随机变量的数字特征
随机变量的数字特征大数定律和中心极限定理
02
大数定律
切比雪夫大数定律
定义
设${X_n}$是独立同分布的随机变量序列,若存在常 数$M$,使得$P( |X_n| > M ) leq frac{1}{n^2}$, 则对任意的$varepsilon > 0$,有$P( left| frac{X_1 + X_2 + cdots + X_n}{n} - E(X_1) right| < varepsilon ) to 1$,当$n to infty$。
相应的概率。
性质
03
数学期望具有可加性和线性性质,即E(aX+b)=a*E(X)+b。
方差
定义
方差是随机变量与其数学期望的差的平方的平均值,表示随机变 量取值与其数学期望的偏离程度。
计算方法
D(X) = Σ[(x-E(X))^2*p(x)]。
性质
方差具有可加性和线性性质,即D(aX+b)=a^2*D(X)。
矩与偏态
定义
矩是描述随机变量取值分布形状的数字特征,包括原点矩和中心矩。偏态是描述随机变量取值分布偏斜程度的数字特 征。
计算方法
原点矩包括原点均方、原点方差等;中心矩包括中心均方、中心方差等。偏态的计算公式为S=Σ[(x-μ)^n*p(x)]/n!,其中 μ为数学期望,n为正整数。
性质
偏态具有可加性和线性性质,即S(aX+b)=a^n*S(X)。
李雅普诺夫定理指出,对于任何正整数 n,如果一个随机变量的所有n阶矩都存 在,则其分布函数可以由其n阶原点矩 确定。
该定理是关于随机变量的数字特征的重要定 理,它表明随机变量的数字特征可以完全描 述其分布。
它对于研究随机变量的性质和分布 具有重要意义。
1032随机变量的数字特征
k p(x)( X )k E[( X )k ] 一阶中心矩=0
x
二阶中心矩=方差
The End
2023/12/27
11
2.方差 & 标准差
▪ 反映随机变量取值偏离均值的分散程度 ▪ 方差 Variance D(X)/ Var(X)
2
D(X ) E[(X E(X )) ]
▪ 标准差 standard deviation
(X ) D(X )
方差的运算与性质
D(X ) E[(X )2 ] E(X 2) [E(X )]2
E[(X E( X )]• E[(Y E(Y )]
Covariance
E( XY) E( X )E(Y )
▪ 相关系数
XY
Cov( X ,Y ) D( X ) D(Y )
若随机变量X与Y相互独立
▪ X与Y一定不相关
Cov(X ,Y ) Cov((Y ) D(X Y) D(X ) D(Y)
E( X ) xk pk k 1
E( X ) xf (x)dx
数学期望的性质
X/Y为相互独立的随机变量,a/b/c为常数
▪ E(c) = c ▪ E(cX) = cE(X) ▪ E(aX+b) = aE(X)+b
▪ E(X+Y) = E(X)+ E(Y) ▪ E(XY) = E(X)*E(Y)
D(X ) p(x)(x )2 (x )2 f (x)dx x
离散型变量
连续型变量
D(X+c) = D(X) D(cX) = c2D(X)
D(cX+Y) = c2D(X) + D(Y)
3.协方差 & 相关系数
随机变量的数字特征
例 若随机变量X的概率密度为
f(x)(1 1x2), x
则称X服从柯西(Cauchy)分布。
但
|x|
f(x)d x (1| x|x2)dx 发散
所以柯西分布的数学期望不存在。
《医药数理统计方法》
§3.1
三、数学期望的性质
1、E(C)=C 2、E(CX)=C×E(X) 3、E(X±Y)=E(X)±E(Y)
n
n
3)设X1,X2,…,Xn相互独立,则 V(Xi)V(Xi)
i1
i1
V (1 n i n 1X i) n 1 2i n 1 V (X i) 1 n [1 n i n 1 V (X i)]
解:红细胞的变异系数为 C V(X1)4 0..1 27 98 16.965%
血红蛋白的变异系数为
10.2 C V(X2)117.68.673%
所以,血红蛋白的变异较大。
《医药数理统计方法》
§3.2
二、方差的性质
1、V(C)=0 证明:V(C)=E{[CE(C)]2} =E[(CC)2]=0
2、V(CX)=C2V(X) 证明:V(CX)=E{[CXE(CX)]2}
而 E (X 2 ) E (X X ) E (X )E (X ) 1 1 1
339
计算是错误的!!
《医药数理统计方法》
§3.2
§3.2 方差、协方差和相关系数
一、方差 二、方差的性质 三、其他数字特征
《医药数理统计方法》
§3.2
一、方差
例3.15 为了比较甲、乙两个专业射击运动 员的技术水平,令每人各射击5次,分别以 X1,X2表示他们射击的环数,结果如下:
即
E(X) xf(x)dx
随机变量的数字特征
x 1 1 2 b ab dx x a b-a b-a 2 2
例3 设随机变量X~E(λ),求EX.
e- x , x 0 解 X的概率密度函数 f ( x ) 0 ,x 0
- x 0 0
故,
EX xf ( x)dx xe dx ( x)d(e x )
例7 设(X,Y)的联合概率分布为
X Y 1 3 0 0 1/8 1 3/8 0 2 3/8 0 X P 3 0 1/8 1 3 Y 0 1 2 3
求EX,EY,E(XY).
解 X,Y的边缘分布为 所以 EX=3/2, EY=3/2,
3/4 1/4
P 1/8 3/8 3/8 1/8
据定理2 有
3 3 E ( XY ) (1 0) 0 (1 1) (1 2) (1 3) 0 8 8 1 1 9 (3 0) (3 1) 0 (3 2) 0 (3 3) 8 8 4
则
E[ g( X , Y )] g( xi , y j ) pij
i j
(2) 若(X,Y)为连续型随机向量,(X,Y)~f(x,y),则
E[ g ( X,Y )]
g ( x, y ) f ( x, y )dxdy
例5 设随机变量X服从[0,π]的均匀分布,求 E (sin X ), E ( X 2 ), E ( X EX )2 解 由定理1,有
八、方差的性质
数字特征的优越性(了解):
1. 较集中地反映了随机变量变化的一些平均特征. 2. 很多重要的随机变量(如二项分布、泊松分布、均匀 分布、指数分布、正态分布等)的分布函数都能用一、两 个数字特征完全确定.
随机变量的数字特征
1 2 3 求E(Z)
-1 0 0.1 1
0.4 0.2 0.4
解:方法一:
(1) E(X)=1*0.4+2*0.2+3*0.4=2 E(Y)=-1*0.3+0*0.4+1*0.3=0
方法二:
(1)E(X)=0.2*1+0.1*2+0*0.3+0.1*1+0*2+0.3*3+0.1*1+0.1*2+0.1*3=2
E( X ) xk pk . k 1
E( X ) 0 0.2 0.2 0.2 0.2 0.2 1 (元)
例题:有 5 个相互独立工作的电子装置,它们的寿命Xk (k 1, 2,3,4,5) 服从同一指数分布,其概率密度为
f
(
x
)
1
e
x
/
,
x 0, 0.
0,
x 0,
1) 若将5个装置串联成整机,求整机寿命 N 的数学期望;
若 g(xk )pk 绝对收敛,则有
k 1
E(Y ) E[g( X )] g(xk )pk .
k 1
2). X 是连续型随机变量,概率密度为 f (x),
若 g(x) f (x)dx 绝对收敛,则有
E(Y ) E[g( X )] g(x) f (x)dx
(证明超过范围,略)
说明: 在已知Y是X的连续函数前提下,当我们求
E(Y)时不必知道Y的分布, 只需知道X的分布就可
以了.
Y x42
0
4
例: 设随机变量 X 的分布律为 X -2
0
2
求:E( X ), E( X 2 ), E(3X 2 5). P 0.4 0.3 0.3 解:(1)E(X) 2 0.4 0 0.3 2 0.3 0.2,
随机变量的数字特征
使用这种方法必须先求出随机变量函数g(X ) 的分布,一般是比较复杂的 . 那么是否可以不先求g(X )的分布而只根据 X 的分布求得 E[g(X )] 呢? 下面的基本公式指出,答案是肯定的.
20
类似引入上述EX 的推理,可得如下的基本公式: 设X 是一个随机变量,Y =g(X ),则
∞ 散 ∑g(xk ) pk , X离 型 EY = E[g( X )] = k=1 +∞ g(x) p(x)dx, X连 型 续 ∫−∞ 当X 为离散型时, P( X = xk ) = pk ;
−λ x
d(−λx) = −∫0 x de
+∞
−λ x
=
1
λ
18
∵ λ = 0.002
∴ EX = 500
小时。
三、随机变量函数的数学期望 问题的提出: 1. 问题的提出: 设已知随机变量X 的分布, 我们需要计算的不是X 的期望,而是X 的某个函数g(X)的期望. 那么应该如何计算呢? 一种方法是,因为g(X )也是随机变量, 故应有概率 分布,它的分布可以由已知的X 的分布求出来. 就可以按照期望的 一旦我们知道了g(X )的分布, 定义把 E[g(X )] 计算出来.
E( X2 ) =8×0.1+ 9×0.5+10×0.4 = 9.3
因此乙的平均环数比甲的多, 因此乙的平均环数比甲的多, 即乙射手比甲射手的成绩好。 即乙射手比甲射手的成绩好。
15
二、连续型随机变量的数学期望 定义2 定义2 设连续型随机变量X 的概率密度为 p(x) . 如果 则称
∫
x p(x)dx 绝对收敛, 绝对收敛, −∞
n n
推广: E(∑Xi ) = ∑EXi
概率论数字特征
在概率论中,数字特征是用来描述随机变量分布特征的数字指标。
以下是概率论中常见的数字特征:
1. 期望:
-期望是随机变量概率分布的均值,反映随机变量的平均取值水平,通常用E(X) 表示。
-期望可以通过对随机变量的每种可能取值乘以其对应的概率,再求和得到。
2. 方差:
-方差是随机变量与其期望的离差平方的平均值,反映随机变量取值的分散程度,通常用Var(X) 或σ^2 表示。
-方差可以通过将随机变量每种可能取值减去其期望,然后平方,再乘以对应的概率,再求和得到。
3. 标准差:
-标准差是方差的算术平方根,通常用σ表示,具有与原始数据相同的单位。
-标准差可以用来衡量随机变量取值的波动程度。
4. 偏态:
-偏态是随机变量分布的不对称程度,若右侧尾部更长,则为正
偏态;若左侧尾部更长,则为负偏态。
-偏态可以通过随机变量的三阶中心矩计算得到。
5. 峰态:
-峰态是随机变量分布的峰度,反映随机变量分布曲线的陡峭程度,通常用K 表示。
-峰态可以通过随机变量的四阶中心矩计算得到。
6. 分位数:
-分位数是将随机变量分为若干部分的数字点,例如中位数就是将随机变量分为两部分的点,25%分位数就是将随机变量分为四部分的点等等。
-分位数可以用来表示随机变量分布的位置和离散程度。
在实际应用中,以上数字特征经常被用来描述随机变量分布的性质和特征,例如对于正态分布,期望和方差可以完全描述其分布特征。
对于非正态分布,还需要考虑偏态和峰态等特征。
2.3随机变量的数字特征
E[X-E(X)]2
为随机变量X的方差,记为D(X),或Var(X). 称 ( X ) D( X ) 为随机变量X的标准差
2. 方差的意义
方差是一个常用来体现随机变量X 取值分散程度的量. 如果 D(X) 值大, 表示 X 取值分散程度大, E(X) 的代 表性差;
如果 D(X) 值小, 则表示X 的取值比较集中, 以 E(X)
它有以下等价的形式:
P{| X E( X ) | } 1 D( X ) . 2
例3 已知某种股票每股价格X的平均值为1元 ,标准差为0.1元,求a,使股价超过1+a元或 低于1-a元的概率小于10%。 解:由切比雪夫不等式 P(X>1+a∪X<1-a)<0.01 0.01 P{| X 1 | a} 2 ; a
0.01 0 .1 2 a
令
a 0.1
2
a 0.32
O
1000 1000
x x
2组
O
随机变量在期望周围的波动情况 ——方差、标准差
如何定义?
E| X-E(x) |
方便计算
E{X-E(X)}2
X1
O
X2
1000
Xn
x
E(X)=1000
1.定义 若E(X),E(X2)存在,则称
其中 f ( x ) 为X的概率密度.
例1 将资金投资在房地产和商业,收益都与市场状 态有关。把未来市场划分为好、中、差三个等级, 其发生的概率分别为0.2、0.7、0.1。 投资房地产的收益X(万元)和投资商业的收益Y (万元)的分布列为: 房地产 X 11 3 -3 问:该投资者如何选择? P 0.2 0.7 0.1
2.2随机变量的数字特征
数学期望也称为均值。
返回主目录
二、 随机变量的函数的分布
随机变量的函数
设 X 是一随机变量,Y 是 X 的函数, g X , 则 Y Y
也是一个随机变量.当 X 取值 x时,Y 取值 y g x
本节的任务就是:
已知随机变量 X 的分布,并且已知Y g X , 要求随机变量Y 的分布.
返回主目录
此时称Y 服从自由度为1的 2分布。
二、 随机变量的函数的分布
例 6
设 随机变量 X 的密度函数为 f X x , X ,试 Y 求随机变量Y 的密度函数 f Y y .
设随机变量X 的分布函数为FX y ,随机变量 Y 的分布函数为FY y
解:
FY y P y P X y Y
解:(1) 先求 Y = X 2 的分布函数 FY(y):
10 由于 Y X 2 0, 故当 y 0 时 FY ( y) 0.
20 当 y 0 时, FY ( y ) P{Y y} P{ X 2 y} P{ y X y }
y y
f X ( x)dx.
Y = (X-1)2
的分布律.
1 2 X -1 0 pk 0.2 0.3 0.1 0.4
解: Y 有可能取的值为 0,1,4. 且 Y=0 对应于 ( X-1)2=0, 解得 X=1, 所以, P{Y=0}=P{X=1}=0.1,
返回主目录
二、 随机变量的函数的分布
例 2(续) Y=(X-1)2 同理,
(1) 旅客 8:00 到站,求他侯车时间的数学期望。 (2) 旅客 8:20 到站,求他侯车时间的数学期望。
解:设旅客的候车时间为 X(以分记)
随机变量的数字特征
求 X 的数学期望 EX 。
解 由连续型随机变量数学期望的定义,有
EX xf (x)dx
0
1
2
x 0dx+ x xdx+ x (2 x)dx x 0dx
0
1
2
1 x2dx+ 2 (2x x2 )dx 1.
0
1
三、随机变量函数的数学期望
定理 设 X 为随机变量,y g(x)为实函数,
EX 2 2EX 2 EX 2 EX 2 EX 2.
方差的性质: (1)D(C) 0;
(2)DX C D(X );
(3)DCX C2DX ;
x,
例3.6 设随机变量 X 的密度函数为 f (x) 2 x,
0,
0 x 1 1 x 2 . otherwise
求 X 的方差D(X ).
(1)设
X 为离散型随机变量,概率分布为
PX
xi
pi ,i
1, 2,
,
若 g(xi ) pi 绝对收敛,则 Eg(X ) 存在,且
i 1
E g( X )= g(xi ) pi.
i 1
(2)设 X为连续型随机变量,密度函数为 f (x) ,若
g(x)
f
(x)dx
绝对收敛,则
Eg(X )
存在,且
机变量 X 的方差,记为 D(X ) ,或 Var(X ) ,并称 D(X )
为 X 的标准差。
方差的计算:
考虑到方差实际上为随机变量函数的数学期望:g( X ) X EX 2,因此
若 X 为离散型随机变量,概率分布为 pi PX xi , i 1,2, ,则
D( X ) EX EX 2 xi EX 2 pi. i 1
概率论与数理统计 第4章 随机变量的数字特征
解:
1 (5 0.5x)( 3 x2 x)dx
0
2
4.65(元)
2021/7/22
21
4.1.2 随机变量函数的数学期望
将定理4.1推广到二维随机变量的情形.
定理4.2 设Z是随机变量X,Y的函数Z = g(X,Y), g是连续函数.
(1) 若(X,Y)是二维离散型随机变量,其分布律
为P{X xi ,Y yj } pij, i, j 1,2,, 则有
解:由于 P{ X k} k e ,k = 0,1,2,…,
k!
因而
E( X ) kP{ X k} k k e
k0
k0 k!
k e
k1 (k 1)!
e
k 1
k1 (k 1)!
e k ee k0 k!
2021/7/22
12
4.1.1 数学期望的概念
2. 连续型随机变量的数学期望
2021/7/22
18
4.1.2 随机变量函数的数学期望
定理4.1 设Y为随机变量X的函数:Y = g(X) (g是连续
函数).
(1) 设X是离散型随机变量,其分布律为
P{X xk } pk , k 1,2,
若级数 g( xk ) pk绝对收敛,则 E(Y ) E[g( X )] g( xk ) pk
f ( x) 25( x 4.2), 4 x 4.2,
0,
其 它.
求pH值X的数学期望E(X).
解:
E( X ) xf ( x)dx
4
4.2
x 25( x 3.8)dx x (25)(x 4.2)dx
3.8
4
4
2021/7/22
15
第三章 随机变量的数字特征
第三章 随机变量(向量)的数字特征
§3.1 随机变量的数学期望 §3.2 随机变量的方差 §3.3 协方差与相关系数
为了完整的描述随机变量的统计特性,自然应该知道 其分布函数,因为随机变量的分布函数可以反映随机变量 取值的规律。但是在实际问题中,一方面随机变量的分布 或分布函数并不都是容易求得的,另一方面,往往也不需 要知道随机变量的详尽的概率分布,而仅需要知道其某些
四、随机变量函数的数学期望 1. 一元随机变量函数的情况 设Y g( X )是随机变量 X的函数, (1)离散型
如果随机变量X 的概率函数为 P{ X xk } pk k 1, 2, 则有E (Y ) E[ g ( X )] g ( xk ) pk
k 1
(2)连续型
x2
1 n
Pk
n
… xi … 1 n
… xn … 1 n
E ( X ) x1 1 x2 1 ... xn 1 1 xi n n n n
i 1
2.两点分布 由数学期望的定义
E( X ) p
X pi
0
1
q
p
3. 二项分布 若随机变量 X ~ B(n, p) ,其概率函数为
xR
( x )2 2 2
1 E ( X ) xf ( x)dx xe 2 t2 (x ) 1 令t ( t )e 2 dt 2 t2 1 e 2 dt 2
dx
解:由上面的公式
1 1 2 E (W ) kv f (v)dv kv dv ka a 3 0
2 2 a
例3.6 设X与Y相互独立,它们的概率密度函数分别为
随机变量的5个数字特征
随机变量的5个数字特征。
随机变量的5个数字特征
随机变量是一种可以在多种不同情况下表现出不同数值的变量,它的数字特征可以帮助我们更加深入的了解一个随机变量的性质。
下面就介绍随机变量的5个数字特征:
首先是均值,它是一个随机变量的平均数,用来反映其数值的平均水平,可以帮助我们预测其可能表现出的数值范围;
其次是方差,它反映了一个随机变量的数值水平差异程度,当方差较低时,意味着随机变量的数值波动不大;
接着是标准差,它是方差的平方根,可以反映一个随机变量的数值分散程度,标准差越小,意味着数值的分布越集中;
最后还有三个数字特征,分别是偏度、峰度和相关系数,它们分别反映一个随机变量数值分布的偏斜程度、峭度以及与其他变量之间的关联程度。
总之,随机变量的5个数字特征,即均值、方差、标准差、偏度、峰度和相关系数,可以帮助我们更加深入地了解一个随机变量的性质,从而更好地分析和预测数据作出正确的决策。
随机变量的数字特征总结
第四章随机变量的数字特征总结(总15页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第四章 随机变量的数字特征㈠ 数学期望 表征随机变量取值的平均水平、“中心”位置或“集中”位置. 1、数学期望的定义(1) 定义 离散型和连续型随机变量X 的数学期望定义为{}⎪⎩⎪⎨⎧==⎰∑∞∞- d )( )()( ,,连续型离散型x x xf x X x X kk k P E 其中Σ表示对X 的一切可能值求和.对于离散型变量,若可能值个数无限,则要求级数绝对收敛;对于连续型变量,要求定义中的积分绝对收敛;否则认为数学期望不存在. ①常见的离散型随机变量的数学期望1、离散型随机变量的数学期望设离散型随机变量的概率分布为,若,则称级数为随机变量的数学期望(或称为均值),记为, 即2、两点分布的数学期望设服从0—1分布,则有,根据定义,的数学期望为.3、二项分布的数学期望设服从以为参数的二项分布,,则。
4、泊松分布的数学期望设随机变量服从参数为的泊松分布,即,从而有。
①常见的连续型随机变量的数学期望1)均匀分布设随机变量ξ服从均匀分布,ξ~U [a ,b ] (a <b ),它的概率密度函数为:= 则=∴ E(ξ)=(a+b)/2.即数学期望位于区间的中点.2)正态分布设随机变量ξ服从正态分布,ξ~N(μ,σ2),它的概率密度函数为:(σ>0, - <μ<+ )则令得∴ E(ξ)=μ .3)指数分布设随机变量服从参数为的指数分布,的密度函数为,则.(2) 随机变量的函数的数学期望设)(xgy=为连续函数或分段连续函数,而X是任一随机变量,则随机变量)(XgY=的数学期望可以通过随机变量X的概率分布直接来求,而不必先求出Y的概率分布再求其数学期望;对于二元函数),(YXgZ=,有类似的公式:(){}⎪⎩⎪⎨⎧===⎰∑∞∞.;(连续型)离散型-d)()()()(xxfxgxXxgXgY kkkPEE()(){}()()()()⎪⎩⎪⎨⎧====⎰⎰∑∑∞∞-∞∞-.;连续型离散型dd,,,,,yxyxfyxgyYxXyxgYXgZi jjijiPEE设(,)X Y为二维离散型随机变量,其联合概率函数(,),,1,2,,i j ijP X a Y b p i j====如果级数(,)i j ijj ig a b p∑∑绝对收敛,则(,)X Y的函数(,)g X Y的数学期望为[(,)](,)i j ijjiE g X Y g a b p =∑∑; 特别地();()i ij j ijiijiE X a p E Y b p ==∑∑∑∑.设X 为连续型随机变量,其概率密度为()f x ,如果广义积分 ()()g x f x dx+∞-∞⎰绝对收敛,则X 的函数()g X 的数学期望为[()]()()E g X g x f x dx+∞-∞=⎰.设(,)X Y 为二维连续型随机变量,其联合概率密度为(,)f x y ,如果广义积分(,)(,)g x y f x y dxdy+∞+∞-∞-∞⎰⎰绝对收敛,则(,)X Y 的函数(,)g X Y 的数学期望为[(,)](,)(,)E g x y g x y f x y dxdy+∞+∞-∞-∞=⎰⎰;特别地()(,)E x xf x y dxdy +∞+∞-∞-∞=⎰⎰,()(,)E Y yf x y dxdy+∞+∞-∞-∞=⎰⎰.注:求E(X,Y)是无意义的,比如说二维(身高,胖瘦)的数学期望是无意义的,但是二维随机变量函数Z= E(X,Y)是有意义的,他表示的是函数下的另一个一维意义。
概率论与数理统计(经管类)复习要点 第4章 随机变量的数字特征
第四章 随机变量的数字特征1. 把刻画随机变量某些方面特征的数值称为随机变量的数字特征,如期望、方差、协方差、相关系数等。
2. 随机变量的期望反映了随机变量取值的集中位置。
离散型随机变量的期望设离散型随机变量X 的分布律为P {X =x k }=p k ,k=1,2,…若级数∑ix i p i 绝对收敛(即级数∑i丨x i 丨p i 收敛),则定义X 的数学期望(简称均值或期望)为E (X )=∑ix i p i注:当X 的可能取值为有限多个x 1,x 2,…,x n 时,E (X )=∑=ni 1x i p i 当X 的可能取值为可列多个x 1,x 2,…,x n ,…时,E (X )=∑∞=1i x i p i三种重要离散型随机变量的数学期望:3. 离散型随机变量函数的数学期望 设离散型随机变量X 的分布律为P {X =x k }=p k ,k=1,2,…令Y =g (X ),若级数∑∞=1k g (x k )p k 绝对收敛,则随机变量Y 的数学期望为E (Y )= E[g (X )] =∑∞=1k g (x k )p k4. 连续型随机变量的期望三种重要连续型随机变量的数学期望:5. 连续型随机变量函数的数学期望2017.4单解:6. 二维随机变量的期望二维随机变量函数的期望7. 期望的性质(1)常数的期望等于这个常数,即E (C )=C ,其中C 为常数证明 常数C 作为随机变量,它只可能取一个值C ,即P {X =C }=1,所以E (C )=C ⋅1=C(2)常数与随机变量X 乘积的期望等于该常数与随机变量X 的期望的乘积,即E (C X )=C ⋅E (X ) (3)随机变量和的期望等于随机变量期望之和,即E (X +Y )= E (X )+ E (Y ) 推广:E (C 1X +C 2Y )= C 1E (X )+ C 2E (Y ),其中C 1,C 2为常数 一般地,设X 1,X 2,…,X n ,为n 个随机变量,则有E (∑=ni iX 1)=∑=ni iX E 1)(E (∑=ni ii X C 1)=∑=ni iiX E C 1)( 其中C i(i=1,2,…)为常数(4)两个相互独立的随机变量乘积的期望等于期望的乘积,即若X ,Y 是相互独立的随机变量,则E (XY )= E (X )E (Y )由数学归纳法可证得:当X1,X2,…,X n相互独立时有E(X1,X2,…,X n)= E(X1)E(X2)…E(X n)2018.4单解:指数分布的期望值为 1,故E(X)= E(Y)=21,所以E(X Y)= E(X)E(Y)=412018.4计解:(1)平均收益率E(X)=1%×0.1+2%×0.2+3%×0.1+4%×0.3+5%×0.2+6%×0.1=3.6%(2)预期利润10×3.6%=0.36万元2017.10单解:E(-3X +2)=-3 E(X)+2=-3×51+2=572017.4填解:E(X+Y)= E(X)+ E(Y)=20×0.1+2=48. 方差反映了随机变量偏离中心——期望的平均偏离程度。
随机变量的数字特征
随机变量的数字特征
随机变量的数字特征包括均值、方差、标准差、偏度和峰度等。
其中,均值是衡量随机变量中心位置的指标,是所有取值的平均数;方差是随机变量离均值的距离平方的平均数;标准差是方差的算术平方根,也是随机变量离均值距离的度量,具有与随机变量相同的量纲;偏度是随机变量概率分布的偏斜程度,为其分布的非对称程度的度量;峰度则是随机变量概率分布的尖锐程度,衡量随机变量的概率分布在平均值附近的峰值高低。
可以通过计算公式来求解以上数字特征,例如均值的计算公式为所有取值的总和除以取值的数量;方差的计算公式为将每个取值与均值的差值平方后的总和除
以取值的数量;标准差的计算公式则是方差的算术平方根;偏度的计算公式为三阶中心矩与标准差的比值;峰度的计算公式为四阶中心矩与标准差的四次幂的比值。
了解随机变量的数字特征有助于描绘随机变量的特征与规律,进而分析和预测其行为。
同时,对于特定应用领域,也需要针对性地选择数字特征进行分析,以
更好地满足应用的需求。
2.2随机变量的数字特征
x f ( x ) dx
f ( x)
0dx a x f ( x ) dx 0dx b
b
a
b
EX 存在.
例 已知 r .v . X ~ [ a , b ]上的均匀分布, 求 EX
解
1 , X ~ f ( x) b a 0,
a xb
n ' n x n1 ( x n )' x x 1时, n 1 n 1 n 1 2 3 n ' x ' 1 2 ( x x x ... x ...) 1 x (1 x )
二.连续型随机变量 的数学期望
0
1 2 2 1 1 0 sin xdx 2 ( cos x ) 0 2 cos x 2
0 2
0
例 r .v . X ~ [ 0, 2 ]上的均匀分布, 求E (sin X ),
E ( X EX )2
1 2 ,
解 X ~ f ( x)
2
0 x 2
x2 2 EX x f ( x )dx 0dx dx 0dx a ba b
a b
1 b 2 1 x3 b 1 b 3 a 3 a 2 ab b 2 a x dx b a 3 a b a 3 ba 3
例 r .v . X ~ [ 0, 2 ]上的均匀分布, 求E (sin X ),
说明:
x x
n n n
n n
pn x1 p1 x2 p2 ... xn pn ... 收敛
EX x1 p1 x2 p2 ... xn pn ...
随机变量的数字特征
随机变量的数字特征第四章随机变量的数字特征第⼀节基本概念1、概念⽹络图→切⽐雪夫不等式矩⽅差期望⼀维随机变量→协⽅差矩阵相关系数协⽅差⽅差期望⼆维随机变量2、重要公式和结论例4.1:箱内装有5个电⼦元件,其中2个是次品,现每次从箱⼦中随机地取出1件进⾏检验,直到查出全部次品为⽌,求所需检验次数的数学期望。
例4.2:将⼀均匀骰⼦独⽴地抛掷3次,求出现的点数之和的数学期望。
例4.3:袋中装有标着1,2,…,9号码的9只球,从袋中有放回地取出4只球,求所得号码之和X 的数学期望。
例4.4:设随机变量X 的概率密度为,)(21)(||+∞<<-∞=-x e x f x求E (X )及D (X )。
例4.5:设随机变量X~N (0, 4), Y~U (0, 4),且X ,Y 相互独⽴,求E (XY ),D (X+Y )及D (2X-3Y )。
例4.6:罐中有5颗围棋⼦,其中2颗为⽩⼦,另3颗为⿊⼦,如果有放回地每次取1⼦,共取3次,求3次中取到的⽩⼦次数X 的数学期望与⽅差。
例4.7:在上例中,若将抽样⽅式改为不放回抽样,则结果⼜是如何?例4.8:“随机变量X 的数学期望E(X)= µ.”的充分条件:(1)X 的密度函数为f(x)=λµλ--x e21 (λ>0,-∞(2) X 的密度函数为222)(21)(σµσπ--=x ex f ,(+∞<<∞-x )例4.9:利⽤切⽐雪夫不等式估计随机变量与其数学期望之差⼤于3倍标准差的概率。
例4.10:设随机变量X 和Y 的⽅差存在且不等于0,则D (X+Y )=D (X )+D (Y )是X 和Y(A )不相关的充分条件,且不是必要条件;(B )独⽴的充分条件,但不是必要条件;(C )不相关的充分必要条件;(D )独⽴的充分必要条件。
()。
例4.11:设X 与Y 相互独⽴都服从P (λ),令U=2X+Y ,V=2X-Y 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
X cos
Y sin
1
y
(cos ,sin )
x
1
如果X与Y统计独立,则(X,Y)的值应落在正方体内,但实际
上(X,Y)的值只能落在圆上,说明统计独立的假定是错误的。
1.2-3 计算举例 统计独立意味着零协方差(不相关), 但零协方差并不意味着统计独立。
是
X 和Y 独立 ? X 和Y 不相关
x
-2 0 2 4
-4 -4 4 2 0
数为r。
y
4 2 0 -2 -4 -4
r=0.95
y
r=-0.95
x
-2 0 2 4
-2 -4 -4
x
-2 0 2 4
协方差矩阵:
X [ X1 , X 2 ,
k12 k 22 k n2 k1n k 2n k nn
1.2 随机变量的数字特征
均值与方差
协方差与相关系数
计算举例
1.2-1 均值与方差
均值(Mean)的定义:
离散型随机变量: E ( X )
x P( X x )
i 1 i i
N
连续型随机变量: E ( X )
xf ( x)dx
算术平均: 所有可能取值等概率加权 统计平均值: 所有可能取值按概率加权
需要注意以下几个概念的区别 统计独立: 不相关: 正交:
f XY ( x, y) f X ( x) fY ( y)
Cov( X , Y ) 0 E ( XY ) 0
1.2-2 协方差与相关系数
相关系数的解释:
当用一个随机变量的值预测另一个随机变量的值
的时候,相关系数提供了线性预测好坏的度量。
Y aX b
rXY 1
1 表示 X 和Y高度的线性相关。
+1 意味着 a>0,即正相关;
-1 意味着 a<0,即负相关。
1.2-2 协方差与相关系数
y
两个服从N(0,1)的正
4 2 0 -2 -4 -4
r=0.5
4 2 0 -2
y
r=-0.5
态随机变量X和Y的
散图,它们的相关系
x
-2 0 2 4
本节小结: 均值与方差
均值反映的是随机变量取值的统计平均值
方差反映的是随机变量取值的分散程度
协方差与相关系数
反应随机变量之间的(线性)相关性
|r|=1, 完全相关, |r|=0,不相关
注意不相关与独立的差别。
计算举例
1.2-1 均值与方差 方差(Variance)的定义:
D( X ) E{[ X E ( X )] }
2
D( X ) E ( X ) E ( X )
2 2
方差反映了随机变量 X 的取值偏离其均值的偏离 程度或分散程度, D(X) 越大,则 X 的取值越分散。
15 10
5
0
0
20
40
60
80
100
120
140
160
180
200
15
10
5
0
0
20
40
60
80
100
120
140
160
180
200
1.2-2 协方差与相关系数 X与Y的协方差(Covariance):
Cov( X , Y ) E{[ X E ( X )][Y E (Y )]} E ( XY ) E ( X ) E (Y )
rXY Cov( X , Y ) D( X ) D(Y )
Correlation Coefficient
rXY 1
如果X和Y相互独立,则rXY=0,
| rXY|=1的充要条件是P{Y=aX+b}=1
1.2-2 协方差与相关系数 如果 rXY 0 称 X 和Y 不相关 如果X 和Y 独立,则X和Y 不相关
, X n ]T
k11 k 21 K k n1
1.2-3 计算举例 例1.2-1:设X为零均值正态随机变量,Y
X
2
, Y 与X相关吗?
分析:显然Y是依赖于X的(Dependence), 但Y与X不相关(Uncorrelated)。
因为
Cov( X , Y ) E ( XY ) E ( X ) 0
1 cos sin d 0 2
所以,X和 Y是不相关的,但二者并非统计独立
(下面可以证明这一点)。
1.2-3 计算举例 可以证明:X cos 的概率密度为
f X ( x)
1 1 x
2
1 x 1
f X ( x)
x
Y与X有相同的分布。
1.2-3 计算举例
3
1.2-3 计算举例 例1.2-2 假定 为(0,2)均匀分布的随机变量。 令 X cos , Y sin , X、Y统计独立吗? 解: E ( X )
2
0
1 cos d 0 2
2 0
E (Y ) 0
E ( XY ) E (cos sin )