八年级数学平行四边形的性质及判定同步测试题

合集下载

华师大版初中数学八年级下册《18.1 平行四边形的性质》同步练习卷(含答案解析

华师大版初中数学八年级下册《18.1 平行四边形的性质》同步练习卷(含答案解析

华师大新版八年级下学期《18.1 平行四边形的性质》同步练习卷一.选择题(共23小题)1.如图,在▱ABCD中,对角线AC、BD相交于O,α=60°.若AB=OD=2,则▱ABCD 的面积是()A.8B.C.2D.42.如图,▱ABCD中,AB=3cm,BC=5cm,BF平分∠ABC交AD于F点,CE平分∠BCD交AD于E点,则EF的长为()A.1cm B.2cm C.3cm D.4cm3.如图,在平行四边形ABCD中,对角线AC和BD相交于O,∠BCD的平分线CE与边AB相交于E,若EB=EA=EC,那么下列结论正确的个数有()①∠ACE=30°②OE∥DA ③S▱ABCD=AC•AD ④CE⊥DBA.1B.2C.3D.44.如图,在▱ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB 上,连接EF、CF,则下列结论中一定成立的是()①∠DCF=∠BCD;②EF=CF;③S△BEC <2S△CEF;④∠DFE=4∠AEF.A.①②③④B.①②③C.①②D.①②④5.如图,平行四边形纸片ABCD和CEFG上下叠放(G在CD上),CE∥AD且CE=AD,连结AF、CF.已知▱ABCD的面积为10,▱CEFG的面积为4,则图中阴影部分△AFC的面积为()A.4B.6C.7D.86.如图,已知△ABC的面积为12,点D在线段AC上,点F在线段BC的延长线上,且BC=4CF,四边形DCFE是平行四边形,则图中阴影部分的面积为()A.2B.3C.4D.67.如图,四边形ABCD是平行四边形,BE平分∠ABC,CF平分∠BCD,BE、CF 相交于点G.下列结论错误的是()A.∠BAD=2∠DFC B.若BC=4EF,则AB:BC=3:8C.AF=DE D.∠BGC=90°8.如图,已知点M为▱ABCD边AB的中点,线段CM角BD于点E,S△BEM=1,则图中阴影部分的面积为()A.2B.3C.4D.59.如图,▱ABCD中,AD=2AB,F是BC的中点,作AE⊥CD,垂足E在线段CD=S△AEF;④∠上,连接EF、AF,下列结论:①2∠BAF=∠C;②EF=AF;③S△ABF BFE=3∠CEF中,一定成立的是()A.只有①②B.只有②③C.只有①②④D.①②③④10.如图,在▱ABCD中,CD=2AD,BE⊥AD于点E,F为DC的中点,连结EF、BF,下列结论:①∠ABC=2∠ABF;②EF=BF;③S四边形DEBC=2S△EFB;④∠CFE=3∠DEF,其中正确结论的个数共有()A.1个B.2个C.3个D.4个11.如图,平行四边形ABCD的对角线AC,BD相交于点O,CE平分∠DCB交BD 于点F,且∠ABC=60°,AB=2BC,连接OE,下列结论:①∠ACD=30°②S▱ABCD=AC•BC③OE:AC=1:4④S=2S△OEF△OCF其中正确的有()A.1个B.2个C.3个D.4个12.已知▱ABCD中,AD=2AB,F是BC的中点,作AE⊥CD,垂足E在线段CD上,连结EF、AF,下列结论:①2∠BAF=∠BAD;②EF=AF;③S△ABF ≤S△AEF.中一定成立的是()A.①②B.①③C.②③D.①②③13.如图,在▱ABCD中,AD=2AB,F是AD的中点,E是AB上一点,连接CF、EF、EC,且CF=EF,下列结论正确的个数是()①CF平分∠BCD;②∠EFC=2∠CFD;③∠ECD=90°;④CE⊥AB.A.1个B.2个C.3个D.4个14.如图,在平行四边形ABCD中,AE平分∠BAD,交BC于点E,且AB=AE,延长AB与DE的延长线交于点F.下列结论中:①△ABC≌△EAD;②△ABE是等边三角形;③AD=AF;④S△ABE=S△CEF其中正确的是()A.①②③B.①②④C.②③④D.①②③④15.如图所示,在▱ABCD中,BC=6,∠ABC的平分线与CD的延长线交于点E,与AD交于点F,且点F为边AD的中点,AG⊥BE于点G,若AG=2,则BE的长度是()A.10B.8C.4D.416.如图,在▱ABCD中,AB=8,BC=5,以点A为圆心,以任意长为半径作弧,分别交AD、AB于点P、Q,再分别以P、Q为圆心,以大于PQ的长为半径作弧,两弧在∠DAB内交于点M,连接AM并延长交CD于点E,则CE的长为()A.3B.5C.2D.6.517.如图,已知□ABCD的对角线AC、BD交于点O,DE平分∠ADC交BC于点E,交AC于点F,且∠BCD=60°,BC=2CD,连结OE.下列结论:①OE∥AB;=BD•CD;②S平行四边形ABCD③AO=2BO;④S=2S△EOF.△DOF其中成立的个数有()A.1个B.2个C.3个D.4个18.如图,点P是▱ABCD内的任意一点,连接PA、PB、PC、PD,得到△PAB、△PBC、△PCD、△PDA,设它们的面积分别是S1、S2、S3、S4,给出如下结论:①S1+S3=S2+S4②如果S4>S2,则S3>S1③若S3=2S1,则S4=2S2④若S1﹣S2=S3﹣S4,则P点一定在对角线BD上.其中正确结论的个数是()A.1B.2C.3D.419.如图,E是平行四边形内任一点,若S平行四边形ABCD=8,则图中阴影部分的面积是()A.3B.4C.5D.620.如图,在平行四边形ABCD中,DE平分∠ADC交BC于E,AF⊥DE,垂足为F,已知∠DAF=50°,则∠B=()A.50°B.40°C.80°D.100°21.如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE∥AD,若AC=2,∠ADC=30°.①四边形ACED是平行四边形;②△BCE是等腰三角形;③四边形ACEB的周长是5+;④四边形ACEB的面积是16.则以上结论正确的是()A.①②B.②④C.①②③D.①③④22.如图,BD为平行四边形ABCD的对角线,∠DBC=45°,DE⊥BC于E,BF⊥CD 于F,DE、BF相交于H,直线BF交线段AD的延长线于G,下面结论:①BD= BE;②∠A=∠BHE;③AB=BH;④∠BHD=∠BDG;其中正确的个数是()A.1B.2C.3D.423.如图,F是▱ABCD的边AD上一点,连接BD,BF,BF的延长线与CD的延长线交于点E.若∠E=∠A,∠BDC=90°,则下列结论中不正确的是()A.2DF=BC B.BE=BCC.∠ADE=∠CBE D.D是CE的中点二.填空题(共4小题)24.如图,在▱ABCD中,E、F分别是AB、DC边上的点,AF与DE交于点P,BF 与CE交于点Q,若S=20cm2,S△BQC=30cm2,则图中阴影部分的面积为△APDcm2.25.如图,在平行四边形ABCD中,对角线AC、BD相交于点O,OE⊥BD交边AD于点E,若平行四边形ABCD的周长为20,则△ABE的周长等于.26.已知平行四边形ABCD中,AB=4,BC=6,BC边上的高AE=2,AF⊥DC于F,则DF的长是.27.如图,平行四边形ABCD中,AB:BC=3:2,∠DAB=60°,E在AB上,如果AE:EB=1:2,F是BC的中点,过D分别作DP⊥AF于P,DQ⊥CE于Q,那么DP:DC等于.三.解答题(共23小题)28.如图,在平行四边形中,AE⊥BC于E,AF⊥CD于F,∠EAF=60°,BE=2,DF=3,求AB,BC的长及平行四边形ABCD的面积?29.如图,平行四边形ABCD中,AE平分∠BAD,交CD于点F,交BC的延长线于点E,连结BF.(1)求证:BE=CD;(2)若点F是CD的中点.①求证BF⊥AE;②若∠BEA=60°,AB=4,求平行四边形ABCD的面积.30.如图,△ABC是直角三角形,且∠ABC=90°,四边形BCDE是平行四边形,E 为AC的中点,BD平分∠ABC,点F在AB上,且BF=BC.求证:DF=AE.31.如图,在▱ABCD中,分别以边BC,CD作等腰△BCF,△CDE,使BC=BF,CD=DE,∠CBF=∠CDE,连接AF,AE.(1)求证△ABF≌△EDA;(2)延长AB与CF相交于G.若AF⊥AE,求证BF⊥BC.32.在▱ABCD中,∠ADC的平分线交直线BC于点E、交AB的延长线于点F.(1)求证:BE=BF;(2)若∠ADC=90°,G是EF的中点,连接AG、CG.求证:AG=CG;AG⊥CG.33.如图1,在平行四边形ABCD中,E,F分别在边AD,AB上,连接CE,CF,且满足∠DCE=∠BCF,BF=DE,∠A=60°,连接EF.(1)若EF=2,求△AEF的面积;(2)如图2,取CE的中点P,连接DP,PF,DF,求证:DP⊥PF.34.如图,在▱ABCD中,BD⊥BC,∠BDC=60°,∠DAB和∠DBC的平分线相交于点E,F为AE上一点,EF=EB,G为BD延长线上一点,BG=AB,连接GE.(1)若▱ABCD的面积为9,求AB的长;(2)求证:AF=GE.35.如图,四边形ABCD为平行四边形,∠BAD的角平分线AF交CD于点E,交BC的延长线于点F.(1)求证:BF=CD;(2)连接BE,若BE⊥AF,∠F=60°,BE=2,求AB的长.36.如图,在平行四边形ABCD中,∠ABC的平分线与CD的延长线交于点E,与AD交于点F,且点F恰好为边AD的中点.(1)求证:△ABF≌△DEF;(2)若AG⊥BE于G,BC=4,AG=1,求BE的长.37.已知,在平行四边形ABCD中,E为AD上一点,且AB=AE,连接BE交AC 于点H,过点A作AF⊥BC于F,交BE于点G.(1)若∠D=50°,求∠EBC的度数;(2)若AC⊥CD,过点G作GM∥BC交AC于点M,求证:AH=MC.38.如图,在▱ABCD中,M、N分别是AD、BC的中点,∠AND=90°,连结CM交DN于点O.(1)求证:△ABN≌△CDM;(2)猜想:四边形CDMN是什么特殊四边形?并证明你的猜想;(3)过点C作CE⊥MN于点E,交DN于点P,若PE=1,∠1=∠2,求AN的长.39.已知如图,▱ABCD,AD=a,AC为对角线,BM∥AC,过点D作DE∥CM,交AC的延长线于F,交BM的延长线于E.(1)求证:△ADF≌△BCM;(2)若AC=2CF,∠ADC=60°,AC⊥DC,求四边形ABED的面积(用含a的代数式表示).40.如图所示,在▱ABCD中,AE⊥BC,垂足为E,CE=CD,点F为CE的中点,点G为CD上的一点,连接DF、EG、AG,∠1=∠2.(1)求证:CG=CD;(2)若CF=2,AE=3,求BE的长.41.如图,在▱ABCD中,E为AB中点,EF与CF分别平分∠AEC与∠DCE,G为CE中点,过G作GH∥EF交CF于点O,交CD于点H.(1)猜想四边形CGFH是什么特殊的四边形?并证明你的猜想;(2)当AB=4,且FE=FC时,求AD长.42.已知E为平行四边形ABCD中AB边上一点,且BE=AB,连接DE交BC于F,交AC于G.(1)求证:△BEF≌△CDF;(2)试探究OF与AB有什么位置关系和数量关系,并说明理由.43.已知:如图,平行四边形ABCD的对角线相交于点O,点E在边BC的延长线上,且OE=OB,联结DE.(1)求证:DE⊥BE;(2)设CD与OE交于点F,若OF2+FD2=OE2,CE=3,DE=4,求线段CF的长.44.如图,在▱ABCD中,点E是BC边的中点,连接AE并延长与DC的延长线交于F.(1)求证:CF=CD;(2)若AD=2AB,连接DE,试判断DE与AF的位置关系,并说明理由.45.如图,在▱ABCD中,∠BCD=120°,分别以BC和CD为边作等边△BCE和等边△CDF.求证:AE=AF.46.已知:如图,▱ABCD中,对角线AC,BD相交于点O,延长BC至E,使CE=BC,连接AE交CD于点F.(1)求证:CF=FD;(2)若AD=DC=6,求:∠BDE的度数和OF的长.47.在平行四边形ABCD中,E是BC上任意一点,延长AE交DC的延长线与点F.(1)在图 中当CE=CF时,求证:AF是∠BAD的平分线.(2)根据(1)的条件和结论,若∠ABC=90°,G是EF的中点(如图‚),请求出∠BDG的度数.(3)如图 ,根据(1)的条件和结论,若∠BAD=60°,且FG∥CE,FG=CE,连接DB、DG,求出∠BDG的度数.48.在平行四边形ABCD中,∠BAD的平分线交直线BC于E,交直线DC于F.(1)在图1中证明CE=CF;(2)若∠ABC=90°,G是EF的中点(如图2),讨论线段DG与BD的数量关系.49.在▱ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F.(1)在图1中证明CE=CF;(2)若∠ABC=120°,FG∥CE,FG=CE,分别连结DB、DG(如图2),求∠BDG 的度数.50.如图,已知平行四边形ABCD中,DE⊥BC于点E,DH⊥AB于点H,AF平分∠BAD,分别交DC、DE、DH于点F、G、M,且DE=AD,CE=3,AB=5.(1)求线段CF的长度;(2)求证:AB=DG+CE.华师大新版八年级下学期《18.1 平行四边形的性质》同步练习卷参考答案与试题解析一.选择题(共23小题)1.如图,在▱ABCD中,对角线AC、BD相交于O,α=60°.若AB=OD=2,则▱ABCD 的面积是()A.8B.C.2D.4【分析】根据等边三角形的判定得出△DOC是等边三角形,再根据平行四边形的性质和的面积公式即可求解.【解答】解:∵在▱ABCD中,∴AB=DC,∵α=60°.AB=OD=2,∴△DOC是等边三角形,∴△DOC的面积=,∴▱ABCD的面积=4△DOC的面积=4,故选:D.【点评】本题考查了平行四边形的性质和面积,解此题的关键是熟练掌握平行四边形的性质.2.如图,▱ABCD中,AB=3cm,BC=5cm,BF平分∠ABC交AD于F点,CE平分∠BCD交AD于E点,则EF的长为()A.1cm B.2cm C.3cm D.4cm【分析】根据平行四边形的性质可知∠AEB=∠EBC,又因为BE平分∠ABC,所以∠ABE=∠EBC,则∠ABE=∠AEB,则AB=AE=3,同理可证FD=3,继而可求得EF=AE+DE﹣AD.【解答】解:∵四边形ABCD是平行四边形,∴∠AEB=∠EBC,AD=BC=5cm,∵BE平分∠ABC,∴∠ABE=∠EBC,则∠ABE=∠AEB,∴AB=AE=3cm,同理可证:DF=DC=AB=3cm,则EF=AE+FD﹣AD=3+3﹣5=1cm.故选:A.【点评】本题主要考查了平行四边形的性质,在平行四边形中,当出现角平分线时,一般可构造等腰三角形,进而利用等腰三角形的性质解题.3.如图,在平行四边形ABCD中,对角线AC和BD相交于O,∠BCD的平分线CE与边AB相交于E,若EB=EA=EC,那么下列结论正确的个数有()①∠ACE=30°②OE∥DA ③S▱ABCD=AC•AD ④CE⊥DBA.1B.2C.3D.4【分析】想办法证明∠ACB=90°,△BCE是等边三角形即可解决问题;【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,OD=DB,∴∠DCA=∠CEB,∵∠DCA=∠BCE,∴∠BCE=∠CEB,∴BC=EC,∵EB=EA=EC,∴∠ACB=90°,EC=BC=EB,∴△BEC是等边三角形,∴∠ABC=60°,∴∠CAB=30°,故①正确,∵OD=DB,AE=EB,∴OE∥AD,故②正确,∵AD∥BC,∴∠DAC=∠ACB=90°,∴AD⊥AC,∴S▱ABCD=AC•AD,故③正确,假设CE⊥BD,则推出四边形ABCD是菱形,显然不可能,故④错误,故选:C.【点评】本题考查平行四边形的性质、直角三角形的判定和性质、等边三角形的判定和性质、三角形的中位线定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.4.如图,在▱ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB 上,连接EF、CF,则下列结论中一定成立的是()①∠DCF=∠BCD;②EF=CF;③S△BEC <2S△CEF;④∠DFE=4∠AEF.A.①②③④B.①②③C.①②D.①②④【分析】分别利用平行四边形的性质以及全等三角形的判定与性质得出△AEF≌△DMF(ASA),得出对应线段之间关系进而得出答案.【解答】解:①∵F是AD的中点,∴AF=FD,∵在▱ABCD中,AD=2AB,∴AF=FD=CD,∴∠DFC=∠DCF,∵AD∥BC,∴∠DFC=∠FCB,∴∠DCF=∠BCF,∴∠DCF=∠BCD,故①正确;延长EF,交CD延长线于M,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A=∠MDF,∵F为AD中点,∴AF=FD,在△AEF和△DFM中,,∴△AEF≌△DMF(ASA),∴FE=MF,∠AEF=∠M,∵CE⊥AB,∴∠AEC=90°,∴∠AEC=∠ECD=90°,∵FM=EF,∴CF=EF,故②正确;③∵EF=FM,∴S=S△CFM,△EFC∵MC>BE,∴S△BEC <2S△EFC故③正确;④设∠FEC=x,则∠FCE=x,∴∠DCF=∠DFC=90°﹣x,∴∠EFC=180°﹣2x,∴∠EFD=90°﹣x+180°﹣2x=270°﹣3x,∵∠AEF=90°﹣x,∴∠DFE=3∠AEF,故④错误.故选:B.【点评】此题主要考查了平行四边形的性质以及全等三角形的判定与性质等知识,得出△AEF≌△DMF是解题关键.5.如图,平行四边形纸片ABCD和CEFG上下叠放(G在CD上),CE∥AD且CE=AD,连结AF、CF.已知▱ABCD的面积为10,▱CEFG的面积为4,则图中阴影部分△AFC的面积为()A.4B.6C.7D.8【分析】作EN⊥AB,延长DC交EN与M,由S阴影=S四边形FEBA﹣S△EFC﹣S△ABC可求阴影部分面积.【解答】解:如图作EN⊥AB,延长DC交EN与M∵AB∥CD,AN⊥EN∴CM⊥EN∵AB∥CD∴且EC=AD=BC ∴EM=MN∵S阴影=S四边形FEBA﹣S△EFC﹣S△ABC=﹣EF×EM﹣AB×MN∴S阴影=(EF+AB)×EM﹣﹣EF×EM﹣AB×MN=EF×EM+AB×MN=S四边形EFGC +S四边形ABCD且S四边形EFGC=4,S四边形ABCD=10∴S阴影=7故选:C.【点评】本题考查了平行四边形的性质,关键是作出平行四边形的高,用已知面积表示阴影部分面积.6.如图,已知△ABC的面积为12,点D在线段AC上,点F在线段BC的延长线上,且BC=4CF,四边形DCFE是平行四边形,则图中阴影部分的面积为()A.2B.3C.4D.6【分析】想办法证明S阴=S△ADE+S△DEC=S△AEC,再由EF∥AC,可得S△AEC=S△ACF解决问题;【解答】解:连接AF、EC.∵BC=4CF,S△ABC=12,∴S△ACF=×12=3,∵四边形CDEF是平行四边形,∴DE∥CF,EF∥AC,∴S△DEB=S△DEC,∴S阴=S△ADE+S△DEC=S△AEC,∵EF∥AC,∴S△AEC=S△ACF=3,∴S阴=3.故选:B.【点评】本题考查平行四边形的性质、三角形的面积、等高模型等知识,解题的关键是熟练掌握等高模型解决问题,学会用转化的思想思考问题,属于中考常考题型.7.如图,四边形ABCD是平行四边形,BE平分∠ABC,CF平分∠BCD,BE、CF 相交于点G.下列结论错误的是()A.∠BAD=2∠DFC B.若BC=4EF,则AB:BC=3:8C.AF=DE D.∠BGC=90°【分析】求出AB=CD,AD∥BC,根据平行线性质和角平分线性质求出∠ABE=∠AEB,推出AB=AE,同理求出DF=CD,求出AE=DF可知选项C正确,由∠A=∠BCD=2∠FDC,可知选项A正确,由∠GBC=∠ABC,∠GCB=∠BCD,又∠ABC+∠BCD=180°,推出∠GBC+∠GCB=90°,可知D正确;【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,AD∥BC,∠A=∠BCD,∴∠AEB=∠EBC,∠BCF=∠DFC,∵BE平分∠ABC,CF平分∠BCD,∴∠ABE=∠CBE,∠BCF=∠DCF,∴∠ABE=∠AEB,∴∠BAD=2∠DFC,故A正确∴AB=AE,同理DF=CD,∴AE=DF,即AE﹣EF=DF﹣EF,∴AF=DE.故C正确∵∠GBC=∠ABC,∠GCB=∠BCD,又∠ABC+∠BCD=180°,∴∠GBC+∠GCB=90°,∴∠BGC=90°,故D正确,故选:B.【点评】本题考查平行四边形的性质、等腰三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.8.如图,已知点M为▱ABCD边AB的中点,线段CM角BD于点E,S△BEM=1,则图中阴影部分的面积为()A.2B.3C.4D.5【分析】由四边形ABCD是平行四边形,推出AB=CD,AB∥CD,由AM=BM,推=2S△EBM,S△EBC=2S△EBM,由此即可解决问题;出===,可得S△DEM【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∵AM=BM,∴===,=2S△EBM,S△EBC=2S△EBM,∴S△DEM=1,∵S△BEM=S△EBC=2,∴S△DEM=2+2=4,∴S阴故选:C.【点评】本题考查平行四边形的性质、平行线分线段成比例定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.9.如图,▱ABCD中,AD=2AB,F是BC的中点,作AE⊥CD,垂足E在线段CD=S△AEF;④∠上,连接EF、AF,下列结论:①2∠BAF=∠C;②EF=AF;③S△ABF BFE=3∠CEF中,一定成立的是()A.只有①②B.只有②③C.只有①②④D.①②③④【分析】利用平行四边形的性质:平行四边形的对边相等且平行,再由全等三角形的判定得出△MBF≌△ECF,利用全等三角形的性质得出对应线段之间关系进而得出答案.【解答】解:①∵F是BC的中点,∴BF=FC,∵在▱ABCD中,AD=2AB,∴BC=2AB=2CD,∴BF=FC=AB,∴∠AFB=∠BAF,∵AD∥BC,∴∠AFB=∠DAF,∴∠BAF=∠FAB,∴2∠BAF=∠BAD,∵∠BAD=∠C,∴∠BAF=2∠C故①正确;②延长EF,交AB延长线于M,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠MBF=∠C,∵F为BC中点,∴BF=CF,在△MBF和△ECF中,,∴△MBF≌△ECF(ASA),∴FE=MF,∠CEF=∠M,∵CE⊥AE,∴∠AEC=90°,∴∠AEC=∠BAE=90°,∵FM=EF,∴EF=AF,故②正确;③∵EF=FM,∴S△AEF=S△AFM,∴S△ABF <S△AEF,故③错误;④设∠FEA=x,则∠FAE=x,∴∠BAF=∠AFB=90°﹣x,∴∠EFA=180°﹣2x,∴∠EFB=90°﹣x+180°﹣2x=270°﹣3x,∵∠CEF=90°﹣x,∴∠BFE=3∠CEF,故④正确,故选:C.【点评】此题主要考查了平行四边形的性质以及全等三角形的判定与性质等知识,解决本题的关键是得出△AEF≌△DME.10.如图,在▱ABCD中,CD=2AD,BE⊥AD于点E,F为DC的中点,连结EF、BF,下列结论:①∠ABC=2∠ABF;②EF=BF;③S四边形DEBC=2S△EFB;④∠CFE=3∠DEF,其中正确结论的个数共有()A.1个B.2个C.3个D.4个【分析】如图延长EF交BC的延长线于G,取AB的中点H连接FH.想办法证明EF=FG,BE⊥BG,四边形BCFH是菱形即可解决问题;【解答】解:如图延长EF交BC的延长线于G,取AB的中点H连接FH.∵CD=2AD,DF=FC,∴CF=CB,∴∠CFB=∠CBF,∵CD∥AB,∴∠CFB=∠FBH,∴∠CBF=∠FBH,∴∠ABC=2∠ABF.故①正确,∵DE∥CG,∴∠D=∠FCG,∵DF=FC,∠DFE=∠CFG,∴△DFE≌△FCG,∴FE=FG,∵BE⊥AD,∴∠AEB=90°,∵AD∥BC,∴∠AEB=∠EBG=90°,∴BF=EF=FG,故②正确,=S△CFG,∵S△DFE=S△EBG=2S△BEF,故③正确,∴S四边形DEBC∵AH=HB,DF=CF,AB=CD,∴CF=BH,∵CF∥BH,∴四边形BCFH是平行四边形,∵CF=BC,∴四边形BCFH是菱形,∴∠BFC=∠BFH,∵FE=FB,FH∥AD,BE⊥AD,∴FH⊥BE,∴∠BFH=∠EFH=∠DEF,∴∠EFC=3∠DEF,故④正确,故选:D.【点评】本题考查平行四边形的性质和判定、菱形的判定和性质、直角三角形斜边中线的性质、全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考选择题中的压轴题.11.如图,平行四边形ABCD的对角线AC,BD相交于点O,CE平分∠DCB交BD 于点F,且∠ABC=60°,AB=2BC,连接OE,下列结论:①∠ACD=30°②S▱ABCD=AC•BC③OE:AC=1:4=2S△OEF④S△OCF其中正确的有()A.1个B.2个C.3个D.4个【分析】由四边形ABCD是平行四边形,得到∠ABC=∠ADC=60°,∠BAD=120°,根据角平分线的定义得到∠DCE=∠BCE=60°推出△CBE是等边三角形,证得∠ACB=90°,求出∠ACD=∠CAB=30°,故①正确;由AC⊥BC,得到S▱ABCD=AC•BC,故②正确,根据直角三角形的性质得到AC=BC,根据三角形的中位线的性质得到OE=BC,于是得到OE:AC=:6;故③错误;根据相似三角形的性=2S△OEF;故④正确.质得到=2,求得S△OCF【解答】解:∵四边形ABCD是平行四边形,∴∠ABC=∠ADC=60°,∠BAD=120°,∵CE平分∠BCD交AB于点E,∴∠DCE=∠BCE=60°∴△CBE是等边三角形,∴BE=BC=CE,∵AB=2BC,∴AE=BC=CE,∴∠ACB=90°,∴∠ACD=∠CAB=30°,故①正确;∵AC⊥BC,∴S▱ABCD=AC•BC,故②正确,在Rt△ACB中,∠ACB=90°,∠CAB=30°,∴AC=,∵AO=OC,AE=BE,∴OE=BC,∴OE:AC=,∴OE:AC=:6;故③错误;∵AO=OC,AE=BE,∴OE∥BC,∴△OEF∽△BCF,∴=2:1,∴S△OCF :S△OEF==2,∴S△OCF=2S△OEF;故④正确.故选:C.【点评】此题考查了相似三角形的判定和性质,平行四边形的性质、三角形中位线的性质以及等边三角形的判定与性质.注意证得△BCE是等边三角形,OE 是△ABC的中位线是关键.12.已知▱ABCD中,AD=2AB,F是BC的中点,作AE⊥CD,垂足E在线段CD上,连结EF、AF,下列结论:①2∠BAF=∠BAD;②EF=AF;③S△ABF ≤S△AEF.中一定成立的是()A.①②B.①③C.②③D.①②③【分析】利用平行四边形的性质:平行四边形的对边相等且平行,再由全等三角形的判定得出△MBF≌△ECF,利用全等三角形的性质得出对应线段之间关系进而得出答案.【解答】解:①∵F是BC的中点,∴BC=2BF,∵在▱ABCD中,AD=2AB,∴BC=2AB,∴BF=AB,∴∠AFB=∠BAF,∵AD∥BC,∴∠AFB=∠DAF,∴∠BAF=∠FAB,∴2∠BAF=∠BAD,故①正确;②延长EF,交AB延长线于M,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠MBF=∠C,∵F为BC中点,∴BF=CF,在△MBF和△ECF中,,∴△MBF≌△ECF(ASA),∴FE=MF,∵CE⊥AE,∴∠AEC=90°,∴∠AEC=∠BAE=90°,∵FM=EF,∴EF=AF,故②正确;③∵EF=FM,∴S△AFE=S△AFM,∴S△ABF ≤S△AEF,故③正确;故选:D.【点评】此题主要考查了平行四边形的性质以及全等三角形的判定与性质等知识,解决本题的关键是得出△MBF≌△ECF.13.如图,在▱ABCD中,AD=2AB,F是AD的中点,E是AB上一点,连接CF、EF、EC,且CF=EF,下列结论正确的个数是()①CF平分∠BCD;②∠EFC=2∠CFD;③∠ECD=90°;④CE⊥AB.A.1个B.2个C.3个D.4个【分析】①只要证明DF=DC,利用平行线的性质可得∠DCF=∠DFC=∠FCB;②延长EF和CD交于M,根据平行四边形的性质得出AB∥CD,根据平行线的性质得出∠A=∠FDM,证△EAF≌△MDF,推出EF=MF,求出CF=MF,求出∠M=∠FCD=∠CFD,根据三角形的外角性质求出即可;③④求出∠ECD=90°,根据平行线的性质得出∠BEC=∠ECD,即可得出答案.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,AD∥BC,∵AF=DF,AD=2AB,∴DF=DC,∴∠DCF=∠DFC=∠FCB,∴CF平分∠BCD,故①正确,延长EF和CD交于M,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A=∠FDM,在△EAF和△MDF中,,∴△EAF≌△MDF(ASA),∴EF=MF,∵EF=CF,∴CF=MF,∴∠FCD=∠M,∵由(1)知:∠DFC=∠FCD,∴∠M=∠FCD=∠CFD,∵∠EFC=∠M +∠FCD=2∠CFD ;故②正确,∵EF=FM=CF ,∴∠ECM=90°,∵AB ∥CD ,∴∠BEC=∠ECM=90°,∴CE ⊥AB ,故③④正确,故选:D .【点评】本题考查了平行四边形的性质,平行线的性质,全等三角形的性质和判定,等腰三角形的性质和判定的应用,能综合运用知识点进行推理是解此题的关键.14.如图,在平行四边形ABCD 中,AE 平分∠BAD ,交BC 于点E ,且AB=AE ,延长AB 与DE 的延长线交于点F .下列结论中:①△ABC ≌△EAD ;②△ABE 是等边三角形;③AD=AF ;④S △ABE =S △CEF 其中正确的是( )A .①②③B .①②④C .②③④D .①②③④【分析】由平行四边形的性质得出AD ∥BC ,AD=BC ,由AE 平分∠BAD ,可得∠BAE=∠DAE ,可得∠BAE=∠BEA ,得AB=BE ,由AB=AE ,得到△ABE 是等边三角形,②正确;则∠ABE=∠EAD=60°,由SAS 证明△ABC ≌△EAD ,①正确;由△FCD 与△ABD 等底(AB=CD )等高(AB 与CD 间的距离相等),得出S △FCD =S △ABD ,由△AEC 与△DEC 同底等高,所以S △AEC =S △DEC ,得出S △ABE =S △CEF .④正确.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠EAD=∠AEB,又∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠BEA,∴AB=BE,∵AB=AE,∴△ABE是等边三角形;②正确;∴∠ABE=∠EAD=60°,∵AB=AE,BC=AD,∴△ABC≌△EAD(SAS);①正确;∵△FCD与△ABC等底(AB=CD)等高(AB与CD间的距离相等),=S△ABC,∴S△FCD又∵△AEC与△DEC同底等高,=S△DEC,∴S△AEC∴S=S△CEF;④正确.△ABE若AD与AF相等,即∠AFD=∠ADF=∠DEC即EC=CD=BE即BC=2CD,题中未限定这一条件∴③不一定正确;∴①②④正确,故选:B.【点评】此题考查了平行四边形的性质、等边三角形的判定与性质、全等三角形的判定与性质.此题比较复杂,注意将每个问题仔细分析.15.如图所示,在▱ABCD中,BC=6,∠ABC的平分线与CD的延长线交于点E,与AD交于点F,且点F为边AD的中点,AG⊥BE于点G,若AG=2,则BE的长度是()A.10B.8C.4D.4【分析】根据平行四边形的性质和角平分线的定义可求出AB=AF,再根据等腰三角形的性质可求出BG的长,进而可求出BF的长,根据全等三角形的性质得到BF=EF,所以BE=2BF,问题得解.【解答】解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ABF=∠E,∵点F恰好为边AD的中点,∴AF=DF,在△ABF与△DEF中,,∴△ABF≌△DEF,∴BF=EF,BE=2BF,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=6,∵∠AFB=∠FBC,∵∠ABC的平分线与CD的延长线相交于点E,∴∠ABF=∠FBC,∴∠AFB=∠ABF,∴AB=AF,∵点F为AD边的中点,AG⊥BE.∴BG==,∴BF=2,∴BE=2BF=4.故选:C.【点评】本题考查了平行四边形的性质、全等三角形的判定与性质、角平分线的定义、等腰三角形的判定和性质、勾股定理的运用,题目的综合性较强,难度中等.16.如图,在▱ABCD中,AB=8,BC=5,以点A为圆心,以任意长为半径作弧,分别交AD、AB于点P、Q,再分别以P、Q为圆心,以大于PQ的长为半径作弧,两弧在∠DAB内交于点M,连接AM并延长交CD于点E,则CE的长为()A.3B.5C.2D.6.5【分析】根据作图过程可得得AE平分∠DAB;再根据角平分线的性质和平行四边形的性质可证明∠DAE=∠DEA,证出AD=DE=5,即可得出CE的长.【解答】解:根据作图的方法得:AE平分∠DAB,∴∠DAE=∠EAB,∵四边形ABCD是平行四边形,∴DC∥AB,AD=BC=5,∴∠DEA=∠EAB,∴∠DAE=∠DEA,∴AD=DE=5,∴CE=DC﹣DE=8﹣5=3;【点评】此题考查了平行四边形的性质、等腰三角形的判定.熟练掌握平行四边形的性质,证出AD=DE是解决问题的关键.17.如图,已知□ABCD的对角线AC、BD交于点O,DE平分∠ADC交BC于点E,交AC于点F,且∠BCD=60°,BC=2CD,连结OE.下列结论:①OE∥AB;=BD•CD;②S平行四边形ABCD③AO=2BO;=2S△EOF.④S△DOF其中成立的个数有()A.1个B.2个C.3个D.4个【分析】①证明BE=CE,OA=OC,根据三角形中位线定理可得结论正确;②证明BD⊥CD,可得结论正确;③设AB=x,分别表示OA和OB的长,可以作判断;④先根据平行线分线段成比例定理可得:DF=2EF,由同高三角形面积的比等于对应底边的比可作判断.【解答】解:①∵四边形ABCD是平行四边形,∴AD∥BC,OA=OC,∴∠ADC+∠BCD=180°,∵∠BCD=60°,∴∠ADC=120°,∵DE平分∠ADC,∴∠CDE=60°=∠BCD,∴△CDE是等边三角形,∴CE=CD,∵BC=2CD,∴BE=CE,∴OE∥AB;故①正确;②∵△DEC是等边三角形,∴∠DEC=60°=∠DBC+∠BDE,∵BE=EC=DE,∴∠DBC=∠BDE=30°,∴∠BDC=30°+60°=90°,∴BD⊥CD,∴S=BD•CD;平行四边形ABCD故②正确;③设AB=x,则AD=2x,则BD=x,∴OB=,由勾股定理得:AO==x,故③不正确;④∵AD∥EC,∴=,∴DF=2EF,=2S△EOF.∴S△DOF故④正确;故选:C.【点评】此题考查了平行线分线段成比例定理,平行四边形的性质、三角形中位线的性质以及等边三角形的判定与性质.注意证得△BCE是等边三角形,OE 是△ABC的中位线是关键.18.如图,点P是▱ABCD内的任意一点,连接PA、PB、PC、PD,得到△PAB、△PBC、△PCD、△PDA,设它们的面积分别是S1、S2、S3、S4,给出如下结论:①S1+S3=S2+S4②如果S4>S2,则S3>S1③若S3=2S1,则S4=2S2④若S1﹣S2=S3﹣S4,则P点一定在对角线BD上.其中正确结论的个数是()A.1B.2C.3D.4【分析】根据平行四边形的对边相等可得AB=CD,AD=BC,设点P到AB、BC、CD、DA的距离分别为h1、h2、h3、h4,然后利用三角形的面积公式列式整理即可判断出①正确;根据三角形的面积公式即可判断②③错误;根据已知进行变形,求出S1+S4=S2+S3=S△ABD=S△BDC=S平行四边形ABCD,即可判断④.【解答】解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,设点P到AB、BC、CD、DA的距离分别为h1、h2、h3、h4,则S1=ABh1,S2=BCh2,S3=CDh3,S4=ADh4,∵ABh1+CDh3=AB•h AB,BCh2+ADh4=C•h BC,又∵S=AB•h AB=BC•h BC平行四边形ABCD∴S2+S4=S1+S3,故①正确;根据S4>S2只能判断h4>h2,不能判断h3>h1,即不能得出S3>S1,∴②错误;根据S3=2S1,能得出h3=2h1,不能推出h4=2h2,即不能推出S4=2S2,∴③错误;∵S1﹣S2=S3﹣S4,∴S1+S4=22+S3=S平行四边形ABCD,此时S1+S4=S2+S3=S△ABD=S△BDC=S平行四边形ABCD,即P点一定在对角线BD上,∴④正确;故选:B.【点评】本题考查了平行四边形的性质,三角形的面积,以及平行四边形对角线上点的判定的应用,用平行四边形的面积表示出相对的两个三角形的面积的和是解题的关键,也是本题的难点.19.如图,E 是平行四边形内任一点,若S 平行四边形ABCD =8,则图中阴影部分的面积是( )A .3B .4C .5D .6【分析】根据三角形面积公式可知,图中阴影部分面积等于平行四边形面积的一半.所以S 阴影=S 四边形ABCD .【解答】解:设两个阴影部分三角形的底为AD ,CB ,高分别为h 1,h 2,则h 1+h 2为平行四边形的高,∴S △EAD +S △ECB=AD•h 1+CB•h 2=AD (h 1+h 2)=S 四边形ABCD=4.故选:B .【点评】本题主要考查了三角形的面积公式和平行四边形的性质(平行四边形的两组对边分别相等).要求能灵活的运用等量代换找到需要的关系.20.如图,在平行四边形ABCD 中,DE 平分∠ADC 交BC 于E ,AF ⊥DE ,垂足为F ,已知∠DAF=50°,则∠B=( )A .50°B .40°C .80°D .100°【分析】由平行四边形的性质及角平分线的性质可得∠ADC 的大小,进而可求解∠B 的度数.【解答】解:在Rt △ADF 中,∵∠DAF=50°,∴∠ADE=40°,又∵DE平分∠ADC,∴∠ADC=80°,∴∠B=∠ADC=80°.故选:C.【点评】本题主要考查平行四边形的性质及角平分线的性质,应熟练掌握,并能做一些简单的计算问题.21.如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE∥AD,若AC=2,∠ADC=30°.①四边形ACED是平行四边形;②△BCE是等腰三角形;③四边形ACEB的周长是5+;④四边形ACEB的面积是16.则以上结论正确的是()A.①②B.②④C.①②③D.①③④【分析】证明AC∥DE,再由条件CE∥AD可证明四边形ACED是平行四边形;根据线段的垂直平分线证明AE=EB可得△BCE是等腰三角形;首先利用三角函数计算出AD=4,CD=2,再算出AB长可得四边形ACEB的周长是10+2,利用△ACB和△CBE的面积和可得四边形ACEB的面积.【解答】解:①∵∠ACB=90°,DE⊥BC,∴∠ACD=∠CDE=90°,∴AC∥DE,∵CE∥AD,∴四边形ACED是平行四边形,故①正确;②∵D是BC的中点,DE⊥BC,∴EC=EB,∴△BCE是等腰三角形,故②正确;③∵AC=2,∠ADC=30°,∴AD=4,CD=2,∵四边形ACED是平行四边形,∴CE=AD=4,∵CE=EB,∴EB=4,DB=2,∴CB=4,∴AB==2,∴四边形ACEB的周长是10+2故③错误;④四边形ACEB的面积:×2×4+×4×2=8,故④错误,故选:A.【点评】本题主要考查了平行四边形的判定和性质、等腰三角形的判定和性质、特殊角三角函数、勾股定理、线段的垂直平分线的性质等知识,解题的关键是熟练掌握平行四边形的判定方法.等腰三角形的判定方法,属于中考常考题型.22.如图,BD为平行四边形ABCD的对角线,∠DBC=45°,DE⊥BC于E,BF⊥CD 于F,DE、BF相交于H,直线BF交线段AD的延长线于G,下面结论:①BD= BE;②∠A=∠BHE;③AB=BH;④∠BHD=∠BDG;其中正确的个数是()A.1B.2C.3D.4【分析】通过判断△BDE为等腰直角三角形,得到BE=DE,BD=BE,则可对①进行判断;根据等角的余角相等得到∠BHE=∠C,再根据平行四边形的性质得到∠A=∠C,则∠A=∠BHE,于是可对②进行判断;根据“AAS”可证明△BEH≌△DEC,得到BH=CD,接着由平行四边形的性质得AB=CD,则AB=BH,运算可对③进行判断;因为∠BDH=90°+∠EBH,∠BDG=90°+∠BDE,由∠BDE>∠EBH,推出∠BDG>∠BHD,所以④错误;【解答】解:∵∠DBC=45°,DE⊥BC,∴△BDE为等腰直角三角形,∴BE=DE,BD=BE,所以①正确;∵BF⊥CD,∴∠C+∠CBF=90°,而∠BHE+∠CBF=90°,∴∠BHE=∠C,∵四边形ABCD为平行四边形,∴∠A=∠C,∴∠A=∠BHE,所以②正确;在△BEH和△DEC中,∴△BEH≌△DEC,∴BH=CD,∵四边形ABCD为平行四边形,∴AB=CD,∴AB=BH,所以③正确;∵∠BDH=90°+∠EBH,∠BDG=90°+∠BDE,∵∠BDE>∠EBH,∴∠BDG>∠BHD,所以④错误;故选:C.。

2021-2022学年浙教版八年级数学下册《4-2平行四边形及其性质》同步作业题(附答案)

2021-2022学年浙教版八年级数学下册《4-2平行四边形及其性质》同步作业题(附答案)

2021-2022学年浙教版八年级数学下册《4-2平行四边形及其性质》同步作业题(附答案)1.下列性质中,平行四边形不一定具备的是()A.邻角互补B.对角互补C.对边相等D.对角线互相平分2.平行四边形OABC在平面直角坐标系中的位置如图所示,∠AOC=45°,OA=OC=,则点B的坐标为()A.(,1)B.(1,)C.(+1,1)D.(1,+1)3.如图,在▱ABCD中,已知AD=5cm,AB=3cm,AE平分∠BAD交BC边于点E,则EC 等于()A.1cm B.2cm C.3cm D.4cm4.如图,在▱ABCD中,CE平分∠BCD,交AB于点E,EA=3,EB=5,ED=4.则CE 的长是()A.5B.6C.4D.55.如图,在▱ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,AB=6,EF=2,则BC长为()A.8B.10C.12D.146.如图,四边形ABCD是平行四边形,以点A为圆心、AB的长为半径画弧交AD于点F,再分别以点B,F为圆心、大于BF的长为半径画弧,两弧交于点M,作射线AM交BC 于点E,连接EF.下列结论中不一定成立的是()A.BE=EF B.EF∥CD C.AE平分∠BEF D.AB=AE7.如图,平行四边形ABCD中,E,F分别为AD,BC边上的一点,增加下列条件,不一定能得出BE∥DF的是()A.AE=CF B.BE=DF C.∠EBF=∠FDE D.∠BED=∠BFD 8.如图所示,在平行四边形中,EF过对角线的交点,若AB=4,BC=7,OE=3,则四边形EFDC的周长是()A.14B.11C.17D.109.如图,平行四边形ABCD的对角线AC与BD相交于点O,AE⊥BC,垂足为E,AB=2,AC=4,BD=8,则点D到BC的距离为()A.B.3C.D.10.如图,已知平行四边形ABCD的面积为8,E、F分别是BC、CD的中点,则△AEF的面积为()A.2B.3C.4D.511.如图,已知△ABC的面积为12,点D在线段AC上,点F在线段BC的延长线上,且BC=4CF,四边形DCFE是平行四边形,则图中阴影部分的面积为()A.2B.3C.4D.612.如图,在平行四边形ABCD中,P是CD边上一点,且AP和BP分别平分∠DAB和∠CBA,若AD=5,AP=8,则△APB的周长是.13.如图,平行四边形ABCD的周长为18cm,AC,BD相交于点O,△OBC的周长比△OAB 的周长小2cm,则AB的长度为cm.14.如图,▱ABCD中,对角线AC、BD交于点O,OE⊥AC交AB于点E,已知△BCE的周长为14,则▱ABCD的周长为.15.在▱ABCD中,BC边上的高为4,AB=5,AC=2,则▱ABCD的周长等于.16.某平行四边形的两边分别为6cm和8cm,如果该平行四边形的高为7cm,那么它的面积是.17.如图,平行四边形ABCD中,AE平分∠BAD,交BC于点E,且AB=AE,延长AB与DE的延长线交于点F.下列结论中:①△ABC≌△AED;②△ABE是等边三角形;③AD =AF;④S△ABE=S△CDE;⑤S△ABE=S△CEF.其中正确的是.18.如图,在平行四边形ABCD中,点E,F分别是边AD,BC的中点.(1)求证:AF=CE;(2)若四边形AECF的周长为10,AF=3,AB=2,求平行四边形ABCD的周长.19.如图,▱ABCD中,BD⊥AD,∠A=45°,E、F分别是AB,CD上的点,且BE=DF,连接EF交BD于O.(1)求证:BO=DO;(2)若EF⊥AB,延长EF交AD的延长线于G,当FG=1时,求AD的长.20.已知:如图,在平行四边形ABCD中,点M在边AD上,且AM=DM.CM、BA的延长线相交于点E.求证:(1)AE=AB;(2)如果BM平分∠ABC,求证:BM⊥CE.21.如图,在▱ABCD中,点E为BC上一点,连接AE并延长交DC的延长线于点F,AD =DF,连接DE.(1)求证:AE平分∠BAD;(2)若点E为BC中点,∠B=60°,AD=4,求▱ABCD的面积.参考答案1.解:A、平行四边形邻角互补,正确,不合题意;B、平行四边形对角不一定互补,错误,符合题意;C、平行四边形对边相等,正确,不合题意.D、平行四边形对角线互相平分,正确,不合题意;故选:B.2.解:过B作BF⊥OA,交x轴于点F,∵四边形OABC是平行四边形,OA=OC=,∴AB∥OC,AB=OC=,∠BAF=∠COA=45°,∵BF⊥OA,∴AF=BF=AB=1,∴OF=OA+AF=+1,∴点B的坐标是(+1,1),故选:C.3.解:∵AD∥BC,∴∠DAE=∠BEA,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠BEA,∴BE=AB=3cm,∵BC=AD=5cm,∴EC=BC﹣BE=5﹣3=2cm,故选:B.4.解:∵CE平分∠BCD,∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,AB∥CD,∴∠BEC=∠DCE,∴∠BEC=∠BCE,∴BC=BE=5,∴AD=5,∵EA=3,ED=4,在△AED中,32+42=52,即EA2+ED2=AD2,∴∠AED=90°,∴CD=AB=3+5=8,∠EDC=90°,在Rt△EDC中,CE===4.故选:C.5.解:∵四边形ABCD是平行四边形,∴AD∥BC,DC=AB=6,AD=BC,∴∠AFB=∠FBC,∵BF平分∠ABC,∴∠ABF=∠FBC,则∠ABF=∠AFB,∴AF=AB=6,同理可证:DE=DC=6,∵EF=AF+DE﹣AD=2,即6+6﹣AD=2,解得:AD=10;故选:B.6.解:由尺规作图可知:AF=AB,AE平分∠BAD,∴∠BAE=∠DAE,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠BAE=∠BEA,∴AB=BE,∵AF=AB,∴AF=BE,∵AF∥BE,∴四边形ABEF是平行四边形,∵AF=AB,∴四边形ABEF是菱形,∴AE平分∠BEF,BE=EF,EF∥AB,故选项A、C正确,∵CD∥AB,∴EF∥CD,故选项B正确;故选:D.7.解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,A、∵AE=CF,∴DE=BF,∴四边形BFDE是平行四边形,∴BE∥DF,故本选项能判定BE∥DF;B、∵BE=DF,∴四边形BFDE是等腰梯形,∴本选项不一定能判定BE∥DF;C、∵AD∥BC,∴∠BED+∠EBF=180°,∠EDF+∠BFD=180°,∵∠EBF=∠FDE,∴∠BED=∠BFD,∴四边形BFDE是平行四边形,∴BE∥DF,故本选项能判定BE∥DF;D、∵AD∥BC,∴∠BED+∠EBF=180°,∠EDF+∠BFD=180°,∴∠EBF=∠FDE,∴四边形BFDE是平行四边形,∴BE∥DF,故本选项能判定BE∥DF.故选:B.8.解:∵四边形ABCD为平行四边形,∴OB=OD,AD∥BC,AB=CD=4,∴∠OBE=∠ODF,在△BOE和△DOF中,,∴△BOE≌△DOF(ASA),∴BE=DF,OE=OF=3,∴CE+DF=CE+BE=BC=7,∴四边形EFDC的周长=DF+EF+CE+CD=BC+OE+OF+CD=7+3+3+4=17,故选:C.9.解:∵AC=4,BD=8,四边形ABCD是平行四边形,∴AO=AC=2,BO=BD=4,∵AB=2,∴AB2+AO2=BO2,∴∠BAC=90°,∵在Rt△BAC中,BC=,S△BAC=×AB×AC=×BC×AE,∴2×4=2AE,∴AE=,即点D到BC的距离为,故选:D.10.解:设BC边的高为x,DC边的高为y,则平行四边形的面积=BC•x=CD•y=8,∵E、F分别是BC、CD的中点,∴S△ABE=×BC•x=2,S△ADF=×DC•y=2,S△CEF=×BC×x=1,∴S△AEF=8﹣2﹣2﹣1=3.故选:B.11.解:连接AF、EC.∵BC=4CF,S△ABC=12,∴S△ACF=×12=3,∵四边形CDEF是平行四边形,∴DE∥CF,EF∥AC,∴S△DEB=S△DEC,∴S阴=S△ADE+S△DEC=S△AEC,∵EF∥AC,∴S△AEC=S△ACF=3,∴S阴=3.故选:B.12.解:∵四边形ABCD是平行四边形,∴AD∥CB,AB∥CD,∴∠DAB+∠CBA=180°,又∵AP和BP分别平分∠DAB和∠CBA,∴∠P AB+∠PBA=(∠DAB+∠CBA)=90°,在△APB中,∠APB=180°﹣(∠P AB+∠PBA)=90°;∵AP平分∠DAB,∴∠DAP=∠P AB,∵AB∥CD,∴∠P AB=∠DP A∴∠DAP=∠DP A∴△ADP是等腰三角形,∴AD=DP=5,同理:PC=CB=5,即AB=DC=DP+PC=10,在Rt△APB中,AB=10,AP=8,∴BP==6,∴△APB的周长=6+8+10=24;故答案为:24.13.解:∵四边形ABCD是平行四边形,∴AB=DC,AD=BC,AO=CO,∵平行四边形ABCD的周长是18厘米,∴AB+BC=9cm,∵若△OAB的周长与△OBC的周长相差2厘米,∴AB﹣BC=2,解得:AB=5.5.故答案为:5.5.14.解:∵四边形ABCD是平行四边形,∴O点为AC中点.∵OE⊥AC,∴AE=CE.∴△BCE的周长=BC+CE+BE=BC+AE+BE=BC+AB=14.∴平行四边形ABCD周长为2×14=28.故答案为28.15.解:如图1所示:∵在▱ABCD中,BC边上的高为4,AB=5,AC=2,∴EC==2,AB=CD=5,BE==3,∴BC=BE+CE=3+2=5,∴AD=BC=5,∴▱ABCD的周长等于:5+5+5+5=20,如图2所示:∵在▱ABCD中,BC边上的高为4,AB=5,AC=2,∴EC==2,AB=CD=5,BE==3,∴BC=3﹣2=1,∴▱ABCD的周长等于:1+1+5+5=12,则▱ABCD的周长等于12或20.故答案为:12或20.16.解:∵6cm<7cm,∴6cm的边上的高为7cm,∴6×7=42(cm2);即这个平行四边形的面积是42平方厘米.故答案为:42cm2.17.解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠EAD=∠AEB,又∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠BEA,∴AB=BE,∵AB=AE,∴△ABE是等边三角形;②正确;∴∠ABE=∠EAD=60°,∵AB=AE,BC=AD,∴△ABC≌△EAD(SAS);①正确;∵△FCD与△ABC等底(AB=CD)等高(AB与CD间的距离相等),∴S△FCD=S△ABC,又∵△AEC与△DEC同底等高,∴S△AEC=S△DEC,∴S△ABE=S△CEF;⑤正确.若AD与AF相等,即∠AFD=∠ADF=∠DEC即EC=CD=BE即BC=2CD,题中未限定这一条件∴③④不一定正确;故答案为:①②⑤.18.(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,即AE∥CF,又∵点E,F分别是边AD,BC的中点,∴AE=AD,CF=BC,∴AE=CF,∴四边形AECF为平行四边形,∴AF=CE;(2)解:∵四边形AECF的周长为10,AF=3,∴AE+CF=10﹣2×3=4,∵点E,F分别是边AD,BC的中点,∴AD+BC=2(AE+CF)=8,∵AB=2,∴平行四边形ABCD的周长=8+2×2=12.19.(1)证明:∵四边形ABCD是平行四边形,∴DC=AB,DC∥AB,∴∠ODF=∠OBE,在△ODF与△OBE中∴△ODF≌△OBE(AAS)∴BO=DO;(2)解:∵BD⊥AD,∴∠ADB=90°,∵∠A=45°,∴∠DBA=∠A=45°,∵EF⊥AB,∴∠G=∠A=45°,∴△ODG是等腰直角三角形,∵AB∥CD,EF⊥AB,∴DF⊥OG,∴OF=FG,△DFG是等腰直角三角形,∵△ODF≌△OBE(AAS)∴OE=OF,∴GF=OF=OE,即2FG=EF,∵△DFG是等腰直角三角形,∴DF=FG=1,∴DG==DO,∴在等腰Rt△ADB中,DB=2DO=2=AD∴AD=2,20.证明:(1)∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠E=∠DCM,在△AEM和△DCM中,,∴△AEM≌△DCM(AAS),∴AE=CD,∴AE=AB;(2)∵BM平分∠ABC,∴∠ABM=∠CBM,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠CBM=∠AMB,∴∠ABM=∠AMB,∴AB=AM,∵AB=AE,AM=DM,∴点M是AD的中点,∴BC=2AM,∴BC=BE,∴△BCE是等腰三角形.∵BM平分∠ABC,∴BM⊥CE.21.证明:(1)∵四边形ABCD是平行四边形,∴AB∥DF,∴∠BAE=∠AFD,∵AD=DF,∴∠DAE=∠AFD,∴∠BAE=∠DAE,即AE平分∠BAD;(2)∵四边形ABCD是平行四边形,∴AD∥BC,AB∥DF,AB=DC,AD=BC,∵点E为BC中点,∴BE=EC==2,∵AD=DF=4,∴CD=AB=2,∵∠B=60°,∴BC边的高是,∴▱ABCD的面积=4.。

八年级数学(下)第十八章《平行四边形的判定》同步练习(含答案)

八年级数学(下)第十八章《平行四边形的判定》同步练习(含答案)

八年级数学(下)第十八章《平行四边形的判定》同步练习(含答案)一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图,DE是△ABC的中位线,且△ADE的周长为20,则△ABC的周长为A.30 B.40C.50 D.无法计算【答案】B2.如图,在四边形ABCD中,AB=CD,BC=AD,若∠D=120°,则∠C的度数为A.60°B.70°C.80°D.90°【答案】A【解析】∵AB=CD,BC=AD,∴四边形ABCD是平行四边形,∴AD∥BC,∴∠C+∠D=180°,∵∠D=120°,∴∠C=60°.故选A.3.四边形ABCD中,从∠A,∠B,∠C,∠D的度数之比中,能判定四边形ABCD是平行四边形的是A.1∶2∶3∶4 B.2∶3∶2∶3C.2∶2∶3∶3 D.1∶2∶2∶3【答案】B【解析】根据对角相等的四边形是平行四边形,A.1∶2∶3∶4,对角不相等,不能;B.2∶3∶2∶3,对角相等,能;C.2∶2∶3∶3,对角不相等,不能;D.1∶2∶2∶3,对角不相等,不能,故选B.4.依次连接任意四边形各边的中点,得到一个特殊图形,则这个图形一定是A.平行四边形B.矩形C.菱形D.梯形【答案】A【解析】如图,连接AC,∵四边形ABCD各边中点是E、F、G、H,∴HG∥AC,HG=12AC,EF∥AC,EF=12AC,∴EF=GH,EF∥GH,∴四边形EFGH是平行四边形.故选A.5.如图,在四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定四边形ABCD为平行四边形的是A.AB∥CD,AD∥BC B.OA=OC,OB=ODC.AD=BC,AB∥CD D.AB=CD,AD=BC【答案】C6.如图,ABCD的对角线AC,BD相交于点O,E是AB中点,且AE+EO=4,则ABCD的周长为A.20 B.16 C.12 D.8【答案】B【解析】∵四边形ABCD是平行四边形,∴OA=OC,∵AE=EB,∴OE =12BC,∵AE+EO=4,∴2AE+2EO=8,∴AB+BC=8,∴平行四边形ABCD的周长=2×8=16,故选B.7.如图,在ABCD中,对角线AC,BD相交于点O,E,F是对角线AC上的两点,当E,F满足下列哪个条件时,四边形DEBF不一定是平行四边形A.AE=CF B.DE=BFC.∠ADE=∠CBF D.∠AED=∠CFB【答案】BD选项:∵∠AED=∠CFB,∴∠DEO=∠BFO ,∴DE∥BF,在△DOE和△BOF中,DOE BOF DEO BFO OD OB∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DOE≌△BOF,∴DE=BF,∴四边形DEBF是平行四边形.故选项正确.故选B.8.如图,E,F分别是□ABCD的边AB,CD的中点,则图中平行四边形的个数共有A.2个B.3个C.4个D.5个【答案】C【解析】∵四边形ABCD是平行四边形,∴DC∥AB,DC=AB,∵E、F分别是边AB、CD的中点,∴DF=FC=12DC,AE=EB=12AB,∵DC=AB,∴DF=FC=AE=EB,∴四边形DFBE和CFAE都是平行四边形,∴DE∥FB,AF∥CE,∴四边形FHEG是平行四边形,故选C.二、填空题:请将答案填在题中横线上.9.如图,A、B两点被池塘隔开,在AB外选一点C,连接AC、BC,取AC、BC的中点D、E,量出DE=a,则AB=2a,它的根据是__________.【答案】三角形的中位线等于第三边的一半10.如图,在四边形ABCD中,AD∥BC,点E是BC边的中点,连接DE并延长,交AB的延长线于F点.已知AB=4,∠F=∠CDE,则BF的长为__________.【答案】4【解析】因为∠F=∠CDE,所以AB∥CD,因为AD∥BC,所以四边形ABCD是平行四边形,所以AB=CD,因为点E是BC边的中点,所以ED=EF,又因为∠F=∠CDE,∠DEC=∠FEB,所以△ECD≌△EBF,所以BF=CD,所以BF=AB,因为AB=4,所以BF=4,故答案为:4.11.如图,四边形ABCD中,AD∥BC,E是DC上一点,连接BE并延长交AD的延长线于点F,连接CF,BD,请你只添加一个条件:__________,使得四边形BDFC为平行四边形.【答案】DE=EC(答案不唯一)【解析】答案不唯一,比如:BD∥CF,构成两组对边分别平行的四边形是平行四边形;DF=BC,构成一组对边平行且相等的四边形是平行四边形;DE=EC,可以证明BE=EF,构成对角线相互平分的四边形是平行四边形,等等.故答案:DE=EC(答案不唯一).12.如图,在平行四边形ABCD中,对角线交于点O,点E、F在直线AC上(不同于A、C),当E、F的位置满足__________的条件时,四边形DEBF是平行四边形.【答案】AE=CF(答案不唯一)三、解答题:解答应写出文字说明、证明过程或演算步骤.13.如图,已知D、E、F分别是△ABC各边的中点,求证:AE与DF互相平分.【解析】∵D、E、F分别是△ABC各边的中点,根据中位线定理知:DE∥AC,DE=AF,EF∥AB,EF=AD,∴四边形ADEF为平行四边形,故AE与DF互相平分.14.如图,ABCD中,E、F分别是AB、CD上的点,AE=CF,M、N分别是DE、BF的中点.求证:四边形ENFM是平行四边形.【解析】∵四边形ABCD是平行四边形,∴AB∥CD.∵AE=CF,∴FD=EB,∴四边形DEBF是平行四边形,∴DE∥FB,DE=FB.∵M、N分别是DE、BF的中点,∴EM=FN.∵DE∥FB,∴四边形MENF是平行四边形.15.如图,点M,N在线段AC上,AM=CN,AB∥CD,AB=CD.求证:∠1=∠2.16.如图1,平行四边形ABCD中,对角线BD、AC交于点O.将直线AC绕点O顺时针旋转分别交BC、AD于点E、F.(1)在旋转过程中,线段AF与CE的数量关系是__________.⊥,当旋转角至少为__________︒时,四边形ABEF是平行四边形,并证明(2)如图2,若AB AC此时的四边形是ABEF是平行四边形.【解析】(1)相等,理由如下: 如图,在ABCD 中,AD ∥BC ,OA =OC ,∴∠1=∠2,在△AOF 和△COE 中,1234OA OC ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AOF ≌△COE (ASA ), ∴AF =CE .(2)当旋转角为90︒时,90COE ∠=︒,如图,又∵AB ⊥AC , ∴∠BAO =90°, ∠AOF =90°, ∴∠BAO =∠AOF , ∴AB ∥EF ,∵四边形ABCD 是平行四边形, ∴AD ∥BC , 即:AF ∥BE , ∵AB ∥EF ,AF ∥BE ,∴四边形ABEF 是平行四边形.。

八年级数学平行四边形的性质及判定同步测试题

八年级数学平行四边形的性质及判定同步测试题

一.填空题.1.如图4.1-1, D,E,F 分别在△ABC 的三边BC,AC,AB 上,且DE ∥AB, DF ∥AC, EF ∥BC,则图中共有____________个平行四边形,分别是_________________________________.F ED C B A图4.1-1 2.已知平行四边形的周长是100cm, AB:BC=4 : 1,则AB 的长是________________.3.已知平行四边形的面积是144,相邻两边上的高分别为8和9,则它的周长是______________.4.在平行四边形ABCD 中,∠A : ∠B=3:2,则∠C=_________ 度,∠D=_____________度.5.用20米长的一铁丝围成一个平行四边形,使长边与短边的比为3:2,则它的边长为________短边长为__________.6.如图4.1-2,在平行四边形ABCD 中, BC=2AB, CA ⊥AB,则∠B=______度,∠CAD=______度.DC B A图4.1-2二.选择题.7.平行四边形ABCD 的周长32, 5AB=3BC,则对角线AC 的取值范围为( )A. 6<AC<10B. 6<AC<16C. 10<AC<16D. 4<AC<168. 在平行四边形ABCD 中,∠A=65°,则∠D 的度数是 ( )A. 105°B. 115°C. 125°D. 65°9. 在平行四边形ABCD 中,∠B -∠A=20°,则∠D 的度数是 ( )A. 80°B. 90°C. 100°D. 110°10. 由等腰三角形底边上任一点(端点除外)作两腰的平行线,则所成的平行四边形的周长等于等腰三角形的 ( ) A. 周长 B. 一腰的长 C. 周长的一半 D. 两腰的和11. 在以下平行四边形的性质中,错误的是 ( )A. 对边平行B. 对角相等C. 对边相等D. 对角线互相垂直三. 解答题12. 平行四边形ABCD 的两条对角线AC,BD 相交于O.ODC BAGF ED C BA图4.1-3 图4.1-4(1) 图4.1-3中有哪些三角形全等? 有哪些相等的线段?(2) 若平行四边形ABCD 的周长是20cm,△AOD 的周长比△ABO 的周长大6cm.求AB,AD 的长.13. 如图4.1-4,平行四边形ABCD 中,∠ADC 的邻补角的平分线交BC 的延长线于E,延长ED 交BA 的延长线于F,试判断△FBE 的形状.2. 平行四边形的判定一. 填空题1. 如图,平行四边形ABCD 中,AE=CG, DH=BF,连结E,F,G,H,E,则四边形EFGH 是_________________.2. 如图,平行四边形ABCD 中,E,F 是对角线AC 上的两点,且AE=CF,连结B,F,D,E,B 则四边形BEDF 是_______. H GF E DC B A G F ED C B A3. 有公共顶点的两个全等三角形,其中一个三角形绕公共顶点旋转180°后与另一个重合,那么不共点的四个顶点的连线构成____________形.4. 如图,E,F 分别是平行四边形ABCD 的边AD 与BC 的三分之一点,则四边形AECF 是__________________形.F E D C B A F E DCB A5. 如图,平行四边形ABCD 中,E,F 分别为边AB,DC 的中点,则图中共有平行四边形的个数是 ( )A. 3B. 4C. 5D. 66. 以长为5cm, 4cm, 7cm 的三条线段中的的两条为边,另一条为对角线画平行四边形,可以画出形状不同的平行四边形的个数是 ( )A. 1B. 2C. 3D. 47. 能够判定一个四边形是平行四边形的条件是 ( )A. 一组对角相等B. 两条对角线互相平分C. 两条对角线互相垂直D. 一对邻角的和为180°8. 四边形ABCD 中,AD ∥BC,要判定ABCD 是平行四边形,那么还需满足 ( )A. ∠A+∠C=180°B. ∠B+∠D=180°C. ∠A+∠B=180°D. ∠A+∠D=180°9. 平行四边形的一组对角的平分线 ( )A. 一定相互平行B. 一点相交C. 可能平行也可能相交D. 平行或共线三. 解答题10. 如图,在平行四边形ABCD 中,M,N 分别是OA,OC 的中点,O 为对角线AC 与BD 的交点,试问四边形BMDN 是平行四边形吗?说说你的理由.OMN DC B A11. 如图,AC 是平行四边形ABCD 的一条对角线,BM ⊥AC, DN ⊥AC,垂直分别为M,N,四边形BMDN 是平行四边形吗?你有几种判别方法?NMDC B A。

八年级数学下册平行四边形的判定练习题

八年级数学下册平行四边形的判定练习题

BDCAO图1FEDCBA图2F E D CBA HG FEOAB C DOM ABCD图1FE DCB A4321图3F ED CBA H G 图2F E DCB A八年级数学下册平行四边形的判定练习题识记知识1)定义:两组对边分别平行的四边形是平行四边形.∵ , ∴四边形ABCD 是平行四边形.2)定理:两组对边分别相等的四边形是平行四边形.∵∴四边形ABCD 是平行四边形.3)定理:一组对边平行且相等的四边形是平行四边形.∵∴四边形ABCD 是平行四边形.4)定理:对角线互相平分的四边形是平行四边形.∵∴四边形ABCD 是平行四边形.5)定理:两组对角分别相等的四边形是平行四边形∵∴四边形ABCD 是平行四边形. 二、平行四边形性质与判定的综合应用例1: 如图, 已知:E 、F 是平行四边形ABCD 对角线AC 上的两点,并且AE=CF 。

求证:四边形BFDE 是平行四边形变式一:在□ABCD 中,E ,F 为AC 上两点,BE//DF .求证:四边形BEDF 为平行四边形.变式二:在□ABCD 中,E,F 分别是AC 上两点,BE ⊥AC 于E ,DF ⊥AC 于F.求证:四边形BEDF 为平行四边形想一想:在□ABCD 中, E ,F 为AC 上两点, BE =DF .那么可以证明四边形 BEDF 是平行四边形吗?例2:如图,平行四边形ABCD 中,AF =CH ,DE =BG 。

求证:EG 和HF 互相平分。

练习1、如图所示,在四边形ABCD 中,M 是BC 中点,AM 、BD 互相平分于点O ,那么请说明AM=DC 且AM ∥DC:1、以不在同一直线上的三点为顶点作平行四边形,最多能作( )A 、4个B 、3个C 、2个D 、1个 2、如图,在□ABCD 中,已知两条对角线相交于点O ,E 、F 、G 、H 分别是AO 、BO 、CO 、DO 的中点,以图中的点为顶点,尽可能多地画出平行四边形在四边形ABCD 中,AD ∥BC ,且AD >BC ,BC = 6cm ,P ,Q 分别从A ,C 同时出发,P 以1厘米/秒的速度由A 向D 运动,Q 以2厘米/秒的速度由C 向B 运动,几秒后四边形ABQP 成为平行四边形?1、下列条件中,能判定四边形是平行四边形的是( )A 、一组对边相等,另一组对边平行;C 、一组对角相等,一组邻角互补;B 、一组对边平行,一组对角互补;D 、一组对角互补,另一组对角相等。

湘教版八年级数学下册平行四边形及其性质和判定练习(含答案)

湘教版八年级数学下册平行四边形及其性质和判定练习(含答案)

平行四边形及其性质和判定练习【课内四基达标】1.判断题(1)一组对边平行,另一组对边相等的四边形是平行四边形.( )(2)两组对角分别相等的四边形是平行四边形.( )(3)在平行四边形中,一定有两个锐角、两个钝角.( )(4)平行四边形的一条对角线把平行四边形分成两个全等的三角形.( )(5)平行四边形对角线交点到四边距离相等.( )(6)平行四边形的对边、对角、对角线的长都相等;( )(7)平行四边形对角线的交点到一组对边的距离相等;( )(8)夹在二平行线间的线段都相等;( )(9)夹在二平行线间的线段若相等,则这二条线段互相平行;( )(10)过△ABC 的三个顶点,分别作对边的平行线,得到△A ′B ′C ′,那么△ABC 的三条高分别是△A ′B ′C ′三边的垂直平分线.( )2.选择题(1)以不共线的三个点为顶点的平行四边形有( )A.1个B.2个C.3个D.4个(2)一个平行四边形的两条对角线把它分成的全等三角形的对数是( )A.2B.4C.6D.8(3)E 、F 分别是ABCD 的边AB 、DC 中点,DE 、BF 交AC 于M 、N ,则( )A.AM=MEB.AM=DFC.AM=NCD.AM ⊥MD(4)在ABCD 中若∠A >∠B ,则∠A 的补角与∠B 的余角之和( )A.小于90°B.等于90°C.大于90°D.不能确定(5)从等腰三角形底边上任意一点分别作两腰的平行线与两腰所围成的平行四边形的周长等于三角形( )A.周长B.周长的一半C.腰长D.两腰长的和(6)已知平行四边形两条邻边的长分别是6厘米和4厘米,它们的夹角是60°,则它的面积是( ) A.123cm 2 B.73cm 2 C.63cm 2 D.43cm 2(7)以不在一直线上的三点作平行四边形的三个顶点,则可作出平行四边形( )A.1个B.2个C.3个D.4个(8)平行四边形的一条对角线与一边垂直,且此对角线为另一边的一半,则此平行四边形两邻角之比为( )A.1∶2B.1∶3C.1∶4D.1∶5(9)如下图所示,平行四边形ABCD 和平行四边形EAFC 的顶点D 、E 、F 、B 在一条直线上,则下列关系中正确的是( )A.DE >BFB.DE=BFC.DE <BFD.DE=EF=BF(10) 平行四边形ABCD 的面积等于1,A 1、A 2为AD 的三等分点,作A 1B 1∥AB 交BC 于B 1,作A 2B 2∥AB 交BC 于B 2,则顶点分别在AB 、A 1B 1、A 2B 2、CD 上滑动的凸四边形的最大面积是( ) A.21 B.31 C.32 D.433.填空题(1)由平行四边形的一个顶点在形内向两边引垂线,二垂线夹角为65°,则这个平行四边形各内角的度数分别为________(2)在ABCD中,∠A的补角与∠B的和等于210°,则∠A=________,∠B=________,∠C=________,∠D=________(3)在平行四边形ABCD中,AB∶BC=1∶2,∠D=30°,AE⊥BC于E,AE=3cm,则AB=________cm.这个平行四边形的周长是________cm.(4)平行四边形周长是40cm,二邻边的比为3∶2,则四条边长分别是________(5)在平行四边形ABCD中,两邻边AB、AD的比是1∶2,M是大边AD的中点,则∠BMC 的度数是________(6)平行四边形的周长为50厘米,那么它两邻边之和是______cm,每条对角线的长不能超过______cm.(7) 平行四边形ABCD中,周长为50厘米,AB=15cm,∠A=30°,则此平行四边形的面积为______cm2.(8) 平行四边形ABCD的周长为50厘米,对角线交于O点,△AOB的周长比△BOC的周长大5厘米,则AB、BC的长分别是______、______.(9)有五条平行的直线,每相邻两条的距离相等,有一条直线和这组平行线相交成30°角,它介于相邻两条平行线之间的线段长是10厘米,则这一组平行线最外面两条之间的距离是______厘米.(10)已知平行四边形周长为68厘米,被两条对角线分成两个不同的三角形的周长的和等于82厘米,两条对角线的长度比为2∶1,则两条对角线的长分别为______厘米,______厘米.4.解答题(1)如下图,已知平行四边形ABCD,E为AD上的点,且AE=AB,BE和CD的延长线交于F,且∠BFC=40°,求平行四边形ABCD各内角的度数.(2)已知平行四边形一组邻角的比是2∶3,求它的四个内角的度数.(3) 平行四边形ABCD中,M为AD的中点,BM平分∠ABC,如果∠A=120°,MC=3,求ABCD的周长.5.如图,在平行四边形ABCD中,BC=2AB,M为AD的中点,CE⊥AB,垂足为E,求证:∠DME=3∠AEM.6.如下图所示,ABCD是平行四边形,以AD、BC为边在形外作等边三角形ADE和CBF,连结BD、EF,且它们相交于O,求证:EO=FO,DO=BO.7.已知:平行四边形ABCD中,AD=2AB,延长AB到F,使BF=AB,延长BA到E使AE=AB,求证:CE⊥DF8.如图所示,已知平行四边形ABCD,直线FH与AB、CD相交,过A、B、C、D向FH作垂线,垂足为E、H、G、F,求证:AE-DF=CG-BH9.平行四边形ABCD中,E为DC中点,延长BE与AD的延长线交于F,求证:E为BF中点,D为AF的中点.10.等腰△ABC中,AB=AC,D为BC上任一点,DE∥CA交AB于E,DF∥BA交AC于F,求证:DE+DF=AC.11.如图所示,∠EDA是平行四边形ABCD的外角,DF平分∠EDA与BA延长线交于F,FD 延长线与BC延长线交于G.求证:BF=BG.12.如图所示,平行四边形ABCD中,作AF⊥BC于F,交BD于E,若DE=2AB.求证:∠ABD=2∠EBC.13.如图所示,平行四边形ABCD中,以BC、CD为边向内作等边三角形BCE和CDF.求证:△AEF为等边三角形.14.如图所示,在△ABC中,BD平分∠B,DE∥BC交AB于E,EF∥AC交BC于F,求证:BE=FC15.如图所示,平行四边形ABCD中,E是AB的中点,F是CD中点,分别延长BA和DC 到G、H,使AG=CH,连结GF、EH,求证:GF∥EH16.如图所示,平行四边形ABCD中,E、F分别在AD、BC上,且AE=CF,AF与BE相交于G,CE与DF相交于H.求证:EF与GH互相平分17.在四边形ABCD中,AB∥DC,对角线AC、BD交于O,EF过O交AB于E,交DC于F,且OE=OF,求证:四边形ABCD是平行四边形.18.如图所示,已知△ABC,分别以AB、BC、AC为边向BC同侧作等边三角形ABE、BCD、ACF.求证:DEAF为平行四边形.【能力素质提高】1.用两个全等的三角形按不同方法拼成四边形,在这些四边形中,平行四边形最多有( )A.3个B.4个C.6个D.8个2.如图,平行四边形ABCD中,M为AD中点,BM平分∠ABC,则( )A.CM可能垂直ADB.AC可能等于CDC.CM不可能垂直ADD.CM可能平分∠ACD3.如下图,已知在平行四边形ABCD中,∠A、∠D的平分线交于E点,AE和DC相交于G,DE与AD相交于F,求证:AD=DG=GF=FA.4.已知:如下图,在四边形ABCD中,AB=DC,AE⊥BD,CF⊥BD,垂足分别是E、F,AE=CF,求证:四边形ABCD是平行四边形.5.点O是平行四边形ABCD的对角线的交点,△AOB的面积为7cm2,求平行四边形ABCD 的面积.6.已知平行四边形两邻边长分别为8cm和4cm,它们的夹角为60°,求其面积.7.求证:连接平行四边形对边中点的线段,将对角线二等分.8.从平行四边形的一个锐角的顶点作两条高,如果这两条高的夹角是130°,求平行四边形的各角.9.已知:如图,平行四边形ABCD中,AB=2BC,E为AB中点,DF⊥BC,垂足F.求证:∠AED=∠EFB.【渗透拓展创新】1.如图,画纸中间的空洞好比天河,大鸭子与空洞右面的小鸭子隔离开了,你能不能把画纸剪成六块,重新拼成一张不带空洞的完整的正方形画纸,让大鸭子与小鸭子并肩相会.2.求证:平行四边形对角线的平方和等于两邻边平方和的两倍.3.(1)如果平行四边形的四个内角的平分线能围成一个四边形,求证这个四边形是平行四边形.(2)上述问题中的“如果……能围成一个四边形”,是否表明存在不能围成四边形的情形?请说明理由.4.有两个村庄A和B位于一条河的两岸,假定河岸是两条平行的直线,现在要在河上架一座与河岸垂直的桥PQ,问桥应架在何处,才能使从A到B总的路程最短.【中考真题演练】1.(河南省中考题)已知:如图,平行四边形ABCD中,对角线AC的平行线MN分别交DA、DC延长线于点M、N,交AB、BC于点P、Q.求证:MQ=NP.2.(黄冈市中考题)如图所示,平行四边形ABCD中,G、H是对角线BD上两点,且DG=BH,DF=BE.求证:四边形EHFG是平行四边形.3.(江西省中考题)已知:如图,平行四边形ABCD中,AE⊥BC,CF⊥BD,垂足分别为E、F,G、H分别是AD、BC的中点,GH交BD于点O.求证:GH与EF互相平分.参考答案 【课内四基达标】1.(1)√ (2)× (3)× (4)√ (5)× (6)× (7)√ (8)× (9)√ (10)×2.(1)C (2)B (3)C (4)B (5)D (6)A (7)C (8)D (9)B (10)C3.(1)115°或 65° (2)75°,105°,75°,105°(3)6 (4)12,12,8,8(5)90° (6)25 25 (7)75 (8)15cm ;10cm (9)20 (10)16和324.(1)80°,100°,80°,100° (2)72°,108°,72°,108° (3)△ABM 为等腰三角形,AB=AM ,△MDC 为等边三角形,故AB=3,AD=6,周长为185.提示:取BC 中点F ,连接MF 、MC ,证MF ∥AB ,四边形MFCD 是菱形6.△EDO ≌△FBO7.证∠FEC =∠ECB ;∠AFD =∠ADF8.作DM ⊥AE 于M ,BN ⊥CG 于N ,再证Rt △ADM ≌Rt △CBN9.证△BCE ≌△FDE10.△EBD 和△FDC 为等腰三角形11.略12.取ED 中点M ,连AM ,则AM=21ED=AB13.证△EAB ≌△AFD14.证△BED 为等腰三角形15.则FH 平行且等于GE ,则FGEH 为平行四边形16.证EGFH 为平行四边形17.△EOB ≌△FOD18.△ABC ≌△EBD 、ED=AF △ABC ≌△FDC DF=AE【能力素质提高】1.A2.C3.提示:∠EAD+∠EDA=21(∠A+∠D)=90°4.略5.28cm 26.1637.略8.50°,130°,50°,130°9.延长CB 、DE 交于点M.证∠EFB =∠M =∠ADE =∠AED【渗透拓展创新】1.如图2.提示:过平行四边形的一个顶点作它的高,利用勾股定理3.(1)证对边平行 (2)存在,当这个平行四边形是菱形或正方形时,对角的平分线即其对角线,则这四个内角的平分线交于一点,不能围成四边形.4.从A作河岸的垂线,并在垂线上取AC线段使其长等于河宽,连结BC,与接近B的河岸相交于Q0点,在Q0点作P0Q0⊥河岸,交对岸于P0,则P0Q0是造桥的最佳位置.【中考真题演练】1.证APNC是平行四边形,得AP=CN.证△AMP≌△CQN,得MP=QN,则MQ=NP2.提示:证明GF平行且等于EH,利用△DFG≌△BEH,从而GF=EH,且∠DGF=∠BFE,推出∠FGH=∠EHG.3.提示:连结GF、EH、HF、FG.。

平行四边形性质和判定习题(答案详细)

平行四边形性质和判定习题(答案详细)

平行四边形性质和判定习题(答案详细)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(平行四边形性质和判定习题(答案详细))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为平行四边形性质和判定习题(答案详细)的全部内容。

平行四边形性质和判定习题1.如图,已知四边形ABCD为平行四边形,AE⊥BD于E,CF⊥BD于F.(1)求证:BE=DF;(2)若 M、N分别为边AD、BC上的点,且DM=BN,试判断四边形MENF的形状(不必说明理由).2.如图所示,▱AECF的对角线相交于点O,DB经过点O,分别与AE,CF交于B,D.求证:四边形ABCD是平行四边形.3.如图,在四边形ABCD中,AB=CD,BF=DE,AE⊥BD,CF⊥BD,垂足分别为E,F.(1)求证:△ABE≌△CDF;(2)若AC与BD交于点O,求证:AO=CO.4.已知:如图,在△ABC中,∠BAC=90°,DE、DF是△ABC的中位线,连接EF、AD.求证:EF=AD.5.如图,已知D是△ABC的边AB上一点,CE∥AB,DE交AC于点O,且OA=OC,猜想线段CD与线段AE的大小关系和位置关系,并加以证明.6.如图,已知,▱ABCD中,AE=CF,M、N分别是DE、BF的中点.求证:四边形MFNE是平行四边形.7.如图,平行四边形ABCD,E、F两点在对角线BD上,且BE=DF,连接AE,EC,CF,FA.求证:四边形AECF是平行四边形.8.在▱ABCD中,分别以AD、BC为边向内作等边△ADE和等边△BCF,连接BE、DF.求证:四边形BEDF是平行四边形.9.如图所示,DB∥AC,且DB=AC,E是AC的中点,求证:BC=DE.10.已知:如图,在梯形ABCD中,AD∥BC,AD=24cm,BC=30cm,点P自点A向D以1cm/s的速度运动,到D点即停止.点Q自点C向B以2cm/s的速度运动,到B点即停止,直线PQ截梯形为两个四边形.问当P,Q同时出发,几秒后其中一个四边形为平行四边形?11.如图:已知D、E、F分别是△ABC各边的中点,求证:AE与DF互相平分.12.已知:如图,在▱ABCD中,对角线AC交BD于点O,四边形AODE是平行四边形.求证:四边形ABOE、四边形DCOE都是平行四边形.13.如图,已知四边形ABCD中,点E,F,G,H分别是AB、CD、AC、BD的中点,并且点E、F、G、H有在同一条直线上.求证:EF和GH互相平分.14.如图:▱ABCD中,MN∥AC,试说明MQ=NP.15.已知:如图所示,平行四边形ABCD的对角线AC,BD相交于点O,EF经过点O并且分别和AB,CD相交于点E,F,点G,H分别为OA,OC的中点.求证:四边形EHFG是平行四边形.16.如图,已知在▱ABCD中,E、F是对角线BD上的两点,BE=DF,点G、H分别在BA和DC的延长线上,且AG=CH,连接GE、EH、HF、FG.(1)求证:四边形GEHF是平行四边形;(2)若点G、H分别在线段BA和DC上,其余条件不变,则(1)中的结论是否成立?(不用说明理由)17.如图,在△ABC中,D是AC的中点,E是线段BC延长线一点,过点A作BE的平行线与线段ED的延长线交于点F,连接AE、CF.(1)求证:AF=CE;(2)如果AC=EF,且∠ACB=135°,试判断四边形AFCE是什么样的四边形,并证明你的结论.18.如图平行四边形ABCD中,∠ABC=60°,点E、F分别在CD、BC的延长线上,AE∥BD,EF⊥BF,垂足为点F,DF=2(1)求证:D是EC中点;(2)求FC的长.19.如图,已知△ABC是等边三角形,点D、F分别在线段BC、AB上,∠EFB=60°,DC=EF.(1)求证:四边形EFCD是平行四边形;(2)若BF=EF,求证:AE=AD.20.如图,四边形ABCD,E、F、G、H分别是AB、BC、CD、DA的中点.(1)请判断四边形EFGH的形状?并说明为什么;(2)若使四边形EFGH为正方形,那么四边形ABCD的对角线应具有怎样的性质?21.如图,△ACD、△ABE、△BCF均为直线BC同侧的等边三角形.(1)当AB≠AC时,证明:四边形ADFE为平行四边形;(2)当AB=AC时,顺次连接A、D、F、E四点所构成的图形有哪几类?直接写出构成图形的类型和相应的条件.22.如图,以△ABC的三边为边,在BC的同侧分别作三个等边三角形即△ABD、△BCE、△ACF,那么,四边形AFED是否为平行四边形?如果是,请证明之,如果不是,请说明理由.23.在△ABC中,AB=AC,点P为△ABC所在平面内一点,过点P分别作PE∥AC交AB于点E,PF∥AB交BC于点D,交AC于点F.若点P在BC边上(如图1),此时PD=0,可得结论:PD+PE+PF=AB.请直接应用上述信息解决下列问题:当点P分别在△ABC内(如图2),△ABC外(如图3)时,上述结论是否成立?若成立,请给予证明;若不成立,PD,PE,PF与AB之间又有怎样的数量关系,请写出你的猜想,不需要证明.24.如图1,P为Rt△ABC所在平面内任意一点(不在直线AC上),∠ACB=90°,M为AB边中点.操作:以PA、PC为邻边作平行四边形PADC,连续PM并延长到点E,使ME=PM,连接DE.探究:(1)请猜想与线段DE有关的三个结论;(2)请你利用图2,图3选择不同位置的点P按上述方法操作;(3)经历(2)之后,如果你认为你写的结论是正确的,请加以证明;如果你认为你写的结论是错误的,请用图2或图3加以说明;(注意:错误的结论,只要你用反例给予说明也得分)(4)若将“Rt△ABC"改为“任意△ABC”,其他条件不变,利用图4操作,并写出与线段DE有关的结论(直接写答案).25.在一次数学实践探究活动中,小强用两条直线把平行四边形ABCD分割成四个部分,使含有一组对顶角的两个图形全等;(1)根据小强的分割方法,你认为把平行四边形分割成满足以上全等关系的直线有_________组;(2)请在图中的三个平行四边形中画出满足小强分割方法的直线;(3)由上述实验操作过程,你发现所画的两条直线有什么规律?26.如图,在直角梯形ABCD中,AB∥CD,∠BCD=Rt∠,AB=AD=10cm,BC=8cm.点P从点A出发,以每秒3cm的速度沿折线ABCD方向运动,点Q从点D出发,以每秒2cm的速度沿线段DC 方向向点C运动.已知动点P、Q同时发,当点Q运动到点C时,P、Q运动停止,设运动时间为t.(1)求CD的长;(2)当四边形PBQD为平行四边形时,求四边形PBQD的周长;(3)在点P、点Q的运动过程中,是否存在某一时刻,使得△BPQ的面积为20cm2?若存在,请求出所有满足条件的t的值;若不存在,请说明理由.27.已知平行四边形的三个顶点的坐标分别为O(0,0)、A(2,0)、B(1,1),则第四个顶点C的坐标是多少?28.已知平行四边形ABCD的周长为36cm,过D作AB,BC边上的高DE、DF,且cm,,求平行四边形ABCD的面积.29.如图,在平面直角坐标系中,已知O为原点,四边形ABCD为平行四边形,A、B、C的坐标分别是A(﹣3,),B(﹣2,3),C(2,3),点D在第一象限.(1)求D点的坐标;(2)将平行四边形ABCD先向右平移个单位长度,再向下平移个单位长度所得的四边形A1B1C1D1四个顶点的坐标是多少?(3)求平行四边形ABCD与四边形A1B1C1D1重叠部分的面积?30.如图所示.▱ABCD中,AF平分∠BAD交BC于F,DE⊥AF交CB于E.求证:BE=CF.答案与评分标准1.如图,已知四边形ABCD为平行四边形,AE⊥BD于E,CF⊥BD于F.(1)求证:BE=DF;(2)若 M、N分别为边AD、BC上的点,且DM=BN,试判断四边形MENF的形状(不必说明理由).考点:平行四边形的判定与性质;全等三角形的判定与性质。

鲁教版八年级数学上册第五章平行四边形的判定与性质基础达标训练题4(附答案)

鲁教版八年级数学上册第五章平行四边形的判定与性质基础达标训练题4(附答案)

鲁教版八年级数学上册第五章平行四边形的判定与性质基础达标训练题4(附答案)一.选择题(共10小题)1.如图,若平行四边形ABCD的周长为40cm,BC=AB,则BC=()A.16cm B.14cm C.12cm D.8cm2.如图,在▱ABCD中,∠A=130°,在AD上取DE=DC,则∠ECB的度数是()A.65°B.50°C.60°D.75°3.如图,在平行四边形ABCD中,AC=4cm.若△ACD的周长是12cm,则平行四边形ABCD 的周长是()A.16cm B.18cm C.20cm D.24cm4.如图,在等腰梯形ABCD中,AD∥BC,AB=AD=DC,B=60°,DE∥AB,梯形ABCD 的周长是20cm,则DE等于()A.3cm B.4cm C.5cm D.6cm5.一个等腰梯形的两底之差为12,高为6,则等腰梯形的锐角为()A.30°B.45°C.60°D.75°6.在四边形ABCD中,对角线AC与BD交于点O,下列各组条件,其中不能判定四边形ABCD是平行四边形的是()A.OA=OC,OB=OD B.OA=OC,AB∥CDC.AB=CD,OA=OC D.∠ADB=∠CBD,∠BAD=∠BCD 7.已知:四边形ABCD的对角线AC、BD相交于点O,则下列条件不能判定四边形ABCD 是平行四边形的是()A.AB∥CD,AD∥BC B.AB=CD,AD∥BCC.AO=CO,BO=DO D.∠ABC=∠ADC,∠DAB=∠DCB 8.如图,▱ABCD中,AB=2,AD=4,对角线AC,BD相交于点O,且E,F,G,H分别是AO,BO,CO,DO的中点,则下列说法正确的是()A.EH=HGB.四边形EFGH是平行四边形C.AC⊥BDD.△ABO的面积是△EFO的面积的2倍9.如图,▱ABCD的对角线AC与BD相交于点O,E、F是对角线BD上不同的两点,下列条件中,不能得出四边形AECF一定为平行四边形的是()A.BE=DF B.∠BAE=∠DCF C.AF∥CE D.AE=CF10.在梯形ABCD中,AD∥BC.现给出条件:①∠A=∠B;②∠A+∠C=180°;③∠A =∠D.其中能用来说明这个梯形是等腰梯形的是()A.①或②或③B.①或②C.①或③D.②或③二.填空题(共10小题)11.在▱ABCD中,AC=CD,∠ACB=2∠ACD,则∠B的度数为.12.已知平行四边形ABCD的两条对角线相交于平面直角坐标系中的原点O,点A(﹣1,3),B(1,2),则点C,D的坐标分别为.13.已知平行四边形ABCD中,∠B+∠D=270°,则∠C=.14.如图,四边形ABCD是等腰梯形,若其四边满足长度的众数为5,平均数为,上、下之比为1:2,则BD=.15.如图,在等腰梯形ABCD中,AB∥CD,AC⊥BC,∠B=60°,AB=6,则CD的长是.16.若AC=10,BD=8,AC与BD相交于点O,那么当AO=,DO=时,四边形ABCD是平行四边形.17.如图,在四边形ABCD中,AD=BC,在不添加任何辅助线的情况下,请你添加一个条件,使四边形ABCD是平行四边形.18.在四边形ABCD中,AB∥CD,AD∥BC,如果∠B=50°,则∠D=.19.等腰△ABC底边上任意一点D,AB=AC=5cm,过D作DE∥AC交AB于E,DF∥AB 交AC于F,则四边形AEDF的周长为.20.如图,在由六个全等的正三角形拼成的图形中,等腰梯形的个数是.三.解答题(共8小题)21.已知:如图,平行四边形ABCD中,对角线AC与BD相交于点E,点M为AD的中点,连接CM,CM的延长线交BA的延长线于点F,连接FD.(1)求证:AB=AF;(2)若AM=AB,∠BCD=120°,判断四边形ACDF的形状,并证明你的结论.22.如图①▱ABCD的对角线AC和BD相交于点O,EF过点O且与边AB,CD分别相交于点E和点F.(1)求证:OE=OF(2)如图②,已知AD=1,BD=2,AC=2,∠DOF=∠α,①当∠α为多少度时,EF⊥AC?②连结AF,求△ADF的周长.23.如图,在等腰梯形ABCD中,AD∥BC,点E是BC边的中点.求证:AE=DE.24.证明:等腰梯形的对角线交点与同一底的两个端点的距离相等.25.已知(如图),在四边形ABCD中AB=CD,过A作AE⊥BD交BD于点E,过C作CF ⊥BD交BD于F,且AE=CF.求证:四边形ABCD是平行四边形.26.如图,AD是△ABC边BC上的中线,AE∥BC,BE交AD于点F,F是BE的中点,连结CE.求证:四边形ADCE是平行四边形.27.如图,已知四边形AECF是平行四边形,D,B分别在AF,CE的延长线上,连接AB,CD,且∠B=∠D.求证:(1)△ABE≌△CDF;(2)四边形ABCD是平行四边形.28.如图,在▱ABCD中,AE⊥BD,CF⊥BD,E,F分别为垂足.(1)求证:四边形AECF是平行四边形;(2)如果AE=3,EF=4,求AF、EC所在直线的距离.参考答案与试题解析一.选择题(共10小题)1.如图,若平行四边形ABCD的周长为40cm,BC=AB,则BC=()A.16cm B.14cm C.12cm D.8cm【解答】解:∵四边形ABCD是平行四边形,∴AD=BC,AB=CD,∵▱ABCD的周长为40cm,∴AB+BC=20cm,∵BC=AB,∴BC=20×=8cm,故选:D.2.如图,在▱ABCD中,∠A=130°,在AD上取DE=DC,则∠ECB的度数是()A.65°B.50°C.60°D.75°【解答】解:在平行四边形ABCD中,∠A=130°,∴∠BCD=∠A=130°,∠D=180°﹣130°=50°,∵DE=DC,∴∠ECD=×(180°﹣50°)=65°,∴∠ECB=130°﹣65°=65°.故选:A.3.如图,在平行四边形ABCD中,AC=4cm.若△ACD的周长是12cm,则平行四边形ABCD 的周长是()A.16cm B.18cm C.20cm D.24cm【解答】解:∵AC=4cm,△ADC的周长为12cm,∴AD+DC=12﹣4=8(cm).又∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∴平行四边形的周长为2(AD+DC)=16cm.故选:A.4.如图,在等腰梯形ABCD中,AD∥BC,AB=AD=DC,B=60°,DE∥AB,梯形ABCD 的周长是20cm,则DE等于()A.3cm B.4cm C.5cm D.6cm【解答】解:∵DE∥AB∴∠B=∠DEC=60°∵DE∥AB,AD∥BE∴ADEB为平行四边形∴AD=BE∵AB=AD=DC∴△DEC为等边三角形∴DE=DC=EC∵梯形ABCD的周长是20cm∴AB+AD+DC+EC+BE=5CD=20cm∴CD=4cm∴DE=4cm故选:B.5.一个等腰梯形的两底之差为12,高为6,则等腰梯形的锐角为()A.30°B.45°C.60°D.75°【解答】解:如图,作AE⊥BC、DF⊥BC,四边形ABCD为等腰梯形,AD∥BC,BC﹣AD=12,AE=6,∵四边形ABCD为等腰梯形,∴AB=DC,∠B=∠C,∵AD∥BC,AE⊥BC,DF⊥BC,∴AEFD为矩形,∴AE=DF,AD=EF,∴△ABE≌△DCF,∴BE=FC,∴BC﹣AD=BC﹣EF=2BE=12,∴BE=6,∵AE=6,∴△ABE为等腰直角三角形,∴∠B=∠C=45°.故选:B.6.在四边形ABCD中,对角线AC与BD交于点O,下列各组条件,其中不能判定四边形ABCD是平行四边形的是()A.OA=OC,OB=OD B.OA=OC,AB∥CDC.AB=CD,OA=OC D.∠ADB=∠CBD,∠BAD=∠BCD 【解答】解:A、∵OA=OC,OB=OD,∴四边形ABCD是平行四边形.故能判定这个四边形是平行四边形;B、∵OA=OC,AB∥CD,∴四边形ABCD是平行四边形.故能判定这个四边形是平行四边形;C、AB=CD,OA=OC,∴四边形ABCD不是平行四边形.故不能判定这个四边形是平行四边形;D、∠ADB=∠CBD,∠BAD=∠BCD,∴四边形ABCD是平行四边形,故能判定这个四边形是平行四边形.故选:C.7.已知:四边形ABCD的对角线AC、BD相交于点O,则下列条件不能判定四边形ABCD 是平行四边形的是()A.AB∥CD,AD∥BC B.AB=CD,AD∥BCC.AO=CO,BO=DO D.∠ABC=∠ADC,∠DAB=∠DCB 【解答】解:A、根据两组对边分别平行的四边形是平行四边形可判定四边形ABCD为平行四边形,故此选项不合题意;B、不能判定四边形ABCD是平行四边形,故此选项符合题意;C、根据对角线互相平分的四边形是平行四边形可判定四边形ABCD为平行四边形,故此选项不合题意;D、根据两组对角分别相等的四边形是平行四边形可判定四边形ABCD为平行四边形,故此选项不合题意;故选:B.8.如图,▱ABCD中,AB=2,AD=4,对角线AC,BD相交于点O,且E,F,G,H分别是AO,BO,CO,DO的中点,则下列说法正确的是()A.EH=HGB.四边形EFGH是平行四边形C.AC⊥BDD.△ABO的面积是△EFO的面积的2倍【解答】解:∵E,F,G,H分别是AO,BO,CO,DO的中点,在▱ABCD中,AB=2,AD=4,∴EH=AD=2,HG=AB=1,∴EH≠HG,故选项A错误;∵E,F,G,H分别是AO,BO,CO,DO的中点,∴EH=,∴四边形EFGH是平行四边形,故选项B正确;由题目中的条件,无法判断AC和BD是否垂直,故选项C错误;∵点E、F分别为OA和OB的中点,∴EF=,EF∥AB,∴△OEF∽△OAB,∴,即△ABO的面积是△EFO的面积的4倍,故选项D错误,故选:B.9.如图,▱ABCD的对角线AC与BD相交于点O,E、F是对角线BD上不同的两点,下列条件中,不能得出四边形AECF一定为平行四边形的是()A.BE=DF B.∠BAE=∠DCF C.AF∥CE D.AE=CF【解答】解:在▱ABCD中,OA=OC,OB=OD,要使四边形AECF为平行四边形,只需证明得到OE=OF即可;A、若BE=DF,则OB﹣BE=OD﹣DF,即OE=OF,故本选项不符合题意;B、∠BAE=∠DCF能够利用“角角边”证明△ABE和△CDF全等,从而得到DF=BE,然后同A,故本选项不符合题意;C、AF∥CE能够利用“角角边”证明△AOF和△COE全等,从而得到OE=OF,故本选项不符合题意;D、若AE=CF,则无法判断OE=OE,故本选项符合题意;故选:D.10.在梯形ABCD中,AD∥BC.现给出条件:①∠A=∠B;②∠A+∠C=180°;③∠A =∠D.其中能用来说明这个梯形是等腰梯形的是()A.①或②或③B.①或②C.①或③D.②或③【解答】解:①∵AD∥BC∴∠A+∠B=180°故此项不正确.②∵AD∥BC∴∠A+∠B=180°∵∠A+∠C=180°∴∠C=∠B∴梯形ABCD是等腰梯形.故此项正确.③∵四边形ABCD是梯形,∠A=∠D∴梯形ABCD是等腰梯形.故此项正确.故选:D.二.填空题(共10小题)11.在▱ABCD中,AC=CD,∠ACB=2∠ACD,则∠B的度数为72°.【解答】解:∵四边形ABCD是平行四边形,∴BC∥AD,∴∠CAD=∠ACB,∠D+∠BCD=180°,∵CD=AC,∴∠D=∠CAD,∴∠D=∠ACB,∵∠ACB=2∠ACD,∴∠D=2∠ACD,∴∠D+∠DCB=5∠ACD=180°,∴∠ACD=36°,∴∠D=72°,在▱ABCD中,∠B=∠D=72°,故答案为:72°.12.已知平行四边形ABCD的两条对角线相交于平面直角坐标系中的原点O,点A(﹣1,3),B(1,2),则点C,D的坐标分别为(1,﹣3),(﹣1,﹣2).【解答】解:由题意知:点A与点C、点B与点D关于原点对称,∵点A,B的坐标分别为(﹣1,3),(1,2),∴点C,D的坐标分别是(1,﹣3),(﹣1,﹣2),故答案为:(1,﹣3),(﹣1,﹣2).13.已知平行四边形ABCD中,∠B+∠D=270°,则∠C=45°.【解答】解:∵已知平行四边形ABCD中,∠B+∠D=270°,∴∠B=∠D=135°,∵∠B+∠C=180°,∴∠C=45°,故答案为:45°.14.如图,四边形ABCD是等腰梯形,若其四边满足长度的众数为5,平均数为,上、下之比为1:2,则BD=5.【解答】解:∵众数是5,∴腰长是5,设梯形的四边长为5,5,x,2x,则=,解得:x=5,即等腰梯形的四边长是5,5,5,10,则AB=CD=5,AD=5,BC=10,过A作AM⊥BC于M,过D作DN⊥BC于N,则∠DNC=∠DNB=90°,AM∥DN,∵AD∥BC,∴四边形AMND是矩形,∴AD=MN=5,AM=DN,∵AB=CD,∴由勾股定理得:BM=CN=(10﹣5)=,在Rt△DNC中,由勾股定理得:DN==,在Rt△DNB中,由勾股定理得:BD===5.故答案为:5.15.如图,在等腰梯形ABCD中,AB∥CD,AC⊥BC,∠B=60°,AB=6,则CD的长是3.【解答】解:∵等腰梯形ABCD,AB∥CD,∠B=60°∴∠DAB=∠B=60°,AD=BC,∵AC⊥BC,∴∠ACB=90°,∴∠CAB=30°,∴∠DAC=30°,∵AB=6,∴BC=AD=AB=3,∵CD∥AB,∴∠DCA=∠CAB=30°,∴∠DAC=∠DCA,∴CD=AD=BC=3.故答案为:3.16.若AC=10,BD=8,AC与BD相交于点O,那么当AO=5,DO=4时,四边形ABCD是平行四边形.【解答】解:∵四边形ABCD是平行四边形,∴AO=AC,DO=BD,∵AC=10,BD=8,∴AO=5,DO=4,故答案为5,4.17.如图,在四边形ABCD中,AD=BC,在不添加任何辅助线的情况下,请你添加一个条件AD∥BC(答案不唯一),使四边形ABCD是平行四边形.【解答】解:根据平行四边形的判定,可再添加一个条件:AD∥BC.故答案为:AD∥BC(答案不唯一).18.在四边形ABCD中,AB∥CD,AD∥BC,如果∠B=50°,则∠D=50°.【解答】解:∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,∴∠B=∠D=50°,故答案为:50°.19.等腰△ABC底边上任意一点D,AB=AC=5cm,过D作DE∥AC交AB于E,DF∥AB 交AC于F,则四边形AEDF的周长为10cm.【解答】解:∵DE∥AC,DF∥AB,∴∠1=∠C,∠2=∠B,∵AB=AC,∴∠B=∠C,∴∠1=∠B,∠2=∠C,∴BE=ED,DF=FC,∴四边形AEDF的周长=AE+ED+DF+AF=AE+EB+CF+AF=AB+AC=10cm,故答案为:10cm.20.如图,在由六个全等的正三角形拼成的图形中,等腰梯形的个数是6个.【解答】解:∵AB∥FC,AF不平行BC,又∵AF=BC∴四边形ABCF是等腰梯形.同理四边形BCDA,四边形CDEB,四边形DEFC,四边形EF AD,四边形F ABE也是等腰梯形.从而符合定义的共有6个.故答案为:6个.三.解答题(共8小题)21.已知:如图,平行四边形ABCD中,对角线AC与BD相交于点E,点M为AD的中点,连接CM,CM的延长线交BA的延长线于点F,连接FD.(1)求证:AB=AF;(2)若AM=AB,∠BCD=120°,判断四边形ACDF的形状,并证明你的结论.【解答】证明:(1)∵四边形ABCD是平行四边形∴AB=CD,AB∥CD∴∠F AD=∠ADC,∵点M为AD的中点∴AM=DM,且∠F AD=∠ADC,∠AMF=∠CMD∴△AMF≌△CMD(ASA)∴AF=CD∴AB=AF(2)四边形AFDC是矩形理由如下:∵AD∥BC∴∠BCD+∠ADC=180°,且∠BCD=120°,∴∠ADC=60°∵AF=CD,AF∥CD∴四边形AFDC平行四边形∴AM=MD,FM=CM∵AB=AM∴MD=CD,且∠ADC=60°∴△DMC是等边三角形∴MC=CD=MD∴AD=CF∴平行四边形AFDC是矩形22.如图①▱ABCD的对角线AC和BD相交于点O,EF过点O且与边AB,CD分别相交于点E和点F.(1)求证:OE=OF(2)如图②,已知AD=1,BD=2,AC=2,∠DOF=∠α,①当∠α为多少度时,EF⊥AC?②连结AF,求△ADF的周长.【解答】证明:(1)∵四边形ABCD是平行四边形,∴OB=OD,AB∥CD.∴∠EBO=∠FDO.又∵∠BOE=∠DOF,∴△BOE≌△DOF(ASA).∴OE=OF;(2)①∵四边形ABCD是平行四边形,∴OD=BD=1,OA=AC=,又AD=1,∴AD2+OD2=OA2.∴∠ADO=90°,∠AOD=45°.∴∠α=90°﹣45°=45.②∵EP垂直平分AC,∴AF=FC,又AB===CD,∴△ADF的周长=AD+DF+F A=AD+CD=1+.23.如图,在等腰梯形ABCD中,AD∥BC,点E是BC边的中点.求证:AE=DE.【解答】证明:∵四边形ABCD是等腰梯形,∴AB=DC,∠B=∠C.∵E是BC的中点,∴BE=CE.在△ABE和△DCE中,,∴△ABE≌△DCE(SAS),∴AE=DE.24.证明:等腰梯形的对角线交点与同一底的两个端点的距离相等.【解答】已知:如图,等腰梯形ABCD,BC=AD,两对角线相交于O点.求证:OA=OB.证明:∵在△ACD与△BDC中BC=AD,∴∠ADC=∠BCD,CD=CD,∴△ACD≌△BDC(SAS),∴∠1=∠2,又∵∠DAB=∠ABC,∴∠DAB﹣∠1=∠ABC﹣∠2即:∠3=∠4,∴OA=OB.25.已知(如图),在四边形ABCD中AB=CD,过A作AE⊥BD交BD于点E,过C作CF ⊥BD交BD于F,且AE=CF.求证:四边形ABCD是平行四边形.【解答】证明:∵AE⊥BD,CF⊥BD,∴∠AEB=∠CFD=90°,在Rt△ABE和Rt△CDF中,,∴Rt△ABE≌Rt△CDF,∴ABE=∠CDF,∴AB∥CD,∵AB=CD,∴四边形ABCD是平行四边形.26.如图,AD是△ABC边BC上的中线,AE∥BC,BE交AD于点F,F是BE的中点,连结CE.求证:四边形ADCE是平行四边形.【解答】证明:∵AD是△ABC边BC上的中线,F是BE的中点,∴BF=EF,BD=CD,∴DF∥CE,∴AD∥CE,∵AE∥BC,∴四边形ADCE是平行四边形.27.如图,已知四边形AECF是平行四边形,D,B分别在AF,CE的延长线上,连接AB,CD,且∠B=∠D.求证:(1)△ABE≌△CDF;(2)四边形ABCD是平行四边形.【解答】证明:(1)∵四边形AECF是平行四边形∴∠AEC=∠AFC,AE=CF,AF=CE,∵∠AEC+∠AEB=180°,∠AFC+∠CFD=180°,∴∠AEB=∠CFD,∵∠B=∠D,∴△ABE≌△CDF(AAS);(2)由(1)知△ABE≌△CDF可得:AB=CD,BE=DF,∵AF=CE,∴AF+DF=CE+BE,∴AF+DF=CE+BE即AD=BC,∴四边形ABCD是平行四边形.28.如图,在▱ABCD中,AE⊥BD,CF⊥BD,E,F分别为垂足.(1)求证:四边形AECF是平行四边形;(2)如果AE=3,EF=4,求AF、EC所在直线的距离.【解答】(1)证明:∵AE⊥BD,CF⊥BD,∴∠AED=∠CFB=90°,∴AE∥CF,在▱ABCD中,∵AD∥BC,∴∠ADE=∠CBF,又∵AD=CB,∴△ADE≌△CBF(AAS),∴AE=CF,∴四边形AECF是平行四边形;(2)解:在▱AECF中,AF∥EC,设AF、EC所在直线的距离为h,∵AE⊥BD,∴∠AEF=90°,∴AF=,∵S四边形AECF=AE•EF=AF•h,∴h==2.4,∴AF、EC所在直线的距离是2.4。

2020-2021学年八年级数学北师大版下册第六章 6.1.1平行四边形的性质(一) 同步练习题

2020-2021学年八年级数学北师大版下册第六章 6.1.1平行四边形的性质(一) 同步练习题

2020-2021学年北师大版八年级数学下册第六章 6.1.1平行四边形的性质(一) 同步练习题A组(基础题)一、填空题1.如图,在▱ABCD中,AB=CD,AD=BC;∠A=∠C,∠B=∠D;∠A+∠B=______,∠A+∠D=______.2.小斌用一根50 m长的绳子围成了一个平行四边形场地,其中一边长16 m,则它的邻边长为______.3.(1)如图,在▱ABCD中,AB=4,BC=7,∠ABC的平分线交AD于点E,则ED等于______;(2)如图,在▱ABCD中,AE⊥BC于点E,AF⊥CD于点F.若∠EAF=50°,则∠B的度数为______.4.(1)平行四边形的一个角比它的邻角大32°,则最大内角的度数为______;(2)如图,在▱ABCD中,E,F是对角线AC上两点,AE=EF=CD,∠ADF=90°,∠BCD =63°,则∠ADE的大小为______.二、选择题5.在▱ABCD中,∠A∶∠B∶∠C∶∠D的度数比可能是( )A.2∶3∶3∶2 B.2∶3∶2∶3 C.1∶2∶3∶4 D.2∶2∶1∶16.如图,在▱ABCD中,已知AC=6 cm.若△ACD的周长为15 cm,则▱ABCD的周长为( ) A.26 cm B.24 cm C.20 cm D.18 cm7.如图,在▱ABCD中,CE⊥CD,C为垂足.如果∠A=120°,那么∠BCE的度数为( ) A.55°B.35°C.25°D.30°8.如图,在▱ABCD中,∠ADO=30°,AB=6,点A的坐标为(-2,0),则点C的坐标为( )A.(6,3) B.(3,23) C.(6,23) D.(6,3)三、解答题9.(1)如图,在▱ABCD中,将△ADC沿AC折叠后,点D恰好落在DC的延长线上的点E 处.若∠B=60°,AB=3,求△ADE的周长.10.(1)如图,四边形ABCD是平行四边形,点E在BA的延长线上,且BE=AD,点F在AD上,AF=AB.求证:△AEF≌△DFC.(2)如图,在▱ABCD中,连接BD,且BD=CD,过点A作AM⊥BD于点M,过点D作DN⊥AB于点N,且DN=32,在DB的延长线上取一点P,满足∠ABD=∠MAP+∠PAB,求AP的长.B组(中档题)一、填空题11.如图,在▱ABCD中,CE平分∠BCD,交AB于点E,EA=3,EB=5,ED=4,则CE的长是______.12.如图,以▱ABCD的边CD为斜边向内作等腰直角△CDE,使AD=DE=CE,∠DEC=90°,且点E在平行四边形内部,连接AE,BE,则∠AEB的度数是______.13.如图,在▱ABCD中,∠ABC=135°,AD=42,AB=8,作对角线AC的垂直平分线EF,分别交对边AB,CD于点E和点F,则AE的长为______.二、解答题14.如图,已知▱ABCD中,AB=5,BC=3,AC=213.(1)求▱ABCD的面积;(2)求证:BD⊥BC.C组(综合题)15.如图,在▱ABCD中,过点C作CH⊥AB,过点B作AC的垂线,分别交CH,AC,AD于点E,F,G,且∠ABC=∠BEH,BG=BC.(1)若BE=10,BC=25,求DG的值;(2)连接HF,求证:HA=2HF-HE.参考答案2020-2021学年北师大版八年级数学下册第六章 6.1.1平行四边形的性质(一) 同步练习题A组(基础题)一、填空题1.如图,在▱ABCD中,AB=CD,AD=BC;∠A=∠C,∠B=∠D;∠A+∠B=180°,∠A+∠D=180°.2.小斌用一根50 m长的绳子围成了一个平行四边形场地,其中一边长16 m,则它的邻边长为9_m.3.(1)如图,在▱ABCD中,AB=4,BC=7,∠ABC的平分线交AD于点E,则ED等于3;(2)如图,在▱ABCD中,AE⊥BC于点E,AF⊥CD于点F.若∠EAF=50°,则∠B的度数为50°.4.(1)平行四边形的一个角比它的邻角大32°,则最大内角的度数为106°;(2)如图,在▱ABCD中,E,F是对角线AC上两点,AE=EF=CD,∠ADF=90°,∠BCD =63°,则∠ADE的大小为21°.二、选择题5.在▱ABCD中,∠A∶∠B∶∠C∶∠D的度数比可能是(B)A.2∶3∶3∶2 B.2∶3∶2∶3 C.1∶2∶3∶4 D.2∶2∶1∶16.如图,在▱ABCD中,已知AC=6 cm.若△ACD的周长为15 cm,则▱ABCD的周长为(D) A.26 cm B.24 cm C.20 cm D.18 cm7.如图,在▱ABCD中,CE⊥CD,C为垂足.如果∠A=120°,那么∠BCE的度数为(D) A.55°B.35°C.25°D.30°8.如图,在▱ABCD中,∠ADO=30°,AB=6,点A的坐标为(-2,0),则点C的坐标为(C)A.(6,3) B.(3,23) C.(6,23) D.(6,3)三、解答题9.(1)如图,在▱ABCD中,将△ADC沿AC折叠后,点D恰好落在DC的延长线上的点E 处.若∠B=60°,AB=3,求△ADE的周长.解:由折叠可得,∠ACD =∠ACE =90°. ∴∠BAC =90°.又∵∠B =60°,∴∠ACB =30°. ∴BC =2AB =6.∴AD =6.由折叠可得,∠E =∠D =∠B =60°, ∴∠DAE =60°.∴△ADE 是等边三角形. ∴△ADE 的周长为6×3=18.(2)如图,在▱ABCD 中,BE ,DF 分别平分∠ABC ,∠ADC.求证:BE =DF.证明:∵四边形ABCD 为平行四边形,∴∠A =∠C ,∠ABC =∠ADC ,AB =CD. 又∵BE ,DF 分别平分∠ABC ,∠ADC ,∴∠CBE =∠ADF. 又∵AD ∥BC ,∴∠ADF =∠DFC. ∴∠CBE =∠DFC.∴BE ∥DF.又∵DE ∥BF ,∴四边形DFBE 为平行四边形. ∴BE =DF.10.(1)如图,四边形ABCD 是平行四边形,点E 在BA 的延长线上,且BE =AD ,点F 在AD 上,AF =AB.求证:△AEF ≌△DFC.证明:∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD. ∴∠EAF =∠ADC.又∵AF =AB ,BE =AD , ∴AF =CD ,AE =DF.在△AEF 和△DFC 中,⎩⎪⎨⎪⎧AF =DC ,∠EAF =∠FDC ,AE =DF ,∴△AEF ≌△DFC.(2)如图,在▱ABCD 中,连接BD ,且BD =CD ,过点A 作AM ⊥BD 于点M ,过点D 作DN ⊥AB 于点N ,且DN =32,在DB 的延长线上取一点P ,满足∠ABD =∠MAP +∠PAB ,求AP 的长.解:∵BD =CD ,BA =CD , ∴BD =BA.又∵AM ⊥BD ,DN ⊥AB ,∴DN =AM =3 2.又∵∠ABD =∠MAP +∠PAB ,∠ABD =∠P +∠PAB , ∴∠P =∠PAM.∴△APM 是等腰直角三角形. ∴AP =2AM =6.B 组(中档题)一、填空题11.如图,在▱ABCD 中,CE 平分∠BCD ,交AB 于点E ,EA =3,EB =5,ED =4,则CE 的长是45.12.如图,以▱ABCD 的边CD 为斜边向内作等腰直角△CDE ,使AD =DE =CE ,∠DEC =90°,且点E 在平行四边形内部,连接AE ,BE ,则∠AEB 的度数是135°.13.如图,在▱ABCD 中,∠ABC =135°,AD =42,AB =8,作对角线AC 的垂直平分线EF ,分别交对边AB ,CD 于点E 和点F ,则AE 的长为203.二、解答题14.如图,已知▱ABCD 中,AB =5,BC =3,AC =213. (1)求▱ABCD 的面积; (2)求证:BD ⊥BC.解:(1)过点C 作CE ⊥AB 交AB 的延长线于点E , 设BE =x ,CE =h.在Rt △CEB 中,由勾股定理,得x 2+h 2=9.①在Rt △CEA 中,由勾股定理,得(5+x)2+h 2=52.② 联立①②,解得x =95,h =125.∴S ▱ABCD =AB ·h =12.(2)证明:过点D 作DF ⊥AB ,垂足为F. ∴∠DFA =∠CEB =90°.在▱ABCD 中,AD =BC ,AD ∥BC , ∴∠DAF =∠CBE.又∵∠DFA =∠CEB =90°,AD =BC , ∴△ADF ≌△BCE(AAS).∴AF =BE =95,BF =5-95=165,DF =CE =125.在Rt △DFB 中,由勾股定理,得 BD 2=DF 2+BF 2=(125)2+(165)2=16,∴BD =4.∵BC =3,DC =5,∴CD 2=DB 2+BC 2. ∴BD ⊥BC.C 组(综合题)15.如图,在▱ABCD 中,过点C 作CH ⊥AB ,过点B 作AC 的垂线,分别交CH ,AC ,AD 于点E ,F ,G ,且∠ABC =∠BEH ,BG =BC.(1)若BE =10,BC =25,求DG 的值;(2)连接HF ,求证:HA =2HF -HE.解:(1)∵四边形ABCD 是平行四边形, ∴AD =BC =25,∠ABC +∠BAG =180°. ∵∠ABC =∠BEH ,∴∠CEB +∠ABC =180°. ∴∠BAG =∠CEB.∵∠ABG +∠BEH =90°,∠ECB +∠ABC =90°, ∴∠ABG =∠ECB.在△BAG 和△CEB 中,⎩⎪⎨⎪⎧∠BAG =∠CEB ,∠ABG =∠ECB ,BG =CB ,∴△BAG ≌△CEB(AAS).∴AG =BE =10.∴DG =AD -AG =25-10=15.(2)证明:过点F 作FN ⊥HF ,交BA 的延长线于点N , ∵△BAG ≌△CEB ,∴CE =AB.∵∠ABG +∠BAC =∠ECB +∠ABC =90°,∠ABG =∠ECB , ∴∠BAC =∠ABC. ∴AC =BC.∵CH ⊥AB ,∴∠ACH =∠ECB =∠ABG. 在△ABF 和△ECF 中,⎩⎪⎨⎪⎧∠CFE =∠BFA ,∠ABF =∠ECF ,AB =EC ,∴△ABF ≌△ECF(AAS).∴AF =EF.∵∠HFN =∠EFA =90°,∴∠AFN =∠EFH. ∵∠BAC =∠ABC ,∠ABC =∠BEH , ∴∠NAF =∠HEF.在△ANF 和△EHF 中,⎩⎪⎨⎪⎧∠NAF =∠HEF ,AF =EF ,∠AFN =∠EFH ,∴△ANF ≌△EHF(ASA).∴HE =AN ,HF =NF.∴△HFN 是等腰直角三角形. ∴HN =2HF.∴HA +AN =HA +HE =2HF. ∴HA =2HF -HE.。

鲁教版八年级数学上册第五章平行四边形的判定与性质基础达标训练题2(附答案)

鲁教版八年级数学上册第五章平行四边形的判定与性质基础达标训练题2(附答案)

鲁教版八年级数学上册第五章平行四边形的判定与性质基础达标训练题2(附答案)一.选择题(共10小题)1.如图,P为平行四边形ABCD边AB上一点,E、F分别为PD、PC的三等分点(靠近P),则阴影部分的面积与四边形CDEF的面积比为()A.B.C.D.2.如图,平行四边形ABCD的对角线AC平分∠BAD,若AC=12,BD=16,则对边之间的距离为()A.B.C.D.3.如图,在▱ABCD中,若∠A+∠C=130°,则∠D的大小为()A.100°B.105°C.110°D.115°4.等腰三角形的底边长为10 cm,一腰上的中线把三角形周长分成两部分的差为4 cm,则这个三角形的腰长是()A.6cm B.14cm C.4cm或14cm D.6cm或14cm 5.如图,在等腰梯形ABCD中,AB∥DC,AC和BD相交于点O,则图中的全等三角形共有()A.1对B.2对C.3对D.4对6.给四边形ABCD添加条件,使之成为平行四边形,下面添加的条件不能得到四边形ABCD 是平行四边形的是()A.AB=CD,AB∥CD B.AB∥CD,AD=BCC.AB=CD,AD=BC D.AC与BD相互平分7.如图,四边形ABCD的对角线AC,BD相交于点O,且AB∥CD,添加下列条件后仍不能判断四边形ABCD是平行四边形的是()A.AB=CD B.AD∥BC C.OA=OC D.AD=BC8.下列说法正确的是()A.平行四边形的对角线相等B.一组对边平行,一组对边相等的四边形是平行四边形C.对角线互相平分的四边形是平行四边形D.有两对邻角互补的四边形是平行四边形9.如图,在▱ABCD中,点E、F分别在边AB和CD上,下列条件不能判定四边形DEBF 一定是平行四边形的是()A.AE=CF B.DE=BF C.∠ADE=∠CBF D.∠AED=∠CFB 10.在四边形ABCD中,如果AB与CD不平行,AC与BD相交于点O,那么下列条件中能判定四边形ABCD是等腰梯形的是()A.AC=BD=BC B.AB=AD=CDC.OB=OC,OA=OD D.OB=OC,AB=CD二.填空题(共10小题)11.如图,将平行四边形ABCO放置在平面直角坐标系xOy中,O为坐标原点,若点A的坐标是(8,0),点C的坐标是(2,6),则点B的坐标是.12.如图,已知▱ABCD,点F在直线CD上,点E在直线AB上,则图中一定与△ABF面积相等的三角形是.13.如图,▱ABCD的周长为20,对角线AC与BD交于点O,△AOB的周长比△BOC的周长多2,则AB=.14.等腰梯形两底分别为10cm和20cm,若一腰长为cm,则它的对角线长为cm.15.如图,在等腰梯形ABCD中,AB∥CD,AD=AB,BD⊥BC,则∠C=.16.如图,在四边形ABCD中,AB=CD,对角线AC、BD相交于点O,OA=OC,请你添加一个条件,使四边形ABCD是平行四边形,你添加的条件是:.17.下列命题:①一组对边平行,另一组对边相等的四边形是平行四边形;②对角线互相平分的四边形是平行四边形;③在四边形ABCD中,AB=AD,BC=DC,那么这个四边形ABCD是平行四边形;④一组对边相等,一组对角相等的四边形是平行四边形.其中正确的命题是(将命题的序号填上即可).18.如图,▱ABCD中,∠ABC=60°,E、F分别在CD和BC的延长线上,AE∥BD,EF ⊥BC,EF=3,则AB的长是.19.如图,▱ABCD中,点E在CD的延长线上,AE∥BD,EC=4,则AB的长是.20.如图,已知梯形ABCD中,AD∥BC,BD是对角线.添加下列条件之一:①AB=DC;②BD平分∠ABC;③∠ABC=∠C;④∠A+∠C=180°,能推得梯形ABCD是等腰梯形的是(填编号).三.解答题(共8小题)21.已知:如图,E、F是▱ABCD的对角线AC上的两点,AF=CE.求证:(1)△ABE≌△CDF;(2)ED∥BF.22.如图所示,平行四边形ABCD中,∠ABC和∠BCD的平分线交于AD边上一点E.(1)求∠BEC的度数.(2)若BE=6,CE=4,则平行四边形ABCD的周长是多少?23.如图,等腰梯形ABCD中,AD∥BC,AD=5,AB=6,BC=8,AB∥DE,求△DEC的24.如图,在等腰梯形ABCD中,AC⊥BD,AC=6cm,求等腰梯形ABCD的面积.25.已知在平面直角坐标系中有A、B、C三点,且A(3,0)、B(0,3)、C(1,4)(1)判断△ABC的形状,并说明理由;(2)在坐标平面内存在一点D,使以A、B、C、D为顶点的四边形是平行四边形,求点D的坐标.(请直接写出结果)26.如图,在四边形ABCD中,DE⊥AC,BF⊥AC,垂足分别为E、F,DE=BF,∠ADB =∠CBD.求证:四边形ABCD是平行四边形.27.如图,在▱ABCD中,E、F分别是BC、AD的中点,求证:四边形AECF是平行四边28.在▱ABCD中,AE平分∠DAB交CD于E点、CF平分∠DCB交AB于点F.(1)求证:四边形AECF是平行四边形;(2)若BG平分∠ABC交CD于G点,且AD=2EG=2,求四边形ABCD的周长.参考答案与试题解析一.选择题(共10小题)1.如图,P为平行四边形ABCD边AB上一点,E、F分别为PD、PC的三等分点(靠近P),则阴影部分的面积与四边形CDEF的面积比为()A.B.C.D.【解答】解:∵四边形ABCD是平行四边形,∴S△CPD=S四边形ABCD,∵E、F分别为PD、PC的三等分点,∴=,∵∠EPF=∠DPC,∴△PEF∽△PDC,∴=,∴=,∴=,∴阴影部分的面积与四边形CDEF的面积比为,故选:D.2.如图,平行四边形ABCD的对角线AC平分∠BAD,若AC=12,BD=16,则对边之间的距离为()A.B.C.D.【解答】解:设AC,BD交点为O,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAC=∠BCA,又∵AC平分∠DAB,∴∠DAC=∠BAC,∴∠BCA=∠BAC,∴AB=BC,∴平行四边形ABCD是菱形;∵四边形ABCD是菱形,且AC=12、BD=16,∴AO=6、BO=8,且∠AOB=90°,∴AB==10,∴对边之间的距离==,故选:C.3.如图,在▱ABCD中,若∠A+∠C=130°,则∠D的大小为()A.100°B.105°C.110°D.115°【解答】解:∵四边形ABCD是平行四边形,∴∠A=∠C,∵∠A+∠C=130°,∴∠A=65°,∴∠D=180°﹣∠A=115°.故选:D.4.等腰三角形的底边长为10 cm,一腰上的中线把三角形周长分成两部分的差为4 cm,则这个三角形的腰长是()A.6cm B.14cm C.4cm或14cm D.6cm或14cm 【解答】解:如图,BC=10,由题意一腰上的中线把三角形周长分成两部分的差为4 cm所以AC+AD﹣BD﹣BC=4,即AC=14cm也有可能是BD+BC﹣AC﹣AD=4,解得AC=6cm故选:D.5.如图,在等腰梯形ABCD中,AB∥DC,AC和BD相交于点O,则图中的全等三角形共有()A.1对B.2对C.3对D.4对【解答】解:∵四边形ABCD为等腰梯形,∴AD=BC、BD=AC,在△ABD和△BAC中∴△ABD≌△BAC(SSS),∴∠DAO=∠CBO,同理可证得△ACD≌△BDC,在△AOD和△BOC中∴△AOD≌△BOC(AAS),∴全等三角形共有3对,故选:C.6.给四边形ABCD添加条件,使之成为平行四边形,下面添加的条件不能得到四边形ABCD 是平行四边形的是()A.AB=CD,AB∥CD B.AB∥CD,AD=BCC.AB=CD,AD=BC D.AC与BD相互平分【解答】解:A、若AB=CD,AB∥CD,由一组对边平行且相等的四边形是平行四边形可判定四边形ABD是平行四边形,故A选项不合题意;B、若AB∥CD,AD=BC,不能判定四边形ABCD是平行四边形,故B选项符合题意;C、若AB=CD,AD=BC,由两组对边分别相等的四边形是平行四边形可判定四边形ABD是平行四边形,故C选项不合题意;D、若AC与BD相互平分,由对角线互相平分的四边形是平行四边形可判定四边形ABD是平行四边形,故D选项不合题意;故选:B.7.如图,四边形ABCD的对角线AC,BD相交于点O,且AB∥CD,添加下列条件后仍不能判断四边形ABCD是平行四边形的是()A.AB=CD B.AD∥BC C.OA=OC D.AD=BC【解答】解:A、∵AB∥CD、AB=CD,∴四边形ABCD是平行四边形;B、∵AB∥CD、AD∥BC,∴四边形ABCD是平行四边形;C、∵AB∥CD,∴∠BAO=∠DCO,∠ABO=∠CDO.在△ABO和△CDO中,,∴△ABO≌△CDO(AAS),∴AB=CD,∴四边形ABCD是平行四边形;D、由AB∥CD、AD=BC无法证出四边形ABCD是平行四边形.故选:D.8.下列说法正确的是()A.平行四边形的对角线相等B.一组对边平行,一组对边相等的四边形是平行四边形C.对角线互相平分的四边形是平行四边形D.有两对邻角互补的四边形是平行四边形【解答】解:A、平行四边形的对角线互相平分,不一定相等,故A选项不合题意;B、一组对边平行,一组对边相等的四边形不一定是平行四边形,故B选项不合题意;C、对角线互相平分的四边形是平行四边形,故C选项符合题意;D、有两对邻角互补的四边形不一定是平行四边形,故D选项不合题意;故选:C.9.如图,在▱ABCD中,点E、F分别在边AB和CD上,下列条件不能判定四边形DEBF 一定是平行四边形的是()A.AE=CF B.DE=BF C.∠ADE=∠CBF D.∠AED=∠CFB 【解答】解:A、由AE=CF,可以推出DF=EB,DF∥EB,四边形ABCD是平行四边形;B、由DE=BF,不能推出四边形ABCD是平行四边形,有可能是等腰梯形;C、由∠ADE=∠CBF,可以推出△ADE≌△CBF,推出DF=EB,DF∥EB,四边形ABCD是平行四边形;D、由∠AED=∠CFB,可以推出△ADE≌△CBF,推出DF=EB,DF∥EB,四边形ABCD是平行四边形;故选:B.10.在四边形ABCD中,如果AB与CD不平行,AC与BD相交于点O,那么下列条件中能判定四边形ABCD是等腰梯形的是()A.AC=BD=BC B.AB=AD=CDC.OB=OC,OA=OD D.OB=OC,AB=CD【解答】解:A、AC=BD=BC,不能证明四边形ABCD是等腰梯形,错误;B、AB=AD=CD,不能证明四边形ABCD是等腰梯形,错误;D、OB=OC,AB=CD,不能证明四边形ABCD是等腰梯形,错误;C、∵OB=OC,OA=OD,∴∠OBC=∠OCB,∠OAD=∠ODA,在△AOB和△DOC中,,∴△AOB≌△DOC(SAS),∴∠ABO=∠DCO,AB=CD,同理:∠OAB=∠ODC,∵∠ABC+∠DCB+∠CDA+∠BAD=360°,∴∠DAB+∠ABC=180°,∴AD∥BC,∴四边形ABCD是梯形,∵AB=CD,∴四边形ABCD是等腰梯形.故选:C.二.填空题(共10小题)11.如图,将平行四边形ABCO放置在平面直角坐标系xOy中,O为坐标原点,若点A的坐标是(8,0),点C的坐标是(2,6),则点B的坐标是(10,6).【解答】解:∵四边形ABCD是平行四边形,∴OA=BC,OA∥BC,∵A(8,0),∴OA=BC=8,∵C(2,6),∴B(10,6),故答案为:(10,6)12.如图,已知▱ABCD,点F在直线CD上,点E在直线AB上,则图中一定与△ABF面积相等的三角形是△CDE.【解答】解:∵▱ABCD中,AB=CD,AB∥CD,∴△ABF与△CDE等底等高,∴与△ABF面积相等的三角形是△CDE.故答案为:△CDE.13.如图,▱ABCD的周长为20,对角线AC与BD交于点O,△AOB的周长比△BOC的周长多2,则AB=6.【解答】解:∵△AOB的周长比△BOC的周长多2,∴AB﹣BC=2.又平行四边形ABCD周长为20,∴AB+BC=10.∴AB=6.故答案为6.14.等腰梯形两底分别为10cm和20cm,若一腰长为cm,则它的对角线长为17cm.【解答】解:如图,作DE⊥BC于E,∵ABCD是等腰梯形,∴CE=(BC﹣AD)=(20﹣10)=5,BE=BC﹣CE=15,在直角△CDE中,根据勾股定理得到DE=8,在直角△BDE中,利用勾股定理得到BD==17.故答案为:17.15.如图,在等腰梯形ABCD中,AB∥CD,AD=AB,BD⊥BC,则∠C=60°.【解答】解:∵AD=AB,∴∠ABD=∠ADB,∵AB∥CD,∴∠ABD=∠BDC,设∠ABD=∠DBC=x°,∵AD=BC,∴∠ADC=∠C=2x°,∵BD⊥BC,∴∠C+∠BDC=90°,∴2x+x=90,∴x=30,∴∠C=60°,故答案为60°.16.如图,在四边形ABCD中,AB=CD,对角线AC、BD相交于点O,OA=OC,请你添加一个条件,使四边形ABCD是平行四边形,你添加的条件是:OB=OD.【解答】解:添加BO=DO,∵OA=OC,OB=OD,∴四边形ABCD是平行四边形,故答案为:OB=OD.17.下列命题:①一组对边平行,另一组对边相等的四边形是平行四边形;②对角线互相平分的四边形是平行四边形;③在四边形ABCD中,AB=AD,BC=DC,那么这个四边形ABCD是平行四边形;④一组对边相等,一组对角相等的四边形是平行四边形.其中正确的命题是②(将命题的序号填上即可).【解答】解:①一组对边平行,另一组对边相等的四边形不一定是平行四边形,等腰梯形也满足该条件.故①错误;②对角线互相平分的四边形是平行四边形.故②正确;③在四边形ABCD中,AB=AD,BC=DC,那么这个四边形ABCD不一定是平行四边形,筝形也满足该条件.故③错误;④一组对边相等,一组对角相等的四边形不能证明另一组对边也相等或平行.故④错误;故填:②.18.如图,▱ABCD中,∠ABC=60°,E、F分别在CD和BC的延长线上,AE∥BD,EF ⊥BC,EF=3,则AB的长是.【解答】解:∵四边形ABCD是平行四边形,∴AB∥DC,AB=CD,∵AE∥BD,∴四边形ABDE是平行四边形,∴AB=DE=CD,即D为CE中点,∵EF⊥BC,∴∠EFC=90°,∵AB∥CD,∴∠DCF=∠ABC=60°,∴∠CEF=30°,∵EF=3,∴CE==2,∴AB=,故答案为:.19.如图,▱ABCD中,点E在CD的延长线上,AE∥BD,EC=4,则AB的长是2.【解答】解:如图,在▱ABCD中,AB∥CD,且AB=CD.∵点E在CD的延长线上,∴AB∥ED.又∵AE∥BD,∴四边形ABDE是平行四边形,∴AB=ED,∴AB=ED=DC=EC=2.故答案为:2.20.如图,已知梯形ABCD中,AD∥BC,BD是对角线.添加下列条件之一:①AB=DC;②BD平分∠ABC;③∠ABC=∠C;④∠A+∠C=180°,能推得梯形ABCD是等腰梯形的是①③④(填编号).【解答】解:∵梯形ABCD中,AD∥BC,AB=DC,∴梯形ABCD是等腰梯形,故①正确;②既不能得到两同一底边上的两底角相等,也不能得到两腰相等,故②错误;③∵梯形ABCD中,AD∥BC,∠ABC=∠C,∴根据同一底边上的两底角相等可以判定等腰梯形,∴③正确;④∵AD∥BC,∴∠A+∠ABC=180°,∵∠A+∠C=180°,∴∠ABC=∠C,∴梯形ABCD是等腰梯形,故④正确.故答案为:①③④.三.解答题(共8小题)21.已知:如图,E、F是▱ABCD的对角线AC上的两点,AF=CE.求证:(1)△ABE≌△CDF;(2)ED∥BF.【解答】证明:(1)∵AF=CE,∴AF﹣EF=CE﹣EF,即AE=CF,∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠DCF=∠BAE,在△ABE与△CDF中,,∴△ABE≌△CDF(SAS);(2)∵△ABE≌△CDF,∴BE=DF,∠AEB=∠CFD,∴∠BEF=∠DFE,∴BE∥DF,∴四边形DEBF是平行四边形,∴ED∥BF.22.如图所示,平行四边形ABCD中,∠ABC和∠BCD的平分线交于AD边上一点E.(1)求∠BEC的度数.(2)若BE=6,CE=4,则平行四边形ABCD的周长是多少?【解答】解:(1)∵四边形ABCD是平行四边形,∴∠ABC+∠DCB=180°.∵∠ABC和∠BCD的平分线交于AD边上一点E,∴∠EBC=∠ABC,∠ECB=∠DCB.∴∠BEC=180°﹣(∠EBC+∠ECB)=180°﹣(∠ABC+∠DCB)=90°.(2)在Rt△BEC中,利用勾股定理可得BC===2.∵AD∥BC,∴∠AEB=∠EBC.∵∠ABE=∠EBC,∴∠ABE=∠AEB.∴AE=AB.同理可得ED=CD.∴AB+CD=AE+DE=AD=BC.所以平行四边形ABCD周长=AB+AD+CB+CD=3CB=6.23.如图,等腰梯形ABCD中,AD∥BC,AD=5,AB=6,BC=8,AB∥DE,求△DEC的周长.【解答】解:∵AD∥BC,AB∥DE,∴ABED是平行四边形,∴DE=CD=AB=6,EB=AD=5,∴EC=8﹣5=3,则△DEC的周长=DE+DC+EC=6+6+3=15.24.如图,在等腰梯形ABCD中,AC⊥BD,AC=6cm,求等腰梯形ABCD的面积.【解答】解:设AC与BD交于点O,∵四边形ABCD是等腰梯形,∴BD=AC=6cm,∵AC⊥BD,∴S等腰梯形ABCD=S△ABC+S△ADC=AC•OB+AC•OD=AC(OB+OD)=AC•BD=18(cm2).25.已知在平面直角坐标系中有A、B、C三点,且A(3,0)、B(0,3)、C(1,4)(1)判断△ABC的形状,并说明理由;(2)在坐标平面内存在一点D,使以A、B、C、D为顶点的四边形是平行四边形,求点D的坐标.(请直接写出结果)【解答】解:(1)∵A(3,0)、B(0,3)、C(1,4)∴AB=3,AC=2,BC=∵AB2+BC2=20,AC2=20,∴AB2+BC2=AC2,∴△ABC是直角三角形(2)设点D坐标(a,b)若以AB,BC为边,则∴a=4,b=1若以AC,AB为边,则∴a=﹣2,b=7若以BC,AC为边,则∴a=2,b=﹣1∴点D坐标为(4,1)或(﹣2,7)或(2,﹣1)26.如图,在四边形ABCD中,DE⊥AC,BF⊥AC,垂足分别为E、F,DE=BF,∠ADB =∠CBD.求证:四边形ABCD是平行四边形.【解答】证明:∵∠ADB=∠CBD,∴AD∥BC,∴∠DAE=∠BCF,在△ADE和△CBF中∵,∴△ADE≌△CBF(AAS),∴AD=BC,∴四边形ABCD是平行四边形.27.如图,在▱ABCD中,E、F分别是BC、AD的中点,求证:四边形AECF是平行四边形.【解答】解:∵四边形ABCD是平行四边形,∴AD=BC,EC∥AF,又EC=BC,AF=AD,∴EC=AF,∴四边形AECF是平行四边形.28.在▱ABCD中,AE平分∠DAB交CD于E点、CF平分∠DCB交AB于点F.(1)求证:四边形AECF是平行四边形;(2)若BG平分∠ABC交CD于G点,且AD=2EG=2,求四边形ABCD的周长.【解答】证明:(1)∵四边形ABCD是平行四边形∴AB∥CD,∠DAB=∠DCB∵AE平分∠DAB交CD于E点、CF平分∠DCB交AB于点F.∴∠DAE=∠EAB=∠DAB,∠DCF=∠BCF=∠DCB,∴∠EAB=∠DCF∵AB∥CD∴∠DEA=∠EAB∴∠DEA=∠DCF∴AE∥CF,且AB∥CD∴四边形AECF是平行四边形;(2)如图,当点G在点E右侧,∵四边形ABCD是平行四边形∴AB∥CD,AD=BC=2∵AE平分∠DAB,∴∠DAE=∠EAB∵AB∥CD∴∠DEA=∠EAB∴∠AED=∠DAE∴AD=DE=2,同理可得:BC=GC=2∵AD=2EG=2∴EG=1∴CD=DE+EG+GC=5∴四边形ABCD的周长=2(AD+CD)=14如图,若点G在点E左侧,同理可得:DE=GC=2,GE=1∴CD=DE+EC﹣GE=3∴四边形ABCD的周长=2(AD+CD)=10综上所述,四边形ABCD的周长为14或10。

数学人教版八下《 平行四边形性质与判定》同步基础练习卷(含答案)(2022年最新)

数学人教版八下《 平行四边形性质与判定》同步基础练习卷(含答案)(2022年最新)
7.如图,在▱ABCD中,AD=16,点E,F分别是BD,CD的中点,则EF等于( )
A.10B.8C.6D.4
8.如图,平行四边形ABCD中,P是形内任意一点,△ABP,△BCP,△CDP,△ADP的面积分别为S1,S2,S3,S4,则一定成立的是( )
A.S1+S2=S3+S4B.S1+S2>S3+S4C.S1+S3=S2+S4D.S1+S2<S3+S4
17.如图,E,F是▱ABCD对角线BD上的两点,请你添加一个适当的条件:,使四边形AECF是平行四边形.
18.一个四边形四条边顺次是a、b、c、d,且a2+b2+c2+d2=2ac+2bd,则这个四边形是_______
三、解答题
19.如图,已知△ABC中,D为AB的中点.
(1)请用尺规作图法作边AC的中点E,并连结DE(保留作图痕迹,不要求写作法);
∵EF=BF,BF=DC,∴EF=DC,
∴四边形EFCD是平行四边形。
23.证明:连接AE、DB、BE,BE交AD于点O,
∵AB DE,∴四边形ABDE是平行四边形,∴OB=OE,OA=OD,
∵AF=DC,∴OF=OC,∴四边形BCEF是平行四边形.
24.解:(1)DE+DF=AB.理由如下:
如图1.∵DE∥AB,DF∥AC,∴四边形AEDF是平行四边形,∴DE=AF.
14.如图,加一个条件与∠A+∠B=180°能使四边形ABCD成为平行四边形.
15.E为□ABCD边AD上一点,将ABE沿BE翻折得到FBE,点F在BD上,且EF=DF.若∠C=52°,则∠ABE=______
16.如图,□ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点.若AC+BD=24厘米,△OAB的周长是18厘米,则EF=厘米.

【同步练习】2019年八年级数学下册 平行四边形性质与判定 同步练习(含答案)

【同步练习】2019年八年级数学下册 平行四边形性质与判定 同步练习(含答案)

2019年八年级数学下册平行四边形性质与判定同步练习一、选择题:1、下列条件不能判断四边形是平行四边形的是()A.两组对边分别相等B.一组对边平行且相等C.一组对边平行,另一组对边相等D.对角线互相平分2、□ABCD中,∠A:∠B=1:2,则∠C的度数为().A.30°B.45°C.60°D.120°3、如图,EF过□ABCD对角线的交点O,交AD于点E,交BC于点F,若▱ABCD的周长为36,OE=3,则四边形EFCD的周长为( )A.28B.26C.24D.204、已知□ABCD的两条对角线AC=18,BD=8,则BC的长度可能为()A.5B.10C.13D.265、在四边形ABCD中,AC与BD相交于点O,如果只给出条件“AB∥CD”,还不能判定四边形ABCD为平行四边形,若想使四边形ABCD为平行四边形,要添加一个条件:①BC=AD;②∠BAD=∠BCD;③OA=OC;④∠ABD=∠CAB.这个条件可以是( )A.①或②B.②或③C.①或③或④D.②或③或④6、如图,在△ABC中,点D,E分别是边AB,BC的中点,若△DBE的周长是6,则△ABC的周长是( )A.8B.10C.12D.147、如图,在△ABC中,AB=6,AC=10,点D,E,F分别是AB,BC,AC的中点,则四边形ADEF的周长为( )A.8B.10C.12D.168、如图,▱ABCD的对角线AC,BD相交于点O,且AC+BD=16,CD=6,则△ABO周长是( )A.10B.14C.20D.229、如图,□ABCD中,AB=10,BC=6,E、F分别是AD、DC的中点,若EF=7,则四边形EACF的周长是()A.20B.22C.29D.3110、如图,在▱ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,AB=6,EF=2,则BC长为( )A.8B.10C.12D.1411、在平面直角坐标系中,已知平行四边形ABCD的点A(0,-2)、点B(3m,4m+1)(m≠-1),点C (6,2),则对角线BD的最小值是()A.3B.2C.5D.612、如图,▱ABCD的对角线AC,BD交于点O,AE平分∠BAD交BC于点E,且∠ADC=60°,2AB=BC,连结OE.下列结论:=AB·AC;③OB=AB;④4OE=BC.①∠CAD=30°;②S▱ABCD成立的个数有( )A.1个B.2个C.3个D.4个13、如图,在Rt△ABC中,∠B=90º,AB=6,BC=8,点D在BC上,以AC为对角线的所有□ADCE中,DE的最小值是( )A.4B.6C.8D.1014、如图,在平行四边形ABCD中,AB=8 cm,AD=12 cm.点P在AD边上以每秒1 cm的速度从点A向点D运动,点Q在BC边上,以每秒4 cm的速度从点C出发,在CB间往返运动,两个点同时出发,当点P达到点D时停止(同时点Q也停止).在运动以后,以P,D,Q,B四点为顶点组成平行四边形的次数有( )A.4次B.3次C.2次D.1次15、如图,四边形ABCD是平行四边形,点E是边CD上一点,且BC=EC,CF⊥BE交AB于点F,P是EB延长线上一点,下列结论:①BE平分∠CBF;②CF平分∠DCB;③BC=FB;④PF=PC.其中正确结论的个数为( )A.1B.2C.3D.4二、填空题16、▱ABCD中一条对角线分∠A为35°和45°,则∠B= 度.17、如图,□ABCD中,AC=8,BD=6,AD=a,则a的取值范围是.18、在平行四边形ABCD中,∠B+∠D=200°,则∠A=19、如图,在▱ABCD中,已知对角线AC和BD相交于点O,△AOB的周长为10,AB=4,那么对角线AC+BD= .20、在平行四边形ABCD中,BC上的高为4,AB=5 ,AC=,则平行四边形ABCD的周长等于_____________.21、如图,在△ABC中,∠ACB=90°,M,N分别是AB,AC的中点,延长BC至点D,使3CD=BD,连接DM,DN,MN.若AB=6,则DN=22、如图,△ABC中,D、E分别是BC、AC的中点,BF平分∠ABC,交DE于点F,若BC=6,则DF的长是=___. 23、如图,在▱ABCD中,过对角线BD上一点P作EF∥BC,GH∥AB,且CG=2BG,S△BPG=1,则S▱AEPH24、如图,在△A1B1C1中,已知A1B1=7,B1C1=4,A1C1=5,依次连接△A1B1C1的三边中点,得△A2B2C2,再依次连接△A2B2C2的三边中点,得△A3B3C3,…,则△A5B5C5的周长为.25、如图,正方形ABCD的边长为4,点P为正方形内部(含边上)的任意一点,且BP=2,分别连接PC、PD,则PD+PC的最小值为.三、解答题:26、如图,在▱ABCD中,AE=CF,M,N分别是BE,DF的中点.求证:四边形MFNE是平行四边形.27、如图,四边形ABCD是平行四边形,AE平分∠BAD,交DC的延长线于点E.求证:DA=DE.28、如图所示,在▱ABCD中,AE⊥BD,CF⊥BD,垂足分别为E,F.求证:BE=DF.29、如图,四边形ABCD为平行四边形,∠BAD的角平分线AE交CD于点F,交BC的延长线于点E.(1)求证:BE=CD;(2)连接BF,若BF⊥AE,∠BEA=60°,AB=4,求平行四边形ABCD的面积.30、如图,平行四边形ABCD中,BD⊥AD,∠A=45°,E,F分别是AB,CD上的点,且BE=DF,连接EF交BD 于点O.(1)求证:BO=DO;(2)若EF⊥AB,延长EF交AD的延长线于点G,当FG=1时,求AE的长.31、如图,在▱ABCD中,∠ABC的平分线交AD于点E,延长BE交CD的延长线于F.(1)若∠F=40°,求∠A的度数;(2)若AB=10,BC=16,CE⊥AD,求▱ABCD的面积.32、如图,是某城市部分街道示意图,AF∥BC,EC⊥BC,BA∥DE,BD∥AE,甲、乙两人同时从B站乘车到F 站,甲乘1路车,路线是B⇒A⇒E⇒F;乙乘2路车,路线是B⇒D⇒C⇒F,假设两车速度相同,途中耽误时间相同,那么谁先到达F站,请说明理由.33、如图,在平行四边形AB CD中,∠DAB=60°,点E、F分别在CD、AB的延长线上,且AE=AD,CF=CB.(1)求证:四边形AFCE是平行四边形;(2)若去掉已知条件的“∠DAB=60°,上述的结论还成立吗?若成立,请写出证明过程;若不成立,请说明理由.34、如图,∠ABM为直角,点C为线段BA的中点,点D是射线BM上的一个动点(不与点B重合),连接AD,作BE⊥AD,垂足为E,连接CE,过点E作EF⊥CE,交BD于F.(1)求证:BF=FD;(2)点D在运动过程中能否使得四边形ACFE为平行四边形?如不能,请说明理由;如能,求出此时∠A的度数.35、已知,平行四边形ABCD,E在BC延长线上,连接DE,∠A+∠E=180°.(1)如图1,求证:CD=DE;(2)如图2,过点C作BE的垂线,交AD于点F,求证:BE=AF+3DF;(3)如图3,在(2)的条件下,∠ABC的平分线,交CD于G,交CF于H,连接FG,若∠FGH=45°,DF=8,CH=9,求BE的长.参考答案1、C.2、C.3、C.4、B.5、B.6、C.7、D.8、B.9、C.10、B.11、D.12、C.13、B.14、B.15、D.16、答案为:100.17、答案为:1<a<7.18、答案为:80°.19、答案为:12.20、答案为:12或2021、答案为:3_.22、答案为:3.23、答案为:4.24、答案为:125、答案为:5.解:如图,在BC边上取一点E,使得BE=1,连接DE.∵PB=2,BC=4,BE=1,∴==,∵∠PBE=∠CBE,∴△PBE∽△CBE,∴==,∴PE=PC,∴PD+PC=PD+PE,∵PE+PD≥DE,在Rt△DEC中,∵∠DCE=90°,CD=4,EC=3,∴DE==5,∴PE+PD的最小值为5,∴PD+PC的最小值为5,故答案为:5.26、证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.又∵AE=CF,∴AD-AE=BC-CF,即DE=B F.∴四边形BEDF是平行四边形.∴BE∥DF,BE=DF.∵M,N分别是BE,DF的中点,∴EM=BE=DF=NF.∴四边形MFNE是平行四边形.27、证明:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠E=∠BAE,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠E=∠DAE,∴DA=DE.28、证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠ABE=∠CDF,∵AE⊥BD,CF⊥BD,∴∠AEB=∠CFD=90°,在△ABE和△CDF中,,∴△ABE≌△CDF(AAS),∴BE=DF.29、(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,AB=CD,∴∠AEB=∠DAE,∵AE是∠BAD的平分线,∴∠BAE=∠DAE∴∠BAE=∠AEB,∴AB=BE,∴BE=CD;(2)解:∵AB=BE,∠BEA=60°,∴△ABE是等边三角形,∴AE=AB=4,∵BF⊥AE,∴AF=EF=2∴BF===2,∵AD∥BC,∴∠D=∠ECF,∠DAF=∠E,在△ADF和△ECF中,,∴△ADF≌△ECF(AAS),∴△ADF的面积=△ECF的面积,∴平行四边形ABCD的面积=△ABE的面积=AE•BF=×4×2=4.30、解:(1)证明:∵四边形ABCD是平行四边形,∴DC∥AB,∴∠OBE=∠ODF.又∵∠BOE=∠DOF,BE=DF,∴△OBE≌△ODF,∴BO=DO.(2)∵EF⊥AB,AB∥DC,∴∠GEA=∠GFD=90°.∵∠A=45°,∴∠G=∠A=45°,∴AE=EG.∵BD⊥AD,∴∠ADB=∠GDO=90°,∠GOD=∠G=45°,∴DG=DO,∴OF=FG=1.由(1)可知OE=OF=1,∴GE=OE+OF+FG=3,∴AE=3.31、解:(1)∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,∴∠AEB=∠CBF,∠ABE=∠F=40°,∵∠ABC的平分线交AD于点E,∴∠ABE=∠CBF,∴∠AEB=∠ABE=40°,∴∠A=180°﹣40°﹣40°=100°(2)∵∠AEB=∠ABE∴AE=AB=10∵四边形ABCD是平行四边形∴AD=BC=16,CD=AB=10,∴DE=AD﹣AE=6,∵CE⊥AD,∴CE=8,∴▱ABCD的面积=AD•CE=16×8=12832、解:可以同时到达.理由如下:连结BE交AD于G,∵BA∥DE,AE∥DB,∴四边形ABDE为平行四边形,∴AB=DE,AE=BD,BG=GE,∵AF∥BC,G是BE的中点,∴F是CE的中点,即EF=FC,∵EC⊥BC,AF∥BC,∴AF⊥CE,即AF垂直平分CE,∴DE=DC,∴AB=DC,∴AB+AE+EF=DC+BD+CF,∴二人同时到达F站33、解:(1)证明:∵四边形ABCD是平行四边形,∴DC∥AB,∠DCB=∠DAB=60°.∴∠ADE=∠CBF=60°.∵AE=AD,CF=CB,∴△AED,△CFB是正三角形.∴∠AEC=∠BFC=60°,∠EAF=∠FCE=120°.∴四边形AFCE是平行四边形.(2)解:上述结论还成立证明:∵四边形ABCD是平行四边形,∴DC∥AB,∠CDA=∠CBA,∠DCB=∠DAB,AD=BC,DC=AB.∴∠ADE=∠CBF. ∵AE=AD,CF=CB,∴∠AED=∠ADE,∠CFB=∠CBF.∴∠AED=∠CFB.又∵AD=BC,在△ADE和△CBF中.,∴△ADE≌△CBF(AAS).∴∠AED=∠BFC,∠EAD=∠FCB.又∵∠DAB=∠BCD,∴∠EAF=∠FCE.∴四边形EAFC是平行四边形34、解:(1)在Rt△AEB中,∵AC=BC,∴,∴CB=CE,∴∠CEB=∠CBE. ∵∠CEF=∠CBF=90°,∴∠BEF=∠EBF,∴EF=BF.∵∠BEF+∠FED=90°,∠EBD+∠EDB=90°,∴∠FED=∠EDF,∵EF=FD.∴BF=FD.(2)能. 理由如下:若四边形ACFE为平行四边形,则AC∥EF,AC=EF,又∵AC=BC,BF=EF∴BC=BF,∴∠BCA=45°∵四边形ACFE为平行四边形∴ CF//AD∴∠A=45°∴当∠A=45°时四边形ACFE为平行四边形.35、解:(1)∵四边形ABCD是平行四边形,∴∠A=∠BCD,∵∠A+∠E=180°,∠BCD+∠DCE=180°,∴∠DCE=∠E,∴CD=DE;(2)如图2,过点D作DN⊥BE于N,∵CF⊥BE,∴∠DNC=∠BCF=90°,∴FC∥DN,∵四边形ABCD是平行四边形,∴AD∥BC,∴四边形CFDN是矩形,∴FD=CN,∵CD=DE,DN⊥CE,∴CN=NE=FD,∵四边形ABCD是平行四边形,∴BC=AD=AF+FD,∴BE=AF+3DF.(3)如图3,过点B作BM⊥AD于点M,延长FM至K,使KM=HC.连接BK,∵□ABCD,∴AB∥CD,∴∠ABG=∠BGC,∵BG平分∠ABC,∴设∠ABG=∠CBG=∠BGC=α,∴BC=CG,∵∠FGH=45°,∴∠FGC=45°+α,∵∠BCF=90°,∴∠BHC=∠FHG=90°﹣α,∴∠HFG=45°+α=∠FGC,∴FC=CG=BC,∵BM⊥AD,∴∠MBC=90°=∠FCE=∠MFC,∴四边形BCFM是矩形,∵BC=FC,∴四边形BCFM是正方形,∴BM=MF=BC=AD,∴MA=DF=8,∵∠KMB=∠BCH=90°,KM=CH,∴△BMK≌△BCH,∴KM=CH=9,∠KBM=∠CBH=α,∠K=∠BHC=90°﹣α,∵∠MBC=90°,∴∠MBA=90°﹣2α,∴∠KBA=90°﹣α=∠K,∴AB=AK=8+9=17,在Rt△ABM中,∠BMA=90°,BM==15,∴AD=BC=BM=15,∴AF=AD﹣DF=15﹣8=7,∴BE=AF+3DF=7+3×8=31.。

八年级数学平行四边形判定习题精选(教师版含答案)

八年级数学平行四边形判定习题精选(教师版含答案)

平行四边形性质和判定综合习题精选一.解答题(共30小题)1.如图,已知四边形ABCD为平行四边形,AE⊥BD于E,CF⊥BD于F.(1)求证:BE=DF;(2)若M、N分别为边AD、BC上的点,且DM=BN,试判断四边形MENF的形状(不必说明理由).2.如图所示,▱AECF的对角线相交于点O,DB经过点O,分别与AE,CF交于B,D.求证:四边形ABCD是平行四边形.3.如图,在四边形ABCD中,AB=CD,BF=DE,AE⊥BD,CF⊥BD,垂足分别为E,F.(1)求证:△ABE≌△CDF;(2)若AC与BD交于点O,求证:AO=CO.4.已知:如图,在△ABC中,∠BAC=90°,DE、DF是△ABC的中位线,连接EF、AD.求证:EF=AD.5.如图,已知D是△ABC的边AB上一点,CE∥AB,DE交AC于点O,且OA=OC,猜想线段CD与线段AE的大小关系和位置关系,并加以证明.6.如图,已知,▱ABCD中,AE=CF,M、N分别是DE、BF的中点.求证:四边形MFNE是平行四边形.7.如图,平行四边形ABCD,E、F两点在对角线BD上,且BE=DF,连接AE,EC,CF,FA.求证:四边形AECF是平行四边形.8.在▱ABCD中,分别以AD、BC为边向内作等边△ADE和等边△BCF,连接BE、DF.求证:四边形BEDF是平行四边形.9.如图所示,DB∥AC,且DB=AC,E是AC的中点,求证:BC=DE.10.已知:如图,在梯形ABCD中,AD∥BC,AD=24cm,BC=30cm,点P自点A向D以1cm/s的速度运动,到D 点即停止.点Q自点C向B以2cm/s的速度运动,到B点即停止,直线PQ截梯形为两个四边形.问当P,Q同时出发,几秒后其中一个四边形为平行四边形?11.如图:已知D、E、F分别是△ABC各边的中点,求证:AE与DF互相平分.12.已知:如图,在▱ABCD中,对角线AC交BD于点O,四边形AODE是平行四边形.求证:四边形ABOE、四边形DCOE都是平行四边形.13.如图,已知四边形ABCD中,点E,F,G,H分别是AB、CD、AC、BD的中点,并且点E、F、G、H有在同一条直线上.求证:EF和GH互相平分.14.如图:▱ABCD中,MN∥AC,试说明MQ=NP.15.已知:如图所示,平行四边形ABCD的对角线AC,BD相交于点O,EF经过点O并且分别和AB,CD相交于点E,F,点G,H分别为OA,OC的中点.求证:四边形EHFG是平行四边形.16.如图,已知在▱ABCD中,E、F是对角线BD上的两点,BE=DF,点G、H分别在BA和DC的延长线上,且AG=CH,连接GE、EH、HF、FG.(1)求证:四边形GEHF是平行四边形;(2)若点G、H分别在线段BA和DC上,其余条件不变,则(1)中的结论是否成立?(不用说明理由)17.如图,在△ABC中,D是AC的中点,E是线段BC延长线一点,过点A作BE的平行线与线段ED的延长线交于点F,连接AE、CF.(1)求证:AF=CE;(2)如果AC=EF,且∠ACB=135°,试判断四边形AFCE是什么样的四边形,并证明你的结论.18.如图平行四边形ABCD中,∠ABC=60°,点E、F分别在CD、BC的延长线上,AE∥BD,EF⊥BF,垂足为点F,DF=2(1)求证:D是EC中点;(2)求FC的长.19.如图,已知△ABC是等边三角形,点D、F分别在线段BC、AB上,∠EFB=60°,DC=EF.(1)求证:四边形EFCD是平行四边形;(2)若BF=EF,求证:AE=AD.20.如图,四边形ABCD,E、F、G、H分别是AB、BC、CD、DA的中点.(1)请判断四边形EFGH的形状?并说明为什么;(2)若使四边形EFGH为正方形,那么四边形ABCD的对角线应具有怎样的性质?21.如图,△ACD、△ABE、△BCF均为直线BC同侧的等边三角形.(1)当AB≠AC时,证明:四边形ADFE为平行四边形;(2)当AB=AC时,顺次连接A、D、F、E四点所构成的图形有哪几类?直接写出构成图形的类型和相应的条件.22.如图,以△ABC的三边为边,在BC的同侧分别作三个等边三角形即△ABD、△BCE、△ACF,那么,四边形AFED是否为平行四边形?如果是,请证明之,如果不是,请说明理由.23.在△ABC中,AB=AC,点P为△ABC所在平面内一点,过点P分别作PE∥AC交AB于点E,PF∥AB交BC于点D,交AC于点F.若点P在BC边上(如图1),此时PD=0,可得结论:PD+PE+PF=AB.请直接应用上述信息解决下列问题:当点P分别在△ABC内(如图2),△ABC外(如图3)时,上述结论是否成立?若成立,请给予证明;若不成立,PD,PE,PF与AB之间又有怎样的数量关系,请写出你的猜想,不需要证明.24.如图1,P为Rt△ABC所在平面内任意一点(不在直线AC上),∠ACB=90°,M为AB边中点.操作:以PA、PC为邻边作平行四边形PADC,连续PM并延长到点E,使ME=PM,连接DE.探究:(1)请猜想与线段DE有关的三个结论;(2)请你利用图2,图3选择不同位置的点P按上述方法操作;(3)经历(2)之后,如果你认为你写的结论是正确的,请加以证明;如果你认为你写的结论是错误的,请用图2或图3加以说明;(注意:错误的结论,只要你用反例给予说明也得分)(4)若将“Rt△ABC”改为“任意△ABC”,其他条件不变,利用图4操作,并写出与线段DE有关的结论(直接写答案).25.在一次数学实践探究活动中,小强用两条直线把平行四边形ABCD分割成四个部分,使含有一组对顶角的两个图形全等;(1)根据小强的分割方法,你认为把平行四边形分割成满足以上全等关系的直线有_________组;(2)请在图中的三个平行四边形中画出满足小强分割方法的直线;(3)由上述实验操作过程,你发现所画的两条直线有什么规律?26.如图,在直角梯形ABCD中,AB∥CD,∠BCD=Rt∠,AB=AD=10cm,BC=8cm.点P从点A出发,以每秒3cm 的速度沿折线ABCD方向运动,点Q从点D出发,以每秒2cm的速度沿线段DC方向向点C运动.已知动点P、Q同时发,当点Q运动到点C时,P、Q运动停止,设运动时间为t.(1)求CD的长;(2)当四边形PBQD为平行四边形时,求四边形PBQD的周长;(3)在点P、点Q的运动过程中,是否存在某一时刻,使得△BPQ的面积为20cm2?若存在,请求出所有满足条件的t的值;若不存在,请说明理由.27.已知平行四边形的三个顶点的坐标分别为O(0,0)、A(2,0)、B(1,1),则第四个顶点C的坐标是多少?28.已知平行四边形ABCD的周长为36cm,过D作AB,BC边上的高DE、DF,且cm,,求平行四边形ABCD的面积.29.如图,在平面直角坐标系中,已知O为原点,四边形ABCD为平行四边形,A、B、C的坐标分别是A(﹣3,),B(﹣2,3),C(2,3),点D在第一象限.(1)求D点的坐标;(2)将平行四边形ABCD先向右平移个单位长度,再向下平移个单位长度所得的四边形A1B1C1D1四个顶点的坐标是多少?(3)求平行四边形ABCD与四边形A1B1C1D1重叠部分的面积?30.如图所示.▱ABCD中,AF平分∠BAD交BC于F,DE⊥AF交CB于E.求证:BE=CF.答案与评分标准一.解答题(共30小题)1.如图,已知四边形ABCD为平行四边形,AE⊥BD于E,CF⊥BD于F.(1)求证:BE=DF;(2)若M、N分别为边AD、BC上的点,且DM=BN,试判断四边形MENF的形状(不必说明理由).考点:平行四边形的判定与性质;全等三角形的判定与性质。

中考数学总复习《平行四边形的判定与性质》练习题及答案

中考数学总复习《平行四边形的判定与性质》练习题及答案

中考数学总复习《平行四边形的判定与性质》练习题及答案班级:___________姓名:___________考号:_____________一、单选题1.如图在四边形ABCD中AB=CD,对角线AC、BD相交于点O,AE⊥BD于点E,CF⊥BD于点F,连接AF、CE,若DE=BF,则下列结论不一定正确的是()A.CF=AE B.OE=OFC.△CDE为直角三角形D.四边形ABCD是平行四边形2.如图四边形ABCD中AB∥CD,∥B=∥D点E为BC延长线上一点,连接AE,AE交CD于点H,∥DCE的平分线交AE于点G.若AB=2AD=10,点H为CD的中点,HE=6,则AC的值为()A.9B.√97C.10D.3 √103.如图在Rt∥ABC中∥ACB=90°,分别以AB、AC为腰向外作等腰直角三角形∥ABD和∥ACE,连结DE,CA的延长线交DE于点F,则与线段AF相等的是()A.AC B.AB C.BC D.AB4.如图在菱形ΑΒCD中∠Α=60∘,AD=8,F是ΑΒ的中点.过点F作FΕ⊥ΑD,垂足为Ε.将ΔΑΕF沿点Α到点Β的方向平移,得到ΔΑ′Ε′F ′.设Ρ、Ρ′分别是ΕF、Ε′F ′的中点,当点Α′与点Β重合时,四边形ΡΡ′CD的面积为()A.28√3B.24√3C.32√3D.32√3−85.下列说法中错误的是()A.平行四边形的对角线互相平分B.对角线互相垂直的四边形是菱形C.菱形的对角线互相垂直D.对角线互相平分的四边形是平行四边形6.如图.若要使平行四边形ABCD成为菱形.则需要添加的条件是()A.AB=CD B.AD=BC C.AB=BC D.AC=BD7.如图点A是直线l外一点,在l上取两点B,C,分别以A,C为圆心,BC,AB的长为半径作弧,两弧交于点D,分别连接AB,AD,CD,若∥ABC+∥ADC=120°,则∥A的度数是()A.100°B.110°C.120°D.125°8.如图在∥ABC中AB=AC=10,BC=12,点D是BC上一点,DE∥AC,DF∥AB,则∥BED与∥DFC的周长的和为()A.34B.32C.22D.209.如图在平面直角坐标系中点A(1,5),B(4,1),C(m,−m),D(m−3,−m+4),当四边形ABCD 的周长最小时,则m 的值为().A.√2B.32C.2D.310.如图分别在四边形ABCD的各边上取中点E,F,G,H,连接EG,在EG上取一点M,连接HM,过F作FN∥HM,交EG于N,将四边形ABCD中的四边形①和②移动后按图中方式摆放,得到四边形AHM′G′和AF′N′E,延长M′G′,N′F′相交于点K,得到四边形MM′KN′.下列说法中错误的是()A.S四边形MM′KN′=S四边形ABCD B.HM=NFC.四边形MM′KN′是平行四边形D.∠K=∠AHM′11.如图,已知∥ABC与∥CDA关于点O成中心对称,过点O任作直线EF分别交AD,BC于点E,F,则下则结论:①点E和点F,点B和点D是关于中心O的对称点;②直线BD必经过点O;③四边形ABCD 是中心对称图形;④四边形DEOC与四边形BFOA的面积必相等;⑤∥AOE与∥COF成中心对称.其中正确的个数为()A.2B.3C.4D.512.如图P为平行四边形ABCD内一点,过点P分别作AB、AD的平行线交平行四边形于E、F、G、H四点,若S四边形AHPE=3,S四边形PFCG=5,则S∥PBD为()A.0.5B.1C.1.5D.2二、填空题13.如图在平行四边形ABCD中点E,F分别在BC,AD上,请添加一个条件,使四边形AECF是平行四边形(只填一个即可).14.如图在Rt△ABC中AC=2√3,BC=2,点P是斜边AB上任意一点,D是AC的中点,连接PD并延长,使DE=PD.以PE,PC为边构造平行四边形PCQE,则对角线PQ的最小值为.15.如图▱ABCD中∥BAD=120°,E、F分别在CD和BC的延长线上,AE∥BD,EF∥BC,EF=5√3,则AB的长是16.如图在∥ABC中∥ACB=90°,M、N分别是AB、AC的中点,延长BC至点D,使CD= 13BD,连接DM、DN、MN.若AB=6,则DN=.17.若AC=10,BD=8,那么当AO=DO=时,四边形ABCD是平行四边形。

数学八年级平行四边形性质与判定4套练习及答案

数学八年级平行四边形性质与判定4套练习及答案

平行四边形练习题1平行四边形的性质(一) 一、选择题1.平行四边形的两邻角的角平分线相交所成的角为( ) A.锐角 B.直角 C.钝角 D.不能确定2.平行四边形的周长为24cm ,相邻两边的差为2cm ,则平行四边形的各边长为( ) A.4cm ,4cm ,8cm ,8cm B.5cm ,5cm ,7cm ,7cm C.5.5cm ,5.5cm ,6.5cm ,6.5cm D.3cm ,3cm ,9cm ,9cm3. 如.则∠A.28C.324. 在5A.6.在□A100二、填7. .8. 9.10.. ∠C 11. 中,对角线AC 、BD 相交于点O ,图中全等三角形共有对12.如图所示,在ABCD 中,∠B =110°,延长AD 至F ,CD 至E ,连结EF ,则∠E+∠F= 三、解答题13. 在四边形ABCD 中,AB ∥CD ,∠A =∠C ,求证:四边形ABCD 是平行四边形. 14. 在□ABCD 中, ∠A+∠C=160°, , 求∠A,∠C,∠B,∠D 的度数第11题图 第12题图15. .如图所示,四边形ABCD 是平行四边形,BD ⊥AD ,求BC ,CD 及OB 的长.16. 如图,在□ABCD 中,E 、F 分别是BC 、AD 上的点,且AE ∥CF ,AE 与CF 相等吗?说明理由.课时一答案:一、1.B ,提示:平行四边形的两邻角的和为180°,所以它们的角平分线的夹角为90°;2.B ,提示:设相邻两边为,,ycm xcm 根据题意得⎩⎨⎧=-=+212y x y x ,解得⎩⎨⎧==57y x ;3. B ,提示:根据平行四边形的性质对角相等得∠D =∠ABC=120°,邻角互补得∠CAB +∠CAD+∠D =180°,则∠CAB =180°-32°-120°=28°;4. D ,提示:根据平行四边形的对角相等,得对角的比值相等故选D ;5.A ;6.B ,由题意得∠A =60°,根据平行四边形的邻角互补,得∠B =180°-60°=120°; 二、7.3提示:°11.4;三角形三、∴AD 14.解:又∵∠∵在□∴∠B 15. 解:∵∵∴16. AE =平行四边形的性质(二)1. 如图所示,如果该平行四边形的一条边长是8,一条对角线长为6,那么它的另一条对角线长x 的取值范围是________.2.长为( A.8.3 3. ,交AD4.为( A.155. 已知ABCD ,求证:6. 为E 、7.已知O 为平行四边形ABCD 对角线的交点,△AOB 的面积为1,则平行四边形的面积为( )第3题图A.1B.2C.3D.48.平行四边形的对角线分别为y x ,,一边长为12,则y x ,的值可能是下列各组数中的( ) A.8与14 B.10与14 C.18与20 D.10与28 9. □ABCD 中,若,6,10,30cm AB cm BC B ===∠ 则□ABCD 的面积是 .10. 如图,在平行四边形ABCD 中,AE ⊥BC 于E ,AF ⊥CD 于F ,∠EAF =45°,且AE+AF=则平行四边形ABCD 的11.点E ,F 分别在AC,AB 上,且DE ∥求证:12. M 、N ,•点(1(2第10题图 第11题图课时二答案:1. 10<x <22,提示:根据三角形的三边关系得11215<<x ,解得2210<<x ;2. B ;3. BC =AD =4.8;4.A ;提示:根据面积法求出邻边的比为3∶2,则邻边为7.5,5,则面积为7.5×2=15cm 2;5. 证明:∵ABCD ,∴OA =OC ,DF ∥EB ∴∠E =∠F ,又∵∠EOA =∠FOC ∴△OAE ≌△OCF ,∴OE =OF ;6. OE =OF , 在□ABCD 中,OB=OD ,∵BE ⊥AC ,DF ⊥AC ∴∠BEO =∠DFO ,又∠7.D 边,若11.∴∠B=12. ( 在∴∠平行四边形的判定(一) 一、选择题1.下列条件中不能判定四边形ABCD 为平行四边形的是( ) A.AB=CD,AD=BC B.AB ∥CD ,AB=CD C.AB=CD ,AD ∥BC D. AB ∥CD ,AD ∥BC2.已知:四边形ABCD 中,AD ∥BC ,分别添加下列条件之一:①AB ∥CD ;② AB=CD, ③AD=BC ,④∠A=∠C ,⑤∠B=∠D ,能使四边形ABCD 成为平行四边形的条件的个数是( ) A.4 B.3 C.2 D.13.4. 5.为平行四边形,6.如图所示,ABCD E 、7.如图所示,在ABCD 且8. 9.ABCD 行四边形.10. 如图所示,BD 是ABCD 的对角线,AE ⊥BD 于E ,CF ⊥四边形AECF 为平行四边形.11. 如图所示,平行四边形ABCD的对角线A C、BD相交于点O,E、F是直线AC上的两点,并且AE=CF,求证:四边形BFDE是平行四边形.12.CE课时三答案:一、1.C ;2.B ,提示:AD ∥BC ,添加条件①③④能使四边形ABCD 成为平行四边形;3.C ;4.B ;二、5. AD =BC (或AB ∥CD 或∠A=∠C 或∠B=∠D );6.30°,6,9;7.对角线互相平分;8. 3; 三、9.在ABCD 中,AD=CB,AB=CD,∠D =∠B ,∵E 、F 分别为AB 、CD 的中点,∴DF=BE , 又∵AB ∥CD ,AB=CD ,∴AE=CF ,∴四边形AECF 是平行四边形. 10. 证明:∵ABCD∴AB =CD ,AB ∥CDAE ∴11. 12. 证明:BC ∴又 ∴△BE ∴BE ∴连结 BO ∴又 AE ∴EO ∴∴BE DF ∴∥课时四平行四边形的判定(二)1.如图所示,D 、E 、F 为△ABC 的三边中点, 则图中平行四边形有( ) A.1个 B2个 C 3个 D.4个2. D 、为20A.153.4.□分别是5. 连结6. (1)(2)7. BC ,BA ∥DE ,BD ∥AE ,EF=FC ,路车,路线是B →A →E →F ,乙乘2路,路线是B →D ,假设两车速度相同,途中耽误时间相同,那么谁先到达F 站,请说明理由.第1题图第6题图8. 如图所示,已知AD与BC相交于E,∠1=∠2=∠3,BD=CD,∠ADB=90°,CH⊥AB于H,CH交AD于F.(1)求证:CD∥AB;(2)求证:△BDE≌△ACE;(3)若O为AB中点,求证:OF=12BE.9..10.是OA11.如图所示,平行四边形ABCD中,M、N分别为AD、BC的中点,连结AN、DN、BM、CM,且AN、BM交于点P,CM、DN交于点Q.四边形MGNP是平行四边形吗?为什么?第9题图第10题图课时四答案:1.C;2.D ,提示:根据三角形中位线的性质定理:;21,21DEF LMN ABC DEF L L L L ∆∆∆∆== 3.26或22,提示:当两腰上的中位线长为3时,则底边长为6,腰长为10,三角形的周长为26,当两腰上的中位线长为5时,则底边长为10,腰长为6,三角形的周长为22;4.平行四边形 ;5.平行四边形;6.证明:(1)∵ 四边形ABCD 是平行四边形,∴AB ∥CF .∴∠1=∠2,∠3=∠4 ∵E 是AD 的中点,∴ AE=DE .∴△ABE ≌△DFE .(2)四边形ABDF 是平行四边形.∵△ABE ≌△DFE∴AB=DF 又AB ∥CF .∴四边形ABDF 是平行四边形.7.解:∵BA ∥DE ,BD ∥AE ,∴四边形ABDE 是平行四边形∴AB=DE ,BD=AE ,又EF=FC 且AF ∥BC ,EC ⊥BC ,∴DE=DC ,∴EA+AE+EF=BD+DC+CF ,∴二人同时到达F 站.8.证明:(1)∵BD=CD ,∴∠BCD=∠1.∵ ∠l=∠2,∠BCD=∠2.∴CD ∥AB .(2) ∵ CD ∥AB ∴∠CDA=∠3.∠BCD=∠2=∠3.且BE=AE .且∠CDA=∠BCD .∴DE=CE .在△BDE 和△ACE 中, DE=CE ,∠DEB=∠CEA ,BE=AE .∴△BDE ≌△ACE(3) ∵△BDE ≌△ACE∠4=∠1,∠ACE=∠BDE=90°.∴∠ACH=90°一∠BCH又CH ⊥AB ,.∴ ∠2=90°一∠BCH∴∠ACH=∠2=∠1=∠4.AF=CF∵∠AEC=90°一∠4,∠ECF=90°一∠ACH∠ACH=∠4 ∠AEC=∠ECF .CF=EF .∴ EF=AFO 为AB 中点,OF 为△ABE 的中位线 ∴OF=12BE 9. 线段AC 与EF 互相平分.理由是:∵四边形ABCD 是平行四边形.∴AB ∥CD ,即AE ∥CF ,AB =CD ,∵BE =DF ,∴AE =CF∴四边形AECF 是平行四边形,∴AC 与EF 互相平分.10.是平行四边形,△AOE ≌△COF .11是平行四边形,四边形AMCN 、BMDN 是平行四边形.。

2020-2021学年华东师大版八年级下册数学 18.1平行四边形的性质 同步测试(含解析)

2020-2021学年华东师大版八年级下册数学 18.1平行四边形的性质 同步测试(含解析)

18.1平行四边形的性质同步测试一.选择题1.平行四边形一边长是10cm,那么它的两条对角线的长度可以是()A.8cm和6cm B.8cm和8cm C.8cm和12cm D.8cm和16cm 2.▱ABCD中,∠A:∠B:∠C:∠D的度数比可能是()A.1:1:2:3B.1:2:1:2C.1:1:2:2D.1:2:2:1 3.如图,在▱ABCD中,BE⊥AB交对角线AC于点E.若∠1=20°,则∠2的度数为()A.120°B.100°C.110°D.90°4.如图,在△ABC中,∠C=50°,AC=BC,点D在AC边上,以AB,AD为边作▱ABED,则∠E的度数为()A.50°B.55°C.65°D.70°5.如图,在▱ABCD中,BC=6,∠A=135°,S▱ABCD=12.若点E、F分别在边BC、AD上,且AF=CE,∠EFD=30°,则AF的长为()A.﹣1B.2﹣1C.6﹣6D.4﹣26.如图,在▱ABCD中,∠ABC、∠BCD的平分线BE、CF分别与AD相交于点E、F,BE与CF相交于点G,若AB=6,BC=10,CF=4,则BE的长为()A.4B.8C.8D.107.如图,在平行四边形ABCD中,N是CD的中点,AB=2BC,BN=m,AN=n,则CD的长为()A.+n B.m+C.D.8.如图1,平行四边形纸片ABCD的面积为120,AD=20.今沿两对角线将四边形ABCD剪成甲、乙、丙、丁四个三角形纸片.若将甲、丙合并(AD、CB重合)形成一个对称图形戊,如图2所示.则图形戊中的四边形两对角线长度和为()A.29B.26C.24D.259.如图,▱ABCD的对角线AC,BD相交于点O(AD>AB).下列说法:①AB=CD;②S△AOB =S△AOD;③∠ABD=∠CBD;④对边AB,CD之间的距离相等且等于BC的长.其中正确的结论有()个A.1B.2C.3D.410.如图,EF过平行四边形ABCD对角线的交点O,交AD于点E,交BC于点F,若平行四边形ABCD的周长是30,OE=3,则四边形ABFE的周长是()A.21B.24C.27D.18二.填空题11.已知▱ABCD中,∠B=4∠A,则∠A=.12.如图,AC是▱ABCD的对角线,点E在AC上,AD=AE=BE,D=102°,则∠BAC的度数是.13.在▱ABCD中,对角线AC,BD相交于点O,AB⊥AC,AB=1,BC=5,则对角线BD=.14.如图,在平行四边形ABCD中,E、F是对角线AC上两点,AE=EF=CD,∠ADF=90°,∠BCD=63°,则∠ADE的大小为.15.如图,在△ABC中,∠BAC=45°,AB=AC=4,P为AB边上一动点,以P A,PC为邻边作平行四边形P AQC,则对角线PQ的最小值为.三.解答题16.如图,在平行四边形ABCD中,点E,F分别是边AD,BC的中点,请问AF与CE有何关系?请说明理由.17.如图,在▱ABCD中,∠ADC的平分线经过BC的中点E,与AB的延长线交于点F.求证:AE⊥DF.18.如图1,在平行四边形ABCD中,过点A作AE⊥BC交BC于点E,连接ED,且ED平分∠AEC.(1)求证:AE=BC;(2)如图2,过点C作CF⊥DE交DE于点F,连接AF,BF,猜想△ABF的形状并证明.参考答案一.选择题1.解:A、取对角线的一半与已知边长,得4,3,10,不能构成三角形,舍去;B、取对角线的一半与已知边长,得4,4,10,不能构成三角形,舍去;C、取对角线的一半与已知边长,得4,6,10,不能构成三角形,舍去;D、取对角线的一半与已知边长,得4,8,10,能构成三角形.故选:D.2.解:根据平行四边形的两组对角分别相等,可知B正确.故选:B.3.解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠CAB=∠1=20°,∵BE⊥AB,∴∠ABE=90°,∴∠2=∠EAB+∠EBA=20°+90°=110°.故选:C.4.解:∵∠C=50°,AC=BC,∴∠A=∠ABC=(180°﹣50°)=65°,∵四边形ABED是平行四边形,∴∠E=∠A=65°.故选:C.5.解:作CN⊥AD于点N,作EM⊥AD于点M,则CE=MN,∵S▱ABCD=12,BC=6,∴EM=CN==2,∵四边形ABCD是平行四边形,∠A=135°,∴∠A+∠B=180°,∠B=∠D,AD=BC=6,∴∠B=∠D=45°,∵∠CND=90°,∴∠D=∠DCN=45°,∴DN=CN=2,∵EM⊥AD,∵CM⊥AD,∠EFD=30°,∴MF===2,∵AD=6,AF=CE,CE=MN,∴AF+FM+MN+DN=AD=6,∴AF+2+MN+2+6,∴2AF=4﹣2,∴AF=2﹣1,故选:B.6.解:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠ABC+∠BCD=180°,∵∠ABC、∠BCD的平分线BE、CF分别与AD相交于点E、F,∴∠EBC+∠FCB=∠ABC+∠DCB=90°,∴EB⊥FC,∴∠FGB=90°.过A作AM∥FC,交BC于M,交BE于O,如图所示:∵AM∥FC,∴∠AOB=∠FGB=90°,∵BE平分∠ABC,∴∠ABE=∠EBC,∵AD∥BC,∴∠AEB=∠CBE,∴∠ABE=∠AEB,∴AB=AE=6,∵AO⊥BE,∴BO=EO,在△AOE和△MOB中,,∴△AOE≌△MOB(ASA),∴AO=MO,∵AF∥CM,AM∥FC,∴四边形AMCF是平行四边形,∴AM=FC=4,∴AO=2,∴EO===4,∴BE=8.故选:C.7.解:∵N为CD中点,∴CN=DN=CD=AB=BC=AD,∴∠DAN=∠DNA,∠CBN=∠CNB,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠C+∠D=180°,∴∠C=2∠DNA,∠D=2∠CNB,∴∠DNA+∠CNB=(∠C+∠D)=90°,∴∠ANB=180°﹣(∠DNA+∠CNB)=90°即△NAB为直角三角形,∵BN=m,AN=n,∴CD=AB==.故选:D.8.解:如图,连接AD、EF,则可得对角线EF⊥AD,且EF与平行四边形的高相等.∵平行四边形纸片ABCD的面积为120,AD=20,∴BC=AD=20,EF×AD=×120,∴EF=6,又BC=20,∴则图形戊中的四边形两对角线之和为20+6=26,故选:B.9.解:A.∵平行四边形ABCD的对边相等,故此选项正确;B.∵四边形ABCD被对角线分成的四个三角形面积都相等,故此选项正确;C.∵四边形ABCD对角线不会平分对角,故此选项不正确;D.∵四边形ABCD对边之间的距离是垂线段的长度,故此选项不正确;故选:B.10.解:∵四边形ABCD为平行四边形,对角线的交点为O,∴AB=CD,AD=BC,OA=OC,AD∥BC,∴∠EAO=∠FCO,在△AOE和△COF中,,∴△AOE≌△COF(ASA),∴OE=OF,AE=CF,∵平行四边形ABCD的周长为30,∴AB+BC=×30=15,∴四边形ABFE的周长=AB+AE+BF+EF=AB+BF+CF+2OE=AB+BC+2×3=15+6=21,故选:A.二.填空题11.解:∵四边形ABCD是平行四边形,∴AD∥BC,∠A=∠C,∴∠A+∠B=180°,∵∠B=4∠A,∴∠A=×180°=36°.故答案为:36°.12.解:∵四边形ABCD是平行四边形,∴∠ABC=∠D=102°,AD=BC,∵AD=AE=BE,∴BC=AE=BE,∴∠EAB=∠EBA,∠BEC=∠ECB,∵∠BEC=∠EAB+∠EBA=2∠EAB,∴∠ACB=2∠CAB,∴∠CAB+∠ACB=3∠CAB=180°﹣∠ABC=180°﹣102°,∴∠BAC=26°,故答案为:26°.13.解:∵四边形ABCD是平行四边形,∴OA=OC=AC,OB=OD=BD,∵AB⊥AC,∴∠BAC=90°,∴AC===2,∴OA=AC=,∴OB===,∴BD=2OB=2;故答案为:2.14.解:设∠ADE=x,∵AE=EF,∠ADF=90°,∴∠DAE=∠ADE=x,DE=AF=AE=EF,∵AE=EF=CD,∴DE=CD,∴∠DCE=∠DEC=2x,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAE=∠BCA=x,∴∠DCE=∠BCD﹣∠BCA=63°﹣x,∴2x=63°﹣x,解得:x=21°,即∠ADE=21°;故答案为:21°.15.解:如图所示,过C作CD⊥AB于D,∵∠BAC=45°,AB=AC=4,∴△ACD是等腰直角三角形,∴CD=AD=,∵四边形P AQC是平行四边形,∴AP∥CQ,∴当PQ⊥AP时,PQ的最小值等于CD的长,∴对角线PQ的最小值为,故答案为:.三.解答题16.解:AF=CE,AF∥CE,理由如下:∵ABCD是平行四边形,∴AD∥BC,AD=BC,∵E,F分别AD,BC的中点,∴,∴AE=CF,∵AE∥CF,∴AECF是平行四边形,∴AF=CE,AF∥CE.17.证明:∵E是BC边的中点,∴BE=EC,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠F=∠CDE,在△BEF和△CED中,∴△CDE≌△BFE(AAS);∵DF平分∠ADC,∴∠ADE=∠CDE,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠F=∠CDE,∴∠F=∠ADF,∴AD=AF,∵△CDE≌△BFE,∴EF=ED,∴AE⊥DF.18.(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,又∵AE⊥BC,∴∠AEC=90°,又∵ED平分∠AEC,∴∠ADE=∠CED=45°,∴∠AED=∠ADE,∴AE=AD,∴AE=BC;(2)△ABF是等腰直角三角形,证明:∵CF⊥DE,∴∠CFE=90°,又∵∠CEF=45°,∴∠ECF=45°,∴∠FEC=∠FCE=∠AEF,∴EF=CF,在△AEF和△BCF中,,∴△AEF≌△BCF(SAS),∴AF=BF,∠AFE=∠BFC,∴∠AFE﹣∠BFE=∠BFC﹣∠BFE,即∠AFB=∠EFC=90°,∴△ABF是等腰直角三角形.。

重点突围:专题05 平行四边形的判定与性质(原卷版)-人教八下期中综合复习

重点突围:专题05 平行四边形的判定与性质(原卷版)-人教八下期中综合复习

八年级数学下册期中期末综合复习专题提优训练(人教版)专题05平行四边形的判定与性质【典型例题】1.(2022·黑龙江肇源·八年级期末)如图,在△ABC中,点D,E分别是AC,AB的中点,点F是CB延长线上的一点,且CF=3BF,连接DB,EF.(1)求证:四边形DEFB是平行四边形;(2)若△ACB=90°,AC=12cm,DE=4cm,求四边形DEFB的周长.【专题训练】一、选择题1.(2022·山东安丘·八年级期末)如图所示,四边形ABCD是平行四边形,点E在线段BC 的延长线上,若△DCE=128°,则△A=()A.32°B.42°C.52°D.62°2.(2022·山东龙口·八年级期末)如图,平行四边形ABCD中,两对角线交于点O,AB△AC,AD=5cm,OC=2cm,则对角线BD的长为()A B.8cm C.3cm D.3.(2021·山东·宁津县教育和体育局教育科学研究所二模)如图,直线EF 过平行四边形ABCD 对角线的交点O ,分别交AB 、CD 于E 、F ,那么阴影部分的面积是平行四边形ABCD 面积的( )A .15B .14C .13D .12 4.(2022·江苏·八年级专题练习)如图,在▱ABCD 中,对角线AC 、BD 相交于点O ,过点O 作OE △AC ,交AD 于点E ,连接CE ,若△CDE 的周长为8,则▱ABCD 的周长为( )A .8B .10C .16D .205.(2022·福建泉港·八年级期末)如图,点E 、F 分别是▱ABCD 边AD 、BC 的中点,G 、H 是对角线BD 上的两点,且BG =DH .则下列结论中不正确的是( )A .GF EH =B .四边形EGFH 是平行四边形C .EG FH =D .EH BD ⊥6.(2022·安徽庐江·九年级期末)如图①,在▱ABCD 中,动点P 从点B 出发,沿折线B →C →D →B 运动,设点P 经过的路程为x ,△ABP 的面积为y ,y 是x 的函数,函数的图象如图②所示,则图②中的a 值为( )A .B .C .14D .18二、填空题7.(2022·江苏·八年级专题练习)如图,四边形ABCD是平行四边形,BE平分△ABC,与AD 交于点E,BC=5,DE=2,则AB的长为___.8.(2022·全国·八年级课前预习)四边形ABCD中,AD△BC,要使它平行四边形,需要增加条件________(只需填一个条件即可).9.(2022·山东莱芜·八年级期末)如图,已知▱ABCD的周长为38,对角线AC、BD相交于点O,点E是CD的中点,△DOE的周长为16,则BD的长为_____.10.(2021·广东阳东·一模)在探索数学名题“尺规三等分角”的过程中,有下面的问题:如图,AC是▱ABCD的对角线,AD=AE=BE,△D=108°,则△BAC=___.11.(2021·山东任城·七年级期中)如图,四边形ABCD中,AB△CD,AD△BC,且△BAD、△ADC 的角平分线AE、DF分别交BC于点E、F.若EF=2,AB=5,则AD的长为_______.12.(2022·山东·济宁学院附属中学八年级期末)在四边形ABCD中,AD△BC,BC△CD,BC =10cm,M是BC上一点,且BM=4cm,点E从A出发以1cm/s的速度向D运动,点F从点B出发以2cm/s的速度向点C运动,当其中一点到达终点,而另一点也随之停止,设运动时间为t,当t的值为_____时,以A、M、E、F为顶点的四边形是平行四边形.三、解答题13.(2022·江苏·八年级专题练习)如图,四边形ABCD 为平行四边形,△BAD 的角平分线AE 交CD 于点F ,交BC 的延长线于点E .(1)求证:BE =CD ;(2)连接BF ,若BF ⊥AE ,△BEA =60°,AB =2,求平行四边形ABCD 的面积.14.(2022·江苏·八年级专题练习)如图,平行四边形ABCD 的对角线AC ,BD 相交于О点,DE AC ⊥于E 点,BF AC ⊥于F .(1)求证:四边形DEBF 为平行四边形;(2)若20AB =,13AD =,21AC =,求DOE △的面积.15.(2022·全国·八年级)已知,在ABCD中,E是AD边的中点,连接BE.(1)如图①,若BC=2,求AE的长;(2)如图②,延长BE交CD的延长线于点F,求证:FD=AB.16.(2022·黑龙江·哈尔滨工业大学附属中学校九年级期末)如图,四边形ABCD是平行四边形,BE DF∥,且分别交对角线于点E、F,连接ED、BF.(1)求证:四边形BEDF是平行四边形;(2)若AE=EF,请直接写出图2中面积等于四边形ABCD的面积的13的所有三角形.17.(2021·全国·八年级课时练习)如图,ABCD的对角线AC与BD相交于点O,E,F是BD 上的两点.BE DF满足什么条件时,四边形AECF是平行四边形?请说明理由;(1)当,∠满足什么条件时,四边形AECF是平行四边形?请说明理由.(2)当AEB∠与CFD18.(2021·江苏射阳·九年级阶段练习)如图,在四边形ABCD中,△ACB=△CAD=90°,点E在BC上,AE△DC,EF△AB,垂足为F.(1)求证:四边形AECD是平行四边形;(2)若AE平分△BAC,BE=5,BF:BE=4:5,求AD长.19.(2022·湖南·长沙市湘一立信实验学校八年级期末)如图,△ABC中,D是AB边上任意一点,F是AC中点,过点C作CE//AB交DF的延长线于点E,连接AE,CD.(1)求证:四边形ADCE是平行四边形;(2)若△B=30°,△CAB=45°,AC=,求AB的长.20.(2022·山东莱芜·八年级期末)点E 是▱ABCD 的边CD 上的一点,连接EA 并延长,使EA =AM ,连接EB 并延长,使EB =BN ,连接MN ,F 为MN 的中点,连接CF ,DM .(1)求证:四边形DMFC 是平行四边形;(2)连接EF ,交AB 于点O ,若OF =2,求EF 的长.21.(2021·浙江拱墅·八年级期末)如图,在平行四边形ABCD 中,△ABC ,△BCD 的平分线分别交AD 于点E ,F ,线段BE ,CF 相交于点G .(1)问:线段BE 与CF 的位置关系,并说明理由;(2)若AB =3,CF =4,求BE 的长.22.(2022·黑龙江·大庆市第四十四中学校八年级期末)如图,ABCD 的对角线AC 与BD 相交于点O ,点E ,F 分别在OB 和OD 上,且AEB CFD ∠=∠.(1)求证:四边形AECF 是平行四边形;(2)若90AEB =︒∠,4AE =.且45EAF ∠=︒,求线段AC 的长.23.(2021·浙江下城·八年级期末)在四边形ABCD中,已知AD△BC,△B=△D,AE△BC于点E,AF△CD于点F.(1)求证:四边形ABCD是平行四边形;(2)若AF=2AE,BC=6,求CD的长.24.(2022·江苏·八年级专题练习)已知如图,在▱ABCD中,点F是▱ABCD内一点,AB△BF,AB=BF,过点F作FE△AD,垂足为点E.(1)如图1,若BF=3EF=6,求四边形ABFE的面积;(2)如图2,连接BE、CE,若BE=CE,求证:AE+EF=BC.。

八年级数学第十八章《平行四边形》全章基础测试题含答案

八年级数学第十八章《平行四边形》全章基础测试题含答案

八年级数学第十八章《平行四边形》全章基础测试题测试1 平行四边形的性质(一)学习要求1.理解平行四边形的概念,掌握平行四边形的性质定理;2.能初步运用平行四边形的性质进行推理和计算,并体会如何利用所学的三角形的知识解决四边形的问题.课堂学习检测一、填空题1.两组对边分别______的四边形叫做平行四边形.它用符号“□”表示,平行四边形ABCD 记作__________。

2.平行四边形的两组对边分别______且______;平行四边形的两组对角分别______;两邻角______;平行四边形的对角线______;平行四边形的面积=底边长×______.3.在□ABCD中,若∠A-∠B=40°,则∠A=______,∠B=______.4.若平行四边形周长为54cm,两邻边之差为5cm,则这两边的长度分别为______.5.若□ABCD的对角线AC平分∠DAB,则对角线AC与BD的位置关系是______.6.如图,□ABCD中,CE⊥AB,垂足为E,如果∠A=115°,则∠BCE=______.6题图7.如图,在□ABCD中,DB=DC、∠A=65°,CE⊥BD于E,则∠BCE=______.7题图8.若在□ABCD中,∠A=30°,AB=7cm,AD=6cm,则S□ABCD=______.二、选择题9.如图,将□ABCD沿AE翻折,使点B恰好落在AD上的点F处,则下列结论不一定成....立.的是( ).(A)AF=EF(B)AB=EF(C)AE=AF(D)AF=BE10.如图,下列推理不正确的是( ).(A)∵AB∥CD∴∠ABC+∠C=180°(B)∵∠1=∠2 ∴AD∥BC(C)∵AD∥BC∴∠3=∠4(D)∵∠A+∠ADC=180°∴AB∥CD11.平行四边形两邻边分别为24和16,若两长边间的距离为8,则两短边间的距离为( ).(A)5 (B)6(C)8 (D)12综合、运用、诊断一、解答题12.已知:如图,□ABCD中,DE⊥AC于E,BF⊥AC于F.求证:DE=BF.13.如图,在□ABCD中,∠ABC的平分线交CD于点E,∠ADE的平分线交AB于点F,试判断AF与CE是否相等,并说明理由.14.已知:如图,E、F分别为□ABCD的对边AB、CD的中点.(1)求证:DE=FB;(2)若DE、CB的延长线交于G点,求证:CB=BG.15.已知:如图,□ABCD中,E、F是直线AC上两点,且AE=CF.求证:(1)BE=DF;(2)BE∥DF.拓展、探究、思考16.已知:□ABCD中,AB=5,AD=2,∠DAB=120°,若以点A为原点,直线AB为x 轴,如图所示建立直角坐标系,试分别求出B、C、D三点的坐标.17.某市要在一块□ABCD的空地上建造一个四边形花园,要求花园所占面积是□ABCD面积的一半,并且四边形花园的四个顶点作为出入口,要求分别在□ABCD的四条边上,请你设计两种方案:方案(1):如图1所示,两个出入口E、F已确定,请在图1上画出符合要求的四边形花园,并简要说明画法;图1方案(2):如图2所示,一个出入口M已确定,请在图2上画出符合要求的梯形花园,并简要说明画法.图2测试2 平行四边形的性质(二)学习要求能综合运用所学的平行四边形的概念和性质解决简单的几何问题.课堂学习检测一、填空题1.平行四边形一条对角线分一个内角为25°和35°,则4个内角分别为______.2.□ABCD中,对角线AC和BD交于O,若AC=8,BD=6,则边AB长的取值范围是______.3.平行四边形周长是40cm,则每条对角线长不能超过______cm.4.如图,在□ABCD中,AE、AF分别垂直于BC、CD,垂足为E、F,若∠EAF=30°,AB=6,AD=10,则CD=______;AB与CD的距离为______;AD与BC的距离为______;∠D=______.5.□ABCD的周长为60cm,其对角线交于O点,若△AOB的周长比△BOC的周长多10cm,则AB=______,BC=______.6.在□ABCD中,AC与BD交于O,若OA=3x,AC=4x+12,则OC的长为______.7.在□ABCD中,CA⊥AB,∠BAD=120°,若BC=10cm,则AC=______,AB=______.8.在□ABCD中,AE⊥BC于E,若AB=10cm,BC=15cm,BE=6cm,则□ABCD的面积为______.二、选择题9.有下列说法:①平行四边形具有四边形的所有性质;②平行四边形是中心对称图形;③平行四边形的任一条对角线可把平行四边形分成两个全等的三角形;④平行四边形的两条对角线把平行四边形分成4个面积相等的小三角形.其中正确说法的序号是( ).(A)①②④(B)①③④(C)①②③(D)①②③④10.平行四边形一边长12cm,那么它的两条对角线的长度可能是( ).(A)8cm和16cm (B)10cm和16cm (C)8cm和14cm (D)8cm和12cm 11.以不共线的三点A、B、C为顶点的平行四边形共有( )个.(A)1 (B)2 (C)3 (D)无数12.在□ABCD中,点A1、A2、A3、A4和C1、C2、C3、C4分别是AB和CD的五等分点,点B1、B2、和D1、D2分别是BC和DA的三等分点,已知四边形A4B2C4D2的面积为1,则□ABCD的面积为( )(A)2(B)53 (C)35 (D)1513.根据如图所示的(1),(2),(3)三个图所表示的规律,依次下去第n 个图中平行四边形的个数是( )……(1) (2) (3)(A)3n (B)3n (n +1) (C)6n(D)6n (n +1)综合、运用、诊断 一、解答题14.已知:如图,在□ABCD 中,从顶点D 向AB 作垂线,垂足为E ,且E 是AB 的中点,已知□ABCD 的周长为8.6cm ,△ABD 的周长为6cm ,求AB 、BC 的长.15.已知:如图,在□ABCD 中,CE ⊥AB 于E ,CF ⊥AD 于F ,∠2=30°,求∠1、∠3的度数.拓展、探究、思考16.已知:如图,O 为□ABCD 的对角线AC 的串点,过点O 作一条直线分别与AB 、CD 交于点M 、N ,点E 、F 在直线MN 上,且OE =OF .(1)图中共有几对全等三角形?请把它们都写出来;(2)求证:∠MAE=∠NCF.17.已知:如图,在□ABCD中,点E在AC上,AE=2EC,点F在AB上,BF=2AF,若△BEF的面积为2cm2,求□ABCD的面积.测试3 平行四边形的判定(一)学习要求初步掌握平行四边形的判定定理.课堂学习检测一、填空题1.平行四边形的判定方法有:从边的条件有:①两组对边__________的四边形是平行四边形;②两组对边__________的四边形是平行四边形;③一组对边__________的四边形是平行四边形.从对角线的条件有:④两条对角线__________的四边形是平行四边形.从角的条件有:⑤两组对角______的四边形是平行四边形.注意:一组对边平行另一组对边相等的四边形______是平行四边形.(填“一定”或“不一定”)2.四边形ABCD中,若∠A+∠B=180°,∠C+∠D=180°,则这个四边形______(填“是”、“不是”或“不一定是”)平行四边形.3.一个四边形的边长依次为a、b、c、d,且满足a2+b2+c2+d2=2ac+2bd,则这个四边形为______.4.四边形ABCD中,AC、BD为对角线,AC、BD相交于点O,BO=4,CO=6,当AO=______,DO=______时,这个四边形是平行四边形.5.如图,四边形ABCD中,当∠1=∠2,且______∥______时,这个四边形是平行四边形.二、选择题6.下列命题中,正确的是( ).(A)两组角相等的四边形是平行四边形(B)一组对边相等,两条对角线相等的四边形是平行四边形(C)一条对角线平分另一条对角线的四边形是平行四边形(D)两组对边分别相等的四边形是平行四边形7.已知:园边形ABCD中,AC与BD交于点O,如果只给出条件“AB∥CD”,那么还不能判定四边形ABCD为平行四边形,给出以下四种说法:①如果再加上条件“BC=AD”,那么四边形ABCD一定是平行四边形;②如果再加上条件“∠BAD=∠BCD”,那么四边形ABCD一定是平行四边形;③如果再加上条件“OA=OC”,那么四边形ABCD一定是平行四边形;④如果再加上条件“∠DBA=∠CAB”,那么四边形ABCD一定是平行四边形.其中正确的说法是( ).(A)①②(B)①③④(C)②③(D)②③④8.能确定平行四边形的大小和形状的条件是( ).(A)已知平行四边形的两邻边(B)已知平行四边形的相邻两角(C)已知平行四边形的两对角线(D)已知平行四边形的一边、一对角线和周长综合、运用、诊断一、解答题9.如图,在□ABCD中,E、F分别是边AB、CD上的点,已知AE=CF,M、N是DE和FB的中点,求证:四边形ENFM是平行四边形.10.如图,在□ABCD中,E、F分别是边AD、BC上的点,已知AE=CF,AF与BE相交于点G,CE与DF相交于点H,求证:四边形EGFH是平行四边形.11.如图,在□ABCD中,E、F分别在边BA、DC的延长线上,已知AE=CF,P、Q分别是DE和FB的中点,求证:四边形EQFP是平行四边形.12.如图,在□ABCD中,E、F分别在DA、BC的延长线上,已知AE=CF,F A与BE的延长线相交于点R,EC与DF的延长线相交于点S,求证:四边形RESF是平行四边形.13.已知:如图,四边形ABCD中,AB=DC,AD=BC,点E在BC上,点F在AD上,AF=CE,EF与对角线BD交于点O,求证:O是BD的中点.14.已知:如图,△ABC中,D是AC的中点,E是线段BC延长线上一点,过点A作BE 的平行线与线段ED的延长线交于点F,连结AE、CF.求证:CF∥AE.拓展、探究、思考15.已知:如图,△ABC,D是AB的中点,E是AC上一点,EF∥AB,DF∥BE.(1)猜想DF与AE的关系;(2)证明你的猜想.16.用两个全等的不等边三角形ABC和三角形A′B′C′(如图),可以拼成几个不同的四边形?其中有几个是平行四边形?请分别画出相应的图形加以说明.测试4 平行四边形的判定(二)学习要求进一步掌握平行四边形的判定方法.课堂学习检测一、填空题1.如图,□ABCD中,CE=DF,则四边形ABEF是____________.1题图2.如图,□ABCD,EF∥AB,GH∥AD,MN∥AD,图中共有______个平行四边形.2题图3.已知三条线段长分别为10,14,20,以其中两条为对角线,其余一条为边可以画出______个平行四边形.4.已知三条线段长分别为7,15,20,以其中一条为对角线,另两条为邻边,可以画出______个平行四边形.5.已知:如图,四边形AEFD和EBCF都是平行四边形,则四边形ABCD是______.5题图二、选择题6.能判定一个四边形是平行四边形的条件是( ).(A)一组对边平行,另一组对边相等(B)一组对边平行,一组对角互补(C)一组对角相等,一组邻角互补(D)一组对角相等,另一组对角互补7.能判定四边形ABCD是平行四边形的题设是( ).(A)AD=BC,AB∥CD(B)∠A=∠B,∠C=∠D(C)AB=BC,AD=DC(D)AB∥CD,CD=AB8.能判定四边形ABCD是平行四边形的条件是:∠A∶∠B∶∠C∶∠D的值为( ).(A)1∶2∶3∶4 (B)1∶4∶2∶3(C)1∶2∶2∶1 (D)1∶2∶1∶29.如图,E、F分别是□ABCD的边AB、CD的中点,则图中平行四边形的个数共有( ).(A)2个(B)3个(C)4个(D)5个10.□ABCD的对角线的交点在坐标原点,且AD平行于x轴,若A点坐标为(-1,2),则C点的坐标为( ).(A)(1,-2) (B)(2,-1) (C)(1,-3) (D)(2,-3)11.如图,□ABCD中,对角线AC、BD交于点O,将△AOD平移至△BEC的位置,则图中与OA相等的其他线段有( ).(A)1条(B)2条(C)3条(D)4条综合、运用、诊断一、解答题12.已知:如图,在□ABCD中,点E、F在对角线AC上,且AE=CF.请你以F为一个端点,和图中已标明字母的某一点连成一条新线段,猜想并证明它和图中已有的某一条线段相等(只需证明一组线段相等即可).(1)连结______;(2)猜想:______=______;(3)证明:13.如图,在△ABC中,EF为△ABC的中位线,D为BC边上一点(不与B、C重合),AD 与EF交于点O,连结EF、DF,要使四边形AEDF为平行四边形,需要添加条件______.(只添加一个条件)证明:14.已知:如图,△ABC中,AB=AC=10,D是BC边上的任意一点,分别作DF∥AB交AC 于F ,DE ∥AC 交AB 于E ,求DE +DF 的值.15.已知:如图,在等边△ABC 中,D 、F 分别为CB 、BA 上的点,且CD =BF ,以AD 为边作等边三角形ADE .求证:(1)△ACD ≌△CBF ;(2)四边形CDEF 为平行四边形.拓展、探究、思考16.若一次函数y =2x -1和反比例函数x k y 2=的图象都经过点(1,1). (1)求反比例函数的解析式;(2)已知点A 在第三象限,且同时在两个函数的图象上,利用图象求点A 的坐标;(3)利用(2)的结果,若点B 的坐标为(2,0),且以点A 、O 、B 、P 为顶点的四边形是平行四边形,请你直接写出点P 的坐标.17.如图,点A (m ,m +1),B (m +3,m -1)在反比例函数xk y =的图象上.(1)求m,k的值;(2)如果M为x轴上一点,N为y轴上一点,以点A,B,M,N为顶点的四边形是平行四边形,试求直线MN的函数表达式.测试5 平行四边形的性质与判定学习要求能综合运用平行四边形的判定定理和平行四边形的性质定理进行证明和计算.课堂学习检测一、填空题:1.平行四边形长边是短边的2倍,一条对角线与短边垂直,则这个平行四边形各角的度数分别为______.2.从平行四边形的一个锐角顶点作两条高线,如果这两条高线夹角为135°,则这个平行四边形的各内角的度数为______.3.在□ABCD中,BC=2AB,若E为BC的中点,则∠AED=______.4.在□ABCD中,如果一边长为8cm,一条对角线为6cm,则另一条对角线x的取值范围是______.5.□ABCD中,对角线AC、BD交于O,且AB=AC=2cm,若∠ABC=60°,则△OAB 的周长为______cm.6.如图,在□ABCD中,M是BC的中点,且AM=9,BD=12,AD=10,则□ABCD的面积是______.7.□ABCD中,对角线AC、BD交于点O,若∠BOC=120°AD=7,BD=10,则□ABCD 的面积为______.8.如图,在□ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,AF=5,2BG,则△CEF的周长为______.49.如图,BD为□ABCD的对角线,M、N分别在AD、AB上,且MN∥BD,则S△DMC______ S△BNC.(填“<”、“=”或“>”)综合、运用、诊断一、解答题10.已知:如图,△EFC中,A是EF边上一点,AB∥EC,AD∥FC,若∠EAD=∠F AB.AB =a,AD=b.(1)求证:△EFC是等腰三角形;(2)求EC+FC.11.已知:如图,△ABC中,∠ABC=90°,BD⊥AC于D,AE平分∠BAC,EF∥DC,交BC于F.求证:BE=FC.12.已知:如图,在□ABCD中,E为AD的中点,CE、BA的延长线交于点F.若BC=2CD,求证:∠F=∠BCF.13.如图,已知:在□ABCD中,∠A=60°,E、F分别是AB、CD的中点,且AB=2AD.求证:BF∶BD=3∶3.拓展、探究、思考14.如图1,已知正比例函数和反比例函数的图象都经过点M(-2,-1),且P(-1,-2)是双曲线上的一点,Q为坐标平面上一动点,P A垂直于x轴,QB垂直于y轴,垂足分别是A、B.图1(1)写出正比例函数和反比例函数的关系式;(2)当点Q在直线MO上运动时,直线MO上是否存在这样的点Q,使得△OBQ与△OAP面积相等?如果存在,请求出点的坐标,如果不存在,请说明理由;(3)如图2,当点Q在第一象限中的双曲线上运动时,作以OP、OQ为邻边的平行四边形OPCQ,求平行四边形OPCQ周长的最小值.图2测试6 三角形的中位线学习要求理解三角形的中位线的概念,掌握三角形的中位线定理.课堂学习检测一、填空题:1.(1)三角形的中位线的定义:连结三角形两边____________叫做三角形的中位线.(2)三角形的中位线定理是三角形的中位线____________第三边,并且等于____________________________________.2.如图,△ABC的周长为64,E、F、G分别为AB、AC、BC的中点,A′、B′、C′分别为EF、EG、GF的中点,△A′B′C′的周长为_________.如果△ABC、△EFG、△A′B′C′分别为第1个、第2个、第3个三角形,按照上述方法继续作三角形,那么第n个三角形的周长是__________________.3.△ABC中,D、E分别为AB、AC的中点,若DE=4,AD=3,AE=2,则△ABC的周长为______.二、解答题4.已知:如图,四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点.求证:四边形EFGH是平行四边形.5.已知:△ABC的中线BD、CE交于点O,F、G分别是OB、OC的中点.求证:四边形DEFG是平行四边形.综合、运用、诊断6.已知:如图,E为□ABCD中DC边的延长线上的一点,且CE=DC,连结AE分别交BC、BD于点F、G,连结AC交BD于O,连结OF.求证:AB=2OF.7.已知:如图,在□ABCD中,E是CD的中点,F是AE的中点,FC与BE交于G.求证:GF=GC.8.已知:如图,在四边形ABCD中,AD=BC,E、F分别是DC、AB边的中点,FE的延长线分别与AD、BC的延长线交于H、G点.求证:∠AHF=∠BGF.拓展、探究、思考9.已知:如图,△ABC中,D是BC边的中点,AE平分∠BAC,BE⊥AE于E点,若AB =5,AC=7,求ED.10.如图在△ABC中,D、E分别为AB、AC上的点,且BD=CE,M、N分别是BE、CD 的中点.过MN的直线交AB于P,交AC于Q,线段AP、AQ相等吗?为什么?测试7 矩形学习要求理解矩形的概念,掌握矩形的性质定理与判定定理.课堂学习检测一、填空题1.(1)矩形的定义:__________________的平行四边形叫做矩形.(2)矩形的性质:矩形是一个特殊的平行四边形,它除了具有四边形和平行四边形所有的性质,还有:矩形的四个角______;矩形的对角线______;矩形是轴对称图形,它的对称轴是____________.(3)矩形的判定:一个角是直角的______是矩形;对角线______的平行四边形是矩形;有______个角是直角的四边形是矩形.2.矩形ABCD中,对角线AC、BD相交于O,∠AOB=60°,AC=10cm,则AB=______cm,BC=______cm.3.在△ABC中,∠C=90°,AC=5,BC=3,则AB边上的中线CD=______.4.如图,四边形ABCD是一张矩形纸片,AD=2AB,若沿过点D的折痕DE将A角翻折,使点A落在BC上的A1处,则∠EA1B=______°。

初中数学特殊平行四边形的性质与判定基础题(含答案)

初中数学特殊平行四边形的性质与判定基础题(含答案)

初中数学特殊平行四边形的性质与判定基础题一、单选题(共12道,每道8分)1.菱形具有而一般平行四边形不具有的性质是()A.两组对边分别平行B.两组对边分别相等C.一组邻边相等D.对角线相互平分答案:C试题难度:三颗星知识点:菱形的性质2.菱形的两对角线的长分别为12、16,那么菱形的面积是()A.192B.96C.48D.24答案:B试题难度:三颗星知识点:菱形的面积3.已知菱形周长是24,一个内角为60°,则菱形的面积为()A.6B.18C. D.答案:C试题难度:三颗星知识点:菱形的性质4.下列命题正确的是(__)A.邻角相等的四边形是菱形B.有一组邻边相等的四边形是菱形C.对角线互相垂直的四边形是菱形D.对角线互相垂直平分的四边形是菱形答案:D试题难度:三颗星知识点:菱形的判定5.平行四边形ABCD的对角线AC,BD相交于点O,且AB=5,AO=4,BO=3,则四边形ABCD 是()A.菱形B.矩形C.正方形D.梯形答案:A试题难度:三颗星知识点:菱形的判定6.矩形具有而平行四边形不具有的性质()A.两组对角分别相等B.对角线相等C.对角线互相平分D.两组对边分别相等答案:B试题难度:三颗星知识点:矩形的性质7.下列说法中不能判定四边形是矩形的是(__)A.四个角都相等的四边形B.有一个角为90°的平行四边形C.对角线相等的平行四边形D.对角线互相平分的四边形答案:D试题难度:三颗星知识点:矩形的判定8.如图,四边形ABCD是矩形,且∠AOB=60°,AB=4,则BD的长为()A.4B.6C.8D.10答案:C试题难度:三颗星知识点:矩形的计算9.正方形ABCD的两条对角线AC,BD相交于点O,则图中共有()个等腰直角三角形A.6B.8C.10D.4答案:B试题难度:三颗星知识点:正方形性质10.能判定四边形是正方形的是()A.对角线互相垂直且相等的四边形B.对角线互相垂直的平行四边形C.对角线相等的菱形D.对角线互相垂直平分的四边形答案:C试题难度:三颗星知识点:正方形判定11.将4个边长都为1cm的正方形按如图所示摆放,点A1,A2,…,A4分别是正方形的中心,则这4个正方形重叠形成的重叠部分的面积和为(__)cm2.A.2B.1C.4D.答案:B试题难度:三颗星知识点:正方形的性质与计算112.已知如图,AD是△ABC的角平分线,DE∥AC交AB于E,DF∥AB交AC于F,求证:四边形AEDF是菱形.证明:如图,∵DE∥AC交AB于E,DF∥AB交AC于F∴_______________________________∵AD是△ABC的角平分线∴∠1=∠2∵______________________________∴∠1=∠3∴___________________________∴AF=DF∴__________________________下列选项填入以上空格,正确的是()①四边形AEDF是菱形;②∠2=∠3;③四边形AEDF为平行四边形;④DF∥AB.A.③④①②B.③①②④C.③①④②D.③④②①答案:D试题难度:三颗星知识点:特殊平行四边形的证明题规范书写。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.平行四边形的性质
一.填空题.
1.如图4.1-1, D,E,F 分别在△ABC 的三边BC,AC,AB 上,且DE ∥AB, DF ∥AC, EF ∥BC,则图中共有_______________个平行四边形,分别是_______________________________________.
F E
D C B A
图4.1-1
2.已知平行四边形的周长是100cm, AB:BC=4 : 1,则AB 的长是________________.
3.已知平行四边形的面积是144,相邻两边上的高分别为8和9,则它的周长是______________.
4.在平行四边形ABCD 中,∠A : ∠B=3:2,则∠C=_________ 度,∠D=_____________度.
5.用20米长的一铁丝围成一个平行四边形,使长边与短边的比为3:2,则它的边长为________短边长为__________.
6.如图4.1-2,在平行四边形ABCD 中, BC=2AB, CA ⊥AB,则∠B=______度,∠CAD=______度.
D
C B A
图4.1-2
二.选择题.
7.平行四边形ABCD 的周长32, 5AB=3BC,则对角线AC 的取值范围为( )
A. 6<AC<10
B. 6<AC<16
C. 10<AC<16
D. 4<AC<16
8. 在平行四边形ABCD 中,∠A=65°,则∠D 的度数是 ( )
A. 105°
B. 115°
C. 125°
D. 65°
9. 在平行四边形ABCD 中,∠B -∠A=20°,则∠D 的度数是 ( )
A. 80°
B. 90°
C. 100°
D. 110°
10. 由等腰三角形底边上任一点(端点除外)作两腰的平行线,则所成的平行四边形的周长等于等腰三角形的 ( ) A. 周长 B. 一腰的长 C. 周长的一半 D. 两腰的和
11. 在以下平行四边形的性质中,错误的是 ( )
A. 对边平行
B. 对角相等
C. 对边相等
D. 对角线互相垂直
三. 解答题
12. 平行四边形ABCD 的两条对角线AC,BD 相交于O.
O
D
C B
A
图4.1-3
(1) 图4.1-3中有哪些三角形全等? 有哪些相等的线段?
(2) 若平行四边形ABCD 的周长是20cm,△AOD 的周长比△ABO 的周长大6cm.求AB,AD 的长.
13. 如图4.1-4,平行四边形ABCD 中,∠ADC 的邻补角的平分线交BC 的延长线于E,延长ED 交BA 的延长线于F,试判断△FBE 的形状.
G
F E
D C
B A
图4.1-4
四. 应用题
14. (1) 如图4.1-5,平行四边形ABCD 中,AB=5cm, BC=3cm, ∠D 与∠C 的平分线分别交AB 于F,E, 求AE, EF, BF 的长?
F E D C
B A
图4.1-5
(2) 上题中改变BC 的长度,其他条件保持不变,能否使点E,F 重合,点E,F 重合时BC 长多少?求AE,BE 的长.
(3) 由(1),(2)题,你想到了什么?请写下来与你同伴交流.
五. 综合能力提高题
15. 如图4.1-6,平行四边形ABCD 的四个外角的平分线分别两两交于E,F.
(1) 试判断∠AED, ∠BFC 的大小.
(2) 线段AE, ED, BF, FC, EC, HF 中哪些相等?
H
G
F E
D C B
A
图4.1-6
16. 如图4.1-7,BD 是平行四边形ABCD 的对角线,AE ⊥BD 于E,CF ⊥BD 于F.
(1) 在图中,根据题意补全图形;
(2) 试问: △ABE 与△CDF 能全等吗?
请说明理由.
D
C B A
图4.1-7
2. 平行四边形的判定
一. 填空题
1. 如图4.2-1,平行四边形ABCD 中,AE=CG, DH=BF,连结E,F,G,H,E,则四边形EFGH 是_________________.
2. 如图4.2-2,平行四边形ABCD 中,E,F 是对角线AC 上的两点,且AE=CF,连结B,F,D,E,B 则四边形BEDF 是______________. H G
F E D
C B A 图4.2-1 G
F
E
D C B A
图4.2-2
3. 一组对边平行且相等的四边形一定是_____________形.
4. 有公共顶点的两个全等三角形,其中一个三角形绕公共顶点旋转180°后与另一个重合,那么不共点的四个顶点的连线构成____________形.
5. 如图4.2-3,E,F 分别是平行四边形ABCD 的边AD 与BC 的三分之一点,则四边形AECF 是__________________形
.
F E D
C B A

4.2-3 F E D C
B A
图4.2-4
二. 选择题
6. 如图4.2-4,平行四边形ABCD 中,E,F 分别为边AB,DC 的中点,则图中共有平行四边形的个数是 ( )
A. 3
B. 4
C. 5
D. 6
7. 以长为5cm, 4cm, 7cm 的三条线段中的的两条为边,另一条为对角线画平行四边形,可以画出形状不同的平行四边形的个数是 ( )
A. 1
B. 2
C. 3
D. 4
8. 能够判定一个四边形是平行四边形的条件是 ( )
A. 一组对角相等
B. 两条对角线互相平分
C. 两条对角线互相垂直
D. 一对邻角的和为180°
9. 四边形ABCD 中,AD ∥BC,要判定ABCD 是平行四边形,那么还需满足 ( )
A. ∠A+∠C=180°
B. ∠B+∠D=180°
C. ∠A+∠B=180°
D. ∠A+∠D=180°
10. 平行四边形的一组对角的平分线 ( )
A. 一定相互平行
B. 一点相交
C. 可能平行也可能相交
D. 平行或共线
三. 解答题
11. 如图4.2-5,在平行四边形ABCD 中,M,N 分别是OA,OC 的中点,O 为对角线AC 与BD 的交点,试问四边形BMDN 是平行四边形吗?说说你的理由.
O
M
N
D C B A
图4.2-5
12. 如图4.2-6,AC 是平行四边形ABCD 的一条对角线,BM ⊥AC, DN ⊥AC,垂直分别为M,N,四边形BMDN 是平行四边形吗?你有几种判别方法?
N
M
D
C B A
图4.2-6
四. 应用题
13. 如图4.2-7,在平行四边形ABCD 中,AC 的平行线MN 交DA 的延长线于M,交DC 的延长线于N,交AB,BC 于P,Q.
(1) 请指出图中平行四边形的个数,并说明理由.
(2) MP 与QN 能相等吗?
N M
Q
P
D C B A
图4.2-7
14. 已知如图4.2-8,在平行四边形ABCD 中,EF ∥DC,试说明图中平行四边形的个数.
N M H G
F E
D C B
A
图4.2-8
五. 综合能力提高题
15. 如图4.2-9,为公园的一块草坪,其四角上各有一棵树,现园林工人想使这个草坪的面积扩大一倍,又要四棵树不动,并使扩大后的草坪为平行四边形,试问这个想法能否实现,若能请你设计出草图,否则说明理由.
D
C B
A
图4.2-9
16. 楠楠想出了一个测量池塘的两端A,B 引两条直线AC,BC 相交于点C,在BC 上取点E,G,使BE=CG,再分别过E,G 作EF ∥AB,交AC 于F,H.测出EF=8m, GH=3m,(如图4.2-10),她就得出了结论: 池塘的宽AB 为11m .你认为她说的对吗
?
图4.2-10。

相关文档
最新文档