[emuch.ted by Glycyrrhiza uralensis, an endangered medicinal plant specie
甘草次酸
甘草次酸98%(Glycyrrhetinic acid)[植物来源]豆科植物甘草(Glycyrrhizauralensis Fisch)的根、根茎[别名]甘草亭酸[结构式][分子式及分子量]C30H46O4;470.64[物理性质][药理作用]甘草次酸具有抗菌、抗肿瘤及肾上腺皮质激素样作用,可制成抗炎抗过敏制剂,用于治疗风湿性关节炎、气喘、过敏性及职业性皮炎、眼耳鼻喉科炎症及溃疡等。
[研发进展]1. 甘草次酸抗炎作用:Anderso和Tillman最早注意到甘草次酸在结构上同氢化可的松类似,就把它用于各种皮肤病的治疗中,通过许多临床试验,确证了甘草次酸的抗炎有效性。
由此开始,广大医学界进行了一系列药理研究,发现此类衍生物中许多都具有抗炎活性。
Zakirov研究发现:3-氨基-11-脱氧甘草次酸对各类动物的无菌性关节炎表现出明显的抗炎活性。
Toyoshima等制备出11-脱氧甘草次酸顺丁烯二酸酯及其盐,作为抗炎剂,亦作为抗溃疡剂和免疫调节剂,口服或局部治疗,均取得较好疗效。
甘草次酸抗溃疡作用:1946年Revers最早报导了甘草的抗溃疡作用。
自此,欧洲大大推进了这方面的研究,并积极从事由甘草次酸制备新药的试验。
合成了甘草次酸琥珀酸半酯二钠盐,并发现其对胃溃疡的治愈作用。
1972年法国的Demande研究发现3-乙酰基-18?-甘草次酸及其铝盐用于治疗十二指肠溃疡、胃溃疡,疗效明显。
此外,11-脱氧甘草次酸酰胺、3-氧-乙酰基甘草次酸酰胺等对溃疡病的治疗效果也非常引人注目。
3.甘草次酸抗肿瘤增生活性:A1985年日本的Takizawa等研究发现:甘草次酸对鼠类皮肤瘤的增生有抑制用。
Nishino和Hoyoku等对相关结构的甘草次酸衍生物进行了广泛研究,发现18?-齐墩果烷-12-烯-3?、23、28-三醇具有比甘草次酸更强的抑制由病毒引起的肿瘤增生效果。
药用植物学考试题含答案
药用植物学考试题含答案一、单选题(共80题,每题1分,共80分)1、假果是( )A、果实的变态B、由花托发育而来C、由花托和花被发育而来D、由子房和其他部分共同发育而来E、花冠发育而来正确答案:D2、一朵花中的花萼随着果实的生长一起增大,这种花萼叫A、早落萼B、副萼C、宿存萼D、合生萼正确答案:C3、次生构造中发达的栓内层称为( )A、初生皮层B、绿皮层C、后生皮层D、次生皮层E、落皮层正确答案:D4、下列哪些植物茎一般不形成次生构造?( )A、双子叶植物木质茎B、双子叶植物根状茎C、双子叶植物草质茎D、单子叶植物茎E、双子叶植物地下茎正确答案:D5、果实内含一枚种子,成熟时果皮与种皮愈合,这种果实属于A、瘦果B、核果C、颖果D、坚果正确答案:C6、直轴式气孔的副卫细胞常为A、3个以上B、2个C、3个D、不定数正确答案:B7、连翘属于( )科的植物。
A、木犀科B、杜鹃花科C、马鞭草科D、夹竹桃科E、爵床科正确答案:A8、药用植物是指A、仅包含可以治疗疾病的植物B、具有医疗保健的植物C、没有特别定义D、具有保健作用的植物正确答案:B9、下列哪些不是裸子植物的特征A、种子裸露B、具有果实C、具有多胚现象D、孢子体发达正确答案:B10、具有子房下位的科是( )A、天南星科B、芍药科C、百合科D、蓼科E、姜科正确答案:E11、下列关于灵芝营养方式的描述正确的是( )A、共生B、自养C、腐生D、先寄生,后腐生E、寄生正确答案:C12、褐藻载色体内不含有( )A、叶黄素B、藻红素C、墨角藻黄素D、叶绿素E、胡萝卜素正确答案:B13、女贞的叶序为( )A、对生B、轮生C、簇生D、互生E、基生正确答案:A14、子房下位,蒴果,种子具假种皮的单子叶植物是( )A、姜科B、百合科C、薯蓣科D、兰科E、泽泻科正确答案:A15、具膜质托叶鞘的科是( )A、伞形科B、马兜铃科C、五加科D、石竹科E、蓼科正确答案:E16、下列蕨类植物中,具有形孢子的是( )A、石松B、紫萁C、贯众D、海金沙E、卷柏正确答案:E17、被子植物的主要特征为( )A、胚珠包被在子房内B、配子体高度发达C、不形成果实D、不具双受精现象E、无真正的花正确答案:A18、发育成枝和叶的芽称为A、混合芽B、花芽C、叶芽D、叶芽和花芽正确答案:C19、哪种细胞的光合效率比较高?A、栅栏组织B、表皮C、叶脉D、海绵组织正确答案:C20、在蕨类植物的生活史中( )A、孢子体发达B、配子体不发达C、孢子体退化D、孢子体不能独立生活正确答案:A21、金樱子属于蔷薇亚科,( )入药,能收敛涩浸,固肠止泻A、根C、叶D、花正确答案:B22、下列哪些不是松科的特征A、雌雄异株B、种子具翅C、多含树脂D、叶针形正确答案:A23、具蒴果的科是( )A、败酱科B、百合科C、忍冬科D、小檗科E、天南星科正确答案:B24、肉质直根是由什么根变态形成的( )A、纤维根B、主根C、侧根D、不定根E、支持根正确答案:B25、年轮存在于A、初生韧皮部B、初生木质部C、次生木质部D、次生韧皮部正确答案:C26、下列含有白色乳汁的植物是( )A、樟B、枸杞C、密花豆E、罂粟正确答案:E27、鸢尾科的果实类型是( )A、坚果B、浆果C、翅果D、蒴果E、核果正确答案:D28、-opsida是_____________的词尾。
拉丁语-药用植物拉丁语
Isatis indigotica Fort.
Folium Isatidis/Radix Isatidis(都写)
杜仲科
Eucommiaceae
杜仲
Eucommiae ulmoides Oliv.
Cortex Euommiae
蔷薇科
Rosaceae
杏
Prunus armeniaca L.
(苦杏仁)Semen Armeniacae Amarum
蛤蚧
Gekko gecko L.
Gecko
海带
Laminaria japonica Aresch.
冬虫夏草
Crodyceps sinensis (Berk) Sacc.
Cordyceps
茯苓
Poria cocos (fries) Wolf.
Poria
北细辛
Asarum heterotropoides Fr. Schmidt.Var. mandshuricum (Maxim.) Kitag.
百合
LiliumbrownieF.E.Brown
Bulbus Lilii
麦冬
Ophiopogon japonica (L.f.) Ker-Gawl.
Radix Ophiopogonis
芦荟
Aloe
鸢尾科
射干
Belamcanda chinensis (L.) DC
番红花
Crocus sativus L.
Stigma Croci
姜科
生姜
Zingiber offinale Resc.
Rhizoma Zingiberis Recens
豆蔻
Fructus Amomi Rotundus
化妆品说明书中英文
化妆品说明书中英文化妆品说明书中英文篇一:化妆品说明书英文翻译Prduct characteristics: It replenishes sufficient ater t creat a misturizing andater-lcking membrane n the skin t maintain the nrmal ater cntent f the cuticle ,banlance the PH value f the skin and keep the skin healthier. Cntaining rich fibrin extract and varirties f valued herbal essences,it strengthens the hitening functin as ell as tne the dark plexin and sften the cticle t build sparking,hite ,bright,hydrus and transparent skin. 活肌盈白滋润爽肤水产品特点:外界的污染,日光的照射,生活和工作的压力另肌肤干燥粗糙,色素沉浊,暗沉无光泽,各种肌肤问题也随之而来,需要及时为肌肤补充大量水分,促进美白营养成分的吸收。
活肌盈白滋润爽肤水触感清爽、柔滑,为肌肤注入充足的水分,并形成保湿锁水薄膜,维持角质层正常含水量,平衡皮肤酸碱值,另肌肤更健康;富含蚕丝蛋白、甘草、海藻精华,提升肌肤美白原动力,改善暗沉肤色,软化角质,重塑肌肤的盈白亮丽,水凝通透。
prduct characteristics: Being refreshing,it slers the xidatin caused by free radicals and blcks kinds f radiatin t strengthen the resistivity f the skin. Cntaining rich fibrin extract and varieties f valued herbal essences, it strengthens the hitening funtin as ell as cncealing the dark and rugh state f the skin and marking it hite, smth and fine naturally. 活肌盈BB霜产品特点:偏黄,暗沉等肌肤问题给生活带来尴尬,需要咋打造清新裸妆的同时给肌肤提供一层保护伞,让你时刻保持自信妆容。
基于化学成分相互作用探讨芫花与甘草配伍禁忌的机制
基于化学成分相互作用探讨芫花与甘草配伍禁忌的机制【摘要】目的:探讨在化学成分相互作用下芫花与甘草配伍时禁忌及机制。
方法:甘草与芫花是两种常见中草药,在中药“十八反”中芫花/醋芫花-甘草为禁忌配伍药物,基于此次从化学成分角度分析,二者相互作用,探究两种药物配伍禁忌。
结果:芫花不同化学成分测定,共测定出其含有化学成分8种,甘草对其中8种成分溶出具有促进作用。
结论:考虑甘草同芫花之配伍禁忌可能同化学成分有关,研究中随着甘草量不断增加,芫花8种化学成分溶出增加,可能会对机体产生更大的毒副作用。
因此在临床中需要禁忌配伍,并针对同存在芫花相似或者相同化学成分的药物与甘草不可同用,为药物科学安全运用提供一定帮助。
【关键词】化学成分;相互作用;芫花;甘草;配伍禁忌;机制Study on the mechanism of incompatibility between genkwa and licorice based on the interaction of chemical componentsDing Jing(Mishan people's Hospital of Heilongjiang Province, Mishan 158300,Heilongjiang)[Abstract] Objective: To explore the taboo and mechanism of compatibility between Daphne genkwa and Glycyrrhiza uralensis underthe interaction of chemical components. Methods: Glycyrrhiza uralensis and Daphne genkwa are two common Chinese herbal medicines. Daphne genkwa / vinegar Daphne genkwa Glycyrrhiza uralensis are taboo compatible drugs in the "Eighteen anti" traditional Chinese medicine. Based on the analysis of their chemical composition, the interaction between them is explored to explore the incompatibility of the twodrugs. Results: eight chemical components were determined in different chemical components of Daphne genkwa, and licorice could promote the dissolution of eight components. Conclusion: considering that the incompatibility between licorice and Daphne genkwa may be related to chemical components, the dissolution of 8 chemical components of Daphne genkwa increased with the increasing amount of licorice, which may have greater toxic and side effects on the body. Therefore, it is necessary to avoid compatibility in clinic, and drugs with similar or the same chemical components of Daphne genkwa can not be used with licorice, so as to provide some help for the scientific and safe application of drugs.[Key words] chemical composition; Interaction; Daphne genkwa; Licorice; Incompatibility; mechanism中医学博大精深,其中中医学在治疗疾病中作用积极,不同药物通过相互搭配达到扶正祛邪、散热止血、舒经活络等效果[1]。
固相萃取结合高效液相色谱法测定甘草中6种有效成分的含量
固相萃取结合高效液相色谱法测定甘草屮6种有效成分的含量洪博陈刚赵超阳徐天娇孙辑凯李文静齐齐哈尔医学院药学院,黑龙江齐齐哈尔161006[摘要]目的建立固相萃取结合高效液相色谱法测定不同产地甘草中6种有效成分的定量方法。
方法采用固相萃取法提取甘草中的有效成分,并用高效液相色谱法(HPLC)对其药效组分进行测定。
流动相为乙腈-0.05%,磷酸水溶液,梯度洗脱,流速为1mL/min,检测波长为240nm遥结果甘草中6种药效组分芍药内酯苷、芍药苷、芹糖甘草苷、甘草苷、苯甲酰芍药苷、甘草酸分别在28.8~920.0、14.7~470.0、61.9~1980.0、48.4~1550.0、71.9~2300.0、27.5-880.0滋g/mL范围内呈现良好的线性关系,平均回收率依次为98.44%、101.25%、96.78%、103.74%、97.85%、95.87%.,RSD值分别为1.98%\3.02%、2.85%、1.99%'、2.47%'、2.06%=结论固相萃取结合HPLC法检测甘草有效成分快速、可靠。
[关键词]甘草;有效成分;质量控制[中图分类号]R917[文献标识码]A[文章编号]1673-7210(2020)12(c)-0126-04Determination on the contents of6active ingredients in Glycyrrhizae Radix et Rhizoma by solid phase extraction and high performance liquid chromatographyHONG Bo CHEN Gang ZHAO Chaoyang XU Tianjiao SUN Jikoi LI WenjingCollege of Pharmacy,Qiqihar Medical University,Heilongjiang Province,Qiqihar161006,China[Abstract]Objective To establish a quanLiLaLive method of solid phase exLracLion and high performance liquid chromatography in determination of six active ingredients in Glycyrrhizae Radix et Rhizoma from different habitats.Methods The effective constituent of Glycyrrhizae Radix et Rhizoma was extracted by solid phase extraction and its active ingredients were determined by high performance liquid chromatography(HPLC).The mobile phase was acetonitrile-0.05%phosphoric acid solution,with gradient elution,flow rate of1mL/min,and detection wavelength of240nm.Results The six active ingredients albiflorin,paeoniflorin,liquiritin apioside,liquiritin,benzoylpaeoniflorin,glycyrrhizic acid in Glycyrrhizae Radix et Rhizoma showed good linear relationship in the range of28.8-920.0,14.7-470.0,61.91980.0,48.4-1550.0,71.9-2300.0,27.5-880.0滋g/mL,the recovery rate was98.44%、101.25%、96.78%、103.74%、97.85%',95.87%respectively,and the RSD was1.98%,3.02%,2.85%,1.99%,2.47%,2.06%respectively.Conclusion Solid phase extraction combined with HPLC in detection of the active ingredients of Glycyrrhizae Radix et Rhizoma is fast and reliable.[Key words]Glycyrrhizae Radix et Rhizoma;Active ingredients;Quality control甘草性平,味甘,归十二经,是一种补益中草药,能清热解毒,润肺止咳,有调和诸药性的效果[1-7]o甘草中的主要活性成分有芍药苷、甘草苷、甘草酸等[8-13]遥本研究选取已明确药理作用、能代表甘草临床作用的相关成分(芍药内酯苷、芍药苷、芹糖甘草苷、甘草苷、苯甲酰芍药苷、甘草酸)作为研究和分析的对象[14-16]遥[基金项目]黑龙江省教育厅科学技术研究项目(2018-KYYWF-0097);黑龙江省博士后科研启动金资助项目(LBH-Q17179);黑龙江省留学回国人员择优专项资助项目(2017490)遥[通讯作者]李文静(1983.7-),男,博士;研究方向:中药化学成分及物质基础。
Flavonoid constituents from Glycyrrhiza glabrahairyrootcultures
Flavonoid constituents from Glycyrrhiza glabra hairy root culturesWei Li,Yoshihisa Asada *,Takafumi YoshikawaSchool of Pharmaceutical Sciences,Kitasato University,5-9-1Shirokane,Minato-ku,Tokyo 108-8641,JapanReceived 7February 2000;received in revised form 12July 2000AbstractAn unusual bi¯avonoid named licoagrodin was isolated from the hairy root cultures of Glycyrrhiza glabra (Leguminosae)along with three prenylated retrochalcones,licoagrochalcones B,C,D,a prenylated aurone,licoagroaurone and four known prenylated ¯avonoids,licochalcone C,kanzonol Y,glyin¯anin B and glycyrdione A.From the glycosidic fraction,a iso¯avone glycoside,licoagroside A,and a maltol glycoside,licoagroside B were isolated together with four known iso¯avone glycosides,two ¯avone C -glycosides,and three other glycosides.Their structures were elucidated on the basis of spectroscopic evidence.#2000Elsevier Science Ltd.All rights reserved.Keywords:Glycyrrhiza glabra ;Leguminosae;Hairy root;Flavonoid;Bi¯avonoid;Aurone;Flavonoid glycoside;Maltol glycoside1.IntroductionLicorice,the roots and stolons of some Glycyrrhiza species is one of the oldest plant medicines that have been used by human beings.Many biological activities such as antimutagenic activity (Ngo et al.,1992;Zani et al.,1993),anti-ulcer e ects (Takagi and Ishii,1967;Takagi et al.1969;van Marle et al.,1981),protective action against hepatotoxicity (Nose et al.,1994),antitumor promoting activity (Nishino et al.,1986),antimicrobial e ects (Mitscher et al.,1980;Demizu et al.1988;Okada et al.,1989;Haraguchi et al.,1998),etc.,were reported.These activities are reported due to two kinds of main con-stituents,the saponins and ¯avonoids.One of the ¯a-vonoid-rich fractions from the extract of licorice has been developed as an anti-ulcer drug (Aspalon 1)in Japan (Japan Pharmceutical Information Center,1997).Until now,many studies on the ¯avonoid constituents of Glycyrrhiza species have been carried out,with more than 300¯avonoids being reported.Among them,about 70were isolated from the underground organs of G.gla-bra ,one of the most important species of licorice (Nomura and Fukai,1998).In our studies on hairy root cultures to produce useful compounds,we investigated the constituents of G.glabra hairy root cultures.Although glycyrrhizin,the mainsaponin of some Glycyrrhiza species was not detected in its cultures,a high ¯avonoid production was nevertheless established,and 10¯avonoids were reported in previous papers (Asada et al.,1998,1999;Li et al.,1998).Herein,we report the isolation and structural determination of compounds 1±20,which include an unusual bi¯avonoid together with four retrochalcones,a dihydrochalcone,an aurone,two dibenzoylmethanes,seven ¯avonoid glycosides,a maltol glycoside and three other glycosides (Fig.1).2.Results and discussionThe methanol extract of G.glabra hairy root cultures was partitioned between water and ethyl acetate.The EtOAc extract was subjected to silica gel column chroma-tography and further puri®ed by normal-phase HPLC to give ®ve new ¯avonoids,licoagrodin (1),licoagrochalcone B (3),licoagrochalcone C (4),licoagrochalcone D (5)and licoagroaurone (7)and four known ¯avonoids,licochalcone C (2)(Kajiyama et al.,1992),kanzonol Y (6)(Fukai et al.,1996,1997),glyin¯anin B (8)(Zheng et al.,1992)and glycyrdione A (9)(Demizu et al.,1992;Zheng et al.,1992).The water layer was subjected to a Daion HP-20column chromatography,which was eluted with methanol.The methanol eluate was evapo-rated in vacuo to give a glycosidic fraction.The fraction was applied to ODS column chromatography and then0031-9422/00/$-see front matter #2000Elsevier Science Ltd.All rights reserved.P I I:S 0031-9422(00)00337-XPhytochemistry 55(2000)447±456/locate/phytochem*Corresponding author.Fax:+81-3-3444-6192.E-mail address:asaday@pharm.kitasato-u.ac.jp (Y.Asada).pounds isolated from G.glabra hairy root cultures.448W.Li et al./Phytochemistry 55(2000)447±456puri®ed by reverse phase HPLC to give the new iso-¯avone glycoside,named licoagroside A(10),as well as six known¯avonoid glycosides,ononin(11)(Kitakawa et al.,1994),calycosin7-O-glucoside(12)(Katsura and Yamagishi,1987),wistin(13)(Kajiyama et al.,1994), afrormosin7-O-(6HH-malonylglucoside)(14)(Kessmann et al.,1990),vicenin-2(15)(O sterdahl,1978),isoschaftoside (16)(O sterdahl,1978),the new maltol glycoside,licoa-groside B(19),and three other known glycosides,tachio-side(17)(Inoshiri et al.,1987),isotachioside(18)(Inoshiri et al.,1987),dimethylallyl6-O-a-l-arabinopyranosyl-b-d-glucopyranoside(20)(Chassagne et al.,1996). Licoagrodin(1)was obtained as a colorless powder, which did not give crystals suitable for X-ray analysis. Its molecular formula,C45H44O9,was established by HR-FAB mass spectral analysis.The IR spectrum showed absorption bands at3440and1660cmÀ1due to hydroxyl and carbonyl groups,respectively.The1H NMR spectrum of1revealed signals indicating three g, g-dimethylallyl groups,ortho-coupled aromatic protons at 6.50(d,J=8.5Hz),7.23(d,J=8.5Hz),two ABX-type aromatic protons at 6.80(d,J=8.5Hz),7.21(dd, J=8.5,2.5Hz),7.27(d,J=2.5Hz)and 6.45(dd, J=8.5,2.5Hz),6.62(d,J=2.5Hz),6.68(d,J=8.5Hz), two isolated aromatic protons at 6.70,7.56,two cou-pled methine protons at 3.36(d,J=12.0Hz),3.93(d, J=12.0Hz)and an isolated methine proton at 6.32. All protonated carbons were assigned by the HMQC spectrum.The13C NMR spectrum showed45carbon signals,including a carbonyl carbon( 189.0),24car-bons due to four aromatic rings,seven of which have an oxygen function,15carbons due to three prenyl groups and residual®ve carbons(Table1).By analysis of the HMBC spectrum,the carbons on four aromatic rings A, D,E and H were assigned as shown in Fig.2and Table 1.Further correlations between the methylene proton signals on the prenyl groups and the quaternary aro-matic carbons suggested that the prenyl groups located at C-6on aromatic ring A,C-13on aromatic ring D, C-13H on aromatic ring H,respectively.TheHMBCFig.2.1H-13C long-range correlation by the HMBC spectrum of1.Table11H NMR and13C NMR spectral data for licoagrodin(1)Position13C NMR1H NMR Position13C NMR1H NMR2113.22H111.2 6.32(1H,s)363.4 3.36(1H,d,J=12.0Hz)3H93.54189.04H50.4 3.93(1H,d,J=12.0Hz) 5128.37.56(1H,s)5H131.88 6.68(1H,d,J=8.5Hz) 6124.66H111.6 6.45(1H,dd,J=8.5,2.5Hz) 7164.07H159.48103.4 6.70(1H,s)8H106.8 6.62(1H,d,J=2.5Hz) 9159.99H152.310112.210H113.111129.311H118.312128.07.27(1H,d,J=2.5Hz)12H159.313128.513H111.314156.614H158.415115.5 6.80(1H,d,J=8.5Hz)15H110.2 6.50(1H,d,J=8.5Hz) 16125.57.21(1H,dd,J=8.5,2.5Hz)16H123.37.23(1H,d,J=8.5Hz) 1728.2 3.30(2H,dd,J=14.0,7.0Hz)17H22.8 3.14(1H,dd,J=14.0,7.0Hz) 18122.9 5.34(1H,m) 3.20(1H,dd,J=14.0,7.0Hz) 19133.118H122.69 5.19(1H,m)2017.78 1.71(3H,d,J=1.0Hz)19H131.852125.9 1.74(3H,d,J=1.0Hz)20H17.74 1.67(3H,d,J=1.0Hz) 2228.6 3.25(2H,d,J=7.0Hz)21H25.77 1.57(3H,d,J=1.0Hz) 23122.72 5.23(1H,m)24133.42517.68 1.59(3H,d,J=1.0Hz)2625.79 1.69(3H,d,J=1.0Hz)W.Li et al./Phytochemistry55(2000)447±456449spectrum of1also showed correlations between the ring A protons at 7.56(5-H),6.70(8-H)and the carbonyl carbon at 189.0(C-4),indicating that the carbonyl group is combined with ring A.The carbonyl carbon was further correlated to two coupled methine protons at 3.36(3-H)and3.93(4H-H).The3-H was correlated to C-11on D-ring at 129.3and to C-10H on E-ring at 113.1through3J CH,and the4H-H was correlated to C-10H and C-11H on H-ring at 118.3through2J CH and 3J CH.The methine proton at 6.32(2H-H)was corre-lated to aromatic carbons at 152.3(C-9H)and 159.3 (C-12H)on E and H-rings,respectively.Taking account the13C NMR spectral data and the24degrees of unsa-turation calculated from the empirical formular of1,it was suggested that1has four alicyclic rings in addition to four aromatic rings.The D ring,which is bound to the B ring at C-2,was indicated by the correlations of5-H,8-H/C-4and3-H/C-2,C-4,C-11.The six-membered F ring binding to E-ring was indicated by the correla-tion of4H-H/C-2H,C-3H,C-9H,C-10H and2H-H/C-3H,C-4H, C-9H,respectively.The®ve-membered G ring was indi-cated by the correlations of2H-H/C-3H,C-9H,C-12H,16H-H/C-3H,C-12H and17H-H/C-12H.The other®ve-mem-bered ring(C-ring)was suggested by correlation of3-H/ C-2,C-4,C-3H and4H-H/C-2,C-3,C-3H,C-10H,C-11H. Thus,the molecular structure of licoagrone(1)was as depicted.The relative stereochemistry of1was determined by the NOESY spectrum(Fig.3).The3-H showed NOEs with12-H and16-H on ring D which suggested a cis-junction of the B/C rings.The cross-peak observed between3-H and4H-H showed that they are in a cis-con®guration,and then the4H-H displayed a NOE with 16H-H but no NOE with2H-H,suggested cis-junctions for the C/F and F/G rings.Base on the above spectral data, the structure of licoagrodin(1)was elucidated as shown in Fig.1.Licoagrochalcone B(3)was isolated as a yellow powder. Its molecular formula,C21H20O4,was established by HR-EI mass spectral analysis.Its spectroscopic properties are very similar to the known retrochalcone,licochalcone C (2)except for the presence of a prenyl group.In the1H NMR spectrum,3showed two one-proton doublets characteristic of trans-ole®nic protons of a chalcone at 7.77(d,J=15.5Hz)and7.98(d,J=15.5Hz),a meth-oxy signal at 3.83(3H,s),A2X2-type aromatic protons at 6.98(d,J=8.5Hz)and8.08(d,J=8.5Hz)on A ring,and an AX-type aromatic system at 6.65(dd, J=8.5,0.5Hz)and7.77(d,J=8.5Hz)on B ring.In the EI±MS spectrum,3showed a molecular ion peak at m/z 336[M]+which is smaller by2mass units than that of 2.The base peak at m/z305[MÀOMe]+suggested that 3is a2-methoxychalcone(Saitoh et al.,1975)and the fragment ion peak at m/z121indicated the presence of p-hydroxybenzoyl group in3.The1H NMR spectrum also exhibited signals due to a dimethylchromene group at 1.45(6H,s),5.84(1H,d,J=10.0Hz)and6.67(1H, dd,J=10.0,0.5Hz).Long-range coupling(J=0.5Hz) was also observed between5-H at 6.65and1HH-H at 6.67indicating that the chromene group was located at C-3of the B-ring.The above data suggested that the structure of3is as shown in Fig.1.In order to con®rm its substitution pattern containing the B-ring,and also for a more accurate assignment of13C NMR spectral data,HMBC analysis give the long-range correlations shown in Fig.4.These data supported structure3. Licoagrochalcone C(4)was isolated as a yellow powder.Its HR-El mass spectrum displayed a[M]+at 354.1453,which corresponded to the empirical formula, C21H22O5(354.1468).The1H NMR spectrum of4was similar to that of2,except for ABX-type aromatic pro-ton signals at 6.96(d,J=8.5Hz),7.63(dd,J=8.5,2.5 Hz)and7.64(d,J=2.5Hz)instead of the A2X2-type aromatic proton signals due to the A-ring of2.Thus, the structure of licoagrochalcone C was suggested to be 4.The substitution pattern and assignment of13C NMR spectral data was con®rmed by analysis of the HMBC spectrum as shown in Fig.4.These data also supported structure4.Licoagrochalcone D(5)had the same molecular for-mula as licoagrochalcone C(4)in their HR±EI mass spectra.For the1H-and13C-NMR spectra,5and3 showed similar patterns in aromatic proton and carbon signal regions.In the1H NMR spectrum of5,the cou-pling constants between1HH-H a and2HH-H(J=10.0Hz) and1HH-H b and2HH-H(J=8.0Hz)suggested that C-3was substituted by a2,3-dihydro-2-(1-hydroxy-1-methyl-ethyl)furan isoprenoid unit(Tahara et al.,1987).The structure of5was also con®rmed by analysis of the HMBC spectrum as shown in Fig.4.Thus,the structure of licoagrochalcone D was characterized as formula5. Licoagroaurone(7)was obtained as an orange pow-der.The EI mass spectrum of7showed a molecularion Fig.3.NOEs detected for1by the NOESY spectrum.450W.Li et al./Phytochemistry55(2000)447±456peak at m/z 338and the molecular formula was deter-mined as C 20H 18O 5from the HR-EI mass spectrum.The UV spectrum of 7exhibited absorption maxima at 256,267and 396nm,resembling that of aurone deriva-tives (Markham and Mabry,1975).The 1H NMR spec-trum of 7showed signals indicating an ole®nic proton at 6.64,a dimethylallyl group at 1.69(3H,s ),1.88(3H,s ),3.56(2H,d ,J =7.0Hz),5.41(1H,m ),AX-type aro-matic protons at 6.83(d ,J =8.5Hz),7.46(d ,J =8.5Hz)and ABX-type aromatic protons at 6.96(d ,J =2.5Hz),7.42(dd ,J =8.5,2.5Hz),7.61(d ,J =8.5Hz).In the 13C NMR spectrum,20carbon signals were observed.The above data indicated that 7is most likely a prenylated aurone.The 1H and 13C NMR spectra of ¯avones and aurones are similar (Markham and Chari,1982;Mark-ham and Geiger,1994),but they can be clearly dis-tinguished from the HMBC spectrum.The ole®nic proton was correlated to the carbonyl carbon ( 182.9),C-2H carbon ( 118.8)and 6H carbon ( 125.5)through 3J CH coupling.The methylene carbon signal of the prenyl group was observed at 22.6,which indicated that both ortho -positions to the dimethylallyl group were occu-pied by oxygenated substituents (Fukai and Nomura,1989),so the location of the prenyl moiety was deter-mined to be at C-7.These substituent patterns were also con®rmed by the HMBC spectrum (Fig.4).The Z-ste-reochemistry of the double bond at C-10in 7was determined by the chemical shift of C-10( 112.0)(Pel-ter et al.,1979).Thus,the structure of licoagroaurone was established as 7.Compound 10was obtained as a powder.The HR-FAB mass spectrum displayed [M+H]+at m/z 493.1360in agreement with the empirical formula C 23H 25O 12.The 13C NMR spectrum indicated the presence of 23carbon signals,including a carbonyl group at 178.3.The 1H NMR spectrum of 10showed a singlet at 8.16char-acteristic of 102-H resonance of iso¯avone derivatives.The spectrum also exhibited four isolated singletsforFig.4.1H±13C long-range correlation by the HMBC spectra of compounds 3±5,7,10and 19.W.Li et al./Phytochemistry 55(2000)447±456451aromatic protons at 6.76,6.94,7.03,7.55,indicating that the protones on the A and C rings were both para -oriented,as well as two methoxy proton signals at 3.90,3.96and an anomeric proton signal at 4.81(d ,J =8.0Hz).The coupling constants of the protons of the sugar moiety in 10suggested the presence of a -d -glucopyranose.Among the four aromatic protons,the most deshielded proton ( 7.55)was readily assigned to 5-H.On irradiation of 2-H at 8.16,an NOE was observed for the signal at 6.76from the NOE di er-ence spectrum as shown in Fig.5,suggesting that the proton at 6.76could be assigned to 6-H H ,while the residual aromatic protons at 6.94and 7.03were assigned to 8-H and 3-H H based on the analysis of the HMBC spectrum of 10.Irradiation of the methoxy protons at 3.90and the anomeric proton at 4.81caused NOEs on the 3-H H signal at 7.03on the B ring,suggesting that the methoxy and glucopyranosyl groups are located at C-2H or C-4H of the B-ring.The other methoxy protons at 3.96showed an NOE with 5-H at 7.55indicating that the methoxy group at 3.96was located at C-6.The substitution pattern of 10was fur-ther supported from the HMBC spectrum except for the 4H -methoxy and 2H -glucopyranoyloxy groups as shown in Fig.4.Considering the methylation pattern of known iso¯avonoids from hairy root cultures of G.glabra ,it is most likely that the methoxy group is located at C-4H .In order to con®rm this pattern,the long-range selective proton decoupling spectrum of 10was measured.On irradiation of 2-H at 8.16,4J CH long range coupling was observed for the carbon signal at 150.4,which was assigned to the glucosyloxy bonded carbon by the HMBC spectrum.Therefore,the location of the gluco-pyranosyl moiety was determined to be at 2H -OH.Thus,10was determined as 7,5H -dihydroxy-6,4H -dimethoxy-iso¯avone-2H -O -b -d -glucopyranoside.Compound 19was obtained as a powder.The mole-cular formula of 19was determined as C 18H 24O 12,on the basis of the [M+H]+at m/z 433.1344in the HR-FAB mass spectrum.The 1H and 13C NMR spectra of19showed signals due to a 3-hydroxy-3-methylglutaric acid (HMG)group,a 3-hydroxy-2-methyl-g -pyrone (maltol)group and a b -d -glucopyranose group.In the HMBC spectrum (Fig.4),a cross-peak was observed between the anomeric proton at 4.85(d ,J =8.0Hz)and the C-3carbon at 143.3of the maltol motiety,suggesting that compound 19contains maltol 3-O -b -d -glucopyranoside as a partial structure (Looker and Fisher,1985).In comparing the 13C NMR spectra of 19and maltol 3-O -b -d -glucopyranoside,acylation shifts were observed for the signals due to C-5H (ca.À2.9ppm)and C-6H (ca.+1.4ppm)of the glucopyranosyl moiety in 19,suggesting that the HMG moiety is attached to the C-6H position of glucopyranosyl moiety.The HMBC spectrum of 19further supported the linkage site of the HMG moiety to ly,the HMBC spectrum showed the cross-peak between the 6H -H pro-tons of glucopyranose ( 4.21and 4.45)and the C-1HH carbon of HMG ( 172.3).Thus,the structure of 19was determined as maltol 3-O -[6-O -(3-hydroxy-3-methyl-glutaroyl)]-b -d -glucopyranoside.In conclusion,we have isolated ®ve new prenylated ¯a-vonoids,a new iso¯avone glycoside,a new maltol glyco-side and known compounds from the hairy root cultures of G.glabra .Among the known ¯avonoids,kanzonol Y (6)(Fukai et al.,1996;Fukai et al.,1997)and ononin (11)(Kitakawa et al.,1994)were previously obtained from the root of G.glabra ,while licochalcone C (2)(Kajiyama et al.,1992),glyin¯anin B (8)(Zheng et al.,1992)and glycyrdione A (9)(Zheng et al.,1992;Demizu et al.,1992)were isolated from the root of another Gly-cyrrhiza species,G.in¯ata and vicenin-2(15)(Osterdahl,1978)from that of G.uralensis .Compounds 2±5are regarded as retrochalcones,because their oxygenation patterns are the reverse as compared with those of the normal chalcones.The ®rst retrochalcone,echinatin was isolated from the G.echinata cell cultures (Furuya et al.,1971)and also reported in the root of G.glabra (Kita-kawa et al.,1994).It seems that the G.glabra hairy root cultures have more prenylation and hydroxylation abil-ities than G.glabra roots in the course of the retro-chalcone biosynthesis and thus lead to produce the new compounds 3±5.Aurones have never been isolated from the Glycyrrhiza species,so 7is the ®rst aurone from this species.The bi¯avonoid (1)has a unique structure as a natural product.As for its possible biosynthesis,a hypothetical pathway to 1is given as shown in Fig.6by a radical reaction mechanism.It is very interesting that the isolated ¯avonoids could be obviously divided into two groups in the course of their biosynthesis.The ¯a-vonoids lacking 5-hydroxyl substituent are biosynthe-sized to iso¯avones,then further glycosylated to a ord O -glucosides (10±14),while the ¯avonoids possessing 5-hydroxyl substituent are biosynthsized to ¯avone C -gly-cosides (15and 16).The reason for this are not clear and need furtherstudy.Fig.5.NOEs observed in the NOE di erence spectrum of 10.452W.Li et al./Phytochemistry 55(2000)447±4563.Experimental 3.1.GeneralUV Spectra were obtained with a Hitachi 340spec-trophotometer,whereas the IR spectra were measured with a Jasco FT/IR-200(by a KBr disk method)spectro-meter.Optical rotations were measured with a Jasco DIP-370digital polarimeter in a 0.5dm length cell.EI±MS and HR-FAB±MS were taken on a Jeol JMS DX-300spec-trometer.1H and 13C NMR spectra were measured with a Varian XL-400spectrometer.For HPLC,a Waters model 510HPLC system was used.Column chromato-graphy was carried out using Wako-gel C-200and YMC-gel ODS-AQ.TLC was conducted on Kieselgel 60F 254plates (Merck).3.2.Mass culture of G.glabra hairy root cultures The mass culture conditions of G.glabra hairy root were described previously (Asada et al.,1998).3.3.Separation procedures of ¯avonoidsThe methanol extract obtained as mentioned in the previous paper was partitioned between EtOAc and water.Removal of the solvent from the EtOAc phase under reduced pressure below 40 C yielded the EtOAc extract (50.66g).The water layer was applied to a Dia-ion HP-20column which was eluted with water,fol-lowed by methanol.Evaporation of the methanol eluate gave the glycosidic fraction (9.73g).The EtOAc fraction was subjected to column chro-matography on Wako-gel C-200(1500g)and eluted with n -hexane:acetone (3:2,v/v)to give six fractions,fr.1(1250ml,2.2754g),fr.2(250ml,1.1072g),fr.3(1000ml,6.5808g),fr.4(2000ml,6.5556g),fr.5(1500ml,3.2771g),fr.6(2000ml,3.6993g)and then the column was washed with MeOH to give fr.7(1500ml,11.190g).Fr.3was subject to silica gel column chromatography (n -hexane:acetone=75:25)to give 10fractions I±X.Fr.V was further puri®ed by repeated HPLC (n -hexane±CHCl 3±EtOH=9:10:0.5;n -hexane±EtOAc±EtOH=90:8:1)to give 8(5.8mg).Fr.VI was puri®ed by HPLC (n -hexane±CHCl 3±EtOH=60:40:1;CHCl 3±MeOH=99:1;n -hexane±CHCl 3±EtOH=15:85:0.3)to give 3(14.8mg)and 6(5.4mg).Fr.VII was puri®ed by HPLC (n -hexane±CHCl 3±EtOH=60:40:1;n -hexane±isopropanol=96:4)to give 9(138.0mg).Fr.IX was puri®ed by HPLC (n -hexane±CHCl 3±EtOH=40:60:1;n -hexane±acetone±isopropanol=90:5:4)to give 2(39.6mg).Fr.4was subject to silica gel column chromatography (n -hexane:acetone=65:35)to give six fractions I±VI.Fr.VI was further separated by HPLC (n -hexane±EtOH=89:11)to give more six fractions VIa±VIf.Fr.VIc was puri®ed by HPLC (n -hexane±EtOAc±EtOH=80:20:3)to give 4(9.4mg)and 7(9.4mg).Fr.VId was puri®ed by HPLC (n -hexane±CHCl 3±EtOH=10:90:2;hexane±CHCl 3±EtOH=70:30:0.5)to give 1(9.0mg)and 5(6.2mg).The glycosidic fraction was subjected to ODS silica gel column chromatography (50g),eluted with aqueous methanol (0±100%)to give eight fractions,fr.1(0.9865g),fr.2(1.3821g),fr.3(1.38289g),fr.4(2.7798g),fr.5Fig.6.Hypothetical biosynthesis pathway for the formation of 1from isoliquiritigenin.W.Li et al./Phytochemistry 55(2000)447±456453(1.1291g),fr.6(0.7685g),fr.7(0.8364g)and fr.8(0.1743g).Further puri®cation of fractions 1±5was achieved byrepeated HPLC (m -Bondasphere,5m m C18-100A,19Â150mm)to give 10(28.3mg),11(18.3mg),12(8.8mg),13(33.8mg),14(87.6mg),15(96.8mg),16(31.0mg),17(5.8mg),18(5.8mg),19(55.5mg),and 20(20.6mg).3.4.Licoagrodin (1)Yellow powder.[a ]D 24Æ0(c =i.12,MeOH).UV l max MeOH nm (log 4):230sh (4.49),280(4.23),326(3.93).IR )maxKBr cm À1:3440,1660,1600.EI±MS m/z (%):408(29),322(39),266(42),189(100).HR-FAB±MS:calcd for C 45H 43O 9([M±H]À),727.2907;found:727.2923.1H NMR (400MHz,acetone-d 6)and 13C NMR (100MHz,ace-tone-d 6) :see Table 1.3.5.Licoagrochalcone B (3)Yellow powder.UV l maxMeOH nm (log 4):290(3.70),350(3.73).IR )max KBr cm À1:3430,1630,1590,1560.EI±MS m/z (%):336(M +,15),321(93),305(100),121(27).HR-EI±MS:calcd for C 21H 20O 4(M +),336.1362;found:336.1374.1H NMR (400MHz,acetone-d 6) :1.45(6H,s ,4HH and 5HH -CH 3),3.83(3H,s ,OCH 3),5.84(1H,d ,J =10.0Hz,2HH -H),6.65(1H,dd ,J =8.5,0.5Hz,5-H),6.67(1H,dd ,J =10.0,0.5Hz,1HH -H),6.98(2H,d ,J =8.5Hz,3H and 5H -H),7.77(1H,d ,J =8.5Hz,6-H),7.77(1H,d ,J =15.5Hz,a -H),7.98(1H,d ,J =15.5Hz,b -H),8.08(2H,d ,J =8.5Hz,2H and 6H -H).13C NMR (100MHz,acetone-d 6) :see Table 2.3.6.Licoagrochalcone C (4)Yellow powder.UVl maxMeOH nm (log 4):247(4.10),360(4.38).IR )max KBr cm À1:3430,1630,1590,1560.EI±MS m/z (%):354(M +,1),323(64),137(100).HR-EI±MS:calcd for C 21H 22O 5(M +),354.1468;found:354.1453.1H NMR (400MHz,acetone-d 6) :1.67(3H,d ,J =0.8Hz,5HH -CH 3),1.79(3H,d ,J =1.0Hz,4HH -CH 3),3.40(2H,d ,J =7.0Hz,1HH -H),3.78(3H,s ,OCH 3),5.27(1H,m ,2HH -H),6.77(1H,d ,J =8.5Hz,5-H),6.96(1H,d ,J =8.5Hz,5H -H),7.63(1H,dd ,J =8.5,2.5Hz,6H -H),7.64(1H,d ,J =2.5Hz,2H -H),7.67(1H,d ,J =8.5Hz,6-H),7.67(1H,d ,J =15.5Hz,a -H),7.98(1H,d ,J =15.5Hz,b -H).13C NMR (100MHz,acetone-d 6) :see Table 2.3.7.Licoagrochalcone D (5)Yellow powder.[a ]D 24À8.7(c 0.23,CHCl 3).UV l max MeOH nm (log 4):260(3.83),300sh (3.87),356(4.16).IR u maxKBr cm À1:3440,1630,1600,1590.EI±MS m/z (%):354(M +,17),323(100),121(29).HR-EI±MS:calcd for C 21H 22O 5(M +),354.1468;found:354.1461.1H NMR (400MHz,acetone-d 6) :1.25(3H,s ,4HH or 5HH -CH 3),1.28(3H,s ,4HH or 5HH -CH 3),3.43(1H,dd ,J =16.0,10.0Hz,1HH -H a ),3.44(1H,dd ,J =16.0,8.0Hz,1HH -H b ),4.00(3H,s ,OCH 3),4.71(1H,dd ,J =10.0,8.0Hz,2HH -H),6.53(1H,d ,J =8.5Hz,5-H),6.96(2H,d ,J =8.5Hz,3H and 5H -H),7.70(1H,d ,J =16.5Hz,a -H),7.71(1H,d ,J =8.5Hz,6-H),8.04(1H,d ,J =16.5Hz,b -H),8.06(2H,d ,J =8.5Hz,2H and 6H -H).13C NMR (100MHz,acetone-d 6) :see Table 2.3.8.Licoagroaurone (7)Yellow powder.UV l maxMeOH nm (log 4):256(3.99),267(3.98),396(4.41).IR )max KBr1cm À1:3440,1630,1600.EI±MS m/z (%):338(M +,100),283(54),149(46).HR-EI±MS:calcd for C 20H 18O 5(M +),338.1154;found:338.1164.1H NMR (400MHz,acetone-d 6) :1.69(3H,d ,J =0.5Hz,5HH -CH 3),1.88(3H,d ,J =0.5Hz,4HH -CH 3),3.56(2H,d ,J =7.0Hz,1HH -H),5.41(1H,m ,2HH -H),6.64(1H,s ,10-H),6.83(1H,d ,J =8.5Hz,5-H),6.96(1H,d ,J =8.5Hz,5H -H),7.42(1H,dd ,J =8.5,2.5Hz,6H -H),7.46(1H,d ,J =8.5Hz,4-H),7.61(1H,d ,J =2.5Hz,2H -H).13C NMR (100MHz,acetone-d 6) :18.1(C-4HH ),22.6(C-1HH ),25.8(C-5HH ),112.0(C-10),112.9(C-5),113.1(C-7),114.9(C-9),116.5(C-5H ),118.8(C-2H ),122.1(C-2HH ),123.4(C-4),125.5(C-6H ),125.7(C-1H ),132.8(C-3HH ),146.2(C-3H ),147.4(C-2),148.1(C-4H ),163.6(C-8),167.7(C-6),182.9(C-3).3.9.Licoagroside A (10)Powder,[a ]D 24+75.1(c 0.37,MeOH).UV l maxMeOH nm (log 4):218(4.30),250(4.07),294(3.85),324(3.84).IRTable 213C NMR spectral data for retrochalcones 3±5345C=O 188.1188.2188.2C-a 121.2120.4120.0C-b 138.1139.1139.2C-1121.9121.1120.4C-2157.1160.5157.5C-3115.8123.0118.0C-4157.1159.6165.3C-5113.9112.7105.4C-6129.2127.4129.8C-1H 131.7132.1131.5C-2H 131.7116.1131.5C-3H 116.1145.9116.0C-4H 162.5150.8162.4C-5H 116.1115.6116.0C-6H 131.7122.7131.5C-1HH 117.223.629.6C-2HH 131.7123.991.2C-3HH 77.4131.571.4C-4HH 28.117.925.4a C-5HH 28.125.826.0a OCH 363.262.760.0aAssignments may be interchangeable.454W.Li et al./Phytochemistry 55(2000)447±456)max Kbr cm À1:3430,1630.FAB±MS (positive)m/z :515[M+Na]+,493[M+H]+.HR-FAB±MS (positive)m/z :found:493.1360;calcd for C 23H 25O 12[M+H]+:493.1346.1H NMR (400MHz,methanol-d 4) :3.24(1H,dd ,J =9.0,9.0Hz,4HH -H),3.28(1H,dd ,J =9.0,8.0Hz,2HH -H),3.40(1H,ddd ,J =9.0,6.0,2.0Hz,5HH -H),3.42(1H,dd ,J =9.0,9.0Hz,3HH -H),3.60(1H,dd ,J =12.0,6.0Hz,6HH -H a ),3.87(1H,dd ,J =12.0,2.0Hz,6HH -H b ),3.90(3H,s ,4H -OCH 3),3.96(3H,s ,6-OCH 3),4.84(1H,d ,J =8.0Hz,1HH -H),6.76(1H,s ,6H -H),6.94(1H,s ,8-H),7.03(1H,s ,3H -H),7.55(1H,s ,5-H),8.16(1H,s ,2-H).13C NMR (100MHz,methanol-d 4) :178.3(C-4),156.8(C-2),155.1(C-7),154.5(C-9),150.4(C-2H ),149.7(C-4H ),148.7(C-6),142.8(C-5H ),122.6(C-3),118.7(C-6H ),117.9(C-10),115.5(C-1H ),105.4(C-5),104.3(C-1HH ),104.0(C-8),103.4(C-3H ),78.4(C-5HH ),78.1(C-3HH ),74.9(C-2HH ),71.6(C-4HH ),62.8(C-6HH ),56.7(6-OCH 3),56.6(4H -OCH 3).3.10.Licoagroside B (19)Powder,[a ]D 24À61.4(c 0.60,MeOH).UV l maxMeOH nm (log 4):210(4.04),254(4.07).IR )max KBr cm À1:3420,1650,1620.FAB±MS (positive)m/z :455[M+Na]+,433[M+H]+HR-FAB±MS (positive)m/z :found:433.1344;calcd for C 18H 25O 12[M+H]+:433.1346.1H NMR (400MHz,methanol-d 4) :1.35(3H,s ,6HH -H),2.42(3H,s ,7-H),2.60(1H,d ,J =15.0Hz,4HH -H a ),2.64(1H,d ,J =15.0Hz,4HH -H b ),2.65(1H,d ,J =15.0Hz,2HH -H a ),2.72(1H,d ,J =15.0Hz,2HH -H b ),3.34(1H,dd ,J =9.0,8.0Hz,4H -H),3.38(1H,dd ,J =8.0,8.0Hz,2H -H),3.40(1H,dd ,J =9.0,8.0Hz,3H -H),3.45(1H,ddd ,J =8.0,6.0,2.0Hz,5H -H),4.21(1H,dd ,J =12.0,6.0Hz,6H -H a ),4.45(1H,dd ,J =12.0,2.0Hz,6H -H b ),4.85(1H,d ,J =8.0Hz,1H -H),6.45(1H,d ,J =6.0Hz,5-H),8.01(1H,d ,J =6.0Hz,6-H).13C NMR (100MHz,metha-nol-d 4): 177.0(C-4),174.8(C-5HH ),172.3(C-1HH ),164.6(C-2),157.2(C-6),143.3(C-3),117.3(C-5),104.9(C-1H ),77.8(C-3H ),75.9(C-5H ),75.3(C-2H ),71.2(C-4H ),70.6(C-3HH ),64.3(C-6H ),46.3(C-2HH ),45.9(C-4HH ),27.8(C-6HH ),15.8(C-7).AcknowledgementsThis work was supported by a ``High-tech Research Center''grant from the Ministry of Education,Science,Sports and Culture of Japan.The authors wish to thank Ms.Aikiko Hatano and Ms.Michiko Sato at the Analytical Center of Kitasato University for NMR measurements.ReferencesAsada,Y.,Li,W.,Yoshikawa,T.,1998.Isoprenylated ¯avonoids from hairy root cultures of Glycyrrhiza glabra .Phytochemistry 47,389±392.Asada,Y.,Li,W.,Yoshikawa,T.,1999.The ®rst prenylated biaurone,licoagrone from hairy root cultures of Glycyrrhiza glabra .Phy-tochemistry 50,1015±1019.Chassagne,D.,Crouzet,J.,Bayonove,C.L.,Brillouet,J.,Baumes,R.L.,1996.6-O -a -l -Arabinopyranosyl-b -d -glucopyranosides as aroma pre-cursors from passion fruit.Phytochemistry 41,1497±1500.Demizu,S.,Kajiyama,K.,Takahashi,K.,Hiraga,Y.,Yamamoto,S.,Tamura,Y.,Okada,K.,Kinoshita,T.,1988.Antioxidant and anti-microbial constituents of licorice:isolation and structure elucidation of a new benzofuran derivative.Chem.Pharm.Bull.36,3474±3479.Demizu,S.,Kajiyama,K.,Hiraga,Y.,Kinoshita,K.,Koyama,K.,Takahashi,K.,Tamura,Y.,Okada,K.,Kinoshita,T.,1992.Pre-nylated dibenzoylmethane derivatives from the root of Glycyrrhiza in¯ata (Xinjiang licorice).Chem.Pharm.Bull.40,392±395.Fukai,T.,Nomura,T.,1989.Constituents of the Moraceae plants.Part 5.Revised structures of brousso¯avonols C and D,and the structure of brousso¯avonol E.Heterocycles 29,2379±2390.Fukai,T.,Sheng, C.B.,Horikoshi,T.,Nomura,T.,1996.Iso-prenylated ¯avonoids from underground parts of Glycyrrhiza gla-bra .Phytochemistry 43,1119±1124.Fukai,T.,Cai,C.B.,Maruno,K.,Miyakawa,Y.,Konishi,M.,Nomura,T.,1998.``Phenolic constituents of Glycyrrhiza species.An isoprenylated ¯avanone from Glycyrrhiza glabra and rec-assay of licorice phenols.Phytochemistry 49,2005±2013.Furuya,T.,Matsumoto,K.,Hikichi,M.,1971.Echinatin,a new chalcone from tissue culture of Glycyrrhiza echinata .Tetrahedron Letters ,2567±2569.Haraguchi,H.,Tanimoto,K.,Tamura,Y.,Mizutani,K.,Kinoshita,T.,1998.Mode of antibacterial action of retrochalcones from Gly-cyrrhiza in¯ata Phytochemistry 48,125±129.Inoshiri,S.,Sasaki,M.,Konda,H.,Otsuka,H.,Yamasaki,K.,1987.Aromatic glycosides from Berchemia racemosa .Phytochemistry 26,2811±2816.Japan Pharmaceutical Information Center (Ed.),1997.Drugs In Japan,Ethical Drugs.Yakugys Jiho Co.,Ltd,Tokyo,p.24.Kajiyama,K.,Demizu,S.,Hiraga,Y.,Kinoshita,K.,Koyama,K.,Takahashi,K.,Tamura,Y.,Okada,K.,Kinoshita,T.,1992.Two prenylated retrochalcones from Glycyrrhiza in¯ata .Phytochemistry 31,3229±3232.Kajiyama,K.,Hiraga,Y.,Takahashi,K.,Hirata,S.,Kobayashi,S.,Sankawa,U.,Kinoshita,T.,1994.Flavonoids and iso¯avonoids of chemotaxonomic signi®cance from Glycyrrhiza pallidi¯ora (Legu-minosae).Biochemical Systematics and Ecology 21,785±793.Katsura,E.,Yamagishi,T.,1987.Quantitative determination of iso-¯avonoids in Astragalus root by high performance liquid chroma-tography.Hokkaidoritsu Eisei Kenkyushoho 37,48±52.Kessmann,H.,Edwards,R.,Geno,P.W.,Dixon,R.A.,1990.Stress responses in alfalfa (Medicago sativa L.).V..Constitutive and eli-citor-induced accumulation of iso¯avonoid conjugates in cell sus-pension cultures.Plant Physiol.94,227±232.Kitakawa,I.,Chen,W.Z.,Hori,K.,Harada,E.,Yasuda,N.,Yoshi-kawa,M.,Ren,J.,1994.Chemical Studies of Chinese Licorice-Roots.I.Elucidation of ®ve new ¯avonoid constituents from the roots of Glycyrrhiza glabra L.collected in Xinjiang.Chem.Pharm.Bull.42,1056±1062.Li,W.,Asada,Y.,Yoshikawa,T.,1998.Antimicrobial ¯avonoids from Glycyrrhiza glabra hairy root cultures.Planta Medica 64,746±747.Looker,J.H.,Fisher,M.S.,1985.Synthesis and characterization of the naturally occurring monocyclic g -pyrone glucosides.Journal of Carbohydrate Chemistry 4,381±392.Markham,K.R.,Mabry,T.J.,1975.Ultraviolet-visible and proton magnetic resonance spectroscopy of ¯avonoids.In:Harborne,J.B.,Mabry,T.J.,Mabry,H.(Eds.),The Flavonoids.Chapman and Hall,London,pp.45±77.Markham,K.R.,Chari,V.M.,1982.Carbon-13NMR spectroscopy of ¯avonoids.In:Harborne,J.B.,Mabry,T.J.(Eds.),The Flavonoids:Advances in Research.Chapman and Hall,London,pp.19±134.W.Li et al./Phytochemistry 55(2000)447±456455。
甘草(中国药典2015)
甘草GancaoGLYCYRRHIZAE RADIX ET RHIZOMA本品为豆科植物甘草Glycyrrhiza uralensis Fisch.、胀果甘草Glycyrrhiza inflata Bat.或光果甘草Glycyrrhiza glabra L.的干燥根和根茎。
春、秋二季采挖,除去须根,晒干。
【性状】甘草根呈圆柱形,长25~100cm,直径0.6~3.5cm。
外皮松紧不一。
表面红棕色或灰棕色,具显著的纵皱纹、沟纹、皮孔及稀疏的细根痕。
质坚实,断面略显纤维性,黄白色,粉性,形成层环明显,射线放射状,有的有裂隙。
根茎呈圆柱形,表面有芽痕,断面中部有髓。
气微,味甜而特殊。
胀果甘草根和根茎木质粗壮,有的分枝,外皮粗糙,多灰棕色或灰褐色。
质坚硬,木质纤维多,粉性小。
根茎不定芽多而粗大。
光果甘草根和根茎质地较坚实,有的分枝,外皮不粗糙,多灰棕色,皮孔细而不明显。
【鉴别】(1)本品横切面:木栓层为数列棕色细胞。
栓内层较窄。
韧皮部射线宽广,多弯曲,常现裂隙;纤维多成束,非木化或微木化,周围薄壁细胞常含草酸钙方晶;筛管群常因压缩而变形。
束内形成层明显。
木质部射线宽3~5列细胞;导管较多,直径约至160μm;木纤维成束,周围薄壁细胞亦含草酸钙方晶。
根中心无髓;根茎中心有髓。
粉末淡棕黄色。
纤维成束,直径8~14μm,壁厚,微木化,周围薄壁细胞含草酸钙方晶,形成晶纤维。
草酸钙方晶多见。
具缘纹孔导管较大,稀有网纹导管。
木栓细胞红棕色,多角形,微木化。
(2)取本品粉末1g,加乙醚40ml,加热回流1小时,滤过,弃去醚液,药渣加甲醇30ml,加热回流1小时,滤过,滤液蒸干,残渣加水40ml使溶解,用正丁醇提取3次,每次20ml,合并正丁醇液,用水洗涤3次,弃去水液,正丁醇液蒸干,残渣加甲醇5ml使溶解,作为供试品溶液。
另取甘草对照药材1g,同法制成对照药材溶液。
再取甘草酸单铵盐对照品,加甲醇制成每1ml含2mg的溶液,作为对照品溶液。
《生药学》复习题
《生药学》复习题一、单项选择题1.生药原植物的拉丁学名包括(C)A.属名+种名B.药用部位+生药名(第二格)C.属名+种加词+定名人D.属名+种名+药用部位2.生药的拉丁名包括(B)A.属名+种名B.药用部位+生药名(第二格)C.属名+种加词+定名人D.属名+种名+药用部位3.以干燥管状花入药的是(A)A.红花B.款冬花C.金银花D.番红花4.以干燥花蕾入药的是(C)A.红花B.款冬花C.金银花D.番红花5.以花的柱头入药的有(C)A.红花B.金银花C.番红花D.菊花6.鉴别术语“芦长碗密枣核丁,紧皮细纹珍珠须”是指以下那种人参的鉴别特征?(B)A.红参B.野山参C.生晒参D.西洋参7.用水合氯醛试液加热透化后装片,可观察(D)A.淀粉粒B.多糖颗粒C.菊糖D.草酸钙结晶8.生药粉末镜下观察,可见油细胞、分枝状石细胞和纤维束的是(A)A.厚朴B.麦冬C.肉桂D.黄芪9.皮类生药的粉末,不应有(D)A.石细胞B.筛管C.分泌组织D.木纤维10.下列那种药材粉末的韧皮薄壁细胞表面有极微细的斜向交错纹理(D)A.甘草B.大黄C.龙胆D.当归11.生药粉末镜下观察,可见腺鳞(腺头由八个细胞组成)和橙皮甙结晶的是(A)A.薄荷B.甘草C.穿心莲D.肉桂12.皮类药材是泛指某些植物的根、茎干或枝的(D)A.周皮B.木栓层C.落皮层D.形成层以外的部分13.鉴别术语“云锦花纹”是指(C)A.牛膝皮层中的异形维管束B.大黄髓部的异形维管束C.何首乌层中的异形维管束14.鉴别术语“星点”是指(B)A.牛膝皮层中的异形维管束B.大黄髓部的异形维管束C.何首乌层中的异形维管束15.动物药麝香的主要活性成分是(D)A.麝香甙B.麝香碱C.麝香醇D.麝香酮16.下列生药中,那种是含皂甙类的生药?(C)A.白芍B.苦杏仁C.人参D.大黄17.人参粉末不含有下列那种显微特征(D)A.树脂道B.簇晶C.淀粉粒D.石细胞18.冬虫夏草的药用部位是(D)A.冬虫夏草菌B.蝙蝠蛾越冬幼虫的尸体C.虫体上的子座D.虫体与子座的复合物19.下列生药中,那种粉末的显微特征中有钟乳体?(A)A.穿心莲B.红花C.金银花D.甘草20.观察粉末中簇晶的大小和形状,装片方法是(B)A.乙醇装片B.水合氯醛装片C.稀碘液装片D.水装片21.取药材少许,浸入水中,可见橙黄色成直线下降,逐渐扩散,水被染成黄色的是(B)A.红花B.西红花C.菊花D.槐花E.蒲黄22.主成分为小檗碱的是(A)A.黄柏B.地骨皮C.香加皮D.杜仲E.桑白皮23.气孔特异,下陷,保卫细胞侧面观呈哑铃形或电话听筒形的是(E)A.细辛B.广藿香C.金钱草D.穿心莲E.麻黄24.种子类药材粉末的主要标志是(C)A.脂肪油滴B.淀粉粒C.糊粉粒D.多糖颗粒二、对应选择题1.当归粉末显微特征具有(D.油室)厚朴粉末显微特征具有(C.油细胞)A.树脂道B.乳汁管人参粉末显微特征具有(A.树脂道)C.油细胞D.油室党参粉末显微特征具有(B.乳汁管)2.黄芪粉末显微特征具有(D.帚状纤维)厚朴粉末显微特征具有(C.纤维成束且壁极厚)A.嵌晶纤维B.晶鞘纤维黄柏粉末显微特征具有(B.晶鞘纤维)C.纤维成束且壁极厚D.帚状纤维麻黄粉末显微特征具有(A.嵌晶纤维)3.麻黄粉末显微特征具有(D.特异气孔(电话筒状))薄荷粉末显微特征具有(B.腺鳞)A.间隙腺毛B.腺鳞金银花粉末显微特征具有(C.腺毛)C.腺毛D.特异气孔(电话筒状)绵马贯众粉末显微特征具有(A.间隙腺毛)4.甘草粉末显微特征具有(D.方晶)人参粉末显微特征具有(A.簇晶)A.簇晶B.针晶麦冬粉末显微特征具有(B.针晶)C.沙晶D.方晶枸杞子粉末显微特征具有(C.沙晶)5.羚羊角药材具有(D.“通天眼”)蕲蛇药材具有(C.“方胜纹”)A.“挂甲”B.“当门子”麝香仁里有(B.“当门子”)C.“方胜纹”D.“通天眼”牛黄药材水液可(A.“挂甲”)三、多项选择题1.麝香来源于鹿科的(A、C、D)成熟雄体香囊中的干燥分泌物A.林麝B.牛麝C.马麝D.原麝2.下列药材粉末特征具有分枝状石细胞的是(A、D)A.厚朴B.甘草C.肉桂D.黄柏3.下列药材粉末特征具有针晶束的是(A、C)A.天麻B.甘草C.麦冬D.厚朴4.生药鉴定就是依据国家药典或有关资料规定的药品质量标准,对商品生药或检品进行(A、B、C)的检定A.真实性B.纯度C.品质优良性D.药理作用5.下列药材粉末特征具有簇晶的(A、B、C)A.人参B.大黄C.白芍D.天麻6.药用部位是菌核的中药有(A、B)A.猪苓B.茯苓C.海藻D.灵芝四、判断题(√)1.绵马贯众叶柄基部横切面可见维管束5---13个断续环列。
常见植物科属拉丁名汇总
常见植物科属拉丁名汇总Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998一.双子叶植物纲(一)离瓣花亚纲1.三白草科(Saururaceae):2.胡椒科(Piperaceae):胡椒属(Piper):胡椒(Piper nigrum)荜拨(Piper longum)草椒属(Peperomia)3.金粟兰科(Chloranthaceae):金粟兰属(Chloranthus):草珊瑚(Sarcandra glabra)4.桑科(Moraceae):桑属(Morus):桑(Morus alba)榕属(Ficus):小叶榕(Ficus parvifolia)薜荔(Ficus pumila)大麻属(Cannabis):大麻(Cannabis sativa)构属(Broussonetia):构树(Broussonetia papyrifera)5.马兜铃科(Aristolochiaceae)细辛属(Asarum):细辛(Asarum sieboldii)马兜铃属(Aristolochia):马兜铃(Aristolochia debilis)木通马兜铃(Aristolochia manshuriensis)广防己(Aristolochia fangchi)6.蓼科(Polygonaceae)大黄属(Rheum):掌叶大黄(Rheum palmatum)唐古特大黄(Rheum palmatum var. tanguticum)药用大黄(Rheum officinale)蓼属(Polygonum):何首乌(Polygonum multiflora)虎杖(Reynoutria japonica)红蓼(Polygonum orientale)拳参(Polygonum bistorta)萹蓄(Polygonum aviculare)水蓼(Polygonum hydropiper)酸模属(Rumex):羊蹄(Rumex crispus var. japonicus)荞麦属(Fagopyrum):荞麦(Fagopyrum esculentum)7.苋科(Amaranthaceae)牛膝属(Achyranthes):牛膝(Achyranthes bidentata)土牛膝(Achyranthes aspera)杯苋属(Cyathula):川牛膝(Cyathula officinalis),青藓属(Brachythecium/Celosia):鸡冠花(Celosia cristata)青葙(Celosia argentea)8.商陆科(Phytolaccaceae)商陆属(Phytolacca):商陆(Phytolacca acinosa)垂序商陆(Phytolacca americana)9.石竹科(Caryophyllaceae)石竹属(Dianthus):瞿麦(Dianthus superbus)石竹(Dianthus chinensis)繁缕属(Stellaria):银柴胡(Stellaria dichotoma var. lanceolata)麦蓝菜属(Vaccaria):麦蓝菜(Vaccaria hispanica)10.睡莲科(Nymphaeaceae)莲属(Nelumbo):莲(Nelumbo nucifera)芡属(Euryale):芡实(Euryale ferox Salisb),11.毛茛科(Ranunculaceae)乌头属(Aconitum):乌头(Aconitum carmichaelii)北乌头(Aconitum kusnezoffii)黄花乌头(Aconitum coreanum)铁线莲属(Clematis):威灵仙(Clematis chinensis)棉团铁线莲(Clematis hexapetala)黄连属(Coptis):黄连(Coptis chinensis)三角叶黄连(Coptis deltoidea)云南黄连(Coptis teeta)白头翁属(Pulsatilla):白头翁(Pulsatilla chinensis)升麻属(Cimicifuga):升麻(Cimicifuga foetida)大三叶升麻(Cimicifuga heracleifolia)12.芍药科(Paeoniaceae)芍药属(Paeonia):芍药(Paeonia lactiflora)川赤芍(Paeonia anomala subsp. Veitchii)草芍药(Paeonia obovata)牡丹(Paeonia suffruticosa)13.小檗科(Berberidaceae)小檗属(Berberis):豪猪刺(Berberis julianae)黄芦木(Berberis amurensis)淫羊藿属(Epimedium):三枝九叶草(Epimedium sagittatum)淫羊藿(Epimedium brevicornu)阔叶十大功劳(Mahonia bealei)鬼臼属(Dysosma):六角莲(Dysosma pleiantha)南天竹属(Nandina):南天竹(Nandina domestica)14.防己科(Menispermaceae)千金藤属(Stephania):粉防己(Stephania tetrandra)千金藤(Stephania japonica)15.木兰科(Magnoliaceae)木兰属(Magnolia):厚朴(Houpoea officinalis)凹叶厚朴(Magnolia officinalis subsp. Biloba)玉兰(Yulania denudata)五味子属(Schisandra):五味子(Schisandra chinensis)华中五味子(Schisandra sphenanthera)南五味子属(Kadsura):南五味子(Kadsura longipedunculata)16.樟科(Lauraceae)樟属(Cinnamomum):肉桂(Cinnamomum cassia)樟(Cinnamomum camphora),山胡椒属(Lindera):乌药(Lindera aggregata)木姜子属(Litsea):山鸡椒(Litsea cubeba)17.罂粟科(Papaveraceae)罂粟属(Papaver):罂粟(Papaver somniferum)紫堇属(Corydalis):延胡索(Corydalis yanhusuo)夏天无(Corydalis decumbens)白屈菜属(Chelidonium):白屈菜(Chelidonium majus)博落回属(Macleaya):博落回(Macleaya cordata)18.十字花科(Cruciferae)菘蓝属(Isatis):菘蓝(Isatis tinctoria)白芥属(Sinapis):白芥(Sinapis alba)芸苔属(Brassica):芥菜(Brassica juncea)独行菜属(Lepidium):独行菜(Lepidium apetalum)播娘蒿属(Descurainia):播娘蒿(Descurainia sophia)萝卜属(Raphanus):萝卜(Raphanus sativus)菥蓂属(Thlaspi):菥蓂(Thlaspi arvense)19.白花菜科(Cleomaceae)20.景天科(Crassulaceae)景天属(Sedum):土三七(Sedum tatarinowii)垂盆草(Sedum sarmentosum)红景天属(Rhodiola):大花红景天(Rhodiola crenulata)狭叶红景天(Rhodiola kirilowii),21.虎耳草科(Saxifragaceae)虎耳草属(Saxifraga):虎耳草(Saxifraga stolonifera)落新妇属(Astilbe):落新妇(Astilbe chinensis)金腰属(Chrysosplenium):大叶金腰(Chrysosplenium macrophyllum)梅花草属(Parnassia):梅花草(Parnassia palustris)岩白菜属(Bergenia):岩白菜(Bergenia purpurascens)鬼灯檠属(Rodgersia):七叶鬼灯檠(Rodgersia aesculifolia)常山属(Dichroa):常山(Dichroa febrifuga)22.金缕梅科(Hamamelidaceae)枫香树属(Liquidambar):枫香树(Liquidambar formosana),半枫荷属(Semiliquidambar):半枫荷(Semiliquidambar cathayensis)檵木属(Loropetalum):檵木(Loropetalum chinense)23.杜仲科(Eucommiaceae)杜仲属(Eucommia):杜仲(Eucommia ulmoides)24.蔷薇科(Rosaceae)绣线菊属(Spiraea):绣线菊(Spiraea salicifolia)龙牙草属(Agrimonia):龙牙草(Agrimonia pilosa)悬钩子属(Rubus):掌叶覆盆子(Rubus chingii)插田泡(Rubus coreanus)蔷薇属(Rosa);金樱子(Rosa laevigata)玫瑰(Rosa rugosa)地榆属(Sanguisorba):地榆(Sanguisorba officinalis)梅属(Armeniaca):杏(Armeniaca vulgaris)山杏(Armeniaca sibirica)西伯利亚杏(Prunus sibirica var. pubescens)东北杏(Armeniaca mandshurica)梅(Armeniaca mume)木瓜属(Chaenomeles):木瓜(Chaenomeles sinensis)25.豆科(Leguminosae)合欢属(Albizia):合欢(Albizia julibrissin)含羞草属(Mimosa):含羞草(Mimosa pudica)决明属(Cassia):决明(Senna tora)钝叶决明(Senna tora var. obtusifolia)皂荚属(Gleditsia):皂荚(Gleditsia sinensis)紫荆属(Cercis):紫荆(Cercis chinensis)黄芪属(Astragalus):蒙古黄芪(Astragalus penduliflorus subsp. Mongholicus)甘草属(Glycyrrhiza):甘草(Glycyrrhiza uralensis)葛属(Pueraria):葛(Pueraria Montana var. lobata)槐属(Sophora):越南槐(Sophora tonkinensis)补骨脂属(Psoralea):补骨脂(Psoralea corylifolia)鸡血藤属(Millettia):鸡血藤(Millettia extensa)26.芸香科(Rutaceae)柑橘属(Citrus):橘(Citrus reticulate Blanco)酸橙(Citrus aurantium)佛手(Citrus medica var. sarcodactylis)黄檗属(Phellodendron):黄檗(Phellodendron amurense)川黄檗(Phellodendron chinense)吴茱萸属(Tetradium):吴茱萸(Evodia rutaecarpa)吴茱萸(Tetradium ruticarpum)花椒属(Zanthoxylum):花椒(Zanthoxylum bungeanum)两面针(Zanthoxylum nitidum)27.楝科(Meliaceae)楝属(Melia):楝(Melia azedarach)川楝(Melia toosendan)香椿属(Toona):香椿(Toona sinensis)28.远志科(Polygalaceae)远志属(Polygala):远志(Polygala tenuifolia)29.大戟科(Euphorbiaceae)大戟属(Euphorbia):大戟(Euphorbia pekinensis)续随子(Euphorbia lathyris)飞扬草(Euphorbia hirta)狼毒大戟(Euphorbia fischeriana)巴豆属(Croton):巴豆(Croton tiglium)蓖麻属(Ricinus):蓖麻(Ricinus communis)30.冬青科(Aquifoliaceae)冬青属(Ilex):枸骨(Ilex cornuta)铁冬青(Ilex rotunda)冬青(Ilex chinensis)毛冬青(Ilex pubescens)31.卫矛科(Celastraceae)卫矛属(Euonymus):卫矛(Euonymus alatus)雷公藤属(Tripterygium):雷公藤(Tripterygium wilfordii)南山藤属(Dregea):南山藤(Dregea volubilis)南蛇藤(Celastrus orbiculatus)美登木属(Maytenus):美登木(Maytenus hookeri)32.无患子科(Sapindaceae)龙眼属(Dimocarpus):龙眼(Dimocarpus longan)荔枝属(Litchi):荔枝(Litchi chinensis)无患子属(Sapindus):无患子(Sapindus saponaria)33.鼠李科(Rhamnaceae)枣属(Ziziphus):枣(Ziziphus jujuba)酸枣(Ziziphus jujube var. spinosa)枳椇属(Hovenia):枳椇(拐枣)(Hovenia acerba)勾儿茶属(Berchemia):勾儿茶(Berchemia sinica)铁包金(Berchemia lineata)鼠李属(Rhamnus):鼠李(Rhamnus davurica)34.葡萄科(Vitaceae)葡萄属(Vitis):葡萄(Vitis vinifera)蛇葡萄属(Ampelopsis):白蔹(Ampelopsis japonica)乌蔹莓属(Cayratia):乌蔹莓(Cayratia japonica)35.锦葵科(Malvaceae)木槿属(Hibiscus):木槿(Hibiscus syriacus)蜀葵属(Alcea):蜀葵(Alcea rosea)秋葵属(Abelmoschus):36.堇菜科(Violaceae)堇菜属(Viola):紫花地丁(Viola philippica)戟叶堇菜(Viola betonicifolia)箭叶堇菜(Viola betonicifolia subsp. Nepalensis)37.瑞香科(Thymelaeaceae)瑞香属(Daphne):芫花(Daphne genkwa)荛花属(Wikstroemia):了哥王(Wikstroemia indica)狼毒属(Stellera):狼毒(Stellera chamaejasme)38.胡颓子科(Elaeagnaceae)沙棘属(Hippophae):沙棘(Hippophae rhamnoides)柳叶沙棘(Hippophae salicifolia)西藏沙棘(Hippophae thibetana)胡颓子属(Elaeagnus):胡颓子(Elaeagnus pungens)39.桃金娘科(Myrtaceae)桉属(Eucalyptus):蓝桉(Eucalyptus globulas)白千层属(Melaleuca):白千层(Melaleuca cajuputi subsp. Cumingiana)桃金娘属(Rhodomyrtus):桃金娘(Rhodomyrtus tomentosa)40.五加科(Araliaceae)人参属(Panax):人参(Panax ginseng)西洋参(Panax quinquefolius)三七(Panax notoginseng)竹节参(Panax japonicus)五加属(Acanthopanax):刺五加(Acanthopanax senticosus)红毛五加(Acanthopanax giraldii)41.伞形科(Umbelliferae)当归属(Angelica):当归(Angelica sinensis)白芷(Angelica dahurica)杭白芷(Angelica dahurica‘Hangbaizhi’)柴胡属(Bupleurum):北柴胡(Bupleurum chinense)线叶柴胡(Bupleurum angustissimum)马尾柴胡(Bupleurum microcephalum)兴安柴胡(Bupleurum sibiricum)藁本属(Ligusticum):川芎(Ligusticum sinense‘Chuanxiong’),藁本(Ligusticum sinense),辽藁本(Ligusticum jeholense)羌活属(Notopterygium):羌活(Notopterygium incisum)前胡属(Peucedanum):前胡(Peucedanum praeruptorum)防风属(Saposhnikovia):防风(Saposhnikovia divaricata)珊瑚菜属(Glehnia):珊瑚菜(Glehnia littoralis),蛇床(Cnidium monnieri)明党参属(Changium):明党参(Changium smyrnioides)积雪草属(Centella):积雪草(Centella asiatica)芫荽属(Coriandrum):芫荽(Coriandrum sativum)42.山茱萸科(Cornaceae)山茱萸(Cornus officinalis),青荚叶(Helwingia japonica),中华青荚叶(Helwingia chinensis)(二)合瓣花亚纲43.杜鹃花科(Ericaceae)兴安杜鹃(Rhododendron dauricum),羊踯躅(Rhododendron molle),烈香杜鹃(Rhododendron anthopogonoides),杜鹃(Rhododendron simsii),满山红(Rhododendron mariesii)44.紫金牛科(Myrsinaceae)紫金牛属(Ardisia):紫金牛(Ardisia japonica)朱砂根(Ardisia crenata)百两金(Ardisia crispa)酸藤子属(Embelia):当归藤(Embelia parviflora)铁仔属(Myrsine):铁仔(Myrsine africana)45.报春花科(Primulaceae)珍珠菜属(Lysimachia):过路黄(Lysimachia christiniae),点地梅属(Androsace):点地梅(Androsace umbellata)46.木犀科(Oleaceae)连翘属(Forsythia):连翘(Forsythia suspensa)女贞属(Ligustrum):女贞(Ligustrum lucidum)梣属(Fraxinus):白蜡树(Fraxinus chinensis)花曲柳(Fraxinus chinensis subsp. Rhynchophylla)47.马钱科(Loganiaceae)马钱属(Strychnos):钩吻属(Gelsemium):钩吻(Gelsemium elegans)48.龙胆科(Gentianaceae)龙胆属(Gentiana):龙胆(Gentiana scabra)条叶龙胆(Gentiana manshurica),秦艽(Gentiana macrophylla)獐牙菜属(Swertia):瘤毛獐牙菜(Swertia pseudochinensis)49.夹竹桃科(Apocynaceae)罗布麻属(Apocynum):罗布麻(Apocynum venetum)萝芙木属(Rauvolfia):萝芙木(Rauvolfia verticillata),络石属(Trachelospermum):络石(Trachelospermum jasminoides)长春花属(Catharanthus):长春花(Catharanthus roseus)羊角拗属(Strophanthus):羊角拗(Strophanthus divaricatus)杜仲藤属(Parabarium):杜仲藤(Urceola micrantha)夹竹桃属(Nerium):夹竹桃(Nerium indicum)夹竹桃(Nerium oleander)黄花夹竹桃属(Thevetia):黄花夹竹桃(Thevetia peruviana)50.萝藦科(Asclepiadaceae)鹅绒藤属(Cynanchum):白薇(Cynanchum atratum)柳叶白前(Cynanchum stauntonii)徐长卿(Cynanchum paniculatum)白首乌(Cynanchum bungei)杠柳属(Periploca):杠柳(Periploca sepium)娃儿藤属(Tylophora):娃儿藤(Tylophora ovata)马利筋属(Asclepias):马利筋(Asclepias curassavica)51.旋花科(Convolvulaceae)牵牛属(Pharbitis):裂叶牵牛(Pharbitis hederacea)菟丝子属(Cuscuta):菟丝子(Cuscuta chinensis)南方菟丝子(Cuscuta australis)金灯藤(Cuscuta japonica)丁公藤属(Erycibe):丁公藤(Erycibe obtusifolia)马蹄金属(Dichondra):马蹄金(Dichondra micrantha)52.紫草科(Boraginaceae)紫草属(Lithospermum):紫草(Lithospermum erythrorhizon)53.马鞭草科(Verbenaceae)马鞭草属(Verbena):马鞭草(Verbena officinalis)牡荆属(Vitex):蔓荆(Vitex triflora)单叶蔓荆(Vitex rotundifolia)大青属(Clerodendrum):大青(Clerodendrum cyrtophyllum)海州常山(Clerodendrum trichotomum)紫珠属(Callicarpa):紫珠(Callicarpa bodinieri)大叶紫珠(Callicarpa macrophylla)兰香草(Caryopteris incana)三花莸(Caryopteris terniflora)马缨丹属(Lantana):马缨丹(Lantana camara)54.唇形科(Labiatae)益母草属(Leonurus):益母草(Leonurus japonicus)白花益母草(Leonurus Artemisia var. albiflorus)细叶益母草(Leonurus sibiricus)鼠尾草属(Salvia):丹参(Salvia miltiorrhiza)黄芩属(Scutellaria):黄芩(Scutellaria baicalensis)滇黄芩(Scutellaria amoena)半枝莲(Scutellaria barbata)薄荷属(Mentha):薄荷(Mentha canadensis)荆芥属(Nepeta):荆芥(Nepeta cataria)紫苏属(Perilla):紫苏(Perilla frutescens)回回苏(Perilla frutescens var. crispa)夏枯草属(Prunella):夏枯草(Prunella vulgaris)茴香属(Foeniculum):茴香(Foeniculum vulgare)55.茄科(Solanaceae)曼陀罗属(Datura):洋金花(Datura metel)曼陀罗(Datura stramonium)紫花曼陀罗(Datura stramonium var. tatula)枸杞属(Lycium):宁夏枸杞(Lycium barbarum)56.玄参科(Scrophulariaceae)玄参属(Scrophularia):玄参(Scrophularia ningpoensis)北玄参(Scrophularia buergeriana)地黄属(Rehmannia):地黄(Rehmannia glutinosa)阴行草属(Siphonostegia):阴行草(Siphonostegia chinensis)57.爵床科(Acanthaceae)穿心莲属(Andrographis):穿心莲(Andrographis paniculata),马蓝属(Pteracanthus):爵床属(Justicia):爵床(Justicia procumbens)观音草属(Peristrophe):九头狮子草(Peristrophe japonica)白接骨属(Asystasiella):白接骨(Asystasiella neesiana)狗肝菜属(Dicliptera):狗肝菜(Dicliptera chinensis)58.茜草科(Rubiaceae)茜草属(Rubia):茜草(Rubia cordifolia)栀子属(Gardenia):栀子(Gardenia jasminoides)红芽大戟属(Knoxia):红大戟(Knoxia valerianoides)钩藤属(Uncaria):钩藤(Uncaria rhynchophylla)巴戟天属(Morinda):巴戟天(Morinda officinalis)耳草属(Hedyotis):白花蛇舌草(Hedyotis diffusa)咖啡属(Coffea):咖啡(Coffea arabica)鸡矢藤属(Paederia):鸡矢藤(Paederia scandens)白马骨属(Serissa):白马骨(Serissa serissoides)虎刺属(Damnacanthus):虎刺(Damnacanthus indicus)金鸡纳属(Cinchona):金鸡纳树(Cinchona ledgeriana)59.忍冬科(Caprifoliaceae)忍冬属(Lonicera):忍冬(Lonicera japonica)接骨木属(Sambucus):接骨草(Sambucus chinensis)接骨木(Sambucus williamsii)60.败酱科(Valerianaceae)败酱属(Patrinia):白花败酱(Patrinia sinensis)甘松属(Nardostachys):甘松(Nardostachys chinensis)缬草属(Valeriana):缬草(Valeriana officinalis)61.葫芦科(Cucurbitaceae)栝楼属(Trichosanthes):栝楼(Trichosanthes kirilowii)中华栝楼(Trichosanthes rosthornii)王瓜(Trichosanthes cucumeroides)赤瓟属(Thladiantha):赤瓟(Thladiantha dubia)绞股蓝属(Gynostemma):绞股蓝(Gynostemma pentaphyllum)雪胆属(Hemsleya):雪胆(Hemsleya chinensis)罗汉果属(Siraitia):罗汉果(Siraitia grosvenorii)丝瓜属(Luffa):丝瓜(Luffa cylindrica)冬瓜属(Benincasa):冬瓜(Benincasa hispida)62.桔梗科(Campanulaceae)桔梗属(Platycodon):桔梗(Platycodon grandiflorus)沙参属(Adenophora):沙参(Adenophora stricta)杏叶沙参(Adenophora petiolata subsp. Hunanensis)轮叶沙参(Adenophora tetraphylla)党参属(Codonopsis):党参(Codonopsis pilosula)羊乳(Codonopsis lanceolata)管花党参(Codonopsis tubulosa)63.菊科(Asteraceae)菊属(Dendranthema):菊花(Chrysanthemum morifolium)野菊(Chrysanthemum indicum)红花属(Carthamus):红花(Carthamus tinctorius)苍术属(Atractylodes):白术(Atractylodes macrocephala)苍术(Atractylodes lancea)泽兰属(Eupatorium):苍耳属(Xanthium):苍耳(Xanthium sibiricum)蓟属(Cirsium)蒿属(Artemisia)川木香属(Dolomiaea)牛蒡属(Arctium)千里光属(Senecio)旋覆花属(Inula)紫菀属(Aster)款冬属(Tussilago)鬼针草属(Bidens)豨莶属(Siegesbeckia)鳢肠属(Eclipta)蓍属(Achillea)蒲公英属(Taraxacum)莴苣属(Lactuca)二.单子叶植物纲64.泽泻科(Alismataceae)泽泻属(Alisma):泽泻(Alisma plantago-aquatica)慈姑属(Sagittaria):慈姑(Sagittaria trifolia var. sinensis)65.禾本科(Gramineae)刚竹属(Phyllostachys):淡竹(Phyllostachys glauca)白茅属(Imperata):白茅(Imperata cylindrica)淡竹叶属(Lophatherum):淡竹叶(Lophatherum gracile)薏苡属(Coix):薏苡(Coix lacryma-jobi)芦苇属(Phragmites):芦苇(Phragmites australis)狗尾草属(Setaria):狗尾草(Setaria viridis)狼尾草属(Pennisetum):狼尾草(Pennisetum alopecuroides)66.莎草科(Cyperaceae)黑三棱属(Sparganium):荆三棱(Scirpus yagara)67.棕榈科(Arecaceae)槟榔属(Areca):槟榔(Areca catechu)棕榈属(Trachycarpus):棕榈(Trachycarpus fortunei)椰子属(Cocos):椰子(Cocos nucifera)68.天南星科(Araceae)天南星属(Arisaema):天南星(Arisaema heterophyllum)半夏属(Pinellia):半夏(Pinellia ternata)虎掌(Pinellia pedatisecta)犁头尖属(Typhonium):独角莲(Typhonium giganteum)菖蒲属(Acorus):石菖蒲(Acorus tatarinowii)69.百部科(Stemonaceae)百部属(Stemona):直立百部(Stemona sessilifolia)70.百合科(Liliaceae)百合属(Lilium):百合(Lilium brownie var. viridulum)卷丹(Lilium tigrinum)山丹(Lilium pumilum)黄精属(Polygonatum):黄精(Polygonatum sibiricum)多花黄精(Polygonatum cyrtonema)玉竹(Polygonatum odoratum)贝母属(Fritillaria):浙贝母(Fritillaria thunbergii)暗紫贝母(Fritillaria unibracteata)卷叶贝母(Fritillaria cirrosa)甘肃贝母(Fritillaria przewalskii)梭砂贝母(Fritillaria delavayi)平贝母(Fritillaria ussuriensis)伊贝母(Fritillaria pallidiflora)山慈姑属(Iphigenia):山慈姑(Iphigenia indica)葱属(Allium):葱(Allium fistulosum)知母属(Anemarrhena):知母(Anemarrhena asphodeloides)玉簪属(Hosta):紫玉簪(Hosta albo-marginata)重楼属(Paris):七叶一枝花(Paris polyphylla),铃兰属(Convallaria):铃兰(Convallaria majalis)万年青属(Rohdea):万年青(Rohdea japonica)天门冬属(Asparagus):天门冬(Asparagus cochinchinensis)吉祥草属(Reineckea/Reineckia):吉祥草(Reineckea carnea)山麦冬属(Liriope):山麦冬(Liriope spicata)沿阶草属(Ophiopogon):沿阶草(Ophiopogon bodinieri)萱草属(Hemerocallis):71.石蒜科(Amaryllidaceae)石蒜属(Lycoris):石蒜(Lycoris radiata)仙茅属(Curculigo):仙茅(Curculigo orchioides)72.薯蓣科(Dioscoreaceae)薯蓣属(Dioscorea):薯蓣(Dioscorea polystachya)穿龙薯蓣(Dioscorea nipponica)黄独(Dioscorea bulbifera)粉背薯蓣(Dioscorea collettii var. hypoglauca)绵萆薢(Dioscorea spongiosa)73.鸢尾科(Iridaceae)射干属(Belamcanda):射干(Belamcanda chinensis)鸢尾属(Iris):鸢尾(Iris tectorum)74.姜科(Zingiberaceae)姜属(Zingiber):姜(Zingiber officinale)姜黄属(Curcuma):姜黄(Curcuma longa)郁金(Curcuma aromatica)莪术(Curcuma phaeocaulis)广西莪术(Curcuma kwangsiensis)山姜属(Alpinia):益智(Alpinia oxyphylla)高良姜(Alpinia officinarum),豆蔻属(Amomum):砂仁(Amomum villosum)白豆蔻(Amomum testaceum)草果(Amomum tsaoko)姜属(Zingiber)75.兰科(Orchidaceae)天麻属(Gastrodia):天麻(Gastrodia elata)石斛属(Dendrobium):石斛(Dendrobium nobile)白及属(Bletilla):白及(Bletilla striata)手参属(Gymnadenia):手参(Gymnadenia conopsea)石仙桃属(Pholidota):石仙桃(Pholidota chinensis)斑叶兰属(Goodyera):斑叶兰(Goodyera schlechtendaliana)。
大学药用植物学考试(试卷编号1241)
大学药用植物学考试(试卷编号1241)1.[单选题]被子植物芽有多种类型,根据芽有无保护结构可分为( )。
A)顶芽、腋芽和不定芽B)枝芽、花芽和混合芽C)活动芽和休眠芽D)鳞芽和裸芽答案:D解析:2.[单选题]以下哪几个科的植物体内有碳酸钙晶体( )A)爵床科B)毛茛科C)桑科D)荨麻科答案:A解析:3.[单选题]在一定条件下,生活的薄壁细胞经过( )可恢复分裂能力。
A)再分化B)脱分化C)细胞分化D)组织分化答案:B解析:4.[单选题]双子叶植物根初生韧皮部的发育方式是( )。
A)外起源B)内起源C)外始式D)内始式答案:C解析:5.[单选题]脂肪的鉴别方法为A)加稀碘液成暗黄色B)加稀碘液变黑色C)加25%萘酚溶液显紫色而溶解D)遇碱发生皂化反应6.[单选题]下列属于菌类植物的一组是()A)茯苓、地钱B)茯苓、海带C)猪苓、灵芝D)灵芝、大黄答案:C解析:7.[单选题]下列药用植物为桔梗科的是A)半枝莲B)半边莲C)金线莲D)穿心莲答案:B解析:8.[单选题]桃、李的成熟花粉粒为( )。
A)花粉母细胞B)单核花粉粒C)二核花粉粒D)三核花粉粒答案:C解析:9.[单选题]农业生产中,下列不会引起植物花粉败育的是( )。
A)合理施肥B)环境污染C)干旱缺水D)滥用农药答案:A解析:10.[单选题]植物细胞特有的细胞器为A)线粒体B)高尔基体C)核糖体D)质体答案:D解析:D)柳树答案:A解析:12.[单选题]地钱植物体为( )A)雌雄异株B)雄同株C)雌雄同序D)茎叶体答案:A解析:13.[单选题]被子植物生活史中,孢子体阶段始于( )。
A)大、小孢子B)雌、雄配子C)成熟花粉、成熟胚囊D)受精卵答案:D解析:14.[单选题]下列不属于生药的是A)麝香B)板蓝根冲剂C)金银花D)朱砂答案:B解析:15.[单选题]一种植物完整的学名不包括( )。
A)属名B)种加词C)命名人D)科名答案:D解析:16.[单选题]测量植物细胞大小常用的单位是( )解析:17.[单选题]每一种植物的淀粉粒的形状、结构是( )A)不变的B)随细胞生长而变化C)不固定的D)变化的答案:A解析:18.[单选题]小麦传粉借助的外界因素主要是( )。
甘草中黄酮类化合物的分离提取及抗氧化活性评价研究
长春师范学院硕士学位论文甘草中黄酮类化合物的分离提取及抗氧化活性评价研究姓名:王铎申请学位级别:硕士专业:分析化学指导教师:刘春明2011-06-01摘要甘草为豆科植物甘草属(Glycyrrhiza uralensis Fisch)胀果甘草Glycyrrhiza inflata Bat或光果甘草Glycyrrhiza glabra L的干燥根及根茎,有调和诸药、解毒、补虚、止咳润肺等多种功能。
本文采用多种提取方法对甘草中黄酮类化合物进行了对比提取,并优化提取方法,应用高速逆流色谱技术分离纯化甘草中黄酮单体,并采用体外活性实验评价了甘草总黄酮的抗氧化活性,对甘草黄酮的研究和开发提供了一定的实验依据和理论基础。
1.分别采用超声、回流、温浸、快速溶剂萃取法四种提取方法对甘草中黄酮类化合物进行了对比研究,并对快速溶剂萃取法和回流提取法进行了提取条件的选择和优化,以确定其昀佳提取条件。
结果表明,快速溶剂萃取法对甘草中总黄酮的提取效率要优于其它提取方法,快速溶剂萃取法的昀佳提取条件为:提取时间为7 min,提取温度为120 ℃,提取次数为1次,乙醇浓度为70 %;回流提取法的昀佳提取条件为:乙醇浓度80 %,提取时间1.5小时,提取次数为3次。
2.采用高速逆流色谱技术对甘草中黄酮类化合物进行分离提取研究,分别在276 nm和360 nm两个紫外检测波长下分离甘草中黄酮类化合物。
在276 nm紫外检测波长下,溶剂系统为乙酸乙酯:乙醇:水(1:0.1:1,V/V/V),可以从甘草粗提物中分离得到两种化合物,分别为甘草素-4’-芹糖苷和甘草苷,纯度分别为95 %和97 %;在360 nm紫外检测波长下,溶剂系统为乙酸乙酯:甲醇:水(1:0.1:1,V/V/V),可以从甘草粗提物中分离得到两种化合物,分别为异甘草素葡萄糖芹菜苷和异甘草苷,纯度分别为92 %和91 %。
3.采用三种体外抗氧化活性方法对甘草提取液进行研究,分别考察了甘草四种提-取方法的提取液在不同浓度下对DPPH?、O ?、和H O 的清除能力。
白术对复发性流产小鼠母胎界面辅助性T细胞及调节性T细胞的影响
环球中医药2023年10月第16卷第10期 Global Traditional Chinese Medicine,October 2023,Vol.16,No.101975 ㊃基础研究㊃基金项目:陕西省咸阳市科学技术局项目(2018K02⁃96)作者单位:200011 上海交通大学医学院附属第九人民医院麻醉科(余甜);陕西中医药大学第二附属医院生殖内分泌科(杨小颀);陕西中医药大学基础医学院(马晓军㊁胥冰)作者简介:余甜(1995-),硕士㊂研究方向:不孕不育的病因病机及中西医结合辅助生殖的研究㊂E⁃mail:2093138880@通信作者:杨小颀(1972-),硕士,硕士生导师㊂研究方向:不孕不育的病因病机及中西医结合辅助生殖的研究㊂E⁃mail:v515168@白术对复发性流产小鼠母胎界面辅助性T 细胞及调节性T 细胞的影响余甜 杨小颀 马晓军 胥冰【摘要】 目的 探讨白术对复发性流产模型小鼠子宫组织中辅助性T 细胞(T helper cell 17,Th17)及调节性T 细胞(regulatorycells,Treg)的影响㊂方法 采用CBA /J(雌鼠)与BALB /C(雄鼠)合笼建立正常妊娠模型,与DBA /2(雄鼠)合笼建立复发性流产模型㊂将CBA /J 雌鼠按体重随机分为正常妊娠组㊁流产模型组以及白术低㊁中㊁高剂量组,每组8只㊂给药14天后计算其流产率及胚胎吸收率;取子宫蜕膜组织分别进行HE 染色和免疫荧光定量;ELISA 法检测子宫组织匀浆白细胞介素17A(interleukin⁃17A,IL⁃17A)和转化生长因子⁃β1(transforming growth factor⁃β1,TGF⁃β1)的含量㊂结果 复发性流产组小鼠HE 染色见子宫内膜蜕膜化程度低,胚胎吸收率较其余各组明显升高(P <0.05);白术各剂量组子宫蜕膜形态与正常妊娠组相似,ELISA 结果及免疫荧光定量显示白术各剂量组Th17表达较流产模型组均明显下降(P <0.05),而Trge 的表达明显上升(P <0.05)㊂结论 白术通过上调Treg 细胞及其分泌的TGF⁃β1表达,降低Th17细胞及其分泌的细胞因子IL⁃17A 含量,将子宫免疫微环境调节至有利于胚胎生长发育的免疫耐受状态,能在一定程度上抑制复发性流产行为发生㊂【关键词】 白术; 复发性流产; 辅助性T 细胞17; 调节性T 细胞; 免疫耐受【中图分类号】 R285.5 【文献标识码】 A doi:10.3969/j.issn.1674⁃1749.2023.10.007Effects of atractylodes on Th17and Treg at the maternal⁃fetal interface in recurrent spontaneous abortion miceYU Tian ,YANG Xiaoqi ,MA Xiaojun ,XU BingDepartment of Anesthesiology ,Shanghai Ninth people ’s Hospital ,School of Medicine Shanghai Jiaotong University ,Shanghai 200011,ChinaCorresponding author :YANG Xiaoqi ,E⁃mail :v515168@【Abstract 】 Objective To investigate the effects of Atractylodes atractylodes on Th17cells andTreg cells in the uterine tissue of recurrent spontaneous abortion (RSA)mice.Methods The femaleCBA /J and male BALB /C mice were used to establish the normal pregnancy model㊂The female CBA /Jand male DBA /2mice were used to establish the RSA models.CBA /J mice were randomly divided intonormal pregnancy group,RSA model group,the low,medium and high dose groups,with 8rats in each group.The abortion rate and embryo absorption rate were calculated 14days after administration.The decidual tissues were collected for HE staining and immunofluorescence quantification.The levels ofinterleukin⁃17A (IL⁃17A)and transforming growth factor⁃β1(TGF⁃β1)cytokines in uterine tissues weredetected by ELISA.Results In the normal pregnancy model group,the degree of decidualization of1976 环球中医药2023年10月第16卷第10期 Global Traditional Chinese Medicine,October2023,Vol.16,No.10 endometrium was low,and the embryo absorption rate was significantly higher than that in other groups(P<0.05).The morphology of decidua in the low,medium and high dose groups of Atractylodes wassimilar to that in the normal pregnancy model.ELISA results and immunofluorescence quantificationshowed that the expression of T helper cell17(Th17)in groups of Atractylodes was significantly lower thanthat in the RSA models(P<0.05),while regulatorycells(Treg)expression were increased significantly(P<0.05).Conclusion Macrocephala macrocephala can inhibit RSA to a certain extent by up⁃regulatingthe expression of Treg cells and TGF⁃β1secreted by Treg cells,reducing the content of Th17cells andIL⁃17A secreted by Th17cells,and regulating the uterine immune microenvironment to the immunetolerance state conducive to embryo growth and development.【Key words】 atractylodes macrocephala; recurrent spontaneous abortion; T helper cell17; regulatorycells; immune tolerance 复发性流产(recurrent spontaneous abortion, RSA)在我国是指与同一性伴侣连续发生3次及以上的自然流产(流产发生于产妇孕28周前,且胎儿体重小于1000g)[1]㊂RSA病因复杂,且有半数以上的患者病因不明[2]㊂辅助性T细胞17(T helper cell17,Th17)所分泌的白细胞介素17A(in⁃terleukin⁃17A,IL⁃17A)和调节性T细胞(regulatorycells,Treg)分泌的转化生长因子⁃β1 (transforming growth factor⁃β1,TGF⁃β1)共同参与调节母胎界面免疫耐受状态的形成和维护[3],是RAS 免疫致病因素中的重要影响因果㊂中药白术可影响体内免疫调节[4⁃6],中医学认为血气足以养胎,而脾为气血生化之源,中药白术为健脾良药[7]㊂故笔者从中医学角度推测白术可能通过健脾固摄㊁疗养气血安胎,并通过免疫学方法观察RSA模型小鼠母胎界面的免疫状态,深入研究白术对异常妊娠免疫的恢复和维持作用,从而佐证中药白术 健脾安胎”的理论㊂1 材料与方法1.1 实验动物选取40只处于8周龄的清洁级CBA/J雌性小鼠㊁16只DBA/2雄性小鼠和4只BALB/C雄性小鼠作为实验模型动物,三种小鼠均购于南京卡文斯生物技术有限公司(由上海市计划生育科学研究所实验动物经营部培育出售)㊂许可证号码:SCXK (沪)2018⁃0006㊂1.2 主要药品及试剂中药白术提取物购自西安德生元,7∶1水提; IL⁃17A及TGF⁃β1ELISA试剂盒(上海艾莱萨,批号:EIA⁃2223;EIA⁃2747);兔抗小鼠CD4及大鼠抗小鼠FOXP3(Servicebio,批号:GB13064⁃2;GB13445);兔抗小鼠RORγt(Bioss,批号:BS⁃23110R)㊂1.3 动物建模及分组给药雌性CBA/J与雄性DBA/2小鼠按照2∶1比例合笼为复发性流产模型;雌性CBA/J与雄性BALB/C小鼠按照2∶1比例合笼为正常妊娠模型㊂10~12小时后检查,见阴道栓的CBA/J则直接判定为成功怀孕,未见阴道栓者取阴道分泌物进行染色镜检,见精子者与前者同判定为孕0天㊂后将受孕小鼠分为正常妊娠组㊁流产模型组及白术低剂量组㊁白术中剂量组㊁白术高剂量组,每组8只㊂白术灌胃量根据公式计算如下㊂见表1㊂表1 实验动物分组和灌胃剂量(鼠只=8)组别用药及剂量(孕1~14天)正常妊娠组磷酸盐缓冲液复发性流产组磷酸盐缓冲液白术低剂量组低剂量白术灌胃液(0.35g/kg)白术中剂量组中剂量白术灌胃液(0.7g/kg)白术高剂量组高剂量白术灌胃液(1.4g/kg)1.4 取材及指标检测1.4.1 小鼠大体组织的观察及计算 各组雌鼠于孕14天行最后一次灌胃后处死小鼠(颈椎脱臼),观察阴道口是否出血㊂解剖暴露子宫后按照公式计算各组流产情况及胚胎吸收比例㊂右侧子宫组织加入对应量的苯甲基磺酰氟(phenylmethanesulfonyl fluoride, PMSF)(0.75μg/mg,6倍于组织重量)后冷冻匀浆(4℃㊁2000rpm㊁20分钟),用于ELISA法因子含量测定;左侧子宫置入4%组织固定液中固定10小时,然后转入70%酒精中保存,用于石蜡包埋及切片染色㊂1.4.2 HE染色对组织切片进行病理观察 将组环球中医药2023年10月第16卷第10期 Global Traditional Chinese Medicine,October2023,Vol.16,No.101977织放入自动脱水机中梯度脱水,后放于2组二甲苯中各30分钟,再转入65°石蜡2小时,冷却后设定4μm为厚度进行切片㊂染色:经二甲苯20分钟浸泡两组后,转入无水乙醇中浸泡5分钟,重复2组,再转入95%乙醇㊁90%乙醇和85%乙醇中各1分钟;苏木素3分钟,自来水冲洗1分钟,经分化液处理20秒后再次用自来水冲洗1分钟,再经返蓝30秒后自来水冲洗㊂85%乙醇和95%乙醇各5分钟浸泡,再用伊红染液染色5分钟,自来水冲洗杂余染料后无水乙醇浸泡5分钟,重复3组,二甲苯浸泡5分钟,重复2组,最终使用中性树胶封片后显微镜下观察㊂1.4.3 ELISA法测定 按照试剂套盒说明书,检测小鼠子宫组织中IL⁃17A和TGF⁃β1细胞因子表达,操作完成后用酶标仪于450nm波长处读取吸光度(optical density,OD)值,计算标准曲线公式,以获得对应细胞因子的含量㊂1.4.4 免疫荧光双染法检测子宫组织内Th17和Treg细胞 取石蜡切片脱蜡后送入微波炉行抗原修复,后画圈封闭,孵育30分钟㊂两种细胞均先进行CD4染色,经一抗㊁二抗㊁FITC后,加热封闭㊂Th17细胞进行FOXP3核抗体染色,Treg细胞进行RORγt染色㊂后将自发荧光淬灭5分钟,冲洗,行DAPI染色㊂最后用PBS脱色,封片,使用荧光显微镜观察并采集图像,借助于图像处理软件Image J软件将原图片转为灰度图片,定量分析各图像中荧光信号强度,计算平均荧光强度㊂1.5 统计学分析所有数据使用Excel2016和SPSS26.0软件包进行统计,多个样本率的比较使用χ2检验,单变量方差分析组间差异显著性,多重比较各给药组间差异㊂实验数据以均数±标准差(x±s)表示,以P<0.05为差异有统计学意义㊂2 结果2.1 各组孕鼠大体组织观察与流产情况计算结果各组孕鼠解剖后正常妊娠组的子宫胚胎完整连续,大小一致,排列紧密,串如椭圆珍珠,整体色泽红润,透过子宫壁可见深色胎盘紧贴子宫内壁㊂复发性流产组流产征象明显,子宫体积减小,见部分胚胎明显小于正常妊娠组,呈黑色或深血色,子宫整体颜色偏深呈淤血色,阴道口有不同程度出血㊂白术低㊁中㊁高剂量治疗组中被吸收的胚胎情况较复发性流产组有所缓解,胚胎流失较少,胚胎大小及发育情况较为正常㊂经公式计算后得出复发性流产组流产率显著高于其他各组,白术给药各组流产率较复发性流产组有所降低㊂复发性流产组胚胎吸收率明显高于正常组(P<0.05);白术低㊁中剂量组胚胎吸收率均低于复发性流产组(P<0.05),而白术高剂量组与复发性流产组相比较差异不具统计学意义(P>0.05),却较正常妊娠组显著升高(P<0.05)㊂见表2㊂表2 各处理组流产及胚胎吸收结果(鼠只=8)组别流产率(%)胚胎吸收率(%)正常妊娠组25.0(2/8) 6.2(4/65)b复发性流产组62.5(5/8)34.6(18/52)a白术低剂量组37.5(3/8)11.5(7/61)b白术中剂量组37.5(3/8)10.5(6/57)b白术高剂量组50.0(4/8)14.8(8/54)a 注:与正常妊娠组相比较,a P<0.05;与复发性流产组相比较,b P<0.05㊂2.2 各组孕鼠子宫组织HE染色光镜观察结果下图中1A为正常妊娠组子宫,见内膜增厚且连续,形态结构完整正常,蜕膜细胞增多㊁排列规则正常,妊娠蜕膜化明显,子宫腺体及血管清晰可见,未见异常炎性细胞㊂图1B为复发性流产组子宫,见变薄断裂脱落的子宫内膜,蜕膜化程度低,蜕膜细胞数量少,排列杂乱模糊,有明显的坏死,可见血管异常出血㊂图1C1㊁C2㊁C3分别为白术低㊁中㊁高剂量治疗组子宫图片,与正常妊娠蜕膜化表现相似,图1C1可见排列整齐的蜕膜细胞,图1C2见蜕膜化和腺体增生同时存在㊁子宫内膜呈给药后的分泌反应,图1C3可见蜕膜与炎性细胞浸润,表明白术治疗组小鼠较正常小鼠仍存在一定程度的流产征象㊂2.3 各组孕鼠子宫组织中IL⁃17A㊁TGF⁃β1含量的比较发性流产组子宫组织中的IL⁃17A含量明显高于正常妊娠组,差异有统计学意义(P<0.01)㊂白术给药各剂量组与复发性流产组的IL⁃17A含量相比,前者均显著低于后者(P<0.01);其中白术低剂量组与白术高剂量组组间无差异(P>0.05),但均显著高于白术中剂量组(P<0.05)㊂复发性流产组中TGF⁃β1的含量与正常妊娠组相比较低(P<0.01)㊂白术低㊁中剂量组子宫组织中的TGF⁃β1含量高于复发性流产组,差异极明显(P<0.01),白术中剂量1978 环球中医药2023年10月第16卷第10期 Global Traditional Chinese Medicine,October 2023,Vol.16,No.10 注:A 为正常妊娠模型组,B 为复发性流产模型组,C1为白术低剂量组,C2为白术中剂量组,C3为白术高剂量组㊂图1 各组大鼠子宫HE 染色(×100)组的TGF⁃β1含量虽高于白术低剂量组与白术高剂量组,但各剂量组组间差异较小,不具有统计学意义(P >0.05)㊂详见表3㊂表3 各组大鼠子宫组织中IL⁃17A 及TGF⁃β1的含量(x ±s ,pg /mL,鼠只=8)组别IL⁃17A TGF⁃β1正常妊娠组95.12±10.49c 455.94±26.75c 复发性流产组152.57±20.82a 332.81±23.91白术低剂量组121.11±15.7cd 424.58±22.28c 白术中剂量组107.37±10.98c 438.17±28.57c 白术高剂量组125.74±14.87cd389.35±21.93b 注:与正常妊娠组相比较,a P <0.01;与复发性流产组相比较,bP <0.05,c P <0.01;与白术中剂量相比较,d P <0.05㊂2.4 各组孕鼠子宫组织中Th17㊁Treg 细胞荧光定量比较分析荧光强度定量平均值比较中复发性流产组RORγt 的荧光强度高于正常妊娠组(P <0.05)及白术各给药组(P <0.05),白术低剂量组和高剂量组显著高于中剂量组(P <0.05),但两组间无统计学差异(P >0.05);复发性流产组FOXP3荧光强度显著低于正常妊娠组(P <0.05),白术各给药组中高剂量组荧光强度虽高于复发性流产组,但无统计学意义(P >0.05);三种治疗剂量组相比较,白术中剂量组的免疫荧光强度为其中最高,且高剂量组与中剂量组间差异明显(P <0.05㊂详见表4㊂表4 各组中子宫组织中RORγt 和FOXP3免疫荧光平均光密度值(x ±s ,鼠只=8)组别RORγt 荧光强度FOXP3荧光强度正常妊娠组133.620±16.249b 118.054±13.247b 复发性流产组208.293±29.582a 74.608±12.948a 白术低剂量组165.650±22.135abc 89.743±14.488ab 白术中剂量组139.886±18.184b 104.502±14.758b白术高剂量组168.361±13.839abc82.672±18.312ac 注:与正常妊娠组相比较,a P <0.05;与复发性流产组相比较,bP <0.05;与白术中剂量相比较,c P <0.05㊂3 讨论复发性流产的患者通常在孕早㊁中期即会发生胚胎丢失的现象[8],其中包括早期因种植失败发生的生化妊娠㊂尽管现调查显示在妊娠妇女已至少有1%~5%会诊断为该疾病,但由于生化妊娠及人文等因素的存在,患病率可能远不止如此㊂本实验采用国际公认的自然流产小鼠模型CBA /J 雌鼠×DBA /2雄鼠,胚胎吸收率可达36.49%[9⁃10]㊂本实验中RSA 流产模型组流产小鼠所占百分比达62.5%(5/8),胚胎吸收率为34.6%(18/52),均显著高于正常妊娠组,且符合当前文献调查结果范围㊂本实验中白术中等剂量灌胃液根据人的临床常用白术剂量经公式转化而来,在三组中胚胎吸收率最低(10.5%,6/57),且相对流产模型组具有显著改善㊂说明中等剂量白术对复发性流产的治疗具有积极的改善作用,可能于胚胎种植开始抵抗小鼠先天流产倾向㊂中药白术具有健脾功效,自古被称为 安胎妙药”,可从 健脾固摄,补气安胎”的角度治疗 滑胎” 数堕胎”[11]㊂‘中华人民共和国药典“(2020版)指明白术具有胎儿保护作用,尤其在调节平滑肌收缩方面已然得到了实验数据证明[12]㊂中医治疗RSA 依照 预培其损,辨证论治”原则进行㊂多项基于中医传承平台的数据挖掘中显示[13⁃14],无论在中医药古籍记载明方或是现代医者用方中,白术均排在 RSA 用药频次表”前列,可见白术在中医药治疗RSA 中的重要性和实用性㊂经过本次实验证明,白术单药给药后各组与流产模型相比均降低了胚胎吸收率,进一步证明白术可能在复方中起到重要作用,也为白术用于配伍提供了充足的理论依据㊂Th17/Treg 细胞之间的平衡对机体维持自身稳态是至关重要的㊂Th17细胞分泌促炎性因子IL⁃17A,与多种自身免疫性疾病的发生相关[15];而Treg 细胞分泌TGF⁃β1㊁IL⁃10等细胞因子,有抗炎和环球中医药2023年10月第16卷第10期 Global Traditional Chinese Medicine,October2023,Vol.16,No.101979维持免疫稳态的作用,在妊娠过程中增强母体免疫耐受并防止妊娠母体对胎儿的免疫排斥[16]㊂有研究表明Th17细胞可以介导炎症反应,并在功能上对抗Treg细胞[17];以IL⁃17抗体对自然流产小鼠进行治疗,胚胎流失率得到显著改善[18]㊂本实验通过ELISA方法检测子宫局部IL⁃17A和TGF⁃β1的表达可间接反应机体Th17和Treg细胞的水平㊂其中复发性流产组子宫局部IL⁃17A含量较高,其余各组相比都表现为显著增多的现象㊂白术给药后,IL⁃17A 含量有所降低,说明白术可能通过影响Th17细胞分泌IL⁃17A功能或直接影响Th17分化,从而起到对抗流产发生的作用㊂白术中剂量组降低IL⁃17A的效果优于其他两组,表现为更好地促进妊娠效果㊂近年来有研究发现,Treg与其他T细胞亚群相比分化更为复杂,在特定环境下可重新分化回Th 细胞,并留有Treg细胞的免疫抑制功能特征㊂所以在FOXP3+Treg细胞中除起到本身控制免疫排斥的作用外,还可能存在Th1样㊁Th2样,甚至是与之功能相反的Th17样的调节性T细胞[19],提示我们应从更广更深的角度研究不同种Treg对于母胎免疫的影响㊂Treg细胞群对于成功怀孕的重要性已经在人类和动物模型中得到证实[20⁃21],且在RSA患者体内较Th17细胞变化更为显著,提示其对妊娠结局的影响更为重大㊂Treg细胞除了可以抑制炎症,防止母体对胎儿过度免疫外,还被证明在妊娠期间有助于调节母体血管功能,支持正常胎儿和胎盘发育[22]㊂本实验中,正常妊娠组TGF⁃β1表达含量远高于复发性流产组小鼠,白术给药后均比模型组有所上升,趋于正常妊娠组正常含量㊂三组剂量虽有不同,所得TGF⁃β1含量差异却无统计学意义㊂由此说明,白术可调控TGF⁃β1值由流产象趋于正常妊娠状态进行变化,在局部发挥促进免疫的作用㊂但由于TGF⁃β1来源及功能复杂,应进一步结合更特异性的检测方法来判定妊娠免疫时Treg的情况㊂除此之外,本实验结合免疫荧光双染法,通过各细胞特征性表达的核转录因子RORγt㊁FOXP3来确定Th17和Treg细胞在母胎界面局部具体的分布情况㊂其中以RORγt平均光密度代表CD4+RORγt +Th17细胞的相对含量,FOXP3平均光密度代表CD4+FOXP3+Treg细胞的相对含量[23]㊂复发性流产组内RORγt荧光强度显著高于其他各组,FOXP3的荧光强度低于其他各组,尤其与正常妊娠组形成鲜明对比㊂白术各给药组RORγt荧光强度的情况与ELISA法分析IL⁃17A含量的情况一致,且两种方法对Th17的相对检测具有一致性,提示可用两种检测方法同时对RSA患者Th17水平进行检测,从而对疾病起到一定诊断作用;而对Treg而言建议进一步做详尽的分型检查,以确定Treg的分化与分泌情况㊂综上所述,根据本研究的统计结果可知:对复发性流产小鼠模型进行不同浓度的白术干预后,其流产率和胚胎吸收率显著降低,这充分说明白术能够有效改善和预防复发性流产行为发生㊂白术在抑制Th17的同时,又能够刺激Treg的表达水平,使得耐受型免疫反应在母胎界面中占据优势,起到良好的固胎效果㊂参考文献[1] LI D,ZHENG L,ZHAO D,et al.The role of immune cells inrecurrent spontaneousabortion[J].Reprod Sci,2021,28(12):3303⁃3315.[2] Practice Committee of the American Society for ReproductiveMedicine.Evaluation and treatment of recurrent pregnancy loss:acommittee opinion[J].Fertil Steril,2012,98(5):1103⁃1111.[3] QIAN J,ZHANG N,LIN J,et al.Distinct pattern of Th17/Tregcells in pregnant women with a history of unexplained recurrentspontaneous abortion[J].BioScience Trends,2018,12(2):157⁃167.[4] Kwak T K,Jang H S,Lee M G,et al.Effect of orallyadministered Atractylodes macrocephala Koidz water extract onMacrophage and T Cell inflammatory response in mice[J].EvidBased Complement Alternat Med,2018,2018:4041873. [5] XUE W,GAO Y,LI Q,et al.Immunomodulatory activity⁃guided isolation and character⁃rization of a novel polysaccharidefrom Atractylodis macrocephalae Koidz[J].Int J Biol Macromol,2020,161:514⁃524.[6] JI G Q,CHEN R Q,ZHENG J X.Atractylenolide I inhibits li⁃popolysaccharide⁃induced inflammatory responses via mitogen⁃ac⁃tivatedprotein kinase pathways in RAW264.7cells[J].Immuno⁃pharmacol Immunotoxicol,2014,36:420⁃425.[7] 明㊃张景岳.景岳全书[M].北京:人民卫生出版社,1991:1242.[8] YI X,ZHANG J,LIU H,et al.Suppressed Immune⁃RelatedProfile Rescues Abortion⁃Prone Fetuses:A Novel Insight Into theCBA/J×DBA/2J MouseModel[J].Reprod Sci,2019,26(11):1485⁃1492.[9] Clark D A,Chaouat G,Arck P C,et al.Cytokine⁃dependentabortion in CBA x DBA/2mice is mediated by the procoagulantfgl2prothrombinase[correction of prothombinase][J].J1980 环球中医药2023年10月第16卷第10期 Global Traditional Chinese Medicine,October2023,Vol.16,No.10Immunol,1998,160(2):545⁃549.[10] 张意林,刘会会,李晶,等.基于Tim⁃3⁃Gal⁃9通路探讨补肾安胎冲剂对复发性流产小鼠Th1/Th2㊁Th17/Treg细胞平衡的影响[J/OL].中国中医药信息杂志:1⁃6[2022⁃03⁃24]. [11] 韩琴玉,李灵芝. 脾主升清”理论在妇科中的应用[J].江西中医药,2021,52(12):13⁃15.[12] ZHANG Y Q,XU S B,LIN Y C,et al.Antagonistic effects of3sesquiterpene lactones from Atractylodes macrocephala Koidz onrat uterine contraction in vitro[J].Acta Pharmacol Sin,2000,21(1):91⁃96.[13] 徐哲昀,陈晓菲,王颖巨,等.基于数据挖掘中医孕前干预复发性流产用药规律分析[J].浙江中西医结合杂志,2021,31(10):974⁃978.[14] 蔡逸苗.基于数据挖掘罗颂平教授研究复发性流产的证治规律[D].广州:广州中医药大学,2016.[15] LIU Z Z,SUN G Q,HU X H,et al.The transdifferentiation ofregulatory T and Th17cells in autoimmune/inflammatory diseasesand its potential implications in pregnancycomplications[J].AmJ Reprod Immunol,2017,78(2).[16] Robertson S A,Care A S,Moldenhauer L M.Regulatory T cellsin embryo implantation and the immune response to pregnancy[J].J Clin Invest,2018,128(10):4224⁃4235. [17] CHEN Z,LIN F,GAO Y,et al.FOXP3and RORγt:transcriptional regulation of Treg andTh17[J].IntImmunopharmacol,2011,11(5):536⁃542.[18] XU W M,XIAO Z N,WANG X B,et al.IL⁃17Induces FetalLoss in a CBA/J×BALB/c Mouse Model,and an Anti⁃IL⁃17Antibody Prevents Fetal Loss in a CBA/J×DBA/2Mouse Model[J].Am J Reprod Immunol,2016,75(1):51⁃58. [19] Kryczek I,WU K,ZHAO E,et al.IL⁃17+regulatory T cells inthe microenvironments of chronic inflammation andcancer[J].JImmunol,2011,186(7):4388⁃4395.[20] GUO Z,SHI P,HAO C.Effect of GnRHa on Th17/Treg cells inperipheral blood of patients with unexplained repeated implanta⁃tionfailure[J].Arch Gynecol Obstet,2018,298(6):1211⁃1218.[21] FAN L,SHA M,LI W,et al.Intrauterine administration ofperipheral blood mononuclear cells(PBMCs)improves embryoimplantation in mice by regulating local Treg/Th17cellbalance[J].J Reprod Dev,2021,67(6):359⁃368. [22] Care A S,Bourque S L,Morton J S,et al.Reduction inregulatory T cells in early pregnancy causes uterine arterydysfunction in mice[J].Hypertension,2018,72:177⁃187.[23] ZHANG S.The role of transforming growth factorβin T helper17differentiation[J].Immunology,2018,155(1):24⁃35.(收稿日期:2022⁃11⁃12)(本文编辑:李梅)。
HPLC法测定马黄酊中栀子苷的含量
2016年1月山东中医药大学学报第40卷第1期马黄酊是临床上应用多年的医院制剂,由生马钱子、黄连、栀子等中药组成,为临床常规外敷中药酊剂,具有清热祛湿、消肿凉血等功效,用于治疗血管闭塞性脉管炎、闭合性骨折等,疗效确切[1-6]。
目前,已有文献报道了HLPC 法测定马黄酊中小檗碱、士的宁、马钱子碱三种生物碱中的一种或多种成分含量的方法[1-2,7]。
然而,栀子作为马黄酊复方中必不可少的药材,未曾见对其进行含量测定的报道。
本文采用HPLC 法测定马黄酊中栀子苷含量,为马黄酊的质量评价提供科学依据。
1仪器与试药1.1仪器Agilent 1200高效液相色谱仪,配置真空在线脱气、自动进样器、光电二极管阵列检测器(DAD )、四元泵,Agilent 色谱工作站(Agilent ,美国);XS105型十万分之一电子分析天平(梅特勒公司,瑞士);KQ5200B 型超声波清洗器(昆山市超声仪器有限公司)。
1.2试药马黄酊(批号:140408,140523,140613)由山东中医药大学附属医院提供,黄连、马钱子、栀子等药材经山东省医学科学院药物研究所唐文照研究员鉴定;栀子苷标准品购自北京坛墨质检科技有限公司(批号:20130914);甲醇、乙腈为色谱纯(Fisher 公司),水为娃哈哈纯净水,其余试剂均为国产分析纯。
2方法与结果2.1色谱条件色谱柱为Aglient zorbax SB -C 18柱(4.6mm ×250mm ,5μm );流动相为乙腈(A )-水(B )[收稿日期]2015-04-28[基金项目]山东省中医药科技发展计划项目(编号:2013-058);山东省重点研发计划(编号:2015GSF119033)[作者简介]辛义周(1973-),山东济南人,男,副主任药师,硕士研究生导师,主要从事天然药物活性成分与质量控制研究。
[通信作者]唐文照,副研究员,硕士研究生导师,Tel :0531-********,E -mail :**************。
不同溶剂对斜纹夜蛾幼虫的影响
农业灾害研究 2023,13(6)不同溶剂对斜纹夜蛾幼虫的影响师瑞雪,杨加苹,沈 静,李艳萍,王占娣*玉溪师范学院化学生物与环境学院,云南玉溪 653100摘要 为明确不同的有机溶剂对斜纹夜蛾幼虫的致死活性,筛选出对斜纹夜蛾幼虫毒性较小的有机溶剂。
采用饲料混毒法对比石油醚、二氯甲烷、乙醇、甲醇、乙酸乙酯这5种有机溶剂对斜纹夜蛾幼虫存活率的影响。
结果显示,5种有机溶剂都能显著影响斜纹夜蛾幼虫的存活率,且随着时间的增加,斜纹夜蛾幼虫的死亡率也会增加,这5种有机溶剂对幼虫的致死率从大到小依次:乙酸乙酯>乙醇>甲醇>二氯甲烷>石油醚。
结果表明,上述5种有机溶剂对斜纹夜蛾幼虫具有一定的毒害作用,在5种测试的有机溶剂中,对斜纹夜蛾幼虫毒性最小的是石油醚,可以选择其进行斜纹夜蛾幼虫的相关胃毒实验,对幼虫毒性最大的是乙酸乙酯,不建议用于斜纹夜蛾幼虫的相关胃毒实验。
关键词 斜纹夜蛾;有机溶剂;致死性;胃毒中图分类号:S433.4 文献标识码:B 文章编号:2095–3305(2023)06–0007-03斜纹夜蛾Prodenia litura (Abricius),又名莲纹夜蛾,属鳞翅目,夜蛾科,是一种世界性分布的重要农业害虫,国外主要分布于东南亚及南亚,国内以长江流域和黄河流域发生较严重[1]。
据报道,斜纹夜蛾可以危害的寄主植物达109科389种(包括变种),涉及蕨类植物、裸子植物、双子叶植物和单子叶植物[2]。
由于斜纹夜蛾具有发生世代数多、发生量大和易暴发成灾等特点,且近年来,由于斜纹夜蛾的肆虐导致农作物减产,因此对斜纹夜蛾的防治成为世界关注的一个话题。
目前,最常用的防治手段是利用化学农药进行防治,但大量使用化学农药,已经使斜纹夜蛾产生了抗药性,并对农田生态系统产生了环境污染。
因此,开发高效低毒的斜纹夜蛾绿色防治产品备受人们关注,从植物中筛选防治斜纹夜蛾的植物源活性成分更是引人注目。
骆颖等[3]研究得出,苦瓜叶乙酸乙酯提取物对斜纹夜蛾幼虫的生长发育有明显的抑制作用;钟国华等[4]研究得出,黄杜鹃花甲醇浸提物及其萃取物对斜纹夜蛾4龄幼虫有拒食作用;蒋春先等[5]研究得出,吴茱萸乙醇提取物对斜纹夜蛾幼虫具有较强的拒食活性和生长发育抑制作用;邹向菲等[6]研究得出,温州蜜橘橘皮乙醇提取物对斜纹夜蛾幼虫在拒食、生长抑制和胃毒作用上具有控害活性;刘奎等[7]研究得出,大叶桃花心木的花、叶的乙醇抽提物对斜纹夜蛾均具有良好的拒食活性;庄礼珂等[8]研究得出,海杧果叶乙酸乙酯萃取相对斜纹夜蛾有较强的触杀作用,并有一定的拒食作用。
中国药科大学中药学专业英语课件-甘草
(3)形成层环不甚明显;
(4)木质部导管直径大,单个或2~3个成 束; (5)韧皮部和木质部均有晶纤维; (6)薄壁细胞含淀粉粒。
Microscopical characters
Powder:
Brownish-yellow. Fibres in bundles, 8~14μm in diameter,
Plant Morphology
Glycyrrhiza uralensis: 甘草
A perennial herb , 30~100 cm high, covered with white pubescences, glandular scars or glandular hairs throughout. Rhizome cylindrical ; main root relatively long, stout, outer bark reddish-brown to dark brown, taste sweet.
次酸)
Flavonoids:
liquritin (甘草苷) , liquiritigenin( 甘草苷元) (the aglycone of liquiritin) ( 甘 草 苷 的 苷 元 ) , isoliquiritin ( 异 甘 草 苷 ) , isoliquiritigenin(异甘草苷元)。
branchlet 羽状的 托叶
总状花序
花萼
花冠
Flowers in axillary racemes, dense; calyx campanulate, 5-lobed; corolla papilion-aceous (butterfly-like), purplish-red or bluish-purple; stamens 10, diadelphous; ovary sessile, tapering upwards to become a style.
生物酶法催化瓦伦西亚烯生成圆柚酮
生物酶法催化瓦伦西亚烯生成圆柚酮孟飞;俞春娜;李海峰;谢恬【摘要】在体外,利用野生型CYP450BM-3对瓦伦西亚烯进行催化,酶-底物复合物催化NADPH氧化的速率为31±1.0 nmol( nmol P450) -1min-1,但催化产物中没有检测到圆柚酮的生成.突变体R47L/Y51F/F87A与底物复合物催化NADPH氧化的速率高于野生型,为79±6.5 nmol( nmol P450) -1min-1,并在催化产物中检测到圆柚酮的生成,但其产物选择性较差,圆柚酮的含量仅占总产物的6.8%.与此同时,检测了另一个突变体A74G/F87V/L188Q对瓦伦西亚烯的催化效果,发现其与底物复合物对NADPH的氧化速率与突变体R47L/Y51F/F87A相当,但产物中圆柚酮的比率更高,达8.0%.【期刊名称】《生物技术通报》【年(卷),期】2012(000)008【总页数】5页(P194-198)【关键词】圆柚酮;瓦伦西亚烯;细胞色素P450BM-3;突变体;生物催化【作者】孟飞;俞春娜;李海峰;谢恬【作者单位】杭州师范大学生物医药与健康研究中心,杭州311121;杭州师范大学生命与环境科学学院,杭州310036;杭州师范大学生物医药与健康研究中心,杭州311121;杭州师范大学生物医药与健康研究中心,杭州311121;杭州师范大学生物医药与健康研究中心,杭州311121【正文语种】中文倍半萜烯类化合物(sesquiterpene)在自然界分布广泛,是植物精油的重要组分,具有良好的生物活性。
圆柚酮[(+)-nootkatone],又名诺卡酮,是倍半萜烯类化合物瓦伦西亚烯[(+)-valencene]的酮类衍生物,20世纪60年代首次被发现于阿拉斯加黄柏油和柚皮油的挥发性组分中,具有柚子、柑橘、橙子的芳香气味,并带有甜的果皮、木香香韵,作为香精香料可广泛应用于食品、化妆品、日用品以及烟草等行业,具有极高的市场价值[1]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Licorice (Glycyrrhiza spp.) is one of the most useful Chinese herbal medicines and an important resource plant, widely used in medicine, food, tobacco, chemical industries and for ecological protection in arid and semiarid areas of China (Zhou, 2006; Zhang and Chen, 2007). Licorice medicine consists of the dried roots and rhizomes of plant species in the Glycyrrhiza genus of the Legume family. Licorice contains many biologically active chemicals such as glycyrrhizin, flavonoids, coumarins, polysaccharides, alkaloids, amino acids and so on, which have pharmacological effects against pain, cough, inflammation, allergy, toxicity, HIV and so on (Hu and Shen, 1995; Shen et al., 2003; Ji et al., 2004). Although three species, Glycyrrhiza uralensis, G. inflata and G. glabra, are used medicinally in China, Ural licorice (G. uralensis) is the most important (Zhao et al., 2006). The annual production of herbal medicine from this species in China is over 60,000 tons. Glycyrrhiza uralensis is widely distributed from east to west in northern China. However, its habitats are severely disturbed and many of them are degraded or undergoing desertification (Zhang, 2005). The wild resources of this medicinal plant have diminished rapidly since the 1970s and it is now a nationally-protected plant. The medicinal market for licorice now mainly depends on its extensive cultivation (Zhou, 2003; 2006). The conser-
Jin-Tun ZHANG1,*, Bin XU1, and Min LI2
1College of Life Sciences, Beijing Normal University, Xinwaidajie 19, Beijing 100875, P.R. China 2Institute of Loess Plateau, Shanxi University, Taiyuan 030006, P.R. China
(Received July 20, 2010; Accepted April 13, 2011)
ABSTRACT. Glycyrrhiza uralensis is an endangered and nationally-protected medicinal plant species in China with great market demand. It is mainly distributed in arid and semi-arid regions and its habitats have rapidly degraded over the last 40 years. Conservation of this species and its communities has become urgent. We aimed to reveal the relationships between G. uralensis and environmental variables along an east to west precipitation gradient in northern China. Floristic and environmental data from 100 5 m × 5 m quadrats were analyzed using TWINSPAN, DCA, CCA and species diversity indices. TWINSPAN recognized twelve vegetation communities, which were the communities most dominated by G. uralensis in China. DCA and CCA results showed that the vegetation patterns were significantly correlated with both soil and climatic variables. Soil N, P, K, organic matter, annual mean temperature, relative humidity, annual mean precipitation, annual mean highest temperature and annual mean lowest temperature were significant to these communities, and precipitation was the most important factor explaining the spatial patterns of vegetation. Species richness, diversity and evenness varied obviously among communities and were significantly correlated with environmental gradients. Further measures for conservation of G. uralensis and its communities are discu Studies, Vol. 52, 2011
vation and restoration of this species and its habitats are imperative and urgent (Pan and Zhang, 2002; Zhang et al., 2006). A general understanding of the ecology of this species and its community is crucial for its conservation and restoration. This study is about the ecological characteristics of G. uralensis and its communities. Although recent research has been conducted on the taxonomy, biochemistry, pharmacology and genetics of this species (Hu and Shen, 1995; Zhang et al., 2001), only limited research has been conducted concerning its ecology.
Keywords: Biodiversity; Ecological restoration; Licorice; Medicinal resources; Semi-arid and arid region.
INTRODUCTION
Medicinal plants are valuable natural resources that are essential to urban and rural populations in many countries and regions, such as China, India, Japan, Korea, Taiwan and so on (Hussain and Hore, 2007; Nautiyal et al., 2009). Millions of people rely on, or choose to use, medicinal plants for all or part of their healthcare needs, making their usage the most likely common use of biodiversity by humans (WHO, 2002; Larsen and Olsen, 2007). The annual world market for botanical medicines is estimated at over US$ 35 billion, with an annual growth rate of 15% (Kate and Laird, 1999). Most medicinal plant species are harvested in the wild and the extent of their use has led to species endangerment and extinction. Thus, the conservation of these species has become urgent (Schippmann et al., 2002; Larsen and Olsen, 2007). Medicinal plant conservation is an important aspect of biodiversity conservation and is a high priority in the environmental policies of many countries and regions (Kate and Laird, 1999; Ji et al., 2004).