一元二次不等式是指x的幂不大于2,如:2x2-3x+4≥2。
解法:首先方程的左边式子求得最小值,然后再以最小值与右边比较,确定原式的真假。
3.多元一次不等式
多元一次不等式指的是有一个或多个变量,且变量的幂均不大于1,如:x+2y ≤ 4
解法:先把不等式变成一元一次不等式,然后再求解:先把不等式中的y变量消去,即 x+2y ≤ 4 → x ≤ 4-2y 。
基本不等式题型及常用方法总结
基本不等式题型及常用方法总结基本不等式题型包括一元一次不等式、一元二次不等式、绝对值不等式和有理不等式等。
1. 一元一次不等式:- 解法1:通过移项和化简来求解,确保不等号方向的正确性。
- 解法2:将不等式转化为等价的集合表示,再通过集合的交、并运算求解。
2. 一元二次不等式:- 解法1:将不等式化为一元二次函数的图像,通过观察图像求解或者利用函数的性质来求解。
- 解法2:通过移项和配方法将不等式转化为二次函数的标准形式,再判断二次函数图像的位置与不等号关系来求解。
3. 绝对值不等式:- 解法1:将绝对值不等式分段求解,分别讨论绝对值内部是正数还是负数的情况。
- 解法2:通过绝对值的定义和不等式的性质,将绝对值不等式转化为两个简单的不等式来求解。
4. 有理不等式:- 解法1:将有理不等式化为分式的形式,然后通过分式的性质来求解。
- 解法2:通过变量的替换来将有理不等式转化为一元二次不等式或者一元一次不等式,再利用对应的方法来求解。
常用方法总结:1. 对于一元一次不等式和一元二次不等式,常用的方法是移项和化简、画函数图像和利用函数的性质来求解。
2. 对于绝对值不等式,常用的方法是分段求解和利用绝对值的性质来求解。
3. 对于有理不等式,常用的方法是化为分式形式和利用分式的性质来求解。
4. 在求解不等式的过程中,经常需要进行合并同类项、开方、取倒数、乘除等基本运算,需要注意运算法则和符号的变化。
5. 在不等式的求解过程中,需要注意不等式两边的平方值是否相等,以及是否存在不等式的等价变换等。
同时,在进行运算过程中,需要根据不等式的符号关系来选择合适的方式。
不等式【概念、方法、题型、易误点及应试技巧总结】
概念、方法、题型、易误点及应试技巧总结不等式一.不等式的性质:1.同向不等式可以相加;异向不等式可以相减:若,a b c d >>,则a c b d +>+(若,a b c d ><,则a c b d ->-),但异向不等式不可以相加;同向不等式不可以相减;2.左右同正不等式:同向的不等式可以相乘,但不能相除;异向不等式可以相除,但不能相乘:若0,0a b c d >>>>,则ac bd >(若0,0a b c d >><<,则a bc d>);3.左右同正不等式:两边可以同时乘方或开方:若0a b >>,则n n a b >> 4.若0ab >,a b >,则11a b <;若0ab <,a b >,则11a b>。
如 (1)对于实数c b a ,,中,给出下列命题:①22,bc ac b a >>则若; ②b a bc ac >>则若,22;③22,0b ab a b a >><<则若; ④ba b a 11,0<<<则若;⑤baa b b a ><<则若,0; ⑥b a b a ><<则若,0;⑦b c b a c a b a c ->->>>则若,0; ⑧11,a b a b>>若,则0,0a b ><。
其中正确的命题是______(答:②③⑥⑦⑧);(2)已知11x y -≤+≤,13x y ≤-≤,则3x y -的取值范围是______(答:137x y ≤-≤);(3)已知c b a >>,且,0=++c b a 则ac的取值范围是______(答:12,2⎛⎫-- ⎪⎝⎭)二.不等式大小比较的常用方法:1.作差:作差后通过分解因式、配方等手段判断差的符号得出结果; 2.作商(常用于分数指数幂的代数式); 3.分析法; 4.平方法;5.分子(或分母)有理化; 6.利用函数的单调性; 7.寻找中间量或放缩法 ;8.图象法。
不等式问题的题型与方法
第10讲不等式不等式这部分知识,渗透在中学数学各个分支中,有着十分广泛的应用.因此不等式应用问题体现了一定的综合性、灵活多样性,对数学各部分知识融会贯通,起到了很好的促进作用.在解决问题时,要依据题设与结论的结构特点、内在联系、选择适当的解决方案,最终归结为不等式的求解或证明.不等式的应用范围十分广泛,它始终贯串在整个中学数学之中.诸如集合问题,方程(组)的解的讨论,函数单调性的研究,函数定义域的确定,三角、数列、复数、立体几何、解析几何中的最大值、最小值问题,无一不与不等式有着密切的联系,许多问题,最终都可归结为不等式的求解或证明。
一、知识整合1.解不等式的核心问题是不等式的同解变形,不等式的性质则是不等式变形的理论依据,方程的根、函数的性质和图象都与不等式的解法密切相关,要善于把它们有机地联系起来,互相转化.在解不等式中,换元法和图解法是常用的技巧之一.通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数、数形结合,则可将不等式的解化归为直观、形象的图形关系,对含有参数的不等式,运用图解法可以使得分类标准明晰.2.整式不等式(主要是一次、二次不等式)的解法是解不等式的基础,利用不等式的性质及函数的单调性,将分式不等式、绝对值不等式等化归为整式不等式(组)是解不等式的基本思想,分类、换元、数形结合是解不等式的常用方法.方程的根、函数的性质和图象都与不等式的解密切相关,要善于把它们有机地联系起来,相互转化和相互变用.3.在不等式的求解中,换元法和图解法是常用的技巧之一,通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数,将不等式的解化归为直观、形象的图象关系,对含有参数的不等式,运用图解法,可以使分类标准更加明晰.4.证明不等式的方法灵活多样,但比较法、综合法、分析法仍是证明不等式的最基本方法.要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点.比较法的一般步骤是:作差(商)→变形→判断符号(值).5.证明不等式的方法多样,内容丰富、技巧性较强.在证明不等式前,要依据题设和待证不等式的结构特点、内在联系,选择适当的证明方法.通过等式或不等式的运算,将待证的不等式化为明显的、熟知的不等式,从而使原不等式得到证明;反之亦可从明显的、熟知的不等式入手,经过一系列的运算而导出待证的不等式,前者是“执果索因”,后者是“由因导果”,为沟通联系的途径,证明时往往联合使用分析综合法,两面夹击,相辅相成,达到欲证的目的.6.不等式应用问题体现了一定的综合性.这类问题大致可以分为两类:一类是建立不等式、解不等式;另一类是建立函数式求最大值或最小值.利用平均值不等式求函数的最值时,要特别注意“正数、定值和相等”三个条件缺一不可,有时需要适当拼凑,使之符合这三个条件.利用不等式解应用题的基本步骤:1.审题,2.建立不等式模型,3.解数学问题,4.作答。
不等式题型及解题方法
不等式题型及解题方法不等式是数学中常见的一种问题,其解题方法也多种多样。
不同的不等式题型需要采用不同的解题方法才能得出正确的答案。
下面将介绍一些常见的不等式题型及其解题方法。
一、一次不等式一次不等式是指只含有一次项的不等式,如:ax + b > c。
解这种不等式可以采用以下步骤:1. 移项,将不等式中的常数项移到右边,将未知数的系数移到左边,得到ax > c - b。
2. 如果a > 0,则解为x > (c - b)/a;如果a < 0,则解为x <(c - b)/a。
二、二次不等式二次不等式是指含有二次项的不等式,如:ax + bx + c > 0。
解这种不等式可以采用以下步骤:1. 将不等式化为标准形式,即将常数项移到左边,得到ax + bx + c - 0 > 0。
2. 求出方程的根,即x1和x2,根据二次函数的性质可知,当x < x1或x > x2时,函数值大于0。
3. 根据a的正负性分别讨论,如果a > 0,则解为x < x1或x > x2;如果a < 0,则解为x1 < x < x2。
三、绝对值不等式绝对值不等式是指含有绝对值的不等式,如:|x - a| > b。
解这种不等式可以采用以下步骤:1. 将绝对值拆开,得到x - a > b或x - a < -b。
2. 分别解出不等式两边的未知数,得到x > a + b或x < a - b。
四、分式不等式分式不等式是指不等式中含有分式的不等式,如:(ax + b)/(cx + d) > 0。
解这种不等式可以采用以下步骤:1. 将不等式转化为分子和分母的符号相同的形式,即当分子和分母同为正数或同为负数时,不等式成立。
2. 分别讨论分子和分母的正负性,得到不等式的解集。
以上是一些常见的不等式题型及其解题方法,当然,不同的不等式题型还有其他的解题方法,需要根据实际情况进行分析和求解。
初一数学不等式题型及解题方法
初一数学不等式题型及解题方法一、不等式的基本概念1.不等式符号及含义不等式是指两个数之间大小关系的一种表示方法。
不等号符号包括大于(>)、小于(<)、大于等于(≥)、小于等于(≤)等。
其中,大于(>)表示左边的数比右边的数大;小于(<)表示左边的数比右边的数小;大于等于(≥)表示左边的数大于或等于右边的数;小于等于(≤)表示左边的数小于或等于右边的数。
2.不等式的解解不等式的过程就是求出不等式中未知数的取值范围。
一般情况下,我们通过对不等式进行变形、化简,再利用一些不等式性质和数轴上的图示可以求出不等式的解集。
解不等式的过程也包括反证法、分段讨论等方法。
二、不等式的性质不等式有一些特殊的性质,了解这些性质有助于我们更好地理解和运用不等式。
1.不等式的性质①两个相等的数之间没有大小关系,所以两个相等数代入一个不等式时不等式的成立与否是无法判断的。
②不等式两边同时加(减)一个相同的数,不等式仍然成立。
即如果a>b,则a+c>b+c。
③不等式两边同时乘(除)一个正数,不等式的方向不变。
即如果a>b,c>0,则a×c>b×c。
④不等式两边同时乘(除)一个负数,不等式的方向改变。
即如果a>b,c<0,则a×c<b×c。
2.不等式的转化不等式的转化是指将不等式进行变形、化简,以便更好地求解。
①不等式中可以进行加减、乘除、倒数、取对数等运算,但要注意符号的变化,需根据不等式的大小关系来进行变换。
②对于含绝对值的不等式,也可以通过转化为分段函数的方式来求解。
即根据不同的不等式形式,将绝对值进行分段讨论,再求解不等式。
三、不等式的解题方法1.一元一次不等式一元一次不等式是指只含有一个未知数和一次项的不等式,通常可以用数轴解题法、图像法、代入法等方法来求解。
①数轴解题法:首先将不等式化简,再根据不等式的方向在数轴上做出相应的标记,并根据不等式的特点来判断解集的范围。
不等式常见题型及解析题
不等式常见题型及解析题一、一元一次不等式1.问题描述解不等式$a x+b>c$,其中$a>0$。
2.解法分析根据不等式的性质,我们可以将不等式转化为等价的形式:$$ax+b=c$$然后确定不等式的解集。
(1)当$a>0$时将不等式转化为等式,我们得到$ax+b=c$,解得$x=\fr ac{c-b}{a}$。
此时,对于任意一个满足$c-b>0$的$x$,都可以使得$a x+b>c$,所以解集为$\le ft(\fr ac{c-b}{a},+∞\ri gh t)$。
(2)当$a<0$时将不等式转化为等式,我们得到$ax+b=c$,解得$x=\fr ac{c-b}{a}$。
此时,对于任意一个满足$c-b<0$的$x$,都可以使得$a x+b<c$,所以解集为$\le ft(-∞,\f r ac{c-b}{a}\r igh t)$。
(3)当$a=0$时此时,不等式退化为$b>c$或$b<c$,没有变量$x$,所以不存在解。
二、一元二次不等式1.问题描述解不等式$a x^2+bx+c>0$,其中$a>0$。
2.解法分析和一元一次不等式类似,我们可以将不等式转化为等价的形式:$$ax^2+b x+c=0$$然后确定不等式的解集。
(1)当$a>0$时判断二次函数$a x^2+b x+c$的图像与$x$轴的交点数:-当判别式$Δ=b^2-4a c$大于0时,二次函数与$x$轴有两个交点,此时不等式的解集为$\le ft(-∞,x_1\ri gh t)\c up\le ft(x_2,+∞\ri g ht)$,其中$x_1$和$x_2$分别为二次方程$a x^2+b x+c=0$的两个根。
-当判别式$Δ=b^2-4a c$等于0时,二次函数与$x$轴有一个交点,此时不等式的解集为$\ma th bb{R}$,即全体实数的集合。
-当判别式$Δ=b^2-4a c$小于0时,二次函数与$x$轴没有交点,此时不等式的解集为空集。
完整版本的不等式基本原理和基本题型
完整版本的不等式基本原理和基本题型一、不等式基本原理1.比较法则:不等式的传递性:若a>b,b>c,则a>c。
不等式的反对称性:若a>b且b>a,则a=b。
不等式的加法和减法法则:若a>b,则a+c>b+c,a-c>b-c。
2.乘法法则:不等式的乘法法则:若a>b且c>0,则ac>bc。
不等式的除法法则:若a>b且c>0,则a/c>b/c。
3.倒置法则:如果将不等式两侧的符号互相倒置,不等式的方向也将倒置,且不等式仍然成立。
例如若a>b,则-b>-a。
二、不等式基本题型1.一元一次不等式:基本形式:ax + b > 0 或 ax + b < 0。
解法:根据不等式的形式,将未知数x的系数a分类讨论解答。
2.一元二次不等式:常见形式:ax² + bx + c > 0 或 ax² + bx + c < 0。
解法:可以通过因式分解或配方法求关键点(二次方程的根),然后通过关键点的位置确定不等式的解集。
3.绝对值不等式:基本形式:|ax + b| > c 或 |ax + b| < c。
解法:根据不等式的形式,分四种情况讨论解答,并考虑绝对值的性质。
4.分式不等式:常见形式:f(x) > 0 或 f(x) < 0,其中f(x)是有理函数或无理函数。
解法:根据不等式的形式,可以通过求函数的零点,确定不等式的解集。
总结:不等式基本原理是解决不等式问题的基础,而不等式基本题型则是根据不同的不等式形式进行分类解答。
在解题过程中,需要注意使用不等式基本原理,并根据题目要求选择合适的方法进行求解。
数学不等式题解题技巧和突破方法
数学不等式题解题技巧和突破方法数学不等式题在高中数学中占有重要地位,也是考试中常见的题型之一。
解不等式题需要一定的技巧和方法,下面将介绍一些常见的解题技巧和突破方法。
1. 分类讨论法不等式题中常常需要对不同情况进行分类讨论,以找到合适的解题方法。
例如,当不等式中存在绝对值时,可以将其分为正数和负数两种情况进行讨论。
又如,当不等式中有分式时,可以根据分子分母的正负性进行分类讨论。
通过分类讨论,可以将复杂的不等式转化为简单的情况进行求解。
2. 套路法解不等式题时,有一些常见的套路可以帮助我们快速解题。
例如,对于形如a^2 - b^2 > 0的不等式,可以将其因式分解为(a+b)(a-b)>0,并根据乘积为正的性质得到解集。
又如,对于形如a^2 + b^2 > 0的不等式,可以直接得到解集为全体实数。
掌握这些套路可以极大地提高解题效率。
3. 变量替换法有时候,通过合适的变量替换可以简化不等式的形式,从而更容易求解。
例如,当不等式中存在平方根时,可以通过令变量等于平方根的形式,将其转化为简单的二次不等式。
又如,当不等式中存在分式时,可以通过变量替换将其转化为一次不等式。
变量替换的关键是找到合适的变量,使得不等式的形式更简单。
4. 递推法有些不等式题目可以通过递推的方式求解。
递推法的关键是找到递推关系式,通过递推关系式将问题化简为简单的情况。
例如,对于形如a^n - b^n > 0的不等式,可以通过递推关系式(a-b)(a^(n-1) + a^(n-2)b + ... + ab^(n-2) + b^(n-1))>0得到解集。
递推法可以帮助我们快速求解复杂的不等式题目。
5. 反证法有些不等式题目可以通过反证法求解。
反证法的关键是假设不等式不成立,然后推导出矛盾的结论。
通过反证法可以排除一些不可能的情况,从而找到合适的解集。
例如,对于形如a^2 + b^2 >= 2ab的不等式,可以假设a^2 + b^2 < 2ab,然后推导出矛盾的结论,从而得出a^2 + b^2 >= 2ab的结论。
不等式问题的题型与解题方法
不等式问题的题型与解题方法不等式这部分知识,渗透在中学数学各个分支中,有着十分广泛的应用.因此不等式应用问题体现了一定的综合性、灵活多样性,对数学各部分知识融会贯通,起到了很好的促进作用.在解决问题时,要依据题设与结论的结构特点、内在联系、选择适当的解决方案,最终归结为不等式的求解或证明.不等式的应用范围十分广泛,它始终贯串在整个中学数学之中.诸如集合问题,方程(组)的解的讨论,函数单调性的研究,函数定义域的确定,三角、数列、复数、立体几何、解析几何中的最大值、最小值问题,无一不与不等式有着密切的联系,许多问题,最终都可归结为不等式的求解或证明。
一、知识整合1.解不等式的核心问题是不等式的同解变形,不等式的性质则是不等式变形的理论依据,方程的根、函数的性质和图象都与不等式的解法密切相关,要善于把它们有机地联系起来,互相转化.在解不等式中,换元法和图解法是常用的技巧之一.通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数、数形结合,则可将不等式的解化归为直观、形象的图形关系,对含有参数的不等式,运用图解法可以使得分类标准明晰.2.整式不等式(主要是一次、二次不等式)的解法是解不等式的基础,利用不等式的性质及函数的单调性,将分式不等式、绝对值不等式等化归为整式不等式(组)是解不等式的基本思想,分类、换元、数形结合是解不等式的常用方法.方程的根、函数的性质和图象都与不等式的解密切相关,要善于把它们有机地联系起来,相互转化和相互变用.3.在不等式的求解中,换元法和图解法是常用的技巧之一,通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数,将不等式的解化归为直观、形象的图象关系,对含有参数的不等式,运用图解法,可以使分类标准更加明晰.4.证明不等式的方法灵活多样,但比较法、综合法、分析法仍是证明不等式的最基本方法.要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点.比较法的一般步骤是:作差(商)→变形→判断符号(值).5.证明不等式的方法多样,内容丰富、技巧性较强.在证明不等式前,要依据题设和待证不等式的结构特点、内在联系,选择适当的证明方法.通过等式或不等式的运算,将待证的不等式化为明显的、熟知的不等式,从而使原不等式得到证明;反之亦可从明显的、熟知的不等式入手,经过一系列的运算而导出待证的不等式,前者是“执果索因”,后者是“由因导果”,为沟通联系的途径,证明时往往联合使用分析综合法,两面夹击,相辅相成,达到欲证的目的.6.不等式应用问题体现了一定的综合性.这类问题大致可以分为两类:一类是建立不等式、解不等式;另一类是建立函数式求最大值或最小值.利用平均值不等式求函数的最值时,要特别注意“正数、定值和相等”三个条件缺一不可,有时需要适当拼凑,使之符合这三个条件.利用不等式解应用题的基本步骤:1.审题,2.建立不等式模型,3.解数学问题,4.作答。
(完整版)不等式常见题型分析
不等式的基本知识(一)不等式与不等关系1、应用不等式(组)表示不等关系; 不等式的主要性质:(1)对称性:a b b a <⇔> (2)传递性:c a c b b a >⇒>>, (3)加法法则:c b c a b a +>+⇒>;d b c a d c b a +>+⇒>>,(同向可加) (4)乘法法则:bc ac c b a >⇒>>0,; bc ac c b a <⇒<>0,bd ac d c b a >⇒>>>>0,0(同向同正可乘)(5)倒数法则:ba ab b a 110,<⇒>> (6)乘方法则:)1*(0>∈>⇒>>n N n b a b a n n 且(7)开方法则:)1*(0>∈>⇒>>n N n b a b a n n且2、应用不等式的性质比较两个实数的大小:作差法(作差——变形——判断符号——结论)3、应用不等式性质证明不等式 (二)解不等式1、一元二次不等式的解法一元二次不等式()00022≠<++>++a c bx ax c bx ax 或的解集:设相应的一元二次方程()002≠=++a c bx ax 的两根为2121x x x x ≤且、,ac b 42-=∆,则不等式的解的各种情况如下表: 0>∆0=∆0<∆二次函数c bx ax y ++=2(0>a )的图象c bx ax y ++=2c bx ax y ++=2c bx ax y ++=2一元二次方程()的根002>=++a c bx ax有两相异实根 )(,2121x x x x < 有两相等实根ab x x 221-==无实根的解集)0(02>>++a c bx ax{}21x x x x x ><或⎭⎬⎫⎩⎨⎧-≠a b x x 2R的解集)0(02><++a c bx ax{}21x x xx <<∅ ∅2、分式不等式的解法:分式不等式的一般解题思路是先移项使右边为0,再通分并将分子分母分解因式,并使每一个因式中最高次项的系数为正,最后用标根法求解。
不等式知识点总结及题型归纳
不等式知识点总结及题型归纳一、解不等式1、一元二次不等式的解法一元二次不等式()00022≠<++>++a c bx ax c bx ax 或的解集:设相应的一元二次方程()002≠=++a c bx ax 的两根为2121x x x x ≤且、,ac b 42-=∆,则不等式的解的各种情况如下表: 0>∆0=∆0<∆二次函数c bx ax y ++=2(0>a )的图象c bx ax y ++=2c bx ax y ++=2c bx ax y ++=2一元二次方程()的根002>=++a c bx ax有两相异实根 )(,2121x x x x < 有两相等实根ab x x 221-==无实根的解集)0(02>>++a c bx ax{}21x x x x x ><或⎭⎬⎫⎩⎨⎧-≠a b x x 2R的解集)0(02><++a c bx ax{}21x x xx <<∅∅2、简单的一元高次不等式的解法: 标根法:其步骤是:1)分解成若干个一次因式的积,并使每一个因式中最高次项的系数为正;2)将每一个一次因式的根标在数轴上,从最大根的右上方依次通过每一点画曲线;并注意奇穿过偶弹回;3)根据曲线显现()f x 的符号变化规律,写出不等式的解集。
()()()如:x x x +--<1120233、分式不等式的解法:分式不等式的一般解题思路是先移项使右边为0,再通分并将分子分母分解因式,并使每一个因式中最高次项的系数为正,最后用标根法求解。
解分式不等式时,一般不能去分母,但分母恒为正或恒为负时可去分母。
()()0()()0()()0;0()0()()f x g x f x f x f x g x g x g x g x ≥⎧>⇔>≥⇔⎨≠⎩4、不等式的恒成立问题:常应用函数方程思想和“分离变量法”转化为最值问题 若不等式()A x f >在区间D 上恒成立,则等价于在区间D 上()min f x A > 若不等式()B x f <在区间D 上恒成立,则等价于在区间D 上()max f x B <二、线性规划1、用二元一次不等式(组)表示平面区域二元一次不等式Ax +By +C >0在平面直角坐标系中表示直线Ax +By +C =0某一侧所有点组成的平面区域.(虚线表示区域不包括边界直线) 2、二元一次不等式表示哪个平面区域的判断方法由于对在直线Ax +By +C =0同一侧的所有点(y x ,),把它的坐标(y x ,)代入Ax +By +C ,所得到实数的符号都相同,所以只需在此直线的某一侧取一特殊点(x 0,y 0),从Ax 0+By 0+C 的正负即可判断Ax +By +C >0表示直线哪一侧的平面区域.(特殊地,当C ≠0时,常把原点作为此特殊点) 3、线性规划的有关概念:①线性约束条件:在上述问题中,不等式组是一组变量x 、y 的约束条件,这组约束条件都是关于x 、y 的一次不等式,故又称线性约束条件. ②线性目标函数:关于x 、y 的一次式z =a x +b y 是欲达到最大值或最小值所涉及的变量x 、y 的解析式,叫线性目标函数.③线性规划问题:一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题. ④可行解、可行域和最优解:满足线性约束条件的解(x ,y )叫可行解. 由所有可行解组成的集合叫做可行域.使目标函数取得最大或最小值的可行解叫线性规划问题的最优解. 4、求线性目标函数在线性约束条件下的最优解的步骤: 1)寻找线性约束条件,列出线性目标函数; 2)由二元一次不等式表示的平面区域做出可行域;3)依据线性目标函数作参照直线a x +b y =0,在可行域内平移参照直线求目标函数的最优解.三、基本不等式2a bab +≤1、若a,b ∈R ,则a 2+b 2≥2ab ,当且仅当a=b 时取等号.2、如果a,b 是正数,那么).""(2号时取当且仅当==≥+b a ab ba 变形: 有:a+b ≥ab 2;ab ≤22⎪⎭⎫⎝⎛+b a ,当且仅当a=b 时取等号.3、如果a,b ∈R+,a·b=P (定值),当且仅当a=b 时,a+b 有最小值P 2;如果a,b ∈R+,且a+b=S (定值),当且仅当a=b 时,ab 有最大值42S .注:1)当两个正数的积为定值时,可以求它们和的最小值,当两个正数的和为定值时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. 2)求最值的重要条件“一正,二定,三取等” 4、常用不等式有:12211a b a b+≥≥≥+(根据目标不等式左右的运算结构选用) ; 2)a 、b 、c ∈R ,222a b c ab bc ca ++≥++(当且仅当a b c ==时,取等号); 3)若0,0a b m >>>,则b b ma a m+<+(糖水的浓度问题)。
不等式基本原理和基本题型
不等式基本原理和基本题型
一、不等式基本原理
不等式是数学中常见的一种表示关系的方法,它描述了数值之间的大小关系。
不等式的基本原理包括以下几点:
1. 加法原理:如果一个不等式两边同时加上(或减去)相同的数,不等式的方向不变。
2. 乘法原理:如果一个不等式两边同时乘以(或除以)同一个正数,不等式的方向不变;如果乘以(或除以)同一个负数,不等式的方向改变。
3. 复合不等式:如果两个不等式都成立,那么它们的复合不等式也成立。
二、不等式基本题型
不等式作为数学题目中一个重要的考查内容,有几种常见的基本题型,包括以下几点:
1. 解不等式:求出不等式的解集,即满足不等式条件的一组数值。
2. 求最大最小值:对于给定的一组数值,通过不等式条件求出其中的最大值或最小值。
3. 不等式的证明:给定一个不等式,通过推导和证明,证明其成立。
4. 不等式的应用:将不等式应用到实际问题中,通过求解不等式来解决实际问题。
以上是不等式的基本原理和基本题型的简要介绍。
不等式在数学中广泛应用于各个领域,对于学习数学和解决实际问题都具有重要意义。
高中数学不等式问题的思路、方法、技巧
证明:由变形公式③, a2 b 2+b 2 c2+c2 a 2≥ ab·bc+bc · ca+ca· ab=abc(b+c+a),当且仅
当 a=b=c 时等号成立。
3. 分析法
2
分 析 法 也 是 证 明 不 等 式 的 一 种 基 本 方 法 , 模 式 为 : 欲 证 A B, 若 已 知
B C1 C2 …… I ,( I 为一个真命题,可以是 A,也可以是另一已知成立的真命题) , 则命题得证。 分析法的证题思路和综合法正好相反, 是一步步寻找结论成立的条件。 它的优
证明:∵( 2x 4+1)- x 2( 2x+1 ) =2x4+1-2x 3-x 2=2x 3 (x-1 )- ( x2 –1)=( x-1) [2x 3 –x-1]
=( x-1 )[2x 3 –2x+x-1]=
(
x-1
)
[2x
(
2
x
–1)
+
(
x-1
)
]
=
(
x-1
) 2( 2x
2
+2x+1
)
=( x-1 ) 2[x 2 +( x+1 )2 ] ≥ 0.
证明:∵(
a2+b2)
-[2
(
2a-b)-5]=
a
22
+b
-4a+2b+5
= a2-4a +4+b 2+2b+1= ( a-2)2 +( b+1) 2≥ 0.
∴命题成立 .(当且仅当 a = 2, b= -1 时等号成立)
初一数学不等式题型及解题方法
初一数学不等式题型及解题方法初一数学不等式题目类型及解题方法不等式是数学中常见的概念之一,是一个符号表示的不等关系。
初一数学中对不等式的理解可以帮助我们更好地理解数值大小的差异,掌握不等式的基本解法也是初一数学学习中的重要内容。
本文将介绍初一数学中常见的不等式题目类型及其解题思路。
一、不等式的基本性质在学习不等式的题目类型之前,我们需要了解不等式的基本性质,以方便我们进行解题。
不等式的基本性质如下:1.同加减不等式两边之比的大小关系不变,即若a>b,则a+c>b+c,a-c>b-c。
2.同乘除不等式两边之比的大小关系不变,即若a>b且c>0,则ac>bc, a/c>b/c。
3.若不等式的系数为正,那么不等式两边之比的大小关系不变,即若a>b且k>0,则ka>kb。
4.若不等式两边同时取相反数,则不等式的不等关系翻转,即若a>b,则-b>-a。
二、不等式的常见形式在初一数学学习中,以下是不等式的常见形式:1.一元一次不等式一元一次不等式是初一数学学习中最基础的不等式形式,它通常可以表示为ax+b>c (或ax+b<c),其中a,b,c为常数,x为变量。
解一元一次不等式通常包括以下步骤:(1)移项,把不等式中x的系数移到一个边,常数移到另一个边,则得到ax>c-b (或ax<c-b)。
(2)化简,将不等式两边分别除以系数a,此时需要考虑a的正负性及大小,如果a>0,则保持不等号不变,如果a<0,则不等号要取反。
得到x>c-b/a (或x<c-b/a)。
(3)判断,将解出的x带入原不等式中,判断是否符合题目要求。
2.二元一次不等式二元一次不等式包含两个未知数,通常可以表示为ax+by>c (或ax+by<c),其中a,b,c为常数,x,y为变量。
解二元一次不等式通常需要以下几个步骤:(1)确定变量的取值范围,可以利用图像等方法确定。
(完整版)基本不等式全题型
题型1 基本不等式正用a +b ≥2ab例1:(1)函数f (x )=x +1x (x >0)值域为________;函数f (x )=x +1x(x ∈R )值域为________;(2)函数f (x )=x 2+1x 2+1的值域为________. 解析:(1)∵x >0,x +1x≥2x ·1x=2,∴f (x )(x >0)值域为[2,+∞); 当x ∈R 时,f (x )值域为(-∞,-2]∪[2,+∞); (2)x 2+1x 2+1=(x 2+1)+1x 2+1-1≥2x 2+1·1x 2+1-1=1,当且仅当 x =0 时等号成立.答案:(1)[2,+∞) (-∞,-2]∪[2,+∞) (2)[1,+∞)4.(2013·镇江期中)若x >1,则x +4x -1的最小值为________.解析:x +4x -1=x -1+4x -1+1≥4+1=5.当且仅当x -1=4x -1,即x =3时等号成立.答案:5 [例1] (1)已知x <0,则f (x )=2+4x+x 的最大值为________.(1)∵x <0,∴-x >0,∴f (x )=2+4x +x =2-⎣⎢⎡⎦⎥⎤4-x +-x .∵-4x +(-x )≥24=4,当且仅当-x =4-x ,即x=-2时等号成立.∴f (x )=2-⎣⎢⎡⎦⎥⎤4-x +-x ≤2-4=-2,∴f (x )的最大值为-2.例:当x >0时,则f (x )=2xx 2+1的最大值为________. 解析:(1)∵x >0,∴f (x )=2x x 2+1=2x +1x≤22=1,当且仅当x =1x,即x =1时取等号. 3.函数y =x 2+2x -1(x >1)的最小值是________.解析:∵x >1,∴x -1>0.∴y =x 2+2x -1=x 2-2x +2x +2x -1=x 2-2x +1+2x -1+3x -1=x -12+2x -1+3x -1=x -1+3x -1+2≥2 x -13x -1+2=23+2.当且仅当x -1=3x -1,即x =1+3时,取等号.答案:23+2 10.已知x >0,a 为大于2x 的常数,求y =1a -2x-x 的最小值. 解:y =1a -2x +a -2x 2-a 2≥2 12-a 2=2-a 2.当且仅当x =a -22时取等号.故y =1a -2x -x 的最小值为2-a2. 题型2 基本不等式反用ab ≤a +b2例:(1)函数f (x )=x (1-x )(0<x <1)的值域为__________;(2)函数f (x )=x (1-2x )⎝ ⎛⎭⎪⎫0<x <12的值域为__________.解析:(1)∵0<x <1,∴1-x >0, x (1-x )≤⎣⎢⎡⎦⎥⎤x +1-x 22=14,∴f (x ) 值域为⎝ ⎛⎭⎪⎫0,14.(2)∵0<x <12,∴1-2x >0. x (1-2x )=12×2x (1-2x )≤12·⎣⎢⎡⎦⎥⎤2x +1-2x 22=18,∴f (x ) 值域为⎝ ⎛⎭⎪⎫0,18.答案:(1)⎝ ⎛⎭⎪⎫0,14 (2)⎝ ⎛⎭⎪⎫0,18 3.(教材习题改编)已知0<x <1,则x (3-3x )取得最大值时x 的值为________.解析:由x (3-3x )=13×3x (3-3x )≤13×94=34,当且仅当3x =3-3x ,即x =12时等号成立.答案:123.函数y =x 1-x 2的最大值为________.解析:x 1-x 2=x 21-x 2≤x 2+1-x 22=12.4.已知0<x <1,则x (3-3x )取得最大值时x 的值为 ( )A.13B.12C.34D.23解析 ∵0<x <1,∴1-x >0.∴x (3-3x )=3x (1-x )≤3⎝ ⎛⎭⎪⎫x +1-x 22=34.当x =1-x ,即x =12时取等号.答案 B 10.已知x >0,a 为大于2x 的常数,求函数y =x (a -2x )的最大值;解:∵x >0,a >2x ,∴y =x (a -2x )=12×2x (a -2x )≤12×⎣⎢⎡⎦⎥⎤2x +a -2x 22=a 28,当且仅当x =a4时取等号,故函数的最大值为a 28.题型三:利用基本不等式求最值2.已知t >0,则函数y =t 2-4t +1t的最小值为________.解析 ∵t >0,∴y =t 2-4t +1t =t +1t -4≥2-4=-2,且在t =1时取等号.答案 -2例:当x >0时,则f (x )=2xx 2+1的最大值为________.解析:∵x >0,∴f (x )=2x x 2+1=2x +1x≤22=1,当且仅当x =1x,即x =1时取等号.例1:(1)求函数f (x )=1x -3+x (x >3)的最小值;(2)求函数f (x )=x 2-3x +1x -3(x >3)的最小值;思维突破:(1)“添项”,可通过减3再加3,利用基本不等式后可出现定值.(2)“拆项”,把函数式变为y =M +aM的形式. (1)∵x >3,∴x -3>0.∴f (x )=1x -3+(x -3)+3≥21x -3·x -3+3=5.当且仅当1x -3=x -3,即x =4时取等号,∴f (x )的最小值是5.(2)令x -3=t ,则x =t +3,且t >0.∴f (x )=t +32-3t +3+1t =t +1t+3≥2t ·1t+3=5. 当且仅当t =1t,即t =1时取等号,此时x =4,∴当x =4时,f (x )有最小值为5.技巧总结:当式子不具备“定值”条件时,常通过“添项”达到目的;形如y =cx 2+dx +fax +b(a ≠0,c ≠0)的函数,一般可通过配凑或变量替换等价变形化为y =t +p t(p 为常数)型函数,要注意t 的取值范围; 例:设x >-1,求函数y =x +4x +1+6的最小值;解:∵x >-1,∴x +1>0.∴y =x +4x +1+6=x +1+4x +1+5≥2x +1·4x +1+5=9,当且仅当x +1=4x +1,即x =1时,取等号.∴当x =1时,函数y 的最小值是9. 1.若x >0,y >0,且x +y =18,则xy 的最大值是________. 解析 由于x >0,y >0,则x +y ≥2xy ,所以xy ≤⎝⎛⎭⎪⎫x +y 22=81,当且仅当x =y =9时,xy 取到最大值81. 答案 815.已知x ,y ∈R +,且满足x 3+y4=1,则xy 的最大值为_______________.解析 ∵x >0,y >0且1=x 3+y 4≥2xy 12,∴xy ≤3.当且仅当x 3=y4时取等号.答案 36.(2013·大连期中)已知x ,y 为正实数,且满足4x +3y =12,则xy 的最大值为________.解析:∵12=4x +3y ≥24x ×3y ,∴xy ≤3.当且仅当⎩⎪⎨⎪⎧4x =3y ,4x +3y =12,即⎩⎪⎨⎪⎧x =32,y =2时xy 取得最大值3.答案:32.已知m >0,n >0,且mn =81,则m +n 的最小值为________.解析:∵m >0,n >0,∴m +n ≥2mn =18.当且仅当m =n =9时,等号成立.答案:18 5.已知x >0,y >0,lg x +lg y =1,则z =2x +5y的最小值为________.解析:由已知条件lg x +lg y =1,可得xy =10.则2x +5y≥210xy=2,故⎝ ⎛⎭⎪⎫2x +5y min =2,当且仅当2y =5x 时取等号.又xy =10,即x =2,y =5时等号成立.答案:2(2012·天津高考)已知log 2a +log 2b ≥1,则3a +9b的最小值为________. 解析:由log 2a +log 2b ≥1得log 2(ab )≥1,即ab ≥2,∴3a +9b =3a +32b≥2×3a +2b 2(当且仅当3a =32b,即a =2b 时取等号).∵a +2b ≥22ab ≥4(当且仅当a =2b 时取等号),∴3a+9b≥2×32=18.即当a =2b 时,3a+9b有最小值18. 3.设x ,y ∈R ,a >1,b >1,若a x =b y=3,a +b =23,则1x +1y的最大值为 ( )A .2 B.32 C .1 D.12解析 由a x =b y=3,得:x =log a 3,y =log b 3,由a >1,b >1知x >0,y >0,1x +1y =log 3a +log 3b =log 3ab ≤log 3⎝ ⎛⎭⎪⎫a +b 22=1,当且仅当a =b =3时“=”成立,则1x +1y的最大值 为1. 答案 C6.(2011·湖南)设x ,y ∈R ,且xy ≠0,则⎝ ⎛⎭⎪⎫x 2+1y 2·⎝ ⎛⎭⎪⎫1x2+4y 2的最小值为________.解析 ⎝ ⎛⎭⎪⎫x 2+1y 2⎝ ⎛⎭⎪⎫1x2+4y 2=5+1x 2y 2+4x 2y 2≥5+21x 2y 2·4x 2y 2=9,当且仅当x 2y 2=12时“=”成立.答案 9例:若正数x ,y 满足x +3y =5xy ,求xy 的最小值.解:∵x >0,y >0,则5xy =x +3y ≥2x ·3y ,∴xy ≥1225,当且仅当x =3y 时取等号.∴xy 的最小值为1225.4.若正实数x ,y 满足2x +y +6=xy ,则xy 的最小值是________. 答案 18解析 由x >0,y >0,2x +y +6=xy ,得xy ≥22xy +6(当且仅当2x =y 时,取“=”),即(xy )2-22xy -6≥0, ∴(xy -32)·(xy +2)≥0. 又∵xy >0,∴xy ≥32,即xy ≥18. ∴xy 的最小值为18.例:已知x >0,y >0,x +2y +2xy =8,则x +2y 的最小值是 ( )A .3B .4 C.92 D.112解析 依题意,得(x +1)(2y +1)=9, ∴(x +1)+(2y +1)≥2x +12y +1=6,即x +2y ≥4.当且仅当⎩⎪⎨⎪⎧x +1=2y +1,x +2y +2xy =8,即⎩⎪⎨⎪⎧x =2,y =1时等号成立.∴x +2y 的最小值是4.3.若x ,y ∈(0,+∞),x +2y +xy =30. (1)求xy 的取值范围; (2)求x +y 的取值范围.解:由x +2y +xy =30,(2+x )y =30-x , 则2+x ≠0,y =30-x2+x >0,0<x <30.(1)xy =-x 2+30xx +2=-x 2-2x +32x +64-64x +2=-x -64x +2+32 =-⎣⎢⎡⎦⎥⎤x +2+64x +2+34≤18,当且仅当x =6时取等号,因此xy 的取值范围是(0,18]. (2)x +y =x +30-x 2+x =x +32x +2-1=x +2+32x +2-3≥82-3,当且仅当⎩⎨⎧x =42-2,y =42-1时,等号成立,又x +y =x +2+32x +2-3<30,因此x +y 的取值范围是[82-3,30).例:已知a >b >0,则a 2+16b a -b的最小值是________.解析:∵a >b >0,∴b (a -b )≤⎝ ⎛⎭⎪⎫b +a -b 22=a 24, 当且仅当a =2b 时等号成立.∴a 2+16b a -b ≥a 2+16a 24=a 2+64a2≥2a 2·64a2=16,当且仅当a =22时等号成立.∴当a =22,b =2时,a 2+16ba -b取得最小值16. 8.设x ,y ,z 为正实数,满足x -2y +3z =0,则y 2xz的最小值是________.解析:由已知条件可得y =x +3z2,所以y 2xz =x 2+9z 2+6xz 4xz=14⎝ ⎛⎭⎪⎫x z +9z x +6 ≥14⎝⎛⎭⎪⎫2 x z ×9z x +6=3, 当且仅当x =y =3z 时,y 2xz取得最小值3.答案:3例:已知x >0,y >0,xy =x +2y ,若xy ≥m -2恒成立,则实数m 的最大值是________.解析:由x >0,y >0,xy =x +2y ≥22xy ,得xy ≥8,于是由m -2≤xy 恒成立,得m -2≤8,即m ≤10.故m 的最大值为10.1.已知正数x ,y 满足x +22xy ≤λ(x +y )恒成立,则实数λ的最小值为________. 解析:依题意得x +22xy ≤x +(x +2y )=2(x +y ),即x +22xy x +y ≤2(当且仅当x =2y 时取等号),即x +22xyx +y的最大值是2;又λ≥x +22xyx +y,因此有λ≥2,即λ的最小值是2.答案:21.已知关于x 的不等式2x +2x -a≥7在x ∈(a ,+∞)上恒成立,则实数a 的最小值为________. 解析:因为x >a ,所以2x +2x -a =2(x -a )+2x -a+2a ≥22x -a ·2x -a+2a =2a +4,即2a +4≥7,所以a ≥32,即a 的最小值为32.答案:325.圆x 2+y 2+2x -4y +1=0关于直线2ax -by +2=0 (a ,b ∈R )对称,则ab 的取值范围是 ( )A.⎝ ⎛⎦⎥⎤-∞,14B.⎝ ⎛⎦⎥⎤0,14C.⎝ ⎛⎭⎪⎫-14,0D.⎝⎛⎭⎪⎫-∞,14 答案 A解析 由题可知直线2ax -by +2=0过圆心(-1,2),故可得a +b =1,又因ab ≤⎝ ⎛⎭⎪⎫a +b 22=14(a =b 时取等号).故ab 的取值范围是⎝⎛⎦⎥⎤-∞,14.典例:(12分)已知a 、b 均为正实数,且a +b =1,求y =⎝⎛⎭⎪⎫a +1a ⎝⎛⎭⎪⎫b +1b 的最小值.易错分析 在求最值时两次使用基本不等式,其中的等号不能同时成立,导致最小值不能取到.审题视角 (1)求函数最值问题,可以考虑利用基本不等式,但是利用基本不等式,必须保证“正、定、等”,而且还要符合已知条件.(2)可以考虑利用函数的单调性,但要注意变量的取值范围. 规范解答解 方法一 y =⎝⎛⎭⎪⎫a +1a ⎝⎛⎭⎪⎫b +1b=⎝⎛⎭⎪⎫ab +1ab +⎝ ⎛⎭⎪⎫b a +a b ≥⎝ ⎛⎭⎪⎫ab +1ab +2=⎝ ⎛⎭⎪⎫ab +1ab 2=⎝ ⎛⎭⎪⎫4ab +1ab -3ab 2≥⎝ ⎛⎭⎪⎫24ab ·1ab -3×a +b 22=⎝⎛⎭⎪⎫4-322=254.[10分] 当且仅当a =b =12时,y =⎝ ⎛⎭⎪⎫a +1a ⎝ ⎛⎭⎪⎫b +1b 取最小值,最小值为254.[12分] 方法二 y =⎝ ⎛⎭⎪⎫a +1a ⎝ ⎛⎭⎪⎫b +1b =ab +1ab +a b +b a =ab +1ab +a 2+b 2ab =ab +1ab +a +b 2-2abab=2ab+ab -2.[8分]令t =ab ≤⎝⎛⎭⎪⎫a +b 22=14,即t ∈⎝ ⎛⎦⎥⎤0,14.又f (t )=2t +t 在⎝ ⎛⎦⎥⎤0,14上是单调递减的,[10分] ∴当t =14时,f (t )min =334,此时,a =b =12.∴当a =b =12时,y 有最小值254.[12分]温馨提醒 (1)这类题目考生总感到比较容易下手.但是解这类题目却又常常出错.(2)利用基本不等式求最值,一定要注意应用条件:即一正、二定、三相等.否则求解时会出现等号成立、条件不具备而出错.(3)本题出错的原因前面已分析,关键是忽略了等号成立的条件. 方法与技巧1.基本不等式具有将“和式”转化为“积式”和将“积式”转化为“和式”的放缩功能,常常用于比较数(式)的大小或证明不等式,解决问题的关键是分析不等式两边的结构特点,选择好利用基本不等式的切入点. 2.恒等变形:为了利用基本不等式,有时对给定的代数式要进行适当变形.比如:(1)当x >2时,x +1x -2=(x -2)+1x -2+2≥2+2=4.(2)0<x <83,x (8-3x )=13(3x )(8-3x )≤13⎝ ⎛⎭⎪⎫3x +8-3x 22=163.失误与防范1.使用基本不等式求最值,其失误的真正原因是对其前提“一正、二定、三相等”的忽视.要利用基本不等式求最值,这三个条件缺一不可.2.在运用重要不等式时,要特别注意“拆”“拼”“凑”等技巧,使其满足重要不等式中“正”“定”“等”的条件.3.连续使用公式时取等号的条件很严格,要求同时满足任何一次的字母取值存在且一致. 题型四:利用基本不等式整体换元例2:若正数 a ,b 满足 ab =a +b +3,求 ab 及 a +b 的取值范围.思维突破:本题主要考查均值不等式在求最值时的运用,并体现了换元法、构造法等重要思想. 自主解答:方法一:由ab =a +b +3≥2ab +3, 即ab -2ab -3≥0. 即(ab -3)(ab +1)≥0. ∵ab ≥0,∴ab +1≥1. 故ab -3≥0,∴ab ≥9. 当且仅当a =b =3时取等号. 又∵ab ≤a +b2,∴ab =a +b +3≤⎝⎛⎭⎪⎫a +b 22.当且仅当a =b =3时取等号. 即(a +b )2-4()a +b -12≥0,(a +b -6)(a +b +2)≥0.∵a +b +2>0,有a +b -6≥0,即a +b ≥6. ∴a +b 的取值范围是[6,+∞). 方法二:由ab =a +b +3,则b =a +3a -1. ab =a +4a a -1=a +4+4a -1=a -1+4a -1+5≥2a -1·4a -1+5=9,当且仅当a =b =3时取等号. ∴ab 的取值范围是[9,+∞). 由ab =a +b +3,得b =a +3a -1, a +b =a +a +3a -1=a +1+4a -1=(a -1)+4a -1+2≥2()a -1·4a -1+2=6, 当且仅当a =b =3时取等号. ∴a +b 的取值范围是[6,+∞).技巧总结:整体思想是分析这类题目的突破口,即a +b 与ab 分别是统一的整体,把a +b 转换成ab 或把ab 转换成a +b .例3:已知正数a ,b 满足a +2b =1,则1a +1b的最小值是____.试解:1a +1b =a +2b a +a +2b b=3+2b a+ab≥3+22b a ·ab=3+2 2.易错点评:多次利用基本不等式解题,没有考虑等号能否同时成立。
不等式含参题型及解题方法初一下册
不等式含参题型及解题方法初一下册一、不等式含参题型介绍不等式含参题型是初中数学中的重要知识点,通常在初一下册的数学教学中进行学习和训练。
不等式含参题型是指含有未知数的不等式,通过对不等式进行变形求解未知数的取值范围。
二、不等式含参题型的解题方法1.确定不等式的类型和形式在解不等式含参题型时,首先要确定不等式的形式,包括一元一次不等式、一元二次不等式等等。
根据不等式形式的不同,采取相应的解题方法。
2.移项变形对于一元一次不等式,通常采用移项变形的方法进行求解。
通过在不等式两边进行加减运算,将含有未知数的项移到一边,将常数项移到另一边,从而得到未知数的取值范围。
3.化简并求解对于一元二次不等式,通常需要先将不等式进行化简,然后再通过代数方法或图像法求解。
化简包括合并同类项、配方等步骤,通过化简后的形式求解未知数的取值范围。
4.运用不等式性质在解不等式含参题型时,还可以运用不等式的性质进行求解。
常用的不等式性质包括加法性质、乘法性质等,通过这些性质对不等式进行变形和运算,从而得到未知数的取值范围。
5.综合运用在实际的不等式含参题型中,通常需要综合运用以上的方法进行求解。
需要根据具体的不等式形式和题目要求,选择合适的解题方法进行求解,从而得到正确的结果。
三、不等式含参题型的典型例题及解析题目一:已知不等式2x + 3 < 7,求x的取值范围。
解析:首先将不等式进行移项变形,得到2x < 4。
然后将不等式两边都除以2,得到x < 2。
所以不等式2x + 3 < 7的解集为x < 2。
题目二:已知不等式x^2 - 3x + 2 > 0,求x的取值范围。
解析:首先将不等式进行化简,得到(x-1)(x-2) > 0。
然后通过代数方法或图像法对不等式进行求解,得到x < 1或x > 2。
所以不等式x^2 - 3x + 2 > 0的解集为x < 1或x > 2。
不等式题型 方法
不等式题型、方法、及应试技巧总结一.不等式的性质:1.同向不等式可以相加;异向不等式可以相减:若,a b c d >>,则a c b d +>+(若,a b c d ><,则a c b d ->-),但异向不等式不可以相加;同向不等式不可以相减; 2.左右同正不等式:同向的不等式可以相乘,但不能相除;异向不等式可以相除,但不能相乘:若0,0a b c d >>>>,则ac bd >(若0,0a b c d >><<,则a bc >);3.左右同正不等式:两边可以同时乘方或开方:若0a b >>,则n n a b >>4.若0ab >,a b >,则11a b <;若0ab <,a b >,则11a b>。
如(1)对于实数c b a ,,中,给出下列命题:①22,bc ac b a >>则若; ②b a bc ac >>则若,22;③22,0b ab a b a >><<则若; ④ba b a 11,0<<<则若;⑤baa b b a ><<则若,0; ⑥b a b a ><<则若,0;⑦b c b a c a b a c ->->>>则若,0; ⑧11,a b a b>>若,则0,0a b ><。
其中正确的命题是______(答:②③⑥⑦⑧);(2)已知11x y -≤+≤,13x y ≤-≤,则3x y -的取值范围是______(答:137x y ≤-≤);(3)已知c b a >>,且,0=++c b a 则ac的取值范围是______(答:12,2⎛⎫-- ⎪⎝⎭)二.不等式大小比较的常用方法:1.作差:作差后通过分解因式、配方等手段判断差的符号得出结果; 2.作商(常用于分数指数幂的代数式); 3.分析法; 4.平方法;5.分子(或分母)有理化; 6.利用函数的单调性; 7.寻找中间量或放缩法 ;8.图象法。
初中数学不等式证明方法总结
初中数学不等式证明方法总结通常不等式中的数是实数,字母也代表实数。
初中数学不等式证明方法总结,希望可以帮助到大家,我们来看看。
初中数学不等式证明方法总结1知识要点:不等式两边乘或除以同一个负数,不等号的方向改变。
(÷或×1个负数的时候要变号)。
不等式的证明1、比较法包括比差和比商两种方法。
2、综合法证明不等式时,从命题的已知条件出发,利用公理、定理、法则等,逐步推导出要证明的命题的方法称为综合法,综合法又叫顺推证法或因导果法。
3、分析法证明不等式时,从待证命题出发,分析使其成立的充分条件,利用已知的一些基本原理,逐步探索,最后将命题成立的条件归结为一个已经证明过的定理、简单事实或题设的条件,这种证明的方法称为分析法,它是执果索因的方法。
4、放缩法证明不等式时,有时根据需要把需证明的不等式的值适当放大或缩小,使其化繁为简,化难为易,达到证明的目的,这种方法称为放缩法。
5、数学归纳法用数学归纳法证明不等式,要注意两步一结论。
在证明第二步时,一般多用到比较法、放缩法和分析法。
6、反证法证明不等式时,首先假设要证明的命题的反面成立,把它作为条件和其他条件结合在一起,利用已知定义、定理、公理等基本原理逐步推证出一个与命题的条件或已证明的定理或公认的简单事实相矛盾的结论,以此说明原假设的结论不成立,从而肯定原命题的结论成立的方法称为反证法。
知识要领总结:证明不等式要注意不等式两边都乘以或除以一个负数,要改变不等号的方向。
初中数学知识点总结:平面直角坐标系下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。
平面直角坐标系平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。
水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。
平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合三个规定:①正方向的规定横轴取向右为正方向,纵轴取向上为正方向②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第10讲不等式
不等式这部分知识,渗透在中学数学各个分支中,有着十分广泛的应用.因此不等式应用问题体现了一定的综合性、灵活多样性,对数学各部分知识融会贯通,起到了很好的促进作用.在解决问题时,要依据题设与结论的结构特点、内在联系、选择适当的解决方案,最终归结为不等式的求解或证明.不等式的应用范围十分广泛,它始终贯串在整个中学数学之中.诸如集合问题,方程(组)的解的讨论,函数单调性的研究,函数定义域的确定,三角、数列、复数、立体几何、解析几何中的最大值、最小值问题,无一不与不等式有着密切的联系,许多问题,最终都可归结为不等式的求解或证明。
一、知识整合
1.解不等式的核心问题是不等式的同解变形,不等式的性质则是不等式变形的理论依据,方程的根、函数的性质和图象都与不等式的解法密切相关,要善于把它们有机地联系起来,互相转化.在解不等式中,换元法和图解法是常用的技巧之一.通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数、数形结合,则可将不等式的解化归为直观、形象的图形关系,对含有参数的不等式,运用图解法可以使得分类标准明晰.2.整式不等式(主要是一次、二次不等式)的解法是解不等式的基础,利用不等式的性质及函数的单调性,将分式不等式、绝对值不等式等化归为整式不等式(组)是解不等式的基本思想,分类、换元、数形结合是解不等式的常用方法.方程的根、函数的性质和图象都与不等式的解密切相关,要善于把它们有机地联系起来,相互转化和相互变用.3.在不等式的求解中,换元法和图解法是常用的技巧之一,通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数,将不等式的解化归为直观、形象的图象关系,对含有参数的不等式,运用图解法,可以使分类标准更加明晰.
4.证明不等式的方法灵活多样,但比较法、综合法、分析法仍是证明不等式的最基本方法.要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点.比较法的一般步骤是:作差(商)→变形→判断符号(值).
5.证明不等式的方法多样,内容丰富、技巧性较强.在证明不等式前,要依据题设和待证不等式的结构特点、内在联系,选择适当的证明方法.通过等式或不等式的运算,将待证的不等式化为明显的、熟知的不等式,从而使原不等式得到证明;反之亦可从明显的、熟知的不等式入手,经过一系列的运算而导出待证的不等式,前者是“执果索因”,后者是“由因导果”,为沟通联系的途径,证明时往往联合使用分析综合法,两面夹击,相辅相成,达到欲证的目的.
6.不等式应用问题体现了一定的综合性.这类问题大致可以分为两类:一类是建立不等
式、解不等式;另一类是建立函数式求最大值或最小值.利用平均值不等式求函数的最值时,要特别注意“正数、定值和相等”三个条件缺一不可,有时需要适当拼凑,使之符合这三个条件.利用不等式解应用题的基本步骤:1.审题,2.建立不等式模型,3.解数学问题,4.作答。
7.通过不等式的基本知识、基本方法在代数、三角函数、数列、复数、立体几何、解析几何等各部分知识中的应用,深化数学知识间的融汇贯通,从而提高分析问题解决问题的能力.在应用不等式的基本知识、方法、思想解决问题的过程中,提高学生数学素质及创新意识.
二、方法技巧
1.解不等式的基本思想是转化、化归,一般都转化为最简单的一元一次不等式(组)或一元二次不等式(组)来求解,。
2.解含参数不等式时,要特别注意数形结合思想,函数与方程思想,分类讨论思想的录活运用。
3.不等式证明方法有多种,既要注意到各种证法的适用范围,又要注意在掌握常规证法的基础上,选用一些特殊技巧。
如运用放缩法证明不等式时要注意调整放缩的度。
4.根据题目结构特点,执果索因,往往是有效的思维方法。
三、例题分析
b)∈M,且对M 中的其它元素(c,d),总有c≥a,则a=____.
分析:读懂并能揭示问题中的数学实质,将是解决该问题的突破口.怎样理解“对M中的其它元素(c,d),总有c≥a”?M中的元素又有什么特点?
解:依题可知,本题等价于求函数x=f(y)=(y+3)·|y-1|+(y+3)
(2)当1≤y≤3时,
x= 4.
所以当y=1时,
min
简评:题设条件中出现集合的形式,因此要认清集合元素的本质属性,然后结合条件,揭示
其数学实质.即求集合M 中的元素满足关系
式
例2.已知非负实数x ,y 满足2380x y +-≤且3270x y +-≤,则x y +的最大值是( )
A .73
B .83
C .2
D . 3 解:画出图象,由线性规划知识可得,选D
例3.数列{}n x 由下列条件确定:*+∈⎪⎪⎭⎫ ⎝⎛+=
>=N n x a x x a x n n n ,21,011 (1)证明:对于a x n n ≥≥总有,2,
(2)证明:对于1,2+≥≥n n x x n 总有.
证明:(1))()(21,0)(210111*∈=⋅≥+=>+=>=++N n a x a x x a x x x x a x x a x n
n n n n n n n n 从而知及 成立时当a x n n ≥≥∴2
(2)当2≥n 时,)(21),(21,011n n n n n n n n x x a x x x a x x a x -=-∴+=>≥
++ =成立时12,2.021+≥≥∴≤-∙n n n
n x x n x x a 。
例4.解关于x 的不等式:()09
22>≤-a a a x x 分析:本例主要复习含绝对值不等式的解法,分类讨论的思想。
本题的关键不是对参数a 进行讨论,而是去绝对值时必须对末知数进行讨论,得到两个不等式组,最后对两个不等式组的解集求并集,得出原不等式的解集。
解:当()⎩
⎨⎧≤--≥⎩⎨⎧≤-≥≥029929222a ax x a x a a x x a x a x 即时,不等式可转化为 a b
x a 173+≤≤∴
⎩
⎨⎧≥+-<⎩⎨⎧≤-<<02992)(222a ax x a x a x a ax a x a x 即时不等式可化为当 ]⎥⎦⎤⎢⎣⎡+⋃-∞<≤≤∴a a a a x a a x 6173,323
,(3
23故不等式的解集为或。
例5.若二次函数y=f(x)的图象经过原点,且1≤f(-1)≤2,3≤f(1)≤4,求f(-2)的范围. 分析:要求f(-2)的取值范围,只需找到含人f(-2)的不等式(组).由于y=f(x)是二次函数,所以应先将f(x)的表达形式写出来.即可求得f(-2)的表达式,然后依题设条件列出含有f(-2)的不等式(组),即可求解.
解:因为y=f(x)的图象经过原点,所以可设y=f(x)=ax 2+bx .于是
解法一(利用基本不等式的性质)
不等式组(Ⅰ)变形得
(Ⅰ)
所以f(-2)的取值范围是[6,10].
解法二(数形结合
)
建立直角坐标系aob ,作出不等式组(Ⅰ)所表示的区域,如图6中的阴影部分.因为f(-2)=4a-2b ,所以4a-2b-f(-2)=0表示斜率为2的直线系.如图6,当直线4a-2b-f(-2)=0过点A(2,
1),B(3,1)时,分别取得f(-2)的最小值6,最大值10.即f(-2)的取值范围是:6≤f(-2)≤10. 解法三(利用方程的思想)
又f(-2)=4a-2b=3f(-1)+f(1),而
1≤f(-1)≤2,3≤f(1)≤4,①
所以3≤3f(-1)≤6.②
①+②得4≤3f(-1)+f(1)≤10,即6≤f(-2)≤10.
简评:(1)在解不等式时,要求作同解变形.要避免出现以下一种错解:
2b,8≤4a≤
12,-3≤-2b≤-1,所以5≤f(-2)≤11.
(2)对这类问题的求解关键一步是,找到f(-2)的数学结构,然后依其数学结构特征,揭示其代数的、几何的本质,利用不等式的基本性质、数形结合、方程等数学思想方法,从不同角度去解决同一问题.若长期这样思考问题,数学的素养一定会迅速提高.例6.设函数f(x)=ax2+bx+c的图象与两直线y=x,y=-x,均不相交.试证明对一切x R
∈都
有2
1 4
ax bx c
a
++>.
分析:因为x∈R,故|f(x)|的最小值若存在,则最小值由顶点确定,故设f(x)=a(x-x0)2+f(x0).
证明:由题意知,a≠0.设f(x)=a(x-x
)2+f(x0),则
又二次方程ax2+bx+c=±x无实根,故
Δ1=(b+1)2-4ac<0,Δ2=(b-1)2-4ac<0.
所以(b+1)2+(b-1)2-8ac<0,即2b2+2-8ac<0,即b2-4ac<-1,所以|b2-4ac|>1.
简评:从上述几个例子可以看出,在证明与二次函数有关的不等式问题时,如果针对题设条件,合理采取二次函数的不同形式,那么我们就找到了一种有效的证明途径.
例7.某城市2001年末汽车保有量为30万辆,预计此后每年报废上一年末汽车保有量的6%,并且每年新增汽车数量相同。
为了保护城市环境,要求该城市汽车保有量不超过60万辆,那么每年新增汽车数量不应超过多少辆?
解:设2001年末的汽车保有量为1a ,以后每年末的汽车保有量依次为....,32a a ,每年新增汽车x 万辆。
由题意得
)06
.0(94.006.094.011x a x a x a a n n n n -=-+=++即 万辆过即每年新增汽车不应超应有满足故要对一切自然数上式趋于时且当的减函数上式右端是关于解得令6.3,6.3,606.3,,06.0)94
.013030(,6006
.094.0)06.030(11≤≤∞→⨯-+≤≤+-
=--x a n n n x a x x a n n n n n。